WO2021137453A1 - 유동층 반응기 및 이를 이용한 리튬 이차 전지의 활성 금속 회수 방법 - Google Patents

유동층 반응기 및 이를 이용한 리튬 이차 전지의 활성 금속 회수 방법 Download PDF

Info

Publication number
WO2021137453A1
WO2021137453A1 PCT/KR2020/017486 KR2020017486W WO2021137453A1 WO 2021137453 A1 WO2021137453 A1 WO 2021137453A1 KR 2020017486 W KR2020017486 W KR 2020017486W WO 2021137453 A1 WO2021137453 A1 WO 2021137453A1
Authority
WO
WIPO (PCT)
Prior art keywords
reactor body
reactor
secondary battery
lithium
diameter
Prior art date
Application number
PCT/KR2020/017486
Other languages
English (en)
French (fr)
Inventor
손성열
성민지
하현배
김지민
Original Assignee
에스케이이노베이션 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이이노베이션 주식회사 filed Critical 에스케이이노베이션 주식회사
Priority to CN202080091133.8A priority Critical patent/CN114901387A/zh
Priority to JP2022540332A priority patent/JP2023508116A/ja
Priority to EP20910822.4A priority patent/EP4070882A4/en
Publication of WO2021137453A1 publication Critical patent/WO2021137453A1/ko
Priority to US17/855,444 priority patent/US20220349022A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/24Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/001Dry processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/1818Feeding of the fluidising gas
    • B01J8/1827Feeding of the fluidising gas the fluidising gas being a reactant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/1872Details of the fluidised bed reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/24Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique
    • B01J8/36Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with fluidised bed through which there is an essentially horizontal flow of particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • C01D15/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • C01D15/08Carbonates; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/02Obtaining nickel or cobalt by dry processes
    • C22B23/021Obtaining nickel or cobalt by dry processes by reduction in solid state, e.g. by segregation processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • C22B23/0407Leaching processes
    • C22B23/0415Leaching processes with acids or salt solutions except ammonium salts solutions
    • C22B23/043Sulfurated acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • C22B23/0453Treatment or purification of solutions, e.g. obtained by leaching
    • C22B23/0461Treatment or purification of solutions, e.g. obtained by leaching by chemical methods
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B26/00Obtaining alkali, alkaline earth metals or magnesium
    • C22B26/10Obtaining alkali metals
    • C22B26/12Obtaining lithium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/005Separation by a physical processing technique only, e.g. by mechanical breaking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Definitions

