WO2023282564A1 - 리튬폐액과 불화물폐액으로부터 고부가가치 자원 회수방법 - Google Patents

리튬폐액과 불화물폐액으로부터 고부가가치 자원 회수방법 Download PDF

Info

Publication number
WO2023282564A1
WO2023282564A1 PCT/KR2022/009621 KR2022009621W WO2023282564A1 WO 2023282564 A1 WO2023282564 A1 WO 2023282564A1 KR 2022009621 W KR2022009621 W KR 2022009621W WO 2023282564 A1 WO2023282564 A1 WO 2023282564A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
fluoride
waste liquid
compound
high value
Prior art date
Application number
PCT/KR2022/009621
Other languages
English (en)
French (fr)
Inventor
류태공
신준호
정재민
Original Assignee
한국지질자원연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국지질자원연구원 filed Critical 한국지질자원연구원
Priority to CA3220297A priority Critical patent/CA3220297A1/en
Publication of WO2023282564A1 publication Critical patent/WO2023282564A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • C01D15/04Halides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D3/00Halides of sodium, potassium or alkali metals in general
    • C01D3/02Fluorides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Definitions

  • the present invention manufactures lithium fluoride from lithium waste liquid generated in the lithium secondary battery manufacturing process or recycling process after using the lithium secondary battery and fluoride waste liquid generated in the semiconductor manufacturing process, and reduces the amount of calcium fluoride precipitates and residual process water waste. It relates to a method for recovering high value-added resources from lithium waste liquid and fluoride waste liquid that performs a significantly reduced resource recovery process.
  • NCA and NCM series cathode materials are manufactured using lithium hydroxide. To improve the high-capacity performance of lithium secondary batteries, excessive lithium hydroxide is not used when mixing and firing with NCA and NCM precursors. use.
  • the concentration of lithium ions contained in the wastewater generated after washing the cathode material shows a content of about 1,000 to 2,000 ppm (mg/L), and despite the high-quality lithium raw material, due to the absence of economic extraction technology, The situation is.
  • the wastewater generated in the semiconductor industry is discharged as organic wastewater, nitrogen wastewater, hydrofluoric acid wastewater, and acid/alkali wastewater, and generally, hydrofluoric acid wastewater accounts for 60 to 70% of generated wastewater.
  • lithium fluoride a raw material for lithium secondary battery electrolyte, by utilizing lithium waste liquid generated in the process of manufacturing lithium secondary batteries and recycling waste lithium secondary batteries, and fluoride waste liquid generated in the semiconductor and display industries,
  • an object of the present invention is a lithium waste solution for producing lithium fluoride, a raw material for lithium secondary battery electrolyte, by utilizing lithium waste liquid generated in the process of manufacturing lithium secondary batteries and recycling waste lithium secondary batteries, and fluoride waste liquid generated in the semiconductor and display industries. It is to provide a method for recovering high value-added resources from perfluoride waste liquid.
  • an object of the present invention is to recover high value-added resources from lithium waste liquid and fluoride waste liquid, which can suppress the environmental burden by significantly reducing the amount of slaked lime used in the treatment of fluoride waste liquid and the amount of waste solids (CaF 2 ) generated after treatment. to provide a way
  • an object of the present invention is a method for recovering high value-added resources from lithium waste liquid and fluoride waste liquid, which can secure economic feasibility and significantly reduce the amount of wastewater through the introduction of high-efficiency recovery technology for unrecovered lithium ions that may occur in the lithium fluoride manufacturing process. is to provide
  • the lithium waste liquid is a lithium waste liquid generated in the process of manufacturing a lithium secondary battery and recycling waste lithium secondary batteries
  • the fluoride waste liquid may be a fluoride waste liquid generated in the semiconductor and display industries.
  • the lithium waste liquid contains at least one selected from the group consisting of lithium hydroxide, lithium carbonate, lithium sulfate, lithium phosphate, and lithium chloride,
  • the shape of the lithium waste liquid may include a solution or a slurry.
  • the fluoride waste liquid is sodium fluoride (NaF), ammonium fluoride (NH 4 F), potassium fluoride (KF), ferrous fluoride (FeF 2 ), ferric fluoride (FeF 3 ), aluminum fluoride ( AlF 3 ), and at least one selected from the group consisting of hydrogen fluoride (HF),
  • the form of the fluoride waste liquid may include a solution or a slurry.
  • the lithium waste liquid may have a lithium ion concentration of 200 ppm to 5000 ppm.
  • the fluoride waste liquid may have a fluorine ion concentration of 500 ppm to 150,000 ppm.
  • the aluminum compound may be one or more selected from the group consisting of aluminum chloride, sodium aluminate, aluminum powder, aluminum hydroxide, aluminum sulfate, and alumina.
  • the fluorine ion concentration contained in the process water remaining after the calcium fluoride precipitation may be 100 ppm or less.
  • the remaining process water may be recovered and used for pH control of water treatment.
  • the lithium concentrate may include lithium (Li) ions, sulfuric acid (SO 4 ) ions, or metal (M) ions as ionic components.
  • the sulfuric acid compound is N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-oxidethyl-N-oxidethyl
  • the reaction temperature during the sulfation reaction of the Li-Al layered double hydroxide (LDH) and the sulfuric acid compound may be 200 °C to 1000 °C.
  • the reaction time for the sulfation reaction of the Li-Al layered double hydroxide (LDH) and the sulfuric acid compound may be 0.5 to 36 hours.
  • the solid/liquid ratio (solid/liquid, g/L) of the conversion material and water during water leaching may be 30 g/L to 2000 g/L.
  • the lithium waste liquid is a lithium waste liquid generated in the process of manufacturing a lithium secondary battery and recycling waste lithium secondary batteries
  • the fluoride waste liquid may be a fluoride waste liquid generated in the semiconductor and display industries.
  • the lithium waste liquid contains at least one selected from the group consisting of lithium hydroxide, lithium carbonate, lithium sulfate, lithium phosphate, and lithium chloride,
  • the shape of the lithium waste liquid may include a solution or a slurry.
  • the fluoride waste liquid is sodium fluoride (NaF), ammonium fluoride (NH 4 F), potassium fluoride (KF), ferrous fluoride (FeF 2 ), ferric fluoride (FeF 3 ), aluminum fluoride ( AlF 3 ), and at least one selected from the group consisting of hydrogen fluoride (HF),
  • the form of the fluoride waste liquid may include a solution or a slurry.
  • the lithium waste liquid may have a lithium ion concentration of 200 ppm to 5000 ppm.
  • the fluoride waste liquid may have a fluorine ion concentration of 500 ppm to 150,000 ppm.
  • the fluorine ion concentration contained in the process water remaining after the calcium fluoride precipitation may be 100 ppm or less.
  • the remaining process water may be recovered and used for pH control of water treatment.
  • the present invention since it provides a high value-added resource recovery method for producing lithium fluoride from lithium waste liquid generated in the process of manufacturing lithium secondary batteries and recycling waste lithium secondary batteries and fluoride waste liquid generated in the semiconductor and display industries, waste disposal cost This is reduced, and the cost of recovering lithium fluoride is also reduced.
  • the present invention provides a method for recovering high value-added resources from lithium waste liquid and fluoride waste liquid that significantly reduces the amount of slaked lime used in the treatment of fluoride waste liquid and the amount of waste solids (CaF 2 ) generated after treatment, the environmental burden is significantly reduced. suppressed, and the process efficiency is also high.
  • the present invention provides a method for recovering high value-added resources from lithium waste liquid and fluoride waste liquid, which secures economic feasibility through the introduction of high-efficiency recovery technology for unrecovered lithium ions that may occur in the lithium fluoride manufacturing process and significantly reduces the amount of waste water. friendly and economical
  • FIG. 1 is a process flow diagram of a method for recovering high value-added resources from lithium waste liquid and fluoride waste liquid according to an embodiment of the present invention.
  • FIG. 2 is an XRD crystal structure analysis graph of lithium fluoride prepared by reacting lithium waste liquid with fluoride waste liquid at an equivalent ratio for each concentration according to an embodiment of the present invention.
  • FIG. 3 is an XRD crystal structure analysis graph of Li-Al LDH prepared by reacting the filtrate with an aluminum compound after preparing lithium fluoride according to an embodiment of the present invention.
  • FIG. 4 is an XRD crystal structure analysis graph of lithium fluoride formed after applying an MVR process to the reaction filtrate after preparing lithium fluoride according to an embodiment of the present invention.
  • the lithium fluoride recovery and high-efficiency lithium ion recovery method from the lithium waste liquid and fluoride waste liquid recovers lithium fluoride from lithium waste liquid generated in the process of manufacturing lithium secondary batteries and recycling waste lithium secondary batteries and fluoride waste liquid generated in the semiconductor and display industries. Since it provides a method for recovering high value-added resources manufactured, waste disposal costs are reduced, and lithium fluoride recovery costs are also reduced.
  • the method for recovering lithium fluoride and high-efficiency lithium ions from lithium waste liquid and fluoride waste liquid is a lithium waste liquid and fluoride waste liquid that significantly reduces the amount of slaked lime used in treating fluoride waste liquid and the amount of waste solids (CaF 2 ) generated after treatment. Since it provides a high value-added resource recovery method from the environment, the environmental burden is significantly suppressed and the process efficiency is high.
  • the lithium fluoride recovery and high-efficiency lithium ion recovery method from the lithium waste liquid and fluoride waste liquid secures economic feasibility and significantly reduces the amount of wastewater through the introduction of high-efficiency recovery technology for unrecovered lithium ions that may occur in the lithium fluoride manufacturing process. It is environmentally friendly and economical because it provides a method for recovering high value-added resources from waste liquid and fluoride waste liquid.
  • the lithium waste liquid is a solution or slurry of one or more lithium compounds selected from the group consisting of LiOH, LiCl, LiBr, Li 2 CO 3 , Li 2 SO 4 , Li 3 PO 4 , and LiAl(Si 2 O 5 ) 2 You can say, but not limited to this.
  • the lithium waste liquid contains at least one selected from the group consisting of lithium hydroxide, lithium carbonate, lithium sulfate, lithium phosphate, and lithium chloride,
  • the shape of the lithium waste liquid may include a solution or a slurry.
  • the lithium waste liquid may have a lithium ion concentration of 200 ppm to 5000 ppm.
  • the lithium waste liquid may have a lithium ion concentration of preferably 500 ppm to 4000 ppm, more preferably 800 ppm to 3500 ppm.
  • the fluoride waste liquid is sodium fluoride (NaF), ammonium fluoride (NH 4 F), potassium fluoride (KF), ferrous fluoride (FeF 2 ), ferric fluoride (FeF 3 ), aluminum fluoride (AlF 3 ), and hydrogen fluoride. (HF) containing at least one selected from the group consisting of,
  • the form of the fluoride waste liquid may include a solution or a slurry.
  • the fluoride waste liquid may have a fluorine ion concentration of 500 ppm to 150,000 ppm.
  • the fluoride waste liquid may preferably have a fluorine ion concentration of 800 ppm to 130,000 ppm, more preferably 1000 ppm to 120,000 ppm.
  • lithium fluoride LiF
  • an insoluble lithium compound by introducing a fluoride waste liquid as a precipitating agent into the lithium waste liquid and precipitating and separating the lithium waste liquid and the fluoride waste liquid to produce lithium fluoride After precipitation, lithium fluoride can be obtained by separation.
  • Lithium ions of the reaction filtrate and aluminum ions of the aluminum compound react with hydroxide ions to produce Li-Al LDH (Li-Al layered double hydroxide), which is an insoluble lithium compound.
  • the aluminum compound may be one or more selected from the group consisting of aluminum chloride, sodium aluminate, aluminum powder, aluminum hydroxide, aluminum sulfate, and alumina.
  • layered double hydroxides are a class of ionic solids characterized by a layered structure, generally with the layer sequence [AcB-Z-AcB]n.
  • c represents a layer of metal cations
  • a and B are layers of hydroxide (OH-).
  • Z is a layer of other anions or neutral molecules such as water.
  • the inserted anion (Z) is weakly bound and exchangeable.
  • Li-Al layered double hydroxide constitutes Li-Al layered double hydroxide (Li-Al LDH) represented by the following formula 1 by combining Li + and Al 3+ cations with hydroxide ions. .
  • X 6- is one or more anions, includes hydroxide ions, and represents -6 in total charge.
  • y is generally 0.5 to 4.
  • Li—Al layered double hydroxide With the sulfuric acid compound, the Li—Al layered double hydroxide (LDH) is sulfated and water leached to obtain a solution in which high concentrations of lithium (Li) ions, sulfuric acid (SO 4 ) ions, or metal (M) ions are dissolved. Lithium concentrate can be prepared.
  • lithium concentrate as a lithium raw material in the step of (a) producing lithium fluoride (LiF), the high concentration of lithium (Li) ions, sulfuric acid (SO 4 ) ions, or metal (M)
  • LiF lithium fluoride
  • SO 4 sulfuric acid
  • M metal
  • reaction temperature during the sulfuration reaction of the Li-Al layered double hydroxide and the sulfuric acid compound may be 200 °C to 1000 °C.
  • reaction temperature during the sulfuration reaction is less than 200 °C, there is a problem that the yield of the sulfuration reaction decreases, and when the reaction temperature during the sulfuration reaction exceeds 1000 °C, there is a problem that the manufacturing cost increases.
  • reaction time for the sulfuration reaction of the Li-Al layered double hydroxide and the sulfuric acid compound may be 0.5 hours to 36 hours.
  • the solid/liquid ratio (solid/liquid, g/L) of the conversion material and water during the water leaching may be 30 g/L to 2000 g/L.
  • the fluorine ion concentration contained in the process water remaining after the calcium fluoride precipitation may be 100 ppm or less.
  • the fluorine ion concentration contained in the process water remaining after the calcium fluoride precipitation may be preferably 80 ppm or less, more preferably 40 ppm.
  • the remaining process water can be recovered and used for pH control of water treatment.
  • FIG. 1 is a process flow diagram of a method for recovering high value-added resources from lithium waste liquid and fluoride waste liquid according to an embodiment of the present invention.
  • the first step is precipitated and separated (103 ) to produce lithium fluoride 104, which is an insoluble lithium compound.
  • reaction filtrate obtained after the first step of precipitation and separation (103) is reacted with an aluminum compound, extracted and converted (105) to produce Li-Al LDH, an insoluble lithium compound,
  • the insoluble lithium compound, Li-Al LDH is sulfated and water leached to prepare a lithium concentrate, which can be recycled as a lithium raw material (106).
  • the reaction filtrate is reacted with a calcium compound to precipitate and separate in a second step (109) to separate the calcium fluoride precipitate and the remaining process water.
  • the method for producing lithium fluoride from lithium waste liquid and fluoride waste liquid and treating waste liquid with high efficiency is to manufacture lithium fluoride from lithium waste liquid generated in the process of manufacturing lithium secondary batteries and recycling waste lithium secondary batteries and fluoride waste liquid generated in the semiconductor and display industries. Since it provides a high value-added resource recovery and waste liquid treatment method, waste treatment costs are reduced, and lithium fluoride recovery costs are also reduced.
  • the lithium fluoride production and high-efficiency waste treatment method from the lithium waste liquid and the fluoride waste liquid is a lithium waste liquid and a fluoride waste liquid that significantly reduces the amount of slaked lime used in the treatment of the fluoride waste liquid and the amount of waste solids (CaF 2 ) generated after the treatment. Since it provides a high value-added resource recovery method, the environmental burden is significantly suppressed and the process efficiency is also high.
  • the lithium fluoride production and high-efficiency waste treatment method from lithium waste liquid and fluoride waste liquid secures economic feasibility and significantly reduces the amount of wastewater through the introduction of high-efficiency recovery technology for unrecovered lithium ions and fluoride ions that may occur in the lithium fluoride manufacturing process. It is environmentally friendly and economical because it provides a method for recovering high value-added resources from lithium waste liquid and fluoride waste liquid.
  • the lithium waste liquid is a solution or slurry of one or more lithium compounds selected from the group consisting of LiOH, LiCl, LiBr, Li 2 CO 3 , Li 2 SO 4 , Li 3 PO 4 , and LiAl(Si 2 O 5 ) 2 You can say, but not limited to this.
  • the lithium waste liquid contains at least one selected from the group consisting of lithium hydroxide, lithium carbonate, lithium sulfate, lithium phosphate, and lithium chloride,
  • the shape of the lithium waste liquid may include a solution or a slurry.
  • the lithium waste liquid may have a lithium ion concentration of 200 ppm to 5000 ppm.
  • the lithium waste liquid may have a lithium ion concentration of preferably 500 ppm to 4000 ppm, more preferably 800 ppm to 3500 ppm.
  • the fluoride waste liquid is sodium fluoride (NaF), ammonium fluoride (NH 4 F), potassium fluoride (KF), ferrous fluoride (FeF 2 ), ferric fluoride (FeF 3 ), aluminum fluoride (AlF 3 ), and hydrogen fluoride. (HF) containing at least one selected from the group consisting of,
  • the form of the fluoride waste liquid may include a solution or a slurry.
  • the fluoride waste liquid may have a fluorine ion concentration of 500 ppm to 150,000 ppm.
  • the fluoride waste liquid may preferably have a fluorine ion concentration of 800 ppm to 130,000 ppm, more preferably 1000 ppm to 120,000 ppm.
  • lithium fluoride LiF
  • an insoluble lithium compound by injecting a fluoride waste liquid as a precipitating agent into the lithium waste liquid and precipitating and separating the lithium fluoride liquid using the lithium waste liquid and the fluoride waste liquid After precipitation, lithium fluoride can be obtained by separation.
  • the reaction filtrate is heated and concentrated (MVR; mechanical vapor recompression) to additionally precipitate and separate lithium fluoride (LiF), and trace amounts of lithium, fluorine, and other cations and
  • MVR mechanical vapor recompression
  • a concentrate containing trace amounts of lithium and fluorine and other cations and anions is separated and obtained.
  • step of (b-3) reacting the concentrate containing trace amounts of lithium, fluorine, and other cations and anions with a calcium compound to separate the calcium fluoride precipitate and residual process water, the calcium compound is reacted with the concentrate Calcium fluoride is precipitated and residual process water is separated.
  • the fluorine ion concentration contained in the residual process water may be 100 ppm or less.
  • the fluorine ion concentration contained in the residual process water may be preferably 80 ppm or less, more preferably 40 ppm.
  • the remaining process water can be recovered and used for pH control of water treatment.
  • FIG. 1 is a process flow diagram of a method for recovering high value-added resources from lithium waste liquid and fluoride waste liquid according to an embodiment of the present invention.
  • lithium fluoride waste liquid 101 generated in the semiconductor and display industries by reacting the fluoride waste liquid 101 generated in the semiconductor and display industries with the lithium waste liquid 102 generated in the process of manufacturing lithium secondary batteries and recycling waste lithium secondary batteries, one-step precipitation and separation ( 103) to produce lithium fluoride 104, which is an insoluble lithium compound.
  • reaction filtrate obtained after the first step of precipitation and separation (103) is heated and concentrated (MVR, 107) to additionally precipitate and separate lithium fluoride (LiF) (108), and trace amounts of lithium, fluorine, and other cations and anions Separating the concentrated liquid containing
  • the concentrate may be reacted with a calcium compound to precipitate and separate in a second step (109) to separate the calcium fluoride precipitate and the remaining process water.
  • lithium solution A solution of lithium carbonate, lithium hydroxide, lithium sulfate, and lithium chloride with a lithium ion concentration of about 2000 ppm is reacted with a solution of ammonium fluoride (NH 4 F) as a precipitant and a Li:F ratio of 1:1 by stirring for 24 hours. Lithium fluoride having a high concentration of lithium was prepared.
  • NH 4 F ammonium fluoride
  • Lithium ion recovery rate (%) (1-Q / Q o ) ⁇ 100 -----> (Equation 1)
  • the lithium hydroxide solution having a high initial pH under the equivalence ratio condition showed the highest lithium recovery rate.
  • lithium solution A lithium hydroxide solution with a lithium ion concentration of about 1000 ppm and 2000 ppm is reacted with an ammonium fluoride (NH 4 F) solution as a precipitant at a molar ratio of 1:1 with a Li:F ratio of 1:1 for 24 hours by stirring to obtain a highly concentrated lithium solution.
  • NH 4 F ammonium fluoride
  • the lithium ion recovery rate was confirmed using Equation 1 above.
  • Example 2 is an XRD crystal structure analysis graph of lithium fluoride prepared by reacting the lithium waste liquid according to Example 2 with the fluoride waste liquid at an equivalent ratio for each concentration.
  • the crystal structure of lithium fluoride prepared in Example 2 was analyzed using X-ray diffraction analysis (XRD; D/MAX 2200, Rigaku), and the same diffraction angle as that of the lithium fluoride reagent was measured.
  • XRD X-ray diffraction analysis
  • Li/F molar ratio 1
  • Li-ion concentration initial concentration, ppm
  • Li + conc. ppm
  • Li + recovery %) LiOH + NH 4 F 1,094.796 451.149 58.792 2036.72 358.003 82.423
  • lithium solution A lithium hydroxide solution having a lithium ion concentration of about 2000 ppm was adjusted in pH with sulfuric acid or hydrochloric acid as shown in Table 3, and the precipitant ammonium fluoride (NH 4 F) solution and Li:F were stirred for 24 hours at a molar ratio of 1:2. Through the reaction, lithium fluoride in which lithium was accumulated at a high concentration was prepared.
  • NH 4 F precipitant ammonium fluoride
  • the lithium ion recovery rate was confirmed using Equation 1 above.
  • lithium solution As shown in Table 4, a lithium hydroxide solution having a lithium ion concentration of about 1000 ppm was stirred for 24 hours at a molar ratio of 1:1 to a solution of hydrofluoric acid (HF) or ammonium fluoride (NH 4 F) as a precipitant and a Li:F ratio, respectively, as shown in Table 4. Through the reaction, lithium fluoride in which lithium was accumulated at a high concentration was prepared.
  • HF hydrofluoric acid
  • NH 4 F ammonium fluoride
  • lithium solution A lithium hydroxide solution with a lithium ion concentration of about 2000 ppm was stirred for 24 hours at a molar ratio of 1:2 to a solution of hydrofluoric acid (HF) or ammonium fluoride (NH 4 F) as a precipitant and a Li:F ratio as shown in Table 4 below.
  • HF hydrofluoric acid
  • NH 4 F ammonium fluoride
  • the lithium ion recovery rate was confirmed using Equation 1 above.
  • lithium waste liquid Lithium waste liquid discharged from a cathode material manufacturer (company A) with a lithium ion concentration of about 2000 ppm and fluoride waste liquid discharged from a display manufacturer (company C) with a fluorine concentration of about 6 wt%, which is a fluoride waste liquid, are Li:F as shown in Table 5 below.
  • a molar ratio of 1:1 was reacted with stirring for 24 hours to prepare lithium fluoride-I having a high concentration of lithium.
  • lithium ion concentration of the remaining sample filtrate was analyzed by inductively coupled plasma atomic emission spectrometry (ICP-AES; Optima 7300D, Perkinelmer), and the lithium ion recovery rate is shown in Table 5 below. confirmed together.
  • the lithium ion recovery rate was confirmed using Equation 1 above.
  • Lithium recovery rate of about 78% was analyzed after the reaction of lithium waste liquid and fluoride waste liquid.
  • Example 5 lithium fluoride produced after the reaction of lithium and fluorine was prepared at a lithium/fluorine molar ratio of 1.
  • the concentration of fluorine contained in the used fluoride waste liquid (applying 24.2 mL) was about 61,110 ppm (mg/L), and the number of moles was 0.078 mol.
  • Li + conc. 2,174 ppm
  • reaction ratio Li/F molar ratio: about 1.
  • the dilution factor was about 11.29 times, and the initial fluorine concentration was reduced from 61,110 ppm to about 5,413 ppm by simple mixing.
  • the lithium concentration of the lithium waste liquid was diluted from 2,174.55 ppm to 1,981.93 ppm.
  • the lithium ion recovery rate of about 78% was confirmed through the calculation of the residual lithium concentration before/after dilution and after the reaction according to the reaction mixture based on lithium.
  • Example 5 it is determined that the amount of Ca-based (CaO, Ca(OH) 2 , CaCl 2 , etc.) precipitants consumed for conventional fluoride ion removal will be reduced by 77% or more by utilizing fluoride waste liquid and lithium waste liquid.
  • This 1:1 molar ratio was reacted with stirring for 24 hours to prepare lithium fluoride-II having a high concentration of lithium.
  • the lithium ion concentration of the remaining sample filtrate was analyzed by inductively coupled plasma atomic emission spectroscopy (ICP-AES; Optima 7300D, Perkinelmer), and the lithium ion concentration of the LiF reaction filtrate was It was found to be 120.7 ppm, and the fluoride ion concentration was found to be 435.5 ppm.
  • ICP-AES inductively coupled plasma atomic emission spectroscopy
  • Lithium recovery rate of about 94% was analyzed after the reaction of lithium waste liquid and fluoride waste liquid.
  • the lithium ion recovery rate was confirmed using Equation 1 above.
  • the reaction filtrate obtained was prepared by sodium aluminate (NaAlO 2 ) or aluminum powder and Al:Li at a molar ratio of 3:1 for 12 hours. During the reaction through stirring, insoluble Li-Al LDH-I was prepared.
  • the lithium ion concentration of the remaining sample filtrate was analyzed by inductively coupled plasma atomic emission spectroscopy (ICP-AES; Optima 7300D, Perkinelmer), and the lithium ion recovery rate was 99% or more. confirmed as
  • the lithium ion recovery rate was confirmed using Equation 1 above.
  • the crystal structure of Li-Al LDH-I prepared in Example 7 was analyzed using X-ray diffraction analysis (XRD; D/MAX 2200, Rigaku), and sodium aluminate and lithium hydroxide solutions The same diffraction angle as that of Li-Al LDH prepared by reacting was measured.
  • XRD X-ray diffraction analysis
  • reaction filtrate having a lithium ion concentration of 120.7 ppm obtained after the preparation of lithium fluoride prepared in Example 6 was reacted with sodium aluminate (NaAlO 2 ) at a molar ratio of 2:1 of Al:Li for 12 hours by stirring to dissolve insoluble Li -Al LDH-II was prepared.
  • sodium aluminate NaAlO 2
  • the lithium ion concentration of the remaining sample filtrate was analyzed by inductively coupled plasma atomic emission spectroscopy (ICP-AES; Optima 7300D, Perkinelmer), and the Li-Al LDH-II reaction
  • ICP-AES inductively coupled plasma atomic emission spectroscopy
  • the lithium ion recovery rate was confirmed to be about 95% or more.
  • the lithium ion recovery rate was confirmed using Equation 1 above.
  • Li-Al LDH-I prepared in Example 7 15 g was mixed with 30 mL of 1.15 to 4 M sulfuric acid, and then the temperature was raised to 280 ° C. for 30 minutes and maintained for 2 hours. After preparing a conversion product by sulfation reaction of roasting, lithium concentrate was prepared by water leaching the conversion product and water at a solid-liquid ratio of 1 g/5 mL.
  • Li-Al LDH-I prepared in Example 7 was mixed with 150 mL of 1 to 3 M sulfuric acid, followed by leaching for 6 hours, followed by sulfuration reaction and acid leaching to prepare a lithium concentrate. did
  • the concentration of sulfuric acid was 1 M or more and the concentration of Li ions was leached to more than 1,000 ppm.
  • the concentration of sulfuric acid increased, the concentration of Al ions increased. The sulfuric acid concentration is judged to be appropriate.
  • the crystal structure of the precipitate precipitated by applying the MVR method to the reaction filtrate after preparing lithium fluoride in Example 4 was analyzed using X-ray diffraction analysis (XRD; D/MAX 2200, Rigaku), The same diffraction angle as reagent grade lithium fluoride (LiF) was measured.
  • XRD X-ray diffraction analysis
  • the composition of the precipitate obtained after separation of the filtrate and concentration by heating was analyzed, the composition was similar to that of the LiF reagent.
  • Ca(OH) 2 calcium hydroxide
  • concentration of ions was analyzed by ion chromatography (Ion chromatography; Metrohm, 881 Compact IC pro (Anion)).
  • the Ca/F 2 molar ratio is 1.5 or more and the fluorine concentration is 500 ppm or less.
  • a high-concentration fluoride solution it is determined that it is difficult to remove fluoride ions below a certain concentration even when the Ca/F 2 ratio is increased in a general CaF 2 precipitation reaction.
  • Calcium fluoride was prepared by reacting the reaction filtrate after preparing lithium fluoride (LiF) and Li—Al LDH-II in Examples 6 and 8 with calcium hydroxide (Ca(OH) 2 ) and Ca/F 2 ratio in an equivalent ratio of 1
  • the concentration of fluoride ions in the remaining process water was analyzed by chromatography (Ion chromatography; Metrohm, 881 Compact IC pro (Anion)).
  • the present invention can be used for a method of recovering high value-added resources from lithium waste liquid generated in a lithium secondary battery manufacturing process or a recycling process after use of a lithium secondary battery and fluoride waste liquid generated in a semiconductor manufacturing process.

