WO2018105612A1 - 防振パレットおよびガラス梱包体 - Google Patents

防振パレットおよびガラス梱包体 Download PDF

Info

Publication number
WO2018105612A1
WO2018105612A1 PCT/JP2017/043648 JP2017043648W WO2018105612A1 WO 2018105612 A1 WO2018105612 A1 WO 2018105612A1 JP 2017043648 W JP2017043648 W JP 2017043648W WO 2018105612 A1 WO2018105612 A1 WO 2018105612A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibration
elastic body
shows
graph
pallet
Prior art date
Application number
PCT/JP2017/043648
Other languages
English (en)
French (fr)
Inventor
隆行 野田
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to CN201790001358.3U priority Critical patent/CN210259241U/zh
Priority to JP2018555015A priority patent/JPWO2018105612A1/ja
Publication of WO2018105612A1 publication Critical patent/WO2018105612A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/02Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents specially adapted to protect contents from mechanical damage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D85/00Containers, packaging elements or packages, specially adapted for particular articles or materials
    • B65D85/30Containers, packaging elements or packages, specially adapted for particular articles or materials for articles particularly sensitive to damage by shock or pressure
    • B65D85/48Containers, packaging elements or packages, specially adapted for particular articles or materials for articles particularly sensitive to damage by shock or pressure for glass sheets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/02Springs made of steel or other material having low internal friction; Wound, torsion, leaf, cup, ring or the like springs, the material of the spring not being relevant
    • F16F1/04Wound springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/04Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means
    • F16F15/06Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means with metal springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F3/00Spring units consisting of several springs, e.g. for obtaining a desired spring characteristic
    • F16F3/08Spring units consisting of several springs, e.g. for obtaining a desired spring characteristic with springs made of a material having high internal friction, e.g. rubber
    • F16F3/10Spring units consisting of several springs, e.g. for obtaining a desired spring characteristic with springs made of a material having high internal friction, e.g. rubber combined with springs made of steel or other material having low internal friction
    • F16F3/12Spring units consisting of several springs, e.g. for obtaining a desired spring characteristic with springs made of a material having high internal friction, e.g. rubber combined with springs made of steel or other material having low internal friction the steel spring being in contact with the rubber spring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F7/00Vibration-dampers; Shock-absorbers

