WO2021241944A1 - 리튬이차전지의 폐전극소재로부터 탄산리튬을 이용한 유가금속의 회수 방법 - Google Patents

리튬이차전지의 폐전극소재로부터 탄산리튬을 이용한 유가금속의 회수 방법 Download PDF

Info

Publication number
WO2021241944A1
WO2021241944A1 PCT/KR2021/006364 KR2021006364W WO2021241944A1 WO 2021241944 A1 WO2021241944 A1 WO 2021241944A1 KR 2021006364 W KR2021006364 W KR 2021006364W WO 2021241944 A1 WO2021241944 A1 WO 2021241944A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode material
lithium
waste electrode
sulfuric acid
precipitation
Prior art date
Application number
PCT/KR2021/006364
Other languages
English (en)
French (fr)
Inventor
박석준
이명규
홍정식
변소영
이광석
박종선
서범석
이민우
김다모아
김희상
박아람
Original Assignee
주식회사 에코프로이노베이션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 에코프로이노베이션 filed Critical 주식회사 에코프로이노베이션
Priority to US17/922,644 priority Critical patent/US11987861B2/en
Priority to CA3177071A priority patent/CA3177071A1/en
Priority to EP21812247.1A priority patent/EP4160787A4/en
Publication of WO2021241944A1 publication Critical patent/WO2021241944A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • C22B23/0407Leaching processes
    • C22B23/0415Leaching processes with acids or salt solutions except ammonium salts solutions
    • C22B23/043Sulfurated acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • C01D15/06Sulfates; Sulfites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/77Aluminium carbonates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G3/00Compounds of copper
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/06Carbonates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/06Carbonates
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/005Preliminary treatment of scrap
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • C22B23/0453Treatment or purification of solutions, e.g. obtained by leaching
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • C22B23/0453Treatment or purification of solutions, e.g. obtained by leaching
    • C22B23/0461Treatment or purification of solutions, e.g. obtained by leaching by chemical methods
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B26/00Obtaining alkali, alkaline earth metals or magnesium
    • C22B26/10Obtaining alkali metals
    • C22B26/12Obtaining lithium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/06Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic acid solutions, e.g. with acids generated in situ; in inorganic salt solutions other than ammonium salt solutions
    • C22B3/08Sulfuric acid, other sulfurated acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/001Dry processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/005Separation by a physical processing technique only, e.g. by mechanical breaking
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • C22B7/007Wet processes by acid leaching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Definitions

