WO2013165148A1 - 고순도 사산화삼망가니즈의 제조방법 및 그 제조방법에 의하여 제조된 고순도 사산화삼망가니즈 - Google Patents

고순도 사산화삼망가니즈의 제조방법 및 그 제조방법에 의하여 제조된 고순도 사산화삼망가니즈 Download PDF

Info

Publication number
WO2013165148A1
WO2013165148A1 PCT/KR2013/003710 KR2013003710W WO2013165148A1 WO 2013165148 A1 WO2013165148 A1 WO 2013165148A1 KR 2013003710 W KR2013003710 W KR 2013003710W WO 2013165148 A1 WO2013165148 A1 WO 2013165148A1
Authority
WO
WIPO (PCT)
Prior art keywords
manganese
trimanganese tetraoxide
high purity
impurity
purity trimanganese
Prior art date
Application number
PCT/KR2013/003710
Other languages
English (en)
French (fr)
Inventor
김명준
트람탐
Original Assignee
전남대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전남대학교산학협력단 filed Critical 전남대학교산학협력단
Priority to AU2013255161A priority Critical patent/AU2013255161B2/en
Priority to US14/398,108 priority patent/US9663384B2/en
Publication of WO2013165148A1 publication Critical patent/WO2013165148A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/009Compounds containing, besides iron, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B47/00Obtaining manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/02Working-up flue dust
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/88Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by thermal analysis data, e.g. TGA, DTA, DSC
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/502Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese for non-aqueous cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a method for producing high purity trimanethane tetraoxide from low purity manganese containing dust.
  • the secondary battery is composed of a negative electrode, a positive electrode, an electrolyte and a separator, manganese oxide is used in the production of the positive electrode.
  • the demand for secondary batteries soars, the demand for materials required for manufacturing such secondary batteries is also increasing rapidly.
  • Manganese oxide is a compound that is widely used as an electrode material of such secondary batteries.
  • Manganese oxide also known as manganese oxide, is a compound of manganese and oxygen, manganese oxide (II) (MnO), trimanganese tetraoxide (Mn 3 O 4 ), manganese oxide (III) (Mn 2 O 3 ), and oxidation Manganese (IV) (MnO 2 ), manganese oxide (VII) (Mn 2 O 7 ), and the positive electrode material of the secondary battery trimanganese tetraoxide (Mn 3 O 4 ), manganese oxide (III) ( Mn 2 O 3 ) can be used.
  • Korean Patent Publication No. 10-1052192 discloses a method for recovering a manganese-containing compound contained in an electric dust. More specifically, Korean Patent Publication No. 10-1052192 recovers manganese-containing compounds contained in dust in an electric furnace, and additionally sulfuric acid according to the type of acid and base used in the production of alkali metal compounds and manganese-containing compounds. By-products such as ammonium have also been disclosed. However, the purity of the trimanganese tetraoxide recovered by the method remains at about 60%, and there is a problem in that it is difficult to recover high-purity trimanethane tetraoxide.
  • Korean Patent Laid-Open Publication No. 2001-0113176 discloses a method for producing high purity manganese oxide by low temperature pyrolysis of manganese nitrate. More specifically, the Korean Laid-Open Patent Publication No. 2001-0113176 discloses the reduced roasting process of manganese materials, the nitrate leaching process, the first purification process for removing impurities, the partial decomposition process of manganese nitrate, and the washing of manganese dioxide produced in the partial decomposition process. Disclosed is a process for producing trimanganese tetraoxide by a calcination step and a calcination step of calcining the washed manganese dioxide with manganese oxide.
  • the purity of the production of tri-manganese tetraoxide prepared by the above method is only 71.3%, there is a problem that it is difficult to recover high-purity tri-manganese tetraoxide.
  • the sulfuric acid may be added at a ratio of 0.5 to 3 times the molar content of the manganese.
  • the reducing agent comprises a reagent or sulfurous acid gas (SO 2 gas) comprising an oxalate (C 2 O 4 2- ) group, the reducing agent is a ratio of 0.1 to 2 times the molar content of the manganese Can be added.
  • SO 2 gas sulfurous acid gas
  • oxalate C 2 O 4 2-
  • the reagent including the oxalate group may include oxalic acid (H 2 C 2 O 4 .2H 2 O) or sodium oxalate (Na 2 C 2 O 4 ).
  • the first impurity removing step may include removing iron contained in the manganese leachate, and the first impurity removing step may further include adding potassium and an oxidizing agent.
  • the calcium hydroxide (Ca (OH) 2 ) may be added to pH 2 to 3 of the manganese leachate.
  • the first impurity removal step may further include adjusting the temperature to 80 to 120 °C after the addition of the calcium hydroxide.
  • the first impurity removal step may further comprise the step of further adding the calcium hydroxide so that the pH of the manganese leaching solution 5 or more.
  • the potassium may be added at a rate of 0.5 to 3 times the molar content of iron, and the oxidizing agent may be added at a rate of 0.5 to 3 times the molar content of iron.
  • the potassium may include potassium sulfate (K 2 SO 4 ), and the oxidizing agent may include hydrogen peroxide (H 2 O 2 ).
  • the sulfide includes at least one of sodium sulfide (Na 2 S), calcium sulfide (CaS) and hydrogen sulfide (H 2 S), wherein the sulfide is 10 moles of the total molar amount of the second impurity. To 50 times may be added.
  • Na 2 S sodium sulfide
  • CaS calcium sulfide
  • H 2 S hydrogen sulfide
  • the second impurity removing step includes the steps of adding sodium hydroxide so that the pH of the manganese leachate is pH 5 to 6; Residual impurities in the form of sulfide through solid-liquid separation may be further disposed as a sulfide slurry and recovering the manganese leachate from which the residual impurities have been removed.
  • the manganese precipitation step further includes the step of diluting with water such that the content of manganese in the manganese leachate from which the second impurity is removed is 50 to 100 g / L, and the sodium hydroxide (NaOH) is the pH of the manganese leachate. May be adjusted to pH 8 to 9 to precipitate manganese.
  • the washing step may be washed using water of 70 to 100 °C after the manganese precipitation.
  • the heat treatment is to process the heat of 800 to 1100 °C, may further comprise the step of quenching after performing the heat treatment.
  • the above object can be achieved by providing a high purity trimanganese tetraoxide prepared by the production method.
  • FIG. 1 is a flowchart illustrating a method for preparing high purity trimanganese tetraoxide according to an embodiment of the present invention.
  • FIG. 2 is a flowchart illustrating a method for preparing high purity trimanganese tetraoxide according to another embodiment of the present invention
  • FIG. 3 is a view showing the effect of the heat treatment on the production of high-purity trimanganese tetraoxide according to an embodiment of the present invention
  • Figure 5 shows the XRD analysis of high purity trimanganese tetraoxide prepared according to an embodiment of the present invention.
  • FIG. 1 is a schematic flowchart of a manufacturing method of high purity trimanganese tetraoxide according to an embodiment of the present invention
  • Figure 2 is a detailed flowchart of the manufacturing method of the high purity trimanganese tetraoxide of FIG.
  • the method for producing high purity trimanganese tetraoxide includes the step of leaching manganese by adding sulfuric acid and a reducing agent to the manganese-containing dust (S10).
  • the low purity manganese compounds included in the manganese-containing dust may include manganese oxides such as MnO, MnCO 3 Ore, Mn 2 O 3 , Mn 3 O 4 , MnO 2 , and manganese carbonate.
  • manganese oxides such as MnO, MnCO 3 Ore, Mn 2 O 3 , Mn 3 O 4 , MnO 2 , and manganese carbonate.
  • manganese compounds contained in the manganese-containing dust manganese is included in an amount of about 60 to 75%, but because it is present with other impurities, there is no significance as a commodity in itself.
  • the manganese-containing dust includes iron (Fe), nickel (Ni), lead (Pb), zinc (Zn), cobalt (Co), copper (Cu), potassium (K), magnesium (Mg), calcium (Ca), It contains impurities such as sodium (Na), aluminum (Al), sulfur (S), phosphorus (P), and silicon (Si).
  • Sulfuric acid and a reducing agent are added to the prepared manganese-containing dust (S12).
  • Sulfuric acid (H 2 SO 4 ) added to the manganese-containing dust may be added at a ratio of 0.5 to 3 times the molar content of manganese contained in the manganese-containing dust, preferably the sulfuric acid is molar content of the manganese It may be added in a ratio of 1 to 2 times, more preferably in a ratio of 1 to 1.5 times the molar content of the manganese.
  • the reducing agent added together with the sulfuric acid is at a ratio of 0.1 to 2 times the molar content of manganese, preferably 0.5 to 1.5 times the molar content of manganese, more preferably 0.5 to 1 times the molar content of manganese. It can be added in proportions.
  • the reducing agent includes a reagent or an sulfite gas (SO 2 gas) including an oxalate (C 2 O 4 2- ) group, and the reagent including the oxalate group is, for example, oxalic acid (H 2 C 2 O). 4 2H 2 O) or sodium oxalate (Na 2 C 2 O 4 ).
  • SO 2 gas sulfite gas
  • the reagent including the oxalate group may be added after dissolving in water in the amount of the substrate, and the sulfurous acid gas may be added directly.
  • the reaction formula is as follows, and the manganese contained in the manganese-containing dust by the sulfuric acid and the reducing agent may be leached in the form of manganese sulfate. Can be.
  • the manufacturing method according to the present embodiment includes a step (S20) of removing the first impurities by adding calcium hydroxide (Ca (OH) 2 ) to the manganese leachate obtained in step S12.
  • the manganese-containing dust can be obtained by leaching the manganese leaching solution in the form of manganese sulfate by the added sulfuric acid and reducing agent.
  • the manganese leachate contains impurities and should be removed. Impurities in this step include iron.
  • the removing of the first impurity may further include adding potassium (K) and an oxidizing agent to the manganese leachate obtained in the step S12 (S21).
