WO2022080570A1 - 탄산리튬과 수산화바륨을 이용한 수산화리튬 제조 방법 - Google Patents

탄산리튬과 수산화바륨을 이용한 수산화리튬 제조 방법 Download PDF

Info

Publication number
WO2022080570A1
WO2022080570A1 PCT/KR2020/016622 KR2020016622W WO2022080570A1 WO 2022080570 A1 WO2022080570 A1 WO 2022080570A1 KR 2020016622 W KR2020016622 W KR 2020016622W WO 2022080570 A1 WO2022080570 A1 WO 2022080570A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
hydroxide
carbonate
barium
baco
Prior art date
Application number
PCT/KR2020/016622
Other languages
English (en)
French (fr)
Inventor
김명준
Original Assignee
전남대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전남대학교산학협력단 filed Critical 전남대학교산학협력단
Publication of WO2022080570A1 publication Critical patent/WO2022080570A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • C01D15/02Oxides; Hydroxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Definitions

  • the present invention relates to a method for manufacturing lithium hydroxide using lithium carbonate and barium hydroxide, and more specifically, lithium hydroxide can be directly manufactured using lithium carbonate and barium hydroxide with high purity and low lithium loss rate, and in the prior art. It relates to an eco-friendly method for manufacturing lithium hydroxide because the process is simple, economical, energy efficiency is improved, and there is no waste generation.
  • lithium carbonate has been the main raw material for manufacturing battery cathode materials, but as the energy capacity of cathode materials is required to increase, NCM and NCA-based cathode materials that use lithium hydroxide as raw materials instead of lithium carbonate are mainstream.
  • Lithium has traditionally been extracted from salt lakes and ores.
  • lithium hydroxide is prepared by eluting the ore into water to prepare a lithium sulfur oxide solution, and then passing through lithium carbonate having low water solubility in the same manner as in the process of extracting lithium from a salt lake.
  • the conventional lithium hydroxide manufacturing method has a problem in that it is difficult to recover lithium below the solubility of lithium carbonate as an intermediate product.
  • lithium carbonate is dissolved in water and reacted with calcium hydroxide to remove calcium carbonate generated as a precipitate, and then concentrated lithium hydroxide remaining in the solution to obtain high purity lithium hydroxide.
  • reaction of Scheme 1 proceeds as an aqueous reaction, but the aqueous solubility of lithium carbonate and calcium hydroxide as reactants is very low, 1.29 g/100ml (25 E') and 0.173 g/100mL (20 E'), respectively, at once. Since the amount of reactants that can be reacted is limited and a relatively large amount of water is used, the amount of water that needs to be evaporated to separate lithium hydroxide later increases, thereby increasing energy consumption.
  • the lithium hydroxide solution contains calcium carbonate to some extent, and calcium ions derived therefrom can greatly reduce the performance of the lithium ion battery.
  • the obtained lithium hydroxide has a problem in that it is necessary to undergo recrystallization treatment 2-3 times to obtain battery-grade high-purity lithium hydroxide.
  • the present invention has been devised to solve the above-mentioned problems, and it is possible to directly manufacture lithium hydroxide with high purity and low lithium loss rate using lithium carbonate and barium hydroxide, and the process is simple compared to the prior art, so it is economical and energy-efficient It aims to provide an eco-friendly method for manufacturing lithium hydroxide with improved efficiency and no waste generation.
  • Lithium hydroxide manufacturing method using lithium carbonate and barium hydroxide in order to achieve the above object, lithium carbonate (Li 2 CO 3 ) and barium hydroxide (Ba(OH) 2 ) by mixing in a certain ratio Preparing a first mixture, roasting the first mixture to prepare a second mixture converted to insoluble barium carbonate (BaCO 3 ) and water-soluble lithium hydroxide (LiOH), dissolving the second mixture to make the insoluble of precipitating the barium carbonate (BaCO 3 ), separating the precipitated barium carbonate (BaCO 3 ) from solid-liquid, and evaporating the solution from which the barium carbonate (BaCO 3 ) is separated to obtain lithium hydroxide (LiOH) may include steps.
  • the lithium hydroxide manufacturing method using lithium carbonate and barium hydroxide comprises the steps of preparing a first solution in which lithium carbonate (Li 2 CO 3 ) is dissolved, barium hydroxide (Ba(OH) 2 ) Preparing this dissolved second solution, mixing the first solution and the second solution and reacting to prepare a reaction solution consisting of insoluble barium carbonate (BaCO 3 ) and water-soluble lithium hydroxide (LiOH); Solid-liquid separation of insoluble barium carbonate (BaCO 3 ) from the reaction solution and the step of evaporating the reaction solution from which the barium carbonate (BaCO 3 ) is separated to obtain lithium hydroxide (LiOH).
  • lithium carbonate (Li 2 CO 3 ) and barium hydroxide (Ba(OH) 2 ) may be mixed in a molar ratio of 1:1.
  • the step of preparing a second mixture converted to insoluble barium carbonate (BaCO 3 ) and water-soluble lithium hydroxide (LiOH) by roasting the first mixture is roasting in an electric furnace at 160 to 200° C. for 2 to 4 hours.
  • the first solution and the second solution are mixed and reacted to prepare a reaction solution composed of insoluble barium carbonate (BaCO 3 ) and water-soluble lithium hydroxide (LiOH) at room temperature.
  • a reaction solution composed of insoluble barium carbonate (BaCO 3 ) and water-soluble lithium hydroxide (LiOH) at room temperature.
  • the lithium hydroxide manufacturing method using lithium carbonate and barium hydroxide according to an embodiment of the present invention can not only directly produce lithium hydroxide with high purity and low lithium loss rate using lithium carbonate and barium hydroxide, but also has a lower process compared to the prior art. It is economical because it is simple, and energy efficiency is improved, and there is no waste, so it has excellent eco-friendly effects.
  • FIG. 1 is an overall process diagram of a method for manufacturing lithium hydroxide using lithium carbonate and barium hydroxide according to an embodiment of the present invention.
  • FIG. 3 shows that lithium carbonate (Li 2 CO 3 ) and barium hydroxide (Ba(OH) 2 ) are reacted according to an embodiment of the present invention to produce lithium hydroxide (LiOH) and barium carbonate (BaCO 3 ) as a by-product. It can be confirmed that there is a graph