Definitions

  • the present invention relates to an anti-vibration pallet and a glass package.
  • the anti-vibration pallet for transporting cargo such as precision equipment includes a cargo bed portion for storing the cargo, a vibration isolator disposed on the lower surface of the cargo bed portion, and a base for holding the cargo bed portion via the vibration isolator. Some have a pedestal.
  • an anti-vibration device for an anti-vibration pallet for example, as disclosed in Patent Document 1, one having a coil spring arranged so that its central axis faces vertically is widely used.
  • This type of vibration isolator (hereinafter also referred to as an inverted spring (vertical spring) type vibration isolator) absorbs the impact in the vertical direction (for example, the vertical direction) by the vertical deflection of the coil spring, and the lateral deflection of the coil spring. Absorbs lateral (eg, horizontal) impact.
  • a vibration isolating pallet equipped with an inverted spring type vibration isolator may be used, but the following problems may occur.
  • the inorganic brittle material included in the luggage may be damaged.
  • the breakage of the inorganic brittle material includes, for example, cracks, chips and cracks.
  • the bending deformation that is dominant due to lateral deflection causes the loading platform to be tilted, so that it is likely to cause the load to sway when absorbing the impact in the lateral direction.
  • This shaking is a rolling accompanied by a movement like a pendulum, and is particularly large at the top of the luggage.
  • this roll is accompanied by a continuous change in the center of gravity of the package being transported, there is a risk of inducing continuous vibration of the package. Therefore, there is a possibility that the inorganic brittle material contained in the luggage may be damaged by such continuous vibration of the luggage.
  • the technical problem of the present invention is to provide an anti-vibration pallet that can reliably prevent damage to inorganic brittle materials during transportation.
  • An anti-vibration pallet according to the present invention which was created to solve the above-described problems, is an anti-vibration pallet for transporting a load containing an inorganic brittle material.
  • An anti-vibration device disposed on the lower surface, and a base portion that holds the cargo bed portion via the anti-vibration device, wherein the anti-vibration device is disposed such that the central axis faces sideways, And a holding tool for holding the spiral elastic body.
  • the simultaneous impact input from all directions is sufficiently absorbed.
  • deformation that absorbs a longitudinal impact compression deformation
  • deformation that absorbs a lateral impact shear or roll deformation
  • the deformation that absorbs the longitudinal impact and the deformation that absorbs the lateral impact can occur independently of each other, even if these deformations occur at the same time, the deformations do not interfere with each other. Therefore, as described above, simultaneous impact inputs from all directions can be sufficiently absorbed.
  • the above-described impact absorbing effect and vibration preventing effect can reliably prevent the inorganic brittle material from being damaged during transportation.
  • the spiral elastic body is preferably a metal wire rope. If it does in this way, at the time of a deformation
  • the spiral elastic body may be embedded in the rubber material. If it does in this way, at the time of a deformation
  • the loading platform has a rectangular shape in plan view, and the vibration isolator is disposed at at least four corners of the loading platform, and the central axis of the spiral elastic body of the vibration isolator disposed at each of the four corners.
  • the central axis of the spiral elastic body of the vibration isolator disposed at each of the four corners is along the bisector of the angle formed by the two adjacent sides of the cargo bed portion constituting the disposed corner. Preferably it is.
  • the central axis of the spiral elastic body of the vibration isolator disposed at each of the four corners is orthogonal to the bisector of the angle formed by the adjacent two sides of the loading platform that constitutes the disposed corner. Preferably along the line.
  • the inorganic brittle material may be a glass material or a ceramic material.
  • a glass plate package may be formed by placing a plurality of laminated glass plates in a vertical posture on the above vibration proof pallet.
  • FIG. 1 It is a side view which shows a vibration isolating pallet. It is a top view which shows a vibration proof pallet. It is a perspective view which shows the vibration isolator of a vibration proof pallet. It is a figure for demonstrating the compression deformation of a vibration isolator. It is a figure for demonstrating the shear deformation of a vibration isolator. It is a figure for demonstrating the roll deformation
  • FIG. 3 is a schematic plan view showing a vibration isolating pallet of Example 1. It is a schematic plan view which shows the vibration proof pallet of Example 2.
  • FIG. 6 is a schematic plan view showing a vibration proof pallet of Example 3.
  • FIG. It is a graph which shows the whole waveform of the input impact in a comparative example, Comprising: It is a graph which shows the measurement result of the front-back direction. It is a graph which shows the whole waveform of the input impact in a comparative example, Comprising: It is a graph which shows the measurement result of the left-right direction. It is a graph which shows the whole waveform of the input impact in a comparative example, Comprising: It is a graph which shows the measurement result of an up-down direction.
  • a vibration isolating pallet 1 includes a loading platform 2, a vibration isolator 3 disposed on the lower surface of the loading platform 2, and a loading platform 2 through the vibration isolator 3. And a base portion 4 for holding the
  • a luggage 5 containing an inorganic brittle material is stored on the upper surface of the loading platform 2.
  • the loading platform 2 includes a frame body 21 and support bars 22 that are installed between the frame bodies 21 in the vertical and horizontal directions.
  • the frame body 21 and the support bar 22 are made of metal (preferably made of poless).
  • the lower surface of the base 4 is placed on a floor surface or a truck bed. Similar to the loading platform 2, the base 4 includes a metal frame and a support bar.
  • the vibration isolator 3 includes a spiral elastic body 31 arranged so that the central axis X faces sideways (preferably in a horizontal direction), and a pair of holders that hold the spiral elastic body 31. 32 and 33, and has a substantially cylindrical shape as a whole.
  • the vibration isolator 3 is disposed at a position corresponding to the frame body and the support bar of the loading platform 2 and the base platform 4.
  • the helical elastic body 31 may be a resin material including a rubber material, but in the present embodiment, the helical elastic body 31 is formed by twisting and / or braiding thin metal wires (for example, steel or stainless steel). Metal wire rope (metal material). In particular, the metal material is preferably a stainless material from the viewpoint of durability and environmental resistance.
  • the spiral elastic body 31 is formed by winding a metal wire rope having a bent portion 31a bent in half at an intermediate portion of the spiral elastic body 31 toward different ends by drawing a reversely wound spiral with the same central axis. It has been done. That is, the spiral elastic body 31 has a right-handed part 31b and a left-handed part 31c with the bent part 31a as a boundary.
  • Each holder 32, 33 is a long plate material, and has a plurality of through holes 32a, 33a for inserting the spiral elastic body 31 at intervals in the longitudinal direction. The spiral elastic body 31 is alternately inserted into the through holes 32a and 33a of the holder 32 and the holder 33, and maintains a spirally wound state.
  • the holders 32 and 33 are arranged so as to be parallel to the central axis X of the spiral elastic body 31 and to face each other in the vertical direction with the central axis X interposed therebetween.
  • the longitudinal direction of the vibration isolator 3 coincides with the direction of the central axis X of the spiral elastic body 31.
  • Each holder 32, 33 has mounting holes 32b, 33b, and fixing members such as screws are inserted into the mounting holes 32b, 33b.
  • the vibration isolator 3 is detachably attached to the loading platform 2 and the base 4.
  • the vibration isolator 3 may have a non-detachable configuration that is fixed by welding or the like.
  • the vibration isolator 3 configured as described above has a deformation that absorbs a longitudinal impact (for example, a compressive deformation as shown in FIG. 3A) and a deformation that absorbs a lateral impact (for example, a shear as shown in FIG. 3B).
  • the deformation is different from the deformation or roll deformation as shown in FIG. 3C. Therefore, even if a deformation that absorbs a lateral impact and a deformation that absorbs a longitudinal impact occur at the same time, the deformations do not interfere with each other, and the simultaneous impact inputs from all directions can be sufficiently absorbed.
  • the roll like a pendulum hardly occurs and the upper surface of the loading platform 2 is not easily tilted.
  • the vibration isolator 3 is arranged at positions corresponding to the frames and support bars of the loading platform 2 and the base 4.
  • the central axis X of the spiral elastic body 31 of the vibration isolator 3 arranged at each of the four corners is inclined with respect to each of the two adjacent sides of the loading platform 2 constituting the arranged corner.
  • the vibration isolator 3 arranged at the four corners is arranged radially or concentrically with respect to the center of the loading platform 2.
  • the luggage 5 is stored so that the four corners of the loading platform 2 and the four corners of the luggage 5 coincide.
  • the central axis X of the spiral elastic body 31 of the vibration isolator 3 arranged at the corner is a line perpendicular to the bisector of the angle formed by the two adjacent sides of the loading platform 2 constituting the corner.
  • “along a line perpendicular to the bisector” means that the line is completely parallel to the line perpendicular to the bisector, as well as being completely coincident with the line perpendicular to the bisector. It is a concept that includes cases where it is possible.
  • the inclination angle ⁇ of the central axis X of the spiral elastic body 31 is preferably 125 to 145 °, and particularly preferably 135 °.
  • the central axis X of the spiral elastic body 31 of the vibration isolator 3 arranged at the corner may be along a bisector of an angle formed by two adjacent sides of the loading platform 2 constituting the corner.
  • “along a bisector” is a concept that includes not only the case where it completely coincides with the bisector, but also the case where it can be considered substantially parallel to the bisector.
  • the inclination angle ⁇ of the central axis X of the spiral elastic body 31 is preferably 35 to 55 °, and particularly preferably 45 °.
  • the luggage 5 is stored in the anti-vibration pallet 1 configured as described above. Thereby, a package including the vibration isolating pallet 1 and the luggage 5 is formed.
  • a glass plate 52 which is a glass material, is placed on a vertical holding base 51 in a vertical posture (an inclined posture of 45 ° to 80 ° with respect to the horizontal direction is preferable, and 60 °
  • the laminated ones are preferably held and fixed.
  • the holding stand 51 includes a bottom surface support portion 51a that supports the bottom surface of the laminated body of the glass plates 52 in a vertical posture, and a back surface support portion 51b that supports the back surface of the laminated body.
  • a presser plate is arranged on the forefront of the laminate, and a presser bar that protrudes on both sides of the laminate in the width direction (for example, the horizontal direction) is arranged on the presser plate. Then, the laminated body is fixed to the holding base 51 by tightening both ends of the presser bar so as to be pulled toward the back surface support portion 51b by the fastening member.
