WO2018103603A1 - 一种催化剂及合成气直接转化制低碳烯烃的方法 - Google Patents

一种催化剂及合成气直接转化制低碳烯烃的方法 Download PDF

Info

Publication number
WO2018103603A1
WO2018103603A1 PCT/CN2017/114446 CN2017114446W WO2018103603A1 WO 2018103603 A1 WO2018103603 A1 WO 2018103603A1 CN 2017114446 W CN2017114446 W CN 2017114446W WO 2018103603 A1 WO2018103603 A1 WO 2018103603A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
component
molecular sieve
oxygen
metal oxide
Prior art date
Application number
PCT/CN2017/114446
Other languages
English (en)
French (fr)
Inventor
包信和
焦峰
潘秀莲
丁民正
Original Assignee
中国科学院大连化学物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院大连化学物理研究所 filed Critical 中国科学院大连化学物理研究所
Priority to JP2019528864A priority Critical patent/JP6778821B2/ja
Priority to RU2019120684A priority patent/RU2727897C1/ru
Priority to EP17877891.6A priority patent/EP3549672A4/en
Priority to US16/463,142 priority patent/US10960387B2/en
Publication of WO2018103603A1 publication Critical patent/WO2018103603A1/zh
Priority to ZA2019/03455A priority patent/ZA201903455B/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/78Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J29/783CHA-type, e.g. Chabazite, LZ-218
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/005Spinels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/26Chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/652Chromium, molybdenum or tungsten
    • B01J23/6522Chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/7015CHA-type, e.g. Chabazite, LZ-218
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/7049Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/7049Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • B01J29/7065CHA-type, e.g. Chabazite, LZ-218
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/76Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/76Iron group metals or copper
    • B01J29/763CHA-type, e.g. Chabazite, LZ-218
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/78Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/82Phosphates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/82Phosphates
    • B01J29/83Aluminophosphates [APO compounds]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/82Phosphates
    • B01J29/84Aluminophosphates containing other elements, e.g. metals, boron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/82Phosphates
    • B01J29/84Aluminophosphates containing other elements, e.g. metals, boron
    • B01J29/85Silicoaluminophosphates [SAPO compounds]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/87Gallosilicates; Aluminogallosilicates; Galloborosilicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/89Silicates, aluminosilicates or borosilicates of titanium, zirconium or hafnium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0036Grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • B01J37/033Using Hydrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • B01J37/035Precipitation on carriers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • B01J37/18Reducing with gases containing free hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/28Phosphorising
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/30Ion-exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/343Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of ultrasonic wave energy
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • C07C1/0425Catalysts; their physical properties
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • C07C1/0425Catalysts; their physical properties
    • C07C1/043Catalysts; their physical properties characterised by the composition
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • C07C1/0425Catalysts; their physical properties
    • C07C1/043Catalysts; their physical properties characterised by the composition
    • C07C1/0435Catalysts; their physical properties characterised by the composition containing a metal of group 8 or a compound thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • C07C1/0425Catalysts; their physical properties
    • C07C1/043Catalysts; their physical properties characterised by the composition
    • C07C1/0435Catalysts; their physical properties characterised by the composition containing a metal of group 8 or a compound thereof
    • C07C1/044Catalysts; their physical properties characterised by the composition containing a metal of group 8 or a compound thereof containing iron
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • C07C1/0425Catalysts; their physical properties
    • C07C1/0445Preparation; Activation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • C07C1/0455Reaction conditions
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/10Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with water vapour
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/02Alkenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/02Alkenes
    • C07C11/04Ethylene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/02Alkenes
    • C07C11/06Propene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/02Alkenes
    • C07C11/08Alkenes with four carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/02Alkenes
    • C07C11/08Alkenes with four carbon atoms
    • C07C11/09Isobutene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C9/00Aliphatic saturated hydrocarbons
    • C07C9/02Aliphatic saturated hydrocarbons with one to four carbon atoms
    • C07C9/04Methane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • B01J2229/186After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself not in framework positions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/32Manganese, technetium or rhenium
    • B01J23/34Manganese
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the invention belongs to the synthesis gas to produce low carbon olefins, in particular to a catalyst and a method for directly converting synthesis gas into low carbon olefins.
  • the lower olefin refers to an olefin having a carbon number of 4 or less.
  • Low-carbon olefins represented by ethylene and propylene are very important basic organic chemical raw materials. With the rapid growth of China's economy, the market for low-carbon olefins has been in short supply for a long time. At present, the production of low-carbon olefins mainly uses petrochemical routes for cracking light hydrocarbons (ethane, naphtha, light diesel oil). Due to the increasing shortage of global petroleum resources and long-term high crude oil prices, the development of low-carbon olefins industry relies solely on oil.
  • the tube cracking furnace process using light hydrocarbons as raw materials will encounter increasingly large raw material problems, and the low carbon olefin production process and raw materials must be diversified.
