WO2021153816A1 - 리튬 추출 방법 - Google Patents

리튬 추출 방법 Download PDF

Info

Publication number
WO2021153816A1
WO2021153816A1 PCT/KR2020/001372 KR2020001372W WO2021153816A1 WO 2021153816 A1 WO2021153816 A1 WO 2021153816A1 KR 2020001372 W KR2020001372 W KR 2020001372W WO 2021153816 A1 WO2021153816 A1 WO 2021153816A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
acid
solution
impurities
phosphate
Prior art date
Application number
PCT/KR2020/001372
Other languages
English (en)
French (fr)
Inventor
전웅
Original Assignee
전웅
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전웅 filed Critical 전웅
Priority to EP20916824.4A priority Critical patent/EP4098758A4/en
Priority to JP2022543737A priority patent/JP7334356B2/ja
Priority to CA3166269A priority patent/CA3166269A1/en
Priority to AU2020426496A priority patent/AU2020426496A1/en
Priority to PCT/KR2020/001372 priority patent/WO2021153816A1/ko
Publication of WO2021153816A1 publication Critical patent/WO2021153816A1/ko
Priority to US17/815,823 priority patent/US11821056B2/en
Priority to AU2024203680A priority patent/AU2024203680A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • C22B7/007Wet processes by acid leaching
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • C01D15/08Carbonates; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D7/00Carbonates of sodium, potassium or alkali metals in general
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B26/00Obtaining alkali, alkaline earth metals or magnesium
    • C22B26/10Obtaining alkali metals
    • C22B26/12Obtaining lithium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/06Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic acid solutions, e.g. with acids generated in situ; in inorganic salt solutions other than ammonium salt solutions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • It relates to a lithium extraction method.
  • lithium secondary batteries are being used in various ways as a power source for IT devices such as mobile phones and laptops, as well as attracting attention as a power source for electric vehicles. It is expected that demand for it will increase sharply.
  • Lithium is mainly used in the form of lithium carbonate (Li2CO3). Therefore, it is necessary to develop a technology capable of economically manufacturing lithium carbonate in order to manufacture electric vehicles and electric storage systems, which are expected to greatly increase demand, at a low price and smoothly supply them to the market.
  • Lithium carbonate is generally in the form of lithium carbonate (Li2CO3) by naturally evaporating natural brine containing about 0.2 to 1.5 g/L of lithium, concentrating lithium to a high concentration of about 60 g/L, and then adding carbonate. It is produced by precipitation with However, due to the high solubility of lithium carbonate (13 g/L), in order to concentrate lithium to about 60 g/L, brine must be evaporated and concentrated over a long period of more than one year, and a large amount of lithium is precipitated and lost during the evaporation and concentration process.
  • Li2CO3 lithium carbonate
  • lithium phosphate (Li3PO4) extraction method capable of minimizing the natural evaporation process has been developed (Korean Patent Registration No. 10-1363342).
  • the low solubility (0.39 g/L) of lithium phosphate can eliminate or greatly shorten the evaporation and concentration process of brine over a long period of time, as well as evaporative concentration Lithium can be extracted with a high recovery rate by suppressing the loss of lithium generated in the process.
  • lithium phosphate must be converted into lithium carbonate in order to be used as a raw material for a lithium secondary battery.
  • a low-concentration lithium hydroxide solution with a lithium concentration of 5 g/L or less is prepared by mixing Ca(OH) 2 with a high-temperature (90° C. or higher) lithium phosphate-water slurry, and the high concentration lithium concentration is 30 g/L or more by evaporation and concentration.
  • a technology for producing lithium carbonate by injecting carbon dioxide (CO2) gas after making a lithium hydroxide solution has been developed.
  • lithium phosphate is dissolved in acid to prepare a lithium solution having a lithium concentration of 0.05 g/L to 0.16 g/L, and then divalent ion alkaline earth metal and phosphorus are removed using an ion exchange resin, and bipolar electrodialysis is used.
  • a method for producing lithium carbonate by reacting an aqueous lithium hydroxide solution having a lithium concentration of 3.5 g/L to 4.5 g/L obtained by the reaction with carbon dioxide gas was developed.
  • an acid is added to a lithium phosphate-metal compound (one of iron, copper, lead, zinc, manganese, calcium, cerium, yttrium, or lanthanum compound) mixed suspension to dissolve it, and then alkali hydroxide is added to adjust the pH to 1 to
  • a method for preparing lithium carbonate by preparing a high concentration lithium solution from which metals and phosphorus are removed by adjusting to 10 and adding carbonate thereto was developed. However, using this method increases the amount of acid used to dissolve both the lithium phosphate and the metal compound.
  • an object of the present invention is to provide a method for extracting lithium having a high lithium recovery rate.
  • the method can economically produce a lithium compound from lithium phosphate because the energy consumption, raw material cost, and facility investment cost are low, and the process is simple.
  • preparing lithium phosphate containing impurities dissolving the lithium phosphate and impurities in an acid; and adding an additive to a solution in which the lithium phosphate and impurities are dissolved in acid to obtain a lithium-containing solution, wherein the additive is a material for simultaneously precipitating phosphate anions and impurities, and the lithium containing solution is basic.
  • the impurities may include alkaline earth metals.
  • the alkaline earth metal may be beryllium (Be), magnesium (Mg), calcium (Ca), strontium (Sr), barium (Ba), radium (Ra), or a combination thereof.
  • the lithium concentration in the solution in which the lithium phosphate and impurities are dissolved in an acid may be 10 to 35 g/L.
  • the acid may be hydrochloric acid, hypochlorous acid, nitric acid, acetic acid, or a combination thereof.
  • the pH of the solution in which the lithium phosphate and impurities are dissolved in an acid may be -0.1 to 4.5.
  • the additive may be an oxide or a hydroxide.
  • the additive may be an oxide or hydroxide of a cation of beryllium, magnesium, calcium, strontium, barium, radium, or a combination thereof.
  • the additive may be calcium hydroxide (Ca(OH)2), magnesium hydroxide (Mg(OH)2), or a combination thereof.
  • phosphate anions and impurities may be precipitated as poorly soluble precipitates.
  • the poorly soluble precipitate is hydroxylapatite (Hydroxylapatite, Ca5(PO4)3OH), brushite (Brushite, CaHPO4 ⁇ 2H2O), amorphous calcium-phosphorus compound, calcium hydroxide, newberyite (Newberyite, MgHPO4 ⁇ 3H2O), magnesium phosphate ( Magnesium phosphate, Mg3(PO4)2) may be an amorphous magnesium-phosphorus compound and magnesium hydroxide or a mixture thereof.
  • the pH of the obtained lithium-containing solution may be 9 or higher.
  • the pH of the obtained lithium-containing solution may be 11 or more.
  • Lithium carbonate can be obtained by adding a carbonic acid supply material to the obtained lithium-containing solution.
  • the carbonate feed material may be sodium carbonate (Na2CO3), potassium carbonate (K2CO3), ammonium carbonate ((NH4)2CO3), sodium bicarbonate (NaHCO3), potassium bicarbonate (KHCO3), or a combination thereof.
  • the method may further include washing and drying the obtained lithium carbonate.
  • a method for extracting lithium from lithium phosphate containing impurities more specifically, alkaline earth metal
  • a lithium compound e.g., lithium carbonate
  • Table 1 show the reaction filtrate obtained by mixing 10 g of magnesium-containing lithium phosphate and 0.1 L of aqueous hydrochloric acid solutions having different acidities at room temperature, stirring for 60 minutes, and then filtering to prepare a high-concentration lithium solution with a lithium concentration of 10 g/L. represents the pH and lithium concentration.