  • LiOH lithium hydroxide
  • the best mode for carrying out the present invention is to prepare a first mixture by mixing lithium carbonate (Li 2 CO 3 ) and barium hydroxide (Ba(OH) 2 ) in a predetermined ratio; Roasting the first mixture to prepare a second mixture converted into insoluble barium carbonate (BaCO 3 ) and water-soluble lithium hydroxide (LiOH); dissolving the second mixture to precipitate the insoluble barium carbonate (BaCO 3 ); Solid-liquid separation of the precipitated barium carbonate (BaCO 3 ); and evaporating the solution from which the barium carbonate (BaCO 3 ) is separated to obtain lithium hydroxide (LiOH).
  • FIG. 1 is an overall process diagram of a method for manufacturing lithium hydroxide using lithium carbonate and barium hydroxide according to an embodiment of the present invention
  • FIG. 2 is barium carbonate when the first mixture is roasted according to an embodiment of the present invention.
  • BaCO 3 A graph confirming the conversion to lithium hydroxide (LiOH), FIG. 3 is hydroxide by reacting lithium carbonate (Li 2 CO 3 ) and barium hydroxide (Ba(OH) 2 ) according to an embodiment of the present invention A graph confirming that lithium (LiOH) and barium carbonate (BaCO 3 ) are produced as a by-product, FIG.
  • 4 is an XRD result that can confirm that lithium hydroxide (LiOH) is produced through the manufacturing method according to an embodiment of the present invention
  • 5 is an XRD result confirming that the solid-liquid separated precipitate according to an embodiment of the present invention is barium carbonate (BaCO 3 ).
  • lithium carbonate (Li 2 CO 3 ) and barium hydroxide (Ba(OH) 2 ) are used in a predetermined ratio. and mixing to prepare a first mixture.
  • the first mixture is a mixture of lithium carbonate (Li 2 CO 3 ) and barium hydroxide (Ba(OH) 2 ) as described above.
  • hydroxide using lithium carbonate and barium hydroxide according to embodiments of the present invention can produce battery-grade high-purity lithium hydroxide using not only high-purity lithium carbonate but also low-cost, low-purity lithium carbonate.
  • the first mixture is a mixture of lithium carbonate (Li 2 CO 3 ) and barium hydroxide (Ba(OH) 2 ) as described above.
  • the lithium carbonate (Li 2 CO 3 ) and barium hydroxide (Ba(OH) 2 ) are mixed in a molar ratio of 1:1 or 1:1.1.
  • the second mixture is converted into insoluble barium carbonate (BaCO 3 ) and water-soluble lithium hydroxide (LiOH) by roasting the first mixture. preparing the mixture.
  • the step of roasting the first mixture according to an embodiment of the present invention is roasted for 2 to 4 hours in an electric furnace at 160 to 200 ° C.
  • the reason for numerical limitation on the roasting step is as shown in FIG. This is because the first mixture is best converted to barium carbonate (BaCO 3 ) and lithium hydroxide (LiOH) during roasting under the corresponding conditions.
  • the lithium hydroxide manufacturing method using lithium carbonate and barium hydroxide comprises the steps of dissolving the second mixture to precipitate the insoluble barium carbonate (BaCO 3 ) and the precipitated barium carbonate (BaCO) 3 ) comprising the step of solid-liquid separation.
  • barium carbonate (BaCO 3 ) and lithium hydroxide (LiOH) converted through the roasting of the first mixture have characteristics having insolubility and water solubility (dissolution), respectively, and the final object of the embodiments of the present invention is the above Since only lithium hydroxide (LiOH) is obtained, it is necessary to separate the precipitated barium carbonate (BaCO 3 ).
  • embodiments of the present invention separate the precipitated barium carbonate (BaCO 3 ) through the solid-liquid separation method to separate the insoluble barium carbonate (BaCO 3 ).
  • the solid-liquid separation method has been described as an example of the separation method of the barium carbonate (BaCO 3 ), it is not necessarily limited thereto, and various methods can be used to achieve the same purpose.
  • the method for manufacturing lithium hydroxide using lithium carbonate and barium hydroxide includes evaporating the solution from which the barium carbonate (BaCO 3 ) is separated to obtain lithium hydroxide (LiOH).
  • insoluble barium carbonate (BaCO 3 ) is separated and the aqueous solution containing only lithium hydroxide (LiOH) is evaporated and concentrated to finally obtain high-purity lithium hydroxide.
  • the method for manufacturing lithium hydroxide using lithium carbonate and barium hydroxide includes preparing a first solution in which lithium carbonate (Li 2 CO 3 ) is dissolved, barium hydroxide (Ba(OH) 2 ) Preparing this dissolved second solution, mixing the first solution and the second solution and reacting to prepare a reaction solution consisting of insoluble barium carbonate (BaCO 3 ) and water-soluble lithium hydroxide (LiOH); Solid-liquid separation of insoluble barium carbonate (BaCO 3 ) from the reaction solution and evaporating the reaction solution from which the barium carbonate (BaCO 3 ) is separated to obtain lithium hydroxide (LiOH).
  • a reaction solution is prepared by dissolving lithium carbonate and barium hydroxide, which are starting materials, respectively, and mixing them.
  • Barium carbonate (BaCO 3 ) is separated by solid-liquid separation, and the remaining aqueous solution is evaporated and concentrated to obtain lithium hydroxide.
  • the starting material is prepared in an aqueous solution state without the above-described roasting step, mixed, and then reacted at room temperature. It is the same as the manufacturing method of one embodiment.
  • lithium hydroxide can be directly manufactured with high purity and low lithium loss rate through the above-described technical configurations, and the process compared to the prior art This simple, economical, energy efficiency is improved, and there is no waste generation, so it has an excellent eco-friendly effect.
  • the lithium hydroxide manufacturing method using lithium carbonate and barium hydroxide according to an embodiment of the present invention can not only directly produce lithium hydroxide with high purity and low lithium loss rate using lithium carbonate and barium hydroxide, but also has a lower process compared to the prior art. It is simple, economical, has improved energy efficiency, and has excellent eco-friendly effects because there is no waste generation, so it has industrial applicability.