Abstract

본 발명은 리튬폐액을 불화물폐액과 반응시켜 불용성 리튬화합물인 불화리튬(LiF)을 제조한 후, 반응 여액을 알루미늄 화합물과 반응시켜 불용성 리튬화합물인 Li-Al 층상이중수산화물(LI-Al LDH)를 제조한 다음, 상기 불용성 리튬화합물인 Li-Al 층상이중수산화물(LI-Al LDH)과 황산화합물과의 황산화반응으로 전환물을 제조하고, 상기 전환물을 수침출하여 리튬농축액을 제조한 후, 상기 리튬농축액을 리튬원료로 재순환하여 리튬폐액에 함유된 리튬이온을 고효율 및 경제적으로 회수하고, 또는 불화리튬(LiF)을 제조한 후 반응 여액을 가열농축(MVR; mechanical vapor recompression)하여 불화리튬을 추가적으로 석출/분리하여 리튬폐액 및 불화물폐액으로부터 리튬이온 및 불소이온을 경제적으로 회수하고 여액에 함유된 미량의 불소이온을 칼슘 화합물과 반응시켜 불화칼슘 석출물과 잔여 공정수로 분리하여 소량 배출하는 리튬폐액과 불화물폐액으로부터 고부가가치 자원 회수방법 및 경제적인 폐액 처리방법을 제공한다.