  • Table 2 shows that 10 g of magnesium-containing lithium phosphate was added to 0.1 L of an aqueous hydrochloric acid solution at room temperature to prepare a magnesium-containing lithium phosphate solution having a pH of 4.33, and 2.3 g to 23.8 g of calcium hydroxide was added, respectively, followed by stirring for 2 hours, The chemical content and pH of the reaction filtrate obtained by filtration are shown.
  • Figure 2 shows that 10 g of lithium phosphate containing magnesium is added to 0.1 L of an aqueous hydrochloric acid solution at room temperature to prepare a magnesium-containing lithium phosphate solution having a pH of 4.33, and 2.3 g to 23.8 g of calcium hydroxide is added, respectively, followed by stirring for 2 hours; The X-ray diffraction pattern of the precipitate obtained by filtration, washing and drying is shown.
  • FIG. 3 shows an X-ray diffraction pattern of a precipitate obtained by adding 6.478 g of Na2CO3 to 0.1 L of a lithium phosphate solution at room temperature from which magnesium and phosphorus have been removed, followed by stirring, filtration, washing and drying for 2 hours.
  • preparing lithium phosphate containing impurities dissolving the lithium phosphate and impurities in an acid; and adding an additive to a solution in which the lithium phosphate and impurities are dissolved in acid to obtain a lithium-containing solution, wherein the additive is a material for simultaneously precipitating phosphate anions and impurities, and the lithium containing solution is basic.
  • a high concentration lithium phosphate solution is obtained by dissolving lithium phosphate containing impurities (eg, alkaline earth metal) at room temperature using an aqueous hydrochloric acid solution, which is an example of the acidic solution;
  • impurities eg, alkaline earth metal
  • aqueous hydrochloric acid solution which is an example of the acidic solution
  • a method of removing impurities and phosphorus by adding calcium hydroxide as an example of the additive at room temperature will be described in detail.
  • lithium carbonate which is an example of carbonate
  • a high temperature eg, 105° C.
  • the dissolution of lithium phosphate containing impurities (magnesium, which is a kind of alkaline earth metal) by the aqueous hydrochloric acid solution according to the embodiment of the present invention may be performed by the following Reaction Scheme 1.
  • the magnesium-containing lithium phosphate is dissolved in hydrochloric acid at room temperature and converted into a lithium phosphate solution containing Li+, Mg 2+ , H 2 PO 4 - , Cl -.
  • the acid for dissolving the lithium phosphate may be hydrochloric acid, hypochlorous acid, nitric acid, acetic acid, or a combination thereof.
  • Sulfuric acid may react with alkaline earth metals such as calcium to form precipitation to generate acidic sludge, and since phosphorus contained in phosphoric acid is a material to be finally removed, it is preferable not to use it in order to reduce the removal cost.
  • sulfuric acid may be selectively used in part by a combination of various impurities.
  • the solubility of the lithium carbonate is 13 g/L, which is 2.5 g/L in terms of lithium concentration. Therefore, when preparing lithium carbonate by precipitating lithium carbonate from a lithium phosphate solution, the lithium concentration of the lithium phosphate solution should be 10 g/L or more in order to obtain a high lithium recovery rate of 75% or more.
  • the lithium concentration of the lithium phosphate solution is limited to 10 g/L or more.
  • the lithium recovery rate is more preferably 91.7%.
  • the pH of the reaction solution obtained by mixing lithium phosphate and an acid aqueous solution should be 4.5 or less. This will be described in more detail in the Examples to be described later.
  • the additive for removing the alkaline earth metal and phosphorus may be a substance that reacts with phosphorus at room temperature to generate a sparingly soluble compound and at the same time generates hydroxide ions (OH ⁇ ) that generate an alkaline earth metal and a sparingly soluble compound.
  • OH ⁇ hydroxide ions
  • the additive may be an alkaline earth metal oxide or hydroxide.
  • the cation of the additive may be beryllium, magnesium, calcium, barium, radium, or a combination thereof, and the additive may be an oxide or hydroxide thereof.
  • the additive may be calcium hydroxide, magnesium hydroxide, or a combination thereof.
  • Another example is calcium oxide or magnesium oxide.
  • calcium carbonate (CaCO 3 ) or magnesium carbonate (MgCO 3 ) can be heated to obtain calcium oxide or magnesium oxide.
  • CaCO 3 calcium carbonate
  • MgCO 3 magnesium carbonate
  • water is added to the calcium oxide or magnesium oxide obtained therefrom, calcium hydroxide and magnesium hydroxide can be obtained.
  • Calcium hydroxide as an example of an additive may be added at room temperature to remove impurities (eg, alkaline earth metal) and phosphorus from the lithium phosphate solution containing the impurities (eg, alkaline earth metal).
  • impurities eg, alkaline earth metal
  • phosphorus from the lithium phosphate solution containing the impurities (eg, alkaline earth metal).
  • magnesium may be precipitated as poorly soluble magnesium hydroxide, and phosphorus is in the form of poorly soluble hydroxyapatite (Hydroxylapatite, Ca 5 (PO 4 ) 3 .OH) or brushite (Brushite, CaHPO 4 .2H 2 O). may be precipitated as They can be filtered off and removed from the lithium phosphate solution.
  • phosphorus is in the form of poorly soluble hydroxyapatite (Hydroxylapatite, Ca 5 (PO 4 ) 3 .OH) or brushite (Brushite, CaHPO 4 .2H 2 O).
  • the amount of the additive may be 1 equivalent or more based on the phosphorus content in order to completely remove the phosphorus present in the lithium phosphate solution.
  • phosphorus may be completely removed and may be advantageous in terms of reaction rate.
  • the amount of the additive may be an amount capable of maintaining the pH of the lithium phosphate solution at 9 or more, or preferably at 11 or more so that the alkaline earth metal and phosphorus present in the lithium phosphate solution are precipitated and completely removed.
  • sodium carbonate as an example of a carbonate supply material may be added.
  • lithium carbonate reacts with lithium at room temperature to generate and precipitate lithium carbonate.
  • lithium carbonate when 1 equivalent or more of a lithium-containing solution from which alkaline earth metals and phosphorus have been removed is added, lithium carbonate can be obtained with a high recovery rate of 75% or more.
  • carbonate examples include sodium carbonate, potassium carbonate, ammonium carbonate, and the like.
  • the carbonate may be sodium bicarbonate, sodium carbonate, potassium bicarbonate, sodium bicarbonate, ammonium carbonate, or a combination thereof.
  • the input amount of the lithium carbonate may be 1 equivalent or more with respect to the lithium content of the lithium-containing solution. When the above range is satisfied, it may be advantageous in terms of reaction rate.
  • room temperature does not mean a constant temperature, but means a temperature in a state in which external energy is not added. Therefore, the room temperature may change depending on the place and time.
  • magnesium-containing lithium phosphate 10 g was added to 0.1 L of an aqueous hydrochloric acid solution at room temperature and stirred for 1 hour to prepare a magnesium-containing lithium phosphate solution having a pH of 4.33.
  • magnesium was precipitated in the form of poorly soluble magnesium hydroxide, most of phosphorus was precipitated as poorly soluble hydroxylapatite, and some was precipitated as lithium phosphate, which was completely removed from the magnesium-containing lithium phosphate solution.
  • the precipitate filtered from the reaction solution was washed with tap water, dried at 105° C. for 24 hours, and mineral phase analysis was performed using an X-ray diffraction analyzer. The analysis results are shown in FIG. 3 . As shown in FIG. 3 , the precipitate was observed as a single phase of lithium carbonate, indicating that lithium carbonate was well synthesized.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Extraction Or Liquid Replacement (AREA)

