WO2020116795A1 - 리튬 정광으로부터 황산나트튬 혼합 배소에 의한 수산화리튬 제조방법 - Google Patents

리튬 정광으로부터 황산나트튬 혼합 배소에 의한 수산화리튬 제조방법 Download PDF

Info

Publication number
WO2020116795A1
WO2020116795A1 PCT/KR2019/014863 KR2019014863W WO2020116795A1 WO 2020116795 A1 WO2020116795 A1 WO 2020116795A1 KR 2019014863 W KR2019014863 W KR 2019014863W WO 2020116795 A1 WO2020116795 A1 WO 2020116795A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
concentrate
lithium hydroxide
mixing
hydroxide
Prior art date
Application number
PCT/KR2019/014863
Other languages
English (en)
French (fr)
Inventor
이민우
박석준
이명규
이광석
박종선
김다모아
Original Assignee
주식회사 에코프로이노베이션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 에코프로이노베이션 filed Critical 주식회사 에코프로이노베이션
Priority to EP19892113.2A priority Critical patent/EP3892587A4/en
Priority to CA3121957A priority patent/CA3121957C/en
Priority to AU2019392034A priority patent/AU2019392034A1/en
Priority to US17/299,632 priority patent/US20220017991A1/en
Publication of WO2020116795A1 publication Critical patent/WO2020116795A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • C01D15/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/02Roasting processes
    • C22B1/06Sulfating roasting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B26/00Obtaining alkali, alkaline earth metals or magnesium
    • C22B26/10Obtaining alkali metals
    • C22B26/12Obtaining lithium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention is sodium sulfate from lithium concentrate It relates to a method for producing lithium hydroxide by mixed roasting, and more specifically, lithium ions can be recovered at a high recovery rate by mixing and roasting a concentrate containing lithium with sodium sulfate (Na 2 SO 4 ), followed by water leaching.
  • Sodium sulfate from lithium concentrate which can produce lithium hydroxide monohydrate It relates to a method for producing lithium hydroxide by mixed roasting.
  • the lithium ion battery is composed of a positive electrode material, a negative electrode material, a separator, an electrolyte, etc.
  • the positive electrode material of a lithium ion secondary battery is lithium oxide containing valuable metals such as nickel, cobalt, and manganese.
  • lithium oxide is used as an active material, and lithium ions in the lithium oxide serve to store or release electrical energy when charged and discharged.
  • the existing technique for recovering lithium from lithium concentrate is to recover the lithium sulfate solution through roasting and leaching of lithium concentrate to sulfuric acid, and first to lithium carbonate through a conversion process and then to lithium hydroxide.
  • the present invention is designed to solve this problem, the object of the present invention is to recover sodium ions from lithium concentrates, minimize by-products, and prepare sodium sulfate from mixed lithium sulfates to produce high-purity lithium hydroxide.
  • An object of the present invention is to provide a method for producing lithium hydroxide.
  • the present invention is a lithium concentrate preparation step of preparing a concentrate containing lithium, a lithium concentrate mixing and roasting step of mixing and roasting the lithium concentrate with sodium sulfate, and adding and stirring water to the result of the mixed roasting Water leaching step, the water-leached mixture is a lithium-dissolved leachate, a solid-liquid separation step of separating the residue into a residue, a concentration step of concentrating the lithium-dissolved leachate, sodium hydroxide (NaOH) in the concentrate Sodium hydroxide mixing step of stirring after mixing, a cooling crystallization step of cooling the sodium hydroxide mixture to precipitate sodium sulfate crystals due to a difference in solubility, separating the precipitate and lithium hydroxide solution from the cooled crystallization mixture to recover the lithium hydroxide solution Lithium hydroxide solution recovery step, concentrated crystallization step of concentrating the lithium hydroxide solution to recover lithium hydroxide monohydrate crystals through lithium hydroxide crystallization, washing after washing the lithium
  • the lithium concentrate mixing roasting step is reacted with 2LiAlSi 2 O 6 + Na 2 SO 4 ⁇ Li 2 SO 4 + 2NaAlSi 2 O 6 (Scheme 1), where the temperature is maintained in the range of 850°C to 1300°C And heat treatment for 20 minutes to 300 minutes.
  • the concentration step it is preferable to evaporate the leachate to a concentration of 16 g/L to 30 g/L of lithium for 30 minutes to 10 hours at a temperature of 60°C to 120°C under vacuum conditions.
  • sodium hydroxide mixing step it is preferable to completely dissolve sodium hydroxide by adding sodium hydroxide (NaOH) to the concentrate and stirring at a temperature of 20°C to 100°C for 15 minutes to 2 hours.
  • NaOH sodium hydroxide
  • the sodium hydroxide mixture is cooled to a temperature of 10°C to -10°C and stirred for 15 minutes to 10 hours to precipitate sodium sulfate pentahydrate (Na 2 SO 4 .10H 2 O) crystals. desirable.
  • the lithium hydroxide solution recovery step it is preferable to separate the precipitate and the lithium hydroxide solution from the cooled crystallized mixture by maintaining the temperature of the cooled crystallized mixture at room temperature to -10°C.
  • the concentrated crystallization step it is preferable to deposit lithium hydroxide monohydrate through evaporation and concentration of the lithium hydroxide solution at a temperature of 60°C to 120°C for 30 minutes to 10 hours and recover the crystals.
  • the washing and drying step it is preferable to wash the lithium hydroxide monohydrate crystal using water and then dry it to recover the final product, lithium hydroxide monohydrate.
  • sodium sulphate is mixed and roasted from the concentrate containing lithium and leached with water to recover lithium at a high recovery rate.
  • the process of using an acid is omitted and only lithium ions can be selectively extracted from the lithium concentrate, thereby efficiently producing high purity lithium hydroxide monohydrate. It has the advantage of being manufactured.
  • the process of converting from lithium sulphate solution leached from water to lithium carbonate is omitted and sodium sulfate is a crystal generated in the process of converting to lithium hydroxide. It has the advantage that it can be recycled to the sodium sulfate mixed roasting process from the lithium concentrate, which is the previous process.
  • the present invention relates to a method for producing lithium hydroxide by mixing sodium sulphate from the lithium concentrate of the present invention, by mixing and roasting sodium sulfate from a concentrate containing lithium to recover lithium at a high recovery rate, minimizing by-products, and high purity hydroxylation Lithium can be produced.
  • FIG. 1 is a flow chart showing a method for producing lithium hydroxide by mixing sodium sulphate from a lithium concentrate according to an embodiment of the present invention
  • Figure 2 is an XRD analysis result of lithium hydroxide monohydrate according to an embodiment of the present invention It is shown.
