WO2023243827A1 - 니켈 또는 코발트 수용액 제조 방법 - Google Patents

니켈 또는 코발트 수용액 제조 방법 Download PDF

Info

Publication number
WO2023243827A1
WO2023243827A1 PCT/KR2023/004100 KR2023004100W WO2023243827A1 WO 2023243827 A1 WO2023243827 A1 WO 2023243827A1 KR 2023004100 W KR2023004100 W KR 2023004100W WO 2023243827 A1 WO2023243827 A1 WO 2023243827A1
Authority
WO
WIPO (PCT)
Prior art keywords
cobalt
nickel
aqueous solution
filtrate
producing
Prior art date
Application number
PCT/KR2023/004100
Other languages
English (en)
French (fr)
Inventor
최헌식
주재훈
최창영
Original Assignee
고려아연 주식회사
켐코 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려아연 주식회사, 켐코 주식회사 filed Critical 고려아연 주식회사
Priority to CA3211609A priority Critical patent/CA3211609A1/en
Priority to US18/547,565 priority patent/US11926882B1/en
Priority to AU2023222911A priority patent/AU2023222911A1/en
Publication of WO2023243827A1 publication Critical patent/WO2023243827A1/ko
Priority to AU2024201376A priority patent/AU2024201376B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a method for producing an aqueous solution of nickel or cobalt. More specifically, the present invention relates to a method of recovering nickel and cobalt from raw materials and then producing a nickel or cobalt aqueous solution that can be used to manufacture positive electrode active materials for lithium ion secondary batteries.
  • MHP Mixed Hydroxide Precipitate
  • nickel and cobalt were selectively recovered from the ionized nickel and cobalt aqueous solution using solvent extractants such as Ion quest 801, Cyanex 272, Versatic Acid 10, and LIX 84I.
  • solvent extractants such as Ion quest 801, Cyanex 272, Versatic Acid 10, and LIX 84I.
  • the purpose of the present invention is to recover nickel and cobalt from MHP cake raw materials containing nickel and cobalt mixed hydroxides and prepare a high purity aqueous solution.
  • the purpose of the present invention is to improve nickel and cobalt recovery and reduce energy usage by ionizing nickel and cobalt using a two-stage atmospheric pressure warming leaching process.
  • the present invention uses sodium fluoride (NaF), a precipitant, to separate magnesium and calcium in the high-purity nickel aqueous solution production process, and uses sodium hydrogen sulfide (NaSH) in the high-purity cobalt aqueous solution production process to separate magnesium and manganese through solubility differences.
  • NaF sodium fluoride
  • NaSH sodium hydrogen sulfide
  • the purpose is to reduce the solvent extraction process by additionally separating impurities such as copper, magnesium, and manganese through the use of sodium hydrogen sulfide (NaSH) and sodium fluoride (NaF).
  • the purpose of the present invention is to minimize the solvent extraction process so that it is not only suitable for the operating environment but also reduces the cost of manufacturing the final product.
  • One aspect of the present invention includes (A) a leaching process comprising a first atmospheric pressure warming leaching process and a second atmospheric pressure warming leaching process for leaching raw materials under normal pressure to form a leachate containing nickel, cobalt, and impurities; (B) a first extraction process of adding a first solvent extractant to the leachate to separate it into a first filtrate containing nickel and impurities and a first organic layer containing cobalt and impurities; and (C-i) a precipitation removal step of adding a precipitant to the first filtrate to precipitate and remove impurities including magnesium, calcium, or a mixture thereof; and (D-i) a target precipitation step of selectively precipitating a nickel cake containing nickel by adding a neutralizing agent to the first filtrate from which the impurities have been precipitated and removed. .
  • Another aspect of the present invention includes (A) a leaching process comprising a first atmospheric pressure warming leaching process and a second atmospheric pressure warming leaching process for leaching raw materials under normal pressure to form a leachate containing nickel, cobalt, and impurities; (B) a first extraction process of adding a first solvent extractant to the leachate to separate it into a first filtrate containing nickel and impurities and a first organic layer containing cobalt and impurities; and (C-ii) preparing a second filtrate by adding a sulfuric acid solution to the first organic layer, and adding sulfide to the second filtrate to precipitate and recover the cobalt precipitate to produce magnesium, manganese, zinc, copper, or a mixture thereof. It relates to a method for producing an aqueous solution of nickel or cobalt, including a purification process for purifying impurities contained therein.
  • One embodiment of the present invention may provide a method for producing a nickel or cobalt aqueous solution in which the pH of the filtrate from the second atmospheric pressure warming leaching process is lower than the pH of the filtrate from the first atmospheric pressure warming leaching process.
  • One embodiment of the present invention can provide a method for producing a nickel or cobalt aqueous solution in which the filtrate from the second atmospheric pressure warming leaching process is sent to the first atmospheric pressure warming leaching process.
  • One embodiment of the present invention may provide a method for producing an aqueous nickel or cobalt solution in which the first solvent extractant is Bis(2,4,4-trimethylpentyl) phosphinic acid.
  • One embodiment of the present invention may provide a method for producing a nickel or cobalt aqueous solution in which the first extraction process is performed at 40° C. and under pH conditions of more than 5.0 and less than 5.4.
  • One embodiment of the present invention may provide a method for producing an aqueous solution of nickel or cobalt, wherein the precipitant is sodium fluoride.
  • One embodiment of the present invention may provide a method for producing a nickel or cobalt aqueous solution in which the precipitant is added in an amount greater than 2.0 equivalents but less than 2.4 equivalents of magnesium, calcium, or a mixture thereof.
  • One embodiment of the present invention may provide a method for producing an aqueous solution of nickel or cobalt, wherein the neutralizing agent is a basic material containing sodium.
  • One embodiment of the present invention may provide a method for producing a nickel or cobalt aqueous solution in which the pH of the first filtrate is 8 or higher at 85°C after the neutralizing agent is added.
  • One embodiment of the present invention may provide a method for producing a nickel or cobalt aqueous solution, further comprising (E-i) a washing process of washing the nickel cake with pure water.
  • One embodiment of the present invention can provide a method for producing an aqueous solution of nickel or cobalt, wherein the sulfide is sodium hydrogen sulfide (NaSH).
  • NaSH sodium hydrogen sulfide
  • One embodiment of the present invention can provide a method for producing a nickel or cobalt aqueous solution in which the sulfide is added in an amount greater than 1.0 equivalent but less than 1.6 equivalent of the cobalt and zinc content.
  • One embodiment of the present invention may provide a method for producing a nickel or cobalt aqueous solution, further comprising the step (D-ii) of dissolving the cobalt precipitate in a sulfuric acid solution and then removing copper.
  • One embodiment of the present invention may provide a method for producing a nickel or cobalt aqueous solution in which the copper removal process is performed by adding sodium hydrogen sulfide (NaSH) in an amount of more than 4.5 equivalents but less than 5.5 equivalents of the copper content.
  • NaSH sodium hydrogen sulfide
  • (E-ii) adding a second solvent extractant to the aqueous solution from which the copper has been removed is separated into a third filtrate containing cobalt and impurities and a second organic layer containing zinc and impurities.
  • a method for producing an aqueous nickel or cobalt solution may be provided, further comprising a second extraction process.
  • One embodiment of the present invention may provide a method for producing a nickel or cobalt aqueous solution in which the second solvent extractant is D2EHPA (Di-(2-ethylhexyl)phosphoric acid).
  • D2EHPA Di-(2-ethylhexyl)phosphoric acid
  • One embodiment of the present invention may provide a method for producing a nickel or cobalt aqueous solution in which the second extraction process is performed at 40° C. and under pH conditions of more than 2.4 and less than 3.2.
  • One embodiment of the present invention may provide a method for producing a nickel or cobalt aqueous solution, further comprising (F) a precipitation removal step of adding a precipitant to the third filtrate to remove impurities including magnesium by precipitation.
  • One embodiment of the present invention includes (G) a target precipitation process of selectively precipitating a cobalt cake containing cobalt by adding a neutralizing agent to the third filtrate from which the impurities have been precipitated and removed; including, nickel or A method for producing an aqueous cobalt solution can be provided.
  • One embodiment of the present invention may provide a method for producing a nickel or cobalt aqueous solution in which the pH of the third filtrate is 8 or more at 85°C after the neutralizing agent is added.
  • One embodiment of the present invention may provide a method for producing a nickel or cobalt aqueous solution, further comprising (H) a washing process of washing the cobalt cake using pure water.
  • nickel and cobalt recovery rates can be improved and energy consumption can be reduced by using a two-stage atmospheric pressure heating process.
  • Figure 1 is a diagram showing a two-stage leaching process and a first extraction process for producing a nickel or cobalt aqueous solution according to an embodiment of the present invention.
  • Figure 2 is a diagram showing a precipitation removal process and a target precipitation process for producing an aqueous nickel solution according to an embodiment of the present invention.
  • Figure 3 is a diagram showing an impurity purification process, a copper removal process, a second extraction process, a precipitation removal process, and a target precipitation process for producing an aqueous cobalt solution according to an embodiment of the present invention.
  • Embodiments of the present invention are illustrated for the purpose of explaining the technical idea of the present invention.
  • the scope of rights according to the present invention is not limited to the embodiments presented below or the specific description of these embodiments.
  • Figure 1 is a diagram showing a two-stage leaching process (S10) and a first extraction process (S20) for producing a nickel or cobalt aqueous solution according to an embodiment of the present invention.
  • Figure 2 is a diagram showing a precipitation removal process (S31) and a target precipitation process (S32) for producing an aqueous nickel solution according to an embodiment of the present invention.
  • Figure 3 shows an impurity purification process (S32, S42), a copper removal process (S62), a second extraction process (S72), a precipitation removal process (S82), and a target product for producing an aqueous cobalt solution according to an embodiment of the present invention.
  • This is a diagram showing the precipitation process (S92).
  • a method of producing a nickel or cobalt aqueous solution that can be used to manufacture a positive electrode active material for a lithium secondary battery from a mixed hydroxide precipitate (MHP cake) through a series of processes can be provided. According to this method, operational stability and purity can be improved, and manufacturing costs can be reduced. Below, each process will be described in detail with reference to each drawing.
  • a first extraction process (S20) of separating into a first organic layer may be performed.
  • the leaching process (S10) is a process of forming a leachate by dissolving the hydroxide-type MHP cake in an acid solution such as sulfuric acid to ionize it.
  • the leaching process (S10) includes a first atmospheric pressure warming leaching process (S11) and a second atmospheric pressure warming leaching process (S12).
  • the normal pressure heating leaching process is a process of preparing an acid solution in an open reactor at a temperature of 100°C or lower, introducing raw materials into the reactor, and leaching valuable metals through a reaction according to Scheme 1 below.
  • the raw material introduced here may be an MHP cake in the form of a hydroxide containing 40% by weight of nickel.
  • the first atmospheric pressure warming leaching process (S11) and the second atmospheric pressure warming leaching process (S12) are each performed in a two-stage device, or are performed in a single pressurizing device under process conditions (e.g., temperature, pressure, or acidity). ) can be performed differently.
  • Valuable metals may be leached from raw materials through the first atmospheric pressure heating leaching process (S11).
  • valuable metals such as nickel, cobalt, and manganese in raw materials may be leached.
  • elements such as iron, copper, aluminum, zinc, or magnesium in the raw materials may also be leached.
  • the first atmospheric pressure leaching process (S11) may be performed for about 2 hours at a temperature ranging from 50°C to 70°C and a pH ranging from 2.7 to 3.3. By satisfying the temperature and pH range, high leaching efficiency can be obtained under optimal conditions.