Abstract

리튬 추출 방법에 대한 것으로, 불순물을 포함하는 인산 리튬을 준비하는 단계; 상기 인산 리튬 및 불순물을 산(acid)에 용해시키는 단계; 상기 인산 리튬 및 불순물이 산에 용해된 용해액에, 첨가제를 투입하여 리튬 함유 용액을 수득하는 단계;를 포함하고, 상기 첨가제는 인산 음이온 및 불순물을 동시에 석출시키는 물질이고, 상기 첨가제로 인해 수득된 리튬 함유 용액은 염기성인 것인 리튬 추출 방법을 제공할 수 있다.

Description

리튬 추출 방법
리튬 추출 방법에 관한 것이다.
최근 리튬 2차전지는 휴대폰, 노트북 등의 IT 기기의 전원으로도 다양하게 활용되고 있을 뿐 아니라 전기 자동차의 동력원으로도 주목 받고 있고 가까운 미래에는 전기 자동차 및 신재생에너지 전기저장시스템(Electricity Storage System)이 크게 활성화되어 그 수요가 급증할 것으로 예상되고 있다.
전기자동차 및 전기저장시스템의 중요부품인 양극재, 음극재, 전해질의 원료로서 사용되고 리튬은 주로 탄산리튬(Li2CO3) 형태로 사용된다. 따라서, 수요가 크게 증가할 것으로 예상되는 전기자동차 및 전기저장시스템을 값 싸게 제조하여 시장에 원활하게 공급하기 위하여 탄산 리튬을 경제적으로 제조할 수 있는 기술의 개발이 필요하다.
탄산 리튬은 일반적으로 리튬을 0.2 내지 1.5g/L 정도 함유하고 있는 천연의 염수(Brine)를 자연증발 시켜 리튬을 60g/L 정도의 고농도로 농축시킨 후 탄산염을 투입하여 탄산 리튬(Li2CO3)의 형태로 석출시켜 생산된다. 그러나, 탄산 리튬의 높은 용해도(13g/L) 때문에 리튬을 60g/L 정도로 농축시키기 위하여 1년 이상 장시간에 걸쳐 염수를 증발, 농축 시켜야 하고 증발, 농축과정에서 다량의 리튬이 석출되어 손실된다.
이러한 문제점을 개선하기 위하여 자연증발공정을 최소화할 수 있는 인산 리튬(Li3PO4) 추출법이 개발되었다(대한민국 등록특허 10-1363342). 인산 리튬 추출법을 활용하여 리튬을 인산 리튬 형태로 추출할 시, 인산 리튬의 낮은 용해도 (0.39g/L) 특성으로 장기간에 걸친 염수의 증발, 농축과정을 제거하거나 크게 단축시킬 수 있을 뿐 아니라 증발농축과정에서 발생하는 리튬을 손실을 억제하여 높은 회수율로 리튬을 추출할 수 있다. 그러나, 상술한 것과 같이 인산 리튬을 리튬2차전지의 원료로 사용하기 위하여 탄산 리튬으로 변환하여야 한다.
최근, 고온 (90℃ 이상)의 인산 리튬-물 현탁액(slurry)에 Ca(OH)2를 혼합하여 리튬농도 5g/L 이하의 저농도 수산화 리튬용액을 만들고 이를 증발 농축하여 리튬농도 30g/L 이상의 고농도 수산화 리튬용액으로 만든 후 이산화탄소(CO2) 가스를 투입, 탄산 리튬을 제조하는 기술이 개발되었다.
그러나, 이러한 방법으로 인산 리튬을 탄산 리튬으로 변환시킬 시, 인산 리튬 현탁액을 고온으로 가열한 후 장시간 반응시켜야 하고 저농도 수산화 리튬 용액을 증발 농축 시켜야 하므로 에너지 비용이 증가하는 문제가 있다. (대한민국 등록특허 10-1405486)
또한, 인산리튬을 산에 용해시켜 리튬농도가 0.05g/L 내지 0.16g/L인 리튬 용액을 제조한 후, 이온교환수지를 이용하여 2가 이온 알칼리 토금속 및 인을 제거하고 바이폴라 전기투석을 이용하여 얻어진 리튬농도가 3.5g/L 내지 4.5g/L인 수산화리튬 수용액을 이산화탄소 가스와 반응시켜 탄산 리튬을 제조하는 방법이 개발되었다.
그러나, 이 방법으로 탄산 리튬을 제조 시, 리튬 용액의 리튬 농도가 너무 낮아 리튬회수율이 낮고 고가의 대형 전기분해설비가 필요할 뿐 아니라 다량의 전기를 사용함에 따라 제조비용이 크게 증가하는 문제점이 있다. (대한민국 등록특허 10-1888181)
한편, 인산 리튬-금속화합물 (철, 구리, 납, 아연, 망간, 칼슘, 세륨, 이트리움, 또는 란탄 화합물 중 하나) 혼합현탁액에 산을 투입하여 용해시킨 후 수산화알칼리를 투입하여 pH를 1내지 10으로 조절함으로써 금속 및 인이 제거된 고농도 리튬 용액을 제조하고 이에 탄산염을 첨가하여 탄산 리튬을 제조하는 방법이 개발되었다. 그러나, 이러한 방법을 사용하면 인산 리튬과 금속화합물 모두를 용해시키기 위해 산 사용량이 증가한다. 또한, 인산 리튬이 용해된 산성용액 중에 존재하는 금속이온이 석출되도록 유도하기 위해 알칼리를 투입 시, 반응용액의 pH를 1~10으로 한정함에 따라 중금속 이온이 완전히 제거되지 않을 수 있으며 인산 리튬-금속화합물 혼합물을 용해시킨 후 알칼리 투입에 의해 pH를 조절함으로써 공정이 복잡해지고 원부원료 사용량이 증가되어 경제성이 저하되는 문제점이 있다. (일본 등록특허 JP5632169B2 & JP5528153B2)
상술한 것과 같이 현재까지 개발된 인산리튬을 이용한 탄산리튬 제조 방법을 사용할 시, 낮은 리튬 회수율, 높은 에너지 비용과 설비투자비, 과다한 원부원료 비용 및 공정의 복잡성 등으로 경제성이 저하되는 문제가 있다. 따라서, 인산리튬을 이용하여 탄산리튬을 경제적으로 생산할 수 있는 기술의 개발이 절실히 요구된다.
이에, 본 발명에서는 높은 리튬 회수율을 가지는 리튬의 추출 방법을 제공하고자 한다.