Abstract

본 발명은 탄산리튬과 수산화바륨을 이용한 수산화리튬 제조 방법에 관한 것으로, 보다 구체적으로는 탄산리튬(Li 2CO 3)과 수산화바륨(Ba(OH) 2)을 일정비율로 혼합하여 제1혼합물을 준비하는 단계; 상기 제1혼합물을 로스팅하여 불용성의 탄산바륨(BaCO 3)과 수용성의 수산화리튬(LiOH)으로 전환된 제2혼합물을 준비하는 단계; 상기 제2혼합물을 용해시켜 불용성의 상기 탄산바륨(BaCO 3)을 침전시키는 단계; 침전된 상기 탄산바륨(BaCO 3)을 고액분리하는 단계; 및 상기 탄산바륨(BaCO 3)이 분리된 용액을 증발시켜 수산화리튬(LiOH)을 수득하는 단계를 포함하는 것을 특징으로 한다.

Description

탄산리튬과 수산화바륨을 이용한 수산화리튬 제조 방법
본 발명은 탄산리튬과 수산화바륨을 이용한 수산화리튬 제조 방법에 관한 것으로, 보다 구체적으로는 탄산리튬과 수산화바륨을 이용하여 수산화리튬을 고순도 및 낮은 리튬 손실률로 직접 제조할 수 있을 뿐만 아니라, 종래기술에 비해 공정이 간단하여 경제적이고 에너지 효율이 향상되며 폐기물 발생이 없어 친환경적인 수산화리튬 제조 방법에 관한 것이다.
전기자동차 등 대용량 리튬이온전지 시장이 확대되면서 배터리용 리튬 화합물의 수요가 급증하고 있다.
현재까지 배터리 양극재 제조의 주원료는 탄산리튬이였지만, 양극재의 에너지용량 증가가 요구되면서 탄산리튬 대신 수산화리튬을 원료물질로 하는 NCM, NCA 계열 양극소재가 주류를 이루고 있다.
따라서 배터리등급의 고순도 수산화리튬에 대한 수요가 크게 증가하고 있는 추세이다.
리튬은 전통적으로 염호 및 광석으로부터 추출되고 있다.
염호로부터 리튬을 추출하는 경우, 수용해성 염화리튬을 수용해도가 낮은 탄산리튬(수용해도: 1.29g/100ml, 20E')으로 전환시켜 침전물로 석출시킨 다음, 이를 수산화리튬으로 전환하는 공정을 사용한다.
광석으로부터 리튬을 추출하는 경우, 광석을 물에 용출시켜 리튬황산화물 용액을 제조한 다음, 염호로부터 리튬을 추출하는 공정과 마찬가지로, 수용해도가 낮은 탄산리튬을 거쳐서 수산화리튬을 제조한다.
상기 전통적인 수산화리튬 제조 방법은 중간 생성물인 탄산리튬의 용해도 이하의 리튬은 회수하기 어렵다는 문제가 있었다.
여기서, 탄산리튬을 수산화리튬으로 전환하는 공정은 탄산리튬을 물에 용해시킨 뒤 수산화칼슘과 반응시켜 침전물로 발생하는 탄산칼슘을 제거한 다음, 용액 중에 남은 수산화리튬을 농축시켜 고순도 수산화리튬을 얻고있다.
이러한 과정은 하기 반응식 1로 나타낼 수 있다.
[반응식 1]
Li 2CO 3 + Ca(OH) 2 → 2LiOH + Ca(CO) 3(S)↓
그러나 상기 반응식 1의 반응은 수계 반응으로 진행되나, 반응물인 탄산리튬과 수산화칼슘의 수용해도가 각각 1.29g/100ml (25 E') 및 0.173g/100mL (20 E')로 매우 낮아, 한 번에 반응시킬 수 있는 반응물의 양이 제한되고, 상대적으로 많은 양의 물이 사용되므로, 추후 수산화리튬을 분리하기 위해 증발시켜야 하는 물의 양도 많아져서, 에너지 소모가 많아지게 된다.
또한, 탄산칼슘은 물에 어느 정도 용해될 수 있어 수산화리튬 용액에는 탄산칼슘이 어느 정도 포함되어 있고, 여기에서 유래하는 칼슘 이온은 리튬이온 배터리의 성능을 크게 저하시킬 수 있기 때문에, 물을 제거하여 얻어진 수산화리튬은 2~3회 재결정 처리해야 비로서 배터리 등급의 고순도 수산화리튬을 수득할 수 있다는 문제점이 있다.