  • the solid density of the raw material introduced into the reactor may be 100 g/L or more.
  • the solid density of the raw material may range from 100 g/L to 200 g/L.
  • solid density is defined as the ratio of the mass of the raw material introduced into the pressurizing device to the volume of the acid solution previously introduced into the reactor.
  • the solid density may be the ratio of the mass of the raw material introduced per unit solvent, and may be the mass of the raw material per 1 L of solvent.
  • the filtrate is input into the first extraction process (S20), and the residue may be subsequently treated in the second atmospheric pressure warming leaching process (S12).
  • leaching of the leaching residue from the first atmospheric pressure leaching process (S11) may be performed at a temperature ranging from 80°C to 100°C for about 3 hours.
  • Other conditions of the second atmospheric pressure warming leaching process (S12) may be the same as the conditions of the first atmospheric pressure warming leaching process (S11).
  • the pH of the filtrate from the second atmospheric pressure leaching process (S12) may be lower than the pH of the filtrate from the first atmospheric pressure leaching process (S11).
  • the leaching rate in each atmospheric pressure heating process can be increased. Accordingly, the entire amount of valuable metals contained in the raw materials may be leached. For example, all of the nickel, cobalt, manganese, iron, copper, aluminum, zinc, or magnesium contained in the raw materials may be leached.
  • the filtrate formed in the second atmospheric pressure leaching process (S12) may be sent to the first atmospheric pressure leaching process (S11) as shown in FIG.
  • the reaction time must be continued for more than 18 hours to increase the leaching rate of valuable metals.
  • additional costs were incurred due to increased fuel and steam usage, and productivity was low due to the small amount of raw materials processed per day.
  • nickel and cobalt recovery rates can be improved and energy consumption can be reduced by using a two-stage atmospheric pressure heating leaching method. Therefore, manufacturing costs can be reduced and productivity can be improved.
  • the residue generated in the second atmospheric pressure leaching process (S12) can be discarded, as shown in FIG. 1.
  • the first extraction process (S20) is a process of selectively separating or extracting nickel from the ionized nickel and cobalt aqueous solution (leach solution) through a two-stage atmospheric pressure leaching process using a first solvent extractant.
  • the first solvent extractant is not particularly limited as long as it has a low nickel loading rate, but may be, for example, Bis(2,4,4-trimethylpentyl) phosphinic acid (Cyanex272).
  • the first extraction process may be performed at 40°C under conditions of pH greater than 5.0 and less than 5.4.
  • the loading rate of cobalt and impurities can be increased, and nickel can be efficiently separated into the filtrate.
  • the ratio of the first solvent extractant (O) and the aqueous solution (A) can be adjusted depending on the concentration of the component to be extracted in the solution.
  • the ratio (O:A) of the first solvent extractant (O) and the aqueous solution (A) may range from 0.5:1 to 2:1.
  • O:A can be 1.5:1.
  • a target precipitation process (S41) and a final leaching process to prepare a high-purity nickel aqueous solution can be performed.
  • the precipitation removal process (S31) may be performed to remove impurities such as magnesium, calcium, or mixtures thereof remaining in the first filtrate. After the precipitation removal process (S31), the first filtrate may be sent to the target object precipitation process (S41).
  • the sediment removal process (S31) may include adding a removal agent into the liquid.
  • the remover is not particularly limited as long as it can react with magnesium or calcium to form a precipitate, but may be, for example, sodium fluoride (NaF).
  • magnesium and calcium may be precipitated into magnesium fluoride or calcium fluoride through a reaction as shown in Scheme 4 below.
  • nickel precipitation in the filtrate can be reduced and only magnesium and calcium can be separated through selective precipitation.
  • sodium fluoride may be added in an amount exceeding 2.0 equivalents (eq) of the magnesium, calcium, or mixture thereof. In another example, sodium fluoride may be added in an amount less than 2.4 equivalents (eq) of magnesium, calcium, or a mixture thereof.
  • a neutralizing agent may be added to the first filtrate after the precipitation removal process (S31).
  • the neutralizing agent may be a basic substance containing sodium.
  • the neutralizing agent may be sodium carbonate (Na 2 CO 3 ).
  • nickel After removing impurities such as magnesium and calcium, nickel can be precipitated in the form of a cake through a reaction as shown in Scheme 5 below in the target precipitation process (S41).
  • the target precipitation process (S41) may be performed for more than 4 hours at a pH of 8 or more and a temperature in the range of 80°C to 90°C.
  • sodium components may be present in the precipitated nickel cake, so the water-soluble sodium component can be removed by using a washing process using pure water at a later stage.
  • manufacturing costs can be reduced by reusing the removed sodium component to manufacture sodium carbonate (Na 2 CO 3 ), a neutralizing agent.
  • the final leaching process (S51) is a process in which components such as sodium in the produced nickel cake are washed with water and then dissolved in a sulfuric acid solution to produce a high-purity nickel aqueous solution.
  • the nickel cake can be added to a solution of pure water mixed with sulfuric acid at an acidity of 150 g/L to 200 g/L. Nickel, cobalt, and trace impurities contained in the nickel cake will be dissolved in the sulfuric acid solution. The aqueous sulfuric acid solution and the nickel cake are reacted until the pH is 2.0.
  • the temperature is 4 to 1.0 to 3.0 and a temperature range is 50°C to 70°C. The reaction may proceed over time.
  • a second filtrate production process in which a sulfuric acid solution is added to the first organic layer that has undergone the first extraction process (S11), cobalt precipitate in the second filtrate is precipitated and recovered, and impurities are purified.
  • a purification process S42
  • a process of dissolving the recovered cobalt precipitate again in a sulfuric acid solution S52
  • a copper removal process S62
  • a target precipitation process (S92) to selectively precipitate cake) and a final leaching process (S102) to produce a high-purity cobalt aqueous solution can be performed.
  • the second filtrate production process (S32) is a process of adding a sulfuric acid solution to the first organic layer containing cobalt and impurities and stripping the cobalt from the sulfuric acid solution.
  • Stripping is a process in which sulfuric acid and loaded cobalt are reacted to produce a stripping filtrate containing cobalt, and the loaded impurities are recovered as an aqueous solution.
  • the purification process (S32) is a process for selectively recovering only cobalt from the stripped second filtrate. What is different from the precipitation removal process (31) is that in the purification process (S32), the target cobalt can be recovered in the form of a precipitate.
  • the purification process (S32) may generate cobalt precipitate by adding sulfide into the liquid.
  • the sulfide may be sodium hydrogen sulfide (NaSH), and cobalt may be recovered by precipitation in the form of sulfide through reactions according to Schemes 6 and 7 below.
  • the purification process (S32) can be performed for about 3 hours or more while maintaining a pH of 4.5 to 5.0 at a reaction temperature in the range of 70°C to 90°C.
  • the solubility of CoS and ZnS is very low at less than 0.1 mg/L, and the solubility of MgS and MnS is very low. Therefore, by adjusting the pH range, only cobalt and zinc are separated through selective precipitation, and magnesium and manganese are separated. can be purified.
  • sulfide may be added in an amount greater than 1.0 equivalent but less than 1.6 equivalent of the cobalt and zinc content.
  • the sulfuric acid solution manufacturing process (S52) is to prepare an aqueous solution by dissolving a precipitate containing cobalt in a sulfuric acid solution.
  • the sulfuric acid solution preparation process (S52) can be performed by a reaction according to Scheme 8 below.
  • the solid density (S/D) of the precipitate in the sulfuric acid solution when preparing the aqueous solution may be 100 g/L or more.
  • the sulfuric acid solution preparation process (S52) may be performed at a reaction temperature in the range of 80°C to 100°C for about 20 hours or more.
  • the copper removal process (S62) is a process of removing copper (Cu) in the liquid by adding sodium hydrogen sulfide (NaSH) into the liquid. Copper can be precipitated as a copper sulfide (CuS) compound through a reaction shown in Scheme 9 below.
  • Copper sulfide (CuS) can precipitate above pH 1.0.
  • the pH in the liquid may be maintained at 1.0 to 2.5 in the copper removal process (S62). In one embodiment, the pH in the liquid may be maintained at 1.0 to 1.5 in the copper removal process (S62). If the pH of the liquid is less than 1.0, it is difficult to remove copper in the liquid below 20 mg/L, and if the pH is higher than 2.5, the solubility of cobalt in sulfuric acid may decrease, resulting in loss of cobalt.
  • sodium hydrogen sulfide can be added slowly so that the pH in the liquid does not change suddenly.
  • sodium hydrogen sulfide NaSH
  • NaSH sodium hydrogen sulfide
  • sodium hydrogen sulfide (NaSH) may be added in an amount greater than 4.5 equivalents (eq) to less than 5.5 equivalents (eq) of the copper content.
  • the amount of sodium hydrogen sulfide (NaSH) added is 4.5 equivalents (eq) or less, the copper removal rate is 95% or less, making it difficult to sufficiently remove copper in the liquid.
  • the input amount of sodium hydrogen sulfide (NaSH) is more than 5.5 equivalents (eq)
  • the cobalt recovery rate may decrease because the cobalt removal rate is more than 0.05%.
  • the second extraction process (S72) is a process of adding a second solvent extractant into the liquid and separating it into a third filtrate containing cobalt and impurities and a second organic layer containing zinc and impurities.
  • the second solvent extractant is not particularly limited as long as it has a low cobalt loading rate, but may be, for example, D2EHPA (Di-(2-ethylhexyl)phosphoric acid).
  • the second extraction process (S72) may be performed for about 10 minutes or more at 40°C under conditions of pH greater than 2.4 and less than 3.2.
  • the loading rate of impurities such as zinc can be increased and the loading rate of cobalt can be lowered, and cobalt can be efficiently separated into the filtrate.
  • the ratio of the second solvent extractant (O) and the aqueous solution (A) can be adjusted depending on the concentration of the component to be extracted in the solution.
  • the ratio (O:A) of the second solvent extractant (O) and the aqueous solution (A) may range from 0.5:1 to 2:1.
  • O:A can be 1.5:1.
  • the precipitation removal process (S82) may be performed to remove impurities such as magnesium remaining in the third filtrate. After the precipitation removal process (82), the third filtrate may be sent to the target object precipitation process (S92).
  • a neutralizing agent may be added to the third filtrate after the precipitation removal process (S82).
  • the neutralizing agent may be a basic substance containing sodium.
  • the neutralizing agent may be sodium carbonate (Na 2 CO 3 ).
  • nickel After removing impurities such as magnesium, nickel can be precipitated in the form of a cake through a reaction shown in Scheme 11 below in the target precipitation process (S41).
  • the target precipitation process (S92) may be performed for more than 4 hours at a pH of 8 or more and a temperature in the range of 80°C to 90°C.
  • sodium components may be present in the precipitated cobalt cake, so the water-soluble sodium component can be removed by using a washing process using pure water at a later stage.
  • manufacturing costs can be reduced by reusing the removed sodium component to manufacture sodium carbonate (Na 2 CO 3 ), a neutralizing agent.
  • the final leaching process (S102) is a process in which components such as sodium in the produced cobalt cake are washed with water and then dissolved in a sulfuric acid solution to produce a high-purity cobalt aqueous solution.
  • the cobalt loaded in the organic layer by Cyanex272 was washed with a sulfuric acid solution and then used sodium hydrogen sulfide (NaSH) to precipitate and recover the cobalt in the form of sulfide.
  • NaSH sodium hydrogen sulfide
  • the input amount of NaSH was adjusted to the cobalt and zinc contents.
  • the content of the precipitated cake was compared by adding 1.0, 1.3, and 1.6 equivalents. The reaction was performed for 3 hours at 85°C and pH 4.5 to 5.0.
  • the copper removal rate was determined by adding NaSH at 4.5, 5.0, and 5.5 equivalents of the copper content. compared. The reaction was conducted for 3 hours at 60°C and pH 1.0 conditions. The removal rate was expressed by comparing the content of each component in the aqueous solution before and after adding NaSH.
  • Ni(g/L) Co Mg Mn Zn Content 131.3 17.9 18.9 2.87 2.88