또한, 상기 방법은, 에너지 사용량, 원부원료 비용 및 설비투자비용이 적을 뿐 아니라 공정이 단순하여 인산 리튬으로부터 리튬 화합물을 경제적으로 생산할 수 있다.
본 발명의 일 구현예에서는, 불순물을 포함하는 인산 리튬을 준비하는 단계; 상기 인산 리튬 및 불순물을 산(acid)에 용해시키는 단계; 상기 인산 리튬 및 불순물이 산에 용해된 용해액에, 첨가제를 투입하여 리튬 함유 용액을 수득하는 단계;를 포함하고, 상기 첨가제는 인산 음이온 및 불순물을 동시에 석출시키는 물질이고, 상기 첨가제로 인해 수득된 리튬 함유 용액은 염기성인 것인 리튬 추출 방법을 제공한다.
상기 불순물은 알칼리 토금속을 포함할 수 있다.
상기 알칼리 토금속은, 베릴륨(Be), 마그네슘(Mg), 칼슘(Ca), 스트론튬(Sr), 바륨(Ba), 라듐(Ra) 또는 이들의 조합일 수 있다.
상기 인산 리튬 및 불순물이 산에 용해된 용해액 내 리튬 농도는, 10 내지 35 g/L일 수 있다.
상기 인산 리튬 및 불순물을 산(acid)에 용해시키는 단계;에서, 산은 염산, 차아염소산, 질산, 초산 또는 이들의 조합일 수 있다.
상기 인산 리튬 및 불순물이 산에 용해된 용해액의 pH는 -0.1 내지 4.5일 수 있다.
상기 첨가제는 산화물(oxide) 또는 수산화물(hydoxide)일 수 있다.
상기 첨가제는 베릴륨, 마그네슘, 칼슘, 스트론튬, 바륨, 라듐 또는 이들의 조합의 양이온의 산화물 또는 수산화물일 수 있다.
보다 구체적으로, 상기 첨가제는 수산화 칼슘 (Ca(OH)2), 수산화 마그네슘 (Mg(OH)2), 또는 이들의 조합일 수 있다.
이로부터 인산 음이온 및 불순물이 난용성 침전물로 석출될 수 있다.
상기 난용성 침전물은 하이드록실아파타이트(Hydroxylapatite, Ca5(PO4)3OH), 부루쉬트(Brushite, CaHPO4·2H2O), 비정질 칼슘-인 화합물, 수산화칼슘, 뉴베리아이트(Newberyite, MgHPO4·3H2O), 마그네슘 포스페이트 (Magnesium phosphate, Mg3(PO4)2) 비정질 마그네슘-인 화합물 및 수산화마그네슘 또는 이들의 혼합물일 수 있다.
상기 인산 리튬 및 불순물이 산에 용해된 용해액에, 첨가제를 투입하여 리튬 함유 용액을 수득하는 단계;에서, 수득된 리튬 함유 용액의 pH는 9 이상일 수 있다.
상기 인산 리튬 및 불순물이 산에 용해된 용해액에, 첨가제를 투입하여 리튬 함유 용액을 수득하는 단계;에서, 수득된 리튬 함유 용액의 pH는 11 이상일 수 있다.
상기 수득된 리튬 함유 용액에 탄산 공급 물질을 투입하여 탄산 리튬을 수득할 수 있다.
상기 탄산 공급 물질은, 탄산나트륨(Na2CO3), 탄산칼륨(K2CO3), 탄산암모늄((NH4)2CO3), 중탄산나트륨(NaHCO3), 중탄산칼륨(KHCO3) 또는 이들의 조합일 수 있다.
상기 수득된 탄산 리튬을 세척 및 건조하는 단계를 더 포함할 수 있다.
본 발명의 일 구현예에서는, 불순물 (보다 구체적으로, 알칼리 토금속)이 포함된 인산 리튬으로부터 리튬을 추출하는 방법을 제공하여, 높은 리튬 회수율과 낮은 원부원료, 에너지 및 설비 비용으로 리튬 화합물 (예를 들어, 탄산리튬)을 경제적으로 제조할 수 있다.
도 1과 표 1은 리튬 농도 10g/L의 고농도 리튬용액을 제조하기 위하여 마그네슘 함유 인산리튬 10g과 산성도가 다른 염산수용액들 0.1L를 각각 상온에서 혼합하고 60분 동안 교반한 후 여과하여 얻어진 반응여액의 pH와 리튬 농도를 나타낸다.
표 2는 마그네슘이 함유된 인산리튬 10g을 상온의 염산수용액 0.1L에 투입하여 pH 4.33인 마그네슘 함유 인산리튬 용해액을 제조하고 수산화 칼슘을 각각 2.3g 내지 23.8g을 투입한 후 2시간 동안 교반, 여과하여 얻어진 반응여액의 화학성분 함량 및 pH를 나타낸다.
도 2는 마그네슘이 함유된 인산리튬 10g을 상온의 염산수용액 0.1L에 투입하여 pH 4.33인 마그네슘 함유 인산리튬 용해액을 제조하고 수산화 칼슘을 각각 2.3g 내지 23.8g을 투입한 후 2시간 동안 교반, 여과, 세척 및 건조하여 얻어진 석출물의 X선 회절패턴을 나타낸다.
도 3은 마그네슘 및 인이 제거된 상온의 인산리튬 용해액 0.1L에 Na2CO3 6.478g을 투입한 후 2시간 동안 교반, 여과, 세척 및 건조하여 얻어진 석출물의 X선 회절패턴을 나타낸다.
이하, 첨부한 본 발명의 여러 실시예들에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예들에 한정되지 않는다.
본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조 부호를 붙이도록 한다.
또한, 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.
본 발명의 일 구현예에서는, 불순물을 포함하는 인산 리튬을 준비하는 단계; 상기 인산 리튬 및 불순물을 산(acid)에 용해시키는 단계; 상기 인산 리튬 및 불순물이 산에 용해된 용해액에, 첨가제를 투입하여 리튬 함유 용액을 수득하는 단계;를 포함하고, 상기 첨가제는 인산 음이온 및 불순물을 동시에 석출시키는 물질이고, 상기 첨가제로 인해 수득된 리튬 함유 용액은 염기성인 것인 리튬 추출 방법을 제공한다.