  • the present invention relates to a method for recovering valuable metals, and more specifically, by discharging, crushing, sorting, and classifying a waste lithium secondary battery and using a cathode-anode mixed electrode material as a raw material, lithium, nickel, cobalt, It relates to a method for recovering valuable metals using lithium carbonate from a waste electrode material of a lithium secondary battery that can easily recover valuable metals such as manganese, aluminum and copper.
  • the global supply of electric vehicles is expected to increase 25 times from 510 thousand units in 2016 to 12.06 million units in 2030.
  • Valuable metals such as about 17 kg of lithium, 79 kg of nickel, and 41 kg of cobalt are contained in 1 ton of this waste lithium secondary battery. This can be
  • lithium which is an essential element for the manufacture of a lithium secondary battery
  • efficient use of resources and the development of efficient recycling technology for recovering lithium from the economic point of view are required.
  • the present invention was developed in response to this necessity, and an object of the present invention is lithium, which can easily recover valuable metals such as lithium, nickel, cobalt, manganese, aluminum and copper using the waste electrode material of a lithium secondary battery.
  • An object of the present invention is to provide a method for recovering valuable metals using lithium carbonate from a waste electrode material of a secondary battery.
  • the present invention provides a waste electrode material preparation step of preparing a waste electrode material; a pretreatment step of heat-treating the waste electrode material by putting it into a kiln; Sulfuric acid dissolution step of reacting by adding sulfuric acid to the pretreatment result; a first solid-liquid separation step of separating the sulfuric acid dissolved product generated through the sulfuric acid dissolving step into a metal dissolved product and an unreacted residue; A precipitation step of mixing lithium carbonate (Li 2 CO 3 ) with the metal melt and stirring; a second solid-liquid separation step of separating the precipitation product generated through the precipitation step into a precipitation residue and a filtrate; and recovering an aqueous lithium sulfate solution from the filtrate, and recovering nickel carbonate and cobalt carbonate from the precipitation residue It provides a method for recovering valuable metals using a waste electrode material, characterized in that the
  • the pretreatment step is performed at a temperature of 300°C to 500°C for 30 minutes to 120 minutes.
  • the step of dissolving sulfuric acid is reacted by stirring at a temperature of 60° C. to 100° C. for 60 minutes to 120 minutes at 250 rpm to 400 rpm.
  • hydrogen peroxide is further added to the pretreatment result.
  • a first washing step of washing the unreacted residue with water is further included, wherein the precipitation step includes the washing solution obtained through the first washing step and the metal
  • the lithium carbonate is mixed with the mixed solution of the lysate and stirred.
  • the precipitation step is reacted by stirring at a temperature of 40 ° C. to 80 ° C. for 60 minutes to 180 minutes at 250 rpm to 400 rpm.
  • a second washing step of washing the precipitation residue with water is further included, and the lithium sulfate aqueous solution is recovered from the washing solution obtained through the second washing step.
  • the present invention has the following excellent effects.
  • the anode-cathode mixed electrode material separated by discharging, crushing, sorting, and classifying the waste lithium secondary battery is pretreated, and sulfuric acid is Valuable metals such as nickel, cobalt, manganese, aluminum and copper are easily recovered from the precipitation residue by performing a precipitation step using lithium carbonate (Li 2 CO 3 ) in the metal melt obtained by dissolving it in sulfuric acid using , there is an effect of easily recovering an aqueous solution of lithium sulfate (Li 2 SO 4 ) containing lithium from the filtrate.
  • valuable metals such as lithium, nickel, cobalt, manganese, aluminum and copper are highly recovered from the waste electrode material of the lithium secondary battery. It has the advantage of being able to recover it with a recovery rate and high purity.
  • the recovered lithium sulfate aqueous solution can be prepared as lithium hydroxide monohydrate through lithium hydroxide conversion and concentration crystallization process, , the composite carbonate recovered as a residue has the advantage of being used as a raw material for preparing a precursor.
  • FIG. 1 is a step diagram for explaining a method for recovering valuable metals using lithium carbonate from a waste electrode material of a lithium secondary battery according to the present invention.
  • the equivalent described in the present invention means a chemical equivalent, which means the amount of material of another element that is directly or indirectly compatible with 1 atomic weight of hydrogen or 8 atomic weight of oxygen.
  • FIG. 1 is a step diagram for explaining a method for recovering valuable metals using lithium carbonate from a waste electrode material of a lithium secondary battery according to an embodiment of the present invention.
  • the method for recovering valuable metals using lithium carbonate from the waste electrode material of a lithium secondary battery is a method of recovering valuable metals from the waste electrode material of a lithium secondary battery, first, A waste electrode material preparation step (S100) of preparing a waste electrode material is performed.
  • the waste electrode material is a positive-cathode (anode-positive electrode active material, anode-cathode active material) mixed electrode material or anode material production process in which the waste lithium secondary battery to be discarded is discharged, crushed, sorted, and separated. It may be defective or substandard waste anode material.
  • the waste electrode material is lithium nickel cobalt aluminum oxide (LiNiCoAlO 2 , NCA), lithium nickel cobalt manganese oxide (LiNiCoMnO 2 , NCM), lithium iron phosphorus oxide (LiFePO 4 , LFP), lithium manganese iron oxide (LiMnFePO 4 , LMFP) , lithium manganese oxide (LiMn 2 O 4 , LMO), lithium nickel manganese spinel (LiNi 0.5 Mn 1.5 O 4 , LNMO), and lithium cobalt oxide (LiCoO 2 , LCO).
  • LiNiCoAlO 2 , NCA lithium nickel cobalt aluminum oxide
  • LiNiCoMnO 2 , NCM lithium nickel cobalt manganese oxide
  • LiFePO 4 , LFP lithium iron phosphorus oxide
  • LiMnFePO 4 , LMFP lithium manganese iron oxide
  • LiMn 2 O 4 , LMO lithium nickel manganese spinel
  • a pretreatment step (S200) of heat-treating the prepared waste electrode material by putting it into a kiln may be further performed.
  • the pretreatment step (S200) is a process for removing the organic binder contained in the waste electrode material. In order to remove the organic binder, in an air atmosphere, at a temperature of 300° C. to 500° C. for 30 minutes to 120 minutes. It is preferred to be carried out.
  • the calcination temperature exceeds 500° C. in the pre-treatment step (S200), carbon materials other than the organic binder can also be removed, but it may result in the cost of the calcination process, and the sulfuric acid dissolution step (S300) described later. It is preferably carried out in a temperature range of 300 °C to 500 °C in terms of recycling of the carbon material separated in the.
  • the sulfuric acid dissolution step (S300) of reacting by adding sulfuric acid to the pretreatment result pretreated through the pretreatment step (S200) is performed.
  • the sulfuric acid dissolving step (S300) is a process for leaching valuable metals contained in the pretreatment result, and is preferably stirred at a temperature of 60° C. to 100° C. for 60 minutes to 120 minutes at 250 rpm to 400 rpm.
  • the solid-liquid concentration of the input pretreatment result and the mixed solution of sulfuric acid and water is 300 g/L or more.
  • the sulfuric acid dissolving step (S300) may be performed by adding the resultant pretreatment and the sulfuric acid solution and stirring, and further adding hydrogen peroxide.
  • the hydrogen peroxide may be used in a purity of 30% to 32%, and the amount of the hydrogen peroxide may be 0.5 to 0.55 moles relative to the number of moles of Ni, Co and Mn metals contained in the pretreatment result.
  • the reason for performing the reduction leaching through the hydrogen peroxide is that cobalt contained in the pretreatment result is present as Co 3+ and may cause a low leaching rate.
  • more hydrogen peroxide is added to reduce Co 3+ to Co 2+ for leaching. Through this reduction leaching process, the leaching rate of lithium in addition to the cobalt metal may also be increased.
  • a first solid-liquid separation step (S400) of separating the sulfuric acid dissolved product generated through the sulfuric acid dissolving step (S300) into a metal melt and an unreacted residue is performed.
  • a first washing step (S500) of washing the unreacted residue obtained through the first solid-liquid separation step (S400) with water may be further performed.
  • the first washing step (S500) is performed to additionally recover metal ions present in the hydrous of the unreacted residue, and water is added at room temperature to 50° C. to wash the unreacted residue. A washing solution is obtained.
  • a precipitation step (S600) of mixing lithium carbonate (Li 2 CO 3 ) with the metal melt obtained through the first solid-liquid separation step (S400) and stirring is performed.
  • the metal lysate obtained through the first solid-liquid separation step (S400) and the first washing step (S500) can be carried out by mixing the lithium carbonate with the mixed solution of the washing solution obtained through the stirring.
  • lithium carbonate is added and stirred to cause a precipitation reaction.
  • the precipitation step (S600) is preferably stirred at a temperature of 40 ° C. to 80 ° C. for 60 minutes to 180 minutes at 250 rpm to 400 rpm to react.
  • the amount of lithium carbonate used in the precipitation step (S600) is preferably applied in a range for minimizing the loss of lithium after the metal precipitation separation.
  • metals such as Ni, Co, Mn, Al, and Cu are precipitated in the form of complex carbonates due to the reaction of the metal ions of the sulfuric acid solution with the lithium carbonate, and lithium is lithium sulfate (Li 2 SO 4 ) is present in the solution.
  • a second solid-liquid separation step (S700) of separating the precipitation product generated through the precipitation step (S600) into a precipitation residue and a filtrate is performed.
  • lithium sulfate (Li 2 SO 4 ) containing lithium is separated as a filtrate, and the remaining useful metals can be recovered by precipitating them as residues in the form of complex carbonates.
  • the lithium sulfate aqueous solution is recovered from the filtrate through the second solid-liquid separation step (S700), and nickel carbonate and cobalt carbonate are recovered from the precipitation residue.
  • a second washing step (S800) of washing the precipitation residue generated through the second solid-liquid separation step (S700) with water may be further performed.
  • the moisture content of the precipitation residue is about 40% or more, and contains a rather large amount of lithium sulfate ions. To recover this, the precipitation residue can be washed with washing water, and thus, the lithium sulfate aqueous solution can be finally recovered.
  • the reaction temperature was 80°C and the stirring speed was 300 rpm for metal leaching. Based on the solid-liquid concentration of 330 g/L, 18.4 mL of sulfuric acid (concentration 98%) and water were added to 33 g of the electrode material. 81.6 mL was added.
  • the added sulfuric acid was added as much as 1.0 equivalent compared to Li, Ni, Co, Mn, Al, and Cu of the waste electrode material, and additionally 10 mL of hydrogen peroxide (concentration of 30%) was added to perform reduction leaching.
  • the leaching filtrate recovered through sulfuric acid dissolution from the waste electrode material was mixed with the washing solution recovered after washing the residue, and the mixed solution of the leaching filtrate and the washing solution was reacted with lithium carbonate (purity 98% to 99%) to obtain a precipitated product.
  • the pretreatment result contained lithium 4.02%, nickel 11.68%, cobalt 10.00%, manganese 8.52%, aluminum 2.86%, copper 2.05% content.
  • Lithium carbonate dosage (weight%) Li (mg/L) Ni (mg/L) Co (mg/L) Mn (mg/L) Al (mg/L) Cu (mg/L) 7.5 24,152 28.1 32.7 19.0 0.2 0.4 8.0 24,892 14.5 11.6 9.7 0.2 0.6 9.0 25,121 6.2 5.6 5.7 0.1 0.5 10.0 27,350 2.8 4.0 1.8 0.1 0.5
  • Lithium carbonate dosage (weight%) Li recovery (%) Ni recovery (%) Co recovery (%) Mn recovery (%) Al recovery (%) Cu recovery (%) 7.5 97.4 99.8 99.7 99.8 99.9 99.9 8.0 96.4 99.9 99.9 99.8 99.9 99.9 9.0 95.2 99.9 99.9 99.9 99.9 99.9 10.0 91.6 99.9 99.9 99.9 99.9 99.9 99.9 99.9
  • Lithium carbonate dosage weight%) Ni (mg/L) Co (mg/L) Mn (mg/L) Al (mg/L) Cu (mg/L) 8.0 158,563 134,264 132,297 39,574 30,235
  • lithium carbonate Li 2 CO 3
  • valuable metals such as nickel, cobalt, manganese, aluminum and copper are recovered as residues in the form of complex carbonates, including lithium
  • An aqueous solution of lithium sulfate (Li 2 SO 4 ) can be recovered as a filtrate and used as a raw material for manufacturing a lithium secondary battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