  • the present invention relates to a method for recovering an active metal from a lithium secondary battery. More particularly, it relates to an active metal recovery method of a lithium secondary battery using a fluidized bed reactor.
  • secondary batteries have been widely applied and developed as power sources for portable electronic communication devices such as camcorders, mobile phones, and notebook PCs, and vehicles such as hybrid vehicles and electric vehicles.
  • a lithium secondary battery has been actively developed and applied in that it has high operating voltage and energy density per unit weight, and is advantageous for charging speed and weight reduction.
  • a lithium metal oxide may be used as an active material for the positive electrode of the lithium secondary battery.
  • the lithium metal oxide may additionally contain a transition metal such as nickel, cobalt, and manganese together.
  • the size of the active material particles supplied for the dry reaction becomes finer, non-uniformity in reaction due to aggregation may occur.
  • the recovery rate of the active material may be reduced due to the local non-uniform supply of the reaction gas in the reactor.
  • Korean Patent No. 10-0709268 discloses an apparatus and method for recycling waste manganese batteries and alkaline batteries, but does not provide a dry-based method for regenerating valuable metals with high selectivity and high yield.
  • One object of the present invention is to provide a method for recovering an active metal of a lithium secondary battery having excellent recovery efficiency.
  • a mixture of a waste cathode active material obtained from a waste cathode of a lithium secondary battery is prepared.
  • the spent cathode active material mixture is reacted with a reaction gas in a fluidized bed reactor to form a preliminary precursor mixture.
  • a lithium precursor is selectively recovered from the preliminary precursor mixture.
  • the fluidized bed reactor may include a reactor body and a horizontally expanded bed, and a ratio of the diameter of the horizontally expanded bed to the diameter of the reactor body may be 3 or more.
  • the waste positive electrode active material mixture or the preliminary precursor mixture that rises from the reactor body to the horizontal expansion bed by the reaction gas is lowered and collected into the reactor body may include
  • the ratio of the diameter of the horizontally expanded bed to the diameter of the reactor body may be 3 to 10.
  • the fluidized bed reactor may further include a vertically expanded pipe connecting the reactor body and the horizontally expanded bed.
  • the inclination angle of the vertical expansion tube may be 45 to 80 °.
  • the reaction gas may include hydrogen
  • the preliminary precursor mixture in recovering the lithium precursor, may be washed with water.
  • a fluidized bed reactor includes a reactor body; a horizontally expanded bed communicating with the reactor body and having a diameter of at least three times the diameter of the reactor body; a vertical expansion pipe connecting the reactor body and the horizontally expanded bed; and a gas injection path for injecting a reaction gas into the reactor body.
  • the active metal recovery method of a lithium secondary battery uses a fluidized bed reactor in which the ratio of the diameter of the horizontally expanded bed to the diameter of the reactor body is 3 or more, and the preliminary precursor mixture is discharged outside during the formation of the preliminary precursor mixture. It can be prevented from leaking or accumulating on the wall.
  • the fluidized bed By improving the injection rate of the reaction gas injected into the fluidized bed reactor, the fluidized bed can be formed more easily, and thus the recovery efficiency of the lithium precursor can be improved.
  • the active metal recovery method of a lithium secondary battery may reduce the amount of the preliminary precursor mixture flowing out by using a fluidized bed reactor including a vertical expansion tube that satisfies a specific inclination angle, and vertical expansion By introducing the preliminary precursor mixture back to the reactor body along the inclined surface of the tube, it is possible to improve the recovery efficiency of the lithium precursor.
  • FIG. 1 is a schematic view for explaining a fluidized bed reactor and a method for recovering an active metal of a lithium secondary battery using the same according to exemplary embodiments.
  • Embodiments of the present invention provide a high-purity, high-yield active metal recovery method using a fluidized bed reactor in which the ratio of the diameter of the horizontally expanded bed to the diameter of the reactor body is 3 or more.
  • the term “precursor” is used to refer generically to a compound including a specific metal to provide a specific metal included in the electrode active material.
  • a waste cathode active material mixture may be prepared from a waste cathode of a lithium secondary battery (eg, step S10).
  • the lithium secondary battery may include an electrode assembly including a positive electrode, a negative electrode, and a separator interposed between the positive electrode and the negative electrode.
  • the positive electrode and the negative electrode may include a positive electrode active material layer and a negative electrode active material layer coated on the positive electrode current collector and the negative electrode current collector, respectively.
  • the positive active material included in the positive active material layer may include lithium and an oxide containing a transition metal.
  • the positive active material may include a compound represented by Formula 1 below.
  • M1, M2 and M3 are transition metals selected from Ni, Co, Mn, Na, Mg, Ca, Ti, V, Cr, Cu, Zn, Ge, Sr, Ag, Ba, Zr, Nb, Mo, Al, Ga or B can be In Formula 1, it may be 0 ⁇ x ⁇ 1.1, 2 ⁇ y ⁇ 2.02, 0 ⁇ a ⁇ 1, 0 ⁇ b ⁇ 1, 0 ⁇ c ⁇ 1, 0 ⁇ a+b+c ⁇ 1.
  • the cathode active material may be an NCM-based lithium oxide including nickel, cobalt, and manganese.
  • the waste cathode may be recovered by separating the cathode from the waste lithium secondary battery.
  • the waste positive electrode may include a positive electrode current collector (eg, aluminum (Al)) and a positive electrode active material layer as described above, and the positive electrode active material layer may include a conductive material and a binder together with the above-described positive active material. have.
  • the conductive material may include, for example, a carbon-based material such as graphite, carbon black, graphene, and carbon nanotubes.
  • the binder is, for example, vinylidenefluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinylidenefluoride (PVDF), polyacrylonitrile, polymethylmethacrylate (polymethylmethacrylate) may include a resin material.
  • the recovered waste cathode may be pulverized to produce a waste cathode active material mixture.
  • the waste cathode active material mixture may be prepared in a powder form.
  • the waste cathode active material mixture includes a lithium-transition metal oxide powder, for example, an NCM-based lithium oxide powder (eg, Li(NCM)O 2 ).
  • the term “waste positive electrode active material mixture” may refer to a raw material that is input to a fluidized bed reaction treatment to be described later after the positive electrode current collector is substantially removed from the spent positive electrode.
  • the waste positive electrode active material mixture may include positive electrode active material particles such as the NCM-based lithium oxide.
  • the waste positive electrode active material mixture may include a part of a component derived from the binder or the conductive material.
  • the waste cathode active material mixture may be substantially composed of the cathode active material particles.
  • the average particle diameter (D50) of the waste positive electrode active material mixture may be 5 to 100 ⁇ m.
  • a lithium-transition metal oxide such as Li(NCM)O 2 to be recovered may be easily separated from the positive electrode current collector, the conductive material, and the binder included in the waste positive electrode active material mixture.
  • the waste cathode active material mixture may be heat-treated before being put into a fluidized bed reactor to be described later.
  • the lithium-transition metal oxide may be introduced into the fluidized bed reactor with high purity by removing or reducing impurities such as the conductive material and the binder included in the waste positive electrode active material mixture by the heat treatment.
  • the heat treatment temperature may be, for example, about 100 to 500 °C, preferably about 350 to 450 °C. As the impurities are substantially removed within the above range, decomposition and damage of the lithium-transition metal oxide may be prevented.
  • the mixture of the spent cathode active material may be reacted with a reaction gas in the fluidized bed reactor 100 to form the preliminary precursor mixture 80 .
  • the fluidized bed reactor 100 may be divided into a reactor body 110 , a lower reactor 120 , and a horizontally expanded bed 130 .
  • the reactor body 110 may include or be integrated with heating means such as a heater.