  • the use of syngas to produce olefins can broaden the source of raw materials and produce syngas from crude oil, natural gas, coal and renewable materials, providing an alternative to steam cracking technology based on high-cost raw materials such as naphtha.
  • the direct synthesis of low-carbon olefins by one-step synthesis gas is a process in which carbon monoxide and hydrogen are directly reacted by a Fischer-Tropsch synthesis reaction to produce a low-carbon olefin having a carbon number of 4 or less. The process does not need to be carried out like an indirect process. Syngas is further prepared from methanol or dimethyl ether to simplify the process and greatly reduce investment.
  • a high activity (CO conversion 90%) and selectivity (low carbon olefin selectivity 66%) can be obtained at a reaction pressure of 1.0 to 5.0 MPa and a reaction temperature of 300 to 400 ° C in a synthesis gas.
  • the Fe/activated carbon catalyst prepared by using the vacuum impregnation method to prepare manganese, copper, zinc silicon, potassium and the like as an auxiliary agent for the synthesis of low-carbon olefins in the synthesis gas, in the absence of raw material gas circulation Under the conditions, the CO conversion rate is 96%, and the selectivity of the low-carbon olefin in the hydrocarbon is 68%.
  • Atomic olefins namely propylene and butene C 3 -C 4 olefin products
  • the catalyst is made of metal iron or iron carbide as the active component, and the reaction follows the chain growth reaction mechanism of the metal surface, and the low olefin selectivity of the product is low, and the selectivity of the C 3 -C 4 olefin is lower.
  • the present invention provides a process for the direct conversion of a catalyst and syngas to a lower olefin.
  • the active component of the catalyst A is an active metal oxide
  • the catalyst B is a CHA or AEI.
  • Topological molecular sieve; active metal oxide is one of MnO, MnCr 2 O 4 , MnAl 2 O 4 , MnZrO 4 , ZnO, ZnCr 2 O 4 , ZnAl 2 O 4 , CoAl 2 O 4 , FeAl 2 O 4 Or more than two;
  • the spacing between the geometric centers of the active metal oxide of Catalyst A and the particles of Component B is between 5 ⁇ m and 40 mm, and the spacing between the axes of the particles is preferably from 100 ⁇ m to 5 mm, more preferably from 200 ⁇ m to 4 mm.
  • the weight ratio between the active ingredient in Catalyst A and Catalyst B is in the range of from 0.1 to 20 times, preferably from 0.3 to 5.
  • the active metal oxide is composed of crystal grains having a size of 5-30 nm, and a large amount of oxygen holes exist in the distance from the surface of the crystal grains to a depth of 0.3 nm in the inner direction of the crystal grains, that is, the molar amount of oxygen atoms accounts for a theoretical stoichiometric ratio of oxygen.
  • the molar amount of the oxygen atom is from 80% to 10%, more preferably from 60% to 10%, most preferably from 50% to 10%, based on the theoretical stoichiometric oxygen molar content; the surface oxygen vacancy is defined as (1)
  • the molar amount of oxygen atoms is in the stoichiometric stoichiometric oxygen content, and the corresponding oxygen vacancy concentration is preferably from 20 to 90%, more preferably from 40 to 90%, most preferably from 50 to 90%.
  • a dispersing agent is added to the catalyst A, and the dispersing agent is one or two of Al 2 O 3 , SiO 2 , Cr 2 O 3 , ZrO 2 , and TiO 2 , and the active metal oxide is dispersed in the dispersing agent.
  • the content of the dispersant in the catalyst A is from 0.05 to 90% by weight, the balance being the active metal oxide.
  • the catalyst component B is a molecular sieve of CHA and or AEI topology, and the CHA and or AEI molecular sieve has an eight-membered ring orifice, a three-dimensional pore, and contains a cha cage.
  • the skeleton element composition of the molecular sieve having the CHA and AEI topology may be Si-O, Si-Al-O, Si-Al-PO, Al-PO, Ga-PO, Ga-Si-Al-O, Zn- Al-PO, Mg-Al-PO, Co-Al-PO One or more of them.
  • the element of the molecular sieve skeleton may or may not be connected to H; and the H may be ion exchanged by Na, Ca, K, Mg, Ge, Zr, Zn, Cr, Ga, Sn, Fe, Co.
  • One or two or more of Mo and Mn are substituted in whole or in part, and the total metal to oxygen molar ratio after substitution is 0.0002 to 0.001.
  • the molecular sieve composition of the CHA topology constitutes a composition ratio of Si-O and a skeleton element other than (Si+Zn+Mg+Co) to (Al+Ga) of less than 0.6.
  • the molar ratio of (Si+Zn+Mg+Co) to (Al+Ga) in the molecular sieve composition of the AEI topology consisting of Si-O and other skeleton elements is less than 0.6.
