WO2021066362A1 - 리튬 전구체의 회수 방법 - Google Patents

리튬 전구체의 회수 방법 Download PDF

Info

Publication number
WO2021066362A1
WO2021066362A1 PCT/KR2020/012632 KR2020012632W WO2021066362A1 WO 2021066362 A1 WO2021066362 A1 WO 2021066362A1 KR 2020012632 W KR2020012632 W KR 2020012632W WO 2021066362 A1 WO2021066362 A1 WO 2021066362A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
mixture
active material
precursor
positive electrode
Prior art date
Application number
PCT/KR2020/012632
Other languages
English (en)
French (fr)
Inventor
홍석준
김지민
손성열
하동욱
Original Assignee
에스케이이노베이션 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이이노베이션 주식회사 filed Critical 에스케이이노베이션 주식회사
Priority to JP2022520241A priority Critical patent/JP2022551073A/ja
Priority to US17/765,216 priority patent/US20220352571A1/en
Priority to EP20870730.7A priority patent/EP4029830A4/en
Priority to CN202080069866.1A priority patent/CN114514199A/zh
Publication of WO2021066362A1 publication Critical patent/WO2021066362A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • C01D15/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • C01D15/08Carbonates; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/10Sulfates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/10Sulfates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/10Sulfates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/008Disposal or recycling of fuel cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Definitions