  • the iron is K-Sarosite (Karosite, KFe 3 (SO 4 ) 2 (OH) 6 ) It is to prepare for the addition of potassium required to precipitate in the form, so that iron can be precipitated in the form of K-Zarosite when calcium hydroxide is added later.
  • the potassium (K) may be added in a ratio of 0.5 to 3 times the molar content of iron contained in the manganese leachate, preferably in a ratio of 0.5 to 2.5 times, more preferably in a ratio of 1 to 2 times Can be added.
  • Examples of the potassium may include potassium sulfate (K 2 SO 4 ).
  • the oxidant may be added in a 0.5 to 3 ratio of the molar content of iron contained in the manganese leachate, preferably in a 0.5 to 2 ratio, more preferably in a 1 to 1.5 ratio.
  • the oxidant may include hydrogen peroxide (H 2 O 2 ).
  • the calcium hydroxide (Ca (OH) 2 ) is added (S22).
  • the added calcium hydroxide (Ca (OH) 2 ) may be used in a solid solution concentration of 20% Ca (OH) 2 , it can be added so that the pH of the manganese leaching solution containing iron is pH 2 to 3.
  • the temperature of the sample is adjusted to 80 to 120 ° C, preferably to 85 to 110 ° C, more preferably to a temperature of 90 to 100 ° C, for 2 to 4 hours, preferably The reaction is carried out for 2.5 to 3.5 hours, more preferably for about 3 hours.
  • the reaction scheme of the reaction is as follows.
  • the iron contained in the manganese leachate may be precipitated in the form of K-zarosite.
  • step S22 after adjusting the pH of the substrate by adding calcium hydroxide, it should be raised to the temperature of the substrate. If the temperature is raised first and then calcium hydroxide is added for the reaction of Reaction Scheme 5, it may be difficult to separate solid-liquid separation due to rapid reactivity to precipitate in hydroxide form such as Fe (OH) 3 or FeOOH instead of K-zarosite. Because there is.
  • the first impurity removing step may further include adding calcium hydroxide (Ca (OH) 2 ) to pH 5 or more of the manganese leachate (S23).
  • Ca (OH) 2 calcium hydroxide
  • Ca (OH) 2 calcium hydroxide
  • the first impurity removing step may further include adding calcium hydroxide (Ca (OH) 2 ) to pH 5 or more of the manganese leachate (S23).
  • Ca (OH) 2 calcium hydroxide
  • step S23 a reaction may occur according to Scheme 6 as below, and residual iron in the manganese leachate may be removed.
  • the first impurity removal step may further include performing a first solid-liquid separation when iron is removed by the reaction according to Scheme 6 (S24).
  • the slurry in which iron is precipitated through the first solid-liquid separation may be discarded to recover manganese leachate from which iron has been removed (or manganese leachate from which first impurities are removed).
  • the manganese leaching solution from which iron is removed further includes impurities such as nickel (Ni), lead (Pb), zinc (Zn), cobalt (Co), and copper (Cu).
  • the manufacturing method according to the present embodiment includes a step of removing the second impurity by adding sulfide to the manganese leachate from which the first impurity is removed (S30).
  • the manganese leachate from which the first impurity is removed includes the second impurity such as iron (Ni), lead (Pb), zinc (Zn), cobalt (Co), and copper (Cu). It can be removed by precipitation by the addition of sulfides in the form of sulfides.
  • sulfide is added to the manganese leachate from which the first impurity is removed (S31).
  • the sulfide may include at least one of sodium sulfide (Na 2 S), calcium sulfide (CaS) and hydrogen sulfide (H 2 S), and the sulfide is added at a rate of 10 to 50 times the total molar amount of the remaining impurities. It may be added, preferably in a ratio of 15 to 45 times, more preferably in a ratio of 30 to 35 times.
  • the pH of the sulfide to be added may be adjusted to pH 7 to 8, preferably pH 8.
  • the sulfide is added to the manganese leachate from which iron is removed (or the manganese leachate from which the first impurities are removed) to react for about 10 to 100 minutes, preferably 20 to 80 minutes, more preferably 30 to 60 minutes. Can be. After adding the sulfide and reacting, sodium hydroxide (NaOH) is added so that the leachate has a pH of 5 to 6, and then reacted for about 10 to 60 minutes, preferably 10 to 40 minutes, more preferably 20 to 30 minutes.
  • NaOH sodium hydroxide
  • Impurities other than iron, nickel (Ni), lead (Pb), zinc (Zn), cobalt (Co) or copper (Cu) may be precipitated in the form of sulfides (NiS, PbS, ZnS, CoS, CuS). have.
  • the second impurity removing step may further include performing a second solid-liquid separation after the sulfide is precipitated (S32). Through the second solid-liquid separation, the sulfide slurry in which impurities are precipitated in the form of sulfide may be discarded, and the manganese leachate from which residual impurities other than iron may be removed may be recovered.
  • the manufacturing method of the present invention includes the step of precipitating manganese, washing and drying by performing pH adjustment using sodium hydroxide (NaOH) in the manganese leachate from which the first and second impurities are removed. (S40).
  • NaOH sodium hydroxide
  • the manganese precipitation step in order to precipitate the manganese, further comprises the step of diluting with water so that the content of manganese in the manganese leaching solution of 50 to 100g / L, the sodium hydroxide (NaOH) of the manganese leaching solution
  • the pH can be adjusted to pH 8 to 9 to precipitate manganese (S41).
  • the content of manganese in the manganese leachate may be diluted by adding water so that the content of manganese is 50 to 100 g / L, preferably 55 to 85 g / L, more preferably 60 to 80 g / L .
  • sodium hydroxide is added so that the pH of the diluted manganese leachate is pH 7-9, preferably pH 8-9 at a temperature of 30-80 ° C, preferably 50-70 ° C, more preferably 55-65 ° C.
  • Only manganese can be selectively precipitated.
  • the form of manganese precipitated and recovered by this step becomes (Mn (OH) 2 -MnOOH).
  • the washing step includes performing a third solid-liquid separation and recovering the recovered manganese (Mn (OH) 2 -MnOOH) to recover the precipitated manganese (S42).
  • the manganese oxide of the precipitated (Mn (OH) 2 -MnOOH) may include the step of washing at least one time using water of 70 to 100 °C, preferably water of 80 to 90 °C.
  • the washing step may be preferably performed three times with water.
  • impurities such as magnesium, calcium, potassium, and sodium other than manganese may be removed.
  • the manganese oxide of the precipitated (Mn (OH) 2 -MnOOH) is dried (S43).
  • the drying may be spray-dried using a dryer, in particular a spray dryer, for this purpose it can be carried out by spray drying by adjusting to a solid solution concentration of 20 to 30% using distilled water.
  • the dried sample may be manufactured in a spherical shape.
  • the manufacturing method of the present invention by injecting air to the sample dried in the step S43 and performing a heat treatment under high temperature oxidation conditions to obtain a high-purity trimanganese tetraoxide (S50).
  • a heat treatment for a smooth reaction of the sample dried in step S43, 10 to 40 minutes, preferably 20 to 30 minutes to mix at a temperature of 800 to 1100 °C, preferably at a temperature of 900 to 1000 °C 30 to 180 minutes
  • the heat treatment may be performed for 60 to 120 minutes (S51).
  • the rotary kiln incinerator may be reacted under the above conditions to remove sulfur, moisture, and trace impurities.
  • the heat treatment may further comprise the step of quenching.
  • the manganese from which impurities are removed by the heat treatment is reduced to Mn 2 O 3 , and a rapid cooling step may be further performed to oxidize it to Mn 3 O 4 manganese compound. After performing the heat treatment can be cooled to room temperature within a short time. Through this, high purity trimanganese tetraoxide (Mn 3 O 4 ) that can be used in a secondary battery can be obtained.
  • the present invention can provide a high-purity tri-manganese tetraoxide prepared by the method for producing high-purity tri-manganese tetraoxide described above.
  • 3Kg of manganese containing dust was prepared.
  • the components of the manganese-containing dust are as shown in Table 1 below.
  • the pH of the leachate was adjusted to pH 5.5 by adding 0.5 L of solid solution 20% Ca (OH) 2 .
  • the slurry was discarded through the first solid-liquid separation, and the manganese leachate from which iron was removed was recovered.
  • the manganese oxide precipitated in the form of (Mn (OH) 2 -MnOOH) was recovered through the third solid-liquid separation and washed three times with water at 85 ° C. to remove residual impurities such as sodium.
  • the washed manganese oxide was adjusted to a solid solution concentration of 20 to 30% using distilled water using a spray dryer to perform spray drying, and the dried sample was prepared in a spherical shape.
  • trimanganese tetraoxide is 99.9% high purity.
  • Example 2 In Example 1, a quenching step was performed after the heat treatment was performed at 1000 ° C. In order to determine whether the quenching step after the heat treatment step affects the production of trimanganese tetraoxide, the same method as described in Example 1 was performed to prepare trimanganese tetraoxide, but only after the 1000 ° C. heat treatment step The sample was cooled slowly without performing.
  • the Spec item in Table 1 defines standard specifications required for use of trimanganese tetraoxide as a material of a secondary battery. As, Co, Cd components in Table 1 are not defined in the standard specifications, but further component analysis was performed.
  • Example 1 As shown in Table 1, it was confirmed that the tetramanganese tetraoxide prepared in Example 1 was exactly following the standard specifications. Accordingly, it was confirmed that the trimanganese tetraoxide prepared by the manufacturing method of the present invention can be sufficiently used as an electrode material of a secondary battery.
  • Example 1 In order to confirm whether the high purity trimanganese tetraoxide prepared in Example 1 can be used as a material of the secondary battery, XRD (X-Ray Diffraction) analysis was performed using the standard Mn 3 O 4 used in the secondary battery as a control.
  • XRD X-Ray Diffraction
  • the present invention relates to a method for producing high-purity trimanganese tetraoxide, which can be produced from manganese-containing tetramanganese tetraoxide, which is used as one of the materials for secondary batteries, with high purity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