본 발명은 상술한 문제점들을 해결하기 위해 창안된 것으로, 탄산리튬과 수산화바륨을 이용하여 수산화리튬을 고순도 및 낮은 리튬 손실률로 직접 제조할 수 있을 뿐만 아니라, 종래기술에 비해 공정이 간단하여 경제적이고 에너지 효율이 향상되며 폐기물 발생이 없어 친환경적인 수산화리튬 제조 방법 제공을 목적으로 한다.
한편, 본 발명의 목적들은 이상에서 언급한 목적들로 제한되지 않으며, 언급되지 않은 또 다른 목적들은 아래의 기재로부터 통상의 기술자에게 명확하게 이해될 수 있을 것이다.
본 발명의 실시 예에 따른 탄산리튬과 수산화바륨을 이용한 수산화리튬 제조 방법은 상술한 목적을 달성하기 위하여 탄산리튬(Li 2CO 3)과 수산화바륨(Ba(OH) 2)을 일정비율로 혼합하여 제1혼합물을 준비하는 단계, 상기 제1혼합물을 로스팅하여 불용성의 탄산바륨(BaCO 3)과 수용성의 수산화리튬(LiOH)으로 전환된 제2혼합물을 준비하는 단계, 상기 제2혼합물을 용해시켜 불용성의 상기 탄산바륨(BaCO 3)을 침전시키는 단계, 침전된 상기 탄산바륨(BaCO 3)을 고액분리하는 단계 및 상기 탄산바륨(BaCO 3)이 분리된 용액을 증발시켜 수산화리튬(LiOH)을 수득하는 단계를 포함할 수 있다.
한편, 본 발명의 다른 실시 예에 따른 탄산리튬과 수산화바륨을 이용한 수산화리튬 제조 방법은 탄산리튬(Li 2CO 3)이 용해된 제1용액을 준비하는 단계, 수산화바륨(Ba(OH) 2)이 용해된 제2용액을 준비하는 단계, 상기 제1용액과 제2용액을 혼합한 후 반응시켜 불용성의 탄산바륨(BaCO 3)과 수용성의 수산화리튬(LiOH)으로 이루어진 반응용액을 준비하는 단계, 상기 반응용액에서 불용성의 탄산바륨(BaCO 3)을 고액분리하는 단계 및 상기 탄산바륨(BaCO 3)이 분리된 반응용액을 증발시켜 수산화리튬(LiOH)을 수득하는 단계를 포함할 수 있다.
바람직하게는 상기 제1혼합물은 탄산리튬(Li 2CO 3)과 수산화바륨(Ba(OH) 2)이 1:1의 몰비율로 혼합될 수 있다.
바람직하게는 상기 제1혼합물을 로스팅하여 불용성의 탄산바륨(BaCO 3)과 수용성의 수산화리튬(LiOH)으로 전환된 제2혼합물을 준비하는 단계는 160 ~ 200℃의 전기로에서 2 ~ 4시간 동안 로스팅될 수 있다.
바람직하게는 상기 제1용액과 제2용액을 혼합한 후 반응시켜 불용성의 탄산바륨(BaCO 3)과 수용성의 수산화리튬(LiOH)으로 이루어진 반응용액을 준비하는 단계는 상온에서 반응시킬 수 있다.
본 발명의 실시 예에 따른 탄산리튬과 수산화바륨을 이용한 수산화리튬 제조 방법은 탄산리튬과 수산화바륨을 이용하여 수산화리튬을 고순도 및 낮은 리튬 손실률로 직접 제조할 수 있을 뿐만 아니라, 종래기술에 비해 공정이 간단하여 경제적이고 에너지 효율이 향상되며 폐기물 발생이 없어 친환경적인 우수한 효과가 있다.
도 1은 본 발명의 실시 예에 따른 탄산리튬과 수산화바륨을 이용한 수산화리튬 제조 방법의 전체 공정도다.
도 2는 본 발명의 실시 예에 따라 제1혼합물을 로스팅한 경우 탄산바륨(BaCO 3)과 수산화리튬(LiOH)으로 전환됨을 확인할 수 있는 그래프다.
도 3은 본 발명의 실시 예에 따라 탄산리튬(Li 2CO 3)과 수산화바륨(Ba(OH) 2)을 반응시켜 수산화리튬(LiOH)과 부산물로 탄산바륨(BaCO 3)이 생성됨을 확인할 수 있는 그래프다.
도 4는 본 발명의 실시 예에 따른 제조방법을 통해 수산화리튬(LiOH)이 생성됨을 확인할 수 있는 XRD 결과이다.
도 5는 본 발명의 실시 예에 따라 고액분리된 침전물이 탄산바륨(BaCO 3)임을 확인할 수 있는 XRD 결과이다.