  • the amount of the medium strong acid site is 0-0.3 mol/kg; preferably 0.003-0.2 mol/kg, more preferably 0.003-0.06 mol/kg; wherein the medium-strong acid corresponds to the peak top of the NH3-TPD desorption peak
  • the temperature ranges from 275 to 500 ° C, preferably from 275 to 370 ° C.
  • the acid strength is defined by the NH3-TPD peak, and includes three acids of weak acid, medium strong acid and strong acid;
  • TCD records the thermal conductivity signal of desorption of NH3, draws a desorption curve, and divides the inorganic solid into three acid strengths according to the peak of the peak position of the curve; weak acid refers to the desorption temperature of NH3
  • the acidity is less than 275 ° C;
  • the medium strong acid is the acid site of the NH 3 desorption temperature at 275-500 ° C;
  • the strong acid is the acid site of the NH 3 desorption temperature greater than 500 ° C.
  • the mechanical mixing may be carried out by one or more of mechanical stirring, ball milling, shaker mixing, and mechanical grinding.
  • a method for directly converting a synthesis gas into a low-carbon olefin wherein the synthesis gas is used as a reaction raw material, and the conversion reaction is carried out on a fixed bed or a moving bed, and the catalyst used is the catalyst according to any one of claims 1-8;
  • the syngas has a pressure of 0.5-10 MPa, a reaction temperature of 300-600 ° C, and a space velocity of 300-10000 h-1.
  • the synthesis gas H2/CO ratio for the reaction is from 0.2 to 3.5, preferably from 0.3 to 2.5.
  • the bifunctional composite catalyst is used for one-step direct conversion of synthesis gas into a low-carbon olefin, wherein the propylene butene selectivity reaches 40-75%, preferably 50-75%, and the by-product methane selectivity is lower than 15%. It is preferably ⁇ 10%.
  • This technology unlike the traditional methanol-based low-carbon olefin technology (abbreviated as MTO), achieves a direct conversion of synthesis gas to low-carbon olefins in one step.
  • MTO methanol-based low-carbon olefin technology
  • the propylene butene product in the product has high selectivity, can reach 40-75%, and the product can be separated without deep cooling, which greatly reduces the energy consumption and cost of separation.
  • the preparation process of the composite catalyst in the patent is mild and simple; and the reaction process has high product yield and selectivity, and the selectivity of the C2-C4 low-carbon olefin can reach 50-90%, especially the C3-C4 olefin selectivity is high.
  • the by-product methane selectivity is low ( ⁇ 15%), and the catalyst has a long service life of >700 hours, which has a good application prospect.
  • the above suspension was heated, and then taken out by washing and filtered to obtain a nano-ZnO material having a large amount of surface oxygen holes.
  • the mass ratio of catalyst to etchant is 1:3.
  • the mass ratio of oleic acid to urotropine is 1:1, no solvent;
  • the mass ratio of oleic acid to hydrazine hydrate is 95:5, no solvent;
  • the specific treatment conditions include temperature, treatment time and atmosphere type as shown in Table 1 below. .
  • the product obtained above is subjected to centrifugation or filtration, washed with deionized water, and then dried or dried and reduced in an atmosphere.
  • the atmosphere is an inert atmosphere gas or a mixture of an inert atmosphere gas and a reducing atmosphere, and the inert atmosphere gas is N 2 , One or more of He and Ar, the reducing atmosphere is one or two of H2 and CO, and the volume ratio of the inert atmosphere gas to the reducing gas in the dry reduction gas mixture is 100/10 to 0/100,
  • the drying and reduction treatment was carried out at a temperature of 350 ° C for 4 hours. That is, a ZnO material rich in oxygen vacancies on the surface is obtained.
  • the specific samples and their preparation conditions are shown in Table 1 below.
  • the surface oxygen vacancies are: 100% - the molar amount of oxygen atoms as a percentage of the theoretical stoichiometric oxygen molar amount.
  • the surface oxygen vacancies are in a range of a distance from the surface of the crystal grain to the inner diameter of the crystal grain of 0.3 nm, wherein the molar amount of oxygen atoms accounts for a percentage of the theoretical stoichiometric oxygen content; the surface oxygen vacancy is defined as: 100%-oxygen
  • the atomic molar amount is a percentage of the theoretical stoichiometric oxygen molar amount.
  • ZnO 9 having no oxygen vacancies on the surface etched by step (2) and metal Zn 10 completely reducing Zn; (2) etching a MnO material having a polar surface: preparation process
  • the precursor of Zn is replaced by a corresponding precursor of Mn, which is one of manganese nitrate, manganese chloride, and manganese acetate (here, manganese nitrate).