본 발명은 망간함유 더스트로부터 고순도 사산화삼망가니즈를 제조하는 방법 및 이에 의하여 제조된 고순도 사산화삼망가니즈에 관한 것이다. 본 발명에 따른 제조방법은 망간 함유 더스트에 황산(H2SO4) 및 환원제를 첨가하여 망간을 침출하는 단계와; 상기 침출단계에 의하여 획득한 망간침출액에 칼슘하이드록사이드(Ca(OH)2)를 첨가하여 제1불순물을 제거하는 단계와; 상기 제1불순물이 제거된 망간침출액에 황화물을 첨가하여 제2불순물을 제거하는 단계와; 상기 제2 불순물이 제거된 망간침출액에 수산화나트륨(NaOH)을 이용하여 pH조절을 수행하여 망간을 침전시키고 세척 및 건조를 수행하여는 단계와; 상기 건조된 시료에 공기를 주입하여 산화조건에서 열처리를 수행하여 고순도 사산화삼망가니즈를 수득하는 단계를 포함한다. 이에 의해 저순도 망간을 함유하는 더스트로부터 이차전지의 재료로 사용될 수 있는 사산화삼망가니즈를 고순도로 제조할 수 있다.

Description

고순도 사산화삼망가니즈의 제조방법 및 그 제조방법에 의하여 제조된 고순도 사산화삼망가니즈
본 발명은 저순도 망간 함유 더스트로부터 고순도 사산화삼망가니즈를 제조하는 방법에 관한 것이다.
최근 전자기기, 휴대용 컴퓨터, 휴대전화 등의 확산과 더불어 이차전지에 대한 요구가 증가하고 있는 실정이다. 이러한 이차전지는 음극, 양극, 전해액 및 분리막으로 구성되는데, 상기 양극의 제조에 망간산화물이 많이 이용되고 있다. 이차전지의 수요 급증에 따라 이러한 이차전지 제조에 필요한 재료에 대한 수요 역시 급증하고 있는 실정이다.
산화망간은 이러한 이차전지의 전극재료로써 많이 사용되고 있는 화합물이다. 산화망간은 산화망가니즈라고도 하며, 망가니즈와 산소의 화합물로서 산화망가니즈(II)(MnO), 사산화삼망가니즈(Mn3O4), 산화망가니즈(III)(Mn2O3), 산화망가니즈(IV)(MnO2), 산화망가니즈(VII)(Mn2O7)를 포함하고, 이차전지의 정극재료로는 사산화삼망가니즈(Mn3O4), 산화망가니즈(III)(Mn2O3)가 사용될 수 있다. 그러나 최근 이차전지의 제조원가 절감을 위하여 산화망가니즈(III)(Mn2O3)를 대신하여 사산화삼망가니즈(Mn3O4)를 사용하는 추세이나, 현재 사산화삼망가니즈(Mn3O4)는 대부분 수입에 의존하고 있는 문제점이 있다.
종래 망간 함유 화합물의 회수방법에 대하여 한국등록공보 제10-1052192호에는 전기로 분진에 포함된 망간 함유 화합물의 회수방법에 대하여 개시하고 있다. 좀더 상세하게는, 상기 한국등록공보 제10-1052192호는 전기로 분진에 포함된 망간 함유 화합물을 회수함과 동시에 부수적으로 알칼리 금속 화합물과 망간 함유 화합물 제조시 사용되어지는 산과 염기의 종류에 따라 황산암모늄 등의 부산물도 함께 회수가 가능한 방법을 개시하고 있으나 상기 방법에 의하여 회수된 사산화삼망가니즈의 순도는 약 60% 수준에 머물르고 있어 상기 방법으로는 고순도 사산화삼망가니즈를 회수하기 어려운 문제점이 있다.
또한, 종래 한국공개공보 제2001-0113176호에는 질산망간 저온 열분해법에 의한 고순도 망간산화물의 제조방법에 대하여 개시하고 있다. 좀더 상세하게는, 상기 한국공개공보 제2001-0113176호는 망간물질의 환원배소공정, 질산침출공정, 불순물제거하는 1차 정제공정, 질산망간 부분분해공정, 상기 부분분해공정에서 생성된 이산화망간의 수세공정, 수세된 이산화망간을 망간산화물로 소성하는 소성공정 및 분쇄공정에 의하여 사산화삼망가니즈를 생성하는 방법을 개시하고 있다. 그러나 상기 방법에 따라 제조된 사산화삼망니즈의 생성의 순도는 71.3%에 그쳐 고순도 사산화삼망가니즈를 회수하기 어려운 문제점이 있다.
따라서, 본 발명의 목적은 저순도 망간 함유 더스트로부터 고순도 사산화삼망가니즈를 제조할 수 있는 새로운 방법을 제공하는 것이다.
상기 목적은, 본 발명에 따라, 고순도 사산화삼망가니즈의 제조방법에 있어서, 망간 함유 더스트에 황산(H2SO4) 및 환원제를 첨가하여 망간을 침출하는 단계와; 상기 침출단계에 의하여 획득한 망간침출액에 칼슘하이드록사이드(Ca(OH)2)를 첨가하여 제1불순물을 제거하는 단계와; 상기 제1불순물이 제거된 망간침출액에 황화물을 첨가하여 제2불순물을 제거하는 단계와; 상기 제2 불순물이 제거된 망간침출액에 수산화나트륨(NaOH)을 이용하여 pH조절을 수행하여 망간을 침전시키고 세척 및 건조를 수행하는 단계와; 상기 건조된 시료에 공기를 주입하여 산화조건에서 열처리를 수행하여 고순도 사산화삼망가니즈를 수득하는 단계를 포함하는 고순도 사산화삼망가니즈의 제조방법에 의하여 달성될 수 있다.
상기 망간침출단계에서, 상기 황산은 상기 망간의 몰 함량의 0.5 내지 3 배의 비율로 첨가될 수 있다.
상기 망간침출단계에서, 상기 환원제는 옥살레이트(C2O4 2-)기를 포함하는 시약 또는 아황산가스(SO2 gas)을 포함하고, 상기 환원제는 상기 망간의 몰 함량의 0.1 내지 2 배의 비율로 첨가될 수 있다.
상기 옥살레이트기를 포함하는 시약은, 옥살산(H2C2O4·2H2O) 또는 옥살산나트륨(Na2C2O4)를 포함할 수 있다.
상기 제1불순물 제거단계는, 상기 망간침출액에 포함된 철을 제거하는 단계를 포함하고, 상기 제1불순물 제거단계는, 칼륨 및 산화제를 더 첨가하는 단계를 더 포함할 수 있다.
상기 칼슘하이드록사이드(Ca(OH)2)는 상기 망간침출액의 pH 2 내지 3이 되도록 첨가될 수 있다.
상기 제1불순물 제거단계는, 상기 칼슘하이드록사이드를 첨가한 후 온도를 80 내지 120℃가 되도록 조절하는 단계를 더 포함할 수 있다.
상기 제1불순물 제거단계는, 상기 망간침출액의 pH 5 이상 되도록 상기 칼슘하이드록사이드를 더 첨가하는 단계를 더 포함할 수 있다.
상기 칼륨은 상기 철의 몰 함량의 0.5 내지 3 배의 비율로 첨가하고, 상기 산화제는 상기 철의 몰 함량의 0.5 내지 3 배의 비율로 첨가될 수 있다.
상기 칼륨은 황산칼륨(K2SO4)을 포함하고, 상기 산화제는 과산화수소(H2O2)를 포함할 수 있다.
상기 제2불순물 제거단계에서, 상기 황화물은, 황화나트륨(Na2S), 황화칼슘(CaS) 및 황화수소(H2S) 적어도 어느 하나를 포함하고, 상기 황화물은 상기 제2 불순물 전체 몰량의 10 내지 50배를 첨가할 수 있다.
상기 제2불순물 제거단계는, 수산화나트륨을 상기 망간침출액의 pH가 pH 5 내지 6이 되도록 첨가하는 단계와; 고액분리를 통하여 상기 황화물 형태의 잔여 불순물은 황화물 슬러리로서 폐기하고 상기 잔여 불순물이 제거된 망간침출액을 회수하는 단계를 더 포함할 수 있다.
상기 망간 침전단계는, 상기 제2불순물이 제거된 망간침출액 중에서 망간의 함량이 50 내지 100g/L의 함량이 되도록 물로 희석하는 단계를 더 포함하고, 상기 수산화나트륨(NaOH)은 상기 망간침출액의 pH가 pH 8 내지 9가 되도록 조절하여 망간을 침전시킬 수 있다.
상기 세척단계는, 상기 망간 침전 후 70 내지 100℃의 물을 이용하여 세척할 수 있다.
상기 수득 단계에서, 상기 열처리는 800 내지 1100℃의 열을 처리하는 것이고, 상기 열처리 수행 후 급냉하는 단계를 더 포함할 수 있다.
또한, 상기 목적은, 본 발명에 따라, 상기 제조방법으로 제조된 고순도 사산화삼망가니즈를 제공함으로써 달성될 수 있다.