본 발명의 실시를 위한 최선의 형태는 탄산리튬(Li 2CO 3)과 수산화바륨(Ba(OH) 2)을 일정비율로 혼합하여 제1혼합물을 준비하는 단계; 상기 제1혼합물을 로스팅하여 불용성의 탄산바륨(BaCO 3)과 수용성의 수산화리튬(LiOH)으로 전환된 제2혼합물을 준비하는 단계; 상기 제2혼합물을 용해시켜 불용성의 상기 탄산바륨(BaCO 3)을 침전시키는 단계; 침전된 상기 탄산바륨(BaCO 3)을 고액분리하는 단계; 및 상기 탄산바륨(BaCO 3)이 분리된 용액을 증발시켜 수산화리튬(LiOH)을 수득하는 단계를 포함한다.
본 발명에서 사용되는 용어는 가능한 현재 널리 사용되는 일반적인 용어를 선택하였으나, 특정한 경우는 출원인이 임의로 선정한 용어도 있는데 이 경우에는 단순한 용어의 명칭이 아닌 발명을 실시하기 위한 구체적인 내용에 기재되거나 사용된 의미를 고려하여 그 의미가 파악되어야 할 것이다.
이하, 첨부한 도면에 도시된 바람직한 실시 예들을 참조하여 본 발명의 기술적 구성을 상세하게 설명한다.
이와 관련하여 먼저, 도 1은 본 발명의 실시 예에 따른 탄산리튬과 수산화바륨을 이용한 수산화리튬 제조 방법의 전체 공정도, 도 2는 본 발명의 실시 예에 따라 제1혼합물을 로스팅한 경우 탄산바륨(BaCO 3)과 수산화리튬(LiOH)으로 전환됨을 확인할 수 있는 그래프, 도 3은 본 발명의 실시 예에 따라 탄산리튬(Li 2CO 3)과 수산화바륨(Ba(OH) 2)을 반응시켜 수산화리튬(LiOH)과 부산물로 탄산바륨(BaCO 3)이 생성됨을 확인할 수 있는 그래프, 도 4는 본 발명의 실시 예에 따른 제조방법을 통해 수산화리튬(LiOH)이 생성됨을 확인할 수 있는 XRD 결과이며, 도 5는 본 발명의 실시 예에 따라 고액분리된 침전물이 탄산바륨(BaCO 3)임을 확인할 수 있는 XRD 결과이다.
상기 도 1 내지 5를 참조하면, 본 발명의 일실시 예에 따른 탄산리튬과 수산화바륨을 이용한 수산화리튬 제조 방법은 탄산리튬(Li 2CO 3)과 수산화바륨(Ba(OH) 2)을 일정비율로 혼합하여 제1혼합물을 준비하는 단계를 포함한다.
이때, 상기 제1혼합물은 상술한 바와 같이 탄산리튬(Li 2CO 3)과 수산화바륨(Ba(OH) 2)이 혼합된 것으로 이때, 본 발명의 실시 예들에 따른 탄산리튬과 수산화바륨을 이용한 수산화리튬 제조 방법은 고순도의 탄산리튬뿐만 아니라 저가의 저순도의 탄산리튬을 이용해도 배터리등급의 고순도 수산화리튬을 제조할 수 있다.
한편, 상기 제1혼합물은 상술한 바와 같이 탄산리튬(Li 2CO 3)과 수산화바륨(Ba(OH) 2)이 혼합된 것으로 이때, 본 발명의 일실시 예에 있어서 상기 탄산리튬(Li 2CO 3)과 수산화바륨(Ba(OH) 2)은 1:1 또는 1:1.1의 몰비율로 혼합된다.
한편, 본 발명의 일실시 예에 따른 탄산리튬과 수산화바륨을 이용한 수산화리튬 제조 방법은 상기 제1혼합물을 로스팅하여 불용성의 탄산바륨(BaCO 3)과 수용성의 수산화리튬(LiOH)으로 전환된 제2혼합물을 준비하는 단계를 포함한다.
이때, 본 발명의 일실시 예에 따라 제1혼합물을 로스팅하는 단계는 160 ~ 200℃의 전기로에서 2 ~ 4시간 동안 로스팅되는데, 이처럼 로스팅 단계에 대해 수치한정하는 이유는 도 2에 도시된 바와 같이 해당조건 하에서 로스팅시 제1혼합물이 탄산바륨(BaCO 3)과 수산화리튬(LiOH)으로 가장 잘 전환되기 때문이다.
한편, 본 발명의 일실시 예에 따른 탄산리튬과 수산화바륨을 이용한 수산화리튬 제조 방법은 상기 제2혼합물을 용해시켜 불용성의 상기 탄산바륨(BaCO 3)을 침전시키는 단계 및 침전된 상기 탄산바륨(BaCO 3)을 고액분리하는 단계를 포함한다.