Description

리튬폐액과 불화물폐액으로부터 고부가가치 자원 회수방법
본 발명은 리튬이차전지 제조공정 또는 리튬이차전지 사용 후 재활용과정에서 발생하는 리튬폐액과, 반도체 제조공정에서 발생하는 불화물폐액으로부터 불화리튬을 제조하고, 불화칼슘 석출물과 잔여 공정수의 폐기물의 양을 현저히 감소시킨 자원 회수공정을 수행하는 리튬폐액과 불화물폐액으로부터 고부가가치 자원 회수방법에 관한 것이다.
리튬이차전지(Lithium ion battery, LIB)는 전기자동차(Electric vehicle) 및 에너지 저장장치(Energy storage system, ESS)용 중대형 배터리 시장의 급격한 성장으로 인해 수요량이 급격히 증가하고 있다.
이와 같은 고용량 배터리의 수요 급증과 더불어 NCM, NCA계열 등의 양극재 수요량이 기존의 LCO, LMO, LFP계열보다 크게 증가하는 추세이다.
NCA, NCM 계열 양극재는 탄산리튬을 원료로 사용하는 기존의 양극재와 달리 수산화리튬을 사용하여 제조되고 있으며 리튬이차전지의 고용량 성능향상을 위해 NCA, NCM 전구체와 혼합 및 소성시 과량의 수산화리튬을 사용한다.
이로 인해 양극재 제조 후 미반응 리튬화합물이 양극재 분말에 잔류하여 양극재의 수세과정을 거쳐 과량의 리튬성분을 제거해야 하는 후속공정이 요구된다.
그리고, 양극재 수세 후 발생되는 폐수에 함유된 리튬이온의 농도는 약 1,000~2,000 ppm(mg/L)의 함량을 보이고 있으며 고품위 리튬원료임에도 불구하고 경제적 추출기술 부재로 인해 현재 전량 폐수처리되고 있는 실정이다.
그 외 사용 후 발생하는 폐 리튬이차전지로부터 유가금속(리튬, 코발트, 니켈, 망간등)을 회수하고자 하는 시도가 활발히 진행되고 있으며 코발트, 니켈, 망간등의 경우 용매추출법을 적용하여 효율적인 분리 회수가 가능하나 리튬의 경우 3,000 ppm 이상의 농도로 배출되고 있지만 경제적 분리기술 부재로 인해 이를 극복하기 위한 기술개발이 요구되고 있는 상황이다.
중대용량 리튬이차전지의 수요급증과 더불어 리튬이차전지 제조공정 또는 리튬이차전지 사용 후 재활용과정에서 리튬폐액 발생량 또한 급격하게 증가할 것으로 예상되며 경제적인 재활용 기술개발이 절실하게 요구되고 있는 실정이다.
또한, 정보통신산업의 발전과 더불어 각종 반도체 소자를 사용하는 전자기기, 액정표시장치(LCD), 전계발광표시장치(LED) 등의 수요가 증가하고 있으며 이에 따라 웨이퍼 및 회로기판 등의 에칭용액으로 불산 용액 수요 또한 증가하고 있다.
이러한, 반도체 산업에서 발생하는 폐수는 유기폐수, 질소폐수, 불산폐수, 그리고 산/알칼리 폐수로 배출되고 있으며 일반적으로 불산폐수가 발생폐수의 60~70 %를 차지하고 있다.
2018년 기준 국내 반도체 공정에서 일 596 m3의 폐수가 발생하고 있으며 연간 약 15,000 톤의 불산폐수가 배출되고 있다.
또한, 반도체 산업의 성장성과 경쟁력을 고려할 때 향후 5 년 내 현재 발생량의 약 2 배 이상의 불산폐수가 발생할 것으로 전망되며 이에 대한 대비책이 요구되는 실정이다.
반도체 산업에서 발생되는 폐액(불산, 불화물계 등)의 경우 처리비용 소요문제 및 처리 후 발생되는 고형폐기물로 인해 부가적인 경제적환경적 비용 문제가 부각되고 있으나 여전히 해결방안이 미흡한 상황이다.
이로 인해 궁극적으로 IT 산업의 기업경쟁력 약화를 초래하고 있으며 불화물 폐액 처리기술에 대한 관심 또한 증대하고 있다.
현재까지 폐 불산 및 불화물 용액 처리방법으로는 소석회(수산화칼슘, Ca(OH)2)를 사용한 중화처리 방법이 적용되고 있으며 소석회와 불화물의 반응으로 용해도가 낮은 CaF2를 형성/침전/분리하여 폐액중의 불소이온을 일정 농도로 저감시키고 있으나 여전히 환경규제를 만족시키지 못한 상황이다.
이로 인해 반복적인 소석회 처리공정 후 여액을 희석시켜 배출하거나 가열/농축/결정화 후 CaF2을 분리하여 매립하고 있는 실정이다.
최근 리튬이차전지의 수요급증과 더불어 구성품인 4대 부품(양극, 음극, 전해질, 분리막)의 확보방안이 부각되고 있으나 여전히 핵심원료의 경우 전량 수입에 의존하고 있어 재순환자원을 활용한 핵심소재의 자립화 기술개발이 필요한 상황이다.
본 출원인은 여러 연구를 통하여 리튬이차전지 제조 및 폐 리튬이차전지의 재활용 과정에서 발생하는 리튬폐액 그리고 반도체 및 디스플레이 산업에서 발생하는 불화물 폐액을 활용하여 리튬이차전지 전해액 원료인 불화리튬을 제조하였고,
이와 더불어 불화물 폐액 처리시 사용되는 소석회의 사용량 및 처리 후 발생하는 폐고형물(CaF2)의 양을 현저히 감소시켜 환경부담을 억제할 수 있고,
불화리튬 제조과정에서 발생할 수 있는 미회수 리튬이온의 고효율 회수기술 도입을 통해 경제성을 확보하고 폐수의 양을 현저히 감소시킬 수 있는 통합처리 기술인 리튬폐액과 불화물폐액으로부터 고부가가치 자원 회수방법을 개발하여 본 발명을 완성하게 되었다.
따라서, 본 발명의 목적은 리튬이차전지 제조 및 폐 리튬이차전지의 재활용 과정에서 발생하는 리튬폐액 그리고 반도체 및 디스플레이 산업에서 발생하는 불화물 폐액을 활용하여 리튬이차전지 전해액 원료인 불화리튬을 제조하는 리튬폐액과 불화물폐액으로부터 고부가가치 자원 회수방법을 제공하는 데 있다.
또한, 본 발명의 목적은 불화물 폐액 처리시 사용되는 소석회의 사용량 및 처리 후 발생하는 폐고형물(CaF2)의 양을 현저히 감소시켜 환경부담을 억제할 수 있는 리튬폐액과 불화물폐액으로부터 고부가가치 자원 회수방법을 제공하는 데 있다.
또한, 본 발명의 목적은 불화리튬 제조과정에서 발생할 수 있는 미회수 리튬이온의 고효율 회수기술 도입을 통해 경제성을 확보하고 폐수의 양을 현저히 감소시킬 수 있는 리튬폐액과 불화물폐액으로부터 고부가가치 자원 회수방법을 제공하는 데 있다.
본 발명이 해결하고자 하는 과제는 이상에서 언급한 과제들로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 이하의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
상기 과제를 해결하기 위해, 본 발명의 일 측면에 따르면,
(a-1) 리튬폐액에 침전제로 불화물폐액을 투입하고, 침전 및 분리하여 불용성 리튬화합물인 불화리튬(LiF)을 제조하는 단계;
(a-2) 상기 불용성 리튬화합물인 불화리튬 제조 후 반응 여액을 알루미늄 화합물과 반응시켜 불용성 리튬화합물인 Li-Al 층상이중수산화물(LDH; layered double hydroxide)을 제조하는 단계;
(a-3) 상기 불용성 리튬화합물인 Li-Al 층상이중수산화물(LDH; layered double hydroxide)과 황산화합물과의 황산화반응으로 전환물을 제조하는 단계;
(a-4) 상기 전환물에 함유된 리튬을 수침출하여 리튬농축액을 제조하는 단계;
(a-5) 상기 리튬농축액을 상기 (a) 불화리튬(LiF) 제조하는 단계에서 리튬원료로 재순환시키는 단계; 및
(a-6) 상기 불용성 리튬화합물인 Li-Al 층상이중수산화물(LDH; layered double hydroxide) 제조 후 여액을 칼슘 화합물과 반응시켜 불화칼슘 석출물과 잔여 공정수로 분리하는 단계;를 포함하는
리튬폐액과 불화물폐액으로부터 고부가가치 자원 회수방법을 제공한다.
본 발명의 일 실시예에 따르면, 상기 리튬폐액은 리튬이차전지 제조 및 폐 리튬이차전지의 재활용 과정에서 발생하는 리튬폐액이고,
상기 불화물폐액은 반도체 및 디스플레이 산업에서 발생하는 불화물폐액 일 수 있다.
본 발명의 일 실시예에 따르면, 상기 리튬폐액은 수산화리튬, 탄산리튬, 황산리튬, 인산리튬, 및 염화리튬으로 이루어진 군에서 선택된 하나 이상을 포함하고,
상기 리튬폐액의 형상은 용액 또는 슬러리를 포함할 수 있다.
본 발명의 일 실시예에 따르면, 상기 불화물폐액은 불화나트륨(NaF), 불화암모늄(NH4F), 불화칼륨(KF), 불화제일철(FeF2), 불화제이철(FeF3), 불화알루미늄(AlF3), 및 불화수소(HF)로 이루어진 군에서 선택된 하나 이상을 포함하고,
상기 불화물폐액의 형상은 용액 또는 슬러리를 포함할 수 있다.
본 발명의 일 실시예에 따르면, 상기 리튬폐액은 리튬 이온 농도가 200 ppm ~ 5000 ppm 일 수 있다.
본 발명의 일 실시예에 따르면, 상기 불화물폐액은 불소 이온 농도가 500 ppm ~ 150,000 ppm 일 수 있다.
본 발명의 일 실시예에 따르면, 상기 리튬폐액의 리튬(Li)과 상기 불화물폐액의 불소(F)의 함량 비율은 몰비로 Li:F = 1: 0.1 ~ 1: 10 일 수 있다.
본 발명의 일 실시예에 따르면, 상기 알루미늄 화합물은 염화알루미늄, 알루민산나트륨, 알루미늄 분말, 수산화알루미늄, 황산알루미늄, 및 알루미나로 이루어진 군에서 선택된 하나 이상 일 수 있다.
본 발명의 일 실시예에 따르면, 상기 불화칼슘 석출 후 잔여 공정수에 함유된 불소 이온 농도는 100 ppm 이하일 수 있다.
본 발명의 일 실시예에 따르면, 상기 잔여 공정수는 회수하여 수처리 pH 조절용으로 사용할 수 있다.
본 발명의 일 실시예에 따르면, 상기 리튬농축액은 이온 성분으로 리튬(Li) 이온, 황산(SO4) 이온, 또는 금속(M) 이온을 포함할 수 있다.
본 발명의 일 실시예에 따르면, 상기 황산화합물은,
황산(H2SO4), 아황산(H2SO3), 차아황산(H2SO2), 황산마그네슘(MgSO4), 아황산마그네슘(MgSO3), 차아황산마그네슘(MgSO2), 황산칼슘(CaSO4), 아황산칼슘(CaSO3), 차아황산칼슘(CaSO2), 황산나트륨(Na2SO4), 아황산나트륨(Na2SO3), 차아황산나트륨(Na2SO2), 황산칼륨(K2SO4), 아황산칼륨(K2SO3), 차아황산칼륨(K2SO2), 황산제일철(FeSO4), 아황산제일철(FeSO3), 차아황산제일철(FeSO2), 황산제이철(Fe2(SO4)3), 아황산제이철(Fe2(SO3)3), 차아황산제이철(Fe2(SO2)3), 황산암모늄((NH4)2SO4), 황산알루미늄(Al2(SO4)3), 아황산알루미늄(Al2(SO3)3), 및 차아황산알루미늄 (Al2(SO2)3)로 이루어진 군에서 선택된 하나 이상일 수 있다.
본 발명의 일 실시예에 따르면, 상기 Li-Al 층상이중수산화물(LDH; layered double hydroxide)과 황산화합물의 황산화반응시 반응온도는 200 ℃ 내지 1000 ℃ 일 수 있다.
본 발명의 일 실시예에 따르면, 상기 Li-Al 층상이중수산화물(LDH; layered double hydroxide)과 황산화합물의 황산화반응시 반응시간은 0.5 시간 내지 36 시간일 수 있다.
본 발명의 일 실시예에 따르면, 상기 수침출시 전환물과 물의 고상/액상 비율(고/액, g/L)은 30 g/L 내지 2000 g/L 일 수 있다.
또한, 본 발명의 다른 일 측면에 따르면,
(b-1) 리튬폐액에 침전제로 불화물폐액을 투입하고, 침전 및 분리하여 불용성 리튬화합물인 불화리튬(LiF)을 제조하는 단계;
(b-2) 상기 불용성 리튬화합물인 불화리튬(LiF) 제조 후 반응 여액을 가열농축(MVR; mechanical vapor recompression)하여 불화리튬(LiF)을 추가적으로 석출 및 분리하고 미량의 리튬과 불소 및 이외의 양이온 및 음이온을 함유한 농축액을 분리하는 단계; 및
(b-3) 상기 미량의 리튬과 불소 및 이외의 양이온 및 음이온을 함유한 농축액을 칼슘 화합물과 반응시켜 불화칼슘 석출물과 잔여 공정수로 분리하는 단계;를 포함하는
리튬폐액과 불화물폐액으로부터 고부가가치 자원 회수방법을 제공한다.
본 발명의 일 실시예에 따르면, 상기 리튬폐액은 리튬이차전지 제조 및 폐 리튬이차전지의 재활용 과정에서 발생하는 리튬폐액이고,
상기 불화물폐액은 반도체 및 디스플레이 산업에서 발생하는 불화물폐액 일 수 있다.
본 발명의 일 실시예에 따르면, 상기 리튬폐액은 수산화리튬, 탄산리튬, 황산리튬, 인산리튬, 및 염화리튬으로 이루어진 군에서 선택된 하나 이상을 포함하고,
상기 리튬폐액의 형상은 용액 또는 슬러리를 포함할 수 있다.
본 발명의 일 실시예에 따르면, 상기 불화물폐액은 불화나트륨(NaF), 불화암모늄(NH4F), 불화칼륨(KF), 불화제일철(FeF2), 불화제이철(FeF3), 불화알루미늄(AlF3), 및 불화수소(HF)로 이루어진 군에서 선택된 하나 이상을 포함하고,
상기 불화물폐액의 형상은 용액 또는 슬러리를 포함할 수 있다.
본 발명의 일 실시예에 따르면, 상기 리튬폐액은 리튬 이온 농도가 200 ppm ~ 5000 ppm 일 수 있다.
본 발명의 일 실시예에 따르면, 상기 불화물폐액은 불소 이온 농도가 500 ppm ~ 150,000 ppm 일 수 있다.
본 발명의 일 실시예에 따르면, 상기 리튬폐액의 리튬(Li)과 상기 불화물폐액의 불소(F)의 함량 비율은 몰비로 Li:F = 1: 0.1 ~ 1: 10 일 수 있다.
본 발명의 일 실시예에 따르면, 상기 불화칼슘 석출 후 잔여 공정수에 함유된 불소 이온 농도는 100 ppm 이하일 수 있다.
본 발명의 일 실시예에 따르면, 상기 잔여 공정수는 회수하여 수처리 pH 조절용으로 사용할 수 있다.
본 발명에 따르면, 리튬이차전지 제조 및 폐 리튬이차전지의 재활용 과정에서 발생하는 리튬폐액과 반도체 및 디스플레이 산업에서 발생하는 불화물폐액으로부터 불화리튬을 제조하는 고부가가치 자원 회수방법을 제공하므로, 폐기물 처리 비용이 절감되고, 불화리튬 회수 비용도 절감된다.