  • the present invention relates to a method for recovering a lithium precursor. More specifically, it relates to a method of recovering a lithium precursor from a positive electrode active material mixture.
  • the secondary battery is a battery that can be charged and discharged repeatedly, and has been widely applied to portable electronic communication devices such as camcorders, mobile phones, notebook PCs, etc. with the development of the information communication and display industries.
  • a lithium secondary battery for example, a lithium secondary battery, a nickel-cadmium battery, a nickel-hydrogen battery, and the like, and among them, a lithium secondary battery has a high operating voltage and energy density per unit weight, and is advantageous for charging speed and weight reduction It has been actively developed and applied in this regard.
  • the lithium secondary battery may include an electrode assembly including a positive electrode, a negative electrode, and a separator (separator), and an electrolyte impregnating the electrode assembly.
  • the rechargeable lithium battery may further include, for example, a pouch-shaped exterior material accommodating the electrode assembly and the electrolyte.
  • a lithium composite oxide may be used as a positive active material of the lithium secondary battery.
  • the lithium composite oxide may additionally contain a transition metal such as nickel, cobalt, and manganese.
  • the lithium composite oxide as the positive electrode active material may be prepared by reacting a lithium precursor and a nickel-cobalt-manganese (NCM) precursor containing nickel, cobalt, and manganese.
  • NCM nickel-cobalt-manganese
  • the positive electrode active material As the above-described expensive metals are used for the positive electrode active material, more than 20% of the manufacturing cost is required to manufacture the positive electrode material. In addition, as environmental protection issues have recently emerged, research on the recycling method of the positive electrode active material is in progress. In order to recycle the positive electrode active material, it is necessary to regenerate the lithium precursor from a waste positive electrode with high efficiency and high purity.
  • Korean Patent Application Publication No. 2015-0002963 discloses a method for recovering lithium using a wet method.
  • cobalt, nickel, etc. are extracted and lithium is recovered from the remaining waste liquid by wet extraction, the recovery rate is excessively reduced, and a large number of impurities may be generated from the waste liquid.
  • An object of the present invention is to provide a method for recovering a lithium precursor from a cathode active material mixture with high purity, high yield, and high efficiency.
  • a method for recovering a lithium precursor includes preparing a positive electrode active material mixture including a lithium composite oxide; Forming a pre-precursor mixture including lithium oxide by reacting the cathode active material mixture with a carbon-based solid material in an inert gas atmosphere; And washing the pre-precursor mixture with water to separate the lithium precursor.
  • the forming of the pre-precursor mixture may be performed at a temperature of 740°C or higher.
  • the step of forming the pre-precursor mixture may be performed at 840°C to 1,200°C.
  • 1/10 or less of lithium carbonate may be generated based on the weight of lithium oxide.
  • the carbon-based solid material may include at least one selected from the group consisting of carbon black, activated carbon, carbon fiber, carbon nanotubes, graphene, natural graphite, artificial graphite, hard carbon, and coke. I can.
  • the inert gas may include argon or nitrogen.
  • forming the preliminary precursor mixture may include dry mixing the cathode active material mixture and the carbon-based solid material.
  • the dry mixing may be performed through a fluidized bed reactor.
  • the cathode active material mixture and the carbon-based solid material may be reacted in a weight ratio of 4:1 to 9:1.
  • the water washing treatment may include converting at least a portion of the lithium oxide into lithium hydroxide.
  • the pre-precursor mixture further includes a transition metal-containing mixture, a lithium hydroxide aqueous solution is generated through the water washing treatment, and the transition metal-containing mixture may be precipitated.
  • the water washing treatment is performed in a carbon dioxide-free (CO 2 -free) atmosphere, a method of recovering a lithium precursor.
  • CO 2 -free carbon dioxide-free
  • the lithium composite oxide may be represented by Formula 1 below.
  • M is selected from the group consisting of Mn, Na, Mg, Ca, Ti, V, Cr, Cu, Zn, Ge, Sr, Ag, Ba, Zr, Nb, Mo, Al, Ga, and B, It may be 0 ⁇ x ⁇ 1.1, 2 ⁇ y ⁇ 2.02, 0.5 ⁇ a ⁇ 1, and 0 ⁇ b ⁇ 0.5.
  • the cathode active material mixture may be obtained from a waste lithium secondary battery.
  • preparing the positive electrode active material mixture may include separating a positive electrode including a positive electrode current collector, a positive electrode active material, a binder, and a conductive material from the waste lithium secondary battery; And removing the positive electrode current collector by pulverizing or treating the separated positive electrode with an organic solvent.
  • the inert gas atmosphere may not include an oxidizing gas and a reducing gas.
  • a high-purity lithium precursor may be obtained with high yield and high efficiency by reacting a cathode active material mixture with a carbon-based solid material in an inert gas atmosphere.
  • Lithium oxide is generated by the reaction between the positive electrode active material and the carbon-based solid material, and the lithium oxide may not be aggregated under the temperature conditions of the reaction. Therefore, it is possible to efficiently separate the lithium precursor without going through an additional grinding process.
  • FIG. 1 is a schematic flowchart illustrating a method of regenerating a lithium precursor according to exemplary embodiments.
  • XRD 2 is an X-ray diffraction (XRD) graph confirming formation of lithium oxide according to exemplary embodiments.
  • Exemplary embodiments of the present invention provide a method for recovering a lithium precursor in which a cathode active material mixture including a lithium composite oxide is reacted with a carbon-based solid material in an inert gas atmosphere and washed with water.
  • the lithium precursor can be recovered with high yield and high efficiency.
  • precursor as used herein is used to generically refer to a compound containing the specific metal to provide a specific metal included in the electrode active material.
  • FIG. 1 is a schematic flowchart illustrating a method of regenerating a lithium precursor according to exemplary embodiments.
  • a cathode active material mixture including a lithium composite oxide may be prepared (for example, step S10).
  • the cathode active material mixture may include a lithium-containing compound obtained or regenerated from an electric device or a chemical device.
  • the cathode active material mixture may further include various lithium-containing compounds such as lithium oxide, lithium carbonate, and lithium hydroxide as non-limiting examples.
  • the cathode active material mixture may be obtained from a waste lithium secondary battery.
  • the waste lithium secondary battery includes a lithium secondary battery that is not substantially reusable (charge and discharge), for example, a lithium secondary battery whose charge/discharge efficiency is greatly reduced due to the end of its life, or a lithium secondary battery destroyed by an impact or a chemical reaction. It may include a battery.
  • the waste lithium secondary battery may include an electrode assembly including a positive electrode, a negative electrode, and a separator interposed between the positive electrode and the negative electrode.
  • the positive and negative electrodes may include a positive electrode current collector and a positive electrode active material layer and a negative electrode active material layer coated on the positive electrode current collector, respectively.
  • the positive electrode active material included in the positive electrode active material layer may include an oxide containing lithium and a transition metal.
  • the positive active material may be an NCM-based lithium oxide containing nickel, cobalt, and manganese.
  • the NCM-based lithium oxide may be prepared by reacting a lithium precursor and an NCM precursor (eg, NCM oxide) with each other through, for example, a coprecipitation reaction.
  • embodiments of the present invention may be commonly applied to a cathode material containing lithium as well as a cathode material including the NCM-based lithium oxide.
  • a method of regenerating lithium oxide (Li 2 O) or lithium hydroxide (LiOH) as a lithium precursor with a high selectivity may be provided.
  • the positive electrode includes a positive electrode current collector (eg, aluminum (Al)) and a positive electrode active material layer, and the positive electrode active material layer may include a conductive material and a binder together with the above-described positive electrode active material. .
  • a positive electrode current collector eg, aluminum (Al)
  • the positive electrode active material layer may include a conductive material and a binder together with the above-described positive electrode active material.
  • the conductive material may include, for example, a carbon-based material such as graphite, carbon black, graphene, and carbon nanotubes.
  • the binder is, for example, vinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinylidenefluoride (PVDF), polyacrylonitrile, polymethyl methacrylate.
  • PVDF-co-HFP vinylidene fluoride-hexafluoropropylene copolymer
  • PVDF polyvinylidenefluoride
  • a resin material such as (polymethylmethacrylate) may be included.
  • the positive electrode active material mixture may be prepared from the recovered positive electrode.
  • the cathode active material mixture may be prepared in a powder form through a physical method such as a grinding treatment.
  • the cathode active material mixture includes a powder of a lithium-transition metal oxide, and may include, for example, an NCM-based lithium oxide powder (eg, Li(NCM)O 2 ).
  • the anode recovered before the pulverization treatment may be heat treated. Accordingly, desorption of the positive electrode current collector may be promoted during the pulverization treatment, and the binder and the conductive material may be at least partially removed.