상술한 바와 같이 제1혼합물의 로스팅을 통해 전환된 탄산바륨(BaCO 3)과 수산화리튬(LiOH)은 각각 불용성과 수용(해)성을 갖는 특성이 있으며, 본 발명의 실시 예들의 최종목적은 상기 수산화리튬(LiOH)만을 수득하는데 있으므로 침전된 상기 탄산바륨(BaCO 3)을 분리할 필요가 있다.
이에 본 발명의 실시 예들은 상기 불용성의 탄산바륨(BaCO 3)을 분리하기 위하여 고액분리방법은 통해 침전된 탄산바륨(BaCO 3)을 분리한다.
이때, 상기 탄산바륨(BaCO 3)의 분리방법으로 고액분리 방법을 예로들어 설명하였으나, 반드시 이에 한정되는 것을 아니라할 것이며 동일한 목적 달성을 위해 다양한 방법을 이용할 수 있다.
한편, 본 발명의 실시 예들에 따른 탄산리튬과 수산화바륨을 이용한 수산화리튬 제조 방법은 상기 탄산바륨(BaCO 3)이 분리된 용액을 증발시켜 수산화리튬(LiOH)을 수득하는 단계를 포함한다.
즉, 본 발명의 실시 예들에 있어서는 불용성의 탄산바륨(BaCO 3)이 분리되어 수산화리튬(LiOH)만이 존재하는 수용액을 증발농축시켜 최종적으로 고순도의 수산화리튬을 수득한다.
한편, 이하에서는 본 발명의 다른 실시예에 따른 탄산리튬과 수산화바륨을 이용한 수산화리튬 제조 방법에 대해 상세히 설명한다.
먼저, 본 발명의 다른 실시 예에 따른 탄산리튬과 수산화바륨을 이용한 수산화리튬 제조 방법은 탄산리튬(Li 2CO 3)이 용해된 제1용액을 준비하는 단계, 수산화바륨(Ba(OH) 2)이 용해된 제2용액을 준비하는 단계, 상기 제1용액과 제2용액을 혼합한 후 반응시켜 불용성의 탄산바륨(BaCO 3)과 수용성의 수산화리튬(LiOH)으로 이루어진 반응용액을 준비하는 단계, 상기 반응용액에서 불용성의 탄산바륨(BaCO 3)을 고액분리하는 단계 및 상기 탄산바륨(BaCO 3)이 분리된 반응용액을 증발시켜 수산화리튬(LiOH)을 수득하는 단계를 포함한다.
이때, 본 발명의 다른 실시 예에 따른 탄산리튬과 수산화바륨을 이용한 수산화리튬 제조 방법은 출발물질인 탄산리튬과 수산화바륨을 각각 용해시켜 이들을 혼합한 반응용액을 준비한 후, 반응과정에서 침전된 불용성의 탄산바륨(BaCO 3)을 고액분리하여 분리하고 남은 수용액을 증발 농축과정을 통해 수산화리튬을 수득한다.
즉, 본 발명의 다른 실시 예에 따른 탄산리튬과 수산화바륨을 이용한 수산화리튬 제조 방법은 상술한 로스팅 단계없이 출발물질을 수용액 상태로 준비하여 혼합한 후 상온에서 반응시킨다는 점을 제외하고는 본 발명의 일실시 예의 제조방법과 동일하다.
결과적으로, 본 발명의 실시 예들에 따른 탄산리튬과 수산화바륨을 이용한 수산화리튬 제조 방법은 상술한 기술적 구성들을 통해 수산화리튬을 고순도 및 낮은 리튬 손실률로 직접 제조할 수 있을 뿐만 아니라, 종래기술에 비해 공정이 간단하여 경제적이고 에너지 효율이 향상되며 폐기물 발생이 없어 친환경적인 우수한 효과가 있다.
이상에서 살펴본 바와 같이 본 발명은 바람직한 실시 예를 들어 도시하고 설명하였으나, 상기한 실시 예에 한정되지 아니하며 본 발명의 정신을 벗어나지 않는 범위 내에서 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변경과 수정이 가능하다 할 것이다.
본 발명의 실시 예에 따른 탄산리튬과 수산화바륨을 이용한 수산화리튬 제조 방법은 탄산리튬과 수산화바륨을 이용하여 수산화리튬을 고순도 및 낮은 리튬 손실률로 직접 제조할 수 있을 뿐만 아니라, 종래기술에 비해 공정이 간단하여 경제적이고 에너지 효율이 향상되며 폐기물 발생이 없어 친환경적인 우수한 효과가 있어 산업상 이용가능성이 있다.