Abstract

본 발명은, (A) 원료를 상압 가온 침출하여 니켈, 코발트, 및 불순물을 포함하는 침출액을 형성하는 제1 상압 가온 침출 공정 및 제2 상압 가온 침출 공정을 포함하는 침출 공정; (B) 상기 침출액에 제1 용매 추출제를 투입하여 니켈 및 불순물을 포함하는 제1 여액 및 코발트 및 불순물을 포함하는 제1 유기층으로 분리하는 제1 추출 공정; 및 (C-i) 상기 제1 여액에 침전제를 투입하여, 마그네슘, 칼슘 또는 이들의 혼합물을 포함하는 불순물을 침전 제거하는 침전 제거 공정; 및 (D-i) 상기 불순물이 침전 제거된 제1 여액에 중화제를 투입하여, 니켈을 포함하는 니켈 케이크(Cake)를 선택적으로 침전하는 목적물 침전 공정;을 포함하는, 니켈 또는 코발트 수용액 제조 방법을 제공한다.

Description

니켈 또는 코발트 수용액 제조 방법
본 발명은 니켈 또는 코발트 수용액 제조 방법에 관한 것이다. 더욱 상세하게, 본 발명은 원료로부터 니켈 및 코발트를 회수한 후, 리튬이온 이차전지의 양극 활물질 제조에 사용할 수 있는 니켈 또는 코발트 수용액을 제조하는 방법에 관한 것이다.
니켈 및 코발트 혼합 수산화물을 포함하는 혼합 수산화 침전물(Mixed Hydroxide Precipitate, MHP) 케이크 원료로부터 니켈과 코발트를 이온화하기 위하여 1단으로 이루어진 상압 가온 반응 침출 공정 또는 상압 가온 반응과 가압 가온반응으로 구성된 2단 침출 공정이 주로 사용되었다.
그러나, 1단 상압 가온 반응 침출 공정의 경우 Ni 및 Co의 회수율 저하의 문제가 발생하며, 상압 가온 반응과, 가압 가온 반응으로 구성된 2단 침출 공정의 경우 배관 및 반응기 재질의 침식과 부식, 손상 등에 의해 재질 선택의 폭이 줄어들 뿐만 아니라 소요되는 에너지 비용에 의해 경쟁력이 떨어지는 문제점이 있다.
또한, 이온화된 니켈 및 코발트 수용액은 Ion quest 801, Cyanex 272, Versatic Acid 10, LIX 84I 등의 용매 추출제를 사용하여 니켈 및 코발트를 선택적으로 회수하였는데, 용매 추출 과정에서 유기용제 사용에 따른 화재 및 폭발사고 위험을 가지고 있으며, 용매 추출제의 단가가 높아 고순도 황산 니켈 및 코발트 제조 비용을 증가시켜 가격적인 측면에서 경쟁력이 떨어지는 문제점이 있다.
본 발명은 니켈 및 코발트 혼합 수산화물을 포함하는 MHP 케이크 원료로부터 니켈 및 코발트를 회수하여 고순도의 수용액을 제조하는 것을 목적으로 한다.
또한, 본 발명은 2단 상압 가온 침출 공정을 이용하여 니켈 및 코발트를 이온화하여 니켈 및 코발트 회수율을 향상시키며 에너지 사용량을 줄이는 것을 목적으로 한다.
또한, 본 발명은 고순도 니켈 수용액 제조 공정에서 침전제인 플루오린화 나트륨(NaF)을 사용하여 마그네슘과 칼슘을 분리하고, 고순도 코발트 수용액 제조 공정에서 황화수소나트륨(NaSH)를 사용하여 용해도 차이를 통한 마그네슘, 망간의 분리를 수행하며, 황화수소나트륨(NaSH) 및 플루오린화 나트륨(NaF) 등의 사용을 통해 구리, 마그네슘, 망간 등의 불순물을 추가적으로 분리하여 용매 추출 공정을 줄이는 것을 목적으로 한다.
용매 추출 공정은 유기 용제 사용으로 인한 화재 및 폭발사고 위험을 가지고 있으므로, 본 발명은 용매 추출 공정을 최소화함으로써 조업 환경에 적합할 뿐만 아니라 최종 제품 제조 비용도 줄이는 것을 목적으로 한다.
본 발명의 일 측면은, (A) 원료를 상압 가온 침출하여 니켈, 코발트, 및 불순물을 포함하는 침출액을 형성하는 제1 상압 가온 침출 공정 및 제2 상압 가온 침출 공정을 포함하는 침출 공정; (B) 상기 침출액에 제1 용매 추출제를 투입하여 니켈 및 불순물을 포함하는 제1 여액 및 코발트 및 불순물을 포함하는 제1 유기층으로 분리하는 제1 추출 공정; 및 (C-i) 상기 제1 여액에 침전제를 투입하여, 마그네슘, 칼슘 또는 이들의 혼합물을 포함하는 불순물을 침전 제거하는 침전 제거 공정; 및 (D-i) 상기 불순물이 침전 제거된 제1 여액에 중화제를 투입하여, 니켈을 포함하는 니켈 케이크(Cake)를 선택적으로 침전하는 목적물 침전 공정;을 포함하는, 니켈 또는 코발트 수용액 제조 방법에 관한 것이다.
본 발명의 다른 일 측면은, (A) 원료를 상압 가온 침출하여 니켈, 코발트, 및 불순물을 포함하는 침출액을 형성하는 제1 상압 가온 침출 공정 및 제2 상압 가온 침출 공정을 포함하는 침출 공정; (B) 상기 침출액에 제1 용매 추출제를 투입하여 니켈 및 불순물을 포함하는 제1 여액 및 코발트 및 불순물을 포함하는 제1 유기층으로 분리하는 제1 추출 공정; 및 (C-ii) 상기 제1 유기층에 황산 용액을 투입하여 제2 여액을 제조하고, 제2 여액에 황화물을 투입하여 코발트 침전물을 침전 회수함으로써 마그네슘, 망간, 아연, 구리, 또는 이들의 혼합물을 포함하는 불순물을 정제하는 정제 공정;을 포함하는, 니켈 또는 코발트 수용액 제조 방법에 관한 것이다.
본 발명의 일 실시예는, 상기 제2 상압 가온 침출 공정의 여액의 pH는, 상기 제1 상압 가온 침출 공정의 여액의 pH보다 낮은, 니켈 또는 코발트 수용액 제조 방법을 제공할 수 있다.
본 발명의 일 실시예는, 상기 제2 상압 가온 침출 공정의 여액은, 상기 제1 상압 가온 침출 공정으로 송액되는, 니켈 또는 코발트 수용액 제조 방법을 제공할 수 있다.
본 발명의 일 실시예는, 상기 제1 용매 추출제는 Bis(2,4,4-trimethylpentyl) phosphinic acid인, 니켈 또는 코발트 수용액 제조 방법을 제공할 수 있다.
본 발명의 일 실시예는, 상기 제1 추출 공정은 40℃에서 pH 5.0 초과 5.4 미만의 조건에서 수행되는, 니켈 또는 코발트 수용액 제조 방법을 제공할 수 있다.
본 발명의 일 실시예는, 상기 침전제는 플루오린화 나트륨인, 니켈 또는 코발트 수용액 제조 방법을 제공할 수 있다.
본 발명의 일 실시예는, 상기 침전제는 마그네슘, 칼슘 또는 이들의 혼합물 함량의 2.0 당량 초과 2.4 당량 미만의 함량으로 투입되는, 니켈 또는 코발트 수용액 제조 방법을 제공할 수 있다.
본 발명의 일 실시예는, 상기 중화제는 소듐을 포함하는 염기성 물질인, 니켈 또는 코발트 수용액 제조 방법을 제공할 수 있다.
본 발명의 일 실시예는, 상기 중화제가 투입된 후 제1 여액의 85℃에서 pH는 8 이상인, 니켈 또는 코발트 수용액 제조 방법을 제공할 수 있다.
본 발명의 일 실시예는, (E-i) 상기 니켈 케이크를 순수를 이용하여 세척하는 수세 공정을 더 포함하는, 니켈 또는 코발트 수용액 제조 방법을 제공할 수 있다.
본 발명의 일 실시예는, 상기 황화물은 황화수소나트륨(NaSH)인, 니켈 또는 코발트 수용액 제조 방법을 제공할 수 있다.
본 발명의 일 실시예는, 상기 황화물은 코발트 및 아연 함량의 1.0 당량 초과 1.6 당량 미만의 함량으로 투입되는, 니켈 또는 코발트 수용액 제조 방법을 제공할 수 있다.
본 발명의 일 실시예는, (D-ii) 상기 코발트 침전물을 황산 용액에 용해시킨 후, 구리를 제거하는 공정을 더 포함하는, 니켈 또는 코발트 수용액 제조 방법을 제공할 수 있다.
본 발명의 일 실시예는, 상기 구리를 제거하는 공정은 황화수소나트륨(NaSH)을 구리 함량의 4.5 당량 초과 5.5 당량 미만의 함량으로 투입하여 수행되는, 니켈 또는 코발트 수용액 제조 방법을 제공할 수 있다.
본 발명의 일 실시예는, (E-ii) 상기 구리가 제거된 수용액에 제2 용매 추출제를 투입하여 코발트 및 불순물을 포함하는 제3 여액 및 아연 및 불순물을 포함하는 제2 유기층으로 분리하는 제2 추출 공정을 더 포함하는, 니켈 또는 코발트 수용액 제조 방법을 제공할 수 있다.
본 발명의 일 실시예는, 상기 제2 용매 추출제는 D2EHPA(Di-(2-ethylhexyl)phosphoric acid)인, 니켈 또는 코발트 수용액 제조 방법을 제공할 수 있다.
본 발명의 일 실시예는, 상기 제2 추출 공정은 40℃에서 pH 2.4 초과 3.2 미만의 조건에서 수행되는, 니켈 또는 코발트 수용액 제조 방법을 제공할 수 있다.
본 발명의 일 실시예는, (F) 상기 제3 여액에 침전제를 투입하여, 마그네슘을 포함하는 불순물을 침전 제거하는 침전 제거 공정을 더 포함하는, 니켈 또는 코발트 수용액 제조 방법을 제공할 수 있다.
본 발명의 일 실시예는, (G) 상기 불순물이 침전 제거된 제3 여액에 중화제를 투입하여, 코발트를 포함하는 코발트 케이크(Cake)를 선택적으로 침전하는 목적물 침전 공정;을 포함하는, 니켈 또는 코발트 수용액 제조 방법을 제공할 수 있다.
본 발명의 일 실시예는, 상기 중화제가 투입된 후 제3 여액의 85℃에서 pH는 8 이상인, 니켈 또는 코발트 수용액 제조 방법을 제공할 수 있다.
본 발명의 일 실시예는, (H) 상기 코발트 케이크를 순수를 이용하여 세척하는 수세 공정을 더 포함하는, 니켈 또는 코발트 수용액 제조 방법을 제공할 수 있다.
