WO2022220477A1 - 고회수율의 리튬 농축 용액 제조 방법 및 이를 이용한 리튬 화합물의 제조 방법 - Google Patents

고회수율의 리튬 농축 용액 제조 방법 및 이를 이용한 리튬 화합물의 제조 방법 Download PDF

Info

Publication number
WO2022220477A1
WO2022220477A1 PCT/KR2022/004946 KR2022004946W WO2022220477A1 WO 2022220477 A1 WO2022220477 A1 WO 2022220477A1 KR 2022004946 W KR2022004946 W KR 2022004946W WO 2022220477 A1 WO2022220477 A1 WO 2022220477A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
compound
solution
lithium compound
sulfate
Prior art date
Application number
PCT/KR2022/004946
Other languages
English (en)
French (fr)
Inventor
박영구
김민찬
서장현
박지윤
박건용
김혜진
류태공
신준호
Original Assignee
(주)세화이에스
한국지질자원연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)세화이에스, 한국지질자원연구원 filed Critical (주)세화이에스
Priority to CA3215628A priority Critical patent/CA3215628A1/en
Priority to US18/555,648 priority patent/US20240208832A1/en
Priority to EP22788333.7A priority patent/EP4324792A1/en
Publication of WO2022220477A1 publication Critical patent/WO2022220477A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • C01D15/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • C01D15/08Carbonates; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • C01D15/06Sulfates; Sulfites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Definitions