이상 설명한 바와 같이, 본 발명에 따르면, 저순도 망간 함유 더스트로부터 순도 99.9%의 고순도 사산화삼망가니즈를 제조하는 방법 및 이로부터 제조된 고순도 사산화삼망니즈가 제공된다.
도 1은 본 발명의 일 실시예에 따른 고순도 사산화삼망가니즈의 제조방법 흐름도이고,
도 2는 본 발명의 다른 일 실시예에 따른 고순도 사산화삼망가니즈의 제조방법 흐름도이고,
도 3은 본 발명의 일 실시예에 따라, 열처리가 고순도 사산화삼망가니즈의 제조에 미치는 영향을 도시한 도면이고,
도 4는 본 발명의 일 실시예에 따라, 열처리 후 급냉처리가 고순도 사산화삼망가니즈의 제조에 미치는 영향을 도시한 도면이고,
도 5는 본 발명의 일 실시예에 따라 제조된 고순도 사산화삼망가니즈의 XRD 분석결과를 도시하고 있다.
이하, 첨부한 도면을 참고로 하여 본 발명의 실시예들에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예들에 한정되지 않는다.
도 1 및 도 2를 참조하여 본 발명의 일 실시예에 따른 고순도 사산화삼망가니즈의 제조방법에 대하여 상세히 설명한다. 도 1은 본 발명의 일 실시예에 따른 고순도 사산화삼망가니즈의 제조방법의 개략적인 흐름도이고, 도 2는 도 1의 고순도 사산화삼망가니즈 제조방법의 상세 흐름도이다.
도 1 및 도 2를 참조하면, 본 발명의 일 실시예에 따른 고순도 사산화삼망가니즈의 제조방법은 망간 함유 더스트에 황산 및 환원제를 첨가하여 망간을 침출하는 단계(S10)를 포함한다.
우선 망간 함유 더스트를 준비한다(S11). 상기 망간 함유 더스트에 포함된 저순도 망간 화합물은 MnO, MnCO3 Ore, Mn2O3, Mn3O4, MnO2등의 망간산화물 및 탄산망간 등을 포함할 수 있다. 상기 망간 함유 더스트에 포함된 망간화합물 중에서 망간의 함량은 약 60 내지 75% 정도로 포함되어 있으나, 다른 불순물과 함께 존재하므로 그 자체로는 상품으로서의 의의가 없다. 상기 망간 함유 더스트에는 철(Fe), 니켈(Ni), 납(Pb), 아연(Zn), 코발트(Co), 구리(Cu), 칼륨(K), 마그네슘(Mg), 칼슘(Ca), 나트륨(Na), 알루미늄(Al), 황(S), 인(P), 규소(Si) 등의 불순물을 포함하고 있다.
상기 준비된기 망간 함유 더스트에 황산 및 환원제를 첨가한다(S12).
상기 망간 함유 더스트에 첨가되는 황산(H2SO4)은 상기 망간 함유 더스트에 포함된 망간의 몰 함량의 0.5 내지 3 배의 비율로 첨가될 수 있고, 바람직하게는 상기 황산은 상기 망간의 몰 함량의 1 내지 2 배의 비율로, 더욱 바람직하게는 상기 망간의 몰 함량의 1 내지 1.5 배의 비율로 첨가될 수 있다.
상기 황산과 함께 첨가되는 환원제는 상기 망간 몰 함량의 0.1 내지 2 배의 비율로, 바람직하게는 상기 망간 몰 함량의 0.5 내지 1.5 배의 비율, 더욱 바람직하게는 상기 망간 몰 함량의 0.5 내지 1 배의 비율의 양으로 첨가될 수 있다.
상기 환원제는, 옥살레이트(C2O4 2-)기를 포함하는 시약 또는 아황산가스(SO2 gas)을 포함하고, 상기 옥살레이트기를 포함하는 시약은, 예를 들어, 옥살산(H2C2O4·2H2O) 또는 옥살산나트륨(Na2C2O4)를 포함할 수 있다. 상기 옥살레이트기를 포함하는 시약은 상기 기재의 양으로 물에 용해한 후에 첨가될 수 있고, 상기 아황산가스는 직접 첨가될 수 있다.
이에 따라, 상기 망간 함유 더스트에 황산 및 환원제를 상기 기재의 양으로 첨가되는 경우, 반응식은 하기와 같으며, 상기 황산 및 환원제에 의하여 상기 망간 함유 더스트에 포함된 망간은 황산망간의 형태로 침출할 수 있다.
[반응식 1] MnO + H2SO4 = MnSO4 + H2O
[반응식 2] Mn2O3 + H2SO4 = MnSO4 + MnO2 + H2O
[반응식 3] MnO2 + H2SO4 + H2C2O4 = MnSO4 + 2H2O + 2CO2
[반응식 4] Mn3O4 + 3H2SO4 + H2C2O4 = 3MnSO4 + 4H2O + 2CO2
또한 본 실시예에 따른 제조방법은 상기 S12 단계에서 획득한 망간침출액에 칼슘하이드록사이드(Ca(OH)2)를 첨가하여 제1불순물을 제거하는 단계(S20)를 포함한다.
상기 S12단계에서 망간 함유 더스트는 첨가된 황산 및 환원제에 의하여 망간은 황산망간의 형태로 침출된 망간침출액을 획득할 수 있다. 상기 망간침출액에는 불순물이 포함되어 있어 이를 제거하여야 한다. 본 단계에서의 불순물은 철을 포함한다.
상기 제1불순물을 제거하는 단계는, 상기 S12단계에서 획득한 망간침출액에 칼륨(K) 및 산화제를 첨가하는 단계를 더 포함할 수 있다(S21). 본 S21단계는, 상기 S12단계에서 획득한 망간침출액에 칼륨(K) 및 산화제를 첨가하여 제고하고자 하는 철을 산화시키고, 상기 철을 K-자로사이트(Jarosite, KFe3(SO4)2(OH)6) 형태로 침전시키기 위하여 요구되는 칼륨을 더 첨가하여, 이후에 칼슘하이드록사이드를 첨가하였을 경우 철이 K-자로사이트형태로 침전이 잘되도록 하기 위하여 준비하기 위함이다.
상기 칼륨(K)은 상기 망간침출액에 포함된 철의 몰 함량의 0.5 내지 3 배의 비율로 첨가될 수 있고, 바람직하게는 0.5 내지 2.5 배의 비율로, 더욱 바람직하게는 1 내지 2 배의 비율로 첨가될 수 있다. 상기 칼륨의 예로는 황산칼륨(K2SO4)를 포함할 수 있다.
상기 산화제는 상기 망간침출액에 포함된 철의 몰 함량의 0.5 내지 3비율로 첨가될 수 있고, 바람직하게는 0.5 내지 2 비율로, 더욱 바람직하게는 1 내지 1.5 비율로 첨가될 수 있다. 상기 산화제의 예로는 과산화수소(H2O2)를 포함할 수 있다.
상기 칼륨 및 산화제를 첨가한 후에, 상기 칼슘하이드록사이드(Ca(OH)2)를 첨가한다(S22). 상기 첨가되는 칼슘하이드록사이드(Ca(OH)2)는 고액농도 20% Ca(OH)2를 사용할 수 있고, 상기 철이 함유된 망간침출액의 pH가 pH2 내지 3이 되도록 첨가할 수 있다. 상기 칼슘하이드록사이드를 첨가한 후에 시료의 온도가 80 내지 120℃, 바람직하게는 온도 85 내지 110℃, 더욱 바람직하게는 온도 90 내지 100℃가 되도록 조절하여 2 시간 내지 4시간 동안, 바람직하게는 2.5시간 내지 3.5시간 동안, 더욱 바람직하게는 약 3시간 동안 반응시킨다. 상기 반응의 반응식은 하기와 같다.
[반응식 5]
3Fe2(SO4)3 + K2SO4 + 3Ca(OH)2 = 2KFe3(SO4)2(OH)6 + 3CaSO4 + 3SO4 2-
상기 망간침출액에 상기 칼륨 및 산화제를 첨가한 후, 칼슘하이드록사이드를 첨가하면 상기 망간침출액에 함유된 철은 K-자로사이트의 형태로 침전시킬 수 있다.
상기 S22단계에서는 칼슘하이드록사이드를 첨가하여 상기 기재의 pH로 조절한 후에 상기 기재의 온도로 올려야 한다. 상기 반응식 5의 반응을 위하여 온도를 먼저 올린 후 칼슘하이드록사이드를 첨가하게 되면 급속한 반응성에 의하여 K-자로사이트가 아닌 Fe(OH)3 또는 FeOOH 등의 수산화물 형태로 침전하게 되어 고액분리가 어려울 수 있기 때문이다.