  • the reactor lower part 120 may be defined as a lower part of the dispersion plate 50 in the reactor body 110 .
  • the waste cathode active material mixture may be supplied into the reactor body 110 through the supply passage 108a.
  • the waste cathode active material mixture may be dripped through the supply passage 108a connected to the upper portion of the reactor body 110 .
  • the waste cathode active material mixture may be introduced through a supply passage (not shown) connected to the bottom of the reactor body 110 .
  • a reaction gas for converting the waste cathode active material mixture into a preliminary precursor may be supplied into the reactor body 110 through the gas flow path 104 connected to the reactor lower part 120 .
  • the reaction gas includes a reducing gas, for example, hydrogen (H 2 ) may be supplied.
  • the reaction gas may be ejected into the reactor body 110 through the injection column 60 included in the dispersion plate. Since the reactant gas is supplied from the lower part of the fluidized bed reactor 100 and comes into contact with the waste cathode active material mixture, the waste cathode active material mixture moves to the horizontally expanded bed 130 and reacts with the reaction gas to form a preliminary precursor mixture 80 . can be converted
  • the ratio of the diameter of the horizontally expanded bed 130 to the diameter of the reactor body 110 may be 3 or more.
  • the diameter ratio may be 3 to 10, and more preferably, the diameter ratio may be 3 to 5.
  • the diameter may be measured based on the central axis of the fluidized bed reactor 100 and the inner wall of the fluidized bed reactor 100 .
  • the flow rate of the preliminary precursor mixture 80 or the reaction gas moving from the reactor body 110 to the horizontally expanded bed 130 may be rapidly reduced. Accordingly, the moving speed of the preliminary precursor mixture 80 has a value less than the terminal velocity u t , thereby effectively reducing the amount of the preliminary precursor mixture 80 flowing out of the reactor body 110 .
  • the ratio of the diameter of the horizontally expanded bed 130 to the diameter of the reactor body 110 may be 3 to 10.
  • the diameter ratio is less than 3
  • the diameter of the horizontally expanded bed 130 of the fluidized bed reactor 100 is not sufficiently expanded, so it is difficult to expect a sufficient deceleration effect.
  • the size of the extended bed 130 may be excessively large, thereby reducing overall process efficiency.
  • the fluidized bed reactor 100 may further include a vertically expanded pipe 140 connecting the reactor body 110 and the horizontally expanded bed 130 .
  • the vertical expansion pipe 140 may mean a region in which the diameter of the horizontally expanded bed 130 is increased as the diameter of the horizontally expanded bed 130 is larger than that of the reactor body 110 , and the diameter is gradually increased with a constant inclination angle a.
  • the inclination angle (a) may be defined as an angle formed by a vertical extension line with respect to the side surface of the reactor body 110 and an inclined surface of the vertical extension pipe 140 .
  • the inclination angle (a) of the vertical expansion pipe 140 may be about 45 to 80 °. More preferably, the inclination angle (a) of the vertical expansion pipe 140 may be about 60 to 80°.
  • the effective deceleration of the preliminary precursor mixture 80 is within a range in which the area of the horizontally expanded bed 130 included in the fluidized bed reactor 100 is not unnecessarily increased. effect can be expected.
  • the recovery efficiency of the lithium precursor may be further improved.
  • the fluidized bed reactor 100 may include a gas injection path 104 for injecting a reaction gas into the reactor body 110 .
  • the reaction gas may be injected into the reactor body 110 by sequentially passing through the gas injection path 104 , the base plate 50 , and the injection column 60 .
  • the lithium-transition metal oxide is reduced by the hydrogen gas, for example, lithium hydroxide (LiOH), a preliminary lithium precursor comprising lithium oxide (eg, LiO 2 ), and transition Metal or transition metal oxides may be formed.
  • LiOH lithium hydroxide
  • a preliminary lithium precursor comprising lithium oxide eg, LiO 2
  • transition Metal or transition metal oxides may be formed.
  • Ni, Co, NiO, CoO, and MnO may be produced together with the preliminary lithium precursor by a reducing reaction.
  • the reduction reaction in the reactor body 110 may be carried out at about 400 to 700 °C, preferably about 450 to 550 °C. Within the reaction temperature range, the reduction reaction may be promoted without causing re-aggregation and recombination of the preliminary lithium precursor and the transition metal/transition metal oxide.
  • a carrier gas may be supplied together with the reaction gas from the reactor lower portion 120 .
  • the carrier gas may be supplied together with the reaction gas through the gas flow path 104 .
  • the carrier gas may include an inert gas such as nitrogen (N 2 ), argon (Ar), or the like.
  • the carrier gas may also be jetted through the injection column 60 of the dispersion plate to promote the formation of a fluidized bed. For example, cyclone formation through the carrier gas may be promoted.
  • a preliminary precursor mixture 80 including a preliminary lithium precursor and a preliminary transition metal precursor (eg, the transition metal or transition metal oxide) may be formed in the reactor body 110 .
  • the preliminary lithium precursor may include, for example, lithium hydroxide, lithium oxide and/or lithium carbonate (lithium carbonate).
  • the preliminary precursor mixture 80 may be cooled.
  • the preliminary precursor mixture 80 may be cooled by using a refrigerant in a gaseous state or a refrigerant in a liquid state.
  • the preliminary precursor mixture 80 may be cooled to about 100° C. or less. More preferably, the preliminary precursor mixture 80 may be cooled to about 50 to 100°C. For example, when the preliminary precursor mixture 80 is cooled to the above temperature range, the recovery efficiency of the lithium precursor may be improved when recovering the lithium precursor, which will be described later.
  • a lithium precursor may be selectively recovered from the cooled preliminary precursor mixture 80 (eg, S30 process).
  • the preliminary lithium precursor may be recovered by washing the cooled preliminary precursor mixture 80 with water.
  • the preliminary lithium precursor particles in the form of lithium hydroxide (LiOH) may be substantially dissolved in water, separated from the transition metal precursor, and recovered first.
  • a lithium precursor substantially composed of lithium hydroxide can be obtained through a crystallization process or the like of lithium hydroxide dissolved in water.
  • the preliminary lithium precursor particles in the form of lithium oxide and lithium carbonate may be substantially removed through the water washing treatment. In an embodiment, the preliminary lithium precursor particles in the form of lithium oxide and lithium carbonate may be at least partially converted into lithium hydroxide through the water washing treatment.
  • the preliminary lithium precursor may be reacted with a carbon-containing gas such as carbon monoxide (CO), carbon dioxide (CO 2 ), etc. to obtain lithium carbonate (eg, Li 2 CO 3 ) as a lithium precursor.
  • a carbon-containing gas such as carbon monoxide (CO), carbon dioxide (CO 2 ), etc.
  • lithium carbonate eg, Li 2 CO 3
  • a crystallized lithium precursor may be obtained through the reaction with the carbon-containing gas.
  • lithium carbonate may be collected by injecting a carbon-containing gas together during the water washing treatment.
  • a transition metal precursor may be obtained from the collected preliminary transition metal precursor (eg, S40 process).
  • the preliminary transition metal precursor may be recovered. Thereafter, the preliminary transition metal precursor may be treated with an acid solution to form acid salt precursors of each transition metal.
  • sulfuric acid may be used as the acid solution.
  • transition metal precursor NiSO 4 , MnSO 4 and CoSO 4 may be recovered, respectively.
  • the transition metal precursors are selectively extracted using an acid solution, so that the purity and selectivity of each metal precursor is improved, and the load of the wet process is reduced, resulting in wastewater and by-products increase can be reduced.
  • 10 kg of the positive active material sample was loaded into a fluidized bed reactor in which the ratio of the diameter of the horizontally expanded bed to the diameter of the reactor body was 4, and nitrogen gas was injected from the bottom of the reactor at a flow rate of 100 L/min.
  • the temperature inside the reactor was maintained at 450°C.
  • the amount of the positive electrode active material discharged to the outside of the reactor was measured in the same manner as in Example 1, except that the ratio of the diameter of the horizontally expanded bed to the diameter of the reactor body was adjusted as shown in Table 1, and the flow rate per hour was described.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Secondary Cells (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