  • the present invention relates to a method for producing a lithium concentrated solution having a high recovery rate and a method for producing a lithium compound using the same.
  • the present invention relates to a method for preparing a lithium ion concentrated solution and a lithium compound prepared thereby.
  • Raw materials for obtaining lithium ions include lithium salt lake, waste liquid from lithium compound manufacturing process, lithium secondary battery cathode material washing water, and lithium secondary battery recycling process waste liquid. There is a problem in that the recovery efficiency of lithium ions is lowered.
  • a method for producing lithium carbonate or lithium hydroxide which are lithium compounds for lithium ion recovery from a low concentration lithium solution (Li + conc. ⁇ 1,000 ppm)
  • an adsorption method, solvent extraction method, precipitation method, etc. are applied to concentrate it into a high concentration lithium solution. , it is generally produced through carbonation or hydroxylation of a lithium solution from which impurities have been removed through separation/purification processes.
  • Another commercialization process for producing such a lithium compound for lithium ion recovery is calcining and roasting a lithium-containing mineral, followed by water leaching to produce a high-concentration lithium solution or a natural salt lake (about 1,000 ppm) containing lithium ions.
  • a method of preparing lithium carbonate and lithium hydroxide through carbonation and hydroxide reaction after preparing a high-concentration lithium solution through evaporation and concentration is a common method.
  • lithium ion compounds Recently, many attempts have been made to recover lithium resources in the form of lithium ion compounds from low-concentration lithium salt lake and lithium waste liquid, lithium compound manufacturing process waste, cathode material washing water, lithium secondary battery recycling process waste, etc. to be.
  • a high-concentration lithium solution manufacturing process is required in the lithium compound manufacturing process and occupies the highest proportion in the process, but economic feasibility is still not secured in the high-concentration lithium solution manufacturing stage.
  • Lithium carbonate and lithium hydroxide are used as reactants in manufacturing for medium and large capacity, and a water washing process is essential after manufacturing the cathode material.
  • the lithium waste liquid generated during washing has a lithium ion concentration of about 1000 ⁇ 1500 mg/L, and it is expected that the amount of washing water generated by the cathode material will increase as the production of cathode material rapidly increases.
  • an insoluble lithium compound is prepared into a lithium sulfate or lithium chloride solution using an acid solution, and impurities are separated using an alkali solvent such as CaO, NaOH, and the lithium solution under alkaline conditions.
  • an alkali solvent such as CaO, NaOH
  • a method of producing lithium carbonate and lithium hydroxide through carbonation and hydroxide reaction by conversion is common.
  • this method uses a strong acid solution when preparing a high-concentration lithium solution, it is inevitable to use an excess alkali solvent in the subsequent process, and there is a problem in that it has an environmental load in which excess waste sediment and waste liquid are discharged.
  • the present invention can recover lithium ions with a high recovery rate by preparing a high-concentration lithium sulfate solution, and at the same time, a method for producing an eco-friendly lithium compound for recovering lithium ions because the amount of use of an alkali solvent is remarkably small and energy consumption can be reduced, and
  • An object of the present invention is to provide a lithium compound for recovering lithium ions formed by
  • the present invention comprises the steps of 1) precipitating an insoluble lithium compound in a raw material solution containing lithium ions;
  • It provides a method for preparing a lithium compound with a high recovery comprising a.
  • A is one or more cations selected from magnesium, calcium, sodium, potassium, iron (Fe), ammonium and aluminum, y is an integer of 2 to 4, and z is 1 or 3.
  • the insoluble lithium compound may be at least one selected from lithium phosphate (Li 3 PO 4 ), lithium fluoride (LiF), and lithium aluminate (LiAlO 2 ).
  • step 1) a precipitating agent is added to the raw material solution to precipitate an insoluble lithium compound
  • the equivalent ratio of the precipitating agent may be added to be 0.5-5 with respect to the lithium ion of the raw material solution.
  • step 1) is
  • MCDI membrane capacitive desalination process
  • 1-2) precipitating an insoluble lithium compound from the raw material solution may include.
  • the low-concentration lithium solution may be derived from at least one selected from lithium salt lake, waste liquid from a lithium compound manufacturing process, lithium secondary battery cathode material washing water, and lithium secondary battery recycling process waste liquid.
  • the lithium ion concentration of the low concentration lithium solution and the raw material solution in step 1-1) may satisfy the following relational expressions (1) and (2).
  • step 1-1) can be repeatedly performed
  • the compound represented by the general formula 1 in step 2) is magnesium sulfate (MgSO 4 ), magnesium sulfite (MgSO 3 ), magnesium hyposulfite (MgSO 2 ), calcium sulfate (CaSO) 4 ), calcium sulfite (CaSO 3 ), calcium hyposulfite (CaSO 2 ), sodium sulfate (Na2SO 4 ), sodium sulfite (Na 2 SO 3 ), sodium hyposulfite (Na 2 SO 2 ), potassium sulfate (K 2 SO 4 ) , potassium sulfite (K 2 SO 3 ), potassium hyposulfite (K 2 SO 2 ), ferrous sulfate (FeSO 4 ), ferrous sulfite (FeSO 3 ), ferrous hyposulfite (FeSO 2 ), ferric sulfate (Fe 2 (SO 4 ) ) 3 ), ferric sulfite (MgSO 4 ), magnesium s
  • step 2) the insoluble lithium compound is subjected to a hydrothermal reaction with an aqueous solution of the compound having the structure of Formula 1 at a temperature of 40 to 300° C., and the following relation (3) and (4) may be satisfied.
  • the lithium sulfate aqueous solution prepared in step 2) may contain lithium ions at a concentration of 20,000 to 34,000 mg/L.
  • step 3 is
  • step 3-1) the purification is performed with an alkaline solvent, but the pH may be adjusted to 9 to 12.5.
  • the lithium compound for recovering lithium ions may be a lithium compound for a cathode material.
  • lithium ions can be recovered with high efficiency, and at the same time, energy consumption and usage of an alkali solvent for purification can be remarkably reduced, so that lithium ions can be recovered in an environmentally friendly manner.
  • FIG. 1 is a view showing a method of manufacturing a lithium compound for recovering lithium ions according to a preferred embodiment of the present invention in each step.
  • Figure 2a shows the lithium ion concentration of the desorbed solution (desorption solution conductivity, blue) and the mother solution according to the number of repetitions when the lithium hydroxide aqueous solution having a lithium ion concentration of about 1,000 mg/L was repeatedly concentrated through the membrane capacitive desalting process. It is a graph showing the change in lithium ion concentration (adsorption mother liquid conductivity, black).
  • Figure 2b shows the number of repetitions when lithium ions are concentrated by repeatedly performing a membrane capacitive desalting process while removing a residual solution in an electrode from an aqueous lithium hydroxide solution of about 1,000 mg/L by the method according to a preferred embodiment of the present invention
  • the XRD spectrum (blue) of the precipitate precipitated by reacting the molar ratio of 1 to 1 and the XRD spectrum (red) of the precipitate precipitated by reacting the aluminate (NaAlO 2 )-based precipitant with the molar ratio of Li/Al to 0.5 are respectively shown.
  • Figure 4a is a precipitate generated by the hydrothermal reaction when the insoluble lithium compound Li 3 PO 4 is hydrothermalized with an Al 2 (SO 4 ) 3 aqueous solution at 80° C. for 8 hours according to a preferred embodiment of the present invention (top), hydrothermal
  • the XRD spectrum for reference (bottom) is shown for the insoluble lithium compound used in the reaction (middle) and the precipitate (AlPO 4 ) that may be generated by the hydrothermal reaction of lithium phosphate and aluminum sulfate solutions. From the experimental results, it was confirmed that the precipitate produced by the hydrothermal reaction of lithium phosphate and aluminum sulfate solutions exhibited amorphous properties.
  • Figure 4b shows the insoluble lithium compound LiF in the MgSO 4 aqueous solution and the solid-liquid ratio of the mass (g) of LiF to the volume (L) of the MgSO 4 aqueous solution is 100:1 according to a preferred embodiment of the present invention, and the Li/Mg molar ratio is 1
  • the XRD spectrum (top) of the precipitate obtained as a result of performing a hydrothermal reaction at 80°C for 8 hours with :2 (bottom) is compared with the XRD spectrum for reference for MgF 2 (bottom).
  • FIG. 5 is a diagram showing the solid-liquid ratio of the insoluble lithium compound LiF and MgSO 4 aqueous solution when the insoluble lithium compound LiF and MgSO 4 aqueous solution are hydrothermally reacted with a molar ratio of Li and Mg of 1.92:1 according to a preferred embodiment of the present invention. It is a graph showing the change in the lithium ion concentration of the lithium sulfate aqueous solution produced according to the method.
  • the conventional lithium ion recovery method has disadvantages in that the recovery rate is poor, excessive energy is consumed in the recovery process, or a large amount of waste liquid is generated after recovery, thereby causing a burden on the environment.
  • the present inventors in order to solve the above problems, 1) precipitating an insoluble lithium compound in a raw material solution containing lithium ions;
  • a method for preparing a lithium compound with a high recovery rate was provided to solve this problem.
  • A is one or more cations selected from magnesium, calcium, sodium, potassium, iron (Fe), ammonium and aluminum, y is an integer of 2 to 4, and z is 1 or 3.
  • the insoluble lithium compound is reacted with the compound represented by the above general formula 1, but by hydrothermal synthesis, the reaction can be performed at a significantly lower temperature compared to the conventional chlorine roasting or calcination reaction, thereby reducing energy consumption. It is an economical method, and compared to the method of preparing an aqueous lithium sulfate solution or an aqueous lithium compound solution such as lithium chloride using a strong acid (sulfuric acid, hydrochloric acid, etc.), it should be used to recover the lithium compound for lithium ion recovery from the lithium compound aqueous solution. Since the amount of alkali solvent can be significantly reduced, it is economical and has the advantage of less problems of environmental pollution by waste liquid.
  • step 1) is a step of producing an insoluble lithium compound, which is a reactant for preparing a highly concentrated lithium ion solution, in order to produce a lithium compound with a high recovery rate, and an insoluble lithium compound by reaction from a solution containing lithium ions is the precipitation step.
  • step 1) may further include a pretreatment step. That is, preferably, step 1)
  • MCDI membrane capacitive desalination process
  • the source of the lithium-containing raw material for recovering lithium ions is preferably from at least one selected from lithium salt lake, waste liquid from the lithium compound manufacturing process, lithium secondary battery cathode material washing water, and lithium secondary battery recycling process waste liquid. It is not limited.
  • the lithium ion source generally has a low concentration of lithium ions, the amount of the insoluble lithium compound precipitated by the precipitation reaction is inevitably small, which causes a problem in that the recovery rate of lithium ions is lowered. Therefore, in order to improve the recovery rate of lithium ions, it is preferable to concentrate the concentration of the lithium ions.
  • the lithium ion-concentrated solution is a raw material solution, and the lithium ion concentration of the raw material solution may satisfy both the following relational expressions (1) and (2).
  • the lithium ion concentration is less than 1.5 times or the lithium ion concentration of the concentrated raw material solution is less than 2000 mg/L, the lithium ion concentration of the raw material solution is low and the amount of insoluble lithium compound obtainable by the precipitation reaction is significantly reduced.
  • lithium ion concentration may be preferably performed by a membrane capacity deionization process.
  • the lithium ion concentration is continuously concentrated while repeatedly adsorbing and desorbing lithium ions to the electrode. In between, the operation of removing the residual solution in the electrode may be performed.
  • the system potential of the membrane capacitive desalination process is kept the same as a whole, it is preferably set to 0.7 ⁇ 1.5V.
  • Step 1-1) may be repeated 5 or more times. More preferably, it may be repeated 8 or more times. As the number of iterations increases, the process cost increases, but the concentration of lithium ions also increases. If it is less than 5 times, it is difficult to achieve the object of the present invention in the subsequent process because the lithium ion concentration of 2000 mg/L is not reached.
  • step 1-2 An insoluble lithium compound is obtained through step 1-2), and the insoluble lithium compound may be preferably obtained by precipitating a lithium compound from the concentrated raw material solution.
  • the insoluble lithium compound may be at least one selected from lithium phosphate (Li 3 PO 4 ), lithium fluoride (LiF), and lithium aluminate (LiAlO 2 ).
  • step 1-2 a precipitating agent is added to the raw material solution to precipitate an insoluble lithium compound
  • the equivalent ratio of the precipitating agent may be added to be 0.5-5 with respect to the lithium ion of the raw material solution.
  • equivalence ratio is less than 0.5 equivalence ratio, unreacted lithium remains and a sufficient insoluble lithium compound cannot be produced, and the recovery rate may be lowered.
  • a high concentration lithium concentrated solution is prepared by reacting the insoluble lithium compound with an aqueous solution containing the compound represented by Formula 1 above.
  • an aqueous solution of lithium sulfate can be prepared.
  • the lithium compound which is the object of the present invention, can be obtained in high recovery from the lithium sulfate aqueous solution.
  • lithium sulfate is a concept of a lithium compound containing sulfur including all compounds having a partial difference in the number of oxygen and the oxidation state of sulfur, such as lithium sulfite and lithium hyposulfite, as well as lithium sulfate.
  • the compound represented by Formula 1 in step 2) is magnesium sulfate (MgSO 4 ), magnesium sulfite (MgSO 3 ), magnesium hyposulfite (MgSO 2 ), calcium sulfate (CaSO) 4 ), calcium sulfite (CaSO 3 ), calcium hyposulfite (CaSO 2 ), sodium sulfate (Na2SO 4 ), sodium sulfite (Na 2 SO 3 ), sodium hyposulfite (Na 2 SO 2 ), potassium sulfate (K 2 SO 4 ) , potassium sulfite (K 2 SO 3 ), potassium hyposulfite (K 2 SO 2 ), ferrous sulfate (FeSO 4 ), ferrous sulfite (FeSO 3 ), ferrous hyposulfite (FeSO 2 ), ferric sulfate (Fe 2 (SO 4 ) ) 3 ), ferric sulfite (Fe (FeSO 4 ), ferrous
  • step 2) the insoluble lithium compound is subjected to a hydrothermal reaction with an aqueous solution of the compound having the structure of Formula 1 at a temperature of 40 to 300° C., and the following relation (3) and (4) may be satisfied.
  • the m unsol /V sol is called a solid-liquid ratio
  • the solid-liquid ratio is less than 50 g/L
  • the solid-liquid ratio exceeds 300 g/L, the lithium ion concentration of the lithium sulfate aqueous solution increases, but even if the solid-liquid ratio is increased beyond that, it does not increase due to the solubility of lithium sulfate itself. It is preferable to set L as the upper limit.
  • the lithium sulfate aqueous solution prepared in step 2) may contain lithium ions at a concentration of 10,000 to 34,000 mg/L.
  • concentration of lithium ions is less than 10,000 mg/L, there may be a problem of a decrease in recovery, and when it exceeds 34,000 mg/L, it is difficult to achieve the solubility of lithium sulfate.
  • step 3 A lithium compound is obtained through step 3), and lithium ions can be recovered by obtaining a lithium compound in a form that can be directly used.
  • a lithium compound is called a lithium compound for recovering lithium ions, and lithium carbonate or lithium hydroxide is preferable. However, it is not necessarily limited thereto.
  • step 3 is
  • the carbonation reaction is performed by reacting with CO 2 or Na 2 CO 3 , preferably by reacting a purified aqueous lithium sulfate solution with Na 2 CO 3 , and the hydroxylation reaction is preferably performed with Sr(OH) 2 It can be carried out by reacting.
  • step 3-1) the purification is performed with an alkaline solvent, but the pH may be adjusted to 9 to 12.5. If the pH is less than 9, there may be a problem of impurities remaining, and if it exceeds 12.5, there may be problems of economical degradation and environmental load due to the use of an excessive amount of alkaline solvent.
  • the lithium compound for recovering lithium ions obtained in this way may be preferably used as a material for a cathode material.
  • an MCDI process was performed by preparing an aqueous lithium hydroxide solution having a lithium ion concentration of about 1,000 mg/L.
  • the MCDI process was performed using Wonatech equipment (MP2), positive and negative electrodes were used, and the supply flow rate of the lithium hydroxide aqueous solution (adsorption mother liquid) during adsorption was 200 mL/min, and distilled water during desorption (desorption solution) )
  • the supply flow rate was also set to 200 mL/min.
  • the potentials of the MCDI system during adsorption and desorption were made the same at 1.3 V, respectively.
  • Example 1 Between adsorption and desorption, the adsorption and desorption processes were performed without removing the solution remaining in the electrode while maintaining the potential after lithium ions were adsorbed to the electrode.
  • the lithium ion concentration of the lithium solution which changed while the concentration process was performed 1 to 9 times, was measured as the conductivity of the adsorption mother solution and the desorption solution, and is shown in FIG. 2A below.
  • Example 2 The same procedure as in Example 1, except that between adsorption and desorption, the solution remaining in the electrode is removed by an air flow method while maintaining the potential after lithium ions are adsorbed to the electrode, and the desorption solution is circulated to carry out the concentration process proceeded.
  • the lithium ion concentration of the lithium solution which changed while the concentration process was performed 1 to 8 times, was measured as the conductivity of the adsorption mother solution and the desorption solution, and is shown in FIG. 2B below.
  • Example 2a and 2b in the MCDI process, in the process according to Example 1 in which the residual solution in the electrode is not removed before desorption after adsorption, the number of adsorption/desorption is 8 times as the number of adsorption/desorption is increased From the above, it was confirmed that the concentration of lithium ions converges to 1,679 mg/L. On the other hand, in Example 2, it was confirmed that lithium ions were concentrated more than twice as compared to Example 1 at a concentration of 2,289 mg/L when repeated 8 times by removing the residual solution in the electrode.
  • H 3 PO 4 , NaF and NaAlO 2 were prepared.
  • H 3 PO 4 , NaF and NaAlO 2 are equivalent to 1/3 mole, 1 mole, and 1/2 mole, respectively, based on 1 mole of LiOH.
  • the precipitation reaction was performed by varying the lithium ion concentration of the lithium raw material solution and the addition amount of the precipitating agent as shown in Table 1 below, and the recovery rate of lithium ions recovered as a precipitate was compared.
  • the recovery rate was measured by Equation 1 below.
  • Example 6 2176.32 H 3 PO 4 1.00 111.76 94.86
  • Example 7 2176.32 H 3 PO 4 1.25 605.47 72.18
  • Example 8 2176.32 H 3 PO 4 1.50 943.56 56.64
  • Example 9 3313.52 H 3 PO 4 1.00 135.3 95.92
  • the recovery rate of lithium ions in the precipitation reaction of insoluble lithium compounds can be improved when lithium ions of 2,000 mg/L or more are concentrated from a low-concentration lithium ion raw material solution through the MCDI process.
  • Example 3 is compared with Examples 4 and 5
  • Example 6 is compared with Examples 7 and 8
  • Example 9 is compared with Examples 10 and 11
  • 1 equivalent of the precipitating agent is preferably added, but it is preferably added in 0.9 to 1.05 equivalents, and when the additive is added more than that, the recovery rate is rather reduced.
  • LiF, Li 3 PO 4 , LiAlO 2 , which are insoluble lithium compounds precipitated in step 2) were hydrothermal and reacted with an aqueous sulfur oxide solution as follows to prepare a high concentration lithium sulfate aqueous solution.
  • the hydrothermal reaction was carried out for 1 to 8 hours, and as shown in Table 2 below, the sulfate, solid-liquid ratio of the insoluble lithium compound and the sulfur oxide aqueous solution (the mass (g) of the insoluble lithium compound relative to the volume (L) of the sulfur oxide aqueous solution) and lithium-
  • the lithium ion concentration of the lithium sulfate aqueous solution obtained by adjusting the sulfur molar ratio was measured.
  • FIG. 5 is a graph showing the lithium ion concentration of the lithium sulfate aqueous solution prepared according to Examples 12, 15 and 16 according to the solid-liquid ratio. It was found that the lithium ion concentration of the lithium sulfate aqueous solution increased as the solid-liquid ratio increased.
  • titration was performed using calcium hydroxide (Ca(OH) 2 ).
  • the pH was titrated to be 10 or more, and since the pH was higher than that in the case of preparing a lithium sulfate solution by the conventional sulfuric acid leaching method, titration was possible using a smaller amount of an alkali solution.
  • the amount of sulfate ions can be reduced, thereby reducing the amount of Na 2 CO 3 and Sr(OH) 2 used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