  • a pressing member that presses the side surface of the laminated body may be disposed.
  • convex portions are provided at the four corners of the upper surface of the loading platform 2 of the anti-vibration pallet 1, and at the four corners of the bottom surface of the bottom support 51a of the holding base 51.
  • grooved parts is mentioned.
  • a concave portion may be provided in the loading platform portion 2 of the anti-vibration pallet 1, and a convex portion may be provided in the bottom surface support portion 51a of the holding base 51.
  • the holding base 51 can be easily attached to and detached from the anti-vibration pallet 1.
  • the fixing method of a laminated body and the holding stand 51 and the fixing method of the anti-vibration pallet 1 and the holding stand 51 are not specifically limited, Arbitrary fixing methods are employable.
  • the glass plate 54 which is a glass material, is placed on the horizontal holding base 53 as the load 5 in a horizontal position (preferably from 0 ° (horizontal position) to 30 °, and from 0 ° to 15 °).
  • the laminate is held and fixed.
  • the holding base 53 includes a bottom surface support portion 53 a that supports the bottom surface of the laminated body of the glass plates 54 in the horizontal posture.
  • a presser plate is disposed on the foremost surface (uppermost surface) of the laminate, and a presser bar that protrudes on both sides of the laminate is disposed on the presser plate.
  • the laminated body is fixed to the holding base 53 by tightening both end portions so as to be pulled toward the bottom surface support portion 53 a side by a fastening member.
  • a pressing member that presses the side surface of the laminated body may be disposed.
  • a plurality of pressing members are arranged in a scattered manner so as to surround four sides of the laminated body.
  • the fixing method of a laminated body and the holding stand 53 and the fixing method of the anti-vibration pallet 1 and the holding stand 53 are not specifically limited, Arbitrary fixing methods can be employ
  • the size of the loading platform 2 is not particularly limited, but is substantially the same as the size of the bottom surface of the luggage 5 in this embodiment.
  • the glass material includes a glass roll obtained by winding a long glass film into a roll, a glass tube, and the like.
  • illustration is abbreviate
  • Example 1 Luggage Luggage is obtained by laminating a glass substrate for a liquid crystal display on a holding stand in a tilted posture of 72 degrees with respect to the horizontal (see FIG. 4).
  • the size of the luggage is 1050 mm long, 1950 mm wide, 1800 mm high, and its weight is 2000 kg.
  • (2) Anti-vibration pallet As shown in FIG. 6, as the anti-vibration device 3 of the anti-vibration pallet 1, a wire rope anti-vibration device (manufactured by ENIDINE) having a helical elastic body made of a stainless steel wire rope is used. 6 to 8, the configurations of the loading platform 2 and the vibration isolator 3 are simplified.
  • each anti-vibration device 3 is used, each having a load weight of about 500 kg.
  • the vibration isolator 3 is arrange
  • the inclination angle of each anti-vibration device 3 with respect to the long side of the loading platform 2 is 135 °.
  • the natural frequency of the vibration system composed of the load and the vibration isolating pallet 1 is set to 5 Hz, and the design is designed to absorb 7 Hz or more of vibration caused by external impact input. In general, since the frequency of the main vibration of the transport impact is 10 Hz or more, good vibration isolation characteristics can be obtained by designing to absorb 7 Hz or more.
  • Example 2 (1) Luggage Luggage is obtained by laminating a glass substrate for a liquid crystal display on a holding stand in a horizontal posture (see FIG. 5). The size of the luggage is 2300 mm in length, 2900 mm in width, and 700 mm in height, and its weight is 2200 kg.
  • (2) Anti-vibration pallet As shown in FIG. 7, as the anti-vibration device 3 of the anti-vibration pallet 1, the same type of wire rope anti-vibration device as that of the first embodiment is used. Ten anti-vibration devices 3 are used, and the load weight is about 220 kg.
  • vibration isolator 3 Four of the vibration isolator 3 are arranged at the four corners of the cargo bed portion 2 having substantially the same size as the bottom surface of the load (length 2300 mm, width 2900 mm) at an inclination angle of 135 ° with respect to the long side of the load bed portion 2.
  • the vibration isolator 3 arranged at the center of the long side of the loading platform 2 is parallel to the long side of the loading platform 2, and the vibration isolator 3 arranged near the center of the loading platform 2 is short of the loading platform 2. Parallel to the side.
  • the vibration isolator 3 By arranging the vibration isolator 3 in this way, it is possible to prevent sinking due to the deflection of the central part of the load and to equalize the amount of subsidence of all the vibration isolator 3.
  • a group of vibration isolators with a uniform amount of subsidence functions like a vibration isolator having a single spring constant and exhibits good vibration isolation characteristics.
  • the natural frequency of the vibration system including the luggage and the vibration isolating pallet 1 is set to 5 Hz, and the design is designed to absorb 7 Hz or more of vibration caused by external impact input.
  • Example 3 (1) Luggage Luggage is the same as in the first embodiment.
  • (2) Anti-vibration pallet As shown in FIG. 8, as the anti-vibration device 3 of the anti-vibration pallet 1, the same type of wire rope anti-vibration device as in the first and second embodiments is used. Seven anti-vibration devices 3 are used, each having a load weight of about 290 kg. Four of the vibration isolator 3 are arranged at the four corners of the loading platform 2 having substantially the same size as the bottom surface of the load (length 1050 mm, width 1950 mm) at an inclination angle of 135 ° with respect to the long side of the loading platform 2.
  • the vibration isolator 3 disposed at the center of the long side of the loading platform 2 is parallel to the long side of the loading platform 2, and the vibration isolator 3 disposed at the center of the support surface of the loading platform 2 is coupled to the loading platform 2. It is parallel to the short side.
  • the natural frequency of the vibration system including the luggage and the vibration isolating pallet 1 is set to 5 Hz, and the design is designed to absorb 7 Hz or more of vibration due to external impact input.
  • Luggage Luggage is the same as in the first and third embodiments.
  • Anti-vibration pallet An inverted spring type anti-vibration device is used as an anti-vibration device for the anti-vibration pallet. Use seven anti-vibration devices, each with a load weight of about 290 kg. Four of the anti-vibration devices are arranged at the four corners of the loading platform having substantially the same size (length 1050 mm, width 1950 mm) as the bottom surface of the load. Of the remaining three vibration isolators, two are arranged one by one in the center of each long side of the loading platform, and one is arranged in the center of the support surface of the loading platform.
  • the natural frequency of the vibration system composed of the load and the vibration isolating pallet is set to 5 Hz, and the design is designed to absorb 7 Hz or more of vibration caused by external impact input.
  • FIGS. 9A, B, C to 14A, B, C show the input impact and vibration isolation results during transportation for each of the above comparative example and example 3.
  • 9A, B and C to FIGS. 14A, B and C the vertical axis represents acceleration and the horizontal axis represents time.
  • FIGS. 9A, B, and C show the input impact of the comparative example
  • FIGS. 10A, B, and C to FIGS. 11A, B, and C show the vibration isolation results of the comparative example.
  • 12A, B, and C show the input impact of the third embodiment
  • FIGS. 13A, B, and C to FIG. 14A, B, and C show the vibration-proof results of the third embodiment.
  • the truck is transported for about 1 hour.
  • the impact acceleration during transportation is measured by a triaxial accelerometer.
  • Accelerometers are attached to the truck bed, the lower part of the luggage and the upper part of the luggage, respectively.
  • the measurement result of the accelerometer attached to the truck bed was used as the input impact
  • the measurement result of the accelerometer attached to each of the lower part of the luggage and the upper part of the luggage was used as the vibration isolation result.
  • the reason why the accelerometers are attached to the lower part and the upper part of the luggage is to confirm the difference in vibration behavior between the lower part and the upper part of the luggage.
  • the front and rear, left and right, and top and bottom directions are based on the traveling direction of the track.
  • FIG. 15A, B, C to FIGS. 20A, 20B, and 20C show the input impact and vibration isolation results during transportation, in which one second of a certain time zone during transportation is enlarged.
  • 15A, B, and C show the input impact of the comparative example
  • FIGS. 16A, B, and C to FIGS. 17A, B, and C show the vibration-proof results of the comparative example
  • 18A, B, and C show the input impact of the third embodiment
  • FIGS. 19A, B, and C to FIGS. 20A, B, and C show the vibration isolation results of the third embodiment.
  • the low-frequency vibration of about 1.5 Hz is prominent in the front-rear direction of the upper part of the load in the anti-vibration result of the comparative example. Since this vibration is not seen at the bottom of the load, it can be seen that the load is swayed in the front-rear direction as a result of vibration isolation. In addition, due to the influence of the shaking, the maximum shock after vibration isolation is larger than the maximum shock of the input shock in the front-rear direction and the left-right direction of either the upper part or the lower part of the luggage, and the situation deteriorates. It is confirmed that
  • Example 3 the vibration due to the low frequency vibration as in the comparative example is not seen, and it can be seen that the posture of the luggage is stable. Further, it is confirmed that the impact maximum value is lower than the input impact after vibration isolation at all positions and directions.
  • the vibration isolator 3 may be one in which a spiral elastic body 31 is embedded in a rubber material 34.
  • the rubber material 34 is preferably substantially cylindrical as a whole so as not to hinder the movement of the spiral elastic body 31.
  • the spiral elastic body 31 of the vibration isolator 3 has the right-handed portion 31b and the left-handed portion 31c with the bent portion 31a at the middle portion as a boundary
  • 31 is not limited to the structure which has the bending part 31a.
  • the spiral elastic body 31 of the vibration isolator 3 is a screw twisted around the central axis of the rope so that the winding direction of the metal wire rope changes in the middle part. While having the twist part 31d, you may have the right-handed part 31b and the left-handed part 31c by setting this twisted part 31d as a boundary.
  • the spiral elastic body 31 may be one that does not reverse the winding direction of the metal wire rope halfway (consisting only of a right-handed part or a left-handed part). That is, the helical elastic body 31 may be configured by a wire rope wound in one direction.
  • a holding base for laminating glass plates may be provided integrally.
  • the holding table has a vibration-proof pallet structure, only the laminated body portion of the glass plate excluding the holding table becomes the luggage.
  • one anti-vibration pallet can be shared with respect to several holding stand. Therefore, there is an advantage that the manufacturing cost of the pallet is reduced as compared with the case where the vibration-proof pallet and the holding base are integrated and cannot be separated or do not assume separation.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Pallets (AREA)
  • Packaging Frangible Articles (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