본 발명은 유가금속의 회수 방법에 관한 것으로, 보다 구체적으로는 폐리튬 이차전지를 방전, 파쇄, 선별, 분급하여 분리된 양극-음극 혼합 전극소재를 전처리하고, 황산을 이용하여 황산용해시켜 수득된 금속용해물에 탄산리튬(Li2CO3)을 이용하여 침전단계를 수행하여, 니켈, 코발트, 망간, 알루미늄 및 구리등의 유가금속은 복합 탄산염 형태의 잔사로 회수해내고, 리튬을 포함하는 황산리튬(Li2SO4) 수용액은 여액으로 회수해낼 수 있는 리튬이차전지의 폐전극소재로부터 탄산리튬을 이용한 유가금속의 회수 방법에 관한 것이다.

Description

리튬이차전지의 폐전극소재로부터 탄산리튬을 이용한 유가금속의 회수 방법
본 발명은 유가금속의 회수 방법에 관한 것으로, 보다 구체적으로는 폐 리튬 이차전지를 방전, 파쇄, 선별, 분급하여 분리된 양극-음극 혼합 전극소재를 원료물질로 이용하여, 리튬, 니켈, 코발트, 망간, 알루미늄 및 구리등의 유가금속을 용이하게 회수해낼 수 있는 리튬이차전지의 폐전극소재로부터 탄산리튬을 이용한 유가금속의 회수 방법에 관한 것이다.
전 세계적으로 지구온난화 및 환경오염의 원인으로 화석원료가 지적되면서, 각 국가에서는 정책적으로 전기자동차의 보급을 확대 시행하고 있다.
이에 따라, 전 세계적으로 전기자동차의 보급은 2016년 51만대에서 2030년 1,206만대로 약 25배 증가할 전망이다.
하지만, 전기자동차에 포함되어 있는 리튬이차전지의 경우 사용량의 증가와 함께 사용기한이 지난 후 폐기량 또한 증가하고 있다.
전 세계적으로 사용기한이 끝난 폐리튬이차전지는 2018년도에 IT용 소형전지가 대부분이며 약 20만톤 이 발생하였고, 2025년도에는 전기자동차 및 전기버스에서 또한 대량 발생될 것으로 예상되며 약 70만톤이 발생할 것으로 추산된다.
이러한 폐리튬이차전지 1톤에는 약 리튬 17kg, 니켈 79kg, 코발트 41kg 등의 유가금속이 함유되어 있으며, 수입의존도가 높은 이들 금속은 원가 경쟁력 확보가 어려운 상황에서 폐자원 재활용을 통한 원료 확보에 상당한 이점이 될 수 있다.
이를 자원화하기 위한 종래의 유가금속 회수방법은 니켈과 코발트 등의 유가금속을 황산용해 및 용매추출 공정을 통해 회수하여 재활용하고 있지만, 리튬의 경우 마지막 공정에서 낮은 회수율 및 순도로 일부분 회수하거나 또는 회수공정 없이 폐수로 처리되고 있는 실정이다.
이에 따라, 리튬이차전지의 제조에 필수적인 원소인 리튬의 경우, 자원의 효율적인 활용 및 경제적 측면에서 리튬을 회수하는 효율적 재활용 기술개발이 요구되고 있다.
본 발명은 이러한 필요성에 의해 개발된 것으로, 본 발명의 목적은 리튬이차전지의 폐전극소재를 이용하여, 리튬, 니켈, 코발트, 망간, 알루미늄 및 구리등의 유가금속을 용이하게 회수해낼 수 있는 리튬이차전지의 폐전극소재로부터 탄산리튬을 이용한 유가금속의 회수 방법을 제공하기 위한 것이다.
본 발명의 목적들은 이상에서 언급한 목적들로 제한되지 않으며, 언급되지 않은 또 다른 목적들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
상기의 목적을 달성하기 위하여 본 발명은 폐전극소재를 준비하는 폐전극소재 준비단계; 상기 폐전극소재를 소성로에 투입하여 열처리하는 전처리단계; 전처리된 전처리결과물에 황산을 첨가하여 반응시키는 황산 용해단계; 상기 황산 용해단계를 통해 생성된 황산용해물을 금속 용해물과 미반응 잔사로 분리해내는 제1 고액분리단계; 상기 금속 용해물에 탄산리튬(Li2CO3)을 혼합하여 교반시키는 침전단계; 상기 침전단계를 통해 생성된 침전결과물을 침전잔사와 여액으로 분리하는 제2 고액분리단계;를 포함하고, 상기 여액으로부터 황산리튬 수용액을 회수해내고, 상기 침전잔사로부터 탄산니켈 및 탄산코발트를 회수해내는 것을 특징으로 하는 폐전극소재를 이용한 유가금속의 회수 방법을 제공한다.
바람직한 실시예에 있어서, 상기 전처리 단계는 300℃ 내지 500℃의 온도에서 30분 내지 120분 동안 수행된다.
바람직한 실시예에 있어서, 상기 황산용해 단계는 60℃ 내지 100℃의 온도에서 60분 내지 120분 동안 250rpm 내지 400rpm으로 교반시켜 반응된다.
바람직한 실시예에 있어서, 상기 황산용해 단계는 상기 전처리 결과물에 과산화수소가 더 투입된다.
바람직한 실시예에 있어서, 상기 제1 고액분리단계 이후에, 상기 미반응 잔사물을 물로 세척하는 제1 세척단계;를 더 포함하고, 상기 침전단계는 상기 제1 세척단계를 통해 얻어진 세척액과 상기 금속 용해물의 혼합액에 상기 탄산리튬을 혼합하여 교반시킨다.
바람직한 실시예에 있어서, 상기 침전 단계는 40℃ 내지 80℃의 온도에서 60분 내지 180분 동안 250rpm 내지 400rpm으로 교반시켜 반응된다.
바람직한 실시예에 있어서, 상기 제2 고액분리단계 이후에, 상기 침전잔사를 물로 세척하는 제2 세척단계;를 더 포함하고, 상기 제2 세척단계를 통해 얻어진 세척액으로부터 황산리튬 수용액을 회수해낸다.
본 발명은 다음과 같은 우수한 효과를 가진다.
본 발명의 리튬이차전지의 폐전극소재로부터 탄산리튬을 이용한 유가금속의 회수 방법에 의하면, 폐리튬이차전지를 방전, 파쇄, 선별, 분급하여 분리된 양극-음극 혼합 전극소재를 전처리하고, 황산을 이용하여 황산용해시켜 수득된 금속용해물에 탄산리튬(Li2CO3)을 이용하여 침전단계를 수행함으로써, 침전잔사로부터 니켈, 코발트, 망간, 알루미늄 및 구리등의 유가금속은 용이하게 회수해내고, 여액으로부터 리튬을 포함하는 황산리튬(Li2SO4)수용액을 용이하게 회수해낼 수 있는 효과가 있다.
또한, 본 발명의 리튬이차전지의 폐전극소재로부터 탄산리튬을 이용한 유가금속의 회수 방법에 의하면, 리튬이차전지의 폐전극소재로부터 리튬, 니켈, 코발트, 망간, 알루미늄 및 구리등의 유가금속을 높은 회수율 및 높은 순도로 회수해낼 수 있는 장점을 지닌다.