본 발명은 리튬이온 회수용 리튬 화합물 제조방법 및 리튬이온 회수용 리튬 화합물에 관한 발명으로서, 구체적으로는 배소/수침출 및 황산침출 방법으로 리튬용액 및 리튬화합물 제조방법과 비교시 에너지 사용량 및 불순물 정제시 알칼리 용제의 사용량을 현저히 저감할 수 있는 리튬이온 회수용 리튬 화합물 제조방법 및 이에 의하여 제조된 리튬이온 회수용 리튬 화합물에 관한 발명이다.

Description

고회수율의 리튬 농축 용액 제조 방법 및 이를 이용한 리튬 화합물의 제조 방법
본 발명은 고회수율의 리튬 농축 용액 제조 방법 및 이를 이용한 리튬 화합물의 제조 방법에 관한 발명으로서, 구체적으로는 에너지 사용량 및 폐수의 발생을 현저히 저감할 수 있고, 리튬이온의 회수율을 현저히 향상시킬 수 있는 리튬이온 농축 용액의 제조방법 및 이에 의하여 제조된 리튬 화합물에 관한 발명이다.
전 세계적으로 화석연료 사용이 지구온난화 및 환경오염 문제의 원인으로 지적되면서 각 국가에서는 정책적으로 전기차 등 친환경 자동차 보급 제도를 확대 시행 중에 있다. 이중 전 세계적으로 전기자동차 보급은 2016년 51만대에서 2030년 1,206만대로 약 25배 가까이 증가할 전망이다. 전기자동차 시장 증가에 따라 EV 배터리의 핵심 원료인 수산화리튬의 가격도 크게 증가하고 있다. 지속적인 원자재 가격의 상승으로 인해 폐 리튬 자원을 이용하여 재활용하는 기술의 개발이 필요한 실정이다.
리튬이온을 얻기 위한 원료로는 리튬 염호, 리튬화합물 제조공정의 폐액, 리튬이차전지 양극재 세척수 및 리튬이차전지 재활용 공정폐액 등이 있으나, 이들은 보통 리튬이온의 농도가 1,000 mg/L 이하로 저농도이므로 리튬이온의 회수 효율이 떨어지는 문제가 있다. 저농도 리튬용액(Li+ conc. <1,000ppm)으로부터 리튬이온 회수를 위한 리튬 화합물인 탄산리튬 또는 수산화리튬 등을 제조하는 방법으로는 흡착법, 용매추출법, 침전법 등을 적용해 고농도 리튬용액으로 농축하고, 이를 분리/정제 과정을 거쳐 불순물이 제거된 리튬 용액의 탄산화반응 또는 수산화반응을 통해 제조하는 방법이 일반적이다.
이러한 리튬이온 회수용 리튬 화합물을 제조하는 또다른 상용화 공정으로는 리튬을 함유한 광물을 하소 및 황산배소 후 이를 수침출하여 고농도 리튬 용액을 제조 또는 리튬이온이 함유된 염호(약 1,000ppm)의 자연증발 농축과정을 거쳐 고농도 리튬용액을 제조 후 탄산화반응 및 수산화반응을 통해 탄산리튬, 수산화리튬을 제조하는 방법이 일반적이다.
최근 저농도 리튬 염호 및 리튬 폐액, 리튬 화합물 제조공정 폐액, 양극재 세척수, 리튬이차전지 재활용 공정폐액 등으로부터 리튬자원을 리튬이온 화합물의 형태로 회수하려는 많은 시도들이 진행되고 있으나 여전히 연구단계에 머무르고 있는 상황이다. 리튬 화합물 제조 공정에서 고농도 리튬용액 제조공정이 요구되며 공정에서 가장 높은 비중을 차지하고 있으나 여전히 고농도 리튬용액 제조 단계에서 경제성이 확보되지 않고 있다.
EV 및 ESS의 수요증가와 더불어 리튬이차전지 수요 또한 급증하고 있으며 중대형 용량용 양극재 수요 증가하고 있는 상황이다. 중대형 용량용 제조시 반응물로 탄산리튬 및 수산화리튬이 사용되고 있으며, 양극재 제조 후 수세과정이 필수적으로 동반된다.
수세시 발생하는 리튬폐액의 경우 약 1000~1500mg/L의 리튬 이온 농도를 보이고 있으며 양극재 생산량 급증에 따라 양극재 세척수 발생량 또한 증가할 것으로 판단된다.
불용성 리튬화합물로부터 고농도의 리튬용액을 제조하는 방법으로는 산 용액을 이용해 불용성 리튬 화합물을 황산리튬 또는 염화리튬 용액으로 제조 후 CaO, NaOH등의 알칼리 용제를 사용해 불순물을 분리 및 알칼리 조건의 리튬용액으로 전환하여 탄산화반응 및 수산화반응을 통해 탄산리튬과 수산화리튬을 제조하는 방법이 일반적이다. 하지만 이 방법은 고농도 리튬용액 제조시 강산 용액이 사용되기 때문에 후속 공정에서 과량의 알칼리 용제 사용이 불가피하며 과량의 폐 침전물 및 폐액이 배출되는 환경부하를 지니는 문제가 있다.
그 외에도 불용성 리튬화합물을 황산화물 또는 염화물과의 염배소 반응을 통해 수용성인 황산리튬, 염화리튬으로 전환 후 이를 수침출하여 고농도의 용액을 제조하는 방법이 제시되고 있으나, 이 방법은 높은 에너지 소비로 인하여 경제성이 저하되거나, 고농도의 리튬 용액 제조를 위해 반복적인 수침출을 필요로 하여 리튬 이온의 회수율이 저하되는 단점이 있다.
따라서, 이러한 문제점을 해결하기 위한 새로운 공정을 찾기 위한 연구가 진행 중이다.
(선행문헌 1) 등록특허공보 제10-1957706호(2019.03.07. 등록)
본 발명은 고농도의 황산리튬 용액을 제조하여 높은 회수율로 리튬이온을 회수할 수 있으며, 동시에 알칼리 용제의 사용량이 현저히 적고 에너지 소비량을 감소할 수 있어 친환경적인 리튬 이온 회수용 리튬 화합물 제조 방법과, 그에 의하여 형성된 리튬 이온 회수용 리튬 화합물을 제공하는 것을 목적으로 한다.
상술한 과제를 해결하기 위하여, 본 발명은 1) 리튬이온을 포함하는 원료 용액에서 불용성 리튬 화합물을 침전시키는 단계;
2) 상기 불용성 리튬화합물을 하기 일반식 1의 구조를 갖는 화합물과 수열반응시켜 황산리튬 수용액을 제조하는 단계; 및
3) 상기 황산리튬 수용액으로부터 리튬이온 회수용 리튬 화합물을 수득하는 단계;
를 포함하는 고회수율로 리튬 화합물을 제조하는 방법을 제공한다.
[일반식 1]
Ax(SOy)z
상기 일반식 1에 있어서, A는 마그네슘, 칼슘, 나트륨, 칼륨, 철(Fe), 암모늄 및 알루미늄 중에서 선택된 하나 이상의 양이온이고, y는 2~4의 정수이며, z는 1 또는 3이다.
본 발명의 바람직한 일실시예에 있어서, 상기 불용성 리튬화합물은 리튬 인산화물(Li3PO4), 리튬 불화물(LiF) 및 리튬 알루미네이트(LiAlO2) 중에서 선택된 하나 이상일 수 있다.
본 발명의 바람직한 일실시예에 있어서, 상기 1) 단계는 상기 원료 용액에 침전제를 투입하여 불용성 리튬 화합물을 침전시키되,
상기 침전제의 투입 당량비는 상기 원료 용액의 리튬 이온에 대하여 0.5~5으로 하여 투입할 수 있다.
본 발명의 바람직한 일실시예에 있어서 상기 1) 단계는
1-1) 저농도의 리튬용액을 막축전식 탈염공정(MCDI)을 통하여 리튬 이온을 농축하여 상기 원료 용액을 제조하는 전처리 단계; 및
1-2) 상기 원료 용액에서 불용성 리튬 화합물을 침전시키는 단계;를 포함할 수 있다.
본 발명의 바람직한 일실시예에 있어서, 상기 저농도의 리튬 용액은 리튬 염호, 리튬화합물 제조공정의 폐액, 리튬이차전지 양극재 세척수 및 리튬이차전지 재활용 공정폐액 중 선택된 하나 이상으로부터 유래한 것일 수 있다.
본 발명의 바람직한 일실시예에 있어서, 상기 1-1) 단계에서 상기 저농도 리튬 용액과 상기 원료 용액의 리튬 이온 농도는 하기의 관계식 (1) 및 (2)를 만족할 수 있다.
(1)
Figure PCTKR2022004946-appb-img-000001
(2)
Figure PCTKR2022004946-appb-img-000002
상기 관계식 (1) 및 (2)에 있어서,
Figure PCTKR2022004946-appb-img-000003
는 상기 저농도 리튬 용액에 포함된 리튬 이온의 농도를 나타내고
Figure PCTKR2022004946-appb-img-000004
은 상기 원료 용액에 포함된 리튬 이온의 농도를 나타낸다.
본 발명의 바람직한 일실시예에 있어서, 상기 1-1) 단계는 반복하여 수행할 수 있으며,
축전식 탈염공정을 반복 수행할 때 리튬이온이 전극에 흡착된 후 축전식 탈염공정을 반복 수행하기 전, 전위를 0.7~1.5V로 유지한 상태에서 전극 내 잔류 용액을 제거하는 방식으로 수행할 수 있다.
본 발명의 바람직한 일실시예에 있어서, 상기 2) 단계의 상기 일반식 1로 표시되는 화합물은 황산마그네슘(MgSO4), 아황산마그네슘(MgSO3), 차아황산마그네슘(MgSO2), 황산칼슘(CaSO4), 아황산칼슘(CaSO3), 차아황산칼슘(CaSO2), 황산나트륨(Na2SO4), 아황산나트륨(Na2SO3), 차아황산나트륨(Na2SO2), 황산칼륨(K2SO4), 아황산칼륨(K2SO3), 차아황산칼륨(K2SO2), 황산제일철(FeSO4), 아황산제일철(FeSO3), 차아황산제일철(FeSO2), 황산제이철(Fe2(SO4)3), 아황산제이철(Fe2(SO3)3), 차아황산제이철(Fe2(SO2)3), 황산암모늄((NH4)2SO4), 황산알루미늄(Al2(SO4)3), 아황산알루미늄(Al2(SO3)3), 및 차아황산알루미늄 (Al2(SO2)3) 중에서 선택된 하나 이상일 수 있다.