본 발명의 일 실시예에 따르면, 상기 제1불순물 제거단계는, 칼슘하이드록사이드(Ca(OH)2)를 상기 망간침출액의 pH 5 이상 되도록 첨가하는 단계를 더 포함할 수 있다(S23). 이는 상기 망간침출액 중에서 철이 K-자로사이트형태로 침전되지 않은 잔여 철을 제거하기 위하여 고액농도 20% Ca(OH)2를 상기 망간침출액의 pH가 pH5이상이 되도록 첨가하거나, 바람직하게는 pH5 내지 6, 더욱 바람직하게는 pH5 내지 5.5가 되도록 첨가할 수 있다. 이렇게 조절된 pH에 의하여 잔여 철은 Fe(OH)3 또는 FeOOH의 형태로 제거될 수 있다. S23단계는 하기와 같은 반응식 6에 따라 반응이 일어나 망간침출액 중의 잔여 철이 제거될 수 있다.
[반응식 6]
Fe2(SO4)3 + 3Ca(OH)2 = 2Fe(OH)3 + 3CaSO4
상기 제1불순물 제거단계는, 상기 반응식 6에 의한 반응에 의하여 철이 제거되면 제1차 고액분리를 수행하는 단계를 더 포함할 수 있다(S24). 상기 제1차 고액분리를 통하여 철이 침전된 슬러리는 폐기하여 철이 제거된 망간침출액(또는 제1불순물이 제거된 망간침출액)을 회수할 수 있다.
그러나 상기 철이 제거된 망간침출액에는 니켈(Ni), 납(Pb), 아연(Zn), 코발트(Co), 구리(Cu) 등의 불순물을 더 포함하고 있다.
따라서, 본 실시예에 따른 제조방법은, 상기 제1불순물이 제거된 망간침출액에 황화물을 첨가하여 제2불순물을 제거하는 단계를 포함한다(S30). 상기 제1불순물이 제거된 망간침출액은 상기 철이 제거되고 니켈(Ni), 납(Pb), 아연(Zn), 코발트(Co), 구리(Cu) 등의 제2불순물을 포함하고 있으므로, 이러한 불순물을 황화물을 첨가하여 황화물의 형태로 침전하여 제거할 수 있다.
따라서, 상기 제1불순물이 제거된 망간침출액에 황화물을 첨가한다(S31). 상기 황화물은, 황화나트륨(Na2S), 황화칼슘(CaS) 및 황화수소(H2S) 적어도 어느 하나를 포함할 수 있으며, 상기 황화물은 상기 잔여 불순물 전체 몰량의 10 내지 50배의 비율로 첨가될 수 있으며, 바람직하게는 15 내지 45배의 비율로, 더욱 바람직하게는 30 내지 35배의 비율로 첨가될 수 있다. 상기 첨가되는 황화물의 pH는 pH7 내지 8, 바람직하게는 pH8로 조절된 것을 사용할 수 있다. 상기 철이 제거된 망간침출액(또는 제1불순물이 제거된 망간침출액)에 상기 황화물을 첨가하여 약 10 내지 100분, 바람직하게는 20분 내지 80분, 더욱 바람직하게는 30분 내지 60분 동안 반응시킬 수 있다. 상기 황화물을 첨가하여 반응시킨 후 수산화나트륨(NaOH)을 상기 침출액 pH가 pH5 내지 6이 되도록 첨가하여 약 10 내지 60분, 바람직하게는 10 내지 40분, 더욱 바람직하게는 20 내지 30분 동안 반응시키면, 상기 철 이외의 불순물인 니켈(Ni), 납(Pb), 아연(Zn), 코발트(Co) 또는 구리(Cu)은 황화물의 형태(NiS, PbS, ZnS, CoS, CuS)로 침전될 수 있다.
상기 제2차 불순물 제거단계는, 상기 황화물을 침전시킨 후 제2차 고액분리를 수행하는 단계를 더 포함할 수 있다(S32). 상기 제2차 고액분리를 통하여 불순물이 황화물 형태로 침전된 황화물 슬러리는 폐기하고, 상기 철 이외의 잔여 분순물이 제거된 망간침출액을 회수할 수 있다.
상기와 같이 제1 불순물인 철과 황화물 형태로 제거될 수 있는 제2불순물인 니켈, 납, 아연, 코발트, 구리 등이 제거된 망간침출액에는 마그네슘, 칼슘, 칼륨 등 기타 제1불순물 및 제2불순물 제거에 의하여 제거되지 않은 불순물과 망간이 함께 용해되어 있어 망간만을 선택적으로 침전시키는 것이 필요하다.
따라서, 본 발명의 제조방법은, 상기 제1불순물 및 제2불순물이 제거된 망간침출액에 수산화나트륨(NaOH)을 이용하여 pH조절을 수행하여 망간을 침전시키고 세척 및 건조를 수행하는 단계를 포함한다(S40).
상기 망간 침전 단계는, 상기 망간을 침전시키기 위하여, 상기 망간침출액 중에서 망간의 함량이 50 내지 100g/L의 함량이 되도록 물로 희석하는 단계를 더 포함하고, 상기 수산화나트륨(NaOH)은 상기 망간침출액의 pH가 pH 8 내지 9가 되도록 조절하여 망간을 침전시킬 수 있다(S41).
상기 S41단계 중 희석 단계는, 상기 망간침출액 중 망간의 함량이 50 내지 100g/L, 바람직하게는 55 내지 85g/L, 더욱 바람직하게는 60 내지 80g/L이 되도록 물을 첨가하여 희석할 수 있다. 또한 수산화나트륨은 30 내지 80℃, 바람직하게는 50 내지 70℃, 더욱 바람직하게는 55 내지 65℃의 온도 하에서 상기 희석된 망간침출액의 pH가 pH7 내지 9, 바람직하게는 pH 8 내지 9가 되도록 첨가하여 망간만을 선택적으로 침전시킬 수 있다. 본 단계에 의하여 침전되어 회수되는 망간의 형태는 (Mn(OH)2 - MnOOH)가 된다.
상기 세척단계는, 상기 침전된 망간을 회수하기 위하여, 제3차 고액분리를 수행하고, 회수된 망간(Mn(OH)2 - MnOOH)을 세척하는 단계를 포함한다(S42).
상기 침전된 (Mn(OH)2 - MnOOH)의 망간산화물은 70 내지 100℃의 물, 바람직하게는 80 내지 90℃의 물을 이용하여 적어도 1회 이상 세척하는 단계를 포함할 수 있다. 상기 세척단계는 바람직하게는 3회 정도 물을 이용하여 수행될 수 있다. 이를 통하여 망간 이외의 잔여 마그네슘, 칼슘, 칼륨, 나트륨 등의 불순물이 제거될 수 있다.
상기 건조단계는, 상기 침전된 (Mn(OH)2 - MnOOH)의 망간산화물을 건조한다(S43). 상기 건조를 위하여 건조기 특히 분무 건조기를 이용하여 분무건조 시킬 수 있으며, 이를 위하여 증류수를 이용하여 20 내지 30%의 고액농도로 조절하여 분무건조를 시켜 건조단계를 수행할 수 있다. 본 발명의 다른 일 실시예에 따르면 건조된 시료는 구 형상으로 제작할 수도 있다.
또한 본 발명의 제조방법은, 상기 S43단계에서 건조된 시료에 공기를 주입하여 고온산화조건 하에서 열처리를 수행하여 고순도 사산화삼망가니즈를 수득하는 단계를 포함한다(S50). 상기 S43단계에서 건조된 시료의 원활한 반응을 위하여 10 내지 40분, 바람직하게는 20 내지 30분 간격으로 섞어 800 내지 1100℃의 온도에서, 바람직하게는 900 내지 1000℃의 온도에서 30분 내지 180분, 바람직하게는 60분 내지 120분 동안 열처리를 수행할 수 있다(S51). 또는 로타리킬른 소각로를 이용하여 상기와 같은 조건 하에서 반응시켜 황, 수분, 잔존하는 미량의 불순물을 제거할 수 있다.
또한 상기 열처리 후 급냉하는 단계를 더 포함할 수 있다. 상기 열처리에 의하여 불순물이 제거된 망간은 Mn2O3로 환원되어 있으며, 이를 Mn3O4 망간화합물로 산화시키기 위하여 급속 냉각하는 단계를 더 수행할 수 있다. 상기 열처리를 수행한 후 빠른 시간 내에 실온으로 냉각시킬 수 있다. 이를 통하여 이차전지에 이용될 수 있는 고순도의 사산화삼망가니즈(Mn3O4)를 수득할 수 있다.
또한, 본 발명은 상기 기재한 고순도 사산화삼망가니즈의 제조방법에 의하여 제조된 고순도 사산화삼망가니즈를 제공할 수 있다.
이하, 본 발명을 실시예 및 실험예에 의하여 더욱 상세히 설명한다.
실시예 1. 고순도 사산화삼망가니즈의 제조
망간 함유 더스트 3Kg을 준비하였다. 상기 망간 함유 더스트의 성분은 하기 표 1에서 보는 바와 같다.
표 1
Compound Conc. (%)
Mn 72.8
K 0.27
Fe 2.82
Mg 0.15
Ca 0.22
Na 0.07
Zn 0.11
Pb 0.05