또한, 본 발명의 리튬이차전지의 폐전극소재로부터 탄산리튬을 이용한 유가금속의 회수 방법에 의하면, 회수된 황산리튬 수용액의 경우 수산화리튬 전환 및 농축 결정화 공정을 통해 수산화리튬 일수화물로 제조할 수 있고, 잔사로 회수된 복합 탄산염의 경우 전구체 제조를 위한 원료로 사용할 수 있는 이점을 지닌다.
도 1은 본 발명에 따른 리튬이차전지의 폐전극소재로부터 탄산리튬을 이용한 유가금속의 회수 방법을 설명하기 위한 단계도이다.
본 발명에서 사용되는 용어는 가능한 현재 널리 사용되는 일반적인 용어를 선택하였으나, 특정한 경우는 출원인이 임의로 선정한 용어도 있는데 이 경우에는 단순한 용어의 명칭이 아닌 발명의 상세한 설명 부분에 기재되거나 사용된 의미를 고려하여 그 의미가 파악되어야 할 것이다.
이하, 첨부한 도면에 도시된 바람직한 실시예들을 참조하여 본 발명의 기술적 구성을 상세하게 설명한다.
그러나, 본 발명은 여기서 설명되는 실시예에 한정되지 않고 다른 형태로 구체화 될 수도 있다. 명세서 전체에 걸쳐 동일한 참조번호는 동일한 구성요소를 나타낸다.
한편, 본 발명에서 기재되는 당량은 화학 당량을 의미하는 것으로, 이는 수소 1 원자량이나 산소 8 원자량과 직간접으로 대등하게 화합하는 다른 원소의 물질량을 의미한다.
도 1은 본 발명의 일 실시예에 따른 리튬이차전지의 폐전극소재로부터 탄산리튬을 이용한 유가금속의 회수 방법을 설명하기 위한 단계도이다.
도 1을 참조하면, 본 발명의 일 실시예에 따른 리튬이차전지의 폐전극소재로부터 탄산리튬을 이용한 유가금속의 회수 방법은 리튬이차전지의 폐전극소재로부터 유가금속을 회수하는 방법으로, 먼저, 폐전극소재를 준비하는 폐전극소재 준비단계(S100)가 수행된다.
여기서, 상기 폐전극소재는 폐기 대상인 폐리튬이차전지를 방전, 파쇄, 선별, 분급하여 분리한 양-음극(양극-양극 활물질, 음극-음극 활물질)혼합 전극소재 또는 양극소재 생산 공정에서 발생하는 공정 불량 및 규격 미달 폐양극소재일 수 있다.
이러한 상기 폐전극소재는 리튬니켈코발트알루미늄 산화물(LiNiCoAlO2, NCA), 리튬니켈코발트망간 산화물(LiNiCoMnO2, NCM), 리튬철인 산화물(LiFePO4, LFP), 리튬망간철인 산화물(LiMnFePO4, LMFP), 리튬망간 산화물(LiMn2O4, LMO), 리튬니켈망간 스피넬(LiNi0.5Mn1.5O4, LNMO) 및 리튬코발트 산화물(LiCoO2, LCO) 중 적어도 어느 하나를 포함한다.
다음, 준비된 상기 폐전극소재를 소성로에 투입하여 열처리하는 전처리단계(S200)가 더 수행될 수 있다.
상기 전처리단계(S200)는 상기 폐전극소재에 함유되어 있는 유기결합체를 제거하기 위한 공정으로, 유기결합체를 제거하기 위하여 공기(Air) 분위기, 300℃ 내지 500℃의 온도에서 30분 내지 120분 동안 수행되는 것이 바람직하다.
이에 따라, 상기 폐전극소재에 존재하던 수분 및 유기결합체 등이 제거되며, 전처리 후 전처리 결과물에는 양극활물질과 음극활물질인 탄소 물질이 남게된다.
한편, 상기 전처리단계(S200)에서 상기 소성 온도를 500℃를 초과하여 수행될 경우, 유기결합체 이외에 탄소 물질 또한 제거가 가능하나, 소성 공정의 비용을 초래할 수 있으며, 후술한 황산 용해단계(S300)에서 분리하는 탄소물질의 재활용 측면에서 300℃ 내지 500℃의 온도 범위에서 수행되는 것이 바람직하다.
다음, 상기 전처리단계(S200)를 통해 전처리된 전처리 결과물에 황산을 첨가하여 반응시키는 황산 용해단계(S300)가 수행된다.
상기 황산 용해단계(S300)는 상기 전처리 결과물에 함유된 유가금속을 침출하기 위한 공정으로, 60℃ 내지 100℃의 온도에서 60분 내지 120분 동안 250rpm 내지 400rpm으로 교반되어 반응되는 것이 바람직하다.
또한, 상기 황산 용해단계(S300)에서, 상기 황산은 98% 순도가 사용될 수 있으며, 상기 전처리 결과물에 함유되어 있는 Li, Ni, Co, Mn, Al 및 Cu에 대한 0.94 당량 내지 1.0 당량이 이용될 수 있다.
이때, 투입되는 전처리 결과물과 황산 및 물의 혼합 용액과의 고액 농도는 300g/L 이상인 것이 바람직하다.
또한, 상기 황산 용해단계(S300)는 상기 전치리 결과물과 상기 황산 용액을 투입하고 교반을 실시하면서, 과산화수소가 더 투입되어 수행될 수 있다.
이때, 상기 과산화수소는 30% 내지 32%의 순도가 사용될 수 있으며, 상기 과산화수소의 투입량은 상기 전처리 결과물에 함유되어 있는 Ni, Co 및 Mn 금속의 몰수 대비 0.5몰 내지 0.55몰이 이용될 수 있다.
상기 황산 용해단계(S300)에서, 상기 과산화수소를 통한 환원 침출을 수행하는 이유는 전치리 결과물에 함유되는 코발트의 경우 Co3+로 존재하여 낮은 침출율의 원인이 될 수 있기 때문에, 본 발명에서는 상기 황산 용해단계(S300)에서 과산화수소를 더 투입하여, Co3+를 Co2+로 환원시켜 침출하기 위함이다. 이러한 환원 침출 공정을 통해 상기 코발트 금속 이외에도 리튬의 침출율 또한 상승시킬 수 있다.
즉, 상기 황산 용해단계(S300)를 통해 Li2SO4, NiSO4, CoSO4, MnSO4, Al2(SO4)3, CuSO4등과 같은 유가금속을 함유하는 황산용해물을 수득할 수 있다.
다음, 상기 황산 용해단계(S300)를 통해 생성된 황산용해물을 금속 용해물과 미반응 잔사물로 분리해내는 제1 고액분리 단계(S400)가 수행된다.
상기 제1 고액분리 단계(S400)는 상기 황산 용해단계(S300)를 통해 침출된 유가 금속이 미반응 잔사물인 탄소 물질과 혼합상으로 존재하기 때문에, 이를 분리하기 위하여 고액 분리가 수행된다.
다음, 상기 제1 고액분리 단계(S400)를 통해 수득된 상기 미반응 잔사물을 물로 세척하는 제1 세척단계(S500)가 더 수행될 수 있다.