또한, 본 발명은 불화물 폐액 처리시 사용되는 소석회의 사용량 및 처리 후 발생하는 폐고형물(CaF2)의 양을 현저히 감소시키는 리튬폐액과 불화물폐액으로부터 고부가가치 자원 회수방법을 제공하므로, 환경부담이 현저히 억제되고, 공정 효율도 높다.
또한, 본 발명은 불화리튬 제조과정에서 발생할 수 있는 미회수 리튬이온의 고효율 회수기술 도입을 통해 경제성을 확보하고 폐수의 양을 현저히 감소시키는 리튬폐액과 불화물폐액으로부터 고부가가치 자원 회수방법을 제공하므로 환경친화적이고, 경제적이다.
본 발명의 효과는 상기한 효과로 한정되는 것은 아니며, 본 발명의 상세한 설명 또는 특허청구범위에 기재된 발명의 구성으로부터 추론 가능한 모든 효과를 포함하는 것으로 이해되어야 한다.
도 1은 본 발명의 일 실시예에 따른 리튬폐액과 불화물폐액으로부터 고부가가치 자원 회수방법의 공정흐름도이다.
도 2는 본 발명의 일 실시예에 따른 리튬폐액이 농도별 당량비의 불화물 폐액과 반응하여 제조된 불화리튬의 XRD 결정구조 분석 그래프이다.
도 3은 본 발명의 일 실시예에 따른 불화리튬 제조 후 여액과 알루미늄 화합물을 반응시켜 제조한 Li-Al LDH의 XRD 결정구조 분석 그래프이다.
도 4 는 본 발명의 일 실시예에 따른 불화리튬 제조 후 반응 여액의 MVR 공정 적용 후 형성된 불화리튬의 XRD 결정구조 분석 그래프이다.
이하 첨부된 도면을 참조하면서 본 발명에 따른 바람직한 실시예를 상세히 설명하기로 한다.
본 발명의 이점 및 특징, 그리고 그것을 달성하는 방법은 첨부된 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다.
그러나 본 발명은 이하에 개시되는 실시예들에 의해 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다.
또한, 본 발명을 설명함에 있어 관련된 공지 기술 등이 본 발명의 요지를 흐리게 할 수 있다고 판단되는 경우 그에 관한 자세한 설명은 생략하기로 한다.
이하, 본 발명을 상세히 설명한다.
리튬폐액과 불화물폐액으로부터 불화리튬 회수 및 고효율 리튬이온 회수방법(I)
본 발명의 리튬폐액과 불화물폐액으로부터 불화리튬 회수 및 고효율 리튬이온 회수방법은
(a-1) 리튬폐액에 침전제로 불화물폐액을 투입하고, 침전 및 분리하여 불용성 리튬화합물인 불화리튬(LiF)을 제조하는 단계;
(a-2) 상기 불용성 리튬화합물인 불화리튬 제조 후 반응 여액을 알루미늄 화합물과 반응시켜 불용성 리튬화합물인 Li-Al 층상이중수산화물(LDH; layered double hydroxide)을 제조하는 단계;
(a-3) 상기 불용성 리튬화합물인 Li-Al 층상이중수산화물(LDH; layered double hydroxide)과 황산화합물과의 황산화반응으로 전환물을 제조하는 단계;
(a-4) 상기 전환물에 함유된 리튬을 수침출하여 리튬농축액을 제조하는 단계;
(a-5) 상기 리튬농축액을 상기 (a) 불화리튬(LiF) 제조하는 단계에서 리튬원료로 재순환시키는 단계; 및
(a-6) 상기 불용성 리튬화합물인 Li-Al 층상이중수산화물(LDH; layered double hydroxide) 제조 후 여액을 칼슘 화합물과 반응시켜 불화칼슘 석출물과 잔여 공정수로 분리하는 단계;를 포함한다.
여기서, 상기 리튬폐액과 불화물폐액으로부터 불화리튬 회수 및 고효율 리튬이온 회수방법은 리튬이차전지 제조 및 폐 리튬이차전지의 재활용 과정에서 발생하는 리튬폐액과 반도체 및 디스플레이 산업에서 발생하는 불화물폐액으로부터 불화리튬을 제조하는 고부가가치 자원 회수방법을 제공하므로, 폐기물 처리 비용이 절감되고, 불화리튬 회수 비용도 절감된다.
또한, 상기 리튬폐액과 불화물폐액으로부터 불화리튬 회수 및 고효율 리튬이온 회수방법은 불화물 폐액 처리시 사용되는 소석회의 사용량 및 처리 후 발생하는 폐고형물(CaF2)의 양을 현저히 감소시키는 리튬폐액과 불화물폐액으로부터 고부가가치 자원 회수방법을 제공하므로, 환경부담이 현저히 억제되고, 공정 효율도 높다.
또한, 상기 리튬폐액과 불화물폐액으로부터 불화리튬 회수 및 고효율 리튬이온 회수방법은 불화리튬 제조과정에서 발생할 수 있는 미회수 리튬이온의 고효율 회수기술 도입을 통해 경제성을 확보하고 폐수의 양을 현저히 감소시키는 리튬폐액과 불화물폐액으로부터 고부가가치 자원 회수방법을 제공하므로 환경친화적이고, 경제적이다.
그리고, 상기 리튬폐액은 LiOH, LiCl, LiBr, Li2CO3, Li2SO4, Li3PO4, 및 LiAl(Si2O5)2 로 이루어진 군에서 선택된 하나 이상의 리튬화합물의 용액 또는 슬러리를 말할 수 있으나, 이에 한정하지 않는다.
또한, 상기 리튬폐액은 수산화리튬, 탄산리튬, 황산리튬, 인산리튬, 및 염화리튬으로 이루어진 군에서 선택된 하나 이상을 포함하고,
상기 리튬폐액의 형상은 용액 또는 슬러리를 포함할 수 있다.
그리고, 상기 리튬폐액은 리튬 이온 농도가 200 ppm ~ 5000 ppm 일 수 있다.
이때, 상기 리튬폐액은 리튬 이온 농도는 바람직하게는 500 ppm ~ 4000 ppm 일 수 있고, 보다 바람직하게는 800 ppm ~ 3500 ppm 일 수 있다.
또한, 상기 불화물폐액은 불화나트륨(NaF), 불화암모늄(NH4F), 불화칼륨(KF), 불화제일철(FeF2), 불화제이철(FeF3), 불화알루미늄(AlF3), 및 불화수소(HF)로 이루어진 군에서 선택된 하나 이상을 포함하고,
상기 불화물폐액의 형상은 용액 또는 슬러리를 포함할 수 있다.
여기서, 상기 불화물폐액은 불소 이온 농도가 500 ppm ~ 150,000 ppm 일 수 있다.
이때, 상기 불화물폐액은 불소 이온 농도는 바람직하게는 800 ppm ~ 130,000 ppm 일 수 있고, 보다 바람직하게는 1000 ppm ~ 120,000 ppm 일 수 있다.
그리고, 상기 (a-1) 리튬폐액에 침전제로 불화물폐액을 투입하고, 침전 및 분리하여 불용성 리튬화합물인 불화리튬(LiF)을 제조하는 단계에서 리튬폐액과 상기 불화물폐액을 사용하여 불화리튬을 제조하여 침전시킨 후 분리하여 불화리튬을 수득할 수 있다.
여기서, 상기 리튬폐액의 리튬(Li)과 상기 불화물폐액의 불소(F)의 함량 비율은 몰비로 Li:F = 1: 0.1 ~ 1: 10 일 수 있다.
이때, 상기 리튬폐액의 리튬(Li)과 상기 불화물폐액의 불소(F)의 함량 비율이 몰비로 Li:F = 1: 0.1 미만인 경우 제조된 불화리튬의 함량이 미비하고, 상기 리튬폐액의 리튬(Li)과 상기 불화물폐액의 불소(F)의 함량 비율이 몰비로 Li:F = 1: 10 을 초과하는 경우 경제성이 떨어질 수 있다.
또한, (a-2) 상기 불용성 리튬화합물인 불화리튬 제조 후 반응 여액을 알루미늄 화합물과 반응시켜 불용성 리튬화합물인 Li-Al 층상이중수산화물(LDH; layered double hydroxide)을 제조하는 단계에서,
상기 반응 여액의 리튬 이온과 알루미늄 화합물의 알루미늄 이온이 수산화 이온과 반응하여 불용성 리튬화합물인 Li-Al LDH(Li-Al 층상이중수산화물)을 제조할 수 있다.
여기서, 상기 알루미늄 화합물은 염화알루미늄, 알루민산나트륨, 알루미늄 분말, 수산화알루미늄, 황산알루미늄, 및 알루미나로 이루어진 군에서 선택된 하나 이상 일 수 있다.
또한, 층상이중수산화물(LDH)은 일반적으로 층서열[AcB-Z-AcB]n을 갖는 층상 구조를 특징으로 하는 이온성 고체의 부류이다. 여기서 c 는 금속 양이온의 층을 나타내고, A 및 B는 수산화물(OH-)의 층이다. Z는 다른 음이온 또는 물과 같은 중성 분자의 층이다. 삽입된 음이온(Z)은 약하게 결합되어, 교환 가능하다.
그리고, 상기 Li-Al 층상이중수산화물(LDH; layered double hydroxide)은 Li+ 와 Al3+ 양이온이 수산화 이온과 결합하여 하기 식 1로 나타내는 Li-Al 층상이중수산화물(Li-Al LDH)을 구성한다.
[Li+Al3+ 2(HO-)6]+ [Li+Al3+ 2(X6-yH2O]- ------ [식 1]
여기서, X6- 는 하나 이상의 음이온이고, 수산화 이온을 포함하고, 전체 전하량은 -6을 나타낸다. y는 일반적으로 0.5 ~ 4이다.
또한, 상기 (a-3) 불용성 리튬화합물인 Li-Al 층상이중수산화물(LDH; layered double hydroxide)과 황산화합물과의 황산화반응으로 전환물을 제조하는 단계와, 상기 (a-4) 전환물에 함유된 리튬을 수침출하여 리튬농축액을 제조하는 단계에서,
상기 황산화합물로 상기 Li-Al 층상이중수산화물(LDH; layered double hydroxide)을 황산화반응 및 수침출하여 고농도의 리튬(Li) 이온, 황산(SO4) 이온, 또는 금속(M) 이온이 용해된 리튬농축액을 제조할 수 있다.
그런 다음, 상기 (a-5) 리튬농축액을 상기 (a) 불화리튬(LiF) 제조하는 단계에서 리튬원료로 재순환시키는 단계에서 상기 고농도의 리튬(Li) 이온, 황산(SO4) 이온, 또는 금속(M) 이온이 용해된 리튬농축액을 리튬원료로 재순환시킬 수 있다.
이때, 상기 황산화합물은,
황산(H2SO4), 아황산(H2SO3), 차아황산(H2SO2), 황산마그네슘(MgSO4), 아황산마그네슘(MgSO3), 차아황산마그네슘(MgSO2), 황산칼슘(CaSO4), 아황산칼슘(CaSO3), 차아황산칼슘(CaSO2), 황산나트륨(Na2SO4), 아황산나트륨(Na2SO3), 차아황산나트륨(Na2SO2), 황산칼륨(K2SO4), 아황산칼륨(K2SO3), 차아황산칼륨(K2SO2), 황산제일철(FeSO4), 아황산제일철(FeSO3), 차아황산제일철(FeSO2), 황산제이철(Fe2(SO4)3), 아황산제이철(Fe2(SO3)3), 차아황산제이철(Fe2(SO2)3), 황산암모늄((NH4)2SO4), 황산알루미늄(Al2(SO4)3), 아황산알루미늄(Al2(SO3)3), 및 차아황산알루미늄 (Al2(SO2)3)로 이루어진 군에서 선택된 하나 이상일 수 있다.
그리고, 상기 Li-Al 층상이중수산화물과 황산화합물의 황산화반응시 반응온도는 200 ℃ 내지 1000 ℃ 일 수 있다.
여기서, 상기 황산화반응시 반응온도가 200 ℃ 미만인 경우, 상기 황산화반응 수율이 떨어지는 문제점이 있고, 상기 황산화반응시 반응온도가 1000 ℃ 초과인 경우, 제조 비용이 증가하는 문제점이 있다.
이때, 상기 Li-Al 층상이중수산화물과 황산화합물의 황산화반응시 반응시간은 0.5 시간 내지 36 시간 일 수 있다.
여기서, 상기 황산화반응시 반응시간이 0.5 시간 미만인 경우, 황산화반응 수율이 떨어지는 문제점이 있고, 상기 황산화반응시 반응시간이 36 시간 초과인 경우, 제조 비용이 증가하는 문제점이 있다.
또한, 상기 수침출시 전환물과 물의 고상/액상 비율(고/액, g/L)은 30 g/L 내지 2000 g/L 일 수 있다.
여기서, 상기 전환물과 물의 고상/액상 비율(고/액, g/L)이 30 g/L 미만인 경우, 제조된 리튬농축액의 리튬 이온 농도가 적은 문제점이 있고, 전환물과 물의 고상/액상 비율(고/액, g/L)이 2000 g/L 초과인 경우, 리튬용액 회수율이 낮아지는 문제점이 있다.
그리고, 상기 (a-6) 불용성 리튬화합물인 Li-Al 층상이중수산화물(LDH; layered double hydroxide) 제조 후 여액을 칼슘 화합물과 반응시켜 불화칼슘 석출물과 잔여 공정수로 분리하는 단계에서 상기 여액에 칼슘 화합물을 반응시켜 불화칼슘을 석출하고 잔여 공정수를 분리한다.
여기서, 상기 불화칼슘 석출 후 잔여 공정수에 함유된 불소 이온 농도는 100 ppm 이하일 수 있다.
이때, 상기 불화칼슘 석출 후 잔여 공정수에 함유된 불소 이온 농도는 바람직하게는 80 ppm 이하일 수 있고, 보다 바람직하게는 40 ppm 일 수 있다.
또한, 상기 잔여 공정수는 회수하여 수처리 pH 조절용으로 사용할 수 있다.
도 1은 본 발명의 일 실시예에 따른 리튬폐액과 불화물폐액으로부터 고부가가치 자원 회수방법의 공정흐름도이다.
도 1을 참조하면, 반도체 및 디스플레이 산업에서 발생하는 불화물 폐액(101)과 리튬이차전지 제조 및 폐 리튬이차전지의 재활용 과정에서 발생하는 리튬폐액(102)를 반응시켜, 1 단계 침전 및 분리(103)하여 불용성 리튬화합물인 불화리튬(104)을 제조할 수 있다.
그리고, 1 단계 침전 및 분리(103)한 후 얻어진 반응 여액을 알루미늄 화합물과 반응시키고 추출 및 전환(105)하여 불용성 리튬화합물인 Li-Al LDH를 제조한 다음,
상기 불용성 리튬화합물인 Li-Al LDH를 황산화반응 및 수침출하여 리튬농축액을 제조하여 리튬원료로 재순환(106)할 수 있다.
또한, 상기 불용성 리튬화합물인 Li-Al LDH 제조 후 반응 여액을 칼슘 화합물과 반응시켜 2 단계 침전 및 분리(109)하여 불화칼슘 석출물과 잔여 공정수로 분리할 수 있다.
리튬폐액과 불화물폐액으로부터 불화리튬 제조 및 고효율 폐액 처리방법(Ⅱ)
본 발명의 리튬폐액과 불화물폐액으로부터 불화리튬 제조 및 고효율 폐액 처리방법은
(b-1) 리튬폐액에 침전제로 불화물폐액을 투입하고, 침전 및 분리하여 불용성 리튬화합물인 불화리튬(LiF)을 제조하는 단계;