  • the heat treatment temperature may be performed at, for example, about 100 to 500°C, preferably about 350 to 450°C.
  • the cathode active material mixture may be obtained after immersing the recovered cathode in an organic solvent.
  • the recovered positive electrode may be immersed in an organic solvent to separate and remove the positive electrode current collector, and the positive electrode active material may be selectively extracted through centrifugation.
  • a positive electrode current collector component such as aluminum is substantially completely separated and removed, and the positive active material mixture in which the content of carbon-based components derived from the conductive material and the binder is removed or reduced may be obtained.
  • the lithium composite oxide may include an oxide including lithium and a transition metal.
  • the transition metal may include, for example, nickel, cobalt, manganese, or the like.
  • the lithium composite oxide may be represented by Formula 1 below.
  • M is selected from the group consisting of Mn, Na, Mg, Ca, Ti, V, Cr, Cu, Zn, Ge, Sr, Ag, Ba, Zr, Nb, Mo, Al, Ga, and B, It may be 0 ⁇ x ⁇ 1.1, 2 ⁇ y ⁇ 2.02, 0.5 ⁇ a ⁇ 1, and 0 ⁇ b ⁇ 0.5.
  • a lithium composite oxide having an Ni content of 0.5 molar ratio or more may be effectively converted into lithium oxide.
  • the cathode active material mixture may be reacted with a carbon-based solid material in an inert gas atmosphere to form a pre-precursor mixture (for example, step S20).
  • the pre-precursor mixture may include lithium oxide.
  • the cathode active material mixture and the carbon-based solid material may react at a temperature of 740°C or higher.
  • the lithium composite oxide included in the cathode active material mixture may be converted to lithium oxide.
  • the reaction temperature is less than 740° C., lithium oxide may not be formed, and lithium carbonate may be formed.
  • the cathode active material mixture and the carbon-based solid material may be reacted at a temperature of 740°C or higher.
  • lithium carbonate generated by the reaction may be 1/10 or less based on the weight of lithium oxide. Therefore, the lithium recovery yield through the process can be increased.
  • the reaction may be carried out at a temperature of 840°C or higher.
  • lithium carbonate may not be substantially produced. In the present specification, “substantially not produced” may mean that it is formed in an amount of 1 part by weight or less based on 100 parts by weight of lithium oxide.
  • a reaction temperature between the cathode active material mixture and the carbon-based solid material may be 1,200°C or less.
  • the reaction temperature exceeds 1,200°C, the cathode active material mixture, the transition metal-containing mixture, and lithium oxide may react with each other to form a by-product. Accordingly, the purity and yield of the lithium precursor may decrease.
  • the carbon-based solid material may include a crystalline or amorphous carbon material.
  • it may include at least one selected from the group consisting of carbon black, activated carbon, carbon fiber, carbon nanotubes, graphene, natural graphite, artificial graphite, hard carbon, and coke.
  • carbon black or activated carbon can effectively react with the cathode active material mixture.
  • the carbon-based solid material is oxidized when reacted with the lithium composite oxide, and decomposition of the lithium composite oxide may be promoted.
  • the inert gas may include argon or nitrogen.
  • the inside of the reactor in which the cathode active material mixture and the carbon-based solid material react may be replaced with the inert gas. Therefore, the inside of the reactor may be formed in an inert gas atmosphere.
  • the substitution may include purging.
  • the inert gas atmosphere may not include an oxidizing gas or a reducing gas.
  • the inside of the reactor may include an atmosphere filled with only the inert gas. Accordingly, it is possible to suppress the formation of by-products, such as formation of lithium carbonate or the like by the reaction of a lithium component with carbon dioxide gas, which is a reducing gas, for example.
  • the oxidizing gas may include oxygen gas
  • the reducing gas may include hydrogen gas, carbon monoxide gas, carbon dioxide gas, and the like.
  • the cathode active material mixture and the carbon-based solid material may be dry mixed.
  • a liquid substance such as a solvent may not be added into the reactor.
  • the cathode active material mixture and the carbon-based solid material may be stirred inside the reactor.
  • the reactor may include a fluidized bed reactor.
  • the dry mixing can be carried out in a fluidized bed reactor.
  • the cathode active material mixture and the carbon-based solid material may be introduced into the fluidized bed reactor and reacted in the fluidized bed reactor.
  • the inert gas may be injected into the lower portion of the fluidized bed reactor to pass the inert gas through the bottom of the cathode active material mixture.
  • a cyclone is formed from the bottom of the fluidized bed reactor to effectively mix the cathode active material mixture and the carbon-based solid material.
  • the cathode active material mixture and the carbon-based solid material may be mixed in a weight ratio of 4:1 to 9:1.
  • the amount of the positive active material mixture is less than 4:1, the yield of lithium oxide may be lowered.
  • the amount of the positive active material mixture is greater than 9:1, conversion from the positive active material mixture to lithium oxide may be insufficient.
  • the cathode active material mixture and the carbon-based solid material may be mixed in a weight ratio of 5:1 to 9:1.
  • the pre-precursor mixture may further include a transition metal-containing mixture.
  • the transition metal-containing mixture may include a transition metal, a transition metal-containing oxide, and the like.
  • the transition metal may include nickel, cobalt, manganese, and the like.
  • the transition metal component of the transition metal-containing mixture may be derived from the lithium composite oxide.
  • the transition metal component in a reaction in which the lithium composite oxide is converted to lithium oxide, the transition metal component may be separated to form the transition metal-containing mixture.
  • the lithium composite oxide may be decomposed to form a mixture containing lithium oxide and the transition metal.
  • the pre-precursor mixture may be washed with water (for example, step S30).
  • the lithium oxide may be separated from the pre-precursor mixture by the water washing treatment to provide a lithium precursor.
  • lithium oxide in the water washing treatment, at least a portion of the lithium oxide may be dissolved in water to convert it into lithium hydroxide.
  • lithium hydroxide is water-soluble, and an aqueous solution of lithium hydroxide may be produced.
  • lithium oxide may be selectively separated from the pre-precursor mixture.
  • Components of the pre-precursor mixture other than lithium oxide may be precipitated in the bottom of the aqueous solution (bottom of the reactor).
  • the transition metal-containing mixture may precipitate.
  • the transition metal-containing mixture may be separated by filtration treatment, and a lithium precursor including high-purity lithium hydroxide may be obtained.
  • the lithium hydroxide aqueous solution may be separated, and water may be evaporated or crystallized through recrystallization or fractional crystallization to recover lithium hydroxide or a lithium precursor in the form of lithium oxide.
  • the precipitated-separated transition metal-containing mixture may be treated with an acid solution to form precursors in the form of acid salts of each transition metal.
  • sulfuric acid may be used as the acid solution.
  • NiSO 4 , MnSO 4 and CoSO 4 may be respectively recovered as the transition metal precursor.
  • the water washing treatment may be performed under conditions in which carbon dioxide (CO 2) is excluded.
  • CO 2 carbon dioxide
  • the water washing treatment is carried out at, it is possible to prevent the re-generation of lithium carbonate.
  • the water provided during the water washing treatment may be purged (eg, nitrogen purged) using a CO 2 deficient gas to create a CO 2 -free atmosphere.
  • lithium hydroxide when the lithium composite oxide is reduced with hydrogen, lithium hydroxide may be formed.
  • the melting point of the lithium hydroxide is 462°C, and the formed lithium hydroxide may be partially melted under the temperature condition (450 to 700°C) of the hydrogen reduction treatment. Accordingly, lithium hydroxide may aggregate with each other or with the transition metal-containing mixture during the cooling process after the hydrogen reduction treatment. In this case, in order to effectively separate the lithium hydroxide, it is necessary to pulverize the agglomerated lithium hydroxide.
  • the lithium component of the lithium composite oxide may be converted to lithium oxide.
  • the melting point of lithium oxide is about 1438°C, and the lithium composite oxide and the carbon-based solid material may react at a temperature lower than the melting point of the lithium oxide. Therefore, lithium oxide is not aggregated, and lithium oxide can be efficiently separated without an additional grinding process.
  • the current collector in the positive electrode was removed to prepare a positive electrode active material mixture.
  • a positive electrode active material layer having a composition of about LiNi 0.8 Co 0.1 Mn 0.1 O 2 , a Denka Black conductive material, and a PVDF binder in a weight ratio of 92:5:3 was formed.
  • the cathode active material mixture (25 g) and carbon black (5 g) having a particle diameter of about 0.5 ⁇ m were added into a reactor substituted with argon gas, and then reacted at a temperature of 500 to 900° C. for 60 minutes while stirring.
  • the results of XRD analysis (X-Ray Diffraction Spectroscopy) of the samples reacted at each temperature are shown in FIG. 2. Referring to FIG. 2, lithium oxide began to appear at 740°C.
  • the current collector in the positive electrode was removed to prepare a positive electrode active material mixture.
  • a positive electrode active material having a composition of about LiNi 0.6 Co 0.2 Mn 0.2 O 2 , a Denka Black conductive material, and a PVDF binder were formed in a weight ratio of 92:5:3.
  • the cathode active material mixture (25 g) and carbon black (3 g) having a particle diameter of about 0.5 ⁇ m were added, and the mixture was heated to 600° C. and 900° C. while stirring.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