상기 제1 세척단계(S500)는 상기 미반응 잔사물의 함수에 존재하고 있는 금속이온을 추가로 회수하기 위하여 수행되며, 물을 상온 내지 50℃ 온도로 투입하여, 상기 미반응 잔사물을 세척한 세척액이 수득된다.
다음, 상기 제1 고액분리 단계(S400)를 통해 수득된 상기 금속 용해물에 탄산리튬(Li2CO3)을 혼합하여 교반시키는 침전단계(S600)가 수행된다.
또한, 상기 침전단계(S600)는 상기 제1 세척단계(S500)가 더 수행될 경우, 상기 제1 고액분리 단계(S400)를 통해 수득된 상기 금속 용해물과, 상기 제1 세척단계(S500)를 통해 얻어진 세척액의 혼합액에 상기 탄산리튬을 혼합하여 교반시켜 수행될 수 있다.
여기서, 상기 금속 용해물과 상기 세척액에는 Li2SO4, NiSO4, CoSO4, MnSO4, Al2(SO4)3, CuSO4와 같은 유가금속이 용해되어 있으며, 이 중에서 리튬을 선택적으로 분리하고, 기타 유가금속을 복합 탄산염 형태로 회수하기 위하여 탄산리튬을 투입 후 교반하여 침전반응시키는 것이다.
또한, 상기 침전단계(S600)는 40℃ 내지 80℃의 온도에서 60분 내지 180분 동안 250rpm 내지 400rpm으로 교반되어 반응되는 것이 바람직하다.
또한, 상기 침전단계(S600)에서 탄산리튬의 사용량은 금속 침전 분리 후 최종적으로 리튬의 손실을 최소화하기 위한 범위에서 적용하는 것이 바람직하다.
그 이유는 투입되는 탄산리튬 당량이 증가하면 황산용해액 중 존재하는 Ni, Co, Mn, Al, Cu와 같은 금속이온 침전율을 증가시킬 수 있지만, 미반응 탄산리튬이 잔사에 존재하게 되어 이는 전체적인 리튬 회수율의 감소로 이어지기 때문이다.
또한, 상기 침전단계(S600)에서는 상기 황산용해물의 금속 이온과 상기 탄산리튬의 반응으로 인해 Ni, Co, Mn, Al, Cu와 같은 금속은 복합 탄산염 형태로 침전되고, 리튬은 황산리튬(Li2SO4) 형태로 용액속에 존재하게 된다.
또한, 상기 침전단계(S600)에서 주요 유가 금속의 탄산리튬 침전 반응식은 아래의 반응식 1 내지 반응식 5에 나타내었다.
(반응식 1) NiSO4+Li2CO3 = NiCO3+Li2SO4
(반응식 2) CoSO4+Li2CO3 = CoCO3+Li2SO4
(반응식 3) MnSO4+Li2CO3 = MnCO3+Li2SO4
(반응식 4) Al2(SO4)3+3Li2CO3 = Al2(CO3)3+3Li2SO4
(반응식 5) CuSO4+Li2CO3 = CuCO3+Li2SO4
다음, 상기 침전단계(S600)를 통해 생성된 침전결과물을 침전잔사와 여액으로 분리하는 제2 고액분리단계(S700)가 수행된다.
상기 제2 고액분리단계(S700)를 통해 리튬을 함유하는 황산리튬(Li2SO4)은 여액으로 분리되고, 나머지 유용금속의 경우 복합 탄산염 형태로 잔사로 침전하여 회수할 수 있다.
즉, 상기 제2 고액분리단계(S700)를 통해 상기 여액으로부터 황산리튬 수용액을 회수해내고, 상기 침전잔사로부터 탄산니켈 및 탄산코발트를 회수해내는 것이다.
다음, 상기 제2 고액분리단계(S700)를 통해 생성된 침전잔사를 물로 세척하는 제2 세척단계(S800)가 더 수행될 수 있다.
상기 침전잔사의 함수율은 약 40% 이상으로 다소 많은 황산리튬 이온을 포함하고 있으며, 이를 회수하기 위해 세척수를 사용하여 침전잔사를 세척할수 있으며, 이를 통해 최종적으로 황산리튬 수용액을 회수할 수 있다.
실시예 1
리튬이차전지 폐전극소재에 존재하는 유기결합체 및 미량의 수분을 제거하기 위해 100g의 폐전극소재를 소성로에서 350℃의 온도로 60분 동안 수행하였으며 최종적으로 83.5g의 결과물을 얻었다.
소성 전처리 후 회수한 폐전극소재는 금속 침출을 위해 반응온도는 80℃, 교반속도 300rpm으로 실시하였고, 330g/L의 고액농도를 기준으로 33g의 전극소재에 황산(농도 98%) 18.4 mL와 물 81.6 mL를 투입하였다.
이때, 투입된 황산은 폐전극소재의 Li, Ni, Co, Mn, Al, Cu대비 1.0당량 만큼을 투입하였고 추가로 10 mL의 과산화수소(농도 30%)를 투입하여 환원침출을 수행하였다.
이후, 과산화수소를 투입하고 1시간 이내에 대부분의 금속을 침출시킬 수 있었다. 다만, 과산화수소의 경우 황산과의 접촉시 급격한 발열반응을 일으키므로 이때 과산화수소의 투입속도를 조절하며 부산물로 발생되는 산소(O2)를 배출되게 하였다.
폐전극소재의 황산용해 후 고액분리를 통해 여액을 회수하였고, 물을 사용하여 잔사를 세척하였다.
폐전극소재로부터 황산용해를 통해 회수한 침출 여액은 잔사 세척 후 회수한 세척액과 혼합시키고, 침출 여액과 세척액의 혼합액은 탄산리튬(순도 98% 내지 99%)과 반응을 통해 침전결과물을 수득하였다.
이후, 침전결과물을 고액분리하였으며, 물을 사용하여 침전잔사를 세척 후, 세척액을 수득하였다.
이후, 세척액 및 여액으로부터 고순도의 황산리튬 수용액을 회수해내고, 세척 후의 침전잔사로부터 탄산니켈, 탄산코발트 등을 포함하는 복합 금속 탄산염을 선택적으로 분리 회수하였다.
실험예 1 : 전처리 결과물의 성분 분석
실시예 1에 의해 수득된 폐전극소재의 전처리 결과물을 이용하여 성분분석하였으며, 아래 표 1에 나타내었다.
원소 Li
(%)
Ni
(%)
Co
(%)
Mn
(%)
Al
(%)
Cu
(%)
함량 4.02 11.68 10.0 9.52 2.86 2.05
표 1에 나타난 바와 같이, 전처리 결과물에는 리튬 4.02%, 니켈 11.68%, 코발트 10.00%, 망간 8.52%, 알루미늄 2.86%, 구리 2.05% 함량으로 함유되고 있음을 확인하였다.
실험예 2 : 폐전극소재의 금속 침출율
실시예 1의 제1 세척단계를 통해 얻어진 세척액과 상기 금속 용해물의 혼합액을 이용하여, 금속 침출율을 확인하였으며, 그 결과를 아래 표2에 나타내었다.