(b-2) 상기 불용성 리튬화합물인 불화리튬 제조 후 반응여액을 가열농축(MVR; mechanical vapor recompression)하여 불화리튬(LiF)을 추가적으로 석출 및 분리하고 미량의 리튬과 불소 및 이외의 양이온 및 음이온을 함유한 농축액을 분리하는 단계; 및
(b-3) 상기 미량의 리튬과 불소 및 이외의 양이온 및 음이온을 함유한 농축액을 칼슘 화합물과 반응시켜 불화칼슘 석출물과 잔여 공정수로 분리하는 단계;를 포함한다.
여기서, 상기 리튬폐액과 불화물폐액으로부터 불화리튬 제조 및 고효율 폐액 처리방법은 리튬이차전지 제조 및 폐 리튬이차전지의 재활용 과정에서 발생하는 리튬폐액과 반도체 및 디스플레이 산업에서 발생하는 불화물폐액으로부터 불화리튬을 제조하는 고부가가치 자원 회수 및 폐액 처리방법을 제공하므로, 폐기물 처리 비용이 절감되고, 불화리튬 회수 비용도 절감된다.
또한, 상기 리튬폐액과 불화물폐액으로부터 불화리튬 제조 및 고효율 폐액 처리방법은 불화물 폐액 처리시 사용되는 소석회의 사용량 및 처리 후 발생하는 폐고형물(CaF2)의 양을 현저히 감소시키는 리튬폐액과 불화물폐액으로부터 고부가가치 자원 회수방법을 제공하므로, 환경부담이 현저히 억제되고, 공정 효율도 높다.
또한, 리튬폐액과 불화물폐액으로부터 불화리튬 제조 및 고효율 폐액 처리방법은 불화리튬 제조과정에서 발생할 수 있는 미회수 리튬이온 및 불소이온의 고효율 회수기술 도입을 통해 경제성을 확보하고 폐수의 양을 현저히 감소시키는 리튬폐액과 불화물폐액으로부터 고부가가치 자원 회수방법을 제공하므로 환경친화적이고, 경제적이다.
그리고, 상기 리튬폐액은 LiOH, LiCl, LiBr, Li2CO3, Li2SO4, Li3PO4, 및 LiAl(Si2O5)2 로 이루어진 군에서 선택된 하나 이상의 리튬화합물의 용액 또는 슬러리를 말할 수 있으나, 이에 한정하지 않는다.
또한, 상기 리튬폐액은 수산화리튬, 탄산리튬, 황산리튬, 인산리튬, 및 염화리튬으로 이루어진 군에서 선택된 하나 이상을 포함하고,
상기 리튬폐액의 형상은 용액 또는 슬러리를 포함할 수 있다.
그리고, 상기 리튬폐액은 리튬 이온 농도가 200 ppm ~ 5000 ppm 일 수 있다.
이때, 상기 리튬폐액은 리튬 이온 농도는 바람직하게는 500 ppm ~ 4000 ppm 일 수 있고, 보다 바람직하게는 800 ppm ~ 3500 ppm 일 수 있다.
또한, 상기 불화물폐액은 불화나트륨(NaF), 불화암모늄(NH4F), 불화칼륨(KF), 불화제일철(FeF2), 불화제이철(FeF3), 불화알루미늄(AlF3), 및 불화수소(HF)로 이루어진 군에서 선택된 하나 이상을 포함하고,
상기 불화물폐액의 형상은 용액 또는 슬러리를 포함할 수 있다.
여기서, 상기 불화물폐액은 불소 이온 농도가 500 ppm ~ 150,000 ppm 일 수 있다.
이때, 상기 불화물폐액은 불소 이온 농도는 바람직하게는 800 ppm ~ 130,000 ppm 일 수 있고, 보다 바람직하게는 1000 ppm ~ 120,000 ppm 일 수 있다.
그리고, 상기 (b-1) 리튬폐액에 침전제로 불화물폐액을 투입하고, 침전 및 분리하여 불용성 리튬화합물인 불화리튬(LiF)을 제조하는 단계에서 리튬폐액과 상기 불화물폐액을 사용하여 불화리튬을 제조하여 침전시킨 후 분리하여 불화리튬을 수득할 수 있다.
여기서, 상기 리튬폐액의 리튬(Li)과 상기 불화물폐액의 불소(F)의 함량 비율은 몰비로 Li:F = 1: 0.1 ~ 1: 10 일 수 있다.
이때, 상기 리튬폐액의 리튬(Li)과 상기 불화물폐액의 불소(F)의 함량 비율이 몰비로 Li:F = 1: 0.1 미만인 경우 제조된 불화리튬의 함량이 미비하고, 상기 리튬폐액의 리튬(Li)과 상기 불화물폐액의 불소(F)의 함량 비율이 몰비로 Li:F = 1: 10 을 초과하는 경우 경제성이 떨어질 수 있다.
또한, (b-2) 상기 불용성 리튬화합물인 불화리튬 제조 후 반응여액을 가열농축(MVR; mechanical vapor recompression)하여 불화리튬(LiF)을 추가적으로 석출 및 분리하고 미량의 리튬과 불소 및 이외의 양이온 및 음이온을 함유한 농축액을 분리하는 단계에서, 석출된 불화리튬(LiF)를 분리한 후 미량의 리튬과 불소 및 이외의 양이온 및 음이온을 함유한 농축액을 분리하여 수득한다.
그런 다음, 상기 (b-3) 미량의 리튬과 불소 및 이외의 양이온 및 음이온을 함유한 농축액을 칼슘 화합물과 반응시켜 불화칼슘 석출물과 잔여 공정수로 분리하는 단계에서 상기 농축액에 칼슘 화합물을 반응시켜 불화칼슘을 석출하고 잔여 공정수를 분리한다.
여기서, 상기 잔여 공정수에 함유된 불소 이온 농도는 100 ppm 이하일 수 있다.
이때, 상기 잔여 공정수에 함유된 불소 이온 농도는 바람직하게는 80 ppm 이하일 수 있고, 보다 바람직하게는 40 ppm 일 수 있다.
또한, 상기 잔여 공정수는 회수하여 수처리 pH 조절용으로 사용할 수 있다.
도 1은 본 발명의 일 실시예에 따른 리튬폐액과 불화물폐액으로부터 고부가가치 자원 회수방법의 공정흐름도이다.
도 1을 다시 참조하면, 반도체 및 디스플레이 산업에서 발생하는 불화물 폐액(101)과 리튬이차전지 제조 및 폐 리튬이차전지의 재활용 과정에서 발생하는 리튬폐액(102)를 반응시켜, 1 단계 침전 및 분리(103)하여 불용성 리튬화합물인 불화리튬(104)을 제조할 수 있다.
그리고, 1 단계 침전 및 분리(103)한 후 얻어진 반응 여액을 가열농축(MVR, 107)하여 불화리튬(LiF)을 추가적으로 석출 및 분리(108)하고 미량의 리튬과 불소 및 이외의 양이온 및 음이온을 함유한 농축액을 분리하고,
상기 농축액을 칼슘 화합물과 반응시켜 2 단계 침전 및 분리(109)하여 불화칼슘 석출물과 잔여 공정수로 분리할 수 있다.
이하에서, 실시예를 통하여 본 발명을 보다 상세히 설명한다. 그러나, 하기의 실시예는 본 발명을 더욱 구체적으로 설명하기 위한 것으로서, 본 발명의 범위가 하기의 실시예에 의하여 한정되는 것은 아니다. 하기의 실시예는 본 발명의 범위 내에서 당업자에 의해 적절히 수정, 변경될 수 있다.
<실시예>
<실시예 1> 리튬용액 종류에 따른 불화암모늄 침전제로 불화리튬 제조
리튬용액인 리튬 이온 농도 2000 ppm정도의 탄산리튬, 수산화리튬, 황산리튬, 염화리튬 용액을 침전제인 불화암모늄(NH4F) 용액과 Li:F 비율이 1:1의 몰비로 24 시간 동안 교반을 통해 반응시켜 리튬이 고농도로 집적된 불화리튬을 제조하였다.
그런 다음, 상기 고농도의 불화리튬을 제조한 후 남은 시료 여액의 리튬 이온 농도를 유도결합플라즈마 원자방출분광기 분석법(ICP-AES; Optima 7300D, Perkinelmer)으로 분석하였으며 리튬 이온 회수율은 하기 표 1과 같이 확인되었다.
리튬 이온 회수율은 하기 수식 1을 사용하여 확인하였다.
리튬이온 회수율(%)=(1-Q/Qo)×100 -----> (수식 1)
Qo: 리튬용액 함유 리튬이온 총량(mg)
Q: 침전반응 후 리튬용액 함유 리튬이온 총량(mg)
하기 표 1을 참조하면, 당량비 조건에서 초기 pH 가 높은 수산화리튬 용액의 경우 가장 높은 리튬 회수율을 보였다.
Condition
(Li 용액:
Li+ 2,000 ppm,
100 mL, 400RPM)
반응물 (NH4F)
당량비 (Li/F)
Initial
pH
반응 시간
(hour)
Li+ conc.
(ppm)
Li+ 회수율
(%)
LiOH sol. 1 12.6 Initial 2036.72 -
24 358.003 82.423
LiCl sol. 5.6 Initial 2062.082 -
24 421.6 79.555
Li2SO4 sol. 8.9 Initial 2195.497 -
24 579.505 73.605
Li2CO3 sol. 10.1 Initial 2058.755 -
24 559.540 72.821
<실시예 2> 리튬용액 농도에 따른 불화암모늄 침전제로 불화리튬 제조
리튬용액인 리튬 이온 농도 1000 ppm, 2000 ppm정도의 수산화리튬 용액을 침전제인 불화암모늄(NH4F) 용액과 Li:F 비율이 1:1의 몰비로 24 시간 동안 교반을 통해 반응시켜 리튬이 고농도로 집적된 불화리튬을 제조하였다.
그런 다음, 상기 고농도의 불화리튬을 제조한 후 남은 시료 여액의 리튬 이온 농도를 유도결합플라즈마 원자방출분광기 분석법(ICP-AES; Optima 7300D, Perkinelmer)으로 분석하였으며 리튬 이온 회수율은 하기 표 2와 같이 확인되었다.
리튬 이온 회수율은 상기 수식 1을 사용하여 확인하였다.
도 2는 실시예 2에 따른 리튬폐액이 농도별 당량비의 불화물 폐액과 반응하여 제조된 불화리튬의 XRD 결정구조 분석 그래프이다.
도 2를 참조하면, 실시예 2에서 제조된 불화리튬의 결정구조는 X-선 회절분석법(XRD; D/MAX 2200, Rigaku)을 사용하여 분석하였고, 불화리튬 시약과 동일한 회절각이 측정되었다.
하기 표 2를 참조하면, 초기 리튬이온의 농도가 증가함에 따라 리튬 회수율이 증가하는 것으로 분석되었다.
Condition
(Li/F molar ratio = 1), 100mL, 24h, 400RPM
리튬이온 농도
(초기농도, ppm)
Li+ conc.
(ppm)
Li+ 회수율
(%)
LiOH + NH4F 1,094.796 451.149 58.792
2036.72 358.003 82.423
<실시예 3> 리튬용액 pH에 따른 불화암모늄 침전제로 불화리튬 제조
리튬용액인 리튬 이온 농도 2000 ppm정도의 수산화리튬 용액을 하기 표 3과 같이 황산 또는 염산으로 pH 조절하고, 침전제인 불화암모늄(NH4F) 용액과 Li:F 비율이 1:2의 몰비로 24 시간 동안 교반을 통해 반응시켜 리튬이 고농도로 집적된 불화리튬을 제조하였다.
그런 다음, 상기 고농도의 불화리튬을 제조한 후 남은 시료 여액의 리튬 이온 농도를 유도결합플라즈마 원자방출분광기 분석법(ICP-AES; Optima 7300D, Perkinelmer)으로 분석하였으며 리튬 이온 회수율은 하기 표 3와 같이 확인되었다.
리튬 이온 회수율은 상기 수식 1을 사용하여 확인하였다.
하기 표 3을 참조하면, pH가 감소하면서 회수율이 낮아지는 것으로 분석되었다.
또한, 상기 실시예 1의 리튬용액 종류별 회수율 비교결과(염화리튬용액>황산리튬용액)와 유사하게 염산용액으로 pH 조절시 황산용액보다 다소 높은 회수율을 보였다.
Condition
(LiOH 용액:
Li+ 2,000 ppm,
100 mL, 24h)
반응물 (NH4F)
당량비
(Li/F)
혼합/반응 후
pH 조절
Li+ conc.
(ppm)
Li+ 회수율
(%)
pH control: H2SO4 sol. 1 Initial pH (12.6) 287.786 86.3
10.9 405.156 80.946
9.1 434.487 79.566
6.9 509.773 76.026
4.8 602.798 71.651
3.1 937.823 55.895
pH control: HCl sol. Initial pH (12.6) 287.786 86.3
10.7 363.266 82.916
9.2 384.611 81.912
6.9 411.352 80.654
5.1 456.073 78.551
3 708.044 66.701
<실시예 4> 리튬용액과 불화물용액 종류에 따른 불화리튬 제조
리튬용액인 리튬 이온 농도 1000 ppm 정도의 수산화리튬 용액을 하기 표 4와 같이 침전제인 불산(HF) 또는 불화암모늄(NH4F) 용액과 Li:F 비율이 1:1의 몰비로 24시간 동안 교반을 통해 각각 반응시켜 리튬이 고농도로 집적된 불화리튬을 제조하였다.
또한, 리튬용액인 리튬 이온 농도 2000 ppm정도의 수산화리튬 용액을 하기 표 4와 같이 침전제인 불산(HF) 또는 불화암모늄(NH4F) 용액과 Li:F 비율이 1:2의 몰비로 24 시간 동안 교반을 통해 각각 반응시켜 리튬이 고농도로 집적된 불화리튬을 제조하였다.
그런 다음, 상기 고농도의 불화리튬을 제조한 후 남은 시료 여액의 리튬 이온 농도를 유도결합플라즈마 원자방출분광기 분석법(ICP-AES; Optima 7300D, Perkinelmer)으로 분석하였으며 리튬 이온 회수율은 하기 표 4와 같이 확인되었다.
리튬 이온 회수율은 상기 수식 1을 사용하여 확인하였다.
하기 표 4를 참조하면, 불산용액의 경우 혼합 후 pH 감소폭이 크게 나타나며 이로 인한 반응성 저하가 관찰되었다. 이는 상기 실시예 3의 pH가 감소하면서 회수율이 낮아지는 동향과 유사하였다.
또한, 리튬이온 농도가 높은 수록 불화리튬 회수율이 증가하는 경향이 확인되었다.
Condition
(HF vs NH4F), 100mL, 24h, 400RPM
불화물 Initial pH
of LiOH sol.
Final pH
of mixture
초기 리튬이온
농도(ppm)
반응 후 리튬이온 농도(ppm) Li+ 회수율
(%)
LiOH sol.
(Li+conc.: 2,000ppm)
Li/F molar ratio = 1
HF 12.6 4.2 2036.72 432.297 78.774
NH4F 12.6 11.3 2036.72 358.003 82.423
LiOH sol.
(Li+conc. : 1,000ppm)
Li/F molar ratio = 1
HF 12.5 4.6 1094.796 493.305 54.941