  • the etching process is the same as (2) in the above (1), drying or drying and reduction, as described in the preparation process of the products (3) in the above (1), ZnO 3, ZnO 5, ZnO 8 , and synthesizing a large amount of surface oxygen vacancies. Catalyst; surface oxygen vacancies 67%, 29%, 27%;
  • the precursor is mixed with urea in water at room temperature; the mixture is aged, then taken out, washed, filtered and dried, and the obtained solid is calcined in an air atmosphere to obtain a spinel grown along the (110) crystal plane. Stone oxide.
  • the sample is also subjected to an etching process to synthesize a catalyst having a large amount of surface oxygen vacancies; the etching treatment and the post-treatment process are as described in (2) and (3) above, and the sample has a large specific surface area and a large surface defect. It can be applied to catalytic synthesis gas conversion.
  • the molar concentration of Zn 2+ in the reaction solution is 0.067 M, and the molar ratio of Zn 2+ to the precipitant may be 1:8; then aged at 160 ° C At 24 hours, Cr 2 O 3 , Al 2 O 3 or ZrO 2 was obtained as a carrier-dispersed ZnO oxide, and the content of the dispersant in the catalyst A was 0.1 wt%, 10 wt%, and 90 wt%, respectively.
  • the etching process is the same as the preparation of the products ZnO 3, ZnO 5, and ZnO 8 in (2) above, and a catalyst having a large amount of surface oxygen vacancies is synthesized; the surface oxygen vacancies are 65%, 30%, 25%;
  • the process is the same as above (1) In 3);
  • the corresponding product from top to bottom is defined as dispersed oxide 1-3;
  • Cr 2 O 3 , Al 2 O 3 or ZrO 2 can be obtained as a carrier-dispersed MnO oxide, wherein the content of the dispersant in the catalyst A is 5 wt%, 30 wt%, and 60 wt%, respectively.
  • the surface oxygen vacancies are 62%, 27%, 28%; the top to bottom corresponding product is defined as the dispersed oxide 4-6.
  • the CHA and or AEI topology has an eight-membered ring aperture, a three-dimensional channel containing a cha cage.
  • the water bath was quenched to room temperature, and the centrifugal washing was repeated so that the pH of the supernatant was 7 at the end of the washing, and the precipitate was dried at 110 ° C for 17 h, and then calcined in air at 600 ° C for 3 h to obtain a multi-stage pore structure of silicon phosphorus aluminum inorganic solid acid. .
  • the skeleton element composition of the molecular sieve having the CHA and AEI topology may be Si-O, Si-Al-O, Si-Al-PO, Al-PO, Ga-PO, Ga-Si-Al-O, Zn- One or more of Al-PO, Mg-Al-PO, and Co-Al-PO;
  • the O element of some skeletons is connected to H, and the corresponding products are defined as 1-7 in turn;
  • H attached to the O element of the above-mentioned product 1-7 skeleton is partially substituted by a metal ion by ion exchange: Na, Ca, K, Mg, Ge, Zr, Zn, Cr, Ga, Sn, Fe, Co, Mo, Mn, the preparation process is:
  • the above sample was mixed with a 0.5 mol/L metal ion nitrate solution to be exchanged according to a solid-liquid mass ratio of 1:30, stirred at 80 ° C for 6 h, washed, dried, and continuously performed twice. Calcination at 550 degrees for 3 h gave metal ion exchanged CHA or AEI.
  • the required proportion of the catalyst A and the catalyst B are added to the vessel, and the separation is achieved by one or more of the pressing force, the impact force, the cutting force, the friction force, and the like generated by the high-speed movement of the materials and/or the container.
  • the mechanical energy, thermal energy and chemical energy are converted by the modulation temperature and the carrier gas atmosphere to further adjust the interaction between different components.
  • a mixing temperature of 20-100 ° C can be set, which can be carried out in an atmosphere or directly in air.
  • the atmosphere is: a) nitrogen and/or inert gas, b) a mixture of hydrogen and nitrogen and/or inert gas.
  • the volume of hydrogen in the mixed gas is 5 to 50%
  • c) a mixture of CO and nitrogen and/or an inert gas wherein the volume of CO in the mixed gas is 5 to 20%
  • a mixture of inert gases wherein the volume of O 2 in the mixed gas is 5-20%
  • the inert gas is one or more of helium, argon, and helium.
  • Ball Milling Using the abrasive and the catalyst to tumbling at high speed in the grinding tank, the catalyst is strongly impacted and crushed to achieve the function of dispersing and mixing the catalysts A and B.
  • the abrasive material can be stainless steel, agate, quartz. Size range: 5mm-15mm).
  • the ratio of the catalyst to the catalyst (mass ratio range: 20-100:1) can adjust the particle size and relative distance of the catalyst.