본 발명의 바람직한 일실시예에 있어서, 상기 2) 단계는 상기 불용성 리튬 화합물을 상기 일반식 1의 구조를 갖는 화합물의 수용액과 40~300℃의 온도에서 수열반응을 수행하며, 하기 관계식 (3) 및 (4)를 만족하면서 수행할 수 있다.
(3)
Figure PCTKR2022004946-appb-img-000005
(4)
Figure PCTKR2022004946-appb-img-000006
상기 관계식 (3) 및 (4)에 있어서,
Figure PCTKR2022004946-appb-img-000007
은 상기 수열반응에 투입하는 불용성 리튬 화합물의 질량(g)을 나타내고,
Figure PCTKR2022004946-appb-img-000008
은 상기 수열반응에 투입하는 상기 일반식 1의 구조를 갖는 화합물의 수용액의 부피(L)를 나타내며,
Figure PCTKR2022004946-appb-img-000009
는 상기 수열반응에 투입하는 리튬 이온의 몰수를 나타내고
Figure PCTKR2022004946-appb-img-000010
는 상기 일반식 1의 구조를 갖는 화합물의 수용액 내 황(S) 원자의 몰수를 나타낸다.
본 발명의 바람직한 일실시예에 있어서, 상기 2) 단계에 의하여 제조된 황산리튬 수용액은 20,000 ~ 34,000 mg/L의 농도로 리튬 이온을 포함할 수 있다.
본 발명의 바람직한 일실시예에 있어서, 상기 3) 단계는
3-1) 상기 황산리튬 수용액을 알칼리 용제로 정제하는 단계; 및
3-2) 상기 정제된 황산리튬 수용액에 탄산화 반응 또는 수산화반응을 수행하여 탄산리튬 또는 수산화리튬을 수득하는 단계;
를 포함할 수 있다.
또한, 본 발명의 바람직한 일실시예에 있어서, 상기 3-1) 단계에서는 알칼리 용제로 정제하되 pH 9~12.5로 조절할 수 있다.
본 발명의 바람직한 일실시예에 있어서, 상기 리튬이온 회수용 리튬 화합물은 양극재 원료용 리튬 화합물일 수 있다.
본 발명에 따르면 높은 효율로 리튬이온을 회수할 수 있으며, 동시에 에너지 소비량 및 정제를 위한 알칼리 용제 등의 사용량을 현저히 저감할 수 있어 친환경적으로 리튬이온을 회수할 수 있는 장점이 있다.
도 1은 본 발명의 바람직한 일실시예에 따른 리튬이온 회수용 리튬화합물의 제조방법을 각 단계별로 나타낸 도면이다.
도 2a는 약 1,000 mg/L의 리튬이온 농도를 갖는 수산화리튬 수용액을 막축전식 탈염공정을 통하여 반복 농축하였을 때, 반복 횟수에 따라서 탈착된 용액의 리튬이온 농도(탈착용액 전도율, 청색)과 모액의 리튬이온 농도(흡착모액 전도율, 흑색)의 변화를 나타낸 그래프이다.
도 2b는 약 1,000 mg/L의 수산화리튬 수용액을 본 발명의 바람직한 일실시예에 따른 방법에 의하여 전극 내 잔류 용액을 제거하며 막축전식 탈염공정을 반복 수행하여 리튬 이온을 농축하였을 때, 반복 횟수에 따라서 탈착된 용액의 리튬이온 농도(탈착용액 전도율, 청색)과 모액의 리튬이온 농도(흡착모액 전도율, 흑색)의 변화를 나타낸 그래프이다.
도 3은 약 1,000 mg/L 농도의 수산화리튬 수용액에 인산계 침전제를 Li+/PO4 3-의 몰비를 3으로 반응시켜 침전된 침전물의 XRD 스펙트럼(황색), 불화물 침전제를 Li+/Na+의 몰비를 1로 반응시켜 침전된 침전물의 XRD 스펙트럼(청색) 및 알루미네이트(NaAlO2)계 침전제와 Li/Al의 몰비를 0.5로 반응시켜 침전된 침전물의 XRD 스펙트럼(적색)을 각각 나타낸다.
도 4a는 본 발명의 바람직한 일실시예에 따라 불용성 리튬화합물 Li3PO4를 Al2(SO4)3 수용액과 80℃에서 8시간 수열반응하였을 때 수열반응에 의해 생성된 침전물(위쪽), 수열반응에 사용된 불용성 리튬화합물(가운데) 및 인산리튬 및 황산알루미늄 용액의 수열반응에 의해 생성될 수 있는 침전물(AlPO4)에 대한 참고용 XRD스펙트럼(아래쪽)을 나타낸 것이다. 실험결과로부터 인산리튬 및 황산알루미늄 용액의 수열반응으로 생성된 침전물의 경우 비정질 특성을 나타내고 있는 것으로 확인되었다.
도 4b는 본 발명의 바람직한 일실시예에 따라 불용성 리튬화합물 LiF를 MgSO4 수용액과 LiF 질량(g) 대 MgSO4 수용액 부피(L)의 고액비를 100:1로 하고, Li/Mg 몰비를 1:2로 하여 80℃에서 8시간 수열반응을 수행한 결과 얻어진 침전물의 XRD 스펙트럼(위쪽)과 MgF2에 대한 참고용 XRD 스펙트럼(아래쪽)을 비교한 것이다.
도 5는 본 발명의 바람직한 일실시예에 따라 불용성 리튬화합물 LiF와 MgSO4 수용액을 Li와 Mg의 몰비를 1.92:1로 하여 수열반응하였을 때, 상기 불용성 리튬화합물 LiF와 MgSO4 수용액의 고액비에 따라 생성된 황산리튬 수용액의 리튬이온 농도의 변화를 나타낸 그래프이다.
도 6은 본 발명의 바람직한 일실시예에 따라 얻어진 탄산리튬(위쪽)과 Li2CO3 시약의 XRD 스펙트럼(아래쪽)을 비교한 것이다.
도 7은 본 발명의 바람직한 일실시예에 따라 얻어진 수산화리튬(맨 위) 및 참고용 수산화리튬 일수화물(두번째), 수산화리튬 무수화물(세번째) 및 황산리튬 일수화물(맨 아래)의 XRD 스펙트럼을 비교한 것이다.
상술한 바와 같이, 종래의 리튬 이온 회수 방법은 회수율이 좋지 않거나 회수 과정에서 과도한 에너지가 소비되거나 회수 후에 다량의 폐액이 발생하여 환경에 대한 부담의 문제가 있다는 단점이 있었다.
이에, 본 발명자들은 상술한 과제를 해결하기 위하여, 1) 리튬이온을 포함하는 원료 용액에서 불용성 리튬 화합물을 침전시키는 단계;
2) 상기 불용성 리튬화합물을 하기 일반식 1의 구조를 갖는 화합물과 수열반응시켜 황산리튬 수용액을 제조하는 단계; 및
3) 상기 황산리튬 수용액으로부터 리튬이온 회수용 리튬 화합물을 수득하는 단계; 를 포함하는
고회수율로 리튬 화합물을 제조하는 방법을 제공하여 이와 같은 문제점의 해결을 모색하였다.
[일반식 1]
Ax(SOy)z
상기 일반식 1에 있어서, A는 마그네슘, 칼슘, 나트륨, 칼륨, 철(Fe), 암모늄 및 알루미늄 중에서 선택된 하나 이상의 양이온이고, y는 2~4의 정수이며, z는 1 또는 3이다.
본 발명은 불용성 리튬 화합물을 상기의 일반식 1로 표시되는 화합물과 반응시키되 수열합성 반응에 의함으로써 종래의 염배소 또는 하소 반응에 비하여 현저히 저온에서 반응을 수행할 수 있어 에너지 소비를 저감할 수 있는 경제적인 방법이며, 강산(황산, 염산 등)을 사용하여 황산리튬 수용액 또는 염화리튬 등 리튬 화합물 수용액을 제조하는 방법과 비교하면, 이후 리튬 화합물 수용액으로부터 리튬이온 회수용 리튬 화합물을 회수하기 위하여 사용되어야 하는 알칼리 용제의 양을 현저히 저감할 수 있어 경제적이고 폐액에 의한 환경오염의 문제가 적은 장점이 있다.
이하, 각 단계별로 설명한다.
먼저, 상기 1) 단계는 고회수율로 리튬 화합물을 생산하기 위하여 고농축 리튬이온 용액을 제조하기 위한 반응물인 불용성 리튬 화합물을 생산하는 단계로서, 리튬이온을 포함하고 있는 용액으로부터 반응에 의하여 불용성의 리튬 화합물을 침전시키는 단계이다.
바람직하게는 상기 1) 단계는 전처리 단계를 더 포함할 수 있다. 즉, 바람직하게는 상기 1) 단계는
1-1) 저농도의 리튬용액을 막축전식 탈염공정(MCDI)을 통하여 리튬 이온을 농축하여 상기 원료 용액을 제조하는 전처리 단계; 및
1-2) 상기 원료 용액에서 불용성 리튬 화합물을 침전시키는 단계;를 포함한다.
리튬 이온을 회수하기 위한 리튬 함유 원료의 발생처는 바람직하게는 리튬 염호, 리튬화합물 제조공정의 폐액, 리튬이차전지 양극재 세척수 및 리튬이차전지 재활용 공정폐액 중 선택된 하나 이상으로부터 유래한 것일 수 있으며, 이에 제한되는 것은 아니다.
이러한 리튬이온의 소스는 일반적으로 리튬이온의 농도가 낮으므로 침전 반응에 의하여 침전되는 불용성 리튬 화합물의 양이 적을 수밖에 없으며, 이는 리튬이온의 회수율이 낮아지게 되는 문제점을 초래한다. 따라서, 리튬이온의 회수율을 개선하기 위하여서는 상기 리튬이온의 농도를 농축하는 것이 바람직하다.