본 발명의 실시예들에 따른 리튬 이차 전지의 활성 금속 회수 방법은 리튬 이차 전지의 폐 양극으로부터 획득된 폐 양극 활물질 혼합물을 준비하는 단계, 폐 양극 활물질 혼합물을 유동층 반응기 내에서 반응가스와 반응시켜 예비 전구체 혼합물을 형성하는 단계 및 예비 전구체 혼합물로부터 선택적으로 리튬 전구체를 회수하는 단계를 포함하며, 유동층 반응기는 반응기 바디 및 수평 확장관를 포함하며, 상기 반응기 바디의 직경에 대한 상기 수평 확장 베드의 직경 비가 3 이상을 만족하여, 리튬 이차 전지의 회수 효율이 향상될 수 있다.

Description

유동층 반응기 및 이를 이용한 리튬 이차 전지의 활성 금속 회수 방법
본 발명은 리튬 이차 전지의 활성 금속 회수 방법에 관한 것이다. 보다 상세하게는, 유동층 반응기를 활용한 리튬 이차 전지의 활성 금속 회수 방법에 관한 것이다.
최근 이차 전지는 캠코더, 휴대폰, 노트북 PC 등과 같은 휴대용 전자통신 기기 및 하이브리드 자동차, 전기 자동차와 같은 차량의 동력원으로 널리 적용 및 개발되고 있다. 이차 전지로서 리튬 이차 전지가 작동 전압 및 단위 중량당 에너지 밀도가 높으며, 충전 속도 및 경량화에 유리하다는 점에서 활발히 개발 및 적용되어 왔다.
상기 리튬 이차 전지의 양극용 활물질로서 리튬 금속 산화물이 사용될 수 있다. 상기 리튬 금속 산화물은 추가적으로 니켈, 코발트, 망간과 같은 전이금속을 함께 함유할 수 있다.
상기 양극용 활물질에 상술한 고비용의 유가 금속들이 사용됨에 따라, 양극재 제조에 제조 비용의 20% 이상이 소요되고 있다. 또한, 최근 환경보호 이슈가 부각됨에 따라, 양극용 활물질의 리싸이클 방법에 대한 연구가 진행되고 있다.
종래에는 황산과 같은 강산에 폐 양극 활물질을 침출시켜 유가 금속들을 순차적으로 회수하는 방법이 활용되었으나, 상기의 습식 공정의 경우 재생 선택성, 재생 시간 등의 측면에서 불리하며 환경 오염을 야기할 수 있다. 따라서, 반응 가스와 접촉을 통한 건식 기반 반응을 활용하여 유가 금속을 회수하는 방법이 연구되고 있다.
그러나, 건식 반응을 위해 공급되는 활물질 입자의 사이즈가 미세해짐에 따라, 응집에 따른 반응 불균일이 발생될 수 있다. 또한, 반응기 내 반응가스의 국소적인 불균일 공급에 의해 활물질 회수율이 저하될 수도 있다.
예를 들면, 한국등록특허 제10-0709268호에는 폐망간전지 및 알카라인전지 재활용 장치 및 방법이 개시되어 있으나, 고선택성, 고수율로 유가금속을 재생하기 위한 건식 기반 방법은 제시하지 못하고 있다.
본 발명의 일 과제는 회수 효율이 우수한 리튬 이차 전지의 활성 금속을 회수하는 방법을 제공하는 것이다.
본 발명의 실시예들에 따른 리튬 이차 전지의 활성 금속 회수 방법에 있어서, 리튬 이차 전지의 폐 양극으로부터 획득된 폐 양극 활물질 혼합물을 준비한다. 상기 폐 양극 활물질 혼합물을 유동층 반응기 내에서 반응가스와 반응시켜 예비 전구체 혼합물을 형성한다. 상기 예비 전구체 혼합물로부터 선택적으로 리튬 전구체를 회수한다. 이 경우, 상기 유동층 반응기는 반응기 바디 및 수평 확장 베드를 포함하며, 상기 반응기 바디의 직경에 대한 상기 수평 확장 베드의 직경 비가 3 이상일 수 있다.
일부 실시예들에 있어서, 상기 예비 전구체 혼합물을 형성함에 있어, 상기 반응가스에 의해 상기 반응기 바디로부터 상기 수평 확장 베드로 상승한 상기 폐 양극 활물질 혼합물 또는 상기 예비 전구체 혼합물을 하강시켜 상기 반응기 바디로 수집하는 것을 포함할 수 있다.
일부 실시예들에 있어서, 상기 반응기 바디의 직경에 대한 상기 수평 확장 베드의 직경의 비가 3 내지 10일 수 있다.
일부 실시예들에 있어서, 상기 유동층 반응기는 상기 반응기 바디 및 상기 수평 확장 베드를 연결하는 수직 확장관을 더 포함할 수 있다.
일부 실시예들에 있어서, 상기 수직 확장관의 경사각이 45 내지 80°일 수 있다.
일부 실시예들에 있어서, 상기 반응가스는 수소를 포함할 수 있다.
일부 실시예들에 있어서, 상기 리튬 전구체를 회수함에 있어서, 상기 예비 전구체 혼합물을 수세 처리할 수 있다.
본 발명의 실시예들에 따른, 유동층 반응기는 반응기 바디; 상기 반응기 바디와 연통되며 상기 반응기 바디의 직경 대비 3배 이상의 직경을 갖는 수평 확장 베드; 상기 반응기 바디 및 상기 수평 확장 베드를 연결시키는 수직 확장관; 및 상기 반응기 바디로 반응가스를 주입하는 가스 주입로를 포함할 수 있다.
예시적인 실시예들에 따른 리튬 이차 전지의 활성 금속 회수 방법은 반응기 바디의 직경에 대한 수평 확장 베드의 직경 비가 3 이상인 유동층 반응기를 사용하여, 상기 예비 전구체 혼합물의 형성과정에서 예비 전구체 혼합물이 외부로 유출되거나, 벽면에 축적되는 것을 방지할 수 있다. 상기 유동층 반응기에 주입되는 반응가스의 주입 속도를 향상시켜, 보다 용이하게 유동층을 형성할 수 있으며, 이에 따라 리튬 전구체의 회수 효율이 향상될 수 있다.
예시적인 실시예들에 따른 리튬 이차 전지의 활성 금속 회수 방법은 특정 경사각을 만족하는 수직 확장관을 포함하는 유동층 반응기를 사용하여, 외부로 유출되는 예비 전구체 혼합물의 양을 감소시킬 수 있으며, 수직 확장관의 경사면을 따라 상기 예비 전구체 혼합물을 다시 반응기 바디로 투입하여, 리튬 전구체의 회수 효율을 향상시킬 수 있다.
도 1은 예시적인 실시예들에 따른 유동층 반응기 및 이를 활용한 리튬 이차 전지의 활성 금속 회수 방법을 설명하기 위한 개략적인 도면이다.
본 발명의 실시예들은 반응기 바디의 직경에 대한 수평 확장 베드의 직경 비가 3 이상인 유동층 반응기를 활용한 고순도, 고수율의 활성 금속 회수 방법을 제공한다.
이하에서는, 첨부된 도면을 참조로 본 발명의 실시예들에 대해 상세히 설명하기로 한다. 그러나 이는 예시적인 것에 불과하며 본 발명이 예시적으로 설명된 구체적인 실시 형태로 제한되는 것은 아니다.
본 명세서에 사용되는 용어 "전구체"는 전극 활물질에 포함되는 특정 금속을 제공하기 위해 상기 특정 금속을 포함하는 화합물을 포괄적으로 지칭하는 것으로 사용된다.
도 1을 참조하면, 리튬 이차 전지의 폐 양극으로부터 폐 양극 활물질 혼합물을 준비할 수 있다(예를 들면, S10 공정).
상기 리튬 이차 전지는 양극, 음극 및 상기 양극 및 음극 사이에 개재된 분리막 포함하는 전극 조립체를 포함할 수 있다. 상기 양극 및 음극은 각각 양극 집전체 및 음극 집전체 상에 코팅된 양극 활물질층 및 음극 활물질층을 포함할 수 있다.
예를 들면, 상기 양극 활물질층에 포함된 양극 활물질은 리튬 및 전이금속을 함유하는 산화물을 포함할 수 있다.
일부 실시예들에 있어서, 상기 양극 활물질은 하기 화학식 1로 표시되는 화합물을 포함할 수 있다.
[화학식 1]
Li xM1 aM2 bM3 cO y