NH4F 12.5 11.2 1094.796 451.149 58,792
<실시예 5> 리튬폐액과 불화물폐액으로 불화리튬 제조 - I
리튬폐액인 리튬 이온 농도 2000 ppm 정도의 양극재 제조사(A사)에서 배출된 리튬폐액과 불화물폐액인 불소 농도 6 wt% 정도의 디스플레이 제조사(C사)에서 배출된 불화물폐액을 하기 표 5와 같이 Li:F 비율이 1:1의 몰비로 24시간 동안 교반을 통해 반응시켜 리튬이 고농도로 집적된 불화리튬-I을 제조하였다.
그런 다음, 상기 고농도의 불화리튬-I을 제조한 후 남은 시료 여액의 리튬 이온 농도를 유도결합플라즈마 원자방출분광기 분석법(ICP-AES; Optima 7300D, Perkinelmer)으로 분석하였으며 리튬 이온 회수율은 하기 표 5와 같이 확인되었다.
리튬 이온 회수율은 상기 수식 1을 사용하여 확인하였다.
하기 표 5를 참조하면, 리튬폐액의 경우 양극재 제조사(A사)에서 배출된 폐수를 활용(리튬농도: 약 2,174 ppm)하였고, 불화물폐액의 경우 디스플레이 제조사(C사)에서 배출된 폐수를 활용(불소농도: 약 61,110 ppm)하였다.
리튬폐액 및 불화물 폐액 반응 후 약 78 %의 리튬 회수율이 분석되었다.
실시예 5에서 리튬과 불소의 반응 후 생성되는 불화리튬의 경우 리튬/불소의 몰비율 1에서 제조되었다.
사용된 불화물폐액(24.2 mL 적용) 함유 불소의 농도는 약 61,110 ppm(mg/L)이고, 몰수는 0.078 mol 이였다.
반응비율(Li/F molar ratio: 약 1)에 따라 사용된 리튬폐액(Li+ conc.: 2,174 ppm)의 경우 약 249 mL 사용되었다.
리튬폐액(249 mL) 및 불화물폐액(24.2 mL) 혼합 후 희석배수는 약 11.29배수로 단순혼합으로 초기 불소 농도 61,110 ppm에서 약 5,413 ppm으로 감소되었다.
단순혼합 후 리튬폐액의 리튬농도는 2,174.55 ppm에서 1,981.93 ppm으로 희석되었다.
리튬기준 반응 혼합에 따른 희석 전/후 및 반응 후 잔류 리튬농도 계산을 통해 약 78% 의 리튬이온 회수율이 확인되었다.
이에 따라 불소이온의 경우 약 0.06 mol이 불화리튬 형성을 위해 소모되며 희석 후 5,413 ppm에서 불화리튬 반응 후 약 1,196ppm 의 불소가 잔류함으로 인해 불소이온 소모율도 약 77.9 %로 확인되었다.
실시예 5에서 불화물 폐액 및 리튬폐액을 활용하여 기존의 불소이온 제거에 소모되는 Ca계(CaO, Ca(OH)2, CaCl2등) 침전제의 사용량을 77 % 이상 절감할 것으로 판단된다.
Condition
(양극재 제조사 Li 액(A사)/
NH4F 폐액(C사))
Li/F
molar ratio
NH4F 폐액
(F- conc. 6%)(mL)
반응시간
(hour)
Li+ conc.
(ppm)
Li+
회수율
(%)
Li 폐액/NH4F 폐액 (F- conc.: approximately 6%) 1 24.2 Initial 2174.552 .
24 436.992 77.9
<실시예 6> 리튬폐액과 불화물폐액으로 불화리튬 제조 - Ⅱ
리튬폐액인 리튬 이온 농도 2,500 ppm 정도의 양극재 제조사(B사)에서 배출된 리튬폐액 600 mL와 불화물폐액인 불소 농도 6 wt% 정도의 디스플레이 제조사(C사)에서 배출된 불화물폐액 145.2 mL를 Li:F 비율이 1:1의 몰비로 24 시간 동안 교반을 통해 반응시켜 리튬이 고농도로 집적된 불화리튬-Ⅱ를 제조하였다.
그런 다음, 상기 고농도의 불화리튬-Ⅱ를 제조한 후 남은 시료 여액의 리튬 이온 농도를 유도결합플라즈마 원자방출분광기 분석법(ICP-AES; Optima 7300D, Perkinelmer)으로 분석하였으며 LiF 반응 여액의 리튬 이온 농도는 120.7 ppm으로 확인되었고, 불소 이온 농도는 435.5 ppm으로 확인되었다.
리튬폐액 및 불화물폐액 반응 후 약 94 %의 리튬 회수율이 분석되었다.
리튬 이온 회수율은 상기 수식 1을 사용하여 확인하였다.
<실시예 7> 불화리튬 반응여액에서 Li-Al LDH-I 제조
리튬이온의 농도가 약 2,000 ppm인 수산화리튬 용액과 불화암모늄을 반응시켜 불화리튬 제조 후 얻어진 반응 여액을 알루민산나트륨(NaAlO2) 또는 알루미늄 분말과 Al:Li 비율이 3:1의 몰비로 12 시간 동안 교반을 통해 반응시켜 불용성 Li-Al LDH-I을 제조하였다.
그런 다음, 상기 불용성 Li-Al LDH-I을 제조한 후 남은 시료 여액의 리튬 이온 농도를 유도결합플라즈마 원자방출분광기 분석법(ICP-AES; Optima 7300D, Perkinelmer)으로 분석하였으며 리튬 이온 회수율은 99 % 이상으로 확인되었다.
리튬 이온 회수율은 상기 수식 1을 사용하여 확인하였다.
도 3은 실시예 7에 따른 Li-Al LDH-I의 XRD 결정구조 분석 그래프이다.
도 3을 참조하면, 실시예 7에서 제조된 Li-Al LDH-I의 결정구조는 X-선 회절분석법(XRD; D/MAX 2200, Rigaku)을 사용하여 분석하였고, 알루민산나트륨 및 수산화리튬 용액을 반응시켜 제조한 Li-Al LDH와 동일한 회절각이 측정되었다.
<실시예 8> 불화리튬 반응여액에서 Li-Al LDH-Ⅱ 제조
상기 실시예 6에서 제조된 불화리튬 제조 후 얻어진 리튬 이온 농도 120.7 ppm의 반응 여액을 알루민산나트륨(NaAlO2)과 Al:Li 비율이 2:1의 몰비로 12 시간 동안 교반을 통해 반응시켜 불용성 Li-Al LDH-Ⅱ를 제조하였다.
그런 다음, 상기 불용성 Li-Al LDH-Ⅱ를 제조한 후 남은 시료 여액의 리튬 이온 농도를 유도결합플라즈마 원자방출분광기 분석법(ICP-AES; Optima 7300D, Perkinelmer)으로 분석하였으며 Li-Al LDH-Ⅱ 반응 여액의 리튬 이온 농도는 5.6 ppm으로 확인되었다.
리튬 이온 회수율은 약 95 % 이상으로 확인되었다.
리튬 이온 회수율은 상기 수식 1을 사용하여 확인하였다.
<실시예 9> Li-Al LDH-I를 황산화반응/수침출하여 리튬농축액 제조
상기 실시예 7에서 제조된 Li-Al LDH-I 15 g을 하기 표 6과 같이, 1.15 ~ 4 M의 황산 30 mL와 혼합한 후 280 ℃로 30 분 동안 승온하고 2 시간 동안 유지하는 조건으로 황산배소의 황산화반응하여 전환물을 제조한 후, 전환물과 물을 1g/5mL의 고액비로 수침출하여 리튬농축액을 제조하였다.
Li-Al LDH-I 황산화반응/수침출 실험결과 황산의 농도는 2 M ~ 3 M 이상에서 함유된 리튬의 95 % 이상이 회수되는 결과가 확인되었다.
또한, 황산의 농도가 3 M 이상에서 알루미늄 성분이 황산알루미늄으로 전환되어 리튬과 같이 침출되는 결과가 관찰되었다.
그리고, 황산의 농도가 증가할수록 리튬 외 알루미늄 성분의 양이 증가하는 것으로 분석되며 5 M 이상인 황산배소의 경우 배소반응으로 형성된 황산리튬 및 황산알루미늄이 같이 침출되어 Li-Al LDH-I 가 형성되는 역반응 또는 전환물에 함유된 리튬의 함량이 상대적으로 낮아지는 원인으로 인해 용액 중 Li 이온의 농도가 감소되는 것으로 확인되었다.
따라서, 실험결과로부터 2 M 황산용액의 배소조건이 적절한 것으로 판단된다.
Condition 황산배소 조건 수침출 조건
(고/액 비)
농도(mg/L, ppm)
Li-Al LDH-I 무게 (g) H2SO4 부피(mL) 황산배소 전환물(g) 물(mL) Li Al
1.15 M H2SO4 15 30 1 5 4,241 N.D.
2 M H2SO4 5,161 N.D.
3 M H2SO4 5,047 435
4 M H2SO4 3,876 3,407
<실시예 10> Li-Al LDH-I를 황산화반응/산침출하여 리튬농축액 제조
상기 실시예 7에서 제조된 Li-Al LDH-I 10 g을 하기 표 7과 같이, 1 ~ 3 M의 황산 150 mL와 혼합한 후 6 시간 동안 침출하는 황산화반응 및 산침출하여 리튬농축액을 제조하였다.
Li-Al LDH-I 황산화반응/산침출 실험결과 황산의 농도는 1 M 이상에서 Li 이온의 농도가 1,000 ppm 이상으로 침출되었으며 황산의 농도가 높아질수록 Al 이온의 농도가 증가하므로 1 M 이하의 황산농도가 적절한 것으로 판단된다.
침출 고(Li-Al-LDH,g)/액(산용액, mL)비 조절을 통해 3,000 ppm 이상의 리튬농축액 전환 가능성이 확인되었다.
Condition Li-Al LDH-I 무게(g) H2SO4 부피(mL) 농도(mg/L, ppm)
Li Al
1 M H2SO4 10 150 1,620 14,000
2 M H2SO4 1,650 14,280
3 M H2SO4 1,590 14,443
<실시예 11> 불화리튬 제조한 후 반응 여액 가열농축(MVR)하여 불화리튬 추가 석출 및 잔여 공정수 분리 - I
상기 실시예 4에서 불화리튬 제조한 후의 반응 여액을 가열농축 (MVR) 방법을 적용하여 석출된 침전물의 결정구조는 X-선 회절분석법(XRD; D/MAX 2200, Rigaku)을 사용하여 분석하였고, 시약급 불화리튬(LiF)과 동일한 회절각이 측정되었다.
도 4 는 실시예 11에 따른 불화리튬 제조 후 반응 여액의 MVR 공정 적용 후 형성된 불화리튬의 XRD 결정구조 분석 그래프이다.
도 4를 참조하면, 여액 분리한 다음 가열농축한 후 수득한 침전물의 조성을 분석하였을 때, LiF 시약과 유사한 조성을 보였다.
<실시예 12> 불화물 폐액 대상 칼슘/불소 반응비율에 따른 수산화칼슘을 적용한 불소이온 제거
불소농도 기준 약 2 wt% 또는 6 wt%인 불산 및 불화암모늄 용액을 제조한 후 기존의 불소이온 제거 방법인 수산화칼슘(Ca(OH)2)을 사용하여 24 시간 동안 반응시켜 남은 잔여 공정수의 불소이온의 농도를 이온 크로마토그래피 분석법(Ion chromatography; Metrohm, 881 Compact IC pro(Anion))으로 분석하였다.
하기 표 8을 참조하면, 불소이온의 농도가 약 2 wt%인 불화물폐액에 Ca/F2 비율이 1~2 몰비로 반응 후 Ca/F2 몰비율이 1.5 이상에서 불소농도 500 ppm 이하 농도가 관찰되었고, 고농도 불화물 용액의 경우 일반적인 CaF2 침전반응에서 Ca/F2 비율을 증가시켜도 불소이온을 일정농도 이하로 제거하기 어려운 것으로 판단된다.
Condition
(HF, NH4F sol. 50mL. 24h, 400RPM)
당량비별
(Ca/F2)
F- conc.
(ppm)
HF sol. (F-conc. 2%, 50mL)+ Ca(OH)2 1 561.682
1.5 488.477
2 492.470
NH4F sol. (F-conc. 2%, 50mL)+Ca(OH)2 1 529.738
1.5 499.125
2 479.160
하기 표 9를 참조하면, 고농도 불화물폐액(F- conc.> 6 %)의 경우 Ca/F2 비율이 1 당량비로 반응 후 불소농도 500 ppm 이하 농도가 관찰되었고, 불화암모늄 용액의 경우 불산보다 높은 불소이온 제거율을 보이는 것을 확인하였다.
Condition
(HF, NH4F sol. 50mL. 24h, 400RPM)
당량비
(Ca/F2)
반응시간
(h)
F conc.
(ppm)
HF sol. (F-conc. 2%, 50mL)+ Ca(OH)2 1 24 561.682
HF sol. (F-conc. 6%, 50mL)+ Ca(OH)2 496.463
NH4F sol. (F-conc. 2%, 50mL)+Ca(OH)2 529.738
NH4F sol. (F-conc. 6%, 50mL)+Ca(OH)2 447.216
<실시예 13> 불화리튬 및 Li-Al LDH-Ⅱ 제조한 후 반응 여액에 수산화칼슘을 반응시켜 불화칼슘 석출 및 잔여 공정수 분리 - Ⅱ
상기 실시예 6 및 8에서 불화리튬(LiF) 및 Li-Al LDH-Ⅱ 제조한 후의 반응 여액을 수산화칼슘(Ca(OH)2)과 Ca/F2 비율이 1 당량비로 반응시켜 불화칼슘을 제조한 후 남은 잔여 공정수의 불소이온의 농도를 크로마토크래피 분석법(Ion chromatography; Metrohm, 881 Compact IC pro(Anion))으로 분석하였다.
불화리튬(LiF) 및 Li-Al LDH-II 제조 후 여액에 Ca/F2 비율이 1 당량비에서 반응 후 배출용액의 불소농도는 약 435.5 ppm에서 24.8 ppm 로 감소된 것을 확인하였다.
지금까지 본 발명에 따른 리튬폐액과 불화물폐액으로부터 고부가가치 자원 회수방법에 관한 구체적인 실시예에 관하여 설명하였으나, 본 발명의 범위에서 벗어나지 않는 한도 내에서는 여러 가지 실시 변형이 가능함은 자명하다.
그러므로 본 발명의 범위는 설명된 실시예에 국한되어 정해져서는 안 되며, 후술하는 특허청구범위뿐만 아니라 이 특허청구범위와 균등한 것들에 의해 정해져야 한다.
즉, 전술된 실시예는 모든 면에서 예시적인 것이며, 한정적인 것이 아닌 것으로 이해되어야 하며, 본 발명의 범위는 상세한 설명보다는 후술될 특허청구범위에 의하여 나타내어지고, 그 특허청구범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.
본 발명은 리튬이차전지 제조공정 또는 리튬이차전지 사용 후 재활용과정에서 발생하는 리튬폐액과 반도체 제조공정에서 발생하는 불화물폐액으로부터 고부가가치 자원을 회수하는 방법에 이용될 수 있다.

