WO2023191416A1 - 황화물계 고체 전해질의 제조 방법 - Google Patents

황화물계 고체 전해질의 제조 방법 Download PDF

Info

Publication number
WO2023191416A1
WO2023191416A1 PCT/KR2023/004032 KR2023004032W WO2023191416A1 WO 2023191416 A1 WO2023191416 A1 WO 2023191416A1 KR 2023004032 W KR2023004032 W KR 2023004032W WO 2023191416 A1 WO2023191416 A1 WO 2023191416A1
Authority
WO
WIPO (PCT)
Prior art keywords
sulfide
reactant
solid electrolyte
solvent
based solid
Prior art date
Application number
PCT/KR2023/004032
Other languages
English (en)
French (fr)
Inventor
신동욱
이영민
박상호
김성재
Original Assignee
주식회사 솔리비스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020230038261A external-priority patent/KR20230141520A/ko
Application filed by 주식회사 솔리비스 filed Critical 주식회사 솔리비스
Publication of WO2023191416A1 publication Critical patent/WO2023191416A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/14Sulfur, selenium, or tellurium compounds of phosphorus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/10Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for producing a sulfide-based solid electrolyte.
  • Lithium secondary batteries have been applied to small devices such as mobile phones and laptops, but have recently been expanding to medium to large devices such as energy storage systems (ESS) and electric vehicles (EV). Since lithium secondary batteries use an organic liquid electrolyte to which lithium salt is added, there is a potential risk of ignition and explosion as well as electrolyte leakage.
  • ESS energy storage systems
  • EV electric vehicles
  • All-solid-state batteries that replace liquid electrolytes with solid electrolytes to overcome the limitations of lithium secondary batteries and improve battery stability.
  • All-solid-state batteries have no risk of fire or explosion by using a solid electrolyte, and have high energy density, so like lithium secondary batteries, they can be used in medium to large-sized devices such as electric vehicles and power storage systems.
  • Solid electrolytes are divided into oxide-based and sulfide-based.
  • sulfide-based solid electrolytes have excellent lithium ion conductivity compared to oxide-based solid electrolytes and have the advantage of being stable over a wide voltage range.
  • Sulfide-based solid electrolytes are generally manufactured by melting or solid-phase methods. In particular, in the case of the solid-state method, the starting material and balls are placed in a milling container, pulverized, and then heat treated by providing high energy.
  • Previous Korean Patent Publication No. 2019-0079135 discloses a method of producing a sulfide-based solid electrolyte by mixing and pulverizing starting materials and heat-treating them.
  • this solid-phase method has problems in that it is difficult to uniformly disperse the starting materials, there are limits to amorphization, and it is difficult to enlarge the milling vessel, making mass synthesis difficult.
  • One object of the present invention is to provide a method for producing a sulfide-based solid electrolyte with high purity and high efficiency.
  • One embodiment of the present invention includes mixing a precursor and a solvent to form a mixture; reacting the mixture to produce a reactant; and heat-treating the reactant, wherein the heat treatment includes a first heat treatment step and a second heat treatment step performed at a higher temperature than the first heat treatment step, and in the first heat treatment step,
  • a method for producing a sulfide-based solid electrolyte in which carbon changes into amorphous carbon is disclosed.
  • a sulfide-based solid electrolyte of high purity can be obtained.
  • FIG. 1 is a schematic flowchart illustrating a method for producing a sulfide-based solid electrolyte according to an embodiment of the present invention.
  • Figure 2 is a schematic flowchart explaining a method for producing a sulfide-based solid electrolyte according to another embodiment of the present invention.
  • Figure 3 is a schematic flowchart explaining a method for producing a sulfide-based solid electrolyte according to another embodiment of the present invention.
  • Figure 4 is a diagram showing the Raman spectroscopy results of the sulfide-based solid electrolyte according to the present invention.
  • Figure 5 is a diagram showing the results of X-ray diffraction analysis (XRD) of the sulfide-based solid electrolyte according to the present invention.
  • Figures 6 and 7 show the results of X-ray diffraction analysis (XRD) and Raman spectroscopy of the sulfide-based solid electrolyte according to the present invention.
  • FIG. 8 is a diagram showing the results of electrochemical impedance analysis (EIS) of the sulfide-based solid electrolyte according to the present invention.
  • EIS electrochemical impedance analysis
  • One embodiment of the present invention includes mixing a precursor and a solvent to form a mixture; reacting the mixture to produce a reactant; and heat-treating the reactant, wherein the heat treatment includes a first heat treatment step and a second heat treatment step performed at a higher temperature than the first heat treatment step, and in the first heat treatment step,
  • a method for producing a sulfide-based solid electrolyte in which carbon changes into amorphous carbon is disclosed.
  • the secondary heat treatment step may be performed in an inert gas atmosphere.
  • the step of remixing the reactants may be further included, and the heat-treating step may include heat-treating the remixed reactants.
  • the dried reactant may be remixed.
  • the remixing step may be performed by wet ball milling.
  • a step of purifying the heat-treated reactant may be further included.
  • the step of purifying the reactant may be performed by wet ball milling.
  • a step of drying the purified reactant may be further included.
  • the precursor may include an alkali metal sulfide, an alkali metal halide, and phosphorus pentasulfide.
  • the alkali metal sulfide and the alkali metal halide may be first mixed with the solvent, and the phosphorus pentasulfide may be additionally mixed secondarily.
  • first, second, etc. may be used to describe various components, but the components should not be limited by the terms. The above terms are used only for the purpose of distinguishing one component from another.
  • a first component may be named a second component, and similarly, the second component may also be named a first component without departing from the scope of the present invention.
  • Singular expressions include plural expressions unless the context clearly dictates otherwise.
  • FIG. 1 is a schematic flowchart illustrating a method for producing a sulfide-based solid electrolyte according to an embodiment of the present invention.
  • the method for producing a sulfide-based solid electrolyte includes forming a mixture by mixing a precursor and a solvent in a reactor (S110), and reacting the mixture to produce a reactant. It may include a step (S120), a step of remixing the reactants (S130), and a step of heat treating the remixed reactants (S140).
  • the step of mixing the precursor and the solvent in the reactor (S110) is performed by first adding the solvent into the reactor and then adding the precursor, adding the precursor first and then adding the solvent, or mixing the solvent and the precursor and putting it into the reactor. It can be.
  • the precursor may include an alkali metal sulfide (A 2 S; A is an alkali metal), an alkali metal halide (AX; .
  • Alkali metals may include lithium, sodium, potassium, or combinations thereof.
  • Halogen may include fluorine, chlorine, bromine, iodine, or combinations thereof.
  • the alkali metal sulfide, alkali metal halide, and phosphorus pentasulfide may be mixed at a molar ratio of 4.5 to 5.5:0.5 to 1.5:1.5 to 2.5.
  • the alkali metal sulfide, alkali metal halide, and phosphorus pentasulfide may react at a stoichiometric molar ratio of 5:1:2.
  • the solvent may include a first solvent that has low solubility in alkali metal sulfide and alkali metal halide. Additionally, the solvent may further include a second solvent that at least partially dissolves the alkali metal sulfide and the alkali metal halide.
  • the first solvent may include a nitrile-based solvent, an ether-based solvent, an ester-based solvent, etc.
  • the nitrile-based solvent may include, for example, acetonitrile.
  • the second solvent may include an alcohol-based solvent, carboxylic acid-based solvent, ester-based solvent, ketone-based solvent, amine-based solvent, sulfoxide-based solvent, etc., for example, acetic acid, acetyl acetone, 2-aminoethanol, Anisole, benzyl alcohol, 1-butanol, 2-butanol, 2-butanone, t-butyl alcohol, cyclohexanol, cyclohexanone, di-n-butyl phthalate, diethyl glycol, diglyme, dimethoxyethane, Dimethylformamide, dimethyl phthalate, dimethyl sulfoxide, dioxane, ethanol, ether, ethyl acetate, ethyl acetoacetate, ethyl benzoate, ethylene glycol, glycerin, 1-heptanol, 1-hexanol, methanol, methyl acetate, methyl It may
  • the second solvent is acetone, 2-aminoethanol, anisole, benzyl alcohol, 1-butanol, 2-butanol, i-butanol, 2-butanone, t-butyl alcohol containing one oxygen element.
  • the second solvent can at least partially dissolve the alkali metal sulfide and the alkali metal halide, thereby effectively promoting the reaction of the alkali metal sulfide, the alkali metal halide, and phosphorus pentasulfide, thereby forming a high-purity sulfide-based solid electrolyte.
  • alkali metal sulfide and alkali metal halide may be mixed first in a first solvent, and phosphorus pentasulfide may be additionally mixed secondarily.
  • the second solvent when the second solvent is further included, the second solvent may be mixed during the first mixing.
  • the alkali metal sulfide and the alkali metal halide may be previously stirred in the first solvent.
  • the alkali metal sulfide and the alkali metal halide are dissolved in the first solvent, thereby reducing unreacted products in the sulfide-based solid electrolyte synthesis reaction and increasing the purity of the composite.
  • the pre-stirring may be performed at 500 rpm or more and may be performed for 0.5 to 10 hours, 0.5 to 5 hours, 0.5 to 3 hours, or 0.5 to 2 hours.
  • the pre-stirring may be performed at room temperature to 100°C. As the temperature of the preceding stirring increases, the amount of impurities may decrease. Preferably, the preceding stirring may be performed at a temperature that does not exceed the boiling point of the first solvent and/or the second solvent, e.g. For example, it may be carried out at 50 to 90°C or 50 to 85°C.
  • Reactants can be produced by wet ball milling.
  • reactants can be formed by table ball milling, vertical-ball milling, planetary milling, bead milling, etc.
  • the gas pressure inside the reactor is maintained in an open vacuum state of -0.1 MPa or less, and the mixture inside the reactor is stirred or ultrasonicated to react the mixture.
  • bubbles generated within the mixture by the stirring or application of ultrasound may continue to occur until the end of the reaction, and large-volume bubbles may be formed. The bubbles promote mixing and contact between reactants, thereby increasing the reaction rate.
  • the solvent used to form the mixture may be an organic solvent that does not contain oxygen, such as heptane, n-heptane, or toluene.
  • the reactant is formed, it is dried to remove the solvent. Drying can be done by various methods such as vacuum drying, hot air drying, freeze drying, and spray drying.
  • the reactants can be further mixed uniformly, residual solvent can be removed, and carbon, an impurity contained in the solvent, can be removed from the reactants.
  • remixing may be by wet ball milling.
  • it can be done by table ball milling, vertical-ball milling, planetary milling, bead milling, etc.
  • remixing may be accomplished by stirring, homogenizing, ultra-sonication, etc.
  • the solvent used for remixing may be the same as the solvent used to form the mixture. That is, the solvent used during remixing may include a nitrile-based solvent, ether-based solvent, ester-based solvent, etc. As an optional example, the solvent used during remixing may be an organic solvent that does not contain oxygen, such as heptane, n-heptane, or toluene.
  • Such remixing can be performed for 10 minutes to 2 hours, and can be performed multiple times if necessary, and wet mixing and dry mixing can be alternately repeated.
  • the remixed reactants are heat treated (S140).
  • Heat treatment may be performed for 1 hour to 24 hours at a temperature of 450°C or more and 600°C or less under an inert gas atmosphere such as CO, H 2 , N 2 , Ar, He, Ne, etc. Crystals of the reactant grow through heat treatment.
  • Figure 2 is a schematic flowchart explaining a method for producing a sulfide-based solid electrolyte according to another embodiment of the present invention.
  • the method for producing a sulfide-based solid electrolyte includes forming a mixture by mixing a precursor and a solvent in a reactor (S210), and reacting the mixture to produce a reactant. It may include a step (S220), a step of primary heat treatment of the reactant (S230), and a step of secondary heat treatment of the reactant (S240).
  • the step of mixing the precursor and the solvent in the reactor (S210) and the step of reacting the mixture to produce a reactant (S220) are the same as those described in FIG. 1 and will not be repeated.