Si 0.19
P 0.03
Al 0.11
S 0.04
Co 0.00
Total 76.8
물 2.37L에 황산(H2SO4) 2.37L를 용해하고, 물 3.5L에 옥살산(H2C2O4·2H2O) 1.15k을 용해하여 이를 상기 망간 함유 더스트에 첨가하였다. 상기 황산 및 환원제의 첨가에 의하여 상기 망간 함유 더스트에 포함된 망간은 황산망간의 형태로 침출되었다.
상기 침출액 중 철을 K-자로사이트로 침전시키기 위하여 산화제로서 과산화수소(H2O2) 150mL와; 칼륨으로서 황산칼륨(K2SO4) 77g을 물 0.65L에 용해하여 첨가하였다. 여기에 고액농도 20% Ca(OH)2 2L를 첨가하여 pH를 pH2 내지 3이 되도록 조절하고, 95℃의 온도에서 3시간 동안 반응시켰다. 그 결과 철은 K-자로사이트로 침전되었다.
또한 상기 반응에도 불구하고 잔여하는 철을 제거하기 위하여 고액농도 20% Ca(OH)2 를 0.5L를 더 첨가하여 침출액의 pH를 pH 5.5이 되도록 조절하였다.
상기 철을 침전시킨 후, 제1차 고액분리를 통하여 슬러리는 폐기하고, 철이 제거된 망간침출액을 회수하였다.
상기 침출액 중 철을 제외한 불순물인 니켈, 납, 아연, 코발트 및 구리를 제거하기 위하여 상기 불순물의 몰량의 30 내지 35배의 황화물(Na2S, H2S)을 첨가하였다(또한 여기에 수산화나트륨을 첨가하여 상기 침출액의 pH를 pH5 내지 6으로 조절하고 20 내지 30분 동안 반응시켰다. 그 후 제2차 고액분리를 통하여 황화물 슬러리는 폐기하여 불순물이 제거된 망간침출액을 회수하였다.
상기 망간침출액 중 망간 함량이 60 내지 80g/L이 되도록 상기 망간침출액 5L에 물 3L를 첨가하여 상기 망간침출액을 희석하고, 여기에 60℃ 온도에서 수산화나트륨 10%를 8 내지 9L를 이용하여 상기 망간침출액의 pH가 pH8 내지 9가 되도록 조절하여 상기 망간이 (Mn(OH)2 - MnOOH)의 형태로 침전되도록 하였다.
제3차 고액분리를 통하여 상기 (Mn(OH)2 - MnOOH)의 형태로 침전된 망간산화물을 회수하여 이를 85℃의 물을 이용하여 3회 세척하여 나트륨 등 잔여 불순물을 제거하였다.
상기 세척된 망간산화물을 분무건조기(Spray Dryer)를 이용하여 증류수를 사용하여 20 내지 30%의 고액농도로 조절하여 분무건조를 수행하고, 상기 건조된 시료를 구 형상으로 제작하였다.
상기 구형상으로 제작된 시료는 불순물을 완전히 제거하기 위하여 1000℃의 온도에서 에서 열처리 또는 로스팅을 수행하여 황, 수분, 미량의 기타 잔존 불순물을 제거하고 다시 실온으로 급냉하여 고순도의 사산화삼망가니즈를 제조하였다. 이렇게 제조된 사산화삼망가니즈의 순도는 99.9%로 고순도이다.
실험예 1. 열처리 및 열처리 후 급냉단계가 사산화삼망가니즈의 제조에 미치는 영향
(1) 상기 실시예 1의 방법으로 제조된 사산화삼망가니즈의 DTA(Differential Thermal Analysis)를 수행하여, 열처리 단계가 사산화삼망가니즈에 어떤 영향을 미치는지 살펴보았다.
그 결과는 도 3에서 보는 바와 같다. 도 3의 검은색 실선 곡선에서 보는 바와 같이 800℃ 이상에서 황(S)성분이 승화하기 시작하여 황 성분이 제거되는 것을 확인할 수 있었다. 이를 통하여 열처리 단계를 통과하면서 상기 제1차 및 제2차 불순물 제거에도 불구하고 잔존할 수 있는 미량의 불순물을 제거하는 기능을 수행함을 확인할 수 있었다.
(2) 또한 상기 실시예 1에서는 1000℃에서 열처리를 수행한 후 급냉단계를 수행하였다. 상기 열처리 단계 후의 급냉 단계의 여부가 사산화삼망가니즈의 제조에 어떤 영향을 미치는지 확인하기 위하여 상기 실시예 1에 기재된 방법과 동일한 방법을 수행하여 사산화삼망가니즈를 제조하되, 단지 상기 1000℃ 열처리 단계 후 급냉을 수행하지 않고 서서히 시료를 식혔다.
그 결과, 도 4에서 보는 바와 같이, 1000℃ 열처리 단계 후 서서히 시료를 식혔때 700℃ 이상에서는 수득하고자 하는 Mn3O4가 생성되지 아니하고 Mn2O3로 생성됨을 확인할 수 있었다. 열처리 단계는 상기 제1차 및 제2차 불순물 제거에도 불구하고 잔존할 수 있는 미량의 불순물을 제거하는 기능을 수행하며 상기 열처리에 의하여 망간화합물은 Mn2O3로 환원되어 있다. 그러나 상기 열처리 단계를 수행한 후 시료를 천천히 식히는 경우에는 Mn2O3로 여전히 환원된 상태로 존재함을 확인할 수 있었다. 따라서, 1000℃ 열처리 단계 후에는 서서히 시료를 식히면 안되고, 급속 냉각을 통하여 빠른 시간 내에 열처리된 시료를 냉각시켜야 상기 환원 상태인 Mn2O3가 Mn3O4로 산화됨을 확인할 수 있었다.
실험예 2. 실시예 1의 사산화삼망가니즈의 분석실험
실험예 2-1. 실시예 1의 사산화삼망가니즈의 성분분석
상기 실시예 1에서 제조된 사산화삼망가니즈의 성분 분석을 수행하였다. 그 결과는 하기 표 2에서 보는 바와 같다.
표 2
Product No. Spec 실시예 1
H2O(%) ≤ 0.5 0.02
SO4 2-(%) ≤ 0.3 0.03
Na(%) ≤ 0.02 N.D
Fe(ppm) ≤ 30 N.D
Cu(ppm) ≤ 1 0.07
Ni(ppm) N.D N.D
Cr(ppm) N.D N.D
Zn(ppm) N.D N.D
Mg(ppm) ≤ 10 7.43
Pb(ppm) N.D N.D
K(%) ≤ 0.02 N.D
Ca(%) ≤ 0.02 N.D
BET(m2/g) ≥ 1 1.089
As(ppm) - 0.04
Co(ppm) - 0.013
Cd(ppm) - N.D
상기 표 1의 Spec 항목은 사산화삼망가니즈가 이차전지의 재료로써 사용되어지기 위하여 요구되는 표준스펙을 정의하고 있다. 상기 표 1 중에서 As, Co, Cd 성분의 경우 표준스펙에서는 정의하고 있지는 않으나, 추가로 성분분석을 수행하였다.
상기 표1에서 보는 바와 같이 실시예 1에서 제조된 사산화삼망가니즈는 상기 표준스펙을 정확히 따르고 있음을 확인할 수 있었다. 이에 따라, 본 발명의 제조방법에 의하여 제조된 사산화삼망가니즈는 이차전지의 전극재료로써 충분히 사용될 수 있음을 확인할 수 있었다.
실험예 2-2. 실시예 1의 고순도 사산화삼망가니즈의 XRD 분석
실시예 1에서 제조된 고순도 사산화삼망가니즈가 이차전지의 재료로써 사용될 수 있는지 확인하기 위하여, 이차전지에 사용되는 표준 Mn3O4를 대조군으로하여 XRD(X-Ray Diffraction) 분석을 수행하였다.
그 결과는 도 5에서 보는 바와 같다. 도 5에서 보는 바와 같이, 표준 Mn3O4와 실시예 1에서 제조된 사산화삼망가니즈의 피크 값의 비교 결과, 그 패턴이 거의 완벽하게 일치함을 확인할 수 있었다. 따라서, 본 발명의 제조방법에 의하여 제조된 고순도 사산화삼망가니즈는 이차전지의 재료로써 충분히 사용될 수 있음을 확인할 수 있었다.
비록 본 발명의 몇몇 실시예들이 도시되고 설명되었지만, 본 발명이 속하는 기술분야의 통상의 지식을 가진 당업자라면 본 발명의 원칙이나 정신에서 벗어나지 않으면서 본 실시예를 변형할 수 있음을 알 수 있을 것이다. 발명의 범위는 첨부된 청구항과 그 균등물에 의해 정해질 것이다.
본 발명은 이차전지의 재료 중 하나로써 사용되는 사산화삼망가니즈를 망간 함유 더스트로부터 고순도로 제조할 수 있는 고순도 사산화삼망가니즈의 제조방법에 대한 것으로서, 산업상 이용가능성이 있다.