본 발명의 일 구현예는 상기 산성용액의 일 예인 염산 수용액을 이용하여 불순물(예를 들어, 알칼리 토금속)이 포함된 인산 리튬을 상온에서 용해하여 고농도 인산 리튬 용해액을 얻고; 상기 첨가제의 일 예인 수산화 칼슘을 상온에서 투입하여 불순물 및 인을 제거하는 방법을 예로 들어 구체적으로 설명하도록 한다.
이후 단계에서, 수득된 리튬 함유 용액에 탄산염의 일예인 탄산 나트륨을 상온에서 투입하여 탄산 리튬을 얻고; 이를 수돗물로 세척하고 고온(예를 들어, 105℃)에서 건조하여 탄산 리튬을 경제적으로 제조하는 방법을 설명하도록 한다.
상기 본 발명의 일 구현예에 따른 염산 수용액에 의한 불순물(알칼리 토금속의 일종인 마그네슘) 함유 인산 리튬의 용해는 하기 반응식 1에 의해 진행될 수 있다.
[반응식 1]
(Mg,Li)PO4 + 2HCl + 3H2O -> Li+ + Mg2+ + H2PO4 - + 2Cl- + 3H2O
즉, 상기 마그네슘 함유 인산 리튬은 상온에서 염산에 용해되어 Li+, Mg2+, H2PO4 -, Cl-이 함유된 인산 리튬 용해액으로 변환된다.
상기 인산 리튬을 용해시키기 위한 산의 구체적인 예로는 염산, 차아염소산, 질산, 초산 또는 이들의 조합일 수 있다. 황산은 칼슘 등의 알칼리 토금속과 반응하여 침전을 생성시켜 산성 슬러지를 발생시킬 수 있고 인산에 함유된 인은 최종적으로 제거되어야 하는 물질이므로 제거비용을 감소시키기 위하여 사용하지 않는 것이 바람직하다. 다만, 다양한 불순물의 조합에 의해 황산이 선택적으로 일부 사용될 수도 있다.
상기 탄산 리튬의 용해도는 13g/L로 리튬 농도로 환산하면 2.5g/L이다. 따라서, 인산 리튬 용해액으로부터 탄산 리튬을 석출시켜 제조할 시, 75% 이상의 높은 리튬 회수율을 얻기 위해서 인산 리튬 용해액의 리튬 농도는 10g/L 이상이어야 한다.
따라서, 본 발명에서는 인산리튬 용해액의 리튬 농도를 10g/L 이상으로 한정한다. 한편, 인산리튬 용해액의 리튬농도가 30g/L이면 리튬 회수율이 91.7%로 더욱 바람직하다.
하기 실시예에 나타난 것과 같이, 리튬농도 10g/L 이상의 인산리튬 용해액을 얻기 위하여 인산리튬과 산 수용액을 혼합하여 얻어진 반응용액의 pH가 4.5 이하이어야 한다. 이에 대해서는 후술하는 실시예에서 보다 자세히 설명 하도록 한다.
상기 본 발명의 일 구현예에 따른 알칼리 토금속 및 인의 제거는 하기 반응식 2 또는 반응식 3에 의해 진행될 수 있다.
[반응식 2]
Li+ + Mg2+ + H2PO4 - + 2Cl- + 3H2O + Ca(OH)2 -> Li+ + H+ + 2Cl- + Mg(OH)2 + CaHPO4·2H2O + H2O
[반응식 3]
3Li+ + 3Mg2+ + 3H2PO4 - + 6Cl- + 9H2O + 5Ca(OH)2 -> 3Li+ + Cl- + 2OH- + 3Mg(OH)2 + Ca5(PO4)3·OH + 10H2O + 5HCl(g)
상기 알칼리 토금속 및 인 제거를 위한 첨가제는 상온에서 인과 반응하여 난용성 화합물을 생성시킴과 동시에 알칼리 토금속과 난용성 화합물을 생성하는 수산화이온 (OH-)를 발생시키는 물질 일 수 있다. 이로 인해 인과 불순물인 알칼리 토금속을 동시에 석출시킬 수 있다.
보다 구체적으로 상기 첨가제는 알칼리 토금속 산화물 또는 수산화물일 수 있다.
구체적인 예로, 상기 첨가제의 양이온은 베릴륨, 마그네슘, 칼슘, 바륨, 라듐 또는 이들의 조합일 수 있으며, 첨가제는 이들의 산화물이나 수산화물일 수 있다.
예들 들어, 상기 첨가제는 수산화 칼슘, 수산화 마그네슘, 또는 이들의 조합일 수 있다. 또 다른 예로 산화 칼슘이나 산화 마그네슘도 가능하다.
예를 들어 탄산칼슘(CaCO3)나 탄산마그네슘(MgCO3)을 가열하여 산화 칼슘이나 산화 마그네슘을 얻을 수 있다. 이로부터 얻어진 산화 칼슘이나 산화 마그네슘에 물을 첨가하는 경우 수산화 칼슘 및 수산화 마그네슘을 얻을 수 있다.
상기 불순물(예를 들어, 알칼리 토금속)이 포함된 인산 리튬 용해액으로부터 불순물(예를 들어, 알칼리 토금속) 및 인을 제거하기 위하여 첨가제의 일 예인 수산화 칼슘이 상온에서 투입될 수 있다.
상기 구체적인 예에서 마그네슘은 난용성 수산화 마그네슘으로 석출될 수 있으며, 인은 난용성 하이드록시아파타이트 (Hydroxylapatite, Ca5(PO4)3·OH) 또는 부루쉬트(Brushite, CaHPO4·2H2O) 형태로 석출될 수 있다. 이들은 여과되어 인산 리튬 용해액으로부터 제거될 수 있다.
상기 첨가제의 투입량은 상기 인산 리튬 용해액에 존재하는 인을 완전히 제거하기 위하여 인 함량에 대해 1당량 이상일 수 있다. 상기 범위를 만족하는 경우 인을 완전히 제거할 수 있을 뿐 아니라 반응속도 측면에서도 유리할 수 있다.
상기 첨가제의 투입량은 상기 인산 리튬 용해액에 존재하는 알칼리 토금속 및 인이 석출되어 완전히 제거될 수 있도록 인산리튬 용해액의 pH를 9 이상 또는 바람직하게 11 이상으로 유지할 수 있는 투입량일 수 있다.
상기 본 발명의 일 구현예에 따른 탄산 리튬의 제조는 하기 반응식 4에 의해 진행될 수 있다.
상기 본 발명의 일 구현예에 따른 상기 알칼리 토금속 및 인이 제거된 상온의 리튬 함유 용액으로부터 탄산 리튬을 석출시키기 위하여 탄산 공급 물질의 일 예인 탄산나트륨이 투입될 수 있다.