  • Precursors may include alkali metal sulfides ( A 2 S; A is an alkali metal), alkali metal halides (AX; Alkali metals may include lithium, sodium, potassium, or combinations thereof.
  • Halogen may include fluorine, chlorine, bromine, iodine, or combinations thereof.
  • the alkali metal sulfide, alkali metal halide, and phosphorus pentasulfide may be mixed at a molar ratio of 4.5 to 5.5:0.5 to 1.5:1.5 to 2.5.
  • the alkali metal sulfide, alkali metal halide, and phosphorus pentasulfide may react at a stoichiometric molar ratio of 5:1:2.
  • the solvent may include a first solvent that has low solubility in alkali metal sulfide and alkali metal halide.
  • the solvent further includes a second solvent that at least partially dissolves the alkali metal sulfide and the alkali metal halide, effectively promoting the reaction of the alkali metal sulfide and the alkali metal halide with phosphorus pentasulfide, thereby forming a high-purity sulfide-based solid electrolyte. can be formed.
  • the first solvent may include a nitrile-based solvent, an ether-based solvent, an ester-based solvent, etc.
  • the nitrile-based solvent may include, for example, acetonitrile.
  • the second solvent may include an alcohol-based solvent, carboxylic acid-based solvent, ester-based solvent, ketone-based solvent, amine-based solvent, sulfoxide-based solvent, etc., for example, acetic acid, acetyl acetone, 2-aminoethanol, Anisole, benzyl alcohol, 1-butanol, 2-butanol, 2-butanone, t-butyl alcohol, cyclohexanol, cyclohexanone, di-n-butyl phthalate, diethyl glycol, diglyme, dimethoxyethane, Dimethylformamide, dimethyl phthalate, dimethyl sulfoxide, dioxane, ethanol, ether, ethyl acetate, ethyl acetoacetate, ethyl benzoate, ethylene glycol, glycerin, 1-heptanol, 1-hexanol, methanol, methyl acetate, methyl It may
  • the second solvent is acetone, 2-aminoethanol, anisole, benzyl alcohol, 1-butanol, 2-butanol, i-butanol, 2-butanone, t-butyl alcohol containing one oxygen element.
  • heat treatment is performed. As shown in FIG. 2, the heat treatment consists of a first heat treatment step (S230) and a second heat treatment step (S240). It can be included.
  • the heat treatment includes a first heat treatment step (S230) and a second heat treatment step (S240), impurities are additionally removed and a stable solid electrolyte crystal phase is synthesized to have high purity and high crystallinity. It can be induced.
  • the first heat treatment step (S230) additionally induces volatilization of the solvent that may remain in the reactant, changes carbon among the elements of the remaining organic solvent to amorphous carbon with low electrical conductivity, and improves chemistry between precursors.
  • the synthesis of structurally stable agyrhodite can be induced.
  • the first heat treatment step (S230) may be performed at a temperature above 100°C where the solvent is sufficiently volatilized and below 450°C where the amorphous carbon is crystallized.
  • the second heat treatment step (S240) may be performed at a higher temperature than the heat treatment temperature of the first heat treatment step (S230).
  • the secondary heat treatment step (S240) may be performed for 1 hour to 24 hours at a temperature of 450°C or more and 600°C or less under an inert gas atmosphere such as CO, H 2 , N 2 , Ar, He, Ne, etc. Crystals of the reactant may grow through secondary heat treatment.
  • the embodiment described in FIG. 2 may further include a step of remixing the reactants included in FIG. 1 (S130 in FIG. 1), and as a result, impurities such as carbon generated during wet synthesis are more effectively removed.
  • a high purity sulfide-based solid electrolyte can be formed.
  • Figure 3 is a schematic flowchart explaining a method for producing a sulfide-based solid electrolyte according to another embodiment of the present invention.
  • the method for producing a sulfide-based solid electrolyte includes forming a mixture by mixing a precursor and a solvent in a reactor (S310), and reacting the mixture to produce a reactant. It may include a step (S320), a step of heat treating the reactant (S330), a step of purifying the heat-treated reactant (S340), and a step of drying the purified reactant (S350).
  • Precursors may include alkali metal sulfides ( A 2 S; A is an alkali metal), alkali metal halides (AX; Alkali metals may include lithium, sodium, potassium, or combinations thereof.
  • Halogen may include fluorine, chlorine, bromine, iodine, or combinations thereof.
  • the alkali metal sulfide, alkali metal halide, and phosphorus pentasulfide may be mixed at a molar ratio of 4.5 to 5.5:0.5 to 1.5:1.5 to 2.5.
  • the alkali metal sulfide, alkali metal halide, and phosphorus pentasulfide may react at a stoichiometric molar ratio of 5:1:2.
  • the solvent may include a first solvent that has low solubility in alkali metal sulfide and alkali metal halide.
  • the solvent further includes a second solvent that at least partially dissolves the alkali metal sulfide and the alkali metal halide, effectively promoting the reaction of the alkali metal sulfide and the alkali metal halide with phosphorus pentasulfide, thereby forming a high-purity sulfide-based solid electrolyte. can be formed.
  • the first solvent may include a nitrile-based solvent, an ether-based solvent, an ester-based solvent, etc.
  • the nitrile-based solvent may include, for example, acetonitrile.
  • the second solvent may include an alcohol-based solvent, carboxylic acid-based solvent, ester-based solvent, ketone-based solvent, amine-based solvent, sulfoxide-based solvent, etc., for example, acetic acid, acetyl acetone, 2-aminoethanol, Anisole, benzyl alcohol, 1-butanol, 2-butanol, 2-butanone, t-butyl alcohol, cyclohexanol, cyclohexanone, di-n-butyl phthalate, diethyl glycol, diglyme, dimethoxyethane, Dimethylformamide, dimethyl phthalate, dimethyl sulfoxide, dioxane, ethanol, ether, ethyl acetate, ethyl acetoacetate, ethyl benzoate, ethylene glycol, glycerin, 1-heptanol, 1-hexanol, methanol, methyl acetate, methyl It may
  • the second solvent is acetone, 2-aminoethanol, anisole, benzyl alcohol, 1-butanol, 2-butanol, i-butanol, 2-butanone, t-butyl alcohol containing one oxygen element.
  • the step of mixing the precursor and the solvent in the reactor (3210), the step of reacting the mixture to produce a reactant (S320), and the heat treatment step (S330) are the same as those described in FIG. 1, and will not be described again.
  • the step (S340) of purifying the heat-treated reactant is to further remove residual impurities in the reactant using physical force by further mixing the reactant, and to break the weak physical bonds of secondary and tertiary particles, ultimately producing the reactant.
  • the particle size can be controlled.
  • the heat-treated reactant may contain a small amount of impurities that are not completely removed, especially after going through the heat treatment step, and may have a wide particle size distribution depending on the crystallization mechanism.
  • aggregation may occur due to surface energy, so by additionally purifying the heat-treated reactants, agglomeration of the reactants can be eliminated, thereby producing a solid electrolyte with high purity and uniform particle size distribution.
  • the step of purifying the reactant (S340) may be performed by wet ball milling.
  • the reactant can be purified by ball milling.
  • impurities such as carbon on the surface of the reactant are removed and weak bonds between particles are broken, thereby controlling the particle size of the reactant.
  • Ball milling may include various methods such as table ball milling, vertical-ball milling, planetary milling, and bead milling. Additionally, mixing in the purification step may be done by stirring, homogenizing, ultra-sonication, etc.
  • the purification step can be performed wet or dry, and in the case of the wet method, it includes a drying step, and in the case of the dry method, it does not include the drying step but may additionally include a resolving step.
  • the drying step may be performed alternately between dry and wet methods.
  • the purified reactant is dried (S350).
  • the purified reactant can be dried using a centrifuge.
  • the purified reactant goes through a purification step to remove impurities and adjust the particle size. It can be dried using centrifugation to prevent the particle size from increasing again during drying due to surface energy.
  • drying may be performed including a general drying step such as hot air drying, freeze drying, or spray drying.
  • the embodiment described in FIG. 3 includes the step of remixing the reactants included in FIG. 1 (S130 in FIG. 1), the first heat treatment step included in FIG. 2 (S230 in FIG. 2), and the second heat treatment step (S230 in FIG. 2). It may further include at least one of S240) of 2, and as a result, impurities such as carbon generated during wet synthesis can be more effectively removed to form a high-purity sulfide-based solid electrolyte.
  • the synthetic material for preparing the sulfide-based solid electrolyte is Li 6-x PS 5-x Ha x (1 ⁇ x ⁇ 2).
  • lithium sulfide (Li 2 S), phosphorus pentasulfide (P 2 S 5 ), and lithium chloride (LiCl) as precursors were mixed in the solvent acetonitrile, and then ball milled to form a mixture.
  • the resulting reactants were dried and then wet ball milled to remix the reactants.
  • a first heat treatment was performed at 200°C for 5 hours to remove residual carbon, and a second heat treatment was performed at 550°C for 12 hours in an Ar atmosphere to grow crystals of the reactant.
  • Comparative Example 1 produced a sulfide-based solid electrolyte in the same manner as in Example 1, with the difference that the process of remixing the reactants after generation was omitted.
  • Figure 4 is a diagram showing Raman spectroscopy results of Example and Comparative Example 1.
  • Figure 4 (I) is the Raman spectroscopy result according to Example 4
  • (II) is the Raman spectroscopy result according to Example 1.
  • Comparative Example 2 produced a sulfide-based solid electrolyte in the same manner as the Example, but differed from the Example in that it underwent a single heat treatment process.
  • Figure 5 is a diagram showing the results of X-ray diffraction analysis (XRD) of the sulfide-based solid electrolyte according to the present invention.
  • Figure 5 (I) is the X-ray diffraction analysis (XRD) result according to the example, and (III) is the X-ray diffraction analysis (XRD) result according to Comparative Example 2.
  • Li 3 PS 4 of 16 (2 ⁇ /deg.), which is an impurity phase Li 2 S of 27 (2 ⁇ /deg.), 29 according to the stoichiometric ratio. (2 ⁇ /deg.), 32 (2 ⁇ /deg.) LiCl, etc. were detected in large amounts, while in Example (I) in which the second heat treatment step was performed after the first heat treatment step, Li 3 PS 4 was almost Not only is it not detected, but it can be seen that other impurities other than a small amount of Li 2 S are not detected.
  • Comparative Example 3 produced a sulfide-based solid electrolyte in the same manner as Example, but did not include purification and drying processes.
  • Figures 6 and 7 show the results of X-ray diffraction analysis (XRD) and Raman spectroscopy of the sulfide-based solid electrolyte according to the present invention.
  • XRD X-ray diffraction analysis
  • Raman spectroscopy of the sulfide-based solid electrolyte according to the present invention.
  • (I) is the X-ray diffraction analysis (XRD) result and Raman spectroscopy result according to the example
  • (IV) is the X-ray diffraction analysis (XRD) result and Raman spectroscopy result according to Comparative Example 3.
  • Example (I) compared to Comparative Example 3 (IV)
  • the small amount of impurities remaining before purification especially the peak (1350-1580 cm -1 ) related to carbon, was drastically reduced. indicates.
  • PS 4 3- peak (430 cm -1 ) which is the main bond of the sulfide solid electrolyte, has no effect.
  • Example (I) has a smaller average particle size (D 50 ) and particle size distribution than Comparative Example 3 (IV).
  • FIG 8 is a diagram showing the results of electrochemical impedance analysis (EIS) of the sulfide-based solid electrolyte according to the present invention.
  • Figure 8 shows the electrochemical impedance (EIS) of the sulfide-based solid electrolyte according to an example. Due to the nature of the battery, in order to maintain the performance of the electrolyte, the electronic conductivity of the electrolyte itself must be minimized, and the higher the ionic conductivity, the more advantageous.
  • EIS electrochemical impedance analysis
  • the slope of the electrochemical impedance (EIS) according to the example is 45° or more, which is a result of low electronic conductivity and excellent ionic conductivity. Therefore, it can be seen that the sulfide-based solid electrolyte according to the present invention has excellent characteristics.
  • the reactant is formed through wet milling including a solvent, but carbon can be effectively removed through the process of remixing the formed reactant, primary heat treatment, secondary heat treatment, and purification process, and azyrodite
  • a sulfide-based solid electrolyte with an (Argyrodite) type crystal structure can have a uniform particle size, and the size of the particle size can be freely adjusted through the purification process.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