Claims (16)

  1. 고순도 사산화삼망가니즈의 제조방법에 있어서,
    망간 함유 더스트에 황산(H2SO4) 및 환원제를 첨가하여 망간을 침출하는 단계와;
    상기 침출단계에 의하여 획득한 망간침출액에 칼슘하이드록사이드(Ca(OH)2)를 첨가하여 제1불순물을 제거하는 단계와;
    상기 제1불순물이 제거된 망간침출액에 황화물을 첨가하여 제2불순물을 제거하는 단계와;
    상기 제2 불순물이 제거된 망간침출액에 수산화나트륨(NaOH)을 이용하여 pH조절을 수행하여 망간을 침전시키고 세척 및 건조를 수행하여는 단계와;
    상기 건조된 시료에 공기를 주입하여 산화조건에서 열처리를 수행하여 고순도 사산화삼망가니즈를 수득하는 단계를 포함하는 고순도 사산화삼망가니즈(Mn3O4)의 제조방법.
  2. 제1항에 있어서,
    상기 망간침출단계에서,
    상기 황산은 상기 망간의 몰 함량의 0.5 내지 3 배의 비율로 첨가되는 것인 고순도 사산화삼망가니즈의 제조방법.
  3. 제2항에 있어서,
    상기 망간침출단계에서,
    상기 환원제는 옥살레이트(C2O4 2-)기를 포함하는 시약 또는 아황산가스(SO2 gas)을 포함하고,
    상기 환원제는 상기 망간의 몰 함량의 0.1 내지 2 배의 비율로 첨가되는 것인 고순도 사산화삼망가니즈의 제조방법.
  4. 제3항에 있어서,
    상기 옥살레이트를 포함하는 시약은, 옥살산(H2C2O4·2H2O) 또는 옥살산나트륨(Na2C2O4)를 포함하는 것인 고순도 사산화삼망가니즈의 제조방법.
  5. 제1항에 있어서,
    상기 제1불순물 제거단계는, 상기 망간침출액에 포함된 철을 제거하는 단계이고,
    상기 제1불순물 제거단계는, 칼륨 및 산화제를 더 첨가하는 단계를 더 포함하는 것인 고순도 사산화삼망가니즈의 제조방법.
  6. 제5항에 있어서,
    상기 칼슘하이드록사이드(Ca(OH)2)는 상기 망간침출액의 pH 2 내지 3이 되도록 첨가되는 것인 고순도 사산화삼망가니즈의 제조방법.
  7. 제6항에 있어서,
    상기 칼슘하이드록사이드를 첨가한 후 온도를 80 내지 120℃가 되도록 조절하는 단계를 더 포함하는 것인 고순도 사산화삼망가니즈의 제조방법.
  8. 제7항에 있어서,
    상기 망간침출액의 pH 5 이상 되도록 상기 칼슘하이드록사이드를 더 첨가하는 단계를 더 포함하는 것인 고순도 사산화삼망가니즈의 제조방법.
  9. 제5항에 있어서, 상기 칼륨은 상기 철의 몰 함량의 0.5 내지 3 배의 비율로 첨가하고, 상기 산화제는 상기 철의 몰 함량의 0.5 내지 3 배의 비율로 첨가되는 것인 고순도 사산화삼망가니즈의 제조방법.
  10. 제9항에 있어서,
    상기 칼륨은 황산칼륨(K2SO4)을 포함하고,
    상기 산화제는 과산화수소(H2O2)를 포함하는 것인 고순도 사산화삼망가니즈의 제조방법.
  11. 제1항에 있어서,
    상기 제2불순물 제거단계에서,
    상기 황화물은, 황화나트륨(Na2S), 황화칼슘(CaS) 및 황화수소(H2S) 적어도 어느 하나를 포함하고,
    상기 황화물은 상기 제2 불순물 전체 몰량의 10 내지 50배를 첨가하는 것인 고순도 사산화삼망가니즈의 제조방법.
  12. 제11항에 있어서,
    상기 제2불순물 제거단계는,
    수산화나트륨을 상기 망간침출액의 pH가 pH 5 내지 6이 되도록 첨가하는 단계와;
    고액분리를 통하여 상기 황화물 형태의 잔여 불순물은 황화물 슬러리로서 폐기하고 상기 잔여 불순물이 제거된 망간침출액을 회수하는 단계를 더 포함하는 것인 고순도 사산화삼망가니즈의 제조방법.
  13. 제1항에 있어서,
    상기 망간 침전단계는,
    상기 제2불순물이 제거된 망간침출액 중에서 망간의 함량이 50 내지 100g/L의 함량이 되도록 물로 희석하는 단계를 더 포함하고,
    상기 수산화나트륨(NaOH)은 상기 망간침출액의 pH가 pH 8 내지 9가 되도록 조절하여 망간을 침전시키는 것인 고순도 사산화삼망가니즈의 제조방법.
  14. 제1항에 있어서,
    상기 세척단계는,
    상기 망간 침전 후 70 내지 100℃의 물을 이용하여 세척하는 것인 고순도 사산화삼망가니즈의 제조방법.
  15. 제1항에 있어서,
    상기 수득 단계에서,
    상기 열처리는 800 내지 1100℃의 열을 처리하는 것이고,
    상기 열처리 수행 후 급냉하는 단계를 더 포함하는 것인 고순도 사산화삼망가니즈의 제조방법.
  16. 제1항 내지 제15항 중 어느 한 항의 제조방법으로 제조된 고순도 사산화삼망가니즈.
PCT/KR2013/003710 2012-04-30 2013-04-30 고순도 사산화삼망가니즈의 제조방법 및 그 제조방법에 의하여 제조된 고순도 사산화삼망가니즈 WO2013165148A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2013255161A AU2013255161B2 (en) 2012-04-30 2013-04-30 Method for producing high-purity trimanganese tetraoxide and high-purity trimanganese tetraoxide produced by the method
US14/398,108 US9663384B2 (en) 2012-04-30 2013-04-30 Method for producing high-purity trimanganese tetraoxide and high-purity trimanganese tetraoxide produced by the method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2012-0045432 2012-04-30
KR20120045432 2012-04-30
KR20120094216A KR101424075B1 (ko) 2012-04-30 2012-08-28 망간 화합물의 회수방법 및 그 회수방법에 의하여 회수된 고순도 망간 화합물
KR10-2012-0094216 2012-08-28