[반응식 4]
6Li+ + 2Cl- + 4OH- + 20H2O + 3Na2CO3 -> 3Li2CO3 + 6Na+ + 2Cl- + 4OH- + 20H2O
즉, 상기 탄산 나트륨은 상온에서 리튬과 반응하여 탄산 리튬을 생성, 석출시킨다. 또한, 알칼리 토금속 및 인이 제거된 리튬 함유 용액을 1당량 이상 투입하면, 75% 이상의 높은 회수율로 탄산 리튬을 얻을 수 있다.
상기 탄산염의 구체적인 예는 탄산나트륨, 탄산칼륨, 탄산암모늄 등이다.
보다 구체적으로 상기 탄산염은 중탄산나트륨, 탄산나트륨, 중탄산칼륨, 중탄산나트륨, 탄산암모늄또는 이들의 조합일 수 있다.
상기 탄산 리튬 투입량은 상기 리튬 함유 용액의 리튬 함량에 대해 1당량 이상일 수 있다. 상기 범위를 만족하는 경우 반응속도 측면에서 유리할 수 있다.
본 명세서에서 상온은 일정한 온도를 의미하는 것이 아니며, 외부적인 에너지의 부가 없는 상태의 온도를 의미한다. 따라서, 장소, 시간에 따라 상온은 변화될 수 있다.
이하 구체적인 실시예를 들어 본 발명을 설명하도록 한다. 다만, 하기 실시예에 본 발명의 청구범위가 한정되는 것은 아니다.
[실시예 1]
리튬 농도 10g/L의 고농도 리튬 용액을 제조하기 위하여 마그네슘 함유 인산 리튬 10g과 산성도가 다른 염산수용액 0.1L를 각각 상온에서 혼합한 후 60분 동안 교반 하였다.
교반이 완료된 후 반응 용액들을 여과하여 pH와 리튬 농도를 측정하였고 그 결과를 도 1과 표 1에 나타내었다.
도 1에 나타난 것과 같이 반응용액의 pH가 감소함에 따라 인산 리튬이 용해되어 리튬 농도가 점차적으로 증가하였다. 반응 여액 pH가 4.5 이하에 도달하면 리튬 농도 약 10g/L를 나타내었고 반응 여액의 pH를 4.5 이하로 감소시켜도 더 이상 리튬 농도가 증가하지 않는 것을 알 수 있었다.
이로부터 반응 여액 pH 4.5 이하에서는 투입된 모든 인산 리튬이 용해된다는 것을 알 수 있다. 한편, 반응 여액의 pH가 -1.0 이하로 과도하게 낮을 시에도 인산 리튬을 모두 용해시킬 수는 있으나 염산의 사용량이 과도하게 증가되는 문제점이 있다.
반응여액리튬농도(g/L) 0.789 3.165 4.841 6.884 9.070 10.003 11.008
반응여액pH 8.26 6.89 5.80 5.13 4.73 4.48 3.93
반응여액리튬농도(g/L) 9.997 9.667 9.829 9.769 9.669 - -
반응여액pH 3.10 1.72 1.03 -0.55 -1.0 - -
[실시예 2]
마그네슘이 함유된 인산 리튬 10g을 상온의 염산수용액 0.1L에 투입하여 1시간 동안 교반하여 pH 4.33인 마그네슘 함유 인산 리튬 용해액을 제조하였다.
상기 인산 리튬 용해액에 수산화 칼슘을 각각 2.3g 내지 23.8g을 투입하고 2시간 동안 교반한 후 석출물을 여과하였다.
하기 표 2에 나타난 것과 같이 반응 여액의 pH가 11 이상인 경우 인과 마그네슘이 완전히 제거되는 것을 알 수 있다. 수산화 칼슘을 다량으로 투입하여 반응용액의 pH를 14 이상으로 증가시켜도 인과 마그네슘을 완전히 제거할 수 있으나 원부원료 비용이 증가하고 미 반응 석출물 사이에 층간수가 존재하여 리튬 회수율을 감소시키므로 바람직하게는 알칼리 토금속 산화물 또는 수산화물을 투입한 인산리튬 용해액의 pH를 11 내지 14 이하로 제어할 수 있다.
한편, 반응 용액으로부터 여과된 석출물은 수돗물로 세척된 후 105℃에서 24시간 건조되었다. 반응용액 pH 11.35를 나타낸 석출물의 광물상을 X선 회절분석기를 이용하여 분석하였고 그 결과를 도 2에 나타내었다.
도 2에 나타난 것과 같이 마그네슘은 난용성 수산화 마그네슘 형태로 석출되었고 인은 대부분 난용성 하이드록실아파타이트로 석출되었으며 일부는 인산리튬으로 석출되어 마그네슘 함유 인산리튬 용해액으로부터 완전히 제거되었다.
구 분 Li P Mg 반응용액pH
반응여액화학성분함량(mg/L) 마그네슘 함유 인산리튬 용해액 10,198 16,751 2,394 4.33
Ca(OH)2투입량(g) 2.31 8,160 959 653 5.40
3 8.132 429 380 7.50
3.79 7.691 7 309 9.41
5.05 8.230 3 19 9.81
5.4 8.199 1 13 10.34
5.68 8.017 0 0 11.35
5.92 8.015 0 0 11.75
23.8 9.498 0 0 12.23
[실시예 3]
마그네슘 및 인이 제거된 상온의 리튬 함유 용액 1L에 Na2CO3 64.78g을 투입한 후 2시간 동안 교반하여 반응시키고 석출물을 여과하였다.
반응용액으로부터 여과된 석출물은 수돗물로 세척된 후 105℃에서 24시간 건조되었고 X선 회절분석기를 이용하여 광물상 분석이 진행되었다. 분석결과는 도 3에 나타내었다. 도 3에 나타난 것과 같이 석출물은 탄산리튬 단일상으로 관찰됨에 따라 탄산리튬이 잘 합성된 것을 알 수 있다.
본 발명은 상기 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 제조될 수 있으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.