본 발명에 따르면 2단 상압 가온 공정을 이용하여 니켈 및 코발트 회수율을 향상시키며 에너지 사용량을 줄일 수 있다.
또한, 불순물 정제 공정 중 유기 용제 사용으로 인한 화재 및 폭발사고 위험을 갖는 용매 추출 공정을 최소화함으로써, 조업 환경에 적합할 뿐만 아니라 최종 제품 제조 비용도 절감할 수 있다.
도 1은 본 발명의 일 실시예에 따른, 니켈 또는 코발트 수용액을 제조하기 위한 2단 침출 공정 및 제1 추출 공정을 나타내는 도면이다.
도 2는 본 발명의 일 실시예에 따른, 니켈 수용액을 제조하기 위한 침전 제거 공정 및 목적물 침전 공정을 나타내는 도면이다.
도 3은 본 발명의 일 실시예에 따른, 코발트 수용액을 제조하기 위한 불순물 정제 공정, 구리 제거 공정, 제2 추출 공정, 침전 제거 공정 및 목적물 침전 공정을 나타내는 도면이다.
본 발명의 실시예들은 본 발명의 기술적 사상을 설명하기 위한 목적으로 예시된 것이다. 본 발명에 따른 권리범위가 이하에 제시되는 실시예들이나 이들 실시예들에 대한 구체적 설명으로 한정되는 것은 아니다.
이하, 도면을 참조하여 본 발명을 설명한다.
도 1은 본 발명의 일 실시예에 따른, 니켈 또는 코발트 수용액을 제조하기 위한 2단 침출 공정(S10) 및 제1 추출 공정(S20)을 나타내는 도면이다. 도 2는 본 발명의 일 실시예에 따른, 니켈 수용액을 제조하기 위한 침전 제거 공정(S31) 및 목적물 침전 공정(S32)을 나타내는 도면이다. 도 3은 본 발명의 일 실시예에 따른, 코발트 수용액을 제조하기 위한 불순물 정제 공정(S32, S42), 구리 제거 공정(S62), 제2 추출 공정(S72), 침전 제거 공정(S82) 및 목적물 침전 공정(S92)을 나타내는 도면이다.
도 1 내지 도 3을 참조하면, 일련의 공정들을 거쳐 혼합 수산화 침전물(MHP 케이크)로부터 리튬 이차전지의 양극 활물질 제조에 사용할 수 있는 니켈 또는 코발트 수용액을 제조하는 방법이 제공될 수 있다. 이러한 방법에 의하면, 조업 안정성 및 순도를 향상시키고, 제조 비용을 절감할 수 있다. 이하에서, 각각의 도면을 참고하여 각각의 공정들에 대해 상세히 설명하기로 한다.
먼저, 도 1을 참조하면, MHP 케이크에 대하여 2단의 상압 가온 침출 공정을 수행하여 침출액을 형성하는 침출 공정(S10) 및 상기 침출액을 니켈 및 불순물을 포함하는 제1 여액과 코발트 및 불순물을 포함하는 제1 유기층으로 분리하는 제1 추출 공정(S20)을 수행할 수 있다.
침출 공정(S10)
침출 공정(S10)은 수산화물 형태의 MHP 케이크를 이온화하기 위해 황산과 같은 산 용액에 용해시켜 침출액을 형성하는 공정이다. 침출 공정(S10)은 제1 상압 가온 침출 공정(S11) 및 제2 상압 가온 침출 공정(S12)을 포함한다. 상기 상압 가온 침출 공정은 100℃ 이하의 온도에서 개방된 반응기 내에 산 용액을 준비하고, 상기 반응기 내로 원료를 투입하여, 하기 반응식 1에 따른 반응에 의해 유가 금속을 침출하는 공정이다. 여기에서 투입되는 상기 원료는 니켈을 40 중량% 함량으로 포함하는 수산화물 형태의 MHP 케이크일 수 있다.
[반응식 1]
M(OH)2 + H2SO4 → MSO4 + 2H2O (M=Ni, Co, Mg 등의 금속)
상기 제1 상압 가온 침출 공정(S11) 및 제2 상압 가온 침출 공정(S12)은 2단으로 구성된 장치 내에서 각각 수행되거나, 또는 하나의 가압 장치 내에서 공정 조건(예: 온도, 압력, 또는 산도)만 달리하여 수행될 수 있다.
제1 상압 가온 침출 공정(S11)을 통해 원료로부터 유가 금속이 침출될 수 있다. 예를 들어, 원료 내의 니켈, 코발트, 망간 등의 유가 금속이 침출될 수 있다. 이외에도, 원료 내의 철, 구리, 알루미늄, 아연, 또는 마그네슘 등의 원소도 침출될 수 있다. 제1 상압 가온 침출 공정(S11)은 50℃ 내지 70℃ 범위의 온도 및 2.7 내지 3.3 범위의 pH 조건에서 약 2시간 동안 수행될 수 있다. 온도와 pH 범위를 만족함으로써, 최적의 조건에서 높은 침출 효율을 얻을 수 있다.
제1 상압 가온 침출 공정(S11)에서 상기 반응기 내에 투입되는 원료의 고체 밀도는 100g/L 이상일 수 있다. 예를 들어, 상기 원료의 고체 밀도는 100g/L 내지 200g/L의 범위일 수 있다. 이 때, 고체 밀도는 반응기에 미리 투입된 산 용액의 부피에 대하여 가압 장치에 투입되는 원료의 질량의 비율로 정의한다. 이를 다시 말하면, 고체 밀도는 단위 용매당 투입되는 원료의 질량의 비율일 수 있으며, 용매 1L당 원료의 질량일 수 있다.
제1 상압 가온 침출 공정(S11)에서 여액은 제1 추출 공정(S20)으로 투입되며, 잔사는 제2 상압 가온 침출 공정(S12)으로 후속 처리될 수 있다.
제2 상압 가온 침출 공정(S12)에서는 80℃ 내지 100℃ 범위의 온도에서 약 3시간 동안 제1 상압 가온 침출 공정(S11)에서의 침출 잔사에 대한 침출이 수행될 수 있다. 제2 상압 가온 침출 공정(S12)의 그 외 조건은, 제1 상압 가온 침출 공정(S11)의 조건과 동일할 수 있다.
상기 제2 상압 가온 침출 공정(S12)의 여액의 pH는, 상기 제1 상압 가온 침출 공정(S11)의 여액의 pH보다 낮을 수 있다. pH를 조절함으로써, 각 상압 가온 공정에서의 침출율을 높일 수 있다. 이에 따라, 상기 원료에 함유된 유가 금속이 전량 침출될 수 있다. 예를 들어, 원료에 함유된 니켈, 코발트, 망간, 철, 구리, 알루미늄, 아연, 또는 마그네슘 등이 전량 침출될 수 있다.
일 실시예에서, 제2 상압 가온 침출 공정(S12)에서 형성된 여액은 도 1에 도시된 것과 같이 제1 상압 가온 침출 공정(S11)으로 송액될 수 있다.
일반적으로 사용되는 상압 침출법의 경우, 유가 금속의 침출율을 높이기 위하여 반응 시간을 18시간 이상 지속해야 한다. 이 경우, 연료, 스팀 사용량 증가에 따라 추가 비용이 발생하였고, 하루 처리하는 원료량이 적으므로 생산성이 낮았다. 하지만, 본 발명의 일 실시예에 의하면, 2단으로 구성된 상압 가온 침출법을 사용함으로써 니켈 및 코발트 회수율을 향상시키며 에너지 사용량을 줄일 수 있다. 따라서, 제조 비용을 감소시키고 생산성이 향상될 수 있다.
제2 상압 가온 침출 공정(S12)에서 발생되는 잔사는, 도 1에 도시된 것과 같이, 폐기될 수 있다.
제1 추출 공정(S20)
제1 추출 공정(S20)은 2단의 상압가온 침출 공정을 거쳐 이온화된 니켈 및 코발트 수용액(침출액)에 대하여 제1 용매 추출제를 이용하여, 침출액으로부터 니켈을 선택적으로 분리 또는 추출하는 공정이다.
여기서, 제1 용매 추출제는 니켈의 로딩율이 낮은 것이라면, 특별히 한정되지 않으나, 예를 들어, Bis(2,4,4-trimethylpentyl) phosphinic acid(Cyanex272)일 수 있다.
침출액에 제1 용매 추출제를 투입하였을 때, 니켈은 제1 용매 추출제에 로딩되지 않고, 제1 여액(Raffinate)으로 분배되며, 코발트와 기타 불순물(Mg, Mn, Zn 등)은 제1 용매 추출제와 함께 유기층으로 분배되어 분리 또는 추출될 수 있다. 이러한 분리 또는 추출은 하기 반응식 2 및 3에 따른 반응에 의해 일어날 수 있다. 여기서, 반응 식 3에 따른 반응은 반응식 2에 의해 형성되는 H2SO4을 중화하여, pH를 유지하기 위한 반응이다.
[반응식 2]
2HR(org) + MSO4(aq) → MR2(org.) + H2SO4(aq.) (R= Ni 등, M=Co, Mg, Mn 등)
[반응식 3]
H2SO4 + Na2CO3 → Na2SO4 + H2O + CO2
상기 제1 추출 공정은 40℃에서 pH 5.0 초과 5.4 미만의 조건에서 수행될 수 있다. 상기 온도 조건에서의 pH 범위를 만족함으로써, 코발트 및 불순물의 로딩률을 높여서, 니켈을 여액 중으로 효율적으로 분리할 수 있다.
일 실시예에서, 제1 용매 추출제(O)와 수용액(A)의 비율은 액 중의 추출할 성분의 농도에 따라 조절할 수 있다. 예를 들어, 제1 용매 추출제(O)와 수용액(A)의 비율(O:A)은 0.5:1 내지 2:1의 범위일 수 있다. 예를 들어, O:A는 1.5:1로 할 수 있다.
다음으로, 도 2를 참조하면, 제1 추출 공정(S11)을 거친 제1 여액으로부터 불순물을 침전 제거하는 침전 제거 공정(S31), 고순도의 니켈을 포함하는 니켈 케이크(Cake)를 선택적으로 침전하는 목적물 침전 공정(S41), 및 고순도 니켈 수용액을 제조하는 최종 침출 공정을 수행할 수 있다.
침전 제거 공정(S31)
침전 제거 공정(S31)은 제1 여액 중에 잔존하는 마그네슘, 칼슘, 또는 이들의 혼합물 등의 불순물을 제거하기 위해 수행될 수 있다. 침전 제거 공정(S31) 후 제1 여액은 목적물 침전 공정(S41)으로 송액될 수 있다.