  • a method for preparing lithium hydroxide by mixing sodium sulphate from a lithium concentrate according to the present invention is a lithium concentrate preparation step of preparing a concentrate containing lithium, and a lithium concentrate mixing and roasting the lithium concentrate with sodium sulfate.
  • the method for producing lithium hydroxide by mixing sodium sulphate from a lithium concentrate is a technique for preparing lithium hydroxide by recovering lithium from lithium concentrate, first, preparing a lithium concentrate containing lithium (S100).
  • the concentrate containing lithium is spodumene (Li 2 OAl 2 O 3 4SiO 2 ), repidolite (KLiAl(OH,F) 2 Al(SiO 4 ) 3 ), petalite (LiAl(Si 2 O 5 ) 2 ), ambigonite (LiAl(F,OH)PO 4 ), ginwaldite (Li 2 K 2 Fe 2 Al 4 Si 7 O 24 ), trippyrite (Li(Fe,Mn)PO 4 ), Lithiophyllite (Li(Mn,Fe)PO 4 ) It may be at least one or more selected from the group consisting of.
  • the lithium concentrate mixing and roasting step (S200) is a process for transforming lithium in the lithium concentrate structure into a form of a water-soluble material, and is reacted with Reaction Scheme 1 shown below.
  • the temperature is maintained in the range of 850°C to 1300°C, and heat-treated for 20 minutes to 300 minutes.
  • a water leaching step is performed by adding water to the mixed roasting product and stirring it (S300).
  • the water leaching step (S300) does not use an acid in the result of the mixed roasting, and inputs 1 to 10 times the weight of the weight of the mixed roasting result, and 200 rpm for 1 to 5 hours at a temperature of 20 to 100°C. It is stirred at 1,000 rpm.
  • a solid-liquid separation step (S400) of separating the water-leached mixture into a lithium-dissolved leachate and a residue is performed.
  • elements such as sodium, aluminum, and silicon are separated into residues in an insoluble solid state, and lithium is dissolved and separated in the leach solution.
  • a concentration step (S500) of concentrating the leach solution in which the lithium is dissolved is performed.
  • the leachate is evaporated to a concentration of 16 g/L to 30 g/L at a temperature of 60° C. to 120° C. for 30 minutes to 10 hours under vacuum conditions.
  • sodium hydroxide NaOH
  • S600 stirring sodium hydroxide mixing step
  • a cooling crystallization step (S700) is performed in which the sodium hydroxide mixture is cooled to precipitate sodium sulfate crystals due to a difference in solubility.
  • the mixture is stirred at a temperature of 10°C to -10°C for 15 minutes to 10 hours to precipitate sodium sulfate pentahydrate (Na 2 SO 4 .10H 2 O) crystals. .
  • a lithium hydroxide solution recovery step (S800) is performed in which the precipitate and the solution are separated from the cooled crystallized mixture to recover the lithium hydroxide solution.
  • the mixture after cooling crystallization is maintained at a temperature between room temperature and -10°C to separate the precipitate and the lithium hydroxide solution from the cooling crystallization completed mixture.
  • a concentrated crystallization step (S900) is performed in which the lithium hydroxide solution is concentrated to recover lithium hydroxide monohydrate through lithium hydroxide crystallization.
  • lithium hydroxide monohydrate is precipitated by evaporating and concentrating the lithium hydroxide solution after solid-liquid separation at a temperature of 60°C to 120°C for 30 minutes to 10 hours and recovering the crystal.
  • lithium hydroxide monohydrate crystal is washed with water and then dried to recover the final product, lithium hydroxide monohydrate (S1000).
  • spodumene concentrate Li 2 OAl 2 O 3 4SiO 2 .
  • Table 1 shows the results of the content analysis measured through ICP-OES of the spodumene concentrate.
  • the water-leached mixture was separated by solid-liquid separation and separated into a leachate and a residue containing lithium from the result of mixed roasting.
  • the recovery rate of lithium is about 70%, and shows a high recovery rate.
  • the leach solution in which lithium was dissolved was evaporated at a concentration of Li of about 15.9 g/L to concentrate the Li concentration to a concentration of about 30 g/L.
  • lithium sulfate and sodium hydroxide were mixed by stirring for 30 minutes at room temperature to completely ionize through the dissolution of sodium hydroxide in the concentrate.
  • the mixed solution was cooled to 10 ° C. or less to precipitate sodium sulfate hexahydrate crystals using a decrease in solubility of sodium sulfate according to temperature.
  • Table 3 shows the solubility of lithium hydroxide and sodium sulfate according to temperature.
  • the sodium hydroxide 10-hydrate crystal (precipitate) and the lithium hydroxide solution are separated by solid-liquid separation from the cooled crystallized mixture to recover the lithium hydroxide solution.
  • the lithium hydroxide solution was evaporated to crystallize.
  • the obtained crystals were washed with water and dried to obtain lithium hydroxide monohydrate, which can be used in a positive electrode material for a secondary battery.
  • Figure 2 shows the results of XRD analysis of lithium hydroxide monohydrate according to an embodiment of the present invention, it was confirmed that pure lithium hydroxide monohydrate was obtained.
  • spodumene concentrate was prepared with lithium concentrate, and the prepared spodumene concentrate was put into a box-type kiln, heated to 1050°C ⁇ 10°C at a heating rate of 5°C per minute and maintained for 30 minutes. And then cooled naturally.
  • the roasted spodumene concentrate was mixed with sulfuric acid in a 1:1 ratio compared to the lithium oxide (Li 2 O) content, and then charged into a box-type electric furnace and heated up to 250°C ⁇ 10°C at a heating rate of 5°C per minute. After that, it was kept for 30 minutes and then cooled naturally.
  • the mixture was mixed with sulfuric acid and water was mixed with the same ratio as in Example, and then lithium was recovered through water leaching. Lithium was recovered by performing stirring at 550 rpm for 60 minutes using a magnetic stirrer at room temperature.
  • lithium in the lithium concentrate can be recovered by transforming it into a form of a water-soluble material through a mixed roasting of lithium concentrate and sodium sulfate without a conventional process of leaching sulfuric acid.
  • the lithium component in the lithium hydroxide production method by mixing sodium sulphate from the lithium concentrate according to the present invention, after mixing and roasting the lithium concentrate containing lithium with sodium sulfate, the lithium component can be recovered at a high recovery rate, and an acid is used. It does not selectively extract lithium ions and has the advantage of producing lithium hydroxide monohydrate.
  • lithium carbonate conversion process which is a conventional lithium recovery process from the water-leached mixture, is omitted, and lithium hydroxide monohydrate can be efficiently produced through mixing with sodium hydroxide and cooling crystallization.