본 발명의 실시예들에 따른 리튬 전구체의 회수 방법은 리튬 복합 산화물을 포함하는 양극 활물질 혼합물을 준비한다. 양극 활물질 혼합물을 불활성 기체 분위기에서 탄소계 고체 물질과 반응시켜 리튬 산화물을 포함하는 예비 전구체 혼합물을 형성한다. 예비 전구체 혼합물을 수세 처리하여 리튬 전구체를 분리한다. 고수율 및 고효율로 리튬 전구체를 회수할 수 있다.

Description

리튬 전구체의 회수 방법
본 발명은 리튬 전구체의 회수 방법에 관한 것이다. 보다 상세하게는, 양극 활물질 혼합물로부터 리튬 전구체를 회수하는 방법에 관한 것이다.
이차 전지는 충전 및 방전이 반복 가능한 전지로서, 정보 통신 및 디스플레이 산업의 발전에 따라 캠코더, 휴대폰, 노트북 PC 등과 같은 휴대용 전자통신 기기에 널리 적용되어 왔다. 이차 전지로서 예를 들면, 리튬 이차 전지, 니켈-카드뮴 전지, 니켈-수소 전지 등을 들 수 있으며, 이들 중 리튬 이차 전지가 작동 전압 및 단위 중량당 에너지 밀도가 높으며, 충전 속도 및 경량화에 유리하다는 점에서 활발히 개발 및 적용되어 왔다.
리튬 이차 전지는 양극, 음극 및 분리막(세퍼레이터)을 포함하는 전극 조립체, 및 상기 전극 조립체를 함침시키는 전해질을 포함할 수 있다. 상기 리튬 이차 전지는 상기 전극 조립체 및 전해질을 수용하는 예를 들면, 파우치 형태의 외장재를 더 포함할 수 있다.
상기 리튬 이차 전지의 양극 활물질로서 리튬 복합 산화물이 사용될 수 있다. 상기 리튬 복합 산화물은 추가적으로 니켈, 코발트, 망간과 같은 전이금속을 함께 함유할 수 있다.
상기 양극 활물질로서 리튬 복합 산화물은 리튬 전구체 및 니켈, 코발트 및 망간을 함유하는 니켈-코발트-망간(NCM) 전구체를 반응시켜 제조될 수 있다.
상기 양극 활물질에 상술한 고비용의 유가 금속들이 사용됨에 따라, 양극재 제조에 제조 비용의 20% 이상이 소요되고 있다. 또한, 최근 환경보호 이슈가 부각됨에 따라, 양극 활물질의 리싸이클 방법에 대한 연구가 진행되고 있다. 상기 양극 활물질 리싸이클을 위해서는 폐 양극으로부터 상기 리튬 전구체를 고효율, 고순도로 재생할 필요가 있다.
예를 들면, 한국공개특허공보 제2015-0002963호에는 습식 방법을 활용한 리튬의 회수 방법을 개시하고 있다. 그러나, 코발트, 니켈 등을 추출하고 남은 폐액으로부터 습식 추출에 의해 리튬을 회수하므로 회수율이 지나치게 저감되며, 폐액으로부터 불순물이 다수 발생할 수 있다.
본 발명의 일 과제는 양극 활물질 혼합물로부터 고순도, 고수율 및 고효율로 리튬 전구체를 회수하는 방법을 제공하는 것이다.
본 발명의 예시적인 실시예들에 따른 리튬 전구체의 회수 방법은 리튬 복합 산화물을 포함하는 양극 활물질 혼합물을 준비하는 단계; 상기 양극 활물질 혼합물을 불활성 기체 분위기에서 탄소계 고체 물질과 반응시켜 리튬 산화물을 포함하는 예비 전구체 혼합물을 형성하는 단계; 및 상기 예비 전구체 혼합물을 수세 처리하여 리튬 전구체를 분리하는 단계를 포함한다.
예시적인 실시예들에 있어서, 상기 예비 전구체 혼합물을 형성하는 단계는 740℃ 이상의 온도에서 수행될 수 있다.
예시적인 실시예들에 있어서, 상기 예비 전구체 혼합물을 형성하는 단계는 840℃ 내지 1,200℃에서 수행될 수 있다.
예시적인 실시예들에 있어서, 상기 예비 전구체 혼합물을 형성하는 단계에서 리튬 산화물의 중량 대비 1/10 이하의 탄산 리튬이 생성될 수 있다.
예시적인 실시예들에 있어서, 상기 탄소계 고체 물질은 카본 블랙, 활성화 탄소, 탄소 섬유, 탄소 나노 튜브, 그래핀, 천연 흑연, 인조 흑연, 하드 카본 및 코크스로 구성된 군에서 선택된 적어도 하나를 포함할 수 있다.
예시적인 실시예들에 있어서, 상기 불활성 기체는 아르곤 또는 질소를 포함할 수 있다.
예시적인 실시예들에 있어서, 상기 예비 전구체 혼합물을 형성하는 단계는 상기 양극 활물질 혼합물과 상기 탄소계 고체 물질을 건식 혼합하는 것을 포함할 수 있다.
예시적인 실시예들에 있어서, 상기 건식 혼합은 유동층 반응기를 통해 수행될 수 있다.
예시적인 실시예들에 있어서, 상기 예비 전구체 혼합물을 형성하는 단계는 상기 양극 활물질 혼합물과 상기 탄소계 고체 물질을 4:1 내지 9:1 중량비로 반응시킬 수 있다.
예시적인 실시예들에 있어서, 상기 수세 처리는 상기 리튬 산화물의 적어도 일부를 리튬 수산화물로 전환시키는 것을 포함할 수 있다.
예시적인 실시예들에 있어서, 상기 예비 전구체 혼합물은 전이금속 함유 혼합물을 더 포함하며, 상기 수세 처리를 통해 리튬 수산화물 수용액이 생성되고, 상기 전이금속 함유 혼합물은 침전될 수 있다.
예시적인 실시예들에 있어서, 상기 수세 처리는 이산화탄소-프리(CO 2-free) 분위기에서 수행되는, 리튬 전구체의 회수 방법.
예시적인 실시예들에 있어서, 상기 리튬 복합 산화물은 하기 화학식 1로 표시될 수 있다.
[화학식 1]
Li xNi aCo bM (1-a-b)O y
화학식 1중, M은 Mn, Na, Mg, Ca, Ti, V, Cr, Cu, Zn, Ge, Sr, Ag, Ba, Zr, Nb, Mo, Al, Ga 및 B로 이루어진 군에서 선택되고, 0<x≤1.1, 2≤y≤2.02, 0.5≤a≤1, 0≤b≤0.5일 수 있다.
예시적인 실시예들에 있어서, 상기 양극 활물질 혼합물은 폐 리튬 이차 전지로부터 수득될 수 있다.
예시적인 실시예들에 있어서, 상기 양극 활물질 혼합물을 준비하는 단계는, 상기 폐 리튬 이차 전지로부터 양극 집전체, 양극 활물질, 결합제 및 도전재를 포함하는 양극을 분리하는 단계; 및 분리된 상기 양극을 분쇄 또는 유기 용매 처리하여 상기 양극 집전체를 제거하는 단계를 포함할 수 있다.
예시적인 실시예들에 있어서, 상기 불활성 기체 분위기는 산화성 기체 및 환원성 기체를 포함하지 않을 수 있다.
본 발명의 예시적인 실시예들에 따르면, 양극 활물질 혼합물을 불활성 기체 분위기에서 탄소계 고체 물질과 반응시켜 고순도의 리튬 전구체를 고수율 및 고효율로 획득할 수 있다.
양극 활물질과 탄소계 고체 물질의 반응에 의해 리튬 산화물이 생성되며, 리튬 산화물은 상기 반응의 온도 조건에서 응집되지 않을 수 있다. 따라서, 추가적인 분쇄 공정을 거치지 않고 리튬 전구체를 효율적으로 분리할 수 있다.
도 1은 예시적인 실시예들에 따른 리튬 전구체 재생 방법을 설명하기 위한 개략적인 흐름도이다.
도 2은 예시적인 실시예들에 따른 리튬 산화물의 형성을 확인하는 X선 회절(XRD) 그래프이다.
본 발명의 예시적인 실시예들은 리튬 복합 산화물을 포함하는 양극 활물질 혼합물을 불활성 기체 분위기에서 탄소계 고체 물질과 반응시키고 수세 처리하는 리튬 전구체의 회수 방법을 제공한다. 고수율 및 고효율로 리튬 전구체를 회수할 수 있다.
이하에서는, 첨부된 도면을 참조로 본 발명의 실시예들에 대해 상세히 설명하기로 한다. 그러나 이는 예시적인 것에 불과하며 본 발명이 예시적으로 설명된 구체적인 실시 형태로 제한되는 것은 아니다.
본 명세서에 사용되는 용어 "전구체"는 전극 활물질에 포함되는 특정 금속을 제공하기 위해 상기 특정 금속을 포함하는 화합물을 포괄적으로 지칭하는 것으로 사용된다.
도 1은 예시적인 실시예들에 따른 리튬 전구체 재생 방법을 설명하기 위한 개략적인 흐름도이다.
도 1을 참조하면, 리튬 복합 산화물을 포함하는 양극 활물질 혼합물을 준비할 수 있다(예를 들면, S10 단계). 상기 양극 활물질 혼합물은 전기 소자, 화학 소자로부터 수득 또는 재생되는 리튬 함유 화합물을 포함할 수 있다. 상기 양극 활물질 혼합물은 비제한적인 예로서 리튬 산화물, 탄산 리튬, 리튬 수산화물 등 다양한 리튬 함유 화합물을 더 포함할 수 있다.