Publications (1)

Publication Number Publication Date
WO2013165148A1 true WO2013165148A1 (ko) 2013-11-07

Family

ID=49514506

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/003710 WO2013165148A1 (ko) 2012-04-30 2013-04-30 고순도 사산화삼망가니즈의 제조방법 및 그 제조방법에 의하여 제조된 고순도 사산화삼망가니즈

Country Status (4)

Country Link
US (1) US9663384B2 (ko)
KR (1) KR101424075B1 (ko)
AU (1) AU2013255161B2 (ko)
WO (1) WO2013165148A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105417585A (zh) * 2015-12-24 2016-03-23 湖南海利高新技术产业集团有限公司 重质四氧化三锰的制备方法
CN113603145A (zh) * 2021-08-11 2021-11-05 南方锰业集团有限责任公司 一种硫酸锰溶液制备微纳米四氧化三锰的方法
WO2024052760A1 (en) * 2022-09-06 2024-03-14 Manganese Metal Company (Pty) Ltd A process for producing manganese sulphate monohydrate

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TR201904203A2 (tr) * 2019-03-21 2020-10-21 Istanbul Medipol Ueniversitesi Çeli̇k sektöründe (ferro alaşim ve hurdadan çeli̇k üreti̇mi̇nde) kullanilan elektri̇k ark firininin baca gazindan çikan tozlarin enerji̇ depolama uygulamalarinda elektrot malzemesi̇ olarak değerlendi̇ri̇lmesi̇
CN111186862A (zh) * 2020-02-27 2020-05-22 广西锰华新能源科技发展有限公司 一种电池级高纯四氧化三锰的制备方法
CN114381619B (zh) * 2022-01-17 2023-01-24 中南大学 一种制备高纯四氧化三锰和高纯氧化镁的方法
CN115259230B (zh) * 2022-07-13 2023-04-18 重庆上甲电子股份有限公司 一种利用熔融酸浸从电解锰阳极泥生产软磁用四氧化三锰的除杂方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5626725A (en) * 1979-08-07 1981-03-14 Nippon Steel Corp Manufacture of manganese sulfate
JP2001256984A (ja) * 2000-03-10 2001-09-21 Tc:Kk 廃マンガン乾電池からのマンガン回収方法
KR100975317B1 (ko) * 2009-11-20 2010-08-12 한국지질자원연구원 망간 및 아연을 함유하는 폐전지로부터의 황산망간 및 황산아연 제조방법

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2451647A (en) * 1944-12-21 1948-10-19 Manganese Products Inc Process of treating intermediate manganese siliceous ores
KR101011260B1 (ko) * 2009-10-27 2011-01-26 주식회사 에코닉스 망간 및 아연을 함유하는 폐전지로부터의 cmd 제조방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5626725A (en) * 1979-08-07 1981-03-14 Nippon Steel Corp Manufacture of manganese sulfate
JP2001256984A (ja) * 2000-03-10 2001-09-21 Tc:Kk 廃マンガン乾電池からのマンガン回収方法
KR100975317B1 (ko) * 2009-11-20 2010-08-12 한국지질자원연구원 망간 및 아연을 함유하는 폐전지로부터의 황산망간 및 황산아연 제조방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF CRYSTAL GROWTH, vol. 279, 12 April 2005 (2005-04-12), pages 88 - 92 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105417585A (zh) * 2015-12-24 2016-03-23 湖南海利高新技术产业集团有限公司 重质四氧化三锰的制备方法
CN113603145A (zh) * 2021-08-11 2021-11-05 南方锰业集团有限责任公司 一种硫酸锰溶液制备微纳米四氧化三锰的方法
WO2024052760A1 (en) * 2022-09-06 2024-03-14 Manganese Metal Company (Pty) Ltd A process for producing manganese sulphate monohydrate

Also Published As

Publication number Publication date
US20150125366A1 (en) 2015-05-07
AU2013255161A1 (en) 2014-12-18
KR101424075B1 (ko) 2014-07-28
KR20130122499A (ko) 2013-11-07
US9663384B2 (en) 2017-05-30
AU2013255161B2 (en) 2016-02-04

Similar Documents

Publication Publication Date Title
WO2013165148A1 (ko) 고순도 사산화삼망가니즈의 제조방법 및 그 제조방법에 의하여 제조된 고순도 사산화삼망가니즈
WO2013165071A1 (ko) 고순도 황산망간일수화물의 제조방법 및 그 제조방법에 의하여 제조된 고순도 황산망간일수화물
WO2019198972A1 (ko) 리튬이온 2차전지의 폐 양극재를 이용한 수산화리튬 일수화물의 제조방법
WO2021153816A1 (ko) 리튬 추출 방법
WO2022055272A1 (ko) 양극재 회수 방법
WO2023191414A1 (ko) 블랙 매스로부터 이차전지 소재의 제조방법
KR101542747B1 (ko) 망간 함유물로부터 고순도 황산망간일수화물의 제조방법
KR102442036B1 (ko) 폐양극활물질로부터 망간화합물의 회수방법
WO2014168286A1 (ko) 리튬이차전지용 양극활물질 전구체의 제조방법, 리튬이차전지용 양극활물질의 제조방법, 양극활물질을 포함하는 양극 및 리튬이차전지
WO2021172688A1 (ko) 양극활물질 전구체 재료 및 리튬 이차전지용 양극활물질의 제조방법, 및 이에 따라 제조된 리튬 이차전지용 양극활물질
BR112021014149A2 (pt) Método para reciclar os resíduos contendo chumbo, material de óxido de chumbo, e, placa de bateria que compreende ou uma bateria de chumbo-ácido que incorpora uma placa de bateria
WO2023158008A1 (ko) 니켈, 코발트 및 망간의 분리 회수를 위한 2단 추출을 이용한 용매추출방법
WO2019151666A1 (ko) 철-함유 혼합 금속 염화물 수용액에서 산화철 및 알칼리토금속 염화물의 분리 제조 방법
WO2022045747A1 (ko) 리튬을 함유하는 원료에서 수산화리튬을 제조하는 방법
WO2021066362A1 (ko) 리튬 전구체의 회수 방법
WO2022154250A1 (ko) 슬래그로부터 칼슘 및 희토류 금속 회수 방법
WO2015080326A1 (ko) 구리 함유 휘수연광의 전처리 방법
WO2015009077A1 (ko) 저순도 망간 및 칼륨 함유물로부터 망간화합물 및 황산칼륨의 제조방법
KR101440789B1 (ko) 저순도 망간 함유물로부터 고순도 망간 화합물의 제조방법
WO2021172846A1 (ko) 리튬 이차 전지의 활성 금속 회수 방법
WO2020096293A1 (ko) 침상 또는 봉상 다공질 철분말 제조 방법 및 이에 의해 제조된 침상 또는 봉상의 다공질 철분말
WO2023128042A1 (ko) 황산니켈의 습식제련 회수방법
WO2014104562A1 (ko) 저순도 망간 및 칼륨 함유물로부터 망간화합물, 황산칼륨 및 비료 중 적어도 어느 하나의 제조방법
WO2024128555A1 (ko) 리튬광으로부터 리튬의 회수방법
WO2017105136A1 (ko) 자성 물질 및 이의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13784866

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14398108

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2013255161

Country of ref document: AU

Date of ref document: 20130430

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13784866

Country of ref document: EP

Kind code of ref document: A1