Abstract

본 발명은 리튬 정광으로부터 리튬 이온을 효율적으로 회수할 수 있고, 부산물을 최소화하며 고순도의 수산화리튬을 제조할 수 있는 리튬 정광으로부터 황산나트튬 혼합 배소에 의한 수산화리튬 제조방법에 관한 것이다. 이에 의해 리튬을 함유하는 정광을 황산나트륨(Na2SO4)과 혼합 및 배소 후 수침출 함으로써 리튬이온을 높은 회수율로 회수할 수 있고, 고순도의 수산화리튬 일수화물을 제조할 수 있는 이점이 있다.

Description

리튬 정광으로부터 황산나트튬 혼합 배소에 의한 수산화리튬 제조방법
본 발명은 리튬 정광으로부터 황산나트륨 혼합 배소에 의한 수산화리튬 제조방법에 관한 것으로, 보다 구체적으로는 리튬을 함유하는 정광을 황산나트륨(Na2SO4)과 혼합 및 배소 후 수침출함으로써 리튬이온을 높은 회수율로 회수할 수 있고, 고순도의 수산화리튬 일수화물을 제조할 수 있는 리튬 정광으로부터 황산나트륨 혼합 배소에 의한 수산화리튬 제조방법에 관한 것이다.
최근, 소형 가전, IT 기기, 전기자동차(EV), 에너지 저장 장치(ESS) 등의 수요가 급격히 증가하는 추세로 가볍고 높은 에너지 밀도, 고용량을 특징으로 하는 리튬 이온 배터리의 수요 또한 급격히 증가하고 있다.
리튬 이온 배터리는 양극재, 음극재, 분리막, 전해액 등으로 구성되며, 특히 리튬 이온 이차전지의 양극재는 니켈, 코발트, 망간 등의 유가 금속이 포함되어 있는 리튬 산화물이다. 양극재에서 리튬산화물은 활물질로 사용되며, 리튬 산화물 내의 리튬 이온은 충전 및 방전될 때 전기 에너지를 저장 또는 방출시키는 역할을 한다.
최근에는, 리튬 이온 배터리에 적용되는 수산화리튬 및 탄산리튬의 수요가 급격하게 증가함에 따라, 한정적인 자원인 리튬 정광으로부터 리튬을 효율적으로 회수하는 기술개발에 대한 수요가 증가하고 있다.
기존의 리튬 정광으로부터 리튬을 회수하는 기술은 리튬 정광을 황산으로 로스팅 및 수침출을 통하여 황산리튬 용액을 회수하고, 전환 공정을 통하여 탄산리튬으로 먼저 전환 후 수산화 리튬으로 회수하는 것이다.
종래의 리튬 정광으로부터 리튬을 회수하는 기술은 황산 사용으로 인하여 산 폐수 처리 공정이 필요하고, 탄산리튬으로 전환하는 공정이 필수적이므로 부산물 처리 및 공정 비용이 증가하는 문제점이 있었다. 리튬 정광으로부터 황산나트륨 혼합 배소에 의한 수산화리튬 제조방법이다.
본 발명은 이러한 문제점을 해결하기 위해 고안된 것으로, 본 발명의 목적은 리튬 정광으로부터 리튬 이온을 효율적으로 회수할 수 있고, 부산물을 최소화하며 고순도의 수산화리튬을 제조할 수 있는 리튬 정광으로부터 황산나트륨 혼합 배소에 의한 수산화리튬 제조방법의 제공을 그 목적으로 한다.
상기의 목적을 달성하기 위하여 본 발명은, 리튬을 포함하는 정광을 준비하는 리튬 정광 준비 단계, 상기 리튬 정광을 황산나트륨과 혼합 배소하는 리튬 정광 혼합 배소 단계, 상기 혼합 배소 결과물에 물을 첨가하여 교반시키는 수침출 단계, 상기 수침출된 혼합물을 리튬이 용해되어 있는 침출액과, 잔사물로 분리해내는 고액분리 단계, 상기 리튬이 용해되어있는 침출액을 농축시키는 농축 단계, 상기 농축액에 수산화나트륨(NaOH)을 혼합 후 교반하는 수산화나트륨 혼합 단계, 상기 수산화나트륨 혼합물을 냉각하여 용해도 차이로 인한 황산나트륨 결정을 침전시키는 냉각 결정화 단계, 상기 냉각 결정화를 마친 혼합물로부터 침전물과 수산화리튬 용액을 분리하여 수산화리튬 용액을 회수하는 수산화리튬 용액 회수 단계, 상기 수산화리튬 용액을 농축하여 수산화리튬 결정화를 통하여 수산화리튬 일수화물 결정을 회수하는 농축 결정화 단계, 상기 수산화리튬 일수화물 결정을 세척한 후 건조하여 수산화리튬 일수화물을 회수하는 세척 및 건조 단계를 포함하는 리튬 정광으로부터 황산나트튬 혼합 배소에 의한 수산화리튬 제조방법을 기술적 요지로 한다.
또한, 상기 리튬을 포함하는 정광은, 스포듀민(Li2OAl2O34SiO2), 레피돌라이트(KLiAl(OH,F)2Al(SiO4)3), 페탈라이트(LiAl(Si2O5)2), 앰블리고나이트 (LiAl(F,OH)PO4), 진왈다이트(Li2K2Fe2Al4Si7O24), 트리피라이트(Li(Fe,Mn)PO4) 및 리티오필라이트(Li(Mn,Fe)PO4)로 이루어진 군에서 선택되는 적어도 어느 하나인 것이 바람직하다.
또한, 상기 리튬 정광 혼합 배소 단계는, 2LiAlSi2O6 + Na2SO4 → Li2SO4 + 2NaAlSi2O6 (반응식 1)로 반응되며, 이때, 온도는 850℃내지 1300℃의 범위로 유지하고, 20분 내지 300분 동안 열처리시키는 것이 바람직하다.
또한, 상기 수침출 단계는, 상기 혼합 배소 결과물에 산을 사용하지 않고, 혼합 배소 결과물의 무게 대비 1배 내지 10배의 물을 투입하며 20℃ 내지 100℃의 온도에서 1시간 내지 5시간 동안 200rpm 내지 1,000rpm으로 교반하여 처리되는 것이 바람직하다.
또한, 상기 농축 단계는, 상기 침출액을 진공 조건에서 60℃ 내지 120℃의 온도에서 30분 내지 10시간 동안 리튬 농도가 16 g/L 내지 30 g/L의 농도가 되도록 증발시키는 것이 바람직하다.
또한, 상기 수산화나트륨 혼합 단계는, 상기 농축액에 수산화나트륨(NaOH)을 투입 후 20℃ 내지 100℃의 온도에서 15분 내지 2시간 동안 교반하여 수산화나트륨을 완전히 용해시키는 것이 바람직하다.
또한, 상기 냉각 결정화 단계는, 상기 수산화나트륨 혼합물을 10℃ 내지 -10℃의 온도로 냉각하여 15분 내지 10시간 동안 교반하여 황산나트륨 10수화물(Na2SO4.10H2O) 결정을 침전시키는 것이 바람직하다.
또한, 상기 수산화리튬 용액 회수 단계는, 상기 냉각 결정화를 마친 혼합물을 상온 내지 -10℃의 온도를 유지하여 상기 냉각 결정화를 마친 혼합물로부터 침전물과 수산화리튬 용액을 분리해내는 것이 바람직하다.
또한, 상기 농축 결정화 단계는, 상기 수산화리튬 용액을 60℃ 내지 120℃의 온도에서 30분 내지 10시간 동안 증발 농축을 통하여 수산화리튬 일수화물을 석출시키고 결정을 회수하는 것이 바람직하다.