예를 들어, 침전 제거 공정(S31)은 액 중에 제거제를 투입할 수 있다. 상기 제거제는 마그네슘 또는 칼슘과 반응하여 침전물을 형성할 수 있는 것이라면 특별히 한정되지는 않으나, 예를 들어, 플루오린화 나트륨(NaF)일 수 있다.
예를 들어, 마그네슘 및 칼슘은 하기 반응식 4와 같은 반응을 통해 불화마그네슘 또는 불화칼슘으로 침전될 수 있다.
예를 들어, 50℃ 내지 70℃ 범위의 반응 온도에서 약 2시간 이상 침전 제거 공정(S31)을 수행하여, 여액 중의 니켈 침전은 줄이고, 마그네슘 및 칼슘만 선택적 침전을 통해 분리할 수 있다.
[반응식 4]
MSO4 + 2NaF = MF2 + Na2SO4 (M= Mg, Ca)
일 실시예에서, 플루오린화 나트륨은 마그네슘, 칼슘 또는 이들의 혼합물 함량의 2.0당량(eq) 초과로 투입될 수 있다. 다른 실시예에서, 플루오린화 나트륨은 마그네슘, 칼슘 또는 이들의 혼합물 함량의 2.4당량(eq) 미만으로 투입될 수 있다.
목적물 침전 공정(S41)
목적물 침전 공정(S41)에서 침전 제거 공정(S31) 이후의 제1 여액에 중화제를 투입할 수 있다.
예를 들어, 상기 중화제는 소듐을 포함하는 염기성 물질일 수 있다. 예를 들어, 상기 중화제는 탄산나트륨(Na2CO3)일 수 있다.
마그네슘, 칼슘 등의 불순물을 제거한 후에, 목적물 침전 공정(S41)에서, 니켈을 하기 반응식 5와 같은 반응을 통해 케이크 형태로 침전할 수 있다.
[반응식 5]
3NiSO4 + 3Na2CO3 +2H2O = NiCO3·2Ni(OH)2 + 3Na2SO4 +3CO2
목적물 침전 공정(S41)은 8 이상의 pH 및 80℃ 내지 90℃ 범위의 온도 조건에서, 4시간 이상 수행될 수 있다.
목적물 침전 공정(S41)을 통해 니켈을 회수할 수 있으므로, 폭발 및 화재의 위험이 있으며 고가인 유기 용제의 사용량을 줄일 수 있다. 따라서, 조업 안정성 및 생산성을 향상시키고 제조 비용이 절감될 수 있다.
도면에 구체적으로 도시하지는 않았으나, 침전된 니켈 케이크 중 소듐 성분이 일부 존재할 수 있으므로, 후단에서 순수를 이용한 수세 공정을 사용하여 수용성인 소듐 성분을 제거할 수 있다. 여기에서, 제거된 소듐 성분을 이용하여 중화제인 탄산나트륨(Na2CO3)을 제조하는데 재사용함으로써, 제조 비용을 절감할 수 있다.
최종 침출 공정(S51)
최종 침출 공정(S51)은 제조된 니켈 케이크 중 소듐 등의 성분을 수세 제거한 이후, 황산 용액에 용해하여, 고순도의 니켈 수용액을 제조하는 공정이다.
최종 침출 공정(S51에서, 순수에 150g/L 내지 200g/L 산도로 황산을 혼합한 용액에, 니켈 케이크를 투입할 수 있다. 니켈 케이크에 함유된 니켈, 코발트 및 미량 불순물이 황산 용액에 용해될 수 있다. pH가 2.0이 될 때까지, 황산 수용액과 니켈 케이크를 반응시킨다. 일 실시예에서, 최종 침출 공정(S51)에서 1.0 내지 3.0 범위의 pH 및 50℃ 내지 70℃ 범위의 온도 조건으로 4시간 이상 반응이 진행될 수 있다.
다음으로, 도 3을 참조하면, 제1 추출 공정(S11)을 거친 제1 유기층에 황산 용액을 투입하는 제2 여액 제조 공정(S32), 제2 여액 중 코발트 침전물을 침전 회수하여, 불순물을 정제하는 정제 공정(S42), 회수된 코발트 침전물을 다시 황산 용액에 용해시키는 공정(S52), 황화수소나트륨을 투입하여 구리를 제거하는 구리 제거 공정(S62), 구리가 제거된 수용액을 코발트 및 불순물을 포함하는 제3 여액 및 아연 및 불순물을 포함하는 제2 유기층으로 분리하는 제2 추출 공정(S72), 제3 여액 중 불순물을 침전 제거하는 침전 제거 공정(S82), 고순도의 코발트를 포함하는 코발트 케이크(Cake)를 선택적으로 침전하는 목적물 침전 공정(S92), 및 고순도 코발트 수용액을 제조하는 최종 침출 공정(S102)을 수행할 수 있다.
제2 여액 제조 공정(S32)
제2 여액 제조 공정(S32)은 코발트 및 불순물을 포함하는 제1 유기층에 황산 용액을 투입하여, 코발트를 황산 용액에 스트리핑하는 공정이다.
스트리핑은 황산과 로딩된 코발트를 반응시켜 코발트를 포함하는 스트리핑 여액을 제조하고, 로딩되어 있던 불순물을 수용액으로 회수되는 공정이다.
정제 공정(S42)
정제 공정(S32)은 스트리핑된 제2 여액으로부터 코발트 만을 선택적으로 회수하기 위한 공정이다. 침전 제거 공정(31)과 다른 것은 정제 공정(S32)에서는 목적물인 코발트를 침전물 형태로 회수할 수 있다는 것이다.
예를 들어, 정제 공정(S32)은 액 중에 황화물을 투입하여 코발트 침전물을 생성할 수 있다. 예를 들어, 상기 황화물은 황화수소나트륨(NaSH)일 수 있고, 하기 반응식 6 및 7에 따른 반응에 의해 코발트를 황화물 형태로 침전 회수할 수 있다.
[반응식 6]
CoSO4 + 2NaSH → 2CoS + Na2SO4 + H2SO4
[반응식 7]
H2SO4 + Na2CO3 → Na2SO4 + H2O + CO2
예를 들어, 70℃ 내지 90℃ 범위의 반응 온도에서 4.5 내지 5.0의 pH를 유지하면서, 약 3시간 이상 정제 공정(S32)을 수행할 수 있다.
상기 pH 범위에서 CoS와 ZnS의 용해도는 0.1 mg/L 이하로 매우 낮고, MgS와 MnS의 용해도는 매우 낮기 때문에, 상기 pH 범위 조절을 통해, 코발트와 아연만 선택적 침전을 통해 분리하고, 마그네슘과 망간을 정제할 수 있다.
일 실시예에서, 황화물은 코발트 및 아연 함량의 1.0 당량 초과 1.6 당량 미만의 함량으로 투입될 수 있다.
황산 용액 제조 공정(S52)
황산 용액 제조 공정(S52)은 코발트를 포함하는 침전물을 황산 용액에 용해시켜 수용액을 제조하는 것이다.
예를 들어, 황산 용액 제조 공정(S52)은 하기 반응식 8에 따른 반응에 의해 수행될 수 있다.
[반응식 8]
CoS + H2SO4 +1/2O2 → CoSO4 + H2O + S
예를 들어, 황산 용액 제조 공정(S52)에서, 수용액 제조 시 침전물의 황산 용액 중 고체 밀도(Solid density, S/D)는 100 g/L 이상일 수 있다.
예를 들어, 80℃ 내지 100℃ 범위의 반응 온도에서 약 20시간 이상 황산 용액 제조 공정(S52)을 수행할 수 있다.
구리 제거 공정(S62)
구리 제거 공정(S62)은 액 중에 황화수소나트륨(NaSH)을 투입하여 액 중의 구리(Cu)를 제거하는 공정이다. 구리는 하기 반응식 9와 같은 반응을 통해 황화 구리(CuS) 화합물로 침전될 수 있다.
[반응식 9]
2CuSO4 + 2NaSH = 2CuS + Na2SO4 +H2SO4
황화 구리(CuS)는 pH 1.0 이상에서 침전이 가능하다. 이를 위해, 구리 제거 공정(S62)에서 액 중의 pH는 1.0 내지 2.5로 유지될 수 있다. 일 실시예에서, 구리 제거 공정(S62)에서 액 중의 pH는 1.0 내지 1.5로 유지될 수 있다. 액 중의 pH가 1.0 미만인 경우, 액 중의 구리를 20mg/L 이하로 제거하기 어렵고, pH가 2.5 초과인 경우 코발트의 황산에 대한 용해도가 낮아져 코발트의 손실이 발생할 수 있다.
한편, 황화수소나트륨(NaSH)은 액 중의 pH가 급격하게 변하지 않도록 천천히 투입될 수 있다. 예를 들어, 침출액을 교반하며 황화수소나트륨(NaSH)을 약 3시간에 걸쳐 투입할 수 있다. 이로써, 액 중의 일부 영역에서 pH가 급격히 증가하여 코발트 손실율이 증가하는 것을 방지할 수 있다.
일 실시예에서, 황화수소나트륨(NaSH)은 구리 함량의 4.5 당량(eq) 초과 내지 5.5 당량(eq) 미만으로 투입될 수 있다. 황화수소나트륨(NaSH)의 투입량이 4.5 당량(eq) 이하인 경우, 구리 제거율은 95% 이하이므로 액 중의 구리를 충분히 제거하기 어렵다. 황화수소나트륨(NaSH)의 투입량이 5.5 당량(eq) 이상인 경우, 코발트의 제거율이 0.05% 이상이므로 코발트 회수율이 떨어질 수 있다.
50℃ 내지 70℃ 범위의 반응 온도에서 3시간 이상으로 구리 제거 공정(S62)을 수행하여, 여액 중의 코발트 침전은 줄이고, 구리만 선택적 침전을 통해 분리할 수 있다. 황화수소나트륨은 30 wt% 내지 70 wt%의 농도를 갖는 제품을 사용할 수 있다.
제2 추출 공정(S72)
제2 추출 공정(S72)은 액 중에 제2 용매 추출제를 투입하여 코발트 및 불순물을 포함하는 제3 여액 및 아연 및 불순물을 포함하는 제2 유기층으로 분리하는 공정이다.
여기서, 제2 용매 추출제는 코발트의 로딩률이 낮은 것이라면, 특별히 한정되지 않으나, 예를 들어, D2EHPA(Di-(2-ethylhexyl)phosphoric acid)일 수 있다.
액에 제2 용매 추출제를 투입하였을 때, 코발트는 제2 용매 추출제에 로딩되지 않고, 제3 여액(Raffinate)으로 분배되며, 아연, 마그네슘, 망간 등은 제2 용매 추출제와 함께 유기층으로 분배되어 분리 또는 추출될 수 있다. 이러한 분리 또는 추출은 하기 반응식 10에 따른 반응에 의해 일어날 수 있다.
[반응식 10]