Li 침출율(%) Ni 침출율(%) Co 침출율(%) Mn 침출율(%) Al 침출율(%) Cu 침출율(%)
99.8 99.7 99.6 99.7 99.1 99.8
표 2에 나타낸 바와 같이, 황산 용해단계를 통해, 폐전극소재에 존재하는 유가 금속을 99% 이상 침출시킬 수 있음을 알 수 있었다.
실험예 3: 침전 반응시간 및 온도에 따른 리튬 회수율
실시예 1의 침출 여액과 세척액의 혼합액에 탄산리튬 8.0중량%를 투입하고 반응온도 60℃에서 1시간 내지 3시간 동안 침전 반응 후 고액분리를 통해 여액 및 침전 잔사를 회수하였으며, 회수된 유가 금속 회수율을 아래 표 3에 나타내었다.
또한, 침출 여액과 세척액의 혼합액에 탄산리튬을 8.0중량% 투입하고 반응온도를 25℃ 내지 60℃에서 1시간 동안 침전 반응을 수행하였으며, 고액분리를 통해 여액 및 침전 잔사를 회수하였으며, 회수된 유가 금속 회수율을 아래 표 3에 함께 나타내었다.
구분 Li 회수율 (%) Ni 회수율 (%) Co 회수율 (%) Mn 회수율 (%) Al 회수율 (%) Cu 회수율 (%)
반응시간
(온도 60℃)
1hr 96.4 99.9 99.9 99.8 99.9 99.9
2hr 96.6 99.9 99.9 99.8 99.9 99.9
3hr 96.7 99.9 99.9 99.9 99.9 99.9
반응온도
(시간 1hr)
25℃ 92.2 77.4 78.6 83.1 97.2 99.6
40℃ 96.1 99.9 99.8 99.8 99.8 99.9
60℃ 96.4 99.9 99.9 99.8 99.9 99.9
표 3에 나타낸 바와 같이, 반응시간은 1시간의 시간만으로도 금속 침전이 효과적으로 이루어지는 것을 알 수 있었으며, 다만 Li 회수율의 경우 미미하게 증가하는 것을 알 수 있었다. 또한, 반응온도 25℃에서는 금속 침전 반응이 다소 부족한 것을 알 수 있었지만 만약 반응온도가 40℃ 이상이 되면 금속 회수율이 높게 나타나며 대부분 반응이 효과적으로 이루어 진다는 것을 알 수 있었다.
실험예 4: 탄산리튬 투입량에 따른 유가 금속 침전 분리 효율
실시예 1의 침출 여액과 세척액의 혼합액에 탄산리튬 8.0중량% 투입하여 반응온도 60℃에서 1시간 동안 침전 반응 후, 제2 고액분리 단계 및 제2 세척 단계를 통해 여액과 세척액 그리고 침전 잔사를 회수하였고, 또한, 실시예 1과 비교하여 탄산리튬을 7.5중량%, 9.0중량%, 10.0중량% 별로 투입한 것을 제외하면, 동일한 방법으로 침전 단계, 제2 고액분리 단계 및 제2 세척 단계를 통해 여액과 세척액 그리고 침전 잔사를 회수하였다.
이후, 탄산리튬 투입량 별로 수득된 여액의 유가 금속 함량 분석을 수행하여 아래 표 4에 나태내었으며, 탄산리튬 투입량에 따른 유가 금속 회수율을 확인하여 아래 표 5에 타내었고, 탄산리튬이 8.0중량% 투입되었을 때, 최종 수득된 복합 금속 탄산염의 함량을 분석하여 아래 표 6에 나타내었다.
탄산리튬 투입량
(중량%)
Li
(mg/L)
Ni
(mg/L)
Co
(mg/L)
Mn
(mg/L)
Al
(mg/L)
Cu
(mg/L)
7.5 24,152 28.1 32.7 19.0 0.2 0.4
8.0 24,892 14.5 11.6 9.7 0.2 0.6
9.0 25,121 6.2 5.6 5.7 0.1 0.5
10.0 27,350 2.8 4.0 1.8 0.1 0.5
탄산리튬 투입량
(중량%)
Li 회수율 (%) Ni 회수율 (%) Co 회수율 (%) Mn 회수율 (%) Al 회수율 (%) Cu 회수율 (%)
7.5 97.4 99.8 99.7 99.8 99.9 99.9
8.0 96.4 99.9 99.9 99.8 99.9 99.9
9.0 95.2 99.9 99.9 99.9 99.9 99.9
10.0 91.6 99.9 99.9 99.9 99.9 99.9
탄산리튬 투입량
(중량%)
Ni
(mg/L)
Co
(mg/L)
Mn
(mg/L)
Al
(mg/L)
Cu
(mg/L)
8.0 158,563 134,264 132,297 39,574 30,235
표 4 내지 표 6에 나타난 바와 같이, 탄산리튬 투입량이 증가할수록 침전여액 중 Li의 함량은 증가하고 Ni, Co, Mn, Al, Cu의 함량은 감소하는 것을 확인 할 수 있었다. 또한, 탄산리튬 투입량에 따른 금속 회수율의 경우 8.0중량% 투입 시 Ni, Co, Mn, Al, Cu는 99% 이상 효과적으로 복합 금속 탄산염으로 침전하는 것을 알 수 있었다. Li 회수율은 탄산리튬의 투입량이 증가할수록 감소하는 것을 알 수 있었는데 이는 미반응 탄산리튬이 잔사에 존재하기 때문이다. 따라서 최적의 탄산리튬 투입량을 적용할 경우, 높은 Li 회수율과 고순도의 황산리튬 수용액을 여액으로 수득할 수 있을 뿐만 아니라 동시에 침전 잔사로 복합 금속 탄산염을 높은 회수율과 순도로 회수할 수 있음을 알 수 있었다.
상술한 바와 같이, 본 발명에 따른 리튬이차전지의 폐전극소재로부터 탄산리튬을 이용한 유가금속의 회수 방법는 폐전극소재를 전처리하고, 황산용해시켜 수득된 금속용해물에 최적의 탄산리튬(Li2CO3) 투입량을 이용하여 침전단계를 수행함으로써, 리튬이차전지의 폐전극소재로부터 유가금속을 높은 회수율 및 높은 순도로 회수해낼 수 있는 장점을 지닌다.
이상에서 살펴본 바와 같이 본 발명은 바람직한 실시예를 들어 도시하고 설명하였으나, 상기한 실시예에 한정되지 아니하며 본 발명의 정신을 벗어나지 않는 범위 내에서 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변경과 수정이 가능할 것이다.
본 발명의 리튬이차전지의 폐전극소재로부터 탄산리튬을 이용한 유가금속의 회수 방법에 의하면, 니켈, 코발트, 망간, 알루미늄 및 구리등의 유가금속은 복합 탄산염 형태의 잔사로 회수해내고, 리튬을 포함하는 황산리튬(Li2SO4) 수용액은 여액으로 회수해내어, 리튬이차전지 제조를 위한 원료물질로 활용할 수 있다.