또한, 상기 세척 및 건조 단계는, 상기 수산화리튬 일수화물 결정을 물을 이용하여 세척한 후 건조하여 최종 제품인 수산화리튬 일수화물을 회수하는 것이 바람직하다.
본 발명의 리튬 정광으로부터 황산나트튬 혼합 배소에 의한 수산화리튬 제조방법에 의하면, 리튬을 함유하는 정광으로부터 황산나트륨을 혼합 배소하여 수침출함으로써 리튬을 높은 회수율로 회수할 수 있는 효과가 있다.
또한, 본 발명의 리튬 정광으로부터 황산나트튬 혼합 배소에 의한 수산화리튬 제조방법에 의하면, 산을 이용하는 공정이 생략되고 리튬 정광으로부터 리튬 이온만을 선택적으로 추출할 수 있어 효율적으로 고순도의 수산화리튬 일수화물을 제조할 수 있는 장점을 지닌다.
또한, 본 발명의 리튬 정광으로부터 황산나트튬 혼합 배소에 의한 수산화리튬 제조방법에 의하면, 수침출된 황산리튬 용액으로부터 탄산리튬으로 전환하는 공정이 생략되고 수산화리튬으로 전환되는 공정에서 발생하는 결정인 황산나트륨을 앞 공정인 리튬 정광으로부터 황산나트륨 혼합 배소 공정에 재활용할 수 있는 이점이 있다.
도 1 - 본 발명의 일 실시예에 따른 리튬 정광으로부터 황산나트튬 혼합 배소에 의한 수산화리튬 제조방법을 나타낸 순서도.
도 2 - 본 발명의 일 실시예에 따른 수산화리튬 일수화물의 XRD 분석 결과를 나타낸 도.
본 발명의 리튬 정광으로부터 황산나트튬 혼합 배소에 의한 수산화리튬 제조방법에 관한 것으로서, 리튬을 함유하는 정광으로부터 황산나트륨을 혼합 배소하여 수침출함으로써 리튬을 높은 회수율로 회수하고, 부산물을 최소화하고 고순도의 수산화리튬을 제조할 수 있는 것이다.
이하, 첨부한 도면을 참조하여 본 발명의 바람직한 실시예에 대해 상세하게 설명하고자 한다. 그러나, 본 발명은 여기서 설명되는 실시예에 한정되지 않고 다른 형태로 구체화 될 수도 있다.
도 1은 본 발명의 일 실시예에 따른 리튬 정광으로부터 황산나트튬 혼합 배소에 의한 수산화리튬 제조방법을 나타낸 순서도이고, 도 2는 본 발명의 일 실시예에 따른 수산화리튬 일수화물의 XRD 분석 결과를 나타낸 도이다.
도 1에 도시된 바와 같이 본 발명에 따른 리튬 정광으로부터 황산나트튬 혼합 배소에 의한 수산화리튬 제조방법은 리튬을 포함하는 정광을 준비하는 리튬 정광 준비 단계, 상기 리튬 정광을 황산나트륨과 혼합 배소하는 리튬 정광 혼합 배소 단계, 상기 혼합 배소 결과물에 물을 첨가하여 교반시키는 수침출 단계, 상기 수침출된 혼합물을 리튬이 용해되어 있는 침출액과, 잔사물로 분리해내는 고액분리 단계, 상기 리튬이 용해되어있는 침출액을 농축시키는 농축 단계, 상기 농축액에 수산화나트륨(NaOH)을 혼합 후 교반하는 수산화나트륨 혼합 단계, 상기 수산화나트륨 혼합물을 냉각하여 용해도 차이로 인한 황산나트륨 결정을 침전시키는 냉각 결정화 단계, 상기 냉각 결정화를 마친 혼합물로부터 침전물과 수산화리튬 용액을 분리하여 수산화리튬 용액을 회수하는 수산화리튬 용액 회수 단계, 상기 수산화리튬 용액을 농축하여 수산화리튬 결정화를 통하여 수산화리튬 일수화물 결정을 회수하는 농축 결정화 단계, 상기 수산화리튬 일수화물 결정을 세척한 후 건조하여 수산화리튬 일수화물을 회수하는 세척 및 건조 단계를 포함하는 리튬 정광으로부터 황산나트튬 혼합 배소에 의한 수산화리튬 제조방법을 기술적 요지로 한다.
본 발명의 일 실시예에 따른 리튬 정광으로부터 황산나트튬 혼합 배소에 의한 수산화리튬 제조방법은, 리튬 정광으로부터 리튬을 회수하여 수산화리튬을 제조하기 위한 기술로서, 먼저, 리튬을 포함하는 리튬 정광을 준비한다(S100).
여기서, 상기 리튬을 포함하는 정광은 스포듀민(Li2OAl2O34SiO2), 레피돌라이트(KLiAl(OH,F)2Al(SiO4)3), 페탈라이트(LiAl(Si2O5)2), 앰블리고나이트 (LiAl(F,OH)PO4), 진왈다이트(Li2K2Fe2Al4Si7O24), 트리피라이트(Li(Fe,Mn)PO4), 리티오필라이트(Li(Mn,Fe)PO4)로 이루어진 군에서 선택되는 적어도 어느 하나 이상일 수 있다.
다음, 준비된 리튬 정광을 황산나트륨과 혼합 배소하는 리튬 정광 혼합 배소 단계가 수행된다(S200).
상기 리튬 정광 혼합 배소 단계(S200)는 리튬 정광 구조 내의 리튬을 수용성 물질의 형태로 변형시키기 위한 공정으로, 하기에 표기에 표기된 반응식 1로 반응된다.
[반응식 1]
2LiAlSi2O6 + Na2SO4 → Li2SO4 + 2NaAlSi2O6
이때, 온도는 850℃내지 1300℃의 범위로 유지하고, 20분 내지 300분 동안 열처리된다.
다음, 혼합 배소 결과물에 물을 첨가하여 교반시키는 수침출 단계가 수행된다(S300).
상기 수침출 단계(S300)는 상기 혼합 배소 결과물에 산을 사용하지 않고, 혼합 배소 결과물의 무게 대비 1배 내지 10배의 물을 투입하며 20℃ 내지 100℃의 온도에서 1시간 내지 5시간 동안 200rpm 내지 1,000rpm으로 교반처리된다.
즉, 상기 수침출 단계(S300)에서는, 상기 리튬 정광 혼합 배소 단계(S200)를 통해 형성된 황산리튬은 하기 반응식 2와 같이 반응된다.
[반응식 2]
Li2SO4 + H2O → 2Li+ + SO4 2- + H2O
다음, 수침출된 혼합물을 리튬이 용해되어 있는 침출액과 잔사물로 분리해내는 고액분리 단계(S400)가 수행된다.
여기서, 나트륨, 알루미늄, 규소 등의 원소들은 불용성 고체 상태의 잔사물로 분리되고, 리튬은 침출액에 용해되어 분리된다.
다음, 상기 리튬이 용해되어있는 침출액을 농축시키는 농축 단계(S500)가 수행된다.
상기 농축 단계(S500)에서는 상기 침출액을 진공 조건에서 60℃ 내지 120℃의 온도에서 30분 내지 10시간 동안 리튬 농도가 16g/L 내지 30g/L의 농도가 되도록 증발시킨다.
다음, 상기 농축액에 수산화나트륨(NaOH)을 투입 후 교반하는 수산화나트륨 혼합 단계(S600)에서 20℃ 내지 100℃의 온도에서 15분 내지 2시간 동안 교반하여 수산화나트륨을 완전히 용해시킨다.
다음, 상기 수산화나트륨 혼합물을 냉각하여 용해도 차이로 인하여 황산나트륨 결정을 침전시키는 냉각 결정화 단계(S700)가 수행된다.
상기 혼합물을 냉각하여 결정을 침전시키는 냉각 결정화 단계(S700)에서 10℃ 내지 -10℃의 온도에서 15분 내지 10시간 동안 교반하여 황산나트륨 10수화물(Na2SO4.10H2O) 결정을 침전시킨다.