바람직하게는 상기 리튬이온을 농축한 용액은 원료 용액이며, 원료 용액의 리튬이온 농도는 하기 관계식 (1) 및 관계식 (2)를 모두 만족할 수 있다.
(1)
Figure PCTKR2022004946-appb-img-000011
(2)
Figure PCTKR2022004946-appb-img-000012
상기 관계식 (1) 및 (2)에 있어서,
Figure PCTKR2022004946-appb-img-000013
는 상기 저농도 리튬 용액에 포함된 리튬 이온의 농도를 나타내고
Figure PCTKR2022004946-appb-img-000014
은 상기 원료 용액에 포함된 리튬 이온의 농도를 나타낸다.
만일 리튬이온의 농도가 1.5배 미만으로 농축되거나 농축된 원료 용액의 리튬 이온 농도가 2000mg/L 미만인 경우, 원료 용액의 리튬이온 농도가 낮아서 침전반응에 의하여 수득할 수 있는 불용성 리튬 화합물의 양이 현저히 감소하는 문제가 있을 수 있고, 농축 농도가 농축 전보다 5배 이상으로 크거나 4000mg/L를 초과하는 리튬이온 농도를 가지기 위하여서는 필연적으로 농축 공정에 시간과 에너지를 더욱 많이 투입하여야 하며, 이는 본 발명에 따른 리튬이온 회수를 위한 리튬 화합물의 제조에 있어서, 경제성을 향상시키려는 본 발명의 목적을 달성하기 어렵게 한다.
상기 1-1) 단계는 바람직하게는 막 축전식 탈염 공정(Membrane Capacity Deionization)에 의하여 리튬이온 농축을 수행할 수 있다. 또한, 막축전식 탈염 공정의 수행 시, 전극에 리튬이온을 흡착 및 탈착을 반복적으로 진행하면서 리튬이온의 농도가 지속적으로 농축이 되며, 일정 수준 이상으로 리튬이온을 더 농축시킬 수 있도록 흡착과 탈착 사이에서는 전극 내 잔류 용액을 제거하는 작업을 수행할 수 있다. 이 때, 막축전식 탈염공정의 시스템 전위는 전체적으로 동일하게 유지하면, 바람직하게는 0.7~1.5V로 함이 바람직하다.
상기 1-1) 단계는 바람직하게는 5회 이상 반복 수행할 수 있다. 더욱 바람직하게는 8회 이상 반복 수행할 수 있다. 반복 횟수가 증가할수록 공정 비용이 증가하지만 리튬이온의 농축 농도 또한 상승한다. 5회 미만인 경우 2000mg/L의 리튬이온 농도에 달하지 못하여 후속 공정에서 본 발명의 목적을 달성하기 어렵다.
상기 1-2) 단계에 의하여 불용성 리튬 화합물이 얻어지며, 상기 불용성 리튬 화합물은 바람직하게는 상기 농축된 원료 용액으로부터 리튬 화합물을 침전시켜서 얻어질 수 있다.
본 발명의 바람직한 일실시예에 있어서, 상기 불용성 리튬화합물은 리튬 인산화물(Li3PO4), 리튬 불화물(LiF) 및 리튬 알루미네이트(LiAlO2) 중에서 선택된 하나 이상일 수 있다.
본 발명의 바람직한 일실시예에 있어서, 상기 1-2) 단계는 상기 원료 용액에 침전제를 투입하여 불용성 리튬 화합물을 침전시키되,
상기 침전제의 투입 당량비는 상기 원료 용액의 리튬 이온에 대하여 0.5~5으로 하여 투입할 수 있다. 0.5 당량비 미만인 경우, 미반응한 리튬이 남아 충분한 불용성 리튬 화합물이 생성되지 못하여 회수율이 낮아질 수 있으며, 5 당량비를 초과하는 경우에는 원료의 과량투입으로 인한 경제성이 저하되는 문제가 있을 수 있다.
다음 2) 단계에서는 상기 불용성 리튬 화합물을 상기 일반식 1로 표시되는 화합물 포함 수용액과 반응시켜 고농도의 리튬 농축 용액을 제조한다. 바람직하게는 황산리튬 수용액을 제조할 수 있다. 상기 황산리튬 수용액으로부터 본 발명의 목적인 리튬 화합물을 고회수율로 수득할 수 있다.
본 명세서에서, "황산리튬"이란 황산리튬뿐만 아니라 아황산리튬, 차아황산리튬 등 산소 수와 황의 산화 상태에 일부 차이가 있는 화합물을 모두 포함하는 황 포함 리튬 화합물의 개념이다.
본 발명의 바람직한 일실시예에 있어서, 상기 2) 단계의 상기 일반식 1로 표시되는 화합물은 황산마그네슘(MgSO4), 아황산마그네슘(MgSO3), 차아황산마그네슘(MgSO2), 황산칼슘(CaSO4), 아황산칼슘(CaSO3), 차아황산칼슘(CaSO2), 황산나트륨(Na2SO4), 아황산나트륨(Na2SO3), 차아황산나트륨(Na2SO2), 황산칼륨(K2SO4), 아황산칼륨(K2SO3), 차아황산칼륨(K2SO2), 황산제일철(FeSO4), 아황산제일철(FeSO3), 차아황산제일철(FeSO2), 황산제이철(Fe2(SO4)3), 아황산제이철(Fe2(SO3)3), 차아황산제이철(Fe2(SO2)3), 황산암모늄((NH4)2SO4), 황산알루미늄(Al2(SO4)3), 아황산알루미늄(Al2(SO3)3), 및 차아황산알루미늄 (Al2(SO2)3) 중에서 선택된 하나 이상일 수 있다. 그러나, 반드시 이에 제한되는 것은 아니다.
본 발명의 바람직한 일실시예에 있어서, 상기 2) 단계는 상기 불용성 리튬 화합물을 상기 일반식 1의 구조를 갖는 화합물의 수용액과 40~300℃의 온도에서 수열반응을 수행하며, 하기 관계식 (3) 및 (4)를 만족하면서 수행할 수 있다.
(3)
Figure PCTKR2022004946-appb-img-000015
(4)
Figure PCTKR2022004946-appb-img-000016
상기 관계식 (3) 및 (4)에 있어서,
Figure PCTKR2022004946-appb-img-000017
은 상기 수열반응에 투입하는 불용성 리튬 화합물의 질량(g)을 나타내고,
Figure PCTKR2022004946-appb-img-000018
은 상기 수열반응에 투입하는 상기 일반식 1의 구조를 갖는 화합물의 수용액의 부피(L)를 나타내며,
Figure PCTKR2022004946-appb-img-000019
는 상기 수열반응에 투입하는 리튬 이온의 몰수를 나타내고
Figure PCTKR2022004946-appb-img-000020
는 상기 일반식 1의 구조를 갖는 화합물의 수용액 내 황(S) 원자의 몰수를 나타낸다.
상기 munsol/Vsol은 고액비라고 불리며, 고액비가 50g/L 미만인 경우 제조된 황산리튬 수용액의 리튬이온 농도가 저하되는 단점이 있을 수 있다. 따라서 리튬이온의 회수율이 낮아지게 되는 문제가 있고, 많은 양의 용매를 사용하여야 하므로 환경에 대한 부담이 증가한다. 고액비가 300 g/L를 초과하는 경우에는 황산리튬 수용액의 리튬이온 농도는 증가하지만, 그 이상 고액비를 상승시켜도 황산리튬 자체의 용해도로 인하여 더 이상 증가하지 않으므로 재료비의 절감을 위하여 고액비 500g/L를 상한으로 함이 바람직하다.
본 발명의 바람직한 일실시예에 있어서, 상기 2) 단계에 의하여 제조된 황산리튬 수용액은 10,000 ~ 34,000 mg/L의 농도로 리튬 이온을 포함할 수 있다. 리튬 이온의 농도가 10,000 mg/L 미만인 경우 회수율 감소의 문제가 있을 수 있고, 34,000 mg/L를 초과하는 경우는 황산리튬의 용해도상 달성하기 어렵다.
다음 3) 단계에 대하여 설명한다. 3) 단계에 의하여 리튬 화합물을 수득하며, 직접적으로 이용할 수 있는 형태의 리튬 화합물을 수득하여 리튬이온을 회수할 수 있다. 이러한 리튬 화합물을 리튬이온 회수용 리튬 화합물이라 하며, 바람직하게는 탄산리튬 또는 수산화리튬이 있다. 그러나, 반드시 이에 제한되는 것은 아니다.
본 발명의 바람직한 일실시예에 있어서, 상기 3) 단계는
3-1) 상기 황산리튬 수용액을 알칼리 용제로 정제하는 단계; 및
3-2) 상기 정제된 황산리튬 수용액에 탄산화 반응 또는 수산화반응을 수행하여 탄산리튬 또는 수산화리튬을 수득하는 단계;
를 포함할 수 있다.
상기 탄산화 반응은 CO2또는 Na2CO3와 반응시켜 수행되며, 바람직하게는 정제된 황산리튬 수용액을 Na2CO3와 반응시켜 수행할 수 있고, 수산화 반응은 바람직하게는 Sr(OH)2와 반응시켜 수행될 수 있다.
또한, 본 발명의 바람직한 일실시예에 있어서, 상기 3-1) 단계에서는 알칼리 용제로 정제하되 pH 9~12.5로 조절할 수 있다. pH가 만일 9 미만인 경우에는 불순물이 잔류하는 문제가 있을 수 있으며, 12.5를 초과하는 경우에는 과량의 알칼리 용제 사용에 따른 경제성 저하 및 환경부하의 문제가 있을 수 있다.
또한, 이와 같이 얻어진 리튬이온 회수용 리튬 화합물은 바람직하게는 양극재 재료로 이용될 수 있다.