예시적인 실시예들에 따르면, 상기 양극 활물질 혼합물은 폐 리튬 이차 전지로부터 수득될 수 있다. 상기 폐 리튬 이차 전지는 실질적으로 재사용(충방전)이 불가능한 리튬 이차 전지를 포함하며, 예를 들면, 수명이 다하여 충방전 효율이 크게 저하된 리튬 이차 전지 또는 충격이나 화학 반응에 의해 파괴된 리튬 이차 전지를 포함할 수 있다.
상기 폐 리튬 이차 전지는 양극, 음극 및 상기 양극 및 음극 사이에 개재된 분리막을 포함하는 전극 조립체를 포함할 수 있다. 상기 양극 및 음극은 각각 양극 집전체 및 음극 집전체 상에 코팅된 양극 활물질층 및 음극 활물질층을 포함할 수 있다.
예를 들면, 상기 양극 활물질층에 포함된 양극 활물질은 리튬 및 전이금속을 함유하는 산화물을 포함할 수 있다.
일부 실시예들에 있어서, 상기 양극 활물질은 니켈, 코발트 및 망간을 포함하는 NCM계 리튬 산화물일 수 있다. 상기 양극 활물질로서 NCM계 리튬 산화물은 리튬 전구체 및 NCM 전구체(예를 들면, NCM 산화물)을 예를 들면 공침 반응을 통해 서로 반응시켜 제조될 수 있다.
그러나, 본 발명의 실시예들은 상기 NCM계 리튬 산화물을 포함하는 양극재뿐만 아니라, 리튬 함유 양극재에 공통적으로 적용될 수 있다.
이에 따라, 본 발명의 실시예들에 따르면 리튬 전구체로서 리튬 산화물(Li 2O) 또는 리튬 수산화물(LiOH)을 고 선택비로 재생하는 방법이 제공될 수 있다.
예를 들면, 상기 폐 리튬 이차 전지로부터 상기 양극을 분리하여 폐 양극을 회수할 수 있다. 상기 양극은 상술한 바와 같이 양극 집전체(예를 들면, 알루미늄(Al)) 및 양극 활물질층을 포함하며, 상기 양극 활물질층은 상술한 양극 활물질과 함께, 도전재 및 결합제를 함께 포함할 수 있다.
상기 도전재는 예를 들면, 흑연, 카본 블랙, 그래핀, 탄소 나노 튜브 등과 같은 탄소계열 물질을 포함할 수 있다. 상기 결합제는 예를 들면, 비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐리덴플루오라이드(polyvinylidenefluoride, PVDF), 폴리아크릴로니트릴(polyacrylonitrile), 폴리메틸메타크릴레이트(polymethylmethacrylate) 등의 수지 물질을 포함할 수 있다.
회수된 상기 양극으로부터 상기 양극 활물질 혼합물을 준비할 수 있다. 일부 실시예들에 있어서, 상기 양극 활물질 혼합물은 분쇄 처리와 같은 물리적 방법을 통해 분말 형태로 제조될 수 있다. 상기 양극 활물질 혼합물은 상술한 바와 같이 리튬-전이금속 산화물의 분말을 포함하며, 예를 들면 NCM계 리튬 산화물 분말(예를 들면, Li(NCM)O 2)을 포함할 수 있다.
일부 실시예들에 있어서, 상기 분쇄 처리 전에 회수된 상기 양극을 열처리할 수도 있다. 이에 따라, 상기 분쇄 처리 시 양극 집전체의 탈착을 촉진할 수 있으며, 상기 결합제 및 도전재가 적어도 부분적으로 제거될 수 있다. 상기 열처리 온도는 예를 들면, 약 100 내지 500℃, 바람직하게는 약 350 내지 450℃에서 수행될 수 있다.
일부 실시예들에 있어서, 상기 양극 활물질 혼합물은 회수된 상기 양극을 유기 용매에 침지시킨 후 수득될 수 있다. 예를 들면, 회수된 상기 양극을 유기 용매에 침지시켜 상기 양극 집전체를 분리 제거하고, 원심 분리를 통해 상기 양극 활물질을 선택적으로 추출할 수 있다.
상술한 공정들을 통해 실질적으로 알루미늄과 같은 양극 집전체 성분이 실질적으로 완전히 분리 제거되고, 상기 도전재 및 결합제로부터 유래된 탄소계 성분들의 함량이 제거 또는 감소된 상기 양극 활물질 혼합물을 획득할 수 있다.
예를 들면, 상기 리튬 복합 산화물은 리튬과 전이 금속을 포함하는 산화물을 포함할 수 있다. 상기 전이 금속은 예를 들면, 니켈, 코발트, 망간 등을 포함할 수 있다.
일부 실시예들에 있어서, 상기 리튬 복합 산화물은 하기 화학식 1로 표시될 수 있다.
[화학식 1]
Li xNi aCo bM (1-a-b)O y
화학식 1중, M은 Mn, Na, Mg, Ca, Ti, V, Cr, Cu, Zn, Ge, Sr, Ag, Ba, Zr, Nb, Mo, Al, Ga 및 B로 이루어진 군에서 선택되고, 0<x≤1.1, 2≤y≤2.02, 0.5≤a≤1, 0≤b≤0.5일 수 있다.
예시적인 실시예들에 따르면, Ni 함량이 0.5 몰비 이상인 리튬 복합 산화물을 리튬 산화물로 효과적으로 전환할 수 있다.
상기 양극 활물질 혼합물을 불활성 기체 분위기에서 탄소계 고체 물질과 반응시켜 예비 전구체 혼합물을 형성할 수 있다(예를 들면, S20 단계). 상기 예비 전구체 혼합물은 리튬 산화물을 포함할 수 잇다.
상기 양극 활물질 혼합물과 상기 탄소계 고체 물질은 740℃ 이상의 온도에서 반응할 수 있다. 상기 온도 범위에서 상기 양극 활물질 혼합물에 포함된 상기 리튬 복합 산화물이 리튬 산화물로 전환될 수 있다. 예를 들면, 반응 온도가 740℃ 미만일 경우, 리튬 산화물이 형성되지 않고, 탄산 리튬이 형성될 수 있다.
예시적인 실시예들에 있어서, 상기 양극 활물질 혼합물과 상기 탄소계 고체 물질을 740℃ 이상의 온도에서 반응시킬 수 있다. 이 경우, 상기 반응에 의해 생성되는 탄산 리튬이 리튬 산화물의 중량에 대하여 1/10 이하일 수 있다. 따라서, 공정을 통한 리튬 회수 수율이 증가할 수 있다. 바람직하게는, 상기 반응은 840℃ 이상의 온도에서 수행될 수 있다. 이 경우, 탄산 리튬이 실질적으로 생성되지 않을 수 있다. 본 명세서에서 "실질적으로 생성되지 않는다"는 것은 리튬 산화물 100 중량부에 대하여 1중량부 이하로 형성되는 것을 의미할 수 있다.
일부 실시예들에 있어서, 상기 양극 활물질 혼합물과 상기 탄소계 고체 물질의 반응 온도는 1,200℃ 이하일 수 있다. 상기 반응 온도가 1,200℃ 초과일 경우, 상기 양극 활물질 혼합물, 전이금속 함유 혼합물, 리튬 산화물 등이 서로 반응하여 부생성물이 형성될 수 있다. 따라서, 리튬 전구체의 순도 및 수율이 감소할 수 있다.
예시적인 실시예들에 있어서, 상기 탄소계 고체 물질은 결정질 또는 비정질 탄소 물질을 포함할 수 있다. 예를 들면, 카본 블랙, 활성화 탄소, 탄소 섬유, 탄소 나노 튜브, 그래핀, 천연 흑연, 인조 흑연, 하드 카본 및 코크스로 구성된 군에서 선택된 적어도 하나를 포함할 수 있다. 바람직하게는, 카본 블랙 또는 활성화 탄소가 상기 양극 활물질 혼합물과 효과적으로 반응할 수 있다. 상기 탄소계 고체 물질은 상기 리튬 복합 산화물과 반응 시 산화되고, 상기 리튬 복합 산화물의 분해를 촉진할 수 있다.
예시적인 실시예들에 있어서, 상기 불활성 기체는 아르곤 또는 질소를 포함할 수 있다. 예를 들면, 상기 양극 활물질 혼합물과 상기 탄소계 고체 물질이 반응하는 반응기의 내부는 상기 불활성 기체로 치환될 수 있다. 따라서, 상기 반응기의 내부가 불활성 기체 분위기로 형성될 수 있다. 예를 들면, 상기 치환은 퍼징(purging)을 포함할 수 있다.
일부 실시예들에 있어서, 상기 불활성 기체 분위기는 산화성 기체 또는 환원성 기체를 포함하지 않을 수 있다. 예를 들면, 반응기의 내부가 상기 불활성 기체로만 채워진 분위기를 포함할 수 있다. 따라서, 예를 들면 환원성 기체인 이산화탄소 기체와 리튬 성분의 반응에 의해 탄산 리튬 등이 형성되는 것과 같이 부생성물이 형성되는 것을 억제할 수 있다.
예를 들면, 상기 산화성 기체는, 산소 가스를 포함할 수 있으며, 상기 환원성 기체는 수소 가스, 일산화탄소 가스, 이산화탄소 가스 등을 포함할 수 있다.