2HR(org.) + ZnSO4(aq.) → ZnR2(org.) + H2SO4(aq.) (R= Co 등)
상기 제2 추출 공정(S72)은 40℃에서 pH 2.4 초과 3.2 미만의 조건에서 약 10분 이상의 시간 동안 수행될 수 있다. 상기 온도 조건에서의 pH 범위를 만족함으로써, 아연 등의 불순물의 로딩률을 높이고, 코발트의 로딩률을 낮춰서, 코발트를 여액 중으로 효율적으로 분리할 수 있다.
일 실시예에서, 제2 용매 추출제(O)와 수용액(A)의 비율은 액 중의 추출할 성분의 농도에 따라 조절할 수 있다. 예를 들어, 제2 용매 추출제(O)와 수용액(A)의 비율(O:A)은 0.5:1 내지 2:1의 범위일 수 있다. 예를 들어, O:A는 1.5:1로 할 수 있다.
침전 제거 공정(S82)
침전 제거 공정(S82)은 제3 여액 중에 잔존하는 마그네슘 등의 불순물을 제거하기 위해 수행될 수 있다. 침전 제거 공정(82) 후 제3 여액은 목적물 침전 공정(S92)으로 송액될 수 있다.
침전 제거 공정(S82)에 대한 상세한 내용은 앞서 침전 제거 공정(S31)에 대하여 설명한 내용을 참조하여 이해될 수 있다.
목적물 침전 공정(S92)
목적물 침전 공정(S92)에서 침전 제거 공정(S82) 이후의 제3 여액에 중화제를 투입할 수 있다.
예를 들어, 상기 중화제는 소듐을 포함하는 염기성 물질일 수 있다. 예를 들어, 상기 중화제는 탄산나트륨(Na2CO3)일 수 있다.
마그네슘 등의 불순물을 제거한 후에, 목적물 침전 공정(S41)에서, 니켈을 하기 반응식 11과 같은 반응을 통해 케이크 형태로 침전할 수 있다.
[반응식 11]
3CoSO4 + 3Na2CO3 +2H2O = CoCO2Co(OH)2 + 3Na2SO4 +3CO2
목적물 침전 공정(S92)은 8 이상의 pH 및 80℃ 내지 90℃ 범위의 온도 조건에서, 4시간 이상 수행될 수 있다.
목적물 침전 공정(S92)을 통해 코발트를 회수할 수 있으므로, 폭발 및 화재의 위험이 있으며 고가인 유기 용제의 사용량을 줄일 수 있다. 따라서, 조업 안정성 및 생산성을 향상시키고 제조 비용이 절감될 수 있다.
도면에 구체적으로 도시하지는 않았으나, 침전된 코발트 케이크 중 소듐 성분이 일부 존재할 수 있으므로, 후단에서 순수를 이용한 수세 공정을 사용하여 수용성인 소듐 성분을 제거할 수 있다. 여기에서, 제거된 소듐 성분을 이용하여 중화제인 탄산나트륨(Na2CO3)을 제조하는데 재사용함으로써, 제조 비용을 절감할 수 있다.
최종 침출 공정(S102)
최종 침출 공정(S102)은 제조된 코발트 케이크 중 소듐 등의 성분을 수세 제거한 이후, 황산 용액에 용해하여, 고순도의 코발트 수용액을 제조하는 공정이다.
최종 침출 공정(S102)에 대한 상세한 내용은 앞서 최종 침출 공정(S51)에 대하여 설명한 내용을 참조하여 이해될 수 있다.
실험예
(1) 실험에 사용된 MHP 케이크 원료의 품위
Ni Co Mg Mn Zn
함량(wt%) 38.0 3.80 1.40 6.15 0.90
* 표에 나타나지 않은 함량은 불순물(대부분 수산화기가 붙은 상태로 존재)(2) 2단 상압 가온 침출 공정을 포함하는 침출 공정을 거친 침출 여액의 금속 함량
Ni Co Mg Mn Zn
함량(g/L) 100.1 10.3 5.11 9.87 2.33
표 1 및 표 2를 비교하면 2단 상압 가온 침출 공정을 거친 침출 여액의 니켈 및 코발트 함량이 높아진 것을 확인할 수 있다. (3) 추출 공정에서 pH 조건에 따른 유기층 중 코발트의 함량 비교
Cyanex272 30%를 이용하여, 코발트 및 불순물(Mg, Mn, Zn 등)을 유기층으로 로딩하여 니켈을 수용액인 여액(Raffinate)으로 분리하는 최적의 pH 조건을 검토하기 위하여, pH 5.0, 5.2, 5.4에서 각각 성분의 유기층 중 로딩률을 비교하였다. 40℃에서 10분 반응을 진행하였으며 유기층과 수용액의 비율은 1.5:1로 진행하였다. 로딩률은 각 성분 별로 침출액에 존재하는 함량을 기준으로, 유기층 중 존재하는 함량의 상대적인 비율로 나타냈다.
Figure PCTKR2023004100-appb-img-000001
상기 표 3을 참조하면, pH 5.2 조건에서 유기층 중 로딩되는 Co의 함량 과 Ni의 함량 차이가 제일 큰 결과가 나타나, Co와 Ni의 분리가 가장 잘 일어나는 것을 확인할 수 있다.
pH 5.0인 경우, 유기층 중 로딩되는 Ni의 함량이 적지만, Co 로딩이 비교적 좋지 못하였으며, pH 5.4인 경우, Co 로딩이 우수하였지만, Ni의 분리가 비교적 좋지 못한 것으로 확인된다.
(4) 침전 제거 공정에서 플루오린화 나트륨 투입량에 따른 여액 중 불순물(Mg, Ca)의 함량 비교
플루오린화 나트륨(NaF)를 이용하여 여액 중의 불순물(Mg, Ca)을 침전 제거하는 최적의 투입량을 검토하기 위해, 여액 중 Mg, Ca 함량의 2.0, 2.2, 2.4 당량을 투입하여 여액 중의 불순물(Mg, Ca) 함량을 비교하였다. 60℃에서 2시간 동안 반응을 진행하였다.
여액 원액 2.0당량 투입 2.2당량 투입 2.4당량 투입
Mg Ca Mg Ca Mg Ca Mg Ca
함량 mg/L 1,024 184 252.2 68.2 204.8 55.1 205.0 54.9
상기 표 4를 참조하면, 2.2 당량을 투입했을 때, 여액 중 Mg와 Ca의 함량의 합이 제일 작은 것을 확인할 수 있다.(5) 불순물 정제 공정에서 황화수소나트륨(NaSH) 투입량에 따른 코발트 케이크 중 금속(Co, Cu, Zn, Mn, Mg)의 함량 비교
Cyanex272에 의해 유기층 중 로딩된 코발트는 황산 용액으로 수세(Stripping)한 후 황화수소나트륨(NaSH)을 이용하여 코발트를 황화물 형태로 침전 회수하는 최적의 조건을 검토하기 위해, NaSH의 투입량을 코발트, 아연 함량의 1.0, 1.3, 1.6당량 별로 투입하여 침전된 케이크의 함량을 비교하였다. 85℃, pH 4.5 내지 5.0 조건에서 3시간 반응하였다.
Figure PCTKR2023004100-appb-img-000002
상기 표 5를 참조하면, NaSH를 1.3 당량의 조건으로 투입했을 때, 케이크 중 코발트의 함량이 높고, NaSH를 1.3 당량을 초과하여 투입하더라도 코발트 함량이 더 이상 높아지지 않는 것을 확인할 수 있다.
(6) 구리 제거 공정에서 황화수소나트륨(NaSH) 투입량에 따른 구리 제거율 비교
코발트 침전물을 황산 용액에 용해 후 코발트 수용액에 NaSH를 투입하여 구리를 CuS 형태로 침전 제거하는 최적의 조건을 검토하기 위해, NaSH 투입량을 구리 함량의 4.5, 5.0, 5.5당량 별로 투입하여 구리의 제거율을 비교하였다. 60℃, pH 1.0 조건에서 3시간 반응하였다. 제거율은 각 성분 별로 NaSH 투입 전후의 수용액 중 존재하는 함량을 비교하여 나타냈다.
Figure PCTKR2023004100-appb-img-000003
상기 표 6을 참조하면, NaSH를 5.0 당량으로 투입했을 때, Cu의 제거율이 제일 높은 것을 확인할 수 있다.
(7) 추출 공정에서 pH 조건에 따른 유기층 중 코발트의 함량 비교
코발트를 침전 제거한 코발트 수용액에 대하여, 용매 추출제인 D2EHPA 30%를 이용하여 수용액 중의 아연을 유기층으로 로딩하여 분리하는 최적의 pH 조건을 검토하기 위하여, pH 2.4, 2.8, 3.2에서 각각 성분의 로딩률을 비교하였다. 40℃에서 10분간 반응을 진행하였으며 유기층과 수용액의 비율은 1.5:1로 진행하였다.
Figure PCTKR2023004100-appb-img-000004
상기 표 7을 참조하면, pH 2.8 조건에서 유기층 중 로딩되는 Zn의 함량 과 Co의 함량 차이가 제일 큰 결과가 나타나, Co와 Zn의 분리가 가장 잘 일어나는 것을 확인할 수 있다.
pH 2.4인 경우, 유기층 중 로딩되는 Co의 함량이 적지만, Zn 로딩이 비교적 좋지 못하였으며, pH 3.2인 경우, Zn 로딩이 우수하였지만, Co의 분리가 비교적 좋지 못한 것으로 확인된다.
(8) 불순물을 제거하는 최종 수세 공정을 거친 니켈 및 코발트 수용액의 금속 함량
불순물 정제 후 최종 니켈 수용액의 금속 함량
Ni(g/L) Co Mg Mn Zn
함량(mg/L) 131.3 17.9 18.9 2.87 2.88
불순물 정제 후 최종 코발트 수용액의 금속 함량
Co(g/L) Cu Zn Mn Mg
함량(mg/L) 110.6 3.63 3.38 12.0 11.4
표 2 및 표 8, 9를 함께 비교하면 본 발명의 공정들을 거친 니켈 및 코발트 수용액의 순도가 높아지는 것을 확인할 수 있다. 이상 첨부된 도면을 참조하여 본 발명의 실시예를 설명하였지만, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다.
그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변경된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.