구현예들에 따른 황화물계 고체 전해질의 제조 방법은 반응기 내에서 용매와 전구체를 혼합한다. 반응기 내에 개진공 분위기를 형성한다. 반응기 내의 개진공 분위기를 유지하면서 반응기 내부의 혼합물을 교반 또는 초음파 인가 조건에서 반응시킨다. 높은 효율로 고순도의 황화물계 고체 전해질을 제조할 수 있다.

Description

황화물계 고체 전해질의 제조 방법
본 발명은 황화물계 고체 전해질의 제조 방법에 관한 것이다.
리튬이차전지는 휴대폰, 노트북 등의 소형 기기에 적용되어 왔으나, 최근에는 에너지 저장장치(energy storage system, ESS) 및 전기자동차(electric vehicle, EV)와 같은 중대형 기기로 확장되고 있는 추세이다. 리튬이차전지는 리튬염이 첨가된 유기 액체 전해질을 이용하므로 전해질의 누액뿐만 아니라 이에 따른 발화 및 폭발의 잠재적인 위험성을 안고 있다.
최근에는 이러한 리튬이차전지가 가진 한계들을 극복하고, 전지의 안정성 향상을 위해 액체 전해질을 고체 전해질로 대체한 전고체 전지에 대한 연구가 진행되고 있다. 전고체 전지는 고체 전해질을 이용함으로써 화재 및 폭발의 위험성이 없고, 높은 에너지 밀도를 가져 리튬이차전지와 마찬가지로 전기자동차 및 전력저장시스템과 같은 중대형 기기에 사용될 수 있다.
고체 전해질은 산화물계와 황화물계로 나뉜다. 특히 황화물계 고체전해질은 산화물계 고체전해질과 비교하여 우수한 리튬 이온전도도를 가지며 넓은 전압 범위에서 안정적인 장점이 있다. 황화물계 고체전해질은 일반적으로 용융법 또는 고상법으로 제조된다. 특히 고상법의 경우 밀링 용기 내에 출발 원료 및 볼을 넣어 분쇄한 후 고에너지를 제공하여 열처리하는 공정으로 이루어진다.
종래 한국공개특허 제2019-0079135호는 출발물질들을 혼합 후 분쇄하고, 이를 열처리하여 황화물계 고체전해질을 제조하는 방법을 개시하고 있다. 그러나 이러한 고상법은 출발원료의 균일한 분산이 어렵고, 비정질화하는데 한계가 있으며, 밀링 용기를 대형화하기 어려워 대량 합성이 용이하지 않은 문제가 있다.
최근에는 이러한 문제를 해결하기 위하여 유기용매를 이용하여 황화물계 고체전해질을 합성하는 액상공정에 대한 연구가 진행되고 있으나, 액상 공정 시 유기용매의 잔류 등에 의해 수득된 고체전해질의 결정성이 떨어지고 이온전도도가 저하되는 문제가 있다.
본 발명의 일 과제는 고순도 및 고효율의 황화물계 고체 전해질의 제조 방법을 제공하는 것이다.
본 발명의 일 실시예는, 전구체와 용매를 혼합하여 혼합물을 형성하는 단계; 상기 혼합물을 반응시켜 반응물을 생성하는 단계; 및 상기 반응물을 열처리하는 단계;를 포함하고, 상기 열처리는, 1차 열처리 단계와 상기 1차 열처리 단계보다 높은 온도에서 수행되는 2차 열처리 단계를 포함하고, 상기 1차 열처리 단계에서, 상기 반응물 내의 탄소는 비정질 탄소로 변화하는 황화물계 고체 전해질의 제조 방법을 개시한다.
본 발명에 의하면, 높은 순도의 황화물계 고체 전해질이 수득될 수 있다.
도 1은 본 발명의 일 실시예에 따른 황화물계 고체 전해질의 제조 방법을 설명하는 개략적인 흐름도이다.
도 2는 본 발명의 다른 실시예에 따른 황화물계 고체 전해질의 제조 방법을 설명하는 개략적인 흐름도이다.
도 3은 본 발명의 또 다른 실시예에 따른 황화물계 고체 전해질의 제조 방법을 설명하는 개략적인 흐름도이다.
도 4는 본 발명에 따른 황화물계 고체전해질의 라만 분광 결과를 도시한 도이다.
도 5는 본 발명에 따른 황화물계 고체전해질의 X선 회절분석(XRD) 결과를 도시한 도이다.
도6 및 도 7은 본 발명에 따른 황화물계 고체전해질의 X선 회절분석(XRD) 결과와 라만 분광 결과를 도시한 도이다.
도 8은 본 발명에 따른 황화물계 고체전해질의 전기화학 임피던스 분석(EIS) 결과를 도시한 도이다.
본 발명의 일 실시예는, 전구체와 용매를 혼합하여 혼합물을 형성하는 단계; 상기 혼합물을 반응시켜 반응물을 생성하는 단계; 및 상기 반응물을 열처리하는 단계;를 포함하고, 상기 열처리는, 1차 열처리 단계와 상기 1차 열처리 단계보다 높은 온도에서 수행되는 2차 열처리 단계를 포함하고, 상기 1차 열처리 단계에서, 상기 반응물 내의 탄소는 비정질 탄소로 변화하는 황화물계 고체 전해질의 제조 방법을 개시한다.
본 실시예에 있어서, 상기 2차 열처리 단계는 불활성기체 분위기에서 수행될 수 있다.
본 실시예에 있어서, 상기 반응물을 열처리하는 단계 전에, 상기 반응물을 재혼합하는 단계를 더 포함하고, 상기 열처리하는 단계는 재혼합된 상기 반응물을 열처리할 수 있다.
본 실시예에 있어서, 상기 반응물의 건조 후, 건조된 상기 반응물을 재혼합할 수 있다.
본 실시예에 있어서, 상기 재혼합하는 단계는, 습식 볼 밀링에 의할 수 있다.
본 실시예에 있어서, 상기 반응물을 열처리하는 단계 후에, 열처리된 상기 반응물을 정제하는 단계를 더 포함할 수 있다.
본 실시예에 있어서, 상기 반응물을 정제하는 단계는, 습식 볼 밀링에 의할 수 있다.
본 실시예에 있어서, 상기 반응물을 정제하는 단계 후에, 정제된 상기 반응물을 건조하는 단계를 더 포함할 수 있다.
본 실시예에 있어서, 상기 전구체는 알칼리 금속 황화물, 알칼리 금속 할로겐화물 및 오황화 인을 포함할 수 있다.
본 실시예에 있어서, 상기 혼합물의 형성시, 상기 알칼리 금속 황화물과 상기 알칼리 금속 할로겐화물을 상기 용매에 1차로 혼합하고, 상기 오황화 인은 추가로 2차 혼합할 수 있다.
이상의 본 발명의 목적들, 다른 목적들, 특징들 및 이점들은 첨부된 도면과 관련된 이하의 바람직한 실시예들을 통해서 쉽게 이해될 것이다. 그러나 본 발명은 여기서 설명되는 실시예들에 한정되지 않고 다른 형태로 구체화 될 수도 있다. 오히려, 여기서 소개되는 실시예들은 개시된 내용이 철저하고 완전해질 수 있도록 그리고 통상의 기술자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 제공되는 것이다.
각 도면을 설명하면서 유사한 참조 부호를 유사한 구성요소에 대해 사용하였다. 첨부된 도면에 있어서, 구조물들의 치수는 본 발명의 명확성을 위하여 실제보다 확대하여 도시한 것이다. 제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다. 또한, 층, 막, 영역, 판 등의 부분이 다른 부분 "상에" 있다고 할 경우, 이는 다른 부분 "바로 위에" 있는 경우뿐만 아니라 그 중간에 또 다른 부분이 있는 경우도 포함한다. 반대로 층, 막, 영역, 판 등의 부분이 다른 부분 "하부에" 있다고 할 경우, 이는 다른 부분 "바로 아래에" 있는 경우뿐만 아니라 그 중간에 또 다른 부분이 있는 경우도 포함한다.
달리 명시되지 않는 한, 본 명세서에서 사용된 성분, 반응 조건, 폴리머 조성물 및 배합물의 양을 표현하는 모든 숫자, 값 및/또는 표현은, 이러한 숫자들이 본질적으로 다른 것들 중에서 이러한 값을 얻는 데 발생하는 측정의 다양한 불확실성이 반영된 근사치들이므로, 모든 경우 "약"이라는 용어에 의해 수식되는 것으로 이해되어야 한다. 또한, 본 기재에서 수치 범위가 개시되는 경우, 이러한 범위는 연속적이며, 달리 지적되지 않는 한 이러한 범위의 최소값으로부터 최대값이 포함된 상기 최대값까지의 모든 값을 포함한다. 더 나아가, 이러한 범위가 정수를 지칭하는 경우, 달리 지적되지 않는 한 최소값으로부터 최대값이 포함된 상기 최대값 까지를 포함하는 모든 정수가 포함된다.
도 1은 본 발명의 일 실시예에 따른 황화물계 고체 전해질의 제조 방법을 설명하는 개략적인 흐름도이다.
도 1을 참조하면, 본 발명의 일 실시예에 따른 황화물계 고체 전해질의 제조 방법은, 반응기 내에서 전구체와 용매를 혼합하여 혼합물을 형성하는 단계(S110), 상기 혼합물을 반응시켜 반응물을 생성하는 단계(S120), 상기 반응물을 재혼합하는 단계(S130) 및 상기 재혼합된 반응물을 열처리하는 단계(S140)를 포함할 수 있다.
반응기 내에서 전구체와 용매를 혼합하는 단계(S110)는, 반응기 내에 용매를 먼저 투입한 후 전구체를 투입하거나, 전구체를 먼저 투입한 후 용매를 투입하거나, 용매와 전구체를 혼합하여 반응기에 투입하여 수행될 수 있다.
일부 구현예들에 있어서, 상기 전구체는 알칼리 금속 황화물(A2S; A는 알칼리 금속), 알칼리 금속 할로겐화물(AX; X는 할로겐) 및 오황화 인(P2S5)을 포함할 수 있다.
알칼리 금속은 리튬, 소듐, 포타슘 또는 이들의 조합을 포함할 수 있다.