다음, 상기 냉각 결정화를 마친 혼합물로부터 침전물과 용액을 분리하여 수산화리튬 용액을 회수하는 수산화리튬 용액 회수 단계(S800)가 수행된다.
상기 수산화리튬 용액 회수 단계(S800)에서는 냉각 결정화를 마친 혼합물을 상온 내지 -10℃의 온도를 유지하여 상기 냉각 결정화를 마친 혼합물로부터 침전물과 수산화리튬 용액을 분리해낸다.
다음, 상기 수산화리튬 용액을 농축하여 수산화리튬 결정화를 통하여 수산화리튬 일수화물을 회수하는 농축 결정화 단계(S900)가 수행된다.
상기 농축 결정화 단계(S900)에서는 고액분리를 마친 수산화리튬 용액을 60℃ 내지 120℃의 온도에서 30분 내지 10시간 동안 증발 농축을 통하여 수산화리튬 일수화물을 석출시키고 결정을 회수한다.
즉, 물이 증발되면서 수산화리튬의 농도가 농축되고 용해도보다 높아지면서 결정이 석출된게 된다.
다음, 상기 수산화리튬 일수화물 결정을 물을 이용하여 세척한 후 건조하여 최종 제품인 수산화리튬 일수화물을 회수한다(S1000).
<실시예>
리튬 정광 준비단계(S100)
리튬을 포함하는 정광으로 스포듀민 정광(Li2OAl2O34SiO2) 30g을 사용하였다.
한편, 하기 표 1에는 상기 스포듀민 정광의 ICP-OES을 통하여 측정된 함량 분석 결과를 나타내었다.
구분 Si Al Li Ca K Na Fe Mn Mg
함량(wt%) 28.5 12.6 2.71 1.32 1.12 0.88 0.26 0.11 0.05
리튬 정광 혼합 배소 단계(S200)
다음, 준비된 리튬 정광의 산화리튬(Li2O) 함량 대비 1:1 비율인 황산나트륨 분말 8.3g과 혼합한 후 박스형 소성로에 투입시킨 후, 1분당 5℃의 속도로 1050℃ ± 10℃ 까지 승온한 후 30분 동안 유지하였다. 30분 동안의 등온 기간이 끝난 후 자연 냉각하여 리튬 정광과 황산나트륨 혼합 배소 결과물을 회수하였으며, 혼합 배소 단계에서 별도의 가스를 주입하지 않았다.
수침출 단계(S300)
이후, 혼합 배소 결과물 36.69g에 물 36.69g을 투입 후 상온에서 마그네틱 교반기를 사용하여 550 rpm에서 60분 동안 교반을 수행하여 리튬을 회수하였다.
고액분리 단계(S400)
이후, 수침출된 혼합물을 고액분리하여 혼합 배소 결과물로부터 리튬을 함유하는 침출액과 잔사물로 분리하였으며, 침출액의 화학적 조성을 ICP-OES 분석하여 하기 표 2에 나타내었다.
구분 Li S Na Al Ca Si Mn Fe Mg
함량(ppm) 15874 55609 3425 1548 654 108 66 61 9
표 2를 참조하면, 리튬의 회수율은 약 70%임을 확인할 수 있으며, 높은 회수율을 보인다.
농축 단계(S500)
이후, 리튬이 용해되어 있는 침출액은 Li 농도가 약 15.9g/L에서 증발시켜서 Li 농도가 약 30g/L의 농도가 되도록 농축하였다.
수산화나트륨 혼합 단계(S600)
이후, 농축액에 수산화나트륨의 용해를 통해 황산리튬과 수산화나트륨을 완전히 이온화되도록 상온에서 30분 동안 교반하여 혼합하였다.
냉각 결정화 단계(S700)
이후, 혼합 용액을 10oC 이하로 냉각하여 온도에 따른 황산나트륨의 용해도 감소를 이용하여 황산나트륨 10수화물 결정을 침전시켰다. 온도에 따른 수산화리튬과 황산나트륨의 용해도를 하기 표 3에 나타내었다.
온도(℃) 용해도(g/100ml)
LiOH Na2SO4
0 12.7 4.9
10 12.7 9.1
20 12.8 19.5
수산화리튬 용액 회수 단계(S800)
이후, 냉각 결정화를 마친 혼합물로부터 황산나트륨 10수화물 결정(침전물)과 수산화리튬 용액을 고액분리하여 수산화리튬 용액을 회수한다.
농축 결정화 단계(S900)
이후, 수산화리튬 용액을 증발시켜서 결정화를 시켰다. 얻어진 결정은 물로 세척 후 건조하여 2차 전지 배터리용 양극재에 사용될 수 있는 수산화리튬 일수화물을 수득하였다.
도 2 본 발명의 실시예에 따른 수산화리튬 일수화물의 XRD 분석 결과를 나타낸 것으로, 순수한 수산화리튬 일수화물이 수득되었음을 확인할 수 있었다.
<비교예>
실시예와 동일하게 리튬 정광으로 스포듀민 정광을 30g 준비하였으며, 준비된 스포듀민 정광을 박스형 소성로에 투입시킨 후, 1분 당 5℃의 승온속도로 1050℃ ± 10℃ 까지 승온한 후 30분 동안 유지하여 배소한 뒤 자연 냉각하였다.
이후, 배소를 마친 스포듀민 정광에 산화리튬(Li2O) 함량 대비 1:1 비율인 황산을 혼합한 후 박스형 전기로에 투입시킨 후 1분 당 5℃의 승온속도로 250℃ ± 10℃ 까지 승온한 후 30분 동안 유지한 뒤 자연 냉각하였다.
이때, 황산과 혼합 가열을 마친 결과물에 물을 실시예와 같은 비율과 혼합 후 수침출을 통하여 리튬을 회수하였다. 상온에서 마그네틱 교반기를 사용하여 550 rpm에서 60분 동안 교반을 수행하여 리튬을 회수하였다.
수침출 후 혼합 용액을 고액 분리하여 얻은 침출물 내 리튬 농도를 ICP-OES 분석을 실시하였으며, 이때 리튬 회수율이 65.5%인 것으로 계산되었다.
이로부터, 종래의 공정인 황산 침출 공정없이 리튬 정광과 황산나트륨의 혼합 배소를 통하여 리튬 정광 내 리튬을 수용성 물질의 형태로 변형시켜 회수할 수 있음을 알 수 있었다.
상술한 바와 같이, 본 발명에 따른 리튬 정광으로부터 황산나트튬 혼합 배소에 의한 수산화리튬 제조방법은 리튬을 포함하는 리튬 정광을 황산나트륨과 혼합 배소 후 리튬성분을 높은 회수율로 회수할 수 있으며, 산을 이용하지 않고 리튬 이온만을 선택적으로 추출하며 수산화 리튬 일수화물을 제조할 수 있는 장점을 지닌다.
동시에, 수침출된 혼합물로부터 종래의 리튬 회수 공정인 탄산리튬 전환 공정을 생략하고, 수산화나트륨과 혼합 및 냉각 결정화를 통하여 효율적으로 수산화리튬 일수화물을 제조할 수 있는 이점이 있다.
이상에서 살펴본 바와 같이 본 발명은 바람직한 실시예를 들어 도시하고 설명하였으나, 상기한 실시예에 한정되지 아니하며 본 발명의 정신을 벗어나지 않는 범위 내에서 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변경과 수정이 가능할 것이다.