화학식 1 중, M1, M2 및 M3은 Ni, Co, Mn, Na, Mg, Ca, Ti, V, Cr, Cu, Zn, Ge, Sr, Ag, Ba, Zr, Nb, Mo, Al, Ga 또는 B 중에서 선택되는 전이 금속일 수 있다. 화학식 1 중, 0<x≤1.1, 2≤y≤2.02, 0<a<1, 0<b<1, 0<c<1, 0<a+b+c≤1일 수 있다.
일부 실시예들에 있어서, 상기 양극 활물질은 니켈, 코발트 및 망간을 포함하는 NCM계 리튬 산화물일 수 있다.
상기 폐 리튬 이차 전지로부터 상기 양극을 분리하여 폐 양극을 회수할 수 있다. 상기 폐 양극은 상술한 바와 같이 양극 집전체(예를 들면, 알루미늄(Al)) 및 양극 활물질층을 포함하며, 상기 양극 활물질층은 상술한 양극 활물질과 함께, 도전재 및 결합제를 함께 포함할 수 있다.
상기 도전재는 예를 들면, 흑연, 카본 블랙, 그래핀, 탄소 나노 튜브 등과 같은 탄소계열 물질을 포함할 수 있다. 상기 결합제는 예를 들면, 비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐리덴플루오라이드(polyvinylidenefluoride, PVDF), 폴리아크릴로니트릴(polyacrylonitrile), 폴리메틸메타크릴레이트(polymethylmethacrylate) 등의 수지 물질을 포함할 수 있다.
예시적인 실시예들에 따르면, 회수된 상기 폐 양극을 분쇄하여 폐 양극 활물질 혼합물을 생성할 수 있다. 이에 따라, 상기 폐 양극 활물질 혼합물은 분말 형태로 제조될 수 있다. 상기 폐 양극 활물질 혼합물은 상술한 바와 같이 리튬-전이금속 산화물의 분말을 포함하며, 예를 들면 NCM계 리튬 산화물 분말(예를 들면, Li(NCM)O 2)을 포함할 수 있다.
본 출원에 사용되는 용어 "폐 양극 활물질 혼합물"은 상기 폐 양극으로부터 양극 집전체가 실질적으로 제거된 후 후술하는 유동층 반응 처리에 투입되는 원료 물질을 지칭할 수 있다. 일 실시예에 있어서, 상기 폐 양극 활물질 혼합물은 상기 NCM계 리튬 산화물과 같은 양극 활물질 입자를 포함할 수 있다. 일 실시예에 있어서, 상기 폐 양극 활물질 혼합물은 상기 결합제 또는 상기 도전재로부터 유래하는 성분을 일부 포함할 수도 있다. 일 실시예에 있어서, 상기 폐 양극 활물질 혼합물은 상기 양극 활물질 입자로 실질적으로 구성될 수도 있다.
일부 실시예들에 있어서, 상기 폐 양극 활물질 혼합물의 평균 입경(D50)은 5 내지 100㎛일 수 있다. 상기 범위 내에서 상기 폐 양극 활물질 혼합물에 포함된 양극 집전체, 도전재 및 결합제로부터 회수 대상인 Li(NCM)O 2과 같은 리튬-전이금속 산화물이 용이하게 분리될 수 있다.
일부 실시예들에 있어서, 상기 폐 양극 활물질 혼합물을 후술하는 유동층 반응기에 투입 전에 열처리할 수 있다. 상기 열처리에 의해 상기 폐 양극 활물질 혼합물에 포함된 상기 도전재 및 결합제와 같은 불순물을 제거 또는 감소시켜 상기 리튬-전이금속 산화물을 고순도로 상기 유동층 반응기 내로 투입할 수 있다.
상기 열처리 온도는 예를 들면, 약 100 내지 500℃, 바람직하게는 약 350 내지 450℃에서 수행될 수 있다. 상기 범위 내에서 실질적으로 상기 불순물이 제거되면서 리튬-전이금속 산화물의 분해, 손상이 방지될 수 있다.
예를 들면, S20 공정에서, 상기 폐 양극 활물질 혼합물을 유동층 반응기(100) 내에서 반응가스와 반응시켜 예비 전구체 혼합물(80)을 형성할 수 있다.
도 1에 도시된 바와 같이, 유동층 반응기(100)는 반응기 바디(110), 반응기 하부(120) 및 수평 확장 베드(130)로 구분될 수 있다. 반응기 바디(110)는 히터와 같은 가열 수단을 포함하거나 가열 수단과 일체화될 수 있다.
반응기 하부(120)는 반응기 바디(110) 중 분산 플레이트(50)의 아래 부분으로 정의될 수 있다.
상기 폐 양극 활물질 혼합물은 공급 유로(108a)를 통해 반응기 바디(110) 내로 공급될 수 있다. 상기 폐 양극 활물질 혼합물은 반응기 바디(110)의 상부에 연결된 공급 유로(108a)를 통해 적하될 수 있다. 상기 폐 양극 활물질 혼합물은 반응기 바디(110)의 저부에 연결된 공급 유로(도시되지 않음)를 통해 투입될 수도 있다.
반응기 하부(120)와 연결된 가스 유로(104)를 통해 반응기 바디(110) 내로 상기 폐 양극 활물질 혼합물을 예비 전구체로 변환시키기 위한 반응가스가 공급될 수 있다. 예시적인 실시예들에 따르면 상기 반응 가스는 환원성 가스를 포함하며, 예를 들면 수소(H 2)가 공급될 수 있다.
상기 반응 가스는 상기 분산 플레이트에 포함된 분사 칼럼(60)을 통해 반응기 바디(110) 내로 분출될 수 있다. 유동층 반응기(100)의 하부에서부터 반응 가스가 공급되면서 상기 폐 양극 활물질 혼합물과 접촉하므로, 상기 폐 양극 활물질 혼합물이 수평 확장 베드(130)로 이동하면서 상기 반응 가스와 반응하여 예비 전구체 혼합물(80)로 변환될 수 있다.
예를 들면, 반응기 바디(110)의 직경에 대한 수평 확장 베드(130)의 직경 비가 3 이상일 수 있다. 바람직하게는 상기 직경 비는 3 내지 10일 수 있으며, 보다 바람직하게는 상기 직경 비가 3 내지 5일 수 있다.
상기 직경은 유동층 반응기(100)의 중심 축 및 유동층 반응기(100)의 내벽을 기준으로 측정될 수 있다. 이 경우, 반응기 바디(110)로부터 수평 확장 베드(130)로 이동되는 예비 전구체 혼합물(80) 또는 상기 반응 가스의 유속이 급격히 감소될 수 있다. 이에 따라, 예비 전구체 혼합물(80)의 이동 속도가 종단 속도(u t) 미만의 값을 가져 반응기 바디(110) 외부로 유출되는 예비 전구체 혼합물(80)의 양을 효과적으로 감소시킬 수 있다.
예를 들면, 반응기 바디(110)의 직경에 대한 수평 확장 베드(130)의 직경 비가 3 내지 10일 수 있다. 예를 들면, 상기 직경비가 3 미만인 경우 유동층 반응기(100)의 수평 확장 베드(130)의 직경이 충분히 확장되지 않아, 충분한 감속 효과를 기대하기 어려우며, 10을 초과하는 경우 유동층 반응기(100)의 수평 확장 베드(130)의 크기가 지나치게 커져, 전체 공정 효율이 저하될 수 있다.
예를 들면, 유동층 반응기(100)는 반응기 바디(110) 및 수평 확장 베드(130)를 연결하는 수직 확장관(140)를 더 포함할 수 있다. 수직 확장관(140)는 반응기 바디(110)의 직경보다 수평 확장 베드(130)의 직경이 커짐에 따라 일정한 경사각(a)를 가지고 직경이 서서히 증가되는 영역을 의미할 수 있다. 예를 들면, 경사각(a)은 반응기 바디(110)의 측면에 대한 수직 방향 연장선과 수직 확장관(140)의 경사면이 이루는 각도로 정의될 수 있다.
예를 들면, 수직 확장관(140)의 경사각(a)은 약 45 내지 80°일 수 있다. 보다 바람직하게는 수직 확장관(140)의 경사각(a)은 약 60 내지 80°일 수 있다. 예를 들면, 경사각(a)이 상기 범위를 만족하는 경우, 유동층 반응기(100)에 포함된 수평 확장 베드(130)의 영역이 불필요하게 증가되지 않는 범위에서, 효과적인 예비 전구체 혼합물(80)의 감속 효과를 기대할 수 있다.