無機脆性材料を含む荷物(5)を輸送するための防振パレット(1)であって、荷物(5)が収納される荷台部(2)と、荷台部(2)の下面に配置された防振器(3)と、防振器(3)を介して荷台部(2)を保持する基台部(4)とを備え、防振器(3)が、中心軸(X)が横を向くように配置された螺旋状弾性体(31)と、螺旋状弾性体(31)を螺旋状に巻回された状態で保持する保持具(32,33)とを有する。

Description

防振パレットおよびガラス梱包体
 本発明は、防振パレットおよびガラス梱包体に関する。
 精密機器等の荷物を輸送するための防振パレットとしては、荷物が収納される荷台部と、荷台部の下面に配置された防振器と、防振器を介して荷台部を保持する基台部とを備えたものがある。
 防振パレットの防振器としては、例えば、特許文献1に開示されているように、中心軸が縦を向くように配置されたコイルばねを有するものが広く用いられている。この種の防振器(以下、倒立ばね(縦ばね)式防振器ともいう)は、コイルばねの縦たわみで縦方向(例えば、鉛直方向)の衝撃を吸収し、コイルばねの横たわみで横方向(例えば、水平方向)の衝撃を吸収する。
特開2016-8664号公報
 ところで、ガラス板などの無機脆性材料を含む荷物を輸送する場合にも、倒立ばね式防振器を備えた防振パレットが用いられる場合があるが、次のような問題が生じ得る。
 すなわち、コイルばねの構造上、縦たわみに伴う伸縮変形は比較的滑らかに生じる。そのため、縦方向の衝撃入力時には、コイルばねの縦たわみによって衝撃を効果的に吸収できる。一方、横方向の衝撃入力時には、コイルばねの横たわみによって衝撃を吸収することになるが、横たわみでは、コイルばねの曲げ変形が支配的になるとともに、せん断変形のような変形要素も加わる。これらの横方向の変形はコイルばねの伸縮裕度の範囲で生じ得る。しかし、輸送時の荷物などによる縦方向負荷でコイルばねに圧縮が既に生じている状態では、伸縮裕度の余地が少なく、横方向の変形は阻害されてしまう。したがって、輸送時のあらゆる方向からの同時発生的な衝撃入力に対して十分な衝撃吸収効果を発揮することが難しく、荷物に含まれる無機脆性材料が破損するおそれがある。なお、無機脆性材料の破損には、例えば、割れ、欠け、ひびなどがある。
 また、横たわみで支配的な曲げ変形は荷台部を傾かせる原因になるため、横方向の衝撃吸収時には荷物の揺れを招きやすい。この揺れは、振り子のような動きを伴う横揺れであり、特に荷物上部で大きくなる。しかも、この横揺れは輸送中の荷物の重心位置の連続的な変化を伴うので、荷物の継続的な振動を誘発するおそれがある。したがって、このような継続的な荷物の振動によっても、荷物に含まれる無機脆性材料が破損するおそれがある。
 本発明は、輸送時の無機脆性材料の破損を確実に防止し得る防振パレットを提供することを技術的課題とする。
 上記の課題を解決するために創案された本発明に係る防振パレットは、無機脆性材料を含む荷物を輸送するための防振パレットであって、荷物が収納される荷台部と、荷台部の下面に配置された防振器と、防振器を介して荷台部を保持する基台部とを備え、防振器が、中心軸が横を向くように配置された螺旋状弾性体と、螺旋状弾性体を保持する保持具とを備えていることを特徴とする。
 このような構成によれば、第一に、外部からの衝撃入力に対して防振器の螺旋状弾性体が柔軟に変形するため、あらゆる方向からの同時発生的な衝撃入力を十分に吸収することができる。詳細には、螺旋状弾性体において、縦方向衝撃を吸収する変形(圧縮変形)と、横方向衝撃を吸収する変形(せん断又はロール変形)とが異なる要素の変形となる。すなわち、縦方向衝撃を吸収する変形と、横方向衝撃を吸収する変形は、互いに独立して生じ得るため、同時にこれらの変形が生じても各変形が互いに阻害し合うことがない。そのため、上述のように、あらゆる方向からの同時発生的な衝撃入力を十分に吸収することができる。第二に、横方向衝撃を吸収する際に、振り子のような横揺れが生じにくいため、荷台部が傾きにくい。そのため、荷物に揺れに伴う不当な振動が生じにくくなる。したがって、上記の衝撃吸収効果と振動防止効果により、輸送時の無機脆性材料の破損を確実に防止することが可能となる。
 上記の構成において、螺旋状弾性体が、金属製ワイヤーロープであることが好ましい。このようにすれば、螺旋状弾性体の変形時に、金属製ワイヤーロープを構成する金属線同士の摩擦や編み込みの崩れなどで変形に対する抵抗が生まれる。その結果、螺旋状弾性体の変形状態の連続的な変化を適度に減衰させることができる。この減衰効果によって衝撃入力による振動発生を速やかに収束させることができる。
 上記の構成において、螺旋状弾性体が、ゴム材に埋設されていてもよい。このようにすれば、螺旋状弾性体の変形時に、螺旋状弾性体の変形を大きく阻害することなく螺旋状弾性体の変形状態の連続的な変化を適度に減衰させることができる。この減衰効果によって衝撃入力による振動発生を速やかに収束させることができる。また、螺旋状弾性体がゴム材によって保護されるので、例えばフォークリフトの爪などが接触したときであっても、螺旋状弾性体の損傷を防ぐことができる。
 上記の構成において、荷台部が平面視で矩形状をなすとともに、防振器が荷台部の少なくとも四隅に配置されており、四隅の各々に配置された防振器の螺旋状弾性体の中心軸が、その配置された隅を構成する荷台部の隣接二辺のそれぞれに対して傾斜していることが好ましい。このようにすれば、あらゆる方向への変位が集中しやすい荷台部の四隅において、衝撃吸収の自由度を高めることができる。
 上記の構成において、四隅の各々に配置された防振器の螺旋状弾性体の中心軸が、その配置された隅を構成する荷台部の隣接二辺のなす角の二等分線に沿っていることが好ましい。
 上記の構成において、四隅の各々に配置された防振器の螺旋状弾性体の中心軸が、その配置された隅を構成する荷台部の隣接二辺のなす角の二等分線に直交する線に沿っていることが好ましい。
 上記の構成において、無機脆性材料は、ガラス材又はセラミックス材であってもよい。
 上記の防振パレットに、荷物としてガラス板を縦姿勢で複数枚積層したものを載置し、ガラス板梱包体としてもよい。
 以上のように本発明によれば、輸送時の無機脆性材料の破損を確実に防止することができる。