Claims (9)

  1. 폐전극소재를 준비하는 폐전극소재 준비단계;
    상기 폐전극소재에 황산을 첨가하여 반응시키는 황산 용해단계;
    상기 황산 용해단계를 통해 생성된 황산용해물을 금속 용해물과 미반응 잔사로 분리해내는 제1 고액분리단계;
    상기 금속 용해물에 탄산리튬(Li2CO3)을 혼합하여 교반시키는 침전단계;
    상기 침전단계를 통해 생성된 침전결과물을 침전잔사와 여액으로 분리하는 제2 고액분리단계;를 포함하고,
    상기 여액으로부터 황산리튬 수용액을 회수해내고, 상기 침전잔사로부터 탄산니켈 및 탄산코발트를 회수해내는 것을 특징으로 하는 폐전극소재를 이용한 유가금속의 회수 방법.
  2. 제 1항에 있어서,
    상기 폐전극소재 준비단계 및 상기 황산 용해단계 사이에,
    상기 폐전극소재를 소성로에 투입하여 열처리하는 전처리단계;를 더 포함하는 것을 특징으로 하는 폐전극소재를 이용한 유가금속의 회수 방법.
  3. 제 2항에 있어서,
    상기 전처리 단계는
    300℃ 내지 500℃의 온도에서 30분 내지 120분 동안 수행되는 것을 특징으로 하는 폐전극소재를 이용한 유가금속의 회수 방법.
  4. 제 1항에 있어서,
    상기 황산용해 단계는
    60℃ 내지 100℃의 온도에서 60분 내지 120분 동안 250rpm 내지 400rpm으로 교반시켜 반응되는 것을 특징으로 하는 폐전극소재를 이용한 유가금속의 회수 방법.
  5. 제 4항에 있어서,
    상기 황산용해 단계는
    상기 폐전극소재에 과산화수소가 더 투입되는 것을 특징으로 하는 폐전극소재를 이용한 유가금속의 회수 방법.
  6. 제 1항에 있어서,
    상기 제1 고액분리단계 이후에, 상기 미반응 잔사물을 물로 세척하는 제1 세척단계;를 더 포함하고,
    상기 침전단계는 상기 제1 세척단계를 통해 얻어진 세척액과 상기 금속 용해물의 혼합액에 상기 탄산리튬을 혼합하여 교반시키는 것을 특징으로 하는 폐전극소재를 이용한 유가금속의 회수 방법.
  7. 제 1항에 있어서,
    상기 침전 단계는
    40℃ 내지 80℃의 온도에서 60분 내지 180분 동안 250rpm 내지 400rpm으로 교반시켜 반응되는 것을 특징으로 하는 폐전극소재를 이용한 유가금속의 회수 방법.
  8. 제 1항에 있어서,
    상기 제2 고액분리단계 이후에, 상기 침전잔사를 물로 세척하는 제2 세척단계;를 더 포함하고,
    상기 제2 세척단계를 통해 얻어진 세척액으로부터 황산리튬 수용액을 회수해내는 것을 특징으로 하는 폐전극소재를 이용한 유가금속의 회수 방법.
  9. 제 1항에 있어서,
    상기 폐전극소재는 리튬니켈코발트알루미늄 산화물(LiNiCoAlO2, NCA), 리튬니켈코발트망간 산화물(LiNiCoMnO2, NCM), 리튬철인 산화물(LiFePO4, LFP), 리튬망간철인 산화물(LiMnFePO4, LMFP), 리튬망간 산화물(LiMn2O4, LMO), 리튬니켈망간 스피넬(LiNi0.5Mn1.5O4, LNMO) 및 리튬코발트 산화물(LiCoO2, LCO) 중 적어도 어느 하나를 포함하는 것을 특징으로 하는 폐전극소재를 이용한 유가금속의 회수 방법.
PCT/KR2021/006364 2020-05-26 2021-05-21 리튬이차전지의 폐전극소재로부터 탄산리튬을 이용한 유가금속의 회수 방법 WO2021241944A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/922,644 US11987861B2 (en) 2020-05-26 2021-05-21 Method for recovering valuable metal from waste electrode material of lithium secondary battery by using lithium carbonate
CA3177071A CA3177071A1 (en) 2020-05-26 2021-05-21 Method for recovering valuable metal from waste electrode material of lithium secondary battery by using lithium carbonate
EP21812247.1A EP4160787A4 (en) 2020-05-26 2021-05-21 METHOD FOR RECOVERING PRECIOUS METAL FROM WASTE ELECTRODE MATERIAL OF LITHIUM SECONDARY BATTERY USING LITHIUM CARBONATE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200063069A KR102205442B1 (ko) 2020-05-26 2020-05-26 리튬이차전지의 폐전극소재로부터 탄산리튬을 이용한 유가금속의 회수 방법
KR10-2020-0063069 2020-05-26

Publications (1)

Publication Number Publication Date
WO2021241944A1 true WO2021241944A1 (ko) 2021-12-02

Family

ID=74304986

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/006364 WO2021241944A1 (ko) 2020-05-26 2021-05-21 리튬이차전지의 폐전극소재로부터 탄산리튬을 이용한 유가금속의 회수 방법

Country Status (5)