또한, 감속되어 하강하는 예비 전구체 혼합물(80)이 수직 확장관(140)의 경사면을 따라, 반응기 바디(110) 내부로 재 유입됨에 따라, 리튬 전구체의 회수 효율이 보다 향상될 수 있다.
일부 예시적인 실시예들에 있어서 유동층 반응기(100)는 반응기 바디(110)로 반응가스를 주입하는 가스 주입로(104)로 포함할 수 있다.
상기 반응가스는 상기 가스 주입로(104), 베이스 플레이트(50) 및 분사 칼럼(60)을 순차적으로 통과하여 반응기 바디(110) 내부로 주입될 수 있다.
일부 실시예들에 있어서, 상기 리튬-전이금속 산화물이 상기 수소 가스에 의해 환원되어 예를 들면, 리튬 수산화물(LiOH), 리튬 산화물(예를 들면, LiO 2)을 포함하는 예비 리튬 전구체, 및 전이금속 또는 전이금속 산화물이 생성될 수 있다. 예를 들면, 환원성 반응에 의해 상기 예비 리튬 전구체와 함께 Ni, Co, NiO, CoO 및 MnO가 생성될 수 있다.
반응기 바디(110)에서의 상기 환원 반응은 약 400 내지 700℃, 바람직하게는 약 450 내지 550℃에서 수행될 수 있다. 상기 반응 온도 범위 내에서, 예비 리튬 전구체 및 상기 전이금속/전이금속 산화물의 재응집, 재결합을 초래하지 않으면서 환원반응을 촉진할 수 있다.
일부 실시예들에 있어서, 반응기 하부(120)로부터 캐리어 가스가 상기 반응 가스와 함께 공급될 수 있다. 예를 들면 상기 캐리어 가스는 가스 유로(104)를 통해 캐리어 가스가 상기 반응 가스와 함께 공급될 수도 있다. 예를 들면, 상기 캐리어 가스는 질소(N 2), 아르곤(Ar) 등과 같은 불활성 기체를 포함할 수 있다. 상기 캐리어 가스 역시 분산 플레이트의 분사 칼럼(60)을 통해 분출 공급되어 유동층 형성응을 촉진할 수 있다. 예를 들면, 상기 캐리어 가스를 통한 사이클론 형성이 촉진될 수 있다.
반응기 바디(110) 내에서는 예비 리튬 전구체 및 예비 전이금속 전구체(예를 들면, 상기 전이금속 또는 전이금속 산화물)를 포함하는 예비 전구체 혼합물(80)이 형성될 수 있다. 상기 예비 리튬 전구체는 예를 들면, 리튬 수산화물, 리튬 산화물 및/또는 리튬 탄산화물(리튬 카보네이트)을 포함할 수 있다.
예를 들면, 예비 전구체 혼합물(80)을 냉각시킬 수 있다. 이 경우, 예비 전구체 혼합물(80)을 기체 상태의 냉매 또는 액체 상태의 냉매를 사용하여, 냉각시킬 수 있다.
예를 들면, 예비 전구체 혼합물(80)을 약 100℃ 이하로 냉각시킬 수 있다. 보다 바람직하게는 예비 전구체 혼합물(80)을 약 50 내지 100℃로 냉각시킬 수 있다. 예를 들면, 예비 전구체 혼합물(80)은 상기 온도 범위로 냉각시킬 경우, 후술할 리튬 전구체 회수시 상기 리튬 전구체의 회수 효율이 향상될 수 있다.
냉각된 예비 전구체 혼합물(80)로부터 리튬 전구체를 선택적으로 회수할 수 있다(예를 들면, S30 공정).
일부 실시예들에 있어서, 냉각된 예비 전구체 혼합물(80)을 물로 수세처리하여 예비 리튬 전구체를 회수할 수 있다. 상기 수세 처리를 통해 리튬 수산화물(LiOH) 형태의 예비 리튬 전구체 입자는 실질적으로 물에 용해되어 전이금속 전구체로부터 분리되어 우선 회수할 수 있다. 물에 용해된 리튬 수산화물을 결정화 공정 등을 통해 리튬 수산화물로 실질적으로 구성된 리튬 전구체를 수득할 수 있다.
일 실시예에 있어서, 리튬 산화물 및 리튬 카보네이트 형태의 예비 리튬 전구체 입자는 실질적으로 상기 수세 처리를 통해 제거될 수 있다. 일 실시예에 있어서, 리튬 산화물 및 리튬 카보네이트 형태의 예비 리튬 전구체 입자는 상기 수세 처리를 통해 적어도 부분적으로 리튬 수산화물로 전환될 수 있다.
일부 실시예들에 있어서, 예비 리튬 전구체를 일산화 탄소(CO), 이산화탄소(CO 2) 등과 같은 탄소 함유 가스와 반응시켜 리튬 전구체로서 리튬 카보네이트(예를 들면, Li 2CO 3)를 수득할 수 있다. 상기 탄소 함유 가스와의 반응을 통해 결정화된 리튬 전구체를 획득할 수 있다. 예를 들면, 상기 수세 처리 중 탄소 함유 가스를 함께 주입하여 리튬 카보네이트를 수집할 수 있다.
일부 실시예들에 있어서, 수집된 예비 전이금속 전구체로부터 전이금속 전구체를 수득할 수 있다(예를 들면, S40 공정).
예를 들면, 상기 예비 리튬 전구체를 배출구(108b)를 통해 수집한 후 상기 예비 전이금속 전구체를 회수할 수 있다. 이후, 상기 예비 전이금속 전구체를 산 용액으로 처리하여 각 전이금속의 산 염 형태의 전구체들을 형성할 수 있다.
일 실시예에 있어서, 상기 산 용액으로 황산을 사용할 수 있다. 이 경우, 상기 전이 금속 전구체로서 NiSO 4, MnSO 4 및 CoSO 4를 각각 회수할 수 있다.
상술한 바와 같이, 리튬 전구체는 건식 공정을 통해 수집한 후, 전이 금속 전구체들은 산 용액을 활용해 선택적으로 추출하므로 각 금속 전구체들의 순도 및 선택비가 향상되며, 습식 공정의 로드가 감소하여 폐수 및 부산물 증가를 감소시킬 수 있다.
이하, 본 발명의 이해를 돕기 위하여 구체적인 실시예들 및 비교예들을 포함하는 실험예를 제시하나, 이는 본 발명을 예시하는 것일 뿐 첨부된 특허청구범위를 제한하는 것이 아니며, 본 발명의 범주 및 기술사상 범위 내에서 실시예에 대한 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.
실시예 1
폐 리튬 이차전지로부터 분리된 양극재 100kg 양극재를 450℃에서 1시간 동안 열처리 하였다. 열처리된 상기 양극재를 작은 단위들로 절단하고, 밀링을 통해 분쇄 처리하여 Li-Ni-Co-Mn 산화물 양극 활물질 시료를 채취하였다.
반응기 바디의 직경에 대한 수평 확장 베드의 직경 비가 4인 유동층 반응기 내에 상기 양극 활물질 시료 10kg을 로딩하고 반응기 하부로부터 질소가스를 100L/min의 유량으로 주입하였다. 반응기 내부 온도는 450℃로 유지되었다.
반응기 외부로 유출된 양극활물질의 양을 측정하여 시간당 유출량 계산 결과는 하기 표 1에 기재하였다.
실시예 2 내지 3 및 비교예 1
반응기 바디의 직경에 대한 수평 확장 베드의 직경 비를 하기 표 1과 같이 조절한 점을 제외하고 실시예 1과 동일한 방법으로 반응기 외부로 유출된 양극활물질의 양을 측정하여 시간당 유출량을 기재하였다.
구분 직경 비 반응기 외부로 유출된
양극활물질의 양 [wt%/h]
실시예 1 4 0.7
실시예 2 3 1.2
실시예 3 10 0.0
비교예 1 2 38.7
표 1을 참조하면 반응기 바디의 직경에 대한 수평 확장 베드의 직경 비가 3 이상인 경우 반응기 외부로 유출되는 양극 활물질 양이 감소하였다.
[부호의 설명]
50: 베이스 플레이트 60: 분사 칼럼
80: 예비 전구체 혼합물 100: 유동층 반응기
104: 가스 유로 110: 반응기 바디
120: 반응기 하부 130: 수평 확장 베드
140: 수직 확장관 a: 경사각