防振パレットを示す側面図である。 防振パレットを示す平面図である。 防振パレットの防振器を示す斜視図である。 防振器の圧縮変形を説明するための図である。 防振器のせん断変形を説明するための図である。 防振器のロール変形を説明するための図である。 防振パレットに荷物を収納した梱包体(ガラス梱包体)の一例を示す側面図である。 防振パレットに荷物を収納した梱包体(ガラス梱包体)の他の一例を示す側面図である。 実施例1の防振パレットを示す概略平面図である。 実施例2の防振パレットを示す概略平面図である。 実施例3の防振パレットを示す概略平面図である。 比較例における入力衝撃の全体波形を示すグラフであって、前後方向の測定結果を示すグラフである。 比較例における入力衝撃の全体波形を示すグラフであって、左右方向の測定結果を示すグラフである。 比較例における入力衝撃の全体波形を示すグラフであって、上下方向の測定結果を示すグラフである。 比較例の荷物下部における防振結果の全体波形を示すグラフであって、前後方向の測定結果を示すグラフである。 比較例の荷物下部における防振結果の全体波形を示すグラフであって、左右方向の測定結果を示すグラフである。 比較例の荷物下部における防振結果の全体波形を示すグラフであって、上下方向の測定結果を示すグラフである。 比較例の荷物上部における防振結果の全体波形を示すグラフであって、前後方向の測定結果を示すグラフである。 比較例の荷物上部における防振結果の全体波形を示すグラフであって、左右方向の測定結果を示すグラフである。 比較例の荷物上部における防振結果の全体波形を示すグラフであって、上下方向の測定結果を示すグラフである。 実施例3における入力衝撃の全体波形を示すグラフであって、前後方向の測定結果を示すグラフである。 実施例3における入力衝撃の全体波形を示すグラフであって、左右方向の測定結果を示すグラフである。 実施例3における入力衝撃の全体波形を示すグラフであって、上下方向の測定結果を示すグラフである。 実施例3の荷物下部における防振結果の全体波形を示すグラフであって、前後方向の測定結果を示すグラフである。 実施例3の荷物下部における防振結果の全体波形を示すグラフであって、左右方向の測定結果を示すグラフである。 実施例3の荷物下部における防振結果の全体波形を示すグラフであって、上下方向の測定結果を示すグラフである。 実施例3の荷物上部における防振結果の全体波形を示すグラフであって、前後方向の測定結果を示すグラフである。 実施例3の荷物上部における防振結果の全体波形を示すグラフであって、左右方向の測定結果を示すグラフである。 実施例3の荷物上部における防振結果の全体波形を示すグラフであって、上下方向の測定結果を示すグラフである。 比較例における入力衝撃の1秒間拡大波形を示すグラフであって、前後方向の測定結果を示すグラフである。 比較例における入力衝撃の1秒間拡大波形を示すグラフであって、左右方向の測定結果を示すグラフである。 比較例における入力衝撃の1秒間拡大波形を示すグラフであって、上下方向の測定結果を示すグラフである。 比較例の荷物下部における防振結果の1秒間拡大波形を示すグラフであって、前後方向の測定結果を示すグラフである。 比較例の荷物下部における防振結果の1秒間拡大波形を示すグラフであって、左右方向の測定結果を示すグラフである。 比較例の荷物下部における防振結果の1秒間拡大波形を示すグラフであって、上下方向の測定結果を示すグラフである。 比較例の荷物上部における防振結果の1秒間拡大波形を示すグラフであって、前後方向の測定結果を示すグラフである。 比較例の荷物上部における防振結果の1秒間拡大波形を示すグラフであって、左右方向の測定結果を示すグラフである。 比較例の荷物上部における防振結果の1秒間拡大波形を示すグラフであって、上下方向の測定結果を示すグラフである。 実施例3における入力衝撃の1秒間拡大波形を示すグラフであって、前後方向の測定結果を示すグラフである。 実施例3における入力衝撃の1秒間拡大波形を示すグラフであって、左右方向の測定結果を示すグラフである。 実施例3における入力衝撃の1秒間拡大波形を示すグラフであって、上下方向の測定結果を示すグラフである。 実施例3の荷物下部における防振結果の1秒間拡大波形を示すグラフであって、前後方向の測定結果を示すグラフである。 実施例3の荷物下部における防振結果の1秒間拡大波形を示すグラフであって、左右方向の測定結果を示すグラフである。 実施例3の荷物下部における防振結果の1秒間拡大波形を示すグラフであって、上下方向の測定結果を示すグラフである。 実施例3の荷物上部における防振結果の1秒間拡大波形を示すグラフであって、前後方向の測定結果を示すグラフである。 実施例3の荷物上部における防振結果の1秒間拡大波形を示すグラフであって、左右方向の測定結果を示すグラフである。 実施例3の荷物上部における防振結果の1秒間拡大波形を示すグラフであって、上下方向の測定結果を示すグラフである。 防振器の第一の変形例を示す正面図である。 防振器の第二の変形例を示す平面図である。
 以下、本発明の実施形態を添付図面に基づいて説明する。
 図1A,Bに示すように、本実施形態に係る防振パレット1は、荷台部2と、荷台部2の下面に配置された防振器3と、防振器3を介して荷台部2を保持する基台部4とを備える。
 荷台部2の上面には、無機脆性材料を含む荷物5が収納される。荷台部2は、枠体21と、枠体21間に縦横に架設された支持桟22とを備える。枠体21及び支持桟22は、金属製(好ましくはステレンレス製)である。
 基台部4の下面は、床面やトラックの荷台などに載置される。基台部4は、荷台部2と同様に、金属製の枠体及び支持桟を備える。
 図2に示すように、防振器3は、中心軸Xが横(好ましくは水平方向)を向くように配置された螺旋状弾性体31と、螺旋状弾性体31を保持する一対の保持具32,33とを備え、全体として略円筒状をなす。防振器3は、荷台部2及び基台部4の枠体や支持桟に対応する位置に配置される。
 螺旋状弾性体31は、ゴム材を含む樹脂材などであってもよいが、本実施形態では、細い金属線(例えば鋼鉄やステンレスなど)を撚り合せること、及び/又は、編み込むことで形成された金属製ワイヤーロープ(金属材)である。特に、金属材は、耐久性や耐環境性の観点から、ステンレス材であることが好ましい。
 詳細には、螺旋状弾性体31は、その中間部に二つに折り曲げられた折り曲げ部31aを有する金属製ワイヤーロープが同一中心軸で逆巻きの螺旋を描いて互いに異なる端部に向かって巻回されたものである。すなわち、螺旋状弾性体31は、折り曲げ部31aを境界として、右巻き部31bと左巻き部31cとを有する。各保持具32,33は、長尺な板材であり、その長手方向に間隔を置いて螺旋状弾性体31を挿通するための複数の貫通孔32a,33aを有する。螺旋状弾性体31は、保持具32と保持具33の各貫通孔32a,33aに交互に挿通され、螺旋状に巻回された状態を維持する。各保持具32,33は、螺旋状弾性体31の中心軸Xと平行で、かつ、中心軸Xを挟んで上下方向に対向するように配置される。すなわち、本実施形態では、防振器3の長手方向が、螺旋状弾性体31の中心軸Xの方向と一致する。
 また、各保持具32,33は、取付穴32b,33bを有しており、この取付穴32b,33bにネジなどの固定部材が挿通される。これにより、防振器3が荷台部2及び基台部4に着脱可能に取り付けられる。このように防振器3を着脱可能な構成とすることで、荷物5の重量などに応じて、防振器3の数や取付位置を簡単に調整することができる。なお、防振器3は、溶接等により固定された着脱不能な構成であってもよい。
 このように構成された防振器3は、縦方向衝撃を吸収する変形(例えば、図3Aに示すような圧縮変形)と、横方向衝撃を吸収する変形(例えば、図3Bに示すようなせん断変形又は図3Cに示すようなロール変形)とが異なる要素の変形となる。そのため、横方向衝撃を吸収する変形と縦方向衝撃を吸収する変形が同時に生じても、各変形が互いに阻害し合うことがなく、あらゆる方向からの同時発生的な衝撃入力を十分に吸収できるという利点がある。また、横方向衝撃を吸収する際に、振り子のような横揺れが生じにくく、荷台部2の上面が傾きにくいという利点もある。