할로겐은 불소, 염소, 브로민, 요오드 또는 이들의 조합을 포함할 수 있다.
일부 구현예들에 있어서, 상기 알칼리 금속 황화물, 알칼리 금속 할로겐화물 및 오황화 인은 4.5 내지 5.5 : 0.5 내지 1.5 : 1.5 내지 2.5의 몰비로 혼합될 수 있다. 예를 들면, 상기 알칼리 금속 황화물, 알칼리 금속 할로겐화물 및 오황화 인은 화학양론적으로 5 : 1 : 2의 몰비로 반응할 수 있다.
상기 용매는 알칼리 금속 황화물과 알칼리 금속 할로겐화물에 대한 용해도가 작은 제1 용매를 포함할 수 있다. 또한, 용매는 알칼리 금속 황화물과 알칼리 금속 할로겐화물을 적어도 부분적으로 용해시키는 제2 용매를 더 포함할 수 있다.
상기 제1 용매는 니트릴계 용매, 에테르계 용매, 에스테르계 용매 등을 포함할 수 있으며, 상기 니트릴계 용매로서, 예를 들면, 아세토니트릴을 포함할 수 있다.
상기 제2 용매는 알코올계 용매, 카르복시산계 용매, 에스테르계 용매, 케톤계 용매, 아민계 용매, 설폭사이드계 용매 등을 포함할 수 있으며, 예를 들면, 아세트산, 아세틸 아세톤, 2-아미노에탄올, 아니솔, 벤질 알코올, 1-부탄올, 2-부탄올, 2-부타논, t-부틸 알코올, 사이클로헥산올, 사이클로헥사논, 디-n-부틸 프탈레이트, 디에틸 글리콜, 디글라임, 디메톡시에탄, 디메틸포름아미드, 디메틸 프탈레이트, 디메틸설폭사이드, 디옥산, 에탄올, 에테르, 에틸 아세테이트, 에틸 아세토아세테이트, 에틸 벤조에이트, 에틸렌 글리콜, 글리세린, 1-헵탄올, 1-헥산올, 메탄올, 메틸 아세테이트, 메틸 t-부틸 에테르, 1-옥탄올, 1-펜탄올, 2- 펜탄올, 3- 펜탄올, 2-펜타논, 3- 펜타논, 1-프로판올, 테트라하이드로푸란 등을 포함할 수 있다.
바람직하게는, 상기 제2 용매는 1개의 산소 원소를 포함하는 아세톤, 2-아미노에탄올, 아니솔, 벤질 알코올, 1-부탄올, 2-부탄올, i-부탄올, 2-부타논, t-부틸 알코올, 사이클로헥산올, 사이클로헥사논, 디메틸포름아미드, 에탄올, 에테르, 1-헵탄올, 1-헥산올, 메탄올, 메틸 t-부틸 에테르, 1-옥탄올, 1-펜탄올, 2-펜탄올, 3-펜탄올, 2-펜타논, 3-펜타논, 1-프로판올, 2-프로판올, 테트라하이드로푸란 등을 포함할 수 있다.
상기 제2 용매는 알칼리 금속 황화물과 알칼리 금속 할로겐화물을 적어도 부분적으로 용해시켜, 알칼리 금속 황화물 및 알칼리 금속 할로겐화물과 오황화 인의 반응을 효과적으로 촉진하여, 고순도의 황화물계 고체 전해질을 형성할 수 있다.
일부 구현예들에 있어서, 전구체의 혼합 시, 알칼리 금속 황화물과 알칼리 금속 할로겐화물을 제1 용매에서 1차로 혼합하고, 오황화 인은 추가로 2차 혼합할 수 있다.
일부 구현예들에 있어서, 상기 제2 용매를 더 포함하는 경우, 상기 제2 용매는 상기 제1차 혼합 시 혼합될 수 있다.
일부 구현예들에 있어서, 상기 1차 혼합 시 알칼리 금속 황화물과 알칼리 금속 할로겐화물을 제1 용매에서 선행 교반 시킬 수 있다. 이 경우, 알칼리 금속 황화물과 알칼리 금속 할로겐화물이 상기 제1 용매 내에 용해되어, 황화물계 고체 전해질 합성 반응의 미반응물이 감소하고, 합성물의 순도가 증가할 수 있다. 예를 들면, 상기 선행 교반은 500 rpm이상으로 수행될 수 있으며, 0.5 내지 10 시간, 0.5 내지 5 시간, 0.5 내지 3 시간 또는 0.5 내지 2 시간 동안 수행될 수 있다.
일부 구현예들에 있어서, 상기 선행 교반은 상온 내지 100℃에서 수행될 수 있다. 상기 선행 교반의 온도가 증가할수록 불순물의 양이 감소할 수 있으며, 바람직하게는, 상기 선행 교반은 상기 제1 용매 및/또는 상기 제2 용매의 끓는점을 초과하지 않는 온도에서 수행될 수 있으며, 예를 들면, 50 내지 90℃ 또는 50 내지 85℃에서 수행될 수 있다.
이어서, 혼합물을 반응시켜 반응물을 생성한다(S120).
반응물을 생성은 습식 볼밀링에 의할 수 있다. 예를 들어, table ball milling, vertical-ball milling, planetary milling, bead milling 등에 의해 반응물을 형성할 수 있다.
다른 예로, 반응기가 밀폐되지 않은 상태에서 반응기 내부의 기체 압력을 -0.1MPa 이하의 압력을 유지하는 개진공 상태를 유지하며 반응기 내부의 혼합물을 교반 또는 초음파하여 혼합물을 반응시킬 수 있다. 이 경우, 상기 교반 또는 초음파 인가에 의해 상기 혼합물 내에서 발생하는 버블이 반응 종료까지 지속적으로 발생할 수 있으며, 부피가 큰 버블이 형성될 수 있다. 상기 버블에 의해 반응물들 사이의 혼합 및 접촉이 촉진되어 반응 속도가 증가할 수 있다.
선택적 실시예로, 혼합물을 형성할 때 사용되는 용매는 헵탄, n-헵탄, 톨루엔 등 산소를 포함하지 않는 유기용매를 사용할 수 있다.
반응물이 형성되면, 이를 건조시켜 용매를 제거한다. 건조는 진공건조, 열풍건조, 동결건조, 분무건조 등 다양한 방법에 의할 수 있다.
다음으로 건조된 상기 반응물을 재혼합(S130)한다.
재혼합에 의해 반응물을 균일하게 추가 혼합하고, 잔류 용매를 제거하며, 용매에 포함되었던 불순물인 탄소를 반응물로부터 제거할 수 있다.
일 예로, 재혼합은 습식 볼 밀링에 의할 수 있다. 예를 들어, table ball milling, vertical-ball milling, planetary milling, bead milling 등에 의할 수 있다. 다른 예로, 재혼합은 stirring, homogenizing, ultra-sonication 등에 의할 수도 있다.
재혼합에 사용되는 용매는 혼합물을 형성할 때 사용하는 용매와 동일할 수 있다. 즉, 재혼합시 사용되는 용매는 니트릴계 용매, 에테르계 용매, 에스테르계 용매 등을 포함할 수 있다. 선택적 실시예로, 재혼합시 사용되는 용매는 헵탄, n-헵탄, 톨루엔 등 산소를 포함하지 않는 유기용매를 사용할 수 있다.
이와 같은 재혼합은 10분 내지 2시간 동안 수행될 수 있고, 필요시 복수 회 걸쳐 수행될 수 있으며, 습식혼합과 건식혼합을 교차 반복하여 진행할 수도 있다.
이처럼, 반응물을 생성한 후에 추가적인 혼합을 수행하면, 낮은 에너지로 서로 다른 전구체들의 완전한 혼합은 물론, 습식 합성 시 발생하는 탄소 등의 불순물을 효과적으로 제거하여 고순도의 황화물계 고체 전해질을 형성할 수 있다.
다음으로, 재혼합된 반응물을 열처리(S140)한다. 열처리는 CO, H2, N2, Ar, He, Ne 등과 같은 불활성기체 분위기 하에서, 450℃ 이상 600℃ 이하의 온도로 1시간 내지 24시간 동안 수행될 수 있다. 열처리에 의해 반응물의 결정이 성장한다.
도 2는 본 발명의 다른 실시예에 따른 황화물계 고체 전해질의 제조 방법을 설명하는 개략적인 흐름도이다.
도 2를 참조하면, 본 발명의 일 실시예에 따른 황화물계 고체 전해질의 제조 방법은, 반응기 내에서 전구체와 용매를 혼합하여 혼합물을 형성하는 단계(S210), 상기 혼합물을 반응시켜 반응물을 생성하는 단계(S220), 반응물을 1차 열처리하는 단계(S230) 및 반응물을 2차 열처리하는 단계(S240)를 포함할 수 있다.
반응기 내에서 전구체와 용매를 혼합하는 단계(S210)와 혼합물을 반응시켜 반응물을 생성하는 단계(S220)는 도 1에서 설명한 바와 동일하므로, 반복하여 설명하지 않는다.
전구체는 알칼리 금속 황화물(A2S; A는 알칼리 금속), 알칼리 금속 할로겐화물(AX; X는 할로겐) 및 오황화 인(P2S5)을 포함할 수 있다. 알칼리 금속은 리튬, 소듐, 포타슘 또는 이들의 조합을 포함할 수 있다. 할로겐은 불소, 염소, 브로민, 요오드 또는 이들의 조합을 포함할 수 있다.
일부 구현예들에 있어서, 상기 알칼리 금속 황화물, 알칼리 금속 할로겐화물 및 오황화 인은 4.5 내지 5.5 : 0.5 내지 1.5 : 1.5 내지 2.5의 몰비로 혼합될 수 있다. 예를 들면, 상기 알칼리 금속 황화물, 알칼리 금속 할로겐화물 및 오황화 인은 화학양론적으로 5 : 1 : 2의 몰비로 반응할 수 있다.
용매는 알칼리 금속 황화물과 알칼리 금속 할로겐화물에 대한 용해도가 작은 제1 용매를 포함할 수 있다. 또한, 용매는 알칼리 금속 황화물과 알칼리 금속 할로겐화물을 적어도 부분적으로 용해시키는 제2 용매를 더 포함하여, 알칼리 금속 황화물 및 알칼리 금속 할로겐화물과 오황화 인의 반응을 효과적으로 촉진하여, 고순도의 황화물계 고체 전해질을 형성할 수 있다.