예시적인 실시예들에 있어서, 상기 양극 활물질 혼합물과 상기 탄소계 고체 물질은 건식 혼합될 수 있다. 예를 들면, 상기 반응기 내부로 용매 등의 액상 물질이 첨가되지 않을 수 있다. 상기 반응기 내부에서 상기 양극 활물질 혼합물과 상기 탄소계 고체 물질이 교반될 수 있다.
예시적인 실시예들에 있어서, 상기 반응기는 유동층 반응기를 포함할 수 있다. 예를 들면, 상기 건식 혼합은 유동층 반응기 내에서 수행될 수 있다. 상기 양극 활물질 혼합물 및 상기 탄소계 고체 물질을 상기 유동층 반응기 내에 투입하고 상기 유동층 반응기 내부에서 반응시킬 수 있다.
예를 들면, 상기 유동층 반응기 하부로 상기 불활성 기체를 주입하여 상기 양극 활물질 혼합물의 저부로부터 상기 불활성 기체를 통과시킬 수 있다. 이 경우, 상기 유동층 반응기 하부에서부터 사이클론이 형성되어 상기 양극 활물질 혼합물과 상기 탄소계 고체 물질을 효과적으로 혼합할 수 있다.
예시적인 실시예들에 있어서, 상기 양극 활물질 혼합물과 상기 탄소계 고체 물질은 4:1 내지 9:1 중량비로 혼합될 수 있다. 상기 양극 활물질 혼합물의 사용량이 4:1 미만일 경우, 리튬 산화물의 수득률이 낮아질 수 있다. 상기 양극 활물질 혼합물의 사용량이 9:1 초과일 경우, 상기 양극 활물질 혼합물로부터 리튬 산화물로의 전환이 불충분하게 일어날 수 있다. 바람직하게는, 상기 양극 활물질 혼합물과 상기 탄소계 고체 물질은 5:1 내지 9:1 중량비로 혼합될 수 있다.
예시적인 실시예들에 있어서, 상기 예비 전구체 혼합물은 전이금속 함유 혼합물을 더 포함할 수 있다. 상기 전이금속 함유 혼합물은 전이금속, 전이금속 함유 산화물 등을 포함할 수 있다. 상기 전이금속은 니켈, 코발트, 망간 등을 포함할 수 있다.
상기 전이금속 함유 혼합물의 전이금속 성분은 상기 리튬 복합 산화물로부터 유래될 수 있다. 예를 들면, 상기 리튬 복합 산화물이 리튬 산화물로 전환되는 반응에서 상기 전이금속 성분이 분리되어 상기 전이금속 함유 혼합물을 형성할 수 있다. 이 경우, 상기 리튬 복합 산화물이 분해되어 리튬 산화물 및 상기 전이금속 함유 혼합물을 형성할 수 있다.
상기 예비 전구체 혼합물을 수세 처리할 수 있다(예를 들면, S30 단계). 상기 수세 처리에 의해 상기 예비 전구체 혼합물 중 상기 리튬 산화물이 분리되어 리튬 전구체로 제공될 수 있다.
예시적인 실시예들에 있어서, 상기 수세 처리는 상기 리튬 산화물의 적어도 일부를 물에 용해시켜 리튬 수산화물로 전환시킬 수 있다. 예를 들면, 리튬 수산화물은 수용성으로서 리튬 수산화물 수용액이 생성될 수 있다.
이 경우, 상기 예비 전구체 혼합물로부터 리튬 산화물이 선택적으로 분리될 수 있다. 상기 예비 전구체 혼합물 중 리튬 산화물을 제외한 성분은 상기 수용액 저부(상기 반응기 저부)에 침전될 수 있다. 예를 들면, 상기 전이금속 함유 혼합물이 침전될 수 있다.
여과 처리에 의해 상기 전이금속 함유 혼합물을 분리해 내고 고순도의 리튬 수산화물을 포함하는 리튬 전구체를 획득할 수 있다.
예를 들면, 상기 리튬 수산화물 수용액을 분리하고, 물을 증발시키거나 재결정, 분별결정 등을 통해 결정화하여 리튬 수산화물 또는 리튬 산화물 형태의 리튬 전구체를 회수할 수 있다.
일부 실시예들에 있어서, 침전 분리된 상기 전이금속 함유 혼합물은 산 용액으로 처리하여 각 전이금속의 산 염 형태의 전구체들을 형성할 수 있다. 일 실시예에 있어서, 상기 산 용액으로 황산을 사용할 수 있다. 이 경우, 상기 전이 금속 전구체로서 NiSO 4, MnSO 4 및 CoSO 4를 각각 회수할 수 있다.
일부 실시예들에 있어서, 상기 수세 처리는 이산화탄소(CO 2)가 배제된 조건에서 수행될 수 있다. 예를 들면, CO 2-프리(free) 분위기(예를 들면, CO 2가 제거된 공기(air) 분위기)에서 상기 수세 처리가 수행되므로, 리튬 탄산화물의 재생성을 방지할 수 있다.
일 실시예에 있어서, 상기 수세 처리시 제공되는 물을 CO 2 결여 가스를 이용해 퍼징(예를 들면, 질소 퍼징)하여 CO 2-프리 분위기를 조성할 수 있다.
비교예에 있어서, 리튬 복합 산화물을 수소로 환원 처리할 경우 리튬 수산화물이 형성될 수 있다. 리튬 수산화물의 녹는점은 462℃로서, 상기 수소 환원 처리의 온도 조건(450 내지 700℃)에서는 형성된 리튬 수산화물이 부분적으로 용융될 수 있다. 따라서, 상기 수소 환원 처리 후 냉각 과정에서 리튬 수산화물이 서로 응집되거나, 상기 전이금속 함유 혼합물과 응집될 수 있다. 이 경우, 리튬 수산화물을 효과적으로 분리하기 위하여, 응집된 리튬 수산화물을 분쇄할 필요가 있다.
예시적인 실시예들에 따르면, 리튬 복합 산화물의 리튬 성분이 리튬 산화물으로 전환될 수 있다. 리튬 산화물의 녹는점은 약 1438℃이며, 상기 리튬 복합 산화물과 상기 탄소계 고체 물질은 리튬 산화물의 녹는점 미만의 온도에서 반응할 수 있다. 따라서, 리튬 산화물이 응집되지 않으며, 추가적인 분쇄 공정 없이 리튬 산화물을 효율적으로 분리할 수 있다.
이하, 본 발명의 이해를 돕기 위하여 구체적인 실시예들 및 비교예들을 포함하는 실험예를 제시하나, 이는 본 발명을 예시하는 것일 뿐 첨부된 특허청구범위를 제한하는 것이 아니며, 본 발명의 범주 및 기술사상 범위 내에서 실시예에 대한 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.
실험예 1
폐 리튬 이차 전지로부터 양극을 분리한 후 상기 양극 내의 집전체를 제거하여 양극 활물질 혼합물을 준비하였다.
상기 양극은 조성이 약 LiNi 0.8Co 0.1Mn 0.1O 2인 양극 활물질, Denka Black 도전재 및 PVDF 바인더를 92:5:3 중량비로 포함하는 양극 활물질층이 형성된 것을 사용하였다.
상기 양극 활물질 혼합물을 상온(30℃)에서 XRD 분석(X-Ray Diffraction Spectroscopy)한 결과를 도 2에 나타내었다.
또한, 아르곤 가스로 치환한 반응기 내에 상기 양극 활물질 혼합물(25g)과 입경 약 0.5㎛의 카본 블랙(5g)을 투입한 후 교반하면서, 500 내지 900℃의 온도에서 60분씩 반응시켰다. 각 온도에서 반응한 샘플을 XRD 분석(X-Ray Diffraction Spectroscopy)한 결과를 도 2에 나타내었다. 도 2를 참조하면, 740℃에서부터 산화리튬이 나타나기 시작하였다.
실험예 2
폐 리튬 이차 전지로부터 양극을 분리한 후 상기 양극 내의 집전체를 제거하여 양극 활물질 혼합물을 준비하였다.
상기 양극은 조성이 약 LiNi 0.6Co 0.2Mn 0.2O 2인 양극 활물질, Denka Black 도전재 및 PVDF 바인더를 92:5:3 중량비로 포함하는 양극 활물질층이 형성된 것을 사용하였다. 상기 양극 활물질 혼합물(25g)과 입경 약 0.5㎛의 카본 블랙(3g)을 투입한 후 교반하면서 600℃ 및 900℃까지 승온하였다.
상기 양극 활물질 혼합물과 카본 블랙이 각각 600℃ 및 900℃ 온도에서 반응한 시료를 추출하여 상기 시료 중 리튬 화합물의 함량을 XRD 분석을 기초로 리트벨트법 (Rietveld method)에 의한 결정 구조 해석으로부터 물질상별 분율을 구하여 하기 표 1에 나타내었다.
반응온도 시료 내 함량 (wt%)
Li 2CO 3 Li 2O
600℃ 12.1 -
840℃ 1.1 10.2
900℃ - 11.8
표 1을 참조하면 600℃에서는 Li 2CO 3 물질이 생성되나, 900℃에서는 Li 2O 물질만이 생성된 것이 확인되었다.