Claims (8)

  1. 리튬 이차 전지의 폐 양극으로부터 획득된 폐 양극 활물질 혼합물을 준비하는 단계;
    상기 폐 양극 활물질 혼합물을 유동층 반응기 내에서 반응가스와 반응시켜 예비 전구체 혼합물을 형성하는 단계; 및
    상기 예비 전구체 혼합물로부터 선택적으로 리튬 전구체를 회수하는 단계를 포함하며,
    상기 유동층 반응기는 반응기 바디 및 수평 확장 베드를 포함하며, 상기 반응기 바디의 직경에 대한 상기 수평 확장 베드의 직경 비가 3 이상인, 리튬 이차 전지의 활성 금속 회수 방법.
  2. 청구항 1에 있어서, 상기 예비 전구체 혼합물을 형성하는 단계는 상기 반응가스에 의해 상기 반응기 바디로부터 상기 수평 확장베드로 상승한 상기 폐 양극 활물질 혼합물 또는 상기 예비 전구체 혼합물을 하강시켜 상기 반응기 바디로 수집하는 단계를 더 포함하는, 리튬 이차 전지의 활성 금속 회수 방법.
  3. 청구항 1에 있어서, 상기 반응기 바디의 직경에 대한 상기 수평 확장 베드의 직경의 비가 3 내지 10인, 리튬 이차 전지의 활성 금속 회수 방법.
  4. 청구항 1에 있어서, 상기 유동층 반응기는 상기 반응기 바디 및 상기 수평 확장 베드를 연결하는 수직 확장관을 더 포함하는, 리튬 이차 전지의 활성 금속 회수 방법.
  5. 청구항 4에 있어서, 상기 수직 확장관의 경사각이 45 내지 80°인, 리튬 이차 전지의 활성 금속 회수 방법.
  6. 청구항 1에 있어서, 상기 반응가스는 수소를 포함하는, 리튬 이차 전지의 활성 금속 회수 방법.
  7. 청구항 1에 있어서, 상기 리튬 전구체를 회수하는 단계는 상기 예비 전구체 혼합물을 수세 처리하는 단계를 포함하는, 리튬 이차 전지의 활성 금속 회수 방법.
  8. 반응기 바디;
    상기 반응기 바디와 연통되며 상기 반응기 바디의 직경 대비 3배 이상의 직경을 갖는 수평 확장 베드;
    상기 반응기 바디 및 상기 수평 확장 베드를 연결시키는 수직 확장관; 및
    상기 반응기 바디로 반응가스를 주입하는 가스 주입로를 포함하는, 유동층 반응기.
PCT/KR2020/017486 2019-12-30 2020-12-02 유동층 반응기 및 이를 이용한 리튬 이차 전지의 활성 금속 회수 방법 WO2021137453A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080091133.8A CN114901387A (zh) 2019-12-30 2020-12-02 流化床反应器及使用其从锂二次电池中回收活性金属的方法
JP2022540332A JP2023508116A (ja) 2019-12-30 2020-12-02 流動層反応器及びそれを用いたリチウム二次電池の活性金属の回収方法
EP20910822.4A EP4070882A4 (en) 2019-12-30 2020-12-02 FLUIDIZED BED REACTOR AND METHOD FOR RECOVERING AN ACTIVE METAL FROM A LITHIUM SECONDARY BATTERY
US17/855,444 US20220349022A1 (en) 2019-12-30 2022-06-30 Fluidized bed reactor and method for recovering active metal from lithium secondary battery thereby