상기 제1 용매는 니트릴계 용매, 에테르계 용매, 에스테르계 용매 등을 포함할 수 있으며, 상기 니트릴계 용매로서, 예를 들면, 아세토니트릴을 포함할 수 있다.
상기 제2 용매는 알코올계 용매, 카르복시산계 용매, 에스테르계 용매, 케톤계 용매, 아민계 용매, 설폭사이드계 용매 등을 포함할 수 있으며, 예를 들면, 아세트산, 아세틸 아세톤, 2-아미노에탄올, 아니솔, 벤질 알코올, 1-부탄올, 2-부탄올, 2-부타논, t-부틸 알코올, 사이클로헥산올, 사이클로헥사논, 디-n-부틸 프탈레이트, 디에틸 글리콜, 디글라임, 디메톡시에탄, 디메틸포름아미드, 디메틸 프탈레이트, 디메틸설폭사이드, 디옥산, 에탄올, 에테르, 에틸 아세테이트, 에틸 아세토아세테이트, 에틸 벤조에이트, 에틸렌 글리콜, 글리세린, 1-헵탄올, 1-헥산올, 메탄올, 메틸 아세테이트, 메틸 t-부틸 에테르, 1-옥탄올, 1-펜탄올, 2- 펜탄올, 3- 펜탄올, 2-펜타논, 3- 펜타논, 1-프로판올, 테트라하이드로푸란 등을 포함할 수 있다. 바람직하게는, 상기 제2 용매는 1개의 산소 원소를 포함하는 아세톤, 2-아미노에탄올, 아니솔, 벤질 알코올, 1-부탄올, 2-부탄올, i-부탄올, 2-부타논, t-부틸 알코올, 사이클로헥산올, 사이클로헥사논, 디메틸포름아미드, 에탄올, 에테르, 1-헵탄올, 1-헥산올, 메탄올, 메틸 t-부틸 에테르, 1-옥탄올, 1-펜탄올, 2-펜탄올, 3-펜탄올, 2-펜타논, 3-펜타논, 1-프로판올, 2-프로판올, 테트라하이드로푸란 등을 포함할 수 있다.
습식 볼밀링 등에 의해 혼합물을 반응시켜 반응물을 생성(S220)한 후에는, 열처리를 수행하는데, 도 2에 도시된 바와 같이, 열처리는 1차 열처리 단계(S230)와 2차 열처리 단계(S240)를 포함할 수 있다.
습식 합성에 의해 반응물을 형성하면 용매를 건조하더라도 잔류 용매가 남아 있을 수 있고, 잔류 용매가 남아있는 상태에서 열처리 공정이 이루어지게 되면, 용매를 구성하는 원소 중 탄소, 질소 등이 반응에 참여하여 불순물이 발생할 수 있다. 특히, 황화물계 고체전해질을 구성하는 리튬(Li), 인(P), 황(S), 할로겐(Halogen) 원소의 구성 중, 낮은 온도에서 가장 안정적인 상은 200℃ 전후에서 합성되는 Li3PS4로서, 이 상은 결정성 구조의 아지로다이트 계 고체전해질에 비해 낮은 이온전도도를 가지기 때문에, 불순물로 취급된다. 또한, 잔류 유기용매와 같은 불순물이 섞여 있는 상태에서 열처리로 결정화를 시키게 되면 낮은 순도, 낮은 결정성은 물론 다수의 불순물 상과 함께 낮은 이온전도도를 갖게 될 수 있다.
그러나, 본 발명과 같이, 열처리를 1차 열처리 단계(S230)와 2차 열처리 단계(S240)를 포함하면, 불순물을 추가 제거하고, 안정적인 고체전해질 결정상을 합성하여, 높은 순도와 높은 결정성을 갖도록 유도할 수 있다.
보다 구체적으로, 1차 열처리 단계(S230)는 반응물에 남아 있을 수 있는 용매의 휘발을 추가적으로 유도하고, 잔류된 유기용매의 원소 중 탄소를 전기전도도가 낮은 상태의 비결정질 탄소로 변화시키고, 전구체간 화학양론적 비율을 유지하여 구조적으로 안정적인 아기로다이트의 합성을 유도할 수 있다.
1차 열처리 단계(S230)는 용매가 충분히 휘발되는 100℃ 이상, 비결정질 탄소가 결정화되는 450℃ 이하에서 수행될 수 있다.
2차 열처리 단계(S240)는 1차 열처리 단계(S230)의 열처리 온도보다 높은 온도로 수행될 수 있다. 2차 열처리 단계(S240)는 CO, H2, N2, Ar, He, Ne 등과 같은 불활성기체 분위기 하에서, 450℃ 이상 600℃ 이하의 온도로 1시간 내지 24시간 동안 수행될 수 있다. 2차 열처리에 의해 반응물의 결정이 성장할 수 있다.
한편, 도 2에서 설명한 실시예는, 도 1에 포함된 반응물을 재혼합하는 단계(도 1의 S130)를 더 포함할 수 있으며, 그 결과 습식 합성 시 발생하는 탄소 등의 불순물을 보다 효과적으로 제거하여 고순도의 황화물계 고체 전해질을 형성할 수 있다.
도 3은 본 발명의 또 다른 실시예에 따른 황화물계 고체 전해질의 제조 방법을 설명하는 개략적인 흐름도이다.
도 3을 참조하면, 본 발명의 일 실시예에 따른 황화물계 고체 전해질의 제조 방법은, 반응기 내에서 전구체와 용매를 혼합하여 혼합물을 형성하는 단계(S310), 상기 혼합물을 반응시켜 반응물을 생성하는 단계(S320), 상기 반응물을 열처리하는 단계(S330), 열처리된 상기 반응물을 정제하는 단계(S340) 및 정제된 상기 반응물을 건조하는 단계(S350)를 포함할 수 있다.
이하에서는 도 1에서 설명한 바와 동일한 내용은 반복하여 설명하지 않으며, 차이점만을 설명하기로 한다.
전구체는 알칼리 금속 황화물(A2S; A는 알칼리 금속), 알칼리 금속 할로겐화물(AX; X는 할로겐) 및 오황화 인(P2S5)을 포함할 수 있다. 알칼리 금속은 리튬, 소듐, 포타슘 또는 이들의 조합을 포함할 수 있다. 할로겐은 불소, 염소, 브로민, 요오드 또는 이들의 조합을 포함할 수 있다.
일부 구현예들에 있어서, 상기 알칼리 금속 황화물, 알칼리 금속 할로겐화물 및 오황화 인은 4.5 내지 5.5 : 0.5 내지 1.5 : 1.5 내지 2.5의 몰비로 혼합될 수 있다. 예를 들면, 상기 알칼리 금속 황화물, 알칼리 금속 할로겐화물 및 오황화 인은 화학양론적으로 5 : 1 : 2의 몰비로 반응할 수 있다.
용매는 알칼리 금속 황화물과 알칼리 금속 할로겐화물에 대한 용해도가 작은 제1 용매를 포함할 수 있다. 또한, 용매는 알칼리 금속 황화물과 알칼리 금속 할로겐화물을 적어도 부분적으로 용해시키는 제2 용매를 더 포함하여, 알칼리 금속 황화물 및 알칼리 금속 할로겐화물과 오황화 인의 반응을 효과적으로 촉진하여, 고순도의 황화물계 고체 전해질을 형성할 수 있다.
상기 제1 용매는 니트릴계 용매, 에테르계 용매, 에스테르계 용매 등을 포함할 수 있으며, 상기 니트릴계 용매로서, 예를 들면, 아세토니트릴을 포함할 수 있다.
상기 제2 용매는 알코올계 용매, 카르복시산계 용매, 에스테르계 용매, 케톤계 용매, 아민계 용매, 설폭사이드계 용매 등을 포함할 수 있으며, 예를 들면, 아세트산, 아세틸 아세톤, 2-아미노에탄올, 아니솔, 벤질 알코올, 1-부탄올, 2-부탄올, 2-부타논, t-부틸 알코올, 사이클로헥산올, 사이클로헥사논, 디-n-부틸 프탈레이트, 디에틸 글리콜, 디글라임, 디메톡시에탄, 디메틸포름아미드, 디메틸 프탈레이트, 디메틸설폭사이드, 디옥산, 에탄올, 에테르, 에틸 아세테이트, 에틸 아세토아세테이트, 에틸 벤조에이트, 에틸렌 글리콜, 글리세린, 1-헵탄올, 1-헥산올, 메탄올, 메틸 아세테이트, 메틸 t-부틸 에테르, 1-옥탄올, 1-펜탄올, 2- 펜탄올, 3- 펜탄올, 2-펜타논, 3- 펜타논, 1-프로판올, 테트라하이드로푸란 등을 포함할 수 있다. 바람직하게는, 상기 제2 용매는 1개의 산소 원소를 포함하는 아세톤, 2-아미노에탄올, 아니솔, 벤질 알코올, 1-부탄올, 2-부탄올, i-부탄올, 2-부타논, t-부틸 알코올, 사이클로헥산올, 사이클로헥사논, 디메틸포름아미드, 에탄올, 에테르, 1-헵탄올, 1-헥산올, 메탄올, 메틸 t-부틸 에테르, 1-옥탄올, 1-펜탄올, 2-펜탄올, 3-펜탄올, 2-펜타논, 3-펜타논, 1-프로판올, 2-프로판올, 테트라하이드로푸란 등을 포함할 수 있다.
반응기 내에서 전구체와 용매를 혼합하는 단계(3210)와 혼합물을 반응시켜 반응물을 생성하는 단계(S320) 및 열처리 단계(S330)는 도 1에서 설명한 바와 동일하므로, 반복하여 설명하지 않는다.
열처리된 상기 반응물을 정제하는 단계(S340)는, 반응물을 추가 혼합함으로써, 물리적인 힘으로 반응물의 잔류 불순물을 추가로 제거하고, 2차, 3차 입자들의 약한 물리적 결합을 끊어 냄으로써, 최종적으로 반응물의 입도를 제어할 수 있다.
열처리된 반응물에는 완전히 제거되지 않은 소량의 불순물이 있을 수 있고, 특히 열처리 단계를 거치며, 결정화 메커니즘에 따라 넓은 입도 분포를 가질 수 있다. 또한, 균일하게 혼합된 경우, 표면에너지에 의해 응집이 발생할 수 있기에, 열처리된 반응물을 추가적으로 정제함으로써, 반응물의 응집을 해소하여 높은 순도와 균일한 입도 분포를 갖는 고체전해질을 제조할 수 있다.
일 예로, 반응물을 정제하는 단계(S340)는 습식 볼 밀링에 의할 수 있다. 예를 들어, 반응물과 유기용매를 혼합한 후, 볼 밀링하여 반응물을 정제할 수 있다. 볼 밀링에 의해 반응물의 표면에 있는 탄소와 같은 불순물을 제거하고, 입자간 약한 결합을 끊음으로써, 반응물의 입도를 제어할 수 있다.