 再び図1Bに戻って説明すると、防振器3は、荷台部2及び基台部4の枠体や支持桟に対応する位置に四つ以上配置することが好ましい。この場合、荷台部2の四隅のそれぞれに防振器3を配置することが好ましい。四隅の各々に配置された防振器3の螺旋状弾性体31の中心軸Xは、その配置された隅を構成する荷台部2の隣接二辺のそれぞれに対して傾斜していることが好ましい。この場合、例えば、四隅に配置された防振器3を荷台部2の中心に対して放射状又は同心円状に配置する。ここで、本実施形態に係る防振パレットでは、例えば、荷台部2の四隅と荷物5の四隅が一致するように、荷物5が収納される。
 図1Bでは、隅に配置された防振器3の螺旋状弾性体31の中心軸Xが、その隅を構成する荷台部2の隣接二辺のなす角の二等分線に直交する線に沿っている。ここで、「二等分線に直交する線に沿う」とは、二等分線と直交する線に完全に一致する場合の他、二等分線に直交する線と実質的に平行とみなすことができる場合をも含む概念である。この場合、螺旋状弾性体31の中心軸Xの傾斜角θは、125~145°であることが好ましく、特に135°であることが好ましい。
 また、隅に配置された防振器3の螺旋状弾性体31の中心軸Xは、その隅を構成する荷台部2の隣接二辺のなす角の二等分線に沿っていてもよい。ここで、「二等分線に沿う」とは、二等分線に完全に一致する場合の他、二等分線と実質的に平行とみなすことができる場合をも含む概念である。この場合、螺旋状弾性体31の中心軸Xの傾斜角θは、35~55°であることが好ましく、特に45°であることが好ましい。
 以上のように構成された防振パレット1には、例えば図4及び図5に示すように、荷物5が収納される。これにより、防振パレット1と荷物5とを備える梱包体が形成される。
 図4の梱包体では、荷物5として、縦置き用保持台51の上に、ガラス材であるガラス板52を縦姿勢(水平方向に対して45°~80°の傾斜姿勢が好ましく、60°~75°がより好ましい)で積層したものが保持固定されている。保持台51は、縦姿勢のガラス板52の積層体の底面を支持する底面支持部51aと、その積層体の背面を支持する背面支持部51bとを備えている。そして、図示は省略するが、例えば、積層体の最前面に押え板を配置すると共に、この押え板の上に積層体の幅方向(例えば、水平方向)の両側に食み出す押えバーを配置し、押えバーの両端部を締結部材によって背面支持部51b側に引き込むように締め付けることで、積層体が保持台51に固定される。積層体の幅方向の移動を規制するために、積層体の側面を押圧する押え部材を配置してもよい。防振パレット1と保持台51の固定方法としては、例えば、防振パレット1の荷台部2の上面の四隅等に凸部を設けると共に、保持台51の底面支持部51aの底面の四隅等に凹部を設け、これらの凹凸部の嵌め合わせにより固定する方法が挙げられる。もちろん、凹凸部の嵌め合わせに際し、防振パレット1の荷台部2に凹部、保持台51の底面支持部51aに凸部を設けてもよい。このような凹凸部の嵌め合わせによる固定方法であれば、防振パレット1に対する保持台51の着脱が容易となる。なお、積層体と保持台51の固定方法や防振パレット1と保持台51の固定方法は、特に限定されず、任意の固定方法を採用することができる。
 また、図5の梱包体では、荷物5として、横置き用保持台53の上に、ガラス材であるガラス板54を横姿勢(0°(水平姿勢)~30°が好ましく、0°~15°がより好ましい)で積層したものが保持固定されている。保持台53は、横姿勢のガラス板54の積層体の底面を支持する底面支持部53aを備えている。そして、図示は省略するが、例えば、積層体の最前面(最上面)に押え板を配置すると共に、この押え板の上に積層体の両側に食み出す押えバーを配置し、押えバーの両端部を締結部材によって底面支持部53a側に引き込むように締め付けることで、積層体が保持台53に固定される。積層体の横ずれを規制するために、積層体の側面を押圧する押え部材を配置してもよい。押え部材は、例えば、積層体の四方を取り囲むように点在して複数配置される。防振パレット1と保持台53の固定方法としては、例えば、上記の縦置き用保持台51で例示した凹凸部の嵌め合わせにより固定する方法を同様に適用することができる。なお、積層体と保持台53の固定方法や防振パレット1と保持台53の固定方法は、特に限定されず、任意の固定方法を採用することができる。
 ここで、これらの積層体の場合、ガラス板52,54の各相互間には、紙(合紙)や発泡樹脂シートなどの保護シート(不図示)を挟むことが好ましい。荷台部2の大きさは特に限定されるものではないが、本実施形態では、荷物5の底面の大きさと実質的に同じである。なお、ガラス材には、ガラス板以外にも、長尺なガラスフィルムをロール状に巻き取ったガラスロールや、ガラス管などが含まれる。また、図示は省略するが、防振パレット1には、任意の無機脆性材料を荷物として積載してよく、例えば、溶融設備を構成するための耐火物や、溶融ガラスを成形するためのセラミックス製成形体等が収納される場合もある。
(実施例1)
(1)荷物
 荷物は、保持台に液晶ディスプレイ用ガラス基板を水平に対して72度の傾斜姿勢で積層したものである(図4を参照)。荷物の大きさは、縦1050mm、横1950mm、高さ1800mmであり、その重さは、2000kgである。
(2)防振パレット
 図6に示すように、防振パレット1の防振器3として、ステンレス製ワイヤーロープからなる螺旋形状弾性体を備えたワイヤーロープ防振器(エニダイン社製)を用いる。なお、図6~図8では、荷台部2および防振器3の構成を簡略化して図示している。防振器3は四つ使用し、一個当たり約500kg重の負荷重量とする。防振器3は、上記荷物の底面と実質的に同じ大きさ(縦1050mm、横1950mm)を有する荷台部2の四隅に配置される。各防振器3の荷台部2の長辺に対する傾斜角は135°である。また、荷物と防振パレット1からなる振動系の固有振動数を5Hzに設定し、外部からの衝撃入力による振動の7Hz以上を吸収する設計とする。一般に、輸送衝撃の主たる振動の周波数は10Hz以上であるので、7Hz以上を吸収する設計とすることで、良好な防振特性を得ることができる。
(実施例2)
(1)荷物
 荷物は、保持台に液晶ディスプレイ用ガラス基板を水平姿勢で積層したものである(図5を参照)。荷物の大きさは、縦2300mm、横2900mm、高さ700mmであり、その重さは、2200kgである。
(2)防振パレット
 図7に示すように、防振パレット1の防振器3としては、実施例1と同種のワイヤーロープ防振器を用いる。防振器3は十個使用し、一個当たり約220kg重の負荷重量とする。防振器3のうち四個は、荷物の底面と実質的に同じ大きさ(縦2300mm、横2900mm)を有する荷台部2の四隅に、荷台部2の長辺に対する傾斜角135°で配置される。残り六個の防振器3のうち、二個は荷台部2の各長辺の中央に一つずつ配置され、四個は荷台部2の中央付近に対称配置される。荷台部2の長辺の中央に配置された防振器3は、荷台部2の長辺と平行であり、荷台部2の中央付近に配置された防振器3は、荷台部2の短辺と平行である。このように防振器3を配置することで、荷物中央部のたわみによる沈み込みを防ぎ、すべての防振器3の沈下量を均等にすることができる。沈下量が均等な防振器群は、一つのばね定数を有する防振器のように機能し、良好な防振特性を発揮する。なお、実施例1と同様に、荷物と防振パレット1からなる振動系の固有振動数を5Hzに設定し、外部からの衝撃入力による振動の7Hz以上を吸収する設計とする。