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190178430A KR20210085419A (ko) 2019-12-30 2019-12-30 유동층 반응기 및 이를 이용한 리튬 이차 전지의 활성 금속 회수 방법
KR10-2019-0178430 2019-12-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/855,444 Continuation US20220349022A1 (en) 2019-12-30 2022-06-30 Fluidized bed reactor and method for recovering active metal from lithium secondary battery thereby

Publications (1)

Publication Number Publication Date
WO2021137453A1 true WO2021137453A1 (ko) 2021-07-08

Family

ID=76685996

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/017486 WO2021137453A1 (ko) 2019-12-30 2020-12-02 유동층 반응기 및 이를 이용한 리튬 이차 전지의 활성 금속 회수 방법

Country Status (6)

Country Link
US (1) US20220349022A1 (ko)
EP (1) EP4070882A4 (ko)
JP (1) JP2023508116A (ko)
KR (1) KR20210085419A (ko)
CN (1) CN114901387A (ko)
WO (1) WO2021137453A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10160141A (ja) * 1996-11-26 1998-06-19 Ebara Corp 固形廃棄物のガス化燃焼方法及び装置
JP2004264018A (ja) * 1994-03-10 2004-09-24 Ebara Corp 廃棄物の処理方法及びガス化及び熔融装置
KR100709268B1 (ko) 2006-05-04 2007-04-19 한국지질자원연구원 폐망간전지 및 알카라인전지 재활용 장치 및 방법
KR20150094412A (ko) * 2014-02-11 2015-08-19 타운마이닝캄파니(주) 폐 리튬 이온전지의 양극물질로부터 유가 금속을 회수하는 방법
KR101842092B1 (ko) * 2016-04-15 2018-03-26 고등기술연구원연구조합 직접환원동 제조 장치 및 방법
KR102020238B1 (ko) * 2018-04-09 2019-09-10 에스케이이노베이션 주식회사 리튬 이차 전지의 활성 금속 회수 방법

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10105669B2 (en) * 2012-08-29 2018-10-23 Hemlock Semiconductor Operations Llc Tapered fluidized bed reactor and process for its use
CN109837392A (zh) * 2019-01-25 2019-06-04 宁波行殊新能源科技有限公司 锂离子电池正极材料废料的回收及再生方法
KR20200133459A (ko) * 2019-05-20 2020-11-30 에스케이이노베이션 주식회사 리튬 전구체 분리 방법 및 리튬 전구체 분리 시스템

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004264018A (ja) * 1994-03-10 2004-09-24 Ebara Corp 廃棄物の処理方法及びガス化及び熔融装置
JPH10160141A (ja) * 1996-11-26 1998-06-19 Ebara Corp 固形廃棄物のガス化燃焼方法及び装置
KR100709268B1 (ko) 2006-05-04 2007-04-19 한국지질자원연구원 폐망간전지 및 알카라인전지 재활용 장치 및 방법
KR20150094412A (ko) * 2014-02-11 2015-08-19 타운마이닝캄파니(주) 폐 리튬 이온전지의 양극물질로부터 유가 금속을 회수하는 방법
KR101842092B1 (ko) * 2016-04-15 2018-03-26 고등기술연구원연구조합 직접환원동 제조 장치 및 방법
KR102020238B1 (ko) * 2018-04-09 2019-09-10 에스케이이노베이션 주식회사 리튬 이차 전지의 활성 금속 회수 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4070882A4

Also Published As

Publication number Publication date
US20220349022A1 (en) 2022-11-03
KR20210085419A (ko) 2021-07-08
EP4070882A4 (en) 2023-12-06
EP4070882A1 (en) 2022-10-12
CN114901387A (zh) 2022-08-12
JP2023508116A (ja) 2023-02-28

Similar Documents

Publication Publication Date Title
WO2019199014A1 (ko) 리튬 이차 전지의 활성 금속 회수 방법
WO2019199015A1 (ko) 리튬 이차 전지의 활성 금속 회수 방법
WO2020096195A1 (ko) 리튬 전구체 재생 방법 및 리튬 전구체 재생 시스템
WO2021132923A1 (ko) 유동층 반응기 및 이를 활용한 리튬 이차 전지의 활성 금속 회수 방법
WO2021187808A1 (ko) 양극 활물질용 분급기 및 이를 이용한 리튬 전구체 재생 방법
WO2020071640A1 (ko) 리튬 전구체 재생 방법 및 리튬 전구체 재생 시스템
WO2020235802A1 (ko) 리튬 전구체 분리 방법 및 리튬 전구체 분리 시스템
WO2022039436A1 (ko) 리튬 이차 전지의 활성 금속 회수 방법
KR20210085420A (ko) 유동층 반응기 및 이를 이용한 리튬 이차 전지의 활성 금속 회수 방법
WO2010126185A1 (ko) 리튬 이차전지용 올리빈형 양극 활물질의 제조방법 및 이를 이용한 리튬이차전지
WO2021167345A1 (ko) 유동층 반응기 및 이를 활용한 리튬 이차 전지의 활성 금속 회수 방법
WO2021172846A1 (ko) 리튬 이차 전지의 활성 금속 회수 방법
WO2021137453A1 (ko) 유동층 반응기 및 이를 이용한 리튬 이차 전지의 활성 금속 회수 방법
WO2021177733A1 (ko) 리튬 이차 전지의 활성 금속 회수 방법
WO2021162277A1 (ko) 리튬 이차 전지의 활성 금속 회수 방법
WO2022191499A1 (ko) 리튬 이차 전지로부터 리튬 전구체의 회수 방법
WO2024058374A1 (ko) 유동층 반응기 및 이를 이용한 리튬 이차 전지의 활성 금속 회수 방법
WO2021066362A1 (ko) 리튬 전구체의 회수 방법
WO2022191634A1 (ko) 유동층 반응기 및 이를 이용한 리튬 전구체의 재생 방법
WO2022065702A1 (ko) 리튬 이차 전지의 활성 금속 회수 방법
WO2022139310A1 (ko) 리튬 이차 전지의 활성 금속 회수 방법
WO2023048430A1 (ko) 리튬 이차 전지로부터 리튬 전구체의 회수 방법
WO2021246721A1 (ko) 리튬 이차 전지의 활성 금속 회수 방법
WO2024043603A1 (ko) 유동층 반응기 및 이를 활용한 리튬 이차 전지의 활성 금속 회수 방법
WO2022197027A1 (ko) 리튬 전구체 재생 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20910822

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022540332

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020910822

Country of ref document: EP

Effective date: 20220705

NENP Non-entry into the national phase

Ref country code: DE