볼 밀링은 table ball milling, vertical-ball milling, planetary milling, bead milling 등 다양한 방법을 포함할 수 있다. 또한, 정제단계의 혼합은 stirring, homogenizing, ultra-sonication 등에 의할 수도 있다.
한편, 정제단계는 습식 또는 건식으로 진행할 수 있으며, 습식의 경우 건조단계를 포함하고, 건식의 경우 건조단계를 포함하지 않는 대신 추가적으로 해소단계를 포함할 수 있다. 건조단계는 건식과 습식을 교차 반복하여 진행할 수도 있다.
이어서, 정제된 상기 반응물을 건조(S350)한다. 정제된 상기 반응물은 원심분리기를 이용하여 건조될 수 있다. 정제된 반응물은 정제단계를 거쳐 불순물의 제거와 함께 입도 조절이 이루어져 있는 상태로, 표면 에너지에 의해 건조시 입도가 다시 커지는 것을 방지하기 위해 원심분리를 사용하여 건조 시킬 수 있다.
선택적 실시예로, 앞서 설명한 방법 외에, 건조는 열풍건조, 동결건조, 분무건조 등 일반 건조 후 해소단계를 포함하여 수행될 수 있다.
한편, 도 3에서 설명한 실시예는, 도 1에 포함된 반응물을 재혼합하는 단계(도 1의 S130) 및 도 2에 포함된 1차 열처리 단계(도 2의 S230)와 2차 열처리 단계(도 2의 S240) 중 적어도 어느 하나를 더 포함할 수 있으며, 그 결과 습식 합성 시 발생하는 탄소 등의 불순물을 보다 효과적으로 제거하여 고순도의 황화물계 고체 전해질을 형성할 수 있다.
이하, 구체적인 실시예를 통해 본 발명을 보다 구체적으로 설명한다. 하기 실시예는 본 발명의 이해를 돕기 위한 예시에 불과하며, 본 발명의 범위가 이에 한정되는 것은 아니다.
- 실시예: 황화물계 고체전해질의 제조 -
황화물계 고체전해질의 제조 합성물질은 Li6-xPS5-xHax(1≤x≤2)로서, 실시예에서 Ha는 chloride, x는 1인 Li6PS5Cl을 합성하였다.
먼저, 전구체로서 황화리튬(Li2S), 오황화인(P2S5), 염화리튬(LiCl)을 용매 acetonitrile에 혼합한 후, 볼 밀링을 수행하여 혼합물을 형성하였다.
이어서, 혼합물을 진공건조 한 후, 습식 볼 밀링을 1시간 동안 수행하여 반응물을 생성하였다.
생성된 반응물을 건조시킨 다음, 습식 볼 밀링하여 반응물을 재혼합하였다.
다음으로, 재혼합된 반응물을 건조한 후, 200℃에서 5시간 동안 1차 열처리를 수행하여 잔류 탄소를 제거하고, 2차 열처리는 Ar 분위기 550℃에서 12시간 동안 수행하여 반응물의 결정을 성장시켰다.
또한, Acetonitrile을 용매로 사용한 ball milling을 2시간 진행 후, 4000RPM으로 1시간 동안 원심분리를 진행하여 상층부의 용액을 제거하여 정제 과정을 수행하였으며, 건조 과정은 12시간 진공 건조하여 최종적으로 황화물계 고체전해질을 제조하였다.
비교예 1
비교예 1은 실시예와 동일한 방법으로 황화물계 고체전해질을 제조하되, 반응물의 생성 후 이를 재혼합하는 과정을 생략한 차이를 가진다.
도 4는 실시예와 비교예1의 라만 분광 결과를 도시한 도이다. 도 4의 (I)는 실시예에 따른 라만 분광 결과이고, (II)는 실시예1에 따른 라만 분광 결과이다.
도 4를 참조하면, 반응물의 생성 후 재혼합 단계를 실시한 실시예(I)의 경우, 비교예1(II)과 비교할 때, 470cm-1의 피크가 큰 차이가 없는 것으로부터 PS4 3- bonding의 intensity가 유지되는 반면, 용매로부터 발생하는 것으로 추정되는 불순물, carbon과 관련된 peak의 전체적인 면적이 상대적으로 줄어든 것을 알 수 있다. 이를 통해, 반응물의 생성 후 이를 재혼합함으로써, 황화물계 고체전해질의 구조적으로 안정하게 하고, 불순물을 제거하는데 효과가 있음이 확인할 수 있다.
즉, 본 발명에 따르면, 반응물을 추가적으로 재혼합함으로써, 낮은 에너지로 세가지 전구체의 완전한 혼합은 물론, 습식 합성 시 발생하는 불순물(carbon 등)을 효과적으로 제거할 수 있다.
비교예 2
비교예 2는 실시예와 동일한 방법으로 황화물계 고체전해질을 제조하되, 실시예와 비교시 단일 열처리 과정을 거친 차이를 가진다.
도 5는 본 발명에 따른 황화물계 고체전해질의 X선 회절분석(XRD) 결과를 도시한 도이다. 도 5의 (I)는 실시예에 따른 X선 회절분석(XRD) 결과이고, (III)는 비교예2에 따른 X선 회절분석(XRD) 결과이다.
도 5를 참조하면, 비교예2(III)의 경우는 불순물 상인 16(2θ/deg.)의 Li3PS4와 함께, 화학양론비에 맞추어 27(2θ/deg.)의 Li2S, 29(2θ/deg.), 32(2θ/deg.)의 LiCl 등이 다량 검출되는 반면, 1차 열처리 단계 후에 2차 열처리 단계를 진행한 실시예(I)의 경우는, Li3PS4가 거의 검출되지 않을 뿐 아니라, 소량의 Li2S외에 다른 불순물이 검출되지 않는 것을 알 수 있다.
즉, 1차 열처리 단계와 2차 열처리 단계로 구분하여 열처리를 수행함으로써, 반응물에서 불순물을 추가적으로 제거하고, 안정적인 고체전해질 결정상을 합성하여, 높은 순도와 높은 결정성을 갖도록 유도할 수 있다.
비교예 3
비교예 3은 실시예와 동일한 방법으로 황화물계 고체전해질을 제조하되, 정제 및 건조 과정을 포함하지 않는 차이를 가진다.
도6 및 도 7은 본 발명에 따른 황화물계 고체전해질의 X선 회절분석(XRD) 결과와 라만 분광 결과를 도시한 도이다. 도6 및 도 7에서, (I)는 실시예에 따른 X선 회절분석(XRD) 결과와 라만 분광 결과이고, (IV)는 비교예3에 따른 X선 회절분석(XRD) 결과와 라만 분광 결과이다.
먼저 도 6에 도시한 바와 같이, 열처리 후에 정제 및 건조 과정을 거친 실시예(I)와 정제 및 건조 과정을 포함하지 않은 비교예3(IV)의 X선 회절분석(XRD) 결과가 큰 차이가 없음을 알 수 있다. 즉, 열처리 후에 정제 및 건조 과정을 거치더라도, 결정화도, 상변화 등 큰 차이가 없으므로, 정제 및 건조 과정이 고체전해질에 큰 영향을 보이지 않음을 알 수 있다.
이에 반해, 도 7을 참조하면, 비교예3(IV)에 비해 실시예(I)의 경우, 정제 전에 잔류하던 소량의 불순물, 특히 카본과 관련된 peak(1350~1580cm-1)이 급격히 감소한 결과를 나타낸다. 반면, 황화물 고체전해질의 주요 결합인 PS4 3-peak(430cm-1)은 영향이 없음을 알 수 있다.
이는, 열처리된 반응물을 유기용매에 혼합한 후, 볼 밀링을 수행하는 정제 단계와 원심분리를 통한 건조단계를 거침으로써, 반응물의 표면에 있는 탄소와 같은 불순물을 제거하고, 동시에 시료의 응집을 해소함으로써 높은 순도와 균일한 입도 분포를 갖는 고체전해질이 제조됨을 의미한다.
또한, 정제 단계 및 건조 단계를 거친 결과, 아래 표 1에서 나타난 바와 같이, 실시예(I)은 비교예3(IV)에 비해 평균 입도(D50)와 입도 분포가 작아짐을 알 수 있다.
D50 입도 분포(Width)
실시예(I) 4.47 6.47
비교예3(IV) 10.37 19.32
도 8은 본 발명에 따른 황화물계 고체전해질의 전기화학 임피던스 분석(EIS) 결과를 도시한 도이다.도 8은 실시예에 따른 황화물계 고체전해질의 전기화학 임피던스(EIS)를 도시하고 있다. 배터리의 특성상 전해질로서의 성능이 유지되려면 전해질 자체의 전자전도도은 최소화되어야 하며, 이온전도도는 클수록 유리하다.
도 8을 참조하면, 실시예에 따른 전기화학 임피던스(EIS)의 기울기가 45°이상인 것을 알 수 있는데, 이는 전자전도도는 작고, 이온전도도는 우수한 결과이다. 따라서, 본 발명에 따른 황화물계 고체전해질은 우수한 특정을 가짐을 알 수 있다.
또한, 본 발명에 따르면 용매를 포함한 습식 밀링을 통해 반응물을 형성하지만, 형성된 반응물을 재혼합하는 과정, 1차 열처리와 2차 열처리 및 정제과정을 통해 탄소를 효과적으로 제거할 수 있으며, 아지로다이트(Argyrodite)형 결정구조를 가지는 황화물계 고체전해질은 균일한 입도를 가질 수 있고, 정제 과정을 통해 입도의 크기를 자유롭게 조절할 수 있다.
이와 같이 본 발명은 도면에 도시된 일 실시예를 참고로 하여 설명하였으나 이는 예시적인 것에 불과하며 당해 분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 실시예의 변형이 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의하여 정해져야 할 것이다.