Country Link
US (1) US11987861B2 (ko)
EP (1) EP4160787A4 (ko)
KR (1) KR102205442B1 (ko)
CA (1) CA3177071A1 (ko)
WO (1) WO2021241944A1 (ko)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113117637A (zh) * 2021-04-19 2021-07-16 重庆大学 以废旧钴酸锂电池为原料制备二氧化碳吸附材料的方法
KR102650913B1 (ko) * 2021-09-07 2024-03-22 국립부경대학교 산학협력단 리튬철인 산화물로부터 리튬의 선택적인 회수 방법
KR102627665B1 (ko) * 2021-09-09 2024-01-23 국립부경대학교 산학협력단 리튬망간철인 산화물로부터 리튬의 선택적인 회수 방법
KR20240014313A (ko) 2022-07-25 2024-02-01 단국대학교 천안캠퍼스 산학협력단 결함이 있는 막전극접합체로부터 이오노머와 촉매를 분리하는 방법
KR102672210B1 (ko) 2021-12-01 2024-06-05 단국대학교 천안캠퍼스 산학협력단 초임계 분산법을 이용한 전극 소재의 분리 및 회수 방법
KR102525088B1 (ko) * 2022-06-09 2023-04-24 한국선별기 주식회사 폐내화갑으로부터 고순도의 황산리튬을 제조하는 방법
WO2024148417A1 (en) * 2023-01-10 2024-07-18 Ignis Lithium Inc. Melt process involving a direct use of a metal sulfate precursor for preparing a lithium metal phosphate cathode material

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004214025A (ja) * 2002-12-27 2004-07-29 Mitsui Mining & Smelting Co Ltd リチウムイオン電池内のコバルト回収方法およびコバルト回収システム
JP2007122885A (ja) * 2005-10-25 2007-05-17 Sumitomo Metal Mining Co Ltd リチウムイオン電池からの有価金属回収方法
KR20120094619A (ko) * 2011-02-17 2012-08-27 한국지질자원연구원 폐배터리로부터 유가금속 황산용액의 제조방법 및 양극활물질의 제조방법
KR20150086143A (ko) * 2014-01-17 2015-07-27 경상대학교산학협력단 전극 활물질을 생산하는 방법 및 그 방법에 의해 생산된 양극 활물질
CN108767353A (zh) * 2018-05-25 2018-11-06 北京矿冶科技集团有限公司 从废旧锂离子电池正极活性材料生产富锂净液的方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10246343B2 (en) * 2016-11-11 2019-04-02 Rocher Manganese, Inc. Processing of cobaltous sulpha/dithionate liquors derived from cobalt resource
US10308523B1 (en) 2017-11-07 2019-06-04 Rocher Manganese, Inc. Processing of cobaltous sulphate/dithionate liquors derived from cobalt resource
CN110668506B (zh) * 2019-09-29 2021-01-22 昆明理工大学 一种废旧锂离子电池回收再生钴酸锂的方法
CN111115662B (zh) * 2019-12-31 2021-03-09 清华四川能源互联网研究院 一种锂电池材料回收方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004214025A (ja) * 2002-12-27 2004-07-29 Mitsui Mining & Smelting Co Ltd リチウムイオン電池内のコバルト回収方法およびコバルト回収システム
JP2007122885A (ja) * 2005-10-25 2007-05-17 Sumitomo Metal Mining Co Ltd リチウムイオン電池からの有価金属回収方法
KR20120094619A (ko) * 2011-02-17 2012-08-27 한국지질자원연구원 폐배터리로부터 유가금속 황산용액의 제조방법 및 양극활물질의 제조방법
KR20150086143A (ko) * 2014-01-17 2015-07-27 경상대학교산학협력단 전극 활물질을 생산하는 방법 및 그 방법에 의해 생산된 양극 활물질
CN108767353A (zh) * 2018-05-25 2018-11-06 北京矿冶科技集团有限公司 从废旧锂离子电池正极活性材料生产富锂净液的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4160787A4 *

Also Published As

Publication number Publication date
KR102205442B1 (ko) 2021-01-20
EP4160787A1 (en) 2023-04-05
US20230160036A1 (en) 2023-05-25
CA3177071A1 (en) 2021-12-02
US11987861B2 (en) 2024-05-21
EP4160787A4 (en) 2024-02-28

Similar Documents

Publication Publication Date Title
WO2021241944A1 (ko) 리튬이차전지의 폐전극소재로부터 탄산리튬을 이용한 유가금속의 회수 방법
WO2020116795A1 (ko) 리튬 정광으로부터 황산나트튬 혼합 배소에 의한 수산화리튬 제조방법
WO2019198972A1 (ko) 리튬이온 2차전지의 폐 양극재를 이용한 수산화리튬 일수화물의 제조방법
WO2019199015A1 (ko) 리튬 이차 전지의 활성 금속 회수 방법
WO2020096195A1 (ko) 리튬 전구체 재생 방법 및 리튬 전구체 재생 시스템
WO2011065682A2 (ko) 리튬이온전지 및 3원계 양극활물질로부터 cmb 촉매 제조방법
WO2020101089A1 (ko) 니켈 및 코발트 회수 방법
WO2021241817A1 (ko) 양극 스크랩을 이용한 활물질 재사용 방법
WO2024034754A1 (ko) 이차전지 소재 재활용 방법
WO2022055272A1 (ko) 양극재 회수 방법
WO2023191414A1 (ko) 블랙 매스로부터 이차전지 소재의 제조방법
WO2021172688A1 (ko) 양극활물질 전구체 재료 및 리튬 이차전지용 양극활물질의 제조방법, 및 이에 따라 제조된 리튬 이차전지용 양극활물질
WO2019139181A1 (ko) 재활용 시드를 사용한 니켈-코발트-망간 복합전구체의 제조 방법
US20240213562A1 (en) Extraction of metals from lithium-ion battery material
WO2020071640A1 (ko) 리튬 전구체 재생 방법 및 리튬 전구체 재생 시스템
CA3214131A1 (en) Extraction of metals from lithium-ion battery material
WO2013165148A1 (ko) 고순도 사산화삼망가니즈의 제조방법 및 그 제조방법에 의하여 제조된 고순도 사산화삼망가니즈
WO2021125633A2 (ko) 폐리튬이온배터리의 폐수 처리방법
CA3213402A1 (en) Extraction of metals from lithium-ion battery material
WO2020235802A1 (ko) 리튬 전구체 분리 방법 및 리튬 전구체 분리 시스템
WO2021187808A1 (ko) 양극 활물질용 분급기 및 이를 이용한 리튬 전구체 재생 방법
WO2021241818A1 (ko) 양극 스크랩을 이용한 활물질 재사용 방법
WO2021241819A1 (ko) 양극 스크랩을 이용한 활물질 재사용 방법
WO2021066362A1 (ko) 리튬 전구체의 회수 방법
CN115161483B (zh) 一种全回收废旧锂离子电池并实现金属分离的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21812247

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3177071

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021812247

Country of ref document: EP

Effective date: 20230102