Claims (22)

  1. (A) 원료를 상압 가온 침출하여 니켈, 코발트, 및 불순물을 포함하는 침출액을 형성하는 제1 상압 가온 침출 공정 및 제2 상압 가온 침출 공정을 포함하는 침출 공정;
    (B) 상기 침출액에 제1 용매 추출제를 투입하여 니켈 및 불순물을 포함하는 제1 여액 및 코발트 및 불순물을 포함하는 제1 유기층으로 분리하는 제1 추출 공정; 및
    (C-i) 상기 제1 여액에 침전제를 투입하여, 마그네슘, 칼슘 또는 이들의 혼합물을 포함하는 불순물을 침전 제거하는 침전 제거 공정; 및
    (D-i) 상기 불순물이 침전 제거된 제1 여액에 중화제를 투입하여, 니켈을 포함하는 니켈 케이크(Cake)를 선택적으로 침전하는 목적물 침전 공정;을 포함하는, 니켈 또는 코발트 수용액 제조 방법.
  2. (A) 원료를 상압 가온 침출하여 니켈, 코발트, 및 불순물을 포함하는 침출액을 형성하는 제1 상압 가온 침출 공정 및 제2 상압 가온 침출 공정을 포함하는 침출 공정;
    (B) 상기 침출액에 제1 용매 추출제를 투입하여 니켈 및 불순물을 포함하는 제1 여액 및 코발트 및 불순물을 포함하는 제1 유기층으로 분리하는 제1 추출 공정; 및
    (C-ii) 상기 제1 유기층에 황산 용액을 투입하여 제2 여액을 제조하고, 제2 여액에 황화물을 투입하여 코발트 침전물을 침전 회수함으로써 마그네슘, 망간, 아연, 구리, 또는 이들의 혼합물을 포함하는 불순물을 정제하는 정제 공정;을 포함하는, 니켈 또는 코발트 수용액 제조 방법.
  3. 제1항 또는 제2항에 있어서,
    상기 제2 상압 가온 침출 공정의 여액의 pH는, 상기 제1 상압 가온 침출 공정의 여액의 pH보다 낮은, 니켈 또는 코발트 수용액 제조 방법.
  4. 제1항 또는 제2항에 있어서,
    상기 제2 상압 가온 침출 공정의 여액은, 상기 제1 상압 가온 침출 공정으로 송액되는, 니켈 또는 코발트 수용액 제조 방법.
  5. 제1항 또는 제2항에 있어서,
    상기 제1 용매 추출제는 Bis(2,4,4-trimethylpentyl) phosphinic acid인, 니켈 또는 코발트 수용액 제조 방법.
  6. 제1항 또는 제2항에 있어서,
    상기 제1 추출 공정은 40℃에서 pH 5.0 초과 5.4 미만의 조건에서 수행되는, 니켈 또는 코발트 수용액 제조 방법.
  7. 제1항에 있어서,
    상기 침전제는 플루오린화 나트륨인, 니켈 또는 코발트 수용액 제조 방법.
  8. 제1항에 있어서,
    상기 침전제는 마그네슘, 칼슘 또는 이들의 혼합물 함량의 2.0 당량 초과 2.4 당량 미만의 함량으로 투입되는, 니켈 또는 코발트 수용액 제조 방법.
  9. 제1항에 있어서,
    상기 중화제는 소듐을 포함하는 염기성 물질인, 니켈 또는 코발트 수용액 제조 방법.
  10. 제1항에 있어서,
    상기 중화제가 투입된 후 제1 여액의 85℃에서 pH는 8 이상인, 니켈 또는 코발트 수용액 제조 방법.
  11. 제1항에 있어서,
    (E-i) 상기 니켈 케이크를 순수를 이용하여 세척하는 수세 공정을 더 포함하는, 니켈 또는 코발트 수용액 제조 방법.
  12. 제2항에 있어서,
    상기 황화물은 황화수소나트륨(NaSH)인, 니켈 또는 코발트 수용액 제조 방법.
  13. 제2항에 있어서,
    상기 황화물은 코발트 및 아연 함량의 1.0 당량 초과 1.6 당량 미만의 함량으로 투입되는, 니켈 또는 코발트 수용액 제조 방법.
  14. 제2항에 있어서,
    (D-ii) 상기 코발트 침전물을 황산 용액에 용해시킨 후, 구리를 제거하는 공정을 더 포함하는, 니켈 또는 코발트 수용액 제조 방법.
  15. 제13항에 있어서,
    상기 구리를 제거하는 공정은 황화수소나트륨(NaSH)을 구리 함량의 4.5 당량 초과 5.5 당량 미만의 함량으로 투입하여 수행되는, 니켈 또는 코발트 수용액 제조 방법.
  16. 제14항에 있어서,
    (E-ii) 상기 구리가 제거된 수용액에 제2 용매 추출제를 투입하여 코발트 및 불순물을 포함하는 제3 여액 및 아연 및 불순물을 포함하는 제2 유기층으로 분리하는 제2 추출 공정을 더 포함하는, 니켈 또는 코발트 수용액 제조 방법.
  17. 제16항에 있어서,
    상기 제2 용매 추출제는 D2EHPA(Di-(2-ethylhexyl)phosphoric acid)인, 니켈 또는 코발트 수용액 제조 방법.
  18. 제16항에 있어서,
    상기 제2 추출 공정은 40℃에서 pH 2.4 초과 3.2 미만의 조건에서 수행되는, 니켈 또는 코발트 수용액 제조 방법.
  19. 제16항에 있어서,
    (F) 상기 제3 여액에 침전제를 투입하여, 마그네슘을 포함하는 불순물을 침전 제거하는 침전 제거 공정을 더 포함하는, 니켈 또는 코발트 수용액 제조 방법.
  20. 제19항에 있어서,
    (G) 상기 불순물이 침전 제거된 제3 여액에 중화제를 투입하여, 코발트를 포함하는 코발트 케이크(Cake)를 선택적으로 침전하는 목적물 침전 공정;을 포함하는, 니켈 또는 코발트 수용액 제조 방법.
  21. 제20항에 있어서,
    상기 중화제가 투입된 후 제3 여액의 85℃에서 pH는 8 이상인, 니켈 또는 코발트 수용액 제조 방법.
  22. 제20항에 있어서,
    (H) 상기 코발트 케이크를 순수를 이용하여 세척하는 수세 공정을 더 포함하는, 니켈 또는 코발트 수용액 제조 방법.
PCT/KR2023/004100 2023-01-27 2023-03-28 니켈 또는 코발트 수용액 제조 방법 WO2023243827A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA3211609A CA3211609A1 (en) 2023-01-27 2023-03-28 Method for producing aqueous solution containing nickel or cobalt
US18/547,565 US11926882B1 (en) 2023-01-27 2023-03-28 Method for producing aqueous solution containing nickel or cobalt
AU2023222911A AU2023222911A1 (en) 2023-01-27 2023-03-28 Method for producing aqueous solution containing nickel or cobalt
AU2024201376A AU2024201376B2 (en) 2023-01-27 2024-02-29 Method for producing aqueous solution containing nickel or cobalt