Claims (10)

  1. 전구체와 용매를 혼합하여 혼합물을 형성하는 단계;
    상기 혼합물을 반응시켜 반응물을 생성하는 단계; 및
    상기 반응물을 열처리하는 단계;를 포함하고,
    상기 열처리는, 1차 열처리 단계와 상기 1차 열처리 단계보다 높은 온도에서 수행되는 2차 열처리 단계를 포함하고,
    상기 1차 열처리 단계에서, 상기 반응물 내의 탄소는 비정질 탄소로 변화하는 황화물계 고체 전해질의 제조 방법.
  2. 제1항에 있어서,
    상기 2차 열처리 단계는 불활성기체 분위기에서 수행되는 황화물계 고체 전해질의 제조 방법.
  3. 제1항에 있어서,
    상기 반응물을 열처리하는 단계 전에,
    상기 반응물을 재혼합하는 단계를 더 포함하고,
    상기 열처리하는 단계는 재혼합된 상기 반응물을 열처리하는 황화물계 고체 전해질의 제조 방법.
  4. 제3항에 있어서,
    상기 반응물의 건조 후, 건조된 상기 반응물을 재혼합하는 황화물계 고체 전해질의 제조 방법.
  5. 제4항에 있어서,
    상기 재혼합하는 단계는, 습식 볼 밀링에 의하는 황화물계 고체 전해질의 제조 방법.
  6. 제1항에 있어서,
    상기 반응물을 열처리하는 단계 후에,
    열처리된 상기 반응물을 정제하는 단계를 더 포함하는 황화물계 고체 전해질의 제조 방법.
  7. 제6항에 있어서,
    상기 반응물을 정제하는 단계는, 습식 볼 밀링에 의하는 황화물계 고체 전해질의 제조 방법.
  8. 제7항에 있어서,
    상기 반응물을 정제하는 단계 후에, 정제된 상기 반응물을 건조하는 단계를 더 포함하는 황화물계 고체 전해질의 제조 방법.
  9. 제1항에 있어서,
    상기 전구체는 알칼리 금속 황화물, 알칼리 금속 할로겐화물 및 오황화 인을 포함하는 황화물계 고체 전해질의 제조 방법.
  10. 제9항에 있어서,
    상기 혼합물의 형성시,
    상기 알칼리 금속 황화물과 상기 알칼리 금속 할로겐화물을 상기 용매에 1차로 혼합하고, 상기 오황화 인은 추가로 2차 혼합하는 황화물계 고체 전해질의 제조 방법.
PCT/KR2023/004032 2022-03-31 2023-03-27 황화물계 고체 전해질의 제조 방법 WO2023191416A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2022-0040577 2022-03-31
KR20220040577 2022-03-31
KR10-2023-0038261 2023-03-23
KR1020230038261A KR20230141520A (ko) 2022-03-31 2023-03-23 황화물계 고체 전해질의 제조 방법