Claims (16)

  1. 리튬 복합 산화물을 포함하는 양극 활물질 혼합물을 준비하는 단계;
    상기 양극 활물질 혼합물을 불활성 기체 분위기에서 탄소계 고체 물질과 반응시켜 리튬 산화물을 포함하는 예비 전구체 혼합물을 형성하는 단계; 및
    상기 예비 전구체 혼합물을 수세 처리하여 리튬 전구체를 분리하는 단계를 포함하는, 리튬 전구체의 회수 방법.
  2. 청구항 1에 있어서, 상기 예비 전구체 혼합물을 형성하는 단계는 740℃ 이상의 온도에서 수행되는, 리튬 전구체의 회수 방법.
  3. 청구항 1에 있어서, 상기 예비 전구체 혼합물을 형성하는 단계는 840℃ 내지 1,200℃에서 수행되는, 리튬 전구체의 회수 방법.
  4. 청구항 3에 있어서, 상기 예비 전구체 혼합물을 형성하는 단계에서 리튬 산화물의 중량 대비 1/10 이하의 탄산 리튬이 생성되는, 리튬 전구체의 회수 방법.
  5. 청구항 1에 있어서, 상기 탄소계 고체 물질은 카본 블랙, 활성화 탄소, 탄소 섬유, 탄소 나노 튜브, 그래핀, 천연 흑연, 인조 흑연, 하드 카본 및 코크스로 구성된 군에서 선택된 적어도 하나를 포함하는, 리튬 전구체의 회수 방법.
  6. 청구항 1에 있어서, 상기 불활성 기체는 아르곤 또는 질소를 포함하는, 리튬 전구체의 회수 방법.
  7. 청구항 1에 있어서, 상기 예비 전구체 혼합물을 형성하는 단계는 상기 양극 활물질 혼합물과 상기 탄소계 고체 물질을 건식 혼합하는 것을 포함하는, 리튬 전구체의 회수 방법.
  8. 청구항 7에 있어서, 상기 건식 혼합은 유동층 반응기를 통해 수행되는, 리튬 전구체의 회수 방법.
  9. 청구항 1에 있어서, 상기 예비 전구체 혼합물을 형성하는 단계는 상기 양극 활물질 혼합물과 상기 탄소계 고체 물질을 4:1 내지 9:1 중량비로 반응시키는, 리튬 전구체의 회수 방법.
  10. 청구항 1에 있어서, 상기 수세 처리는 상기 리튬 산화물의 적어도 일부를 리튬 수산화물로 전환시키는 것을 포함하는, 리튬 전구체의 회수 방법.
  11. 청구항 1에 있어서, 상기 예비 전구체 혼합물은 전이금속 함유 혼합물을 더 포함하며,
    상기 수세 처리를 통해 리튬 수산화물 수용액이 생성되고, 상기 전이금속 함유 혼합물은 침전되는, 리튬 전구체의 회수 방법.
  12. 청구항 1에 있어서, 상기 수세 처리는 이산화탄소-프리(CO 2-free) 분위기에서 수행되는, 리튬 전구체의 회수 방법.
  13. 청구항 1에 있어서, 상기 리튬 복합 산화물은 하기 화학식 1로 표시되는, 리튬 전구체의 회수 방법:
    [화학식 1]
    Li xNi aCo bM (1-a-b)O y
    (화학식 1중, M은 Mn, Na, Mg, Ca, Ti, V, Cr, Cu, Zn, Ge, Sr, Ag, Ba, Zr, Nb, Mo, Al, Ga 및 B로 이루어진 군에서 선택되고, 0<x≤1.1, 2≤y≤2.02, 0.5≤a≤1, 0≤b≤0.5임).
  14. 청구항 1에 있어서, 상기 양극 활물질 혼합물은 폐 리튬 이차 전지로부터 수득되는, 리튬 전구체의 회수 방법.
  15. 청구항 14에 있어서, 상기 양극 활물질 혼합물을 준비하는 단계는,
    상기 폐 리튬 이차 전지로부터 양극 집전체, 양극 활물질, 결합제 및 도전재를 포함하는 양극을 분리하는 단계; 및
    분리된 상기 양극을 분쇄 또는 유기 용매 처리하여 상기 양극 집전체를 제거하는 단계를 포함하는, 리튬 전구체의 회수 방법.
  16. 청구항 1에 있어서, 상기 불활성 기체 분위기는 산화성 기체 및 환원성 기체를 포함하지 않는, 리튬 전구체의 회수 방법.
PCT/KR2020/012632 2019-10-02 2020-09-18 리튬 전구체의 회수 방법 WO2021066362A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022520241A JP2022551073A (ja) 2019-10-02 2020-09-18 リチウム前駆体の回収方法
US17/765,216 US20220352571A1 (en) 2019-10-02 2020-09-18 Recovery method for lithium precursor
EP20870730.7A EP4029830A4 (en) 2019-10-02 2020-09-18 LITHIUM PRECURSOR RECOVERY PROCESS
CN202080069866.1A CN114514199A (zh) 2019-10-02 2020-09-18 锂前体的回收方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190121933A KR20210039555A (ko) 2019-10-02 2019-10-02 리튬 전구체의 회수 방법
KR10-2019-0121933 2019-10-02