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020230010613A KR102509344B1 (ko) 2023-01-27 2023-01-27 니켈 또는 코발트 수용액 제조 방법
KR10-2023-0010613 2023-01-27

Publications (1)

Publication Number Publication Date
WO2023243827A1 true WO2023243827A1 (ko) 2023-12-21

Family

ID=85502853

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/004100 WO2023243827A1 (ko) 2023-01-27 2023-03-28 니켈 또는 코발트 수용액 제조 방법

Country Status (2)

Country Link
KR (1) KR102509344B1 (ko)
WO (1) WO2023243827A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102509344B1 (ko) * 2023-01-27 2023-03-14 고려아연 주식회사 니켈 또는 코발트 수용액 제조 방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101535250B1 (ko) * 2015-02-02 2015-07-08 주식회사 에너텍 니켈 및 코발트 혼합 수산화물을 포함한 원료로 사용하여 상압침출을 통해 제조되는 고순도 황산니켈 및 그 제조방법
KR101979419B1 (ko) * 2017-12-26 2019-08-28 케이지에너켐(주) 칼슘 고함량의 니켈, 코발트 및 망간 혼합 수산화물 원료로 제조되는 고순도 황산니켈의 제조방법
KR20210079709A (ko) * 2019-12-20 2021-06-30 주식회사 포스코 고농도 니켈 케이크 제조방법
KR102451443B1 (ko) * 2020-06-08 2022-10-07 재단법인 포항산업과학연구원 이차전지 양극재용 니켈 전구체 제조방법
KR102471399B1 (ko) * 2022-02-17 2022-11-28 (주)에코프로머티리얼즈 니켈, 코발트 및 망간의 분리 회수를 위한 2단 추출을 이용한 용매추출방법
KR102509344B1 (ko) * 2023-01-27 2023-03-14 고려아연 주식회사 니켈 또는 코발트 수용액 제조 방법

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57104640A (en) * 1980-12-23 1982-06-29 Dowa Mining Co Ltd Fractional recovery method for valuable metal

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101535250B1 (ko) * 2015-02-02 2015-07-08 주식회사 에너텍 니켈 및 코발트 혼합 수산화물을 포함한 원료로 사용하여 상압침출을 통해 제조되는 고순도 황산니켈 및 그 제조방법
KR101979419B1 (ko) * 2017-12-26 2019-08-28 케이지에너켐(주) 칼슘 고함량의 니켈, 코발트 및 망간 혼합 수산화물 원료로 제조되는 고순도 황산니켈의 제조방법
KR20210079709A (ko) * 2019-12-20 2021-06-30 주식회사 포스코 고농도 니켈 케이크 제조방법
KR102451443B1 (ko) * 2020-06-08 2022-10-07 재단법인 포항산업과학연구원 이차전지 양극재용 니켈 전구체 제조방법
KR102471399B1 (ko) * 2022-02-17 2022-11-28 (주)에코프로머티리얼즈 니켈, 코발트 및 망간의 분리 회수를 위한 2단 추출을 이용한 용매추출방법
KR102509344B1 (ko) * 2023-01-27 2023-03-14 고려아연 주식회사 니켈 또는 코발트 수용액 제조 방법

Also Published As

Publication number Publication date
KR102509344B1 (ko) 2023-03-14

Similar Documents

Publication Publication Date Title
WO2013165071A1 (ko) 고순도 황산망간일수화물의 제조방법 및 그 제조방법에 의하여 제조된 고순도 황산망간일수화물
WO2023243827A1 (ko) 니켈 또는 코발트 수용액 제조 방법
WO2012081897A2 (ko) 니켈 함유 원료로부터 페로니켈을 농축 회수하는 방법, 상기 농축된 페로니켈로부터 니켈을 회수하는 방법 및 상기 방법에서 발생하는 철 함유 용액을 재활용하는 방법
WO2019198972A1 (ko) 리튬이온 2차전지의 폐 양극재를 이용한 수산화리튬 일수화물의 제조방법
WO2023282564A1 (ko) 리튬폐액과 불화물폐액으로부터 고부가가치 자원 회수방법
WO2023158008A1 (ko) 니켈, 코발트 및 망간의 분리 회수를 위한 2단 추출을 이용한 용매추출방법
WO2018117771A1 (ko) 니켈, 철 및 코발트 함유 원료로부터 니켈과 코발트를 회수하는 방법
WO2015111761A1 (ko) 리튬 이온 전지의 폐 양극재를 이용한 전구체 원료의 재생 방법, 그 방법에 의해 재생된 원료를 사용하여 제조한 전구체, 양극재 및 리튬 이온 전지
WO2010030132A2 (ko) 아데포비어 디피복실의 정제방법
WO2023282565A1 (ko) 암모니아 용액을 이용한 오산화바나듐의 부분환원방법 및 이로부터 제조된 이산화바나듐 분말
WO2021256732A1 (ko) 리튬 이차 전지의 활성 금속 회수 방법
WO2018164340A1 (ko) 리튬 함유 폐기물로부터 리튬 화합물을 회수하는 방법
WO2012081896A2 (ko) 니켈 함유 원료로부터 니켈을 회수하는 방법
WO2018012905A1 (ko) 귀금속 농축 회수방법
WO2024076100A1 (ko) 니켈 함유 물질로부터 수산화니켈 및 황산니켈 회수방법
WO2023234623A1 (ko) 웰즈 산화물로부터 할로겐화물을 제거하는 방법
WO2023243825A1 (ko) 니켈, 코발트 및 망간을 포함하는 수용액 제조 방법
WO2023204326A1 (ko) 니켈, 코발트, 망간 및 아연의 분리 회수를 위한 용매추출방법
WO2023182561A1 (ko) 리튬 이차전지 폐기물로부터 용매추출을 이용한 유가금속의 선택적 회수방법
WO2018190461A1 (ko) 질산을 이용하여 폐 ito스크랩으로부터 높은 상대밀도를 가지는 고순도 ito타겟용 분말의 제조방법 및 그 분말
WO2018194397A4 (ko) 적니를 활용한 일메나이트 제련방법
WO2024039055A1 (ko) 황산 니켈 제조 방법
WO2022234884A1 (ko) 건식용융 방법을 이용한 폐리튬이차전지로부터 리튬을 회수하는 방법
WO2022154250A1 (ko) 슬래그로부터 칼슘 및 희토류 금속 회수 방법
WO2022154316A1 (ko) 리튬 이차 전지의 전이금속 회수 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23751837

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2401001190

Country of ref document: TH

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112024004735

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 2024107918

Country of ref document: RU