Publications (1)

Publication Number Publication Date
WO2023191416A1 true WO2023191416A1 (ko) 2023-10-05

Family

ID=88202682

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/004032 WO2023191416A1 (ko) 2022-03-31 2023-03-27 황화물계 고체 전해질의 제조 방법

Country Status (1)

Country Link
WO (1) WO2023191416A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014209430A (ja) * 2012-11-28 2014-11-06 住友金属鉱山株式会社 硫化物系固体電解質スラリーの製造方法、硫化物系固体電解質粉末の製造方法、及びその製造方法で得られる硫化物系固体電解質スラリーと硫化物系固体電解質粉末
KR20180055086A (ko) * 2016-11-16 2018-05-25 현대자동차주식회사 습식공정을 통한 황화물계 고체전해질의 제조방법
KR101970892B1 (ko) * 2016-12-09 2019-04-19 도요타 지도샤(주) 황화물 고체 전해질의 제조 방법
JP6777989B2 (ja) * 2015-06-16 2020-10-28 現代自動車株式会社Hyundai Motor Company リチウムイオン伝導性硫化物の製造方法、これによって製造されたリチウムイオン伝導性硫化物、これを含む固体電解質、及び全固体バッテリー
KR20210134664A (ko) * 2019-03-05 2021-11-10 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 황화물계 고체 전해질의 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014209430A (ja) * 2012-11-28 2014-11-06 住友金属鉱山株式会社 硫化物系固体電解質スラリーの製造方法、硫化物系固体電解質粉末の製造方法、及びその製造方法で得られる硫化物系固体電解質スラリーと硫化物系固体電解質粉末
JP6777989B2 (ja) * 2015-06-16 2020-10-28 現代自動車株式会社Hyundai Motor Company リチウムイオン伝導性硫化物の製造方法、これによって製造されたリチウムイオン伝導性硫化物、これを含む固体電解質、及び全固体バッテリー
KR20180055086A (ko) * 2016-11-16 2018-05-25 현대자동차주식회사 습식공정을 통한 황화물계 고체전해질의 제조방법
KR101970892B1 (ko) * 2016-12-09 2019-04-19 도요타 지도샤(주) 황화물 고체 전해질의 제조 방법
KR20210134664A (ko) * 2019-03-05 2021-11-10 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 황화물계 고체 전해질의 제조 방법

Similar Documents

Publication Publication Date Title
WO2019107879A1 (ko) 고체 전해질, 그 제조 방법 및 이를 포함하는 전고체 전지
WO2017090877A1 (ko) 리튬 비스(플루오르술포닐)이미드의 신규한 제조방법
WO2012093797A2 (ko) 입자 전체 농도 구배 리튬이차전지 양극활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지
WO2020055030A1 (ko) 불소 음이온의 함유량이 저감된 비스(플루오로설포닐)이미드 리튬염(LiFSI)의 제조 방법(1)
WO2018110974A1 (ko) 인산리튬으로부터 수산화리튬을 제조하는 방법
WO2021256888A1 (ko) 리튬 비스옥살레이토보레이트를 고순도로 제조하는 방법 및 이를 이용한 2차 전지용 비수계 전해액
WO2020055033A1 (ko) 알콕시트리알킬실란을 이용한 불소음이온의 함유량이 저감된 비스(플루오로설포닐)이미드 리튬염(LiFSI)의 제조 방법
WO2023013938A1 (ko) 팽창성 흑연을 사용한 전도성 박막의 제조방법
WO2020096212A1 (ko) 리튬 화합물, 니켈계 양극 활물질, 산화 리튬의 제조 방법, 니켈계 양극 활물질의 제조 방법, 및 이를 이용한 이차 전지
WO2023191416A1 (ko) 황화물계 고체 전해질의 제조 방법
WO2019177328A1 (ko) 알루미늄으로 코팅된 1차 입자를 포함하는 리튬티탄 복합산화물 및 이의 제조 방법
WO2021210739A1 (ko) 규소산화물 제조장치 및 제조방법, 규소산화물 음극재
WO2021015378A1 (ko) 수산화 리튬의 제조 방법
WO2018199429A1 (ko) 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지
WO2022177253A1 (ko) 알루미늄 실리케이트를 포함하는 이차전지 전해질용 첨가제 및 이의 제조방법
WO2023182612A1 (ko) 이차전지용 음극 활물질, 이의 제조 방법 및 이를 포함하는 이차전지
WO2022255762A1 (ko) 황화물계 고체 전해질의 제조 방법
WO2022225287A1 (ko) 황화물계 고체 전해질, 이의 제조방법 및 이로부터 제조된 전고체 전지
WO2021125655A2 (ko) 과산화리튬의 입도 조절 방법 및 입도가 조절된 리튬산화물의 제조방법
WO2023013804A1 (ko) 금속 전극 보호용 고분자 피막 및 이를 이용한 이차전지
WO2021210934A1 (ko) 리튬 디플루오로비스(옥살라토)인산염 1,4-다이옥산 용매화물, 그의 제조방법 및 그를 포함하는 전해액 조성물
KR20230141520A (ko) 황화물계 고체 전해질의 제조 방법
WO2017116081A1 (ko) 양극활물질의 제조 방법 및 이에 의하여 제조된 양극활물질
WO2024128670A1 (ko) 황화 리튬 분말 및 이의 제조 방법
WO2022154428A1 (ko) 고체전해질의 제조방법, 이로부터 제조되는 고체전해질 및 이를 포함하는 전고체전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23781271

Country of ref document: EP

Kind code of ref document: A1