  • Shaker mixing method premixing catalysts A and B and charging them into a container; mixing the catalysts A and B by controlling the reciprocating oscillation or circumferential oscillation of the shaker; by adjusting the oscillation speed (range: 1-70 rpm / And time (range: 5min-120min), achieve uniform mixing and adjust its relative distance.
  • a fixed bed reaction is exemplified, but the catalyst is also suitable for use in a moving bed reactor.
  • the device is equipped with a gas mass flow meter and an online product analysis chromatograph (the exhaust gas of the reactor is directly connected to the chromatographic quantitative valve for periodic real-time sampling analysis).
  • the selectivity of propylene to butene is 30-75%, and the selectivity of low carbon olefins (ethylene, propylene and butene can reach 50-90%; since the surface hydrogenation activity of the catalyst metal complex is not high, avoiding A large amount of methane is produced and the selectivity of methane is low.
  • Table 7 lists the specific application of the catalyst and its effect data.
  • Catalyst component A was ZnO 9, and component B was a fraction of 1.
  • component A is metal ZnCo+, 1, ZnCo molar ratio is 1:1, ZnCo is equal to mass ratio of 1:1, and the remaining parameters and mixing process are the same as catalyst A;
  • the catalyst used in Comparative Example 4 is a surface oxygen-free hole TiO 2 + 1, and the remaining parameters and mixing process are the same as Catalyst A;
  • the molecular sieve used in Comparative Example 5 was commercial SAPO-34 purchased from Nankai University Catalyst Factory, and the temperature corresponding to the strong acid desorption peak on NH3-TPD was 390 °C.
  • the distance between the metal oxide and the molecular sieve in the catalyst used in Comparative Example 7 was 10 mm, and the other parameters and the mixing process were the same as Catalyst A.
  • the metal oxide was located in the pores of the molecular sieve, and the two were in close contact with each other, and the other parameters were the same as the catalyst A.
  • Comparative Examples 7 and 8 indicate that the distance between component A and component B is also important for product selectivity.