Claims (5)

  1. 탄산리튬(Li 2CO 3)과 수산화바륨(Ba(OH) 2)을 일정비율로 혼합하여 제1혼합물을 준비하는 단계;
    상기 제1혼합물을 로스팅하여 불용성의 탄산바륨(BaCO 3)과 수용성의 수산화리튬(LiOH)으로 전환된 제2혼합물을 준비하는 단계;
    상기 제2혼합물을 용해시켜 불용성의 상기 탄산바륨(BaCO 3)을 침전시키는 단계;
    침전된 상기 탄산바륨(BaCO 3)을 고액분리하는 단계; 및
    상기 탄산바륨(BaCO 3)이 분리된 용액을 증발시켜 수산화리튬(LiOH)을 수득하는 단계를 포함하는 것을 특징으로 하는 탄산리튬과 수산화바륨을 이용한 수산화리튬 제조 방법.
  2. 탄산리튬(Li 2CO 3)이 용해된 제1용액을 준비하는 단계;
    수산화바륨(Ba(OH) 2)이 용해된 제2용액을 준비하는 단계;
    상기 제1용액과 제2용액을 혼합한 후 반응시켜 불용성의 탄산바륨(BaCO 3)과 수용성의 수산화리튬(LiOH)으로 이루어진 반응용액을 준비하는 단계;
    상기 반응용액에서 불용성의 탄산바륨(BaCO 3)을 고액분리하는 단계; 및
    상기 탄산바륨(BaCO 3)이 분리된 반응용액을 증발시켜 수산화리튬(LiOH)을 수득하는 단계를 포함하는 것을 특징으로 하는 탄산리튬과 수산화바륨을 이용한 수산화리튬 제조 방법.
  3. 제 1 항에 있어서,
    상기 제1혼합물은 탄산리튬(Li 2CO 3)과 수산화바륨(Ba(OH) 2)이 1:1의 몰비율로 혼합되는 것을 특징으로 하는 탄산리튬과 수산화바륨을 이용한 수산화리튬 제조 방법.
  4. 제 3 항에 있어서,
    상기 제1혼합물을 로스팅하여 불용성의 탄산바륨(BaCO 3)과 수용성의 수산화리튬(LiOH)으로 전환된 제2혼합물을 준비하는 단계는 160 ~ 200℃의 전기로에서 2 ~ 4시간 동안 로스팅되는 것을 특징으로 하는 탄산리튬과 수산화바륨을 이용한 수산화리튬 제조 방법.
  5. 제 2 항에 있어서,
    상기 제1용액과 제2용액을 혼합한 후 반응시켜 불용성의 탄산바륨(BaCO 3)과 수용성의 수산화리튬(LiOH)으로 이루어진 반응용액을 준비하는 단계는 상온에서 반응시키는 것을 특징으로 하는 탄산리튬과 수산화바륨을 이용한 수산화리튬 제조 방법.
PCT/KR2020/016622 2020-10-12 2020-11-23 탄산리튬과 수산화바륨을 이용한 수산화리튬 제조 방법 WO2022080570A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200131037A KR20220048184A (ko) 2020-10-12 2020-10-12 탄산리튬과 수산화바륨을 이용한 수산화리튬 제조 방법
KR10-2020-0131037 2020-10-12