Claims (12)

  1. 불순물을 포함하는 인산 리튬을 준비하는 단계;
    상기 인산 리튬 및 불순물을 산(acid)에 용해시키는 단계;
    상기 인산 리튬 및 불순물이 산에 용해된 용해액에, 첨가제를 투입하여 리튬 함유 용액을 수득하는 단계;를 포함하고,
    상기 첨가제는 인산 음이온 및 불순물을 동시에 석출시키는 물질이고, 상기 첨가제로 인해 수득된 리튬 함유 용액은 염기성인 것인 리튬 추출 방법.
  2. 제1항에 있어서,
    상기 불순물은 알칼리 토금속을 포함하는 것인 리튬 추출 방법.
  3. 제2항에 있어서,
    상기 알칼리 토금속은, 베릴륨(Be), 마그네슘(Mg), 칼슘(Ca), 스트론튬(Sr), 바륨(Ba), 라듐(Ra) 또는 이들의 조합인 것인 리튬 추출 방법.
  4. 제1항에 있어서,
    상기 인산 리튬 및 불순물이 산에 용해된 용해액 내 리튬 농도는,
    10 내지 35 g/L인 것인 리튬 추출 방법.
  5. 제1항에 있어서,
    상기 인산 리튬 및 불순물을 산(acid)에 용해시키는 단계;에서,
    산은 염산, 차아염소산, 질산, 초산 또는 이들의 조합인 것인 리튬 추출 방법.
  6. 제1항에 있어서,
    상기 인산 리튬 및 불순물이 산에 용해된 용해액의 pH는 -0.1 내지 4.5인 것인 리튬 추출 방법.
  7. 제1항에 있어서,
    상기 첨가제는 산화물(oxide) 또는 수산화물(hydoxide)인 것인 리튬 추출 방법.
  8. 제7항에 있어서,
    상기 첨가제는 베릴륨, 마그네슘, 칼슘, 스트론튬, 바륨, 라듐 또는 이들의 조합의 양이온의 산화물 또는 수산화물인 것인 리튬 추출 방법.
  9. 제1항에 있어서,
    상기 인산 리튬 및 불순물이 산에 용해된 용해액에, 첨가제를 투입하여 리튬 함유 용액을 수득하는 단계;에서,
    수득된 리튬 함유 용액의 pH는 9 이상인 것인 리튬 추출 방법.
  10. 제1항에 있어서,
    상기 인산 리튬 및 불순물이 산에 용해된 용해액에, 첨가제를 투입하여 리튬 함유 용액을 수득하는 단계;에서,
    수득된 리튬 함유 용액의 pH는 11 이상인 것인 리튬 추출 방법.
  11. 제1항에 있어서,
    상기 수득된 리튬 함유 용액에 탄산 공급 물질을 투입하여 탄산 리튬을 수득하는 것인 리튬 추출 방법
  12. 제11항에 있어서,
    상기 탄산 공급 물질은, 탄산나트륨(Na2CO3), 탄산칼륨(K2CO3), 탄산암모늄((NH4)2CO3), 중탄산나트륨(NaHCO3), 중탄산칼륨(KHCO3) 또는 이들의 조합인 것인 리튬 추출 방법.
PCT/KR2020/001372 2020-01-29 2020-01-29 리튬 추출 방법 WO2021153816A1 (ko)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP20916824.4A EP4098758A4 (en) 2020-01-29 2020-01-29 LITHIUM EXTRACTION PROCESS
JP2022543737A JP7334356B2 (ja) 2020-01-29 2020-01-29 リチウム抽出方法
CA3166269A CA3166269A1 (en) 2020-01-29 2020-01-29 Lithium extraction method
AU2020426496A AU2020426496A1 (en) 2020-01-29 2020-01-29 Lithium extraction method
PCT/KR2020/001372 WO2021153816A1 (ko) 2020-01-29 2020-01-29 리튬 추출 방법
US17/815,823 US11821056B2 (en) 2020-01-29 2022-07-28 Lithium extraction method
AU2024203680A AU2024203680A1 (en) 2020-01-29 2024-05-31 Lithium Extraction Method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2020/001372 WO2021153816A1 (ko) 2020-01-29 2020-01-29 리튬 추출 방법

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/815,823 Continuation US11821056B2 (en) 2020-01-29 2022-07-28 Lithium extraction method

Publications (1)

Publication Number Publication Date
WO2021153816A1 true WO2021153816A1 (ko) 2021-08-05

Family

ID=77079149

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/001372 WO2021153816A1 (ko) 2020-01-29 2020-01-29 리튬 추출 방법

Country Status (6)

Country Link
US (1) US11821056B2 (ko)
EP (1) EP4098758A4 (ko)
JP (1) JP7334356B2 (ko)
AU (2) AU2020426496A1 (ko)
CA (1) CA3166269A1 (ko)
WO (1) WO2021153816A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220372594A1 (en) * 2020-01-29 2022-11-24 Uong CHON Lithium extraction method
CN115818675A (zh) * 2022-12-07 2023-03-21 湖南国重智能科技有限公司 一种含锂铝废电解质综合利用的方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3538266B1 (en) 2016-11-14 2024-08-21 Lilac Solutions, Inc. Lithium extraction with coated ion exchange particles
AR112663A1 (es) 2017-08-02 2019-11-27 Lilac Solutions Inc Extracción de litio con perlas porosas de intercambio iónico
AR114412A1 (es) 2018-02-28 2020-09-02 Lilac Solutions Inc Reactor de intercambio iónico con trampas de partículas para la extracción de litio
CA3178825A1 (en) 2020-06-09 2021-12-16 David Henry SNYDACKER Lithium extraction in the presence of scalants
AR125722A1 (es) 2021-04-23 2023-08-09 Lilac Solutions Inc Dispositivos de intercambio iónico para la extracción de litio
WO2023192192A1 (en) 2022-03-28 2023-10-05 Lilac Solutions, Inc. Lithium extraction enhanced by an alternate phase
WO2024077269A2 (en) * 2022-10-07 2024-04-11 Lilac Solutions, Inc. Integrated systems and methods for lithium recovery
US11732326B1 (en) * 2023-02-08 2023-08-22 Extractive Metallurgy Consultancy, LLC Extraction of lithium from mudstone and sequestration of carbon dioxide

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101363342B1 (ko) 2012-07-04 2014-02-19 정현주 몰딩 복합체 판재를 이용한 복합판재 제조방법
KR101405486B1 (ko) 2012-04-05 2014-06-13 주식회사 포스코 수산화리튬의 제조 방법 및 이를 이용한 탄산리튬의 제조 방법
JP5528153B2 (ja) 2010-02-22 2014-06-25 エコシステムリサイクリング株式会社 リチウム含有液からの高濃度リチウム溶液の製造方法および炭酸リチウムの製造方法
JP5632169B2 (ja) 2010-02-22 2014-11-26 エコシステムリサイクリング株式会社 リチウム含有液からのリチウム濃縮液の製造方法および炭酸リチウムの製造方法
KR20160129657A (ko) * 2015-04-30 2016-11-09 재단법인 포항산업과학연구원 수산화리튬, 및 탄산리튬의 제조 방법 및 그 장치
KR20180069736A (ko) * 2016-12-15 2018-06-25 주식회사 포스코 인산리튬으로부터 수산화리튬을 제조하는 방법
KR101888181B1 (ko) 2016-12-23 2018-08-13 주식회사 포스코 수산화리튬 및 탄산리튬의 제조방법
KR20200058611A (ko) * 2018-11-07 2020-05-28 전웅 리튬 추출 방법