(実施例3)
(1)荷物
 荷物は、実施例1と同様である。
(2)防振パレット
 図8に示すように、防振パレット1の防振器3としては、実施例1及び2と同種のワイヤーロープ防振器を用いる。防振器3は七個使用し、一個当たり約290kg重の負荷重量とする。防振器3のうち四個は、荷物の底面と実質的に同じ大きさ(縦1050mm、横1950mm)を有する荷台部2の四隅に、荷台部2の長辺に対する傾斜角135°で配置される。残り三個の防振器3のうち、二個は荷台部2の各長辺の中央に一つずつ配置され、一個は荷台部2の支持面の中央に配置される。荷台部2の長辺の中央に配置された防振器3は、荷台部2の長辺と平行であり、荷台部2の支持面の中央に配置された防振器3は、荷台部2の短辺と平行である。このように防振器3を配置することで、荷物中央部のたわみによる沈み込みを防ぐことができる。なお、実施例1及び2と同様に、荷物と防振パレット1からなる振動系の固有振動数を5Hzに設定し、外部からの衝撃入力による振動の7Hz以上を吸収する設計とする。
(比較例)
(1)荷物
 荷物は、実施例1及び3と同様である。
(2)防振パレット
 防振パレットの防振器として、倒立ばね式の防振器を用いる。防振器は七個使用し、一個当たり約290kg重の負荷重量とする。防振器のうち四個は、荷物の底面と実質的に同じ大きさ(縦1050mm、横1950mm)を有する荷台部の四隅に配置される。残り三個の防振器のうち、二個は荷台部の各長辺の中央に一つずつ配置され、一個は荷台部の支持面の中央に配置される。比較例では、実施例1~3とは異なり、平面視における防振器の向きに特に指定はない。なお、実施例1~3と同様に、荷物と防振パレットからなる振動系の固有振動数を5Hzに設定し、外部からの衝撃入力による振動の7Hz以上を吸収する設計とする。
 次に、上記の比較例及び実施例3のそれぞれにつき、輸送時の入力衝撃及び防振結果を図9A,B,C~図14A,B,Cに示す。図9A,B,C~図14A,B,Cの各グラフにおいて縦軸は加速度、横軸は時間を各々示す。図9A,B,Cは比較例の入力衝撃であり、図10A,B,C~図11A,B,Cは比較例の防振結果である。また、図12A,B,Cは実施例3の入力衝撃であり、図13A,B,C~図14A,B,Cは実施例3の防振結果である。これらの結果は次のような試験によって得られたものである。
 まず、上記の比較例及び実施例3のそれぞれにつき、トラックで約1時間の輸送を行う。この際、三軸加速度計により輸送中の衝撃加速度を測定する。加速度計は、荷物近傍のトラックの荷台、荷物下部および荷物上部にそれぞれ取り付ける。そして、トラックの荷台に取り付けた加速度計の測定結果を入力衝撃、荷物下部と荷物上部のそれぞれに取り付けた加速度計の測定結果を防振結果とした。荷物下部と荷物上部のそれぞれに加速度計を取り付けた理由は、荷物下部と荷物上部の振動挙動の差を確認するためである。なお、図中において、前後、左右、上下のそれぞれの方向は、トラックの進行方向を基準とする。
 図10A,B,C~図11A,B,C、図13A,B,C~図14A,B,C、に示すように、比較例及び実施例3のいずれにおいても、防振後の衝撃最大値(振動波形の最大振幅)は約0.5G程度に低減されている。そのため、一見すると両者とも良好な防振性能を有するようにも思われる。しかしながら、実際には両者の防振性能には大きな相違があるため、下記の説明で相違を明確にする。
 すなわち、輸送中のある時間帯の1秒間を拡大した、輸送時の入力衝撃及び防振結果を図15A,B,C~図20A,B,Cに示す。図15A,B,Cは比較例の入力衝撃であり、図16A,B,C~図17A,B,Cは比較例の防振結果である。また、図18A,B,Cは実施例3の入力衝撃であり、図19A,B,C~図20A,B,Cは実施例3の防振結果である。
 これらの図に示すように、比較例の防振結果において、荷物上部の前後方向では約1.5Hzの低周波振動が顕著になっていることが確認される。この振動は荷物下部では見られないため、防振の結果、荷物に前後方向の揺れが生じていることが分かる。また、この揺れの影響で、荷物上部と荷物下部のいずれかの前後方向及び左右方向で、入力衝撃の衝撃最大値よりも防振後の衝撃最大値が大きくなっており、状況が悪化していることが確認される。
 一方、実施例3では、比較例のような低周波振動による揺れは見られず、荷物の姿勢が安定していることが分かる。また、すべての位置及び方向において、防振後において、入力衝撃よりも衝撃最大値が低減していることが確認される。
 以上、本実施形態に係る防振パレットについて説明したが、本発明の実施の形態はこれに限定されず、本発明の要旨を逸脱しない範囲で種々変更を施すことが可能である。
 例えば、図21に示すように、防振器3は、螺旋状弾性体31がゴム材34に埋設されたものであってもよい。この場合、螺旋状弾性体31の動きを阻害しないように、ゴム材34も全体として略円筒状であることが好ましい。
 上記の実施形態では、防振器3の螺旋状弾性体31として、その中間部の折り曲げ部31aを境界として、右巻き部31bと左巻き部31cとを有する場合を説明したが、螺旋状弾性体31は折り曲げ部31aを有する構成に限定されない。例えば、図22に示すように、防振器3の螺旋状弾性体31は、その中間部に金属製ワイヤーロープを巻回方向が変化するように、ロープの中心軸周りに捩じった捩じり部31dを有すると共に、この捩じり部31dを境界として、右巻き部31bと左巻き部31cとを有するものであってもよい。もちろん、螺旋状弾性体31は、金属製ワイヤーロープの巻回方向を途中で反転させないもの(右巻き部又は左巻き部のみからなるもの)であってもよい。すなわち、螺旋状弾性体31は、一方向に巻回されたワイヤーロープにより構成されていてもよい。
 上記の実施形態では、防振パレット1の荷台部2上に、荷台部2とは別体の保持台(製品パレット)51,53を固定する場合を説明したが、防振パレットの荷台部は、ガラス板を積層するための保持台を一体的に備えたものであってもよい。この場合、保持台は防振パレットの構成となるため、保持台を除くガラス板の積層体部分のみが荷物となる。なお、防振パレットと保持台とを別体として分離可能な構成とした場合、一つの防振パレットを複数の保持台に対して共用することができる。従って、防振パレットと保持台とを一体として分離不能あるいは分離を前提としない構成とした場合よりも、パレットの製造コストが安くなるという利点がある。
1     防振パレット
2     荷台部
3     防振器
31    螺旋状弾性体
32,33 保持具
34    ゴム材
4     基台部
5     荷物
51,53 保持台
52,54 ガラス板