Publications (1)

Publication Number Publication Date
WO2022080570A1 true WO2022080570A1 (ko) 2022-04-21

Family

ID=81208259

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/016622 WO2022080570A1 (ko) 2020-10-12 2020-11-23 탄산리튬과 수산화바륨을 이용한 수산화리튬 제조 방법

Country Status (2)

Country Link
KR (1) KR20220048184A (ko)
WO (1) WO2022080570A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100725589B1 (ko) * 2006-04-19 2007-06-08 한밭대학교 산학협력단 리튬 폐기물로부터 고순도 수산화 리튬 제일수화물의제조방법
KR20180074073A (ko) * 2016-12-23 2018-07-03 주식회사 포스코 수산화리튬 수용액의 제조 방법 및 이를 이용한 탄산리튬의 제조 방법
JP2019131448A (ja) * 2018-02-02 2019-08-08 山本 秀樹 水酸化リチウムの製造方法
WO2019220004A1 (en) * 2018-05-18 2019-11-21 Outotec (Finland) Oy Method for recovering lithium hydroxide
JP6651115B1 (ja) * 2019-05-07 2020-02-19 株式会社アサカ理研 リチウムイオン電池からのリチウムの回収方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100725589B1 (ko) * 2006-04-19 2007-06-08 한밭대학교 산학협력단 리튬 폐기물로부터 고순도 수산화 리튬 제일수화물의제조방법
KR20180074073A (ko) * 2016-12-23 2018-07-03 주식회사 포스코 수산화리튬 수용액의 제조 방법 및 이를 이용한 탄산리튬의 제조 방법
JP2019131448A (ja) * 2018-02-02 2019-08-08 山本 秀樹 水酸化リチウムの製造方法
WO2019220004A1 (en) * 2018-05-18 2019-11-21 Outotec (Finland) Oy Method for recovering lithium hydroxide
JP6651115B1 (ja) * 2019-05-07 2020-02-19 株式会社アサカ理研 リチウムイオン電池からのリチウムの回収方法

Also Published As

Publication number Publication date
KR20220048184A (ko) 2022-04-19

Similar Documents

Publication Publication Date Title
WO2020116795A1 (ko) 리튬 정광으로부터 황산나트튬 혼합 배소에 의한 수산화리튬 제조방법
WO2019198972A1 (ko) 리튬이온 2차전지의 폐 양극재를 이용한 수산화리튬 일수화물의 제조방법
WO2021153816A1 (ko) 리튬 추출 방법
CN108767353B (zh) 从废旧锂离子电池正极活性材料生产富锂净液的方法
WO2013002486A2 (ko) 고상 반응에 의한 리튬 망간 산화물의 제조 방법
JP2012106874A (ja) 水酸化リチウムの精製方法
KR102049095B1 (ko) 황산리튬으로부터 수산화리튬의 직접 제조 방법
WO2013089483A1 (ko) 금속 도핑된 결정성 철인산염, 이의 제조 방법 및 이로부터 제조된 리튬 복합금속인산화물
CN108193054A (zh) 一种从含锂废水中提取锂的方法
WO2023191414A1 (ko) 블랙 매스로부터 이차전지 소재의 제조방법
CN112174106A (zh) 一种电池级磷酸铁及其制备方法
CN111180819B (zh) 一种电池级Ni-Co-Mn混合液和电池级Mn溶液的制备方法
WO2022080570A1 (ko) 탄산리튬과 수산화바륨을 이용한 수산화리튬 제조 방법
KR101944522B1 (ko) 인산리튬으로부터 고농도 리튬 수용액 제조 방법
WO2022080571A1 (ko) 황산리튬과 수산화바륨을 이용한 수산화리튬 제조 방법
CN115321505B (zh) 一种含锂废水综合回收制取磷酸铁锂的方法及应用
CN113716539B (zh) 一种用湿法炼锌高铁溶液制备磷酸铁前驱体的方法
CN115784188A (zh) 回收制备电池级磷酸铁的方法
WO2021145488A1 (ko) 리튬 추출 방법
CN115571926A (zh) 一种沉锂母液去除碳酸根的方法
WO2022045747A1 (ko) 리튬을 함유하는 원료에서 수산화리튬을 제조하는 방법
KR20210054946A (ko) 양극재 세척수로부터 배터리급 수산화리튬 일수화물을 제조하는 방법
KR20190035210A (ko) 탄산 리튬의 제조 방법
WO2019139182A1 (ko) 재활용 암모니아를 사용한 니켈-코발트-망간 복합전구체의 제조 방법
CN114959306B (zh) 一种闭路循环法从沉锂母液中回收锂的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20957814

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20957814

Country of ref document: EP

Kind code of ref document: A1