  • the amount of molecular SAPO-34 used in the comparative technique is large.
  • the amount of medium-strong acid is 0.32 mol/kg.
  • the selectivity of the olefin is 69%
  • the selectivity of the alkane is 20%
  • the olefin ratio is reduced to 3.5
  • the propylene butene selectivity is 40-50%.
  • the structure of the molecular sieve including the topological structure of CHA & AEI and its acid strength and acid amount, as well as the distance matching between the metal oxide and the molecular sieve are essential, directly affecting the conversion of carbon monoxide and the choice of propylene butene. Sex.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

一种催化剂及合成气直接转化制低碳烯烃的方法,以合成气为反应原料,在固定床或移动床上进行转化反应。催化剂为复合催化剂A+B,由催化剂A和催化剂B以机械混合方式复合在一起,催化剂A的活性成份为活性金属氧化物,催化剂B为CHA与AEI结构的分子筛或金属修饰的CHA和/或AEI分子筛中的一种或二种以上;催化剂A的活性金属氧化物和催化剂B的颗粒的几何中心之间间距介于5μm‑40mm之间,颗粒的轴心之间间距优选为100μm‑5mm,更优选为200μm‑4mm。催化剂A中的活性成份与催化剂B之间的重量比在0.1‑20倍范围之间,优选为0.3‑5。

Description

一种催化剂及合成气直接转化制低碳烯烃的方法 技术领域
本发明属于合成气制备低碳烯烃,具体涉及一种催化剂及合成气直接转化制低碳烯烃的方法。
背景技术
低碳烯烃是指碳原子数小于或等于4的烯烃。以乙烯、丙烯为代表的低碳烯烃是非常重要的基本有机化工原料,随着我国经济的快速增长,长期以来,低碳烯烃市场供不应求。目前,低碳烯烃的生产主要采用轻烃(乙烷、石脑油、轻柴油)裂解的石油化工路线,由于全球石油资源的日渐缺乏和原油价格长期高位运行,发展低碳烯烃工业仅仅依靠石油轻烃为原料的管式裂解炉工艺会遇到越来越大的原料难题,低碳烯烃生产工艺和原料必须多元化。选用合成气制取烯烃工艺可拓宽原材料来源,将以原油、天然气、煤炭和可再生材料为原料生产合成气,为基于高成本原料如石脑油的蒸汽裂解技术方面提供替代方案。合成气一步法直接制取低碳烯烃就是一氧化碳和氢在催化剂作用下,通过费托合成反应直接制得碳原子数小于或等于4的低碳烯烃的过程,该工艺无需像间接法工艺那样从合成气经甲醇或二甲醚,进一步制备烯烃,简化工艺流程,大大减少投资。
合成气通过费托合成直接制取低碳烯烃,已成为费托合成催化剂开发的研究热点之一。中科院大连化学物理研究所公开的专利CN1083415A中,用MgO等IIA族碱金属氧化物或高硅沸石分子筛(或磷铝沸石)担载的铁-锰催化剂体系,以强碱K或Cs离子作助剂,在合成气制低碳烯烃反应压力为1.0~5.0MPa,反应温度300~400℃下,可获得较高的活性(CO转化率90%)和选择性(低碳烯烃选择性66%)。北京化工大学所申报的专利ZL03109585.2中,采用真空浸渍法制备锰、铜、锌硅、钾等为助剂的Fe/活性炭催化剂用于合成气制低碳烯烃反应,在无原料气循环的条件下,CO转化率96%,低碳烯烃在碳氢化合物中的选择性68%。最近,荷兰Utrecht大学de Jong教授团队采用SiC,碳纳米纤维等惰性载体负载的Fe以及Na、S等助剂修饰的Fe催化剂,取得了很好进展获得了61%的低碳烯烃选择性,但是转化率升高时,选择性降低。在合成气直接制烯烃的过程中,由于原料CO与H2是气态,而目标产物中的乙烯沸点低,一般需要深冷分离,如果能够高选择性的获得含三个碳原子和四个碳原子的烯烃即丙烯和丁烯C3-C4烯烃产物,则不需要进行深冷分离,大大降低了分离的能耗与成本,具有重大的应用价值。上述报道中催化剂是采用金属铁或者 碳化铁为活性组分,反应遵循金属表面的链增长反应机理,产物低碳烯烃选择性低,而其中C3-C4烯烃的选择性更低。
最近中国科学院大连化学物理研究所报道了ZnCr2O4氧化物与多级孔SAPO-34分子筛复合双功能催化剂(Jiao et al.,Science 351(2016)1065-1068),实现了CO转化率17%时,低碳烯烃80%的选择性,其中低碳烷烃选择性为14%,烯烃与烷烃的比例(烯烷比)达到5.7。当转化率升高到35%,烯烃的选择性为69%,而烷烃的选择性为20%,烯烷比降为3.5,丙烯丁烯选择性为40-50%。
发明内容
针对上述问题,本发明提供了一种催化剂及合成气直接转化制低碳烯烃的方法。
本发明的技术方案为:
一种催化剂,其特征在于:所述催化剂为复合催化剂A+B,由催化剂A和催化剂B以机械混合方式复合在一起,催化剂A的活性成份为活性金属氧化物,催化剂B为CHA与或AEI拓扑结构的分子筛;活性金属氧化物为MnO、MnCr2O4、MnAl2O4,MnZrO4、ZnO、ZnCr2O4、ZnAl2O4、CoAl2O4、FeAl2O4中的一种或二种以上;
催化剂A的活性金属氧化物和组份B的颗粒的几何中心之间间距介于5μm-40mm之间,颗粒的轴心之间间距优选为100μm-5mm,更优选为200μm-4mm。
催化剂A中的活性成份与催化剂B之间的重量比在0.1-20倍范围之间,优选为0.3-5。
活性金属氧化物由大小为5-30nm的晶粒构成,从晶粒表面至晶粒内部方向深度为0.3nm的距离范围内,存在大量氧空穴,即氧原子摩尔量占理论化学计量比氧摩尔含量的80%以下,优选氧原子摩尔量占理论化学计量比氧摩尔含量的80%-10%,更优选为60-10%,最优选为50-10%;表面氧空位定义为(1-氧原子摩尔量占理论化学计量比氧摩尔含量),对应的氧空位浓度优选为20-90%,更优选为40-90%,最优选为50-90%。
所述催化剂A中还添加有分散剂,分散剂为Al2O3、SiO2、Cr2O3、ZrO2、TiO2中的一种或二种,活性金属氧化物分散于分散剂中,分散剂于催化剂A中的含量在0.05-90wt%,其余为活性金属氧化物。
所述催化剂组份B为CHA与或AEI拓扑结构的分子筛,CHA与或AEI分子筛具有八元环孔口,三维孔道,含有cha笼。
所述具有CHA与AEI拓扑结构的分子筛的骨架元素组成可以是Si-O、Si-Al-O、Si-Al-P-O、Al-P-O、Ga-P-O、Ga-Si-Al-O、Zn-Al-P-O、Mg-Al-P-O、Co-Al-P-O中 的一种或二种以上。
所述分子筛骨架的O元素上可以连接或不连接H;且所述H、可以通过离子交换的方式被Na、Ca、K、Mg、Ge、Zr、Zn、Cr、Ga、Sn、Fe、Co、Mo、Mn中的一种或两种以上全部或部分取代,取代后总的金属与氧的摩尔比是0.0002-0.001。
所述CHA拓扑结构的分子筛组成Si-O及以外的骨架元素组成中(Si+Zn+Mg+Co)与(Al+Ga)的摩尔比小于0.6。
所述AEI拓扑结构的分子筛组成Si-O及以外的骨架元素组成中(Si+Zn+Mg+Co)与(Al+Ga)的摩尔比小于0.6。
所述分子筛中,中强酸位点的量是0-0.3mol/kg;优选0.003-0.2mol/kg,更优选0.003-0.06mol/kg;其中中强酸对应NH3-TPD脱附峰的峰顶对应的温度范围为275-500℃,优选为275-370℃。
所述酸强度以NH3-TPD峰来定义,包含弱酸、中强酸、强酸三种酸性;
该NH3-TPD是根据NH3的脱附峰位置,所述脱附峰的位置是指在标准测试条件下,在样品质量w与载气流速f比值(w/f)=100g·h/L,10℃/min升温速度的测试条件下,TCD记录脱附NH3的热导信号,绘制脱附曲线,根据曲线峰位置顶点将所述无机固体分为三种酸性强度;弱酸是指NH3脱附温度小于275℃的酸性位;中强酸是NH3脱附温度在275-500℃的酸性位;强酸是NH3脱附温度大于500℃的酸性位。
所述机械混合可采用机械搅拌、球磨、摇床混合、机械研磨中的一种或二种以上进行复合。
一种合成气直接转化制低碳烯烃的方法,以合成气为反应原料,在固定床或移动床上进行转化反应,所采用的催化剂为权利要求1-8任一所述的催化剂;
合成气的压力为0.5-10MPa,反应温度为300-600℃,空速为300-10000h-1。
所述反应用合成气H2/CO比例为0.2-3.5,优选为0.3-2.5。
所述的双功能复合催化剂用于合成气一步法直接转化制低碳烯烃,其中丙烯丁烯选择性达到40-75%,优选为50-75%,同时副产物甲烷选择性低于15%,优选为<10%。
本发明的有益效果:
本技术与传统的甲醇制低碳烯烃技术(简称为MTO)不同,实现了一步直接将合成气转化制低碳烯烃。
产物中丙烯丁烯产物选择性高,可达到40-75%,产物不需深冷便可分离,大大降低了分离的能耗与成本。
专利中的复合催化剂的制备过程简单条件温和;且反应过程具有很高的产品收率和选择性,C2-C4低碳烯烃的选择性可以达到50-90%,特别C3-C4烯烃选择性高,同时副产物甲烷选择性低(<15%),而且催化剂寿命长,>700小时,具有很好的应用前景。
具体实施方式
下面通过实施例对本发明做进一步阐述,但是本发明的权利要求范围不受这些实施例的限制。同时,实施例只是给出了实现此目的的部分条件,但并不意味着必须满足这些条件才可以达到此目的。
实施例1
一、催化剂A的制备
(一)、刻蚀法合成具有极性表面的ZnO材料:
(1)称取0.446g(1.5mmol)Zn(NO3)2·6H2O,再称取0.480g(12mmol)NaOH加入上述容器中,再量取30ml去离子水加入到容器中,搅拌0.5h以上,使溶液混合均匀。升温至温度为160℃,反应时间为20h,沉淀分解成氧化锌;自然冷却至室温。反应液离心分离收集离心分离后的沉淀物,用去离子水洗涤2次获得ZnO氧化物;
(2)采用刻蚀剂,在常温下与ZnO氧化物超声混匀,ZnO氧化物浸泡于刻蚀剂溶液中,刻蚀剂与氧化锌形成络合或直接还原反应;
将上述悬浮物加热,然后取出洗涤过滤,得到具有大量表面氧空穴的纳米ZnO材料。