이하에서는, 본 발명을 실시예 및 비교예에 의하여 보다 상세하게 설명하기로 한다. 그러나, 본 발명의 범위가 하기 실시예에 의하여 제한되는 것은 아니며, 본 발명의 핵심 구성을 제외한 다른 구성은 통상의 기술자가 출원시의 기술 상식에 비추어 부가/변경 및 삭제하여 용이하게 실시할 수 있으되, 이러한 실시 태양 또한 당연히 본 발명의 기술적 사상에 포함되는 것이다.
<실시예>
1) MCDI 농축 공정
리튬이온의 회수율 측정을 위하여 리튬이온 농도가 약 1,000mg/L인 수산화리튬 수용액을 준비하여 MCDI 공정을 수행하였다. MCDI 공정은 원아테크 장비(MP2)를 사용하여 수행하였으며, 양극, 음극 전극을 사용하였고, 흡착 시의 수산화리튬 수용액(흡착 모액)의 공급 유량은 200mL/min으로 하였고, 탈착 시의 증류수(탈착 용액) 공급 유량 또한 200mL/min으로 하였다. 흡착 시와 탈착 시의 MCDI 시스템의 전위는 각각 1.3V로 동일하게 하였다.
실시예 1: 흡착과 탈착 간에는 전극에 리튬 이온이 흡착된 후에 전위를 유지하면서 전극 내 잔류하는 용액 제거 없이 흡착 및 탈착 공정을 수행하였다. 농축 공정을 1~9회 수행하면서 변화하는 리튬 용액의 리튬이온 농도를 흡착 모액과 탈착 용액의 전도율로서 측정하여 하기 도 2a에 나타내었다.
실시예 2: 실시예 1과 동일하게 실시하되, 흡착과 탈착 간에는 전극에 리튬 이온이 흡착된 후에 전위를 유지하면서 전극 내 잔류하는 용액을 air flow 방법으로 제거하고, 탈착액을 순환시켜 농축 공정을 진행하였다. 농축 공정을 1~8회 수행하면서 변화하는 리튬 용액의 리튬이온 농도를 흡착 모액과 탈착 용액의 전도율로서 측정하여 하기 도 2b에 나타내었다.
도 2a 및 도 2b를 참고하면, MCDI 공정을 진행함에 있어서, 흡착 후 탈착 전 전극 내 잔류 용액을 제거하지 않는 실시예 1에 따른 공정에서는 흡/탈착 횟수를 늘려 감에 따라서 흡/탈착 횟수 8회 이상에서 리튬이온의 농도가 1,679mg/L로 수렴하는 것을 확인할 수 있었다. 반면, 실시예 2에서는 전극 내 잔류 용액을 제거함으로써 8회 반복 실시하였을 때 리튬이온은 2,289mg/L의 농도로 실시예 1에 비하여 2배 이상 농축된 것을 확인할 수 있었다.
2) 침전 반응 공정
리튬 원료 용액으로 리튬이온의 농도가 각각 1,000 mg/L, 2,000 mg/L 및 3,000 mg/L인 수산화리튬 수용액을 준비하였다.
침전제로는 H3PO4, NaF 및 NaAlO2를 준비하였다. H3PO4, NaF 및 NaAlO2는 각각 1몰의 LiOH에 대하여 1/3몰, 1몰 및 1/2몰이 당량이다.
상기 리튬 원료 용액 가운데 리튬이온의 농도가 약 1,000 mg/L인 것을 취하여 3개의 용액 시료를 준비하고, 상기 침전제를 각각 수산화리튬에 대한 당량으로 첨가하여 침전 반응을 수행하였으며, 침전된 각각의 침전물의 XRD 스펙트럼을 측정하여 도 3에 나타내었다. 도 3을 참조하면 H3PO4를 첨가제로 투입한 경우 Li3PO4, NaF를 투입한 경우 LiF, NaAlO2를 투입한 경우 LiAlO2가 각각 불용성 리튬 화합물로 침전되었다.
또한, 상기 리튬 원료 용액의 리튬이온 농도와 침전제의 첨가량을 하기 표 1에 나타난 바와 같이 달리 하여 침전 반응을 수행하고, 침전물로서 회수된 리튬 이온의 회수율을 비교하였다.
회수율은 하기 수학식 1에 의하여 측정되었다.
[수학식 1]
Figure PCTKR2022004946-appb-img-000021
구분 침전 전
리튬이온 농도
(mg/L)
침전제 첨가당량 침전 후
리튬이온 농도
(mg/L)
회수율
(%)
실시예 3 1069.34 H3PO4 1.00 200.99 81.20
실시예 4 1069.34 H3PO4 1.25 582.74 45.51
실시예 5 1069.34 H3PO4 1.50 778.24 27.22
실시예 6 2176.32 H3PO4 1.00 111.76 94.86
실시예 7 2176.32 H3PO4 1.25 605.47 72.18
실시예 8 2176.32 H3PO4 1.50 943.56 56.64
실시예 9 3313.52 H3PO4 1.00 135.3 95.92
실시예 10 3313.52 H3PO4 1.25 779.66 76.47
실시예 11 3313.52 H3PO4 1.50 2475.66 25.29
상기 표 1을 참고하면, 침전 전 리튬이온의 농도가 약 1,000 mg/L인 실시예 3 내지 5의 경우 침전제를 당량의 1.00배로 투입하였을 때 불용성 리튬화합물 내 리튬 이온은 침전 전 리튬이온 농도 대비 81.20%의 회수율을 가졌으나, 침전 전 리튬이온의 농도가 2,000 mg/L 이상인 실시예 6 내지 11에 따른 리튬 원료용액은 동일한 침전제 당량에 대하여 리튬이온의 회수율이 각각 94.86%, 95.92%로 현저히 향상되었음을 알 수 있었다.
따라서, 저농도의 리튬이온 원료용액으로부터 MCDI 공정을 통해 리튬이온 2,000 mg/L 이상 농축 시, 불용성 리튬화합물 침전 반응에서 리튬이온의 회수율을 향상시킬 수 있음을 알 수 있다.
또한, 실시예 3을 실시예 4, 5와 비교하고, 실시예 6을 실시예 7, 8과 비교하고, 실시예 9를 실시예 10, 11과 비교하면 침전제의 첨가량이 1.25 당량 이상이 되면 회수율이 급격히 감소하는 것을 알 수 있었다. 따라서, 침전제는 1당량을 첨가하는 것이 바람직하되, 0.9~1.05 당량으로 첨가하는 것이 바람직하고 그 이상으로 첨가제가 투입되는 경우 오히려 회수율이 저하된다는 것을 알 수 있었다.
3) 수열반응 공정
상기 2) 단계에서 침전된 불용성 리튬화합물인 LiF, Li3PO4, LiAlO2를 하기와 같이 황산화물 수용액과 수열반응하여 고농도의 황산리튬 수용액을 제조하였다. 수열반응은 1에서 8시간 동안 진행하였으며, 하기 표 2와 같이 불용성 리튬 화합물과 황산화물 수용액의 황산염, 고액비(황산화물 수용액의 부피(L) 대비 불용성 리튬 화합물의 질량(g)) 및 리튬-황 몰비를 조절하여 얻어진 황산리튬 수용액의 리튬이온 농도를 측정하였다.
불용성 리튬화합물 황산화물 수용액
(황산화물)
Li-S 몰비
(nLi/nS)
고액비
(g/L)
황산리튬 수용액 리튬 농도
(mg/L)
실시예 12 LiF MgSO4 1.92 100 25,542
실시예 13 Li3PO4 Al2(SO4)3 2.00 200 26,731
실시예 14 LiAlO2 MgSO4 1.92 200 7,178
실시예 15 LiF MgSO4 1.92 66 18,137
실시예 16 LiF MgSO4 1.92 133 33,883
실시예 12, 15 및 16에 따라 제조된 황산리튬 수용액의 리튬이온 농도를 고액비에 따라 나타낸 그래프를 도 5에 도시하였다. 고액비가 높아질수록 황산리튬 수용액의 리튬이온 농도가 높아지는 것을 알 수 있었다.
4) 정제 및 탄산화/수산화 반응
실시예 16에 따라 제조된 황산리튬 수용액의 정제를 위하여 수산화칼슘(Ca(OH)2)을 사용하여 적정하였다. pH가 10 이상이 되도록 적정하였으며, 종래 황산 침출 방법에 의하여 황산리튬용액을 제조한 경우에 비하여 pH가 높기 때문에 더 적은 양의 알칼리 용액을 사용하여 적정이 가능하였다.
또한, 수산화칼슘에 의하여 적정한 황산리튬용액에 하기와 같이 탄산화 반응 및 수산화 반응을 각각 수행하였다.
탄산화 반응의 경우 상기 적정된 황산리튬용액에 Na2CO3 분말을, 수산화 반응의 경우 Sr(OH)2 분말을 투입하여 수행하였으며, Na2CO3는 Li와 Na의 몰비를 3:4로, Sr(OH)2의 경우 Li과 Sr의 몰비를 2:1로 조절하여 투입하였다.
수산화칼슘을 이용한 정제 반응을 사전 수행함으로써, 황산 이온의 양을 감소시킬 수 있어 Na2CO3와 Sr(OH)2의 사용량을 절감할 수 있었다.
탄산화 반응 또는 수산화 반응 후 재결정을 수행하여 얻어진 탄산리튬 및 수산화리튬 결정을 수득하여 XRD 스펙트럼을 측정하였다. 탄산리튬의 XRD 스펙트럼을 탄산리튬 시약의 레퍼런스 XRD 스펙트럼과 비교하여 도 6에 나타내었으며, 수산화리튬의 XRD 스펙트럼은 수산화리튬 레퍼런스 XRD 스펙트럼, 수산화리튬 수화물의 레퍼런스 XRD 스펙트럼 및 황산리튬 레퍼런스 XRD 스펙트럼과 비교하여 도 7에 나타내었다.
도 6 및 도 7을 참조하면, 탄산화 반응에서 탄산 리튬이, 수산화 반응에서는 수산화 리튬과 수산화 리튬의 수화물이 얻어졌음을 확인할 수 있었다.