Claims (8)

  1.  無機脆性材料を含む荷物を輸送するための防振パレットであって、
     前記荷物が収納される荷台部と、前記荷台部の下面に配置された防振器と、前記防振器を介して前記荷台部を保持する基台部とを備え、
     前記防振器が、中心軸が横を向くように配置された螺旋状弾性体と、前記螺旋状弾性体を保持する保持具とを有することを特徴とする防振パレット。
  2.  前記螺旋状弾性体が、金属製ワイヤーロープであることを特徴とする請求項1に記載の防振パレット。
  3.  前記螺旋状弾性体が、ゴム材に埋設されていることを特徴とする請求項1又は2に記載の防振パレット。
  4.  前記荷台部が平面視で矩形状をなすとともに、前記防振器が前記荷台部の少なくとも四隅に配置されており、
     前記四隅の各々に配置された前記防振器の前記螺旋状弾性体の前記中心軸が、その配置された隅を構成する前記荷台部の隣接二辺のそれぞれに対して傾斜していることを特徴とする請求項1~3のいずれか1項に記載の防振パレット。
  5.  前記四隅の各々に配置された前記防振器の前記螺旋状弾性体の前記中心軸が、その配置された隅を構成する前記荷台部の隣接二辺のなす角の二等分線に沿っていることを特徴とする請求項4に記載の防振パレット。
  6.  前記四隅の各々に配置された前記防振器の前記螺旋状弾性体の前記中心軸が、その配置された隅を構成する前記荷台部の隣接二辺のなす角の二等分線に直交する線に沿っていることを特徴とする請求項4に記載の防振パレット。
  7.  前記無機脆性材料が、ガラス材又はセラミックス材であることを特徴とする請求項1~6のいずれか1項に記載の防振パレット。
  8.  請求項1~7のいずれか1項に記載の防振パレットに、前記荷物としてガラス板を縦姿勢で複数枚積層したものを載置して成るガラス梱包体。
PCT/JP2017/043648 2016-12-09 2017-12-05 防振パレットおよびガラス梱包体 WO2018105612A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201790001358.3U CN210259241U (zh) 2016-12-09 2017-12-05 防振托盘以及玻璃梱包体
JP2018555015A JPWO2018105612A1 (ja) 2016-12-09 2017-12-05 防振パレットおよびガラス梱包体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016239555 2016-12-09
JP2016-239555 2016-12-09

Publications (1)

Publication Number Publication Date
WO2018105612A1 true WO2018105612A1 (ja) 2018-06-14

Family

ID=62491290

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2017/043648 WO2018105612A1 (ja) 2016-12-09 2017-12-05 防振パレットおよびガラス梱包体
PCT/JP2017/043659 WO2018105615A1 (ja) 2016-12-09 2017-12-05 防振パレットおよびガラス梱包体

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/043659 WO2018105615A1 (ja) 2016-12-09 2017-12-05 防振パレットおよびガラス梱包体

Country Status (4)

Country Link
JP (2) JPWO2018105612A1 (ja)
CN (2) CN210259241U (ja)
TW (2) TW201834938A (ja)
WO (2) WO2018105612A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109911410A (zh) * 2019-04-11 2019-06-21 东旭(营口)光电显示有限公司 一种缓冲座及玻璃储运装置
JP2019207015A (ja) * 2018-05-30 2019-12-05 株式会社アイライフケア 制震装置
JP2020040746A (ja) * 2018-09-07 2020-03-19 株式会社オカムラ 搬送台車

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110709338A (zh) * 2017-05-29 2020-01-17 Agc株式会社 玻璃板包装体的制造方法及玻璃板包装体

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0289828A (ja) * 1988-09-05 1990-03-29 Vibrachoc Sa 振動及び衝撃吸収装置
JPH0593090U (ja) * 1992-05-12 1993-12-17 日本無線株式会社 ショックマウントによる電子機器の取付装置
JP2005239224A (ja) * 2004-02-26 2005-09-08 Kyocera Corp コンテナ収納台
JP2011027165A (ja) * 2009-07-24 2011-02-10 Tanaka Seishin Kozo Kenkyusho:Kk 制振装置
JP2012218765A (ja) * 2011-04-07 2012-11-12 Nippon Electric Glass Co Ltd ガラス板梱包用パレット及びガラス板梱包体

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4713866U (ja) * 1971-03-18 1972-10-18
JPH0217240A (ja) * 1988-07-04 1990-01-22 Mitsui Constr Co Ltd 設備用防振架台の構造
JP2010168072A (ja) * 2009-01-22 2010-08-05 Nippon Electric Glass Co Ltd ガラス板梱包体
JP5970754B2 (ja) * 2011-07-21 2016-08-17 大日本印刷株式会社 輸送用架台装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0289828A (ja) * 1988-09-05 1990-03-29 Vibrachoc Sa 振動及び衝撃吸収装置
JPH0593090U (ja) * 1992-05-12 1993-12-17 日本無線株式会社 ショックマウントによる電子機器の取付装置
JP2005239224A (ja) * 2004-02-26 2005-09-08 Kyocera Corp コンテナ収納台
JP2011027165A (ja) * 2009-07-24 2011-02-10 Tanaka Seishin Kozo Kenkyusho:Kk 制振装置
JP2012218765A (ja) * 2011-04-07 2012-11-12 Nippon Electric Glass Co Ltd ガラス板梱包用パレット及びガラス板梱包体

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019207015A (ja) * 2018-05-30 2019-12-05 株式会社アイライフケア 制震装置
JP2020040746A (ja) * 2018-09-07 2020-03-19 株式会社オカムラ 搬送台車
JP7246823B2 (ja) 2018-09-07 2023-03-28 株式会社オカムラ 搬送台車
CN109911410A (zh) * 2019-04-11 2019-06-21 东旭(营口)光电显示有限公司 一种缓冲座及玻璃储运装置

Also Published As

Publication number Publication date
CN210259241U (zh) 2020-04-07
WO2018105615A1 (ja) 2018-06-14
JPWO2018105612A1 (ja) 2019-10-24
CN210364828U (zh) 2020-04-21
JPWO2018105615A1 (ja) 2019-10-24
JP7022391B2 (ja) 2022-02-18
TW201834937A (zh) 2018-10-01
TW201834938A (zh) 2018-10-01

Similar Documents

Publication Publication Date Title
WO2018105612A1 (ja) 防振パレットおよびガラス梱包体
KR101390249B1 (ko) 유리판 곤포 팰릿 및 유리판 곤포체
JP5182283B2 (ja) 板状体の梱包パレット
KR101478682B1 (ko) 유리판 곤포체
US8573136B1 (en) Loading structure
KR20130140118A (ko) 곤포 용기 및 곤포체
JP2010168072A (ja) ガラス板梱包体
JP2008239170A (ja) 防振機構
JP6136294B2 (ja) 制振ラック倉庫
US20130276677A1 (en) Loading structure
JP5520157B2 (ja) 防振架台
JPH10218182A (ja) 防振パレット及びその段積み装置
JP2018052557A (ja) 梱包体
JP5970754B2 (ja) 輸送用架台装置
EP2706016A1 (en) Pallet for transportation of goods
JP2009274732A (ja) 梱包装置
WO2021024686A1 (ja) ガラス板梱包体
JP5534085B2 (ja) ガラス板梱包体
JP3131587U (ja) コイル架台
WO2021049264A1 (ja) ガラス板梱包用パレット、ガラス板梱包体及びガラス板梱包体の製造方法
JP6137244B2 (ja) 制振ラック倉庫
CN212862314U (zh) 玻璃捆包体
JP5577203B2 (ja) 梱包体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17878564

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018555015

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17878564

Country of ref document: EP

Kind code of ref document: A1