Claims (10)

  1. 리튬을 포함하는 정광을 준비하는 리튬 정광 준비 단계;
    상기 리튬 정광을 황산나트륨과 혼합 배소하는 리튬 정광 혼합 배소 단계;
    상기 혼합 배소 결과물에 물을 첨가하여 교반시키는 수침출 단계;
    상기 수침출된 혼합물을 리튬이 용해되어 있는 침출액과, 잔사물로 분리해내는 고액분리 단계;
    상기 리튬이 용해되어있는 침출액을 농축시키는 농축 단계;
    상기 농축액에 수산화나트륨(NaOH)을 혼합 후 교반하는 수산화나트륨 혼합 단계;
    상기 수산화나트륨 혼합물을 냉각하여 용해도 차이로 인한 황산나트륨 결정을 침전시키는 냉각 결정화 단계;
    상기 냉각 결정화를 마친 혼합물로부터 침전물과 수산화리튬 용액을 분리하여 수산화리튬 용액을 회수하는 수산화리튬 용액 회수 단계;
    상기 수산화리튬 용액을 농축하여 수산화리튬 결정화를 통하여 수산화리튬 일수화물 결정을 회수하는 농축 결정화 단계;
    상기 수산화리튬 일수화물 결정을 세척한 후 건조하여 수산화리튬 일수화물을 회수하는 세척 및 건조 단계;를 포함하는 리튬 정광으로부터 황산나트튬 혼합 배소에 의한 수산화리튬 제조방법.
  2. 제 1항에 있어서, 상기 리튬을 포함하는 정광은,
    스포듀민(Li2OAl2O34SiO2), 레피돌라이트(KLiAl(OH,F)2Al(SiO4)3), 페탈라이트(LiAl(Si2O5)2), 앰블리고나이트(LiAl(F,OH)PO4), 진왈다이트(Li2K2Fe2Al4Si7O24), 트리피라이트(Li(Fe,Mn)PO4) 및 리티오필라이트(Li(Mn,Fe)PO4)로 이루어진 군에서 선택되는 적어도 어느 하나인 것을 특징으로 하는 리튬 정광으로부터 황산나트튬 혼합 배소에 의한 수산화리튬 제조방법.
  3. 제 1항에 있어서, 상기 리튬 정광 혼합 배소 단계는,
    2LiAlSi2O6 + Na2SO4 → Li2SO4 + 2NaAlSi2O6 (반응식 1)로 반응되며,
    이때, 온도는 850℃내지 1300℃의 범위로 유지하고, 20분 내지 300분 동안 열처리시키는 것을 특징으로 하는 리튬 정광으로부터 황산나트튬 혼합 배소에 의한 수산화리튬 제조방법.
  4. 제 1항에 있어서, 상기 수침출 단계는,
    상기 혼합 배소 결과물에 산을 사용하지 않고, 혼합 배소 결과물의 무게 대비 1배 내지 10배의 물을 투입하며 20℃ 내지 100℃의 온도에서 1시간 내지 5시간 동안 200rpm 내지 1,000rpm으로 교반하여 처리되는 것을 특징으로 하는 리튬 정광으로부터 황산나트튬 혼합 배소에 의한 수산화리튬 제조방법.
  5. 제 1항에 있어서, 상기 농축 단계는,
    상기 침출액을 진공 조건에서 60℃ 내지 120℃의 온도에서 30분 내지 10시간 동안 리튬 농도가 16 g/L 내지 30 g/L의 농도가 되도록 증발시키는 것을 특징으로 하는 리튬 정광으로부터 황산나트튬 혼합 배소에 의한 수산화리튬 제조방법.
  6. 제 1항에 있어서, 상기 수산화나트륨 혼합 단계는,
    상기 농축액에 수산화나트륨(NaOH)을 투입 후 20℃ 내지 100℃의 온도에서 15분 내지 2시간 동안 교반하여 수산화나트륨을 완전히 용해시키는 것을 특징으로 하는 리튬 정광으로부터 황산나트튬 혼합 배소에 의한 수산화리튬 제조방법.
  7. 제 1항에 있어서, 상기 냉각 결정화 단계는,
    상기 수산화나트륨 혼합물을 10℃ 내지 -10℃의 온도로 냉각하여 15분 내지 10시간 동안 교반하여 황산나트륨 10수화물(Na2SO4.10H2O) 결정을 침전시키는 것을 특징으로 하는 리튬 정광으로부터 황산나트륨 혼합 배소에 의한 수산화리튬 제조방법.
  8. 제 1항에 있어서, 상기 수산화리튬 용액 회수 단계는,
    상기 냉각 결정화를 마친 혼합물을 상온 내지 -10℃의 온도를 유지하여 상기 냉각 결정화를 마친 혼합물로부터 침전물과 수산화리튬 용액을 분리해내는 것을 특징으로 하는 리튬 정광으로부터 황산나트륨 혼합 배소에 의한 수산화리튬 제조방법.
  9. 제 1항에 있어서, 상기 농축 결정화 단계는,
    상기 수산화리튬 용액을 60℃ 내지 120℃의 온도에서 30분 내지 10시간 동안 증발 농축을 통하여 수산화리튬 일수화물을 석출시키고 결정을 회수하는 것을 특징으로 하는 리튬 정광으로부터 황산나트륨 혼합 배소에 의한 수산화리튬 제조방법.
  10. 제 1항에 있어서, 상기 세척 및 건조 단계는,
    상기 수산화리튬 일수화물 결정을 물을 이용하여 세척한 후 건조하여 최종 제품인 수산화리튬 일수화물을 회수하는 것을 특징으로 하는 리튬 정광으로부터 황산나트륨 혼합 배소에 의한 수산화리튬 제조방법.
PCT/KR2019/014863 2018-12-06 2019-11-04 리튬 정광으로부터 황산나트튬 혼합 배소에 의한 수산화리튬 제조방법 WO2020116795A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19892113.2A EP3892587A4 (en) 2018-12-06 2019-11-04 METHOD FOR PRODUCING LITHIUM HYDROXIDE FROM LITHIUM CONCENTRATE BY BLENDING AND ROASTING LITHIUM CONCENTRATE WITH SODIUM SULFATE
CA3121957A CA3121957C (en) 2018-12-06 2019-11-04 Method of producing lithium hydroxide from lithium concentrate through sodium sulfate addition and roasting
AU2019392034A AU2019392034A1 (en) 2018-12-06 2019-11-04 Method for producing lithium hydroxide from lithium concentrate by mixing and roasting lithium concentrate with sodium sulfate
US17/299,632 US20220017991A1 (en) 2018-12-06 2019-11-04 Method of producing lithium hydroxide from lithium concentrate through sodium sulfate addition and roasting