Publications (1)

Publication Number Publication Date
WO2021066362A1 true WO2021066362A1 (ko) 2021-04-08

Family

ID=75337187

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/012632 WO2021066362A1 (ko) 2019-10-02 2020-09-18 리튬 전구체의 회수 방법

Country Status (6)

Country Link
US (1) US20220352571A1 (ko)
EP (1) EP4029830A4 (ko)
JP (1) JP2022551073A (ko)
KR (1) KR20210039555A (ko)
CN (1) CN114514199A (ko)
WO (1) WO2021066362A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011094227A (ja) * 2009-09-30 2011-05-12 Dowa Eco-System Co Ltd リチウムの回収方法
KR20140126943A (ko) * 2013-04-24 2014-11-03 타운마이닝캄파니(주) 폐 리튬 이온전지의 양극물질로부터 유가 금속을 회수하는 방법
KR20150002963A (ko) 2013-06-27 2015-01-08 성일하이텍(주) 용매추출법을 이용한 리튬 함유 폐액으로부터 리튬의 회수방법
KR101800842B1 (ko) * 2016-12-05 2017-11-23 문준호 폐리튬이온전지의 재활용 방법
KR101897134B1 (ko) * 2018-04-09 2018-09-10 에스케이이노베이션 주식회사 리튬 전구체 재생 방법
KR102020238B1 (ko) * 2018-04-09 2019-09-10 에스케이이노베이션 주식회사 리튬 이차 전지의 활성 금속 회수 방법

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101623930B1 (ko) * 2014-02-11 2016-05-24 타운마이닝캄파니(주) 폐 리튬 이온전지의 양극물질로부터 유가 금속을 회수하는 방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011094227A (ja) * 2009-09-30 2011-05-12 Dowa Eco-System Co Ltd リチウムの回収方法
KR20140126943A (ko) * 2013-04-24 2014-11-03 타운마이닝캄파니(주) 폐 리튬 이온전지의 양극물질로부터 유가 금속을 회수하는 방법
KR20150002963A (ko) 2013-06-27 2015-01-08 성일하이텍(주) 용매추출법을 이용한 리튬 함유 폐액으로부터 리튬의 회수방법
KR101800842B1 (ko) * 2016-12-05 2017-11-23 문준호 폐리튬이온전지의 재활용 방법
KR101897134B1 (ko) * 2018-04-09 2018-09-10 에스케이이노베이션 주식회사 리튬 전구체 재생 방법
KR102020238B1 (ko) * 2018-04-09 2019-09-10 에스케이이노베이션 주식회사 리튬 이차 전지의 활성 금속 회수 방법

Also Published As

Publication number Publication date
CN114514199A (zh) 2022-05-17
JP2022551073A (ja) 2022-12-07
US20220352571A1 (en) 2022-11-03
EP4029830A1 (en) 2022-07-20
KR20210039555A (ko) 2021-04-12
EP4029830A4 (en) 2023-11-15

Similar Documents

Publication Publication Date Title
WO2019199015A1 (ko) 리튬 이차 전지의 활성 금속 회수 방법
WO2019199014A1 (ko) 리튬 이차 전지의 활성 금속 회수 방법
WO2020096195A1 (ko) 리튬 전구체 재생 방법 및 리튬 전구체 재생 시스템
KR102349767B1 (ko) 리튬 전구체 재생 방법
WO2019198972A1 (ko) 리튬이온 2차전지의 폐 양극재를 이용한 수산화리튬 일수화물의 제조방법
WO2021241944A1 (ko) 리튬이차전지의 폐전극소재로부터 탄산리튬을 이용한 유가금속의 회수 방법
WO2021187808A1 (ko) 양극 활물질용 분급기 및 이를 이용한 리튬 전구체 재생 방법
WO2021241817A1 (ko) 양극 스크랩을 이용한 활물질 재사용 방법
WO2020071640A1 (ko) 리튬 전구체 재생 방법 및 리튬 전구체 재생 시스템
WO2020235802A1 (ko) 리튬 전구체 분리 방법 및 리튬 전구체 분리 시스템
WO2021241818A1 (ko) 양극 스크랩을 이용한 활물질 재사용 방법
WO2021172846A1 (ko) 리튬 이차 전지의 활성 금속 회수 방법
WO2021066362A1 (ko) 리튬 전구체의 회수 방법
WO2022191499A1 (ko) 리튬 이차 전지로부터 리튬 전구체의 회수 방법
WO2021162277A1 (ko) 리튬 이차 전지의 활성 금속 회수 방법
WO2023048430A1 (ko) 리튬 이차 전지로부터 리튬 전구체의 회수 방법
WO2023063677A1 (ko) 리튬 이차 전지로부터 리튬 전구체의 회수 방법
WO2021246721A1 (ko) 리튬 이차 전지의 활성 금속 회수 방법
WO2022139310A1 (ko) 리튬 이차 전지의 활성 금속 회수 방법
WO2021132946A1 (ko) 양극 활물질 전구체의 회수 방법
WO2022191634A1 (ko) 유동층 반응기 및 이를 이용한 리튬 전구체의 재생 방법
WO2021172689A1 (ko) 양극활물질 전구체 재료 및 리튬 이차전지용 양극활물질의 제조방법, 및 이에 따라 제조된 리튬 이차전지용 양극활물질
WO2022119262A1 (ko) 폐 리튬이차전지 양극재로부터 리튬전구체의 회수방법
WO2021137453A1 (ko) 유동층 반응기 및 이를 이용한 리튬 이차 전지의 활성 금속 회수 방법
WO2022197027A1 (ko) 리튬 전구체 재생 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20870730

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022520241

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020870730

Country of ref document: EP

Effective date: 20220412