Claims (16)

  1. (a-1) 리튬폐액에 침전제로 불화물폐액을 투입하고, 침전 및 분리하여 불용성 리튬화합물인 불화리튬(LiF)을 제조하는 단계;
    (a-2) 상기 불용성 리튬화합물인 불화리튬 제조 후 반응 여액을 알루미늄 화합물과 반응시켜 불용성 리튬화합물인 Li-Al 층상이중수산화물(LDH; layered double hydroxide)을 제조하는 단계;
    (a-3) 상기 불용성 리튬화합물인 Li-Al 층상이중수산화물(LDH; layered double hydroxide)과 황산화합물과의 황산화반응으로 전환물을 제조하는 단계;
    (a-4) 상기 전환물에 함유된 리튬을 수침출하여 리튬농축액을 제조하는 단계;
    (a-5) 상기 리튬농축액을 상기 (a) 불화리튬(LiF) 제조하는 단계에서 리튬원료로 재순환시키는 단계; 및
    (a-6) 상기 불용성 리튬화합물인 Li-Al 층상이중수산화물(LDH; layered double hydroxide) 제조 후 여액을 칼슘 화합물과 반응시켜 불화칼슘 석출물과 잔여 공정수로 분리하는 단계;를 포함하는
    리튬폐액과 불화물폐액으로부터 고부가가치 자원 회수방법.
  2. (b-1) 리튬폐액에 침전제로 불화물폐액을 투입하고, 침전 및 분리하여 불용성 리튬화합물인 불화리튬(LiF)을 제조하는 단계;
    (b-2) 상기 불용성 리튬화합물인 불화리튬(LiF) 제조 후 반응 여액을 가열농축(MVR; mechanical vapor recompression)하여 불화리튬(LiF)을 추가적으로 석출 및 분리하고 미량의 리튬과 불소 및 이외의 양이온 및 음이온을 함유한 농축액을 분리하는 단계; 및
    (b-3) 상기 미량의 리튬과 불소 및 이외의 양이온 및 음이온을 함유한 농축액을 칼슘 화합물과 반응시켜 불화칼슘 석출물과 잔여 공정수로 분리하는 단계;를 포함하는
    리튬폐액과 불화물폐액으로부터 고부가가치 자원 회수방법.
  3. 제 1 항 또는 제 2 항에 있어서,
    상기 리튬폐액은 리튬이차전지 제조 및 폐리튬이차전지의 재활용 과정에서 발생하는 리튬폐액이고,
    상기 불화물폐액은 반도체 및 디스플레이 산업에서 발생하는 불화물폐액인 것을 특징으로 하는
    리튬폐액과 불화물폐액으로부터 고부가가치 자원 회수방법.
  4. 제 1 항 또는 제 2 항에 있어서,
    상기 리튬폐액은 수산화리튬, 탄산리튬, 황산리튬, 인산리튬, 및 염화리튬으로 이루어진 군에서 선택된 하나 이상을 포함하고,
    상기 리튬폐액의 형상은 용액 또는 슬러리를 포함하는 것을 특징으로 하는
    리튬폐액과 불화물폐액으로부터 고부가가치 자원 회수방법.
  5. 제 1 항 또는 제 2 항에 있어서,
    상기 불화물폐액은 불화나트륨(NaF), 불화암모늄(NH4F), 불화칼륨(KF), 불화제일철(FeF2), 불화제이철(FeF3), 불화알루미늄(AlF3), 및 불화수소(HF)로 이루어진 군에서 선택된 하나 이상을 포함하고,
    상기 불화물폐액의 형상은 용액 또는 슬러리를 포함하는 것을 특징으로 하는
    리튬폐액과 불화물폐액으로부터 고부가가치 자원 회수방법.
  6. 제 1 항 또는 제 2 항에 있어서,
    상기 리튬폐액은 리튬 이온 농도가 200 ppm ~ 5000 ppm 인 것을 특징으로 하는
    리튬폐액과 불화물폐액으로부터 고부가가치 자원 회수방법.
  7. 제 1 항 또는 제 2 항에 있어서,
    상기 불화물폐액은 불소 이온 농도가 500 ppm ~ 150,000 ppm 인 것을 특징으로 하는
    리튬폐액과 불화물폐액으로부터 고부가가치 자원 회수방법.
  8. 제 1 항 또는 제 2 항에 있어서,
    상기 리튬폐액의 리튬(Li)과 상기 불화물폐액의 불소(F)의 함량 비율은 몰비로 Li:F = 1: 0.1 ~ 1: 10 인 것을 특징으로 하는
    리튬폐액과 불화물폐액으로부터 고부가가치 자원 회수방법.
  9. 제 1 항에 있어서,
    상기 알루미늄 화합물은 염화알루미늄, 알루민산나트륨, 알루미늄 분말, 수산화알루미늄, 황산알루미늄, 및 알루미나로 이루어진 군에서 선택된 하나 이상인 것을 특징으로 하는
    리튬폐액과 불화물폐액으로부터 고부가가치 자원 회수방법.
  10. 제 1 항 또는 제 2 항에 있어서,
    상기 불화칼슘을 석출 후 잔여 공정수에 함유된 불소 이온 농도는 100 ppm 이하인 것을 특징으로 하는
    리튬폐액과 불화물폐액으로부터 고부가가치 자원 회수방법.
  11. 제 1 항 또는 제 2 항에 있어서,
    상기 잔여 공정수는 회수하여 수처리 pH 조절용으로 사용하는 것을 특징으로 하는
    리튬폐액과 불화물폐액으로부터 고부가가치 자원 회수방법.
  12. 제 1 항에 있어서,
    상기 리튬농축액은 이온 성분으로 리튬(Li) 이온, 황산(SO4) 이온, 또는 금속(M) 이온을 포함하는 것을 특징으로 하는
    리튬폐액과 불화물폐액으로부터 고부가가치 자원 회수방법.
  13. 제 1 항에 있어서,
    상기 황산화합물은,
    황산(H2SO4), 아황산(H2SO3), 차아황산(H2SO2), 황산마그네슘(MgSO4), 아황산마그네슘(MgSO3), 차아황산마그네슘(MgSO2), 황산칼슘(CaSO4), 아황산칼슘(CaSO3), 차아황산칼슘(CaSO2), 황산나트륨(Na2SO4), 아황산나트륨(Na2SO3), 차아황산나트륨(Na2SO2), 황산칼륨(K2SO4), 아황산칼륨(K2SO3), 차아황산칼륨(K2SO2), 황산제일철(FeSO4), 아황산제일철(FeSO3), 차아황산제일철(FeSO2), 황산제이철(Fe2(SO4)3), 아황산제이철(Fe2(SO3)3), 차아황산제이철(Fe2(SO2)3), 황산암모늄((NH4)2SO4), 황산알루미늄(Al2(SO4)3), 아황산알루미늄(Al2(SO3)3), 및 차아황산알루미늄 (Al2(SO2)3)로 이루어진 군에서 선택된 하나 이상인 것을 특징으로 하는
    리튬폐액과 불화물폐액으로부터 고부가가치 자원 회수방법.
  14. 제 1 항에 있어서,
    상기 Li-Al 층상이중수산화물(LDH; layered double hydroxide)과 황산화합물의 황산화반응시 반응온도는 200 ℃ 내지 1000 ℃ 인 것을 특징으로 하는
    리튬폐액과 불화물폐액으로부터 고부가가치 자원 회수방법.
  15. 제 1 항에 있어서,
    상기 Li-Al LDH와 황산화합물의 황산화반응시 반응시간은 0.5 시간 내지 36 시간인 것을 특징으로 하는
    리튬폐액과 불화물폐액으로부터 고부가가치 자원 회수방법.
  16. 제 1 항에 있어서,
    상기 수침출시 전환물과 물의 고상/액상 비율(고/액, g/L)은 30 g/L 내지 2000 g/L 인 것을 특징으로 하는
    리튬폐액과 불화물폐액으로부터 고부가가치 자원 회수방법.
PCT/KR2022/009621 2021-07-06 2022-07-04 리튬폐액과 불화물폐액으로부터 고부가가치 자원 회수방법 WO2023282564A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA3220297A CA3220297A1 (en) 2021-07-06 2022-07-04 High value-added method for resource recovery from lithium sludge and fluoride sludge