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0156174 2018-12-06
KR1020180156174A KR102164661B1 (ko) 2018-12-06 2018-12-06 리튬 정광으로부터 황산나트튬 혼합 배소에 의한 수산화리튬 제조방법

Publications (1)

Publication Number Publication Date
WO2020116795A1 true WO2020116795A1 (ko) 2020-06-11

Family

ID=70973512

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/014863 WO2020116795A1 (ko) 2018-12-06 2019-11-04 리튬 정광으로부터 황산나트튬 혼합 배소에 의한 수산화리튬 제조방법

Country Status (6)

Country Link
US (1) US20220017991A1 (ko)
EP (1) EP3892587A4 (ko)
KR (1) KR102164661B1 (ko)
AU (1) AU2019392034A1 (ko)
CA (1) CA3121957C (ko)
WO (1) WO2020116795A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112110462A (zh) * 2020-08-31 2020-12-22 荆门市格林美新材料有限公司 一种用连续冷冻溶析结晶方式生产电池级氢氧化锂的方法
WO2022045747A1 (ko) * 2020-08-25 2022-03-03 재단법인 포항산업과학연구원 리튬을 함유하는 원료에서 수산화리튬을 제조하는 방법
CN114933319A (zh) * 2022-06-06 2022-08-23 江西春鹏锂业有限责任公司 一种锂辉石生产单水氢氧化锂工艺及其生产线
WO2023026259A1 (en) * 2021-08-27 2023-03-02 Frontier Lithium Inc. Processing hard rock lithium minerals or other materials to produce both lithium carbonate and lithium hydroxide

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102242686B1 (ko) * 2020-12-14 2021-04-21 한국지질자원연구원 리튬농축액 제조방법 및 이로부터 제조된 리튬농축액을 이용한 리튬화합물 제조방법
KR102562997B1 (ko) * 2021-01-12 2023-08-02 한국해양대학교 산학협력단 폐리튬이차전지 황산염 배소 산물의 수침출에 따른 유용금속 회수 방법
KR102275866B1 (ko) * 2021-01-18 2021-07-12 한국지질자원연구원 리튬농축액 고효율 제조방법 및 이로부터 제조된 리튬농축액을 이용한 리튬화합물 제조방법
KR102326682B1 (ko) * 2021-05-14 2021-11-17 한국지질자원연구원 LAS(Li-Al-Si) 함유 원료로부터 리튬의 선택적 회수 방법
KR102656287B1 (ko) * 2021-12-17 2024-04-09 주식회사 포스코 리튬 이온의 회수 방법
CN114436300A (zh) * 2022-01-14 2022-05-06 广东省科学院资源利用与稀土开发研究所 一种锂辉石酸化浸取锂的方法
CN114507779B (zh) * 2022-02-18 2024-04-09 华东理工大学 一种锂辉石硫酸盐焙烧法生产硫酸锂溶液的方法
WO2023204761A1 (en) * 2022-04-18 2023-10-26 Green Li-Ion Pte. Ltd Process and system for recovering lithium from lithium-ion batteries
CN115490248A (zh) * 2022-06-16 2022-12-20 浙江新锂想科技有限责任公司 从锂云母中提取制备锂产品的方法
CN115286016A (zh) * 2022-07-27 2022-11-04 浙江新锂想科技有限责任公司 利用纳滤膜从锂云母中提取制备锂产品的方法
WO2024065003A1 (en) * 2022-09-29 2024-04-04 Infinity Greentech Pty Ltd A process for producing a lithium salt
CN115466854B (zh) * 2022-10-13 2024-01-16 江西闪凝科技有限公司 一种锂矿石综合提取方法
CN115448334B (zh) * 2022-10-21 2023-08-04 江苏容汇通用锂业股份有限公司 一种电池级单水氢氧化锂生产工艺
CN115784272A (zh) * 2022-12-27 2023-03-14 宜春天卓新材料有限公司 从含锂铝冶炼尾渣中回收提取锂盐的方法
KR102648802B1 (ko) * 2023-07-25 2024-03-18 주식회사 리켐텍 메카노케미스트리 및 알카리프리팅 공정을 이용하여 폐 탈황분진을 리튬 제조 공정에 활용하는 방법.