Claims (13)

1) 리튬이온을 포함하는 원료 용액에서 불용성 리튬 화합물을 침전시키는 단계;
2) 상기 불용성 리튬 화합물을 하기 일반식 1의 구조를 갖는 화합물과 수열반응시켜 황산리튬 수용액을 제조하는 단계; 및
3) 상기 황산리튬 수용액으로부터 리튬이온 회수용 리튬 화합물을 수득하는 단계; 를 포함하는
고회수율로 리튬 화합물을 제조하는 방법:
[일반식 1]
Ax(SOy)z
상기 일반식 1에 있어서, A는 마그네슘, 칼슘, 나트륨, 칼륨, 철(Fe), 암모늄 및 알루미늄 중에서 선택된 하나 이상의 양이온이고, y는 2~4의 정수이며, z는 1 또는 3이다.
제1항에 있어서,
상기 불용성 리튬화합물은 리튬 인산화물(Li3PO4), 리튬 불화물(LiF) 및 리튬 알루미네이트(LiAlO2) 중에서 선택된 하나 이상인 것을 특징으로 하는 고회수율로 리튬 화합물을 제조하는 방법.
제2항에 있어서,
상기 1) 단계는 상기 원료 용액에 침전제를 투입하여 불용성 리튬 화합물을 침전시키되,
상기 침전제의 투입 당량비는 상기 원료 용액의 리튬 이온에 대하여 0.5~5인 것을 특징으로 하는 고회수율로 리튬 화합물을 제조하는 방법.
제1항에 있어서,
상기 1) 단계는
1-1) 저농도의 리튬용액을 막축전식 탈염공정(MCDI)을 통하여 리튬 이온을 농축하여 상기 원료 용액을 제조하는 전처리 단계; 및
1-2) 상기 원료 용액에서 불용성 리튬 화합물을 침전시키는 단계;를 포함하는 것을 특징으로 하는
고회수율로 리튬 화합물을 제조하는 방법.
제4항에 있어서,
상기 저농도의 리튬 용액은 리튬 염호, 리튬화합물 제조공정의 폐액, 리튬이차전지 양극재 세척수 및 리튬이차전지 재활용 공정폐액 중 선택된 하나 이상으로부터 유래한 것을 특징으로 하는
고회수율로 리튬 화합물을 제조하는 방법.
제4항에 있어서,
상기 1-1) 단계에서 상기 저농도 리튬 용액과 상기 원료 용액의 리튬 이온 농도는 하기의 관계식 (1) 및 (2)를 만족하는 것을 특징으로 하는
고회수율로 리튬 화합물을 제조하는 방법:
(1)
Figure PCTKR2022004946-appb-img-000022
(2)
Figure PCTKR2022004946-appb-img-000023
상기 관계식 (1) 및 (2)에 있어서,
Figure PCTKR2022004946-appb-img-000024
는 상기 저농도 리튬 용액에 포함된 리튬 이온의 농도를 나타내고
Figure PCTKR2022004946-appb-img-000025
은 상기 원료 용액에 포함된 리튬 이온의 농도를 나타낸다.
제4항에 있어서,
상기 1-1) 단계를 반복 수행하되,
축전식 탈염공정을 반복 수행할 때 리튬이온이 전극에 흡착된 후 축전식 탈염공정을 반복 수행하기 전, 전위를 0.7~1.5V로 유지한 상태에서 전극 내 잔류 용액을 제거하는 것을 특징으로 하는
고회수율로 리튬 화합물을 제조하는 방법.
제1항에 있어서,
상기 2) 단계의 상기 일반식 1로 표시되는 화합물은 황산마그네슘(MgSO4), 아황산마그네슘(MgSO3), 차아황산마그네슘(MgSO2), 황산칼슘(CaSO4), 아황산칼슘(CaSO3), 차아황산칼슘(CaSO2), 황산나트륨(Na2SO4), 아황산나트륨(Na2SO3), 차아황산나트륨(Na2SO2), 황산칼륨(K2SO4), 아황산칼륨(K2SO3), 차아황산칼륨(K2SO2), 황산제일철(FeSO4), 아황산제일철(FeSO3), 차아황산제일철(FeSO2), 황산제이철(Fe2(SO4)3), 아황산제이철(Fe2(SO3)3), 차아황산제이철(Fe2(SO2)3), 황산암모늄((NH4)2SO4), 황산알루미늄(Al2(SO4)3), 아황산알루미늄(Al2(SO3)3), 및 차아황산알루미늄 (Al2(SO2)3) 중에서 선택된 하나 이상인 것을 특징으로 하는
고회수율로 리튬 화합물을 제조하는 방법.
제1항에 있어서,
상기 2) 단계는 상기 불용성 리튬 화합물을 상기 일반식 1의 구조를 갖는 화합물의 수용액과 40~300℃의 온도에서 수열반응을 수행하며, 하기 관계식 (3) 및 (4)를 만족하는 것을 특징으로 하는
고회수율로 리튬 화합물을 제조하는 방법:
(3)
Figure PCTKR2022004946-appb-img-000026
(4)
Figure PCTKR2022004946-appb-img-000027
상기 관계식 (3) 및 (4)에 있어서,
Figure PCTKR2022004946-appb-img-000028
은 상기 수열반응에 투입하는 불용성 리튬 화합물의 질량(g)을 나타내고,
Figure PCTKR2022004946-appb-img-000029
은 상기 수열반응에 투입하는 상기 일반식 1의 구조를 갖는 화합물의 수용액의 부피(L)를 나타내며,
Figure PCTKR2022004946-appb-img-000030
는 상기 수열반응에 투입하는 리튬 이온의 몰수를 나타내고
Figure PCTKR2022004946-appb-img-000031
는 상기 일반식 1의 구조를 갖는 화합물의 수용액 내 황(S) 원자의 몰수를 나타낸다.
제1항에 있어서,
상기 2) 단계에 의하여 제조된 황산리튬 수용액은 10,000 ~ 34,000 mg/L의 농도로 리튬 이온을 포함하고 있는 것을 특징으로 하는
고회수율로 리튬 화합물을 제조하는 방법.
제1항에 있어서,
상기 3) 단계는
3-1) 상기 황산리튬 수용액을 알칼리 용제로 정제하는 단계; 및
3-2) 상기 정제된 황산리튬 수용액에 탄산화 반응 또는 수산화반응을 수행하여 탄산리튬 또는 수산화리튬을 수득하는 단계;
를 포함하는 것을 특징으로 하는
고회수율로 리튬 화합물을 제조하는 방법.
제11항에 있어서,
상기 3-1) 단계에서는 알칼리 용제로 정제하되 pH 9~12.5로 조절하는 것을 특징으로 하는
고회수율로 리튬 화합물을 제조하는 방법.
제1항에 있어서,
상기 리튬이온 회수용 리튬 화합물은 양극재 원료용 리튬 화합물인 것을 특징으로 하는
고회수율로 리튬 화합물을 제조하는 방법.
PCT/KR2022/004946 2021-04-14 2022-04-06 고회수율의 리튬 농축 용액 제조 방법 및 이를 이용한 리튬 화합물의 제조 방법 WO2022220477A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CA3215628A CA3215628A1 (en) 2021-04-14 2022-04-06 Method for producing lithium-concentrated solution with high recovery rate, and method for producing lithium compound using same
US18/555,648 US20240208832A1 (en) 2021-04-14 2022-04-06 Method for producing lithium-concentrated solution with high recovery rate, and method for producing lithium compound using same
EP22788333.7A EP4324792A1 (en) 2021-04-14 2022-04-06 Method for producing lithium-concentrated solution with high recovery rate, and method for producing lithium compound using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210048398A KR102496588B1 (ko) 2021-04-14 2021-04-14 고회수율의 리튬 농축 용액 제조 방법 및 이를 이용한 리튬 화합물의 제조 방법
KR10-2021-0048398 2021-04-14