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210088260A KR102378751B1 (ko) 2021-07-06 2021-07-06 리튬폐액과 불화물폐액으로부터 고부가가치 자원 회수방법
KR10-2021-0088260 2021-07-06

Publications (1)

Publication Number Publication Date
WO2023282564A1 true WO2023282564A1 (ko) 2023-01-12

Family

ID=80935256

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/009621 WO2023282564A1 (ko) 2021-07-06 2022-07-04 리튬폐액과 불화물폐액으로부터 고부가가치 자원 회수방법

Country Status (3)

Country Link
KR (1) KR102378751B1 (ko)
CA (1) CA3220297A1 (ko)
WO (1) WO2023282564A1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102378751B1 (ko) * 2021-07-06 2022-03-25 한국지질자원연구원 리튬폐액과 불화물폐액으로부터 고부가가치 자원 회수방법
KR20230165639A (ko) 2022-05-27 2023-12-05 한국생산기술연구원 폐 배터리 내 리튬의 분리 회수를 위한 선택적 침출방법 및 이를 이용한 리튬화합물 제조방법
CN115010293A (zh) * 2022-05-31 2022-09-06 安徽超越环保科技股份有限公司 一种处理含重金属离子混合废酸中有用成分的方法
CN115557520B (zh) * 2022-08-29 2023-11-10 昆明理工大学 一种从硅酸锂废渣中回收锂的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014156648A (ja) * 2013-02-18 2014-08-28 Jx Nippon Mining & Metals Corp 廃正極材及び廃電池からの金属回収方法
KR20190079988A (ko) * 2017-12-28 2019-07-08 타운마이닝리소스주식회사 리튬 이온 2차전지의 폐 양극재를 재활용하여 전구체 원료를 회수하는 방법
KR102033607B1 (ko) * 2019-04-04 2019-10-17 (주)세화브이엘 리튬 용액으로부터 알루미늄 화합물 첨가 및 황산화 반응을 통한 리튬 농축방법 및 농축 시 부산물 재순환 방법
KR20200123659A (ko) * 2019-04-22 2020-10-30 코스모에코켐(주) 폐양극활물질분말로부터 전구체 제조를 위한 혼합금속화합물의 제조방법
KR102242686B1 (ko) * 2020-12-14 2021-04-21 한국지질자원연구원 리튬농축액 제조방법 및 이로부터 제조된 리튬농축액을 이용한 리튬화합물 제조방법
KR102378751B1 (ko) * 2021-07-06 2022-03-25 한국지질자원연구원 리튬폐액과 불화물폐액으로부터 고부가가치 자원 회수방법

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101771596B1 (ko) 2017-03-07 2017-08-28 성일하이텍(주) 리튬 함유 폐액으로부터 고상의 리튬염 제조방법
KR20210009133A (ko) * 2019-07-16 2021-01-26 한국교통대학교산학협력단 리튬 이차전지용 폐 양극물질로부터 리튬 또는 리튬 화합물, 및 유가금속의 회수방법
KR102275866B1 (ko) * 2021-01-18 2021-07-12 한국지질자원연구원 리튬농축액 고효율 제조방법 및 이로부터 제조된 리튬농축액을 이용한 리튬화합물 제조방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014156648A (ja) * 2013-02-18 2014-08-28 Jx Nippon Mining & Metals Corp 廃正極材及び廃電池からの金属回収方法
KR20190079988A (ko) * 2017-12-28 2019-07-08 타운마이닝리소스주식회사 리튬 이온 2차전지의 폐 양극재를 재활용하여 전구체 원료를 회수하는 방법
KR102033607B1 (ko) * 2019-04-04 2019-10-17 (주)세화브이엘 리튬 용액으로부터 알루미늄 화합물 첨가 및 황산화 반응을 통한 리튬 농축방법 및 농축 시 부산물 재순환 방법
KR20200123659A (ko) * 2019-04-22 2020-10-30 코스모에코켐(주) 폐양극활물질분말로부터 전구체 제조를 위한 혼합금속화합물의 제조방법
KR102242686B1 (ko) * 2020-12-14 2021-04-21 한국지질자원연구원 리튬농축액 제조방법 및 이로부터 제조된 리튬농축액을 이용한 리튬화합물 제조방법
KR102378751B1 (ko) * 2021-07-06 2022-03-25 한국지질자원연구원 리튬폐액과 불화물폐액으로부터 고부가가치 자원 회수방법

Also Published As

Publication number Publication date
KR102378751B9 (ko) 2023-05-11
KR102378751B1 (ko) 2022-03-25
CA3220297A1 (en) 2023-01-12

Similar Documents

Publication Publication Date Title
WO2023282564A1 (ko) 리튬폐액과 불화물폐액으로부터 고부가가치 자원 회수방법
WO2019022555A1 (ko) 알칼리 퓨전을 통한 폐탈질촉매로부터 선택적 유가금속 회수방법
WO2018070726A1 (ko) 리튬 화합물의 제조 방법
WO2012005545A4 (en) Method for economical extraction of lithium from solution including lithium
WO2013165071A1 (ko) 고순도 황산망간일수화물의 제조방법 및 그 제조방법에 의하여 제조된 고순도 황산망간일수화물
WO2010085104A2 (ko) 전극 활물질인 음이온 부족형 리튬 전이금속 인산화합물, 그 제조방법, 및 그를 이용한 전기화학 소자
WO2012081897A2 (ko) 니켈 함유 원료로부터 페로니켈을 농축 회수하는 방법, 상기 농축된 페로니켈로부터 니켈을 회수하는 방법 및 상기 방법에서 발생하는 철 함유 용액을 재활용하는 방법
WO2023282565A1 (ko) 암모니아 용액을 이용한 오산화바나듐의 부분환원방법 및 이로부터 제조된 이산화바나듐 분말
WO2022035053A1 (ko) 활물질 회수 장치 및 이를 이용한 활물질 재사용 방법
WO2022010161A1 (ko) 양극 스크랩을 이용한 활물질 재사용 방법
WO2022025600A1 (ko) 폐전극으로부터 알루미늄을 선택적으로 제거하는 방법 및 이를 이용하여 폐전극으로부터 금속 성분을 회수하는 방법
WO2023043071A1 (ko) 양극 활물질의 재생 방법 및 이로부터 재생된 양극 활물질
WO2024076100A1 (ko) 니켈 함유 물질로부터 수산화니켈 및 황산니켈 회수방법
WO2021101177A1 (ko) 주름 발생이 방지된 동박, 그것을 포함하는 전극, 그것을 포함하는 이차전지, 및 그것의 제조방법
WO2018194397A1 (ko) 적니를 활용한 일메나이트 제련방법
WO2023182561A1 (ko) 리튬 이차전지 폐기물로부터 용매추출을 이용한 유가금속의 선택적 회수방법
WO2023068525A1 (ko) 양극 활물질의 재생 방법 및 이로부터 재생된 양극 활물질
WO2023146340A1 (ko) 황산리튬 및 산화바륨을 이용한 수산화리튬 제조방법
WO2022220477A1 (ko) 고회수율의 리튬 농축 용액 제조 방법 및 이를 이용한 리튬 화합물의 제조 방법
WO2023080562A1 (ko) 탄산리튬 및 바륨화합물을 이용한 수산화리튬 제조방법
WO2024010263A1 (ko) 재생 양극 활물질, 이의 재생 방법 및 이를 포함하는 이차 전지
WO2022158766A1 (ko) 고순도의 하이드로젠 헥사시아노코발테이트 화합물 및 이의 제조 방법
WO2010074516A2 (ko) 이차 더스트를 이용한 고 순도 산화아연의 제조방법
WO2023038283A1 (ko) 양극 활물질의 재생 방법 및 이로부터 재생된 양극 활물질
WO2024010260A1 (ko) 재생 양극 활물질, 이의 재사용 방법 및 이를 포함하는 이차 전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22837916

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 3220297

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2022837916

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022837916

Country of ref document: EP

Effective date: 20240206