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1824377A1 (ru) 1991-01-21 1993-06-30 N Proizv Organizatsiya Vnedren Способ извлечения лития из литийсодержащего раствора
KR101257434B1 (ko) * 2010-12-14 2013-04-24 재단법인 포항산업과학연구원 염수로부터 경제적으로 고순도의 인산리튬을 추출하는 방법
KR101405484B1 (ko) * 2012-07-31 2014-06-13 재단법인 포항산업과학연구원 리튬 함유 용액으로부터 리튬을 추출하는 방법
WO2016175613A1 (ko) 2015-04-30 2016-11-03 재단법인 포항산업과학연구원 수산화리튬, 및 탄산리튬의 제조 방법 및 그 장치
AR109192A1 (es) 2016-08-08 2018-11-07 Enirgi Know How Pte Ltd Un proceso para la conversión de fosfato de litio en una solución baja de fosfato de litio adecuada como materia prima para la producción de productos de litio vendibles y para la recuperación de fósforo para re-utilización en la producción de fosfato de litio
CN106745099A (zh) 2016-12-05 2017-05-31 天津二八科技股份有限公司 一种利用磷酸锂制备碳酸锂的方法
KR101946483B1 (ko) * 2016-12-23 2019-02-11 주식회사 포스코 수산화리튬 수용액의 제조 방법 및 이를 이용한 탄산리튬의 제조 방법
KR102043775B1 (ko) * 2017-09-26 2019-11-12 주식회사 포스코 탄산 리튬의 제조 방법
CN108285156B (zh) 2017-11-24 2019-10-25 中南大学 一种从含磷酸锂废渣中提取高纯碳酸锂或氢氧化锂的方法
CN108281726B (zh) 2017-11-27 2020-06-02 中南大学 一种从含磷酸锂废渣中提取氢氧化锂的方法
KR102029195B1 (ko) 2017-12-18 2019-10-07 주식회사 포스코 인산 리튬으로부터 수산화 리튬을 제조하는 방법
CN109987616B (zh) 2019-05-08 2021-07-30 上海中锂实业有限公司 一种由磷酸锂直接制备电池级氢氧化锂的方法
JP7334356B2 (ja) * 2020-01-29 2023-08-28 ウン チョン リチウム抽出方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5528153B2 (ja) 2010-02-22 2014-06-25 エコシステムリサイクリング株式会社 リチウム含有液からの高濃度リチウム溶液の製造方法および炭酸リチウムの製造方法
JP5632169B2 (ja) 2010-02-22 2014-11-26 エコシステムリサイクリング株式会社 リチウム含有液からのリチウム濃縮液の製造方法および炭酸リチウムの製造方法
KR101405486B1 (ko) 2012-04-05 2014-06-13 주식회사 포스코 수산화리튬의 제조 방법 및 이를 이용한 탄산리튬의 제조 방법
KR101363342B1 (ko) 2012-07-04 2014-02-19 정현주 몰딩 복합체 판재를 이용한 복합판재 제조방법
KR20160129657A (ko) * 2015-04-30 2016-11-09 재단법인 포항산업과학연구원 수산화리튬, 및 탄산리튬의 제조 방법 및 그 장치
KR20180069736A (ko) * 2016-12-15 2018-06-25 주식회사 포스코 인산리튬으로부터 수산화리튬을 제조하는 방법
KR101888181B1 (ko) 2016-12-23 2018-08-13 주식회사 포스코 수산화리튬 및 탄산리튬의 제조방법
KR20200058611A (ko) * 2018-11-07 2020-05-28 전웅 리튬 추출 방법

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220372594A1 (en) * 2020-01-29 2022-11-24 Uong CHON Lithium extraction method
US11821056B2 (en) * 2020-01-29 2023-11-21 Uong CHON Lithium extraction method
CN115818675A (zh) * 2022-12-07 2023-03-21 湖南国重智能科技有限公司 一种含锂铝废电解质综合利用的方法
CN115818675B (zh) * 2022-12-07 2024-01-23 湖南国重智能科技有限公司 一种含锂铝废电解质综合利用的方法

Also Published As

Publication number Publication date
AU2024203680A1 (en) 2024-06-20
CA3166269A1 (en) 2021-08-05
JP7334356B2 (ja) 2023-08-28
EP4098758A1 (en) 2022-12-07
JP2023512495A (ja) 2023-03-27
EP4098758A4 (en) 2023-01-04
US20220372594A1 (en) 2022-11-24
US11821056B2 (en) 2023-11-21
AU2020426496A1 (en) 2022-09-01

Similar Documents

Publication Publication Date Title
WO2021153816A1 (ko) 리튬 추출 방법
WO2020116795A1 (ko) 리튬 정광으로부터 황산나트튬 혼합 배소에 의한 수산화리튬 제조방법
WO2019198972A1 (ko) 리튬이온 2차전지의 폐 양극재를 이용한 수산화리튬 일수화물의 제조방법
KR102145110B1 (ko) 리튬 추출 방법
CN114655969B (zh) 高杂磷酸铁锂正极废料回收制备碳酸锂和磷酸铁的方法
WO2013089400A1 (en) Method for extraction of lithium from lithium bearing solution
WO2021015378A1 (ko) 수산화 리튬의 제조 방법
WO2023191414A1 (ko) 블랙 매스로부터 이차전지 소재의 제조방법
CN107641714A (zh) 一种含铅原料湿法回收处理方法
US20240239660A1 (en) Method for preparing lithium iron phosphate using by-product ferrous sulfate from titanium dioxide
WO2022045747A1 (ko) 리튬을 함유하는 원료에서 수산화리튬을 제조하는 방법
CN113716539B (zh) 一种用湿法炼锌高铁溶液制备磷酸铁前驱体的方法
CN111017900A (zh) 一种电池级磷酸铁的制备方法
WO2024117882A1 (ko) 수산화 리튬의 경제적 제조 방법
WO2021145488A1 (ko) 리튬 추출 방법
KR20190035210A (ko) 탄산 리튬의 제조 방법
RU2787034C1 (ru) Способ извлечения лития
CN112938916A (zh) 一种控制结晶制备高性价比磷酸铁锂前驱体的合成方法
KR102558188B1 (ko) 폐 인산화물계 리튬전지 재료로부터 불순물 제거 방법
KR102489066B1 (ko) 리튬 추출 방법, 이를 이용한 탄산리튬 제조 방법 및 수산화리튬 제조 방법
WO2024135907A1 (ko) 탄산리튬을 이용한 수산화리튬의 제조방법
WO2022080570A1 (ko) 탄산리튬과 수산화바륨을 이용한 수산화리튬 제조 방법
CN118299711B (zh) 利用电芬顿技术协同处理废旧磷酸铁锂电池的方法
WO2024128655A1 (ko) 알루미늄계 리튬 흡착제 및 이의 제조방법
RU2801188C1 (ru) Способ получения фосфата железа из железосодержащих отходов

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20916824

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022543737

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3166269

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020426496

Country of ref document: AU

Date of ref document: 20200129

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020916824

Country of ref document: EP

Effective date: 20220829