Publications (1)

Publication Number Publication Date
WO2022220477A1 true WO2022220477A1 (ko) 2022-10-20

Family

ID=83639837

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/004946 WO2022220477A1 (ko) 2021-04-14 2022-04-06 고회수율의 리튬 농축 용액 제조 방법 및 이를 이용한 리튬 화합물의 제조 방법

Country Status (5)

Country Link
US (1) US20240208832A1 (ko)
EP (1) EP4324792A1 (ko)
KR (1) KR102496588B1 (ko)
CA (1) CA3215628A1 (ko)
WO (1) WO2022220477A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024106897A1 (ko) * 2022-11-14 2024-05-23 한국지질자원연구원 공정 개선을 통한 저품위 리튬광물로부터 고효율 리튬 회수방법 및 이를 통해 제조된 탄산리튬
KR102672766B1 (ko) * 2023-01-03 2024-06-07 한국지질자원연구원 저농도 리튬폐액으로부터 고효율 리튬 회수방법과 이를 통해 제조된 탄산리튬
KR102670694B1 (ko) * 2023-04-13 2024-06-03 한국지질자원연구원 공정개선을 통한 탄산리튬으로부터 수산화리튬의 고효율 제조방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017136885A1 (en) * 2016-02-09 2017-08-17 Lithium Australia Nl Processes for extracting and recovering lithium values from lithium bearing materials
KR101944519B1 (ko) * 2018-08-29 2019-02-01 한국지질자원연구원 리튬 용액으로부터 고효율 리튬 회수 방법
KR101944522B1 (ko) * 2018-07-31 2019-02-01 한국지질자원연구원 인산리튬으로부터 고농도 리튬 수용액 제조 방법
KR101957706B1 (ko) 2018-09-20 2019-03-13 한국지질자원연구원 리튬망간산화물로부터 리튬 회수 방법
KR102033607B1 (ko) * 2019-04-04 2019-10-17 (주)세화브이엘 리튬 용액으로부터 알루미늄 화합물 첨가 및 황산화 반응을 통한 리튬 농축방법 및 농축 시 부산물 재순환 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017136885A1 (en) * 2016-02-09 2017-08-17 Lithium Australia Nl Processes for extracting and recovering lithium values from lithium bearing materials
KR101944522B1 (ko) * 2018-07-31 2019-02-01 한국지질자원연구원 인산리튬으로부터 고농도 리튬 수용액 제조 방법
KR101944519B1 (ko) * 2018-08-29 2019-02-01 한국지질자원연구원 리튬 용액으로부터 고효율 리튬 회수 방법
KR101957706B1 (ko) 2018-09-20 2019-03-13 한국지질자원연구원 리튬망간산화물로부터 리튬 회수 방법
KR102033607B1 (ko) * 2019-04-04 2019-10-17 (주)세화브이엘 리튬 용액으로부터 알루미늄 화합물 첨가 및 황산화 반응을 통한 리튬 농축방법 및 농축 시 부산물 재순환 방법

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LEE DONG-HEE, RYU TAEGONG, SHIN JUNHO, KIM YOUNG HO, INFO ARTICLE: "Equilibrium and kinetic studies of an electro-assisted lithium recovery system using lithium manganese oxide adsorbent material Original Articles", CARBON LETTERS, vol. 28, 31 October 2018 (2018-10-31), pages 87 - 95, XP055977739, ISSN: 1976-4251, DOI: 10.5714/CL.2018.28.087 *
SHI WENHUI, LIU XIAOYUE, YE CHENZENG, CAO XIEHONG, GAO CONGJIE, SHEN JIANGNAN: "Efficient lithium extraction by membrane capacitive deionization incorporated with monovalent selective cation exchange membrane", SEPARATION AND PURIFICATION TECHNOLOGY, ELSEVIER SCIENCE, AMSTERDAM, NL, vol. 210, 1 February 2019 (2019-02-01), NL , pages 885 - 890, XP055977738, ISSN: 1383-5866, DOI: 10.1016/j.seppur.2018.09.006 *

Also Published As

Publication number Publication date
KR102496588B1 (ko) 2023-02-06
CA3215628A1 (en) 2022-10-20
EP4324792A1 (en) 2024-02-21
US20240208832A1 (en) 2024-06-27
KR20220142079A (ko) 2022-10-21

Similar Documents

Publication Publication Date Title
WO2022220477A1 (ko) 고회수율의 리튬 농축 용액 제조 방법 및 이를 이용한 리튬 화합물의 제조 방법
WO2023136464A1 (ko) 폐 양극재 반응용기로부터 유가금속 및 제올라이트 함유 물질의 회수방법
WO2023282564A1 (ko) 리튬폐액과 불화물폐액으로부터 고부가가치 자원 회수방법
WO2012005545A4 (en) Method for economical extraction of lithium from solution including lithium
US5955042A (en) Method of treating spent potliner material from aluminum reduction cells
WO2013165071A1 (ko) 고순도 황산망간일수화물의 제조방법 및 그 제조방법에 의하여 제조된 고순도 황산망간일수화물
KR101873933B1 (ko) 탄산리튬을 이용한 수산화리튬의 제조방법
WO2018110974A1 (ko) 인산리튬으로부터 수산화리튬을 제조하는 방법
WO2023191414A1 (ko) 블랙 매스로부터 이차전지 소재의 제조방법
EP1047636A4 (en) PROCESS FOR TREATING MATERIAL FROM A USED COATING FROM AN ELECTROLYTIC ALUMINUM PRODUCTION TANK
WO2018164340A1 (ko) 리튬 함유 폐기물로부터 리튬 화합물을 회수하는 방법
WO2012081897A2 (ko) 니켈 함유 원료로부터 페로니켈을 농축 회수하는 방법, 상기 농축된 페로니켈로부터 니켈을 회수하는 방법 및 상기 방법에서 발생하는 철 함유 용액을 재활용하는 방법
WO2019190163A1 (ko) 해수의 간접탄산화를 이용한 고순도 배터라이트형 및 칼사이트형 탄산칼슘의 제조방법
WO2023282565A1 (ko) 암모니아 용액을 이용한 오산화바나듐의 부분환원방법 및 이로부터 제조된 이산화바나듐 분말
WO2022055272A1 (ko) 양극재 회수 방법
WO2022045747A1 (ko) 리튬을 함유하는 원료에서 수산화리튬을 제조하는 방법
WO2017123036A1 (ko) 과산화수소 분해용 고체상 촉매 및 이의 제조 방법
WO2023182561A1 (ko) 리튬 이차전지 폐기물로부터 용매추출을 이용한 유가금속의 선택적 회수방법
WO2024014804A1 (ko) 희토류 금속의 회수 방법
WO2023080562A1 (ko) 탄산리튬 및 바륨화합물을 이용한 수산화리튬 제조방법
WO2023146340A1 (ko) 황산리튬 및 산화바륨을 이용한 수산화리튬 제조방법
WO2011155666A1 (en) Method of continuously producing tetrafluorosilane by using various fluorinated materials, amorphous silica and sulfuric acid
CA2365855C (en) Method of treating spent potliner material from aluminum reduction cells
WO2024147554A1 (ko) 저농도 리튬폐액으로부터 고효율 리튬 회수방법과 이를 통해 제조된 탄산리튬
WO2023017910A1 (en) Recycling method of positive electrode material for secondary batteries and device using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22788333

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18555648

Country of ref document: US

Ref document number: 3215628

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2022788333

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022788333

Country of ref document: EP

Effective date: 20231114