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140019622A (ko) * 2012-08-06 2014-02-17 한국광물자원공사 레피돌라이트로부터 탄산리튬 제조방법
KR20160136314A (ko) * 2014-02-24 2016-11-29 네마스카 리튬 인코포레이션 리튬 함유 물질을 처리하기 위한 방법
KR20170088873A (ko) * 2014-11-05 2017-08-02 리드 어드밴스드 미네랄즈 피티와이 리미티드 수산화리튬의 제조방법
KR20170107546A (ko) * 2015-01-27 2017-09-25 리드 어드밴스드 미네랄즈 피티와이 리미티드 HCl 스파지를 포함하는 리튬 함유 재료의 처리 방법
KR20180088787A (ko) * 2015-08-27 2018-08-07 네마스카 리튬 인코포레이션 리튬 함유 물질 처리 방법

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104003427B (zh) * 2014-06-10 2016-05-18 四川国润新材料有限公司 一种用锂辉石精矿制取片状高纯氢氧化锂的制备方法
KR101975468B1 (ko) 2014-06-30 2019-05-07 재단법인 포항산업과학연구원 수산화리튬의 제조 방법
CN106629787B (zh) * 2016-12-20 2018-09-18 阿坝中晟锂业有限公司 一种电池级氢氧化锂的制备方法
CN107200338A (zh) * 2017-07-15 2017-09-26 汕头市泛世矿产资源股份有限公司 一种酸化法从锂磷铝石中提取氢氧化锂的工艺
CN107188204A (zh) * 2017-07-15 2017-09-22 汕头市泛世矿产资源股份有限公司 一种石灰法从锂磷铝石中提取氢氧化锂的工艺
KR101873933B1 (ko) 2017-12-07 2018-07-03 주식회사 에코프로이노베이션 탄산리튬을 이용한 수산화리튬의 제조방법
CN107986301A (zh) * 2017-12-27 2018-05-04 江西赣锋锂业股份有限公司 一种利用电池级碳酸锂沉锂母液生产电池级氢氧化锂的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140019622A (ko) * 2012-08-06 2014-02-17 한국광물자원공사 레피돌라이트로부터 탄산리튬 제조방법
KR20160136314A (ko) * 2014-02-24 2016-11-29 네마스카 리튬 인코포레이션 리튬 함유 물질을 처리하기 위한 방법
KR20170088873A (ko) * 2014-11-05 2017-08-02 리드 어드밴스드 미네랄즈 피티와이 리미티드 수산화리튬의 제조방법
KR20170107546A (ko) * 2015-01-27 2017-09-25 리드 어드밴스드 미네랄즈 피티와이 리미티드 HCl 스파지를 포함하는 리튬 함유 재료의 처리 방법
KR20180088787A (ko) * 2015-08-27 2018-08-07 네마스카 리튬 인코포레이션 리튬 함유 물질 처리 방법

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022045747A1 (ko) * 2020-08-25 2022-03-03 재단법인 포항산업과학연구원 리튬을 함유하는 원료에서 수산화리튬을 제조하는 방법
CN116194193A (zh) * 2020-08-25 2023-05-30 浦项产业科学研究院 从含锂原料制备氢氧化锂的方法
CN112110462A (zh) * 2020-08-31 2020-12-22 荆门市格林美新材料有限公司 一种用连续冷冻溶析结晶方式生产电池级氢氧化锂的方法
CN112110462B (zh) * 2020-08-31 2023-05-12 荆门市格林美新材料有限公司 一种用连续冷冻溶析结晶方式生产电池级氢氧化锂的方法
WO2023026259A1 (en) * 2021-08-27 2023-03-02 Frontier Lithium Inc. Processing hard rock lithium minerals or other materials to produce both lithium carbonate and lithium hydroxide
CN114933319A (zh) * 2022-06-06 2022-08-23 江西春鹏锂业有限责任公司 一种锂辉石生产单水氢氧化锂工艺及其生产线

Also Published As

Publication number Publication date
KR20200069054A (ko) 2020-06-16
EP3892587A4 (en) 2022-02-16
EP3892587A1 (en) 2021-10-13
US20220017991A1 (en) 2022-01-20
CA3121957A1 (en) 2020-06-11
CA3121957C (en) 2023-08-15
KR102164661B1 (ko) 2020-10-12
AU2019392034A1 (en) 2021-06-24

Similar Documents

Publication Publication Date Title
WO2020116795A1 (ko) 리튬 정광으로부터 황산나트튬 혼합 배소에 의한 수산화리튬 제조방법
WO2019198972A1 (ko) 리튬이온 2차전지의 폐 양극재를 이용한 수산화리튬 일수화물의 제조방법
WO2021241944A1 (ko) 리튬이차전지의 폐전극소재로부터 탄산리튬을 이용한 유가금속의 회수 방법
CN109626350B (zh) 一种废旧磷酸铁锂电池正极片制备电池级磷酸铁的方法
WO2021177537A1 (ko) 수산화리튬의 제조 방법
WO2023191414A1 (ko) 블랙 매스로부터 이차전지 소재의 제조방법
CN113896211A (zh) 一种废旧磷酸铁锂电池资源化的处理方法
WO2013002486A2 (ko) 고상 반응에 의한 리튬 망간 산화물의 제조 방법
WO2013089483A1 (ko) 금속 도핑된 결정성 철인산염, 이의 제조 방법 및 이로부터 제조된 리튬 복합금속인산화물
WO2018110974A1 (ko) 인산리튬으로부터 수산화리튬을 제조하는 방법
WO2021241817A1 (ko) 양극 스크랩을 이용한 활물질 재사용 방법
WO2016129732A1 (ko) 볼밀을 이용한 리튬이차전지 양극 활물질용 폐전구체 재생 방법
CN114655969A (zh) 高杂磷酸铁锂正极废料回收制备碳酸锂和磷酸铁的方法
WO2021256732A1 (ko) 리튬 이차 전지의 활성 금속 회수 방법
WO2021172688A1 (ko) 양극활물질 전구체 재료 및 리튬 이차전지용 양극활물질의 제조방법, 및 이에 따라 제조된 리튬 이차전지용 양극활물질
WO2021125735A1 (ko) 폐양극재로부터 전이금속을 분리하는 방법
WO2022055272A1 (ko) 양극재 회수 방법
CN108063295B (zh) 从火法回收锂电池产生的炉渣中提取锂的方法
WO2021060873A1 (ko) 폐전지 처리 방법
WO2023211260A1 (ko) 아연 제련 공정의 부산물로부터 황산망간 일수화물을 제조하는 방법
WO2022045747A1 (ko) 리튬을 함유하는 원료에서 수산화리튬을 제조하는 방법
WO2021172689A1 (ko) 양극활물질 전구체 재료 및 리튬 이차전지용 양극활물질의 제조방법, 및 이에 따라 제조된 리튬 이차전지용 양극활물질
WO2023128042A1 (ko) 황산니켈의 습식제련 회수방법
WO2022197022A1 (ko) 황산 코발트 염의 제조 방법
WO2023113504A1 (ko) 리튬 이온의 회수 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19892113

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3121957

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019392034

Country of ref document: AU

Date of ref document: 20191104

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019892113

Country of ref document: EP

Effective date: 20210706