表1中:催化剂与刻蚀剂的质量比为1:3。油酸与乌洛托品的质量比为1:1,没有溶剂;油酸与水合肼的质量比为95:5,没有溶剂;具体处理条件包括温度,处理时间和气氛种类如下表1所示。
(3)、干燥或干燥和还原:
上述获得的产物经过离心或者过滤,用去离子水清洗以后,在气氛中进行干燥或干燥和还原处理,气氛为惰性气氛气体或者惰性气氛气体与还原性气氛混合气,惰性气氛气体为N2、He和Ar中的一种或二种以上,还原性气氛为H2、CO的一种或二种,干燥还原混合气中惰性气氛气体与还原性气体的体积比为100/10~0/100,干燥和还原处理的温度为350℃,时间为4h。即得到表面富含氧空位的ZnO材料。具体样品 及其制备条件如下表1。其中表面氧空位为:100%-氧原子摩尔量占理论化学计量比氧摩尔量的百分数。
表1 ZnO材料的制备及其参数性能
Figure PCTCN2017114446-appb-000001
所述表面氧空位为从晶粒表面至晶粒内部方向深度为0.3nm的距离范围内,其中氧原子摩尔量占理论化学计量比氧摩尔含量的百分数;表面氧空位定义为:100%-氧原子摩尔量占理论化学计量比氧摩尔量的百分数。
作为对比例,未经第(2)步刻蚀的表面无氧空位的ZnO 9,以及将Zn完全还原的金属Zn 10;(二)、刻蚀法合成具有极性表面的MnO材料:制备过程同上述ZnO,不同之处在于将Zn的前驱体换成了Mn的对应的前驱体,为硝酸锰、氯化锰、醋酸锰中的一种(在此为硝酸锰)。
刻蚀处理过程同上述(一)中(2)、干燥或干燥和还原同上述(一)中(3)的产物ZnO 3、ZnO 5、ZnO 8制备过程所述,合成具有大量表面氧空位的催化剂;表面氧空位67%、29%、27%;
对应产物定义为MnO 1-3;
(三)、合成具有高比表面积、高表面能的纳米ZnCr2O4、ZnAl2O4、MnCr2O4、MnAl2O4,MnZrO4尖晶石:
根据尖晶石的化学组成,选取相应的硝酸盐,硝酸锌、硝酸铝、硝酸铬、硝酸锰 为前驱体,与尿素在室温下于水中相互混合;将上述混合液陈化,然后取出洗涤、过滤和干燥,所得的固体在空气气氛下焙烧,获得沿(110)晶面方向生长的尖晶石氧化物。样品也经过刻蚀法处理,合成具有大量表面氧空位的催化剂;刻蚀处理和后处理过程同上述(一)中(2)和(3)所述,该样品具有大比表面积、表面缺陷多,可应用于催化合成气转化。
具体样品及其制备条件如下表2。同样,表面氧空位定义为:100%-氧原子摩尔量占理论化学计量比氧摩尔量的百分数。
表2 尖晶石材料的制备及其性能参数
Figure PCTCN2017114446-appb-000002
(四)、Cr2O3、Al2O3或ZrO2分散的活性金属氧化物
以Cr2O3、Al2O3或ZrO2为载体,沉淀沉积法制备Cr2O3、Al2O3或ZrO2分散的活性金属氧化物。以分散ZnO氧化物的制备为例,将商业Cr2O3、Al2O3或ZrO2载体预先分散于底液中,然后采用醋酸锌、硝酸锌、硫酸锌等Zn的前驱体中的一种或二种以上为原料,与氢氧化钠、碳酸氢铵、碳酸铵、碳酸氢钠中的一种或二种以上沉淀剂在室温下混合沉淀。在此为硝酸锌,和氢氧化钠为例,反应液中Zn2+的摩尔浓度为0.067M,Zn2+与沉淀剂的摩尔份数比可为1:8;然后在160℃下陈化24小时,获得Cr2O3、Al2O3或ZrO2为载体分散的ZnO氧化物,分散剂于催化剂A中的含量依次为0.1wt%、10wt%、90wt%。
刻蚀过程同上述(一)中(2)的产物ZnO 3、ZnO 5、ZnO 8制备过程所述,合成具有大量表面氧空位的催化剂;表面氧空位65%、30%、25%;后处理过程同上述(一) 中3)所述;
从上到下对应产物定义为分散氧化物1-3;
以同样的方法,可以获得Cr2O3、Al2O3或ZrO2为载体分散的MnO氧化物,其中分散剂于催化剂A中的含量依次为5wt%、30wt%、60wt%。表面氧空位62%、27%、28%;从上到下对应产物定义为分散氧化物4-6。
二、催化剂B(CHA与AEI拓扑结构的分子筛)的制备:
所述CHA与或AEI拓扑结构具有八元环孔口,三维孔道,含有cha笼。
1)具体制备过程为:
按氧化物SiO2:Al2O3:H3PO4:R:H2O=1.6:16:32:55:150(质量比)称取原料:硅溶胶30%(质量浓度);AlOOH;磷酸;TEA(R);去离子水,室温混合后加入模板剂0.5倍摩尔量的助剂HF,在30℃下搅拌老化,2h后转移到水热釜中,200℃下晶化24h。水浴骤冷到室温,反复离心洗涤使得洗涤结束时上清液pH是7,沉淀物于110℃下烘干17h后,在600℃空气中焙烧3h得到多级孔结构的硅磷铝无机固体酸。
所述具有CHA与AEI拓扑结构的分子筛的骨架元素组成可以是Si-O、Si-Al-O、Si-Al-P-O、Al-P-O、Ga-P-O、Ga-Si-Al-O、Zn-Al-P-O、Mg-Al-P-O、Co-Al-P-O中的一种或二种以上;
部分骨架的O元素上连接H,对应产物依次定义为分1-7;
表3 具有CHA或AEI拓扑结构的分子筛的制备及其性能参数
Figure PCTCN2017114446-appb-000003
Figure PCTCN2017114446-appb-000004
2)将上述产物1-7骨架的O元素上连接的H通过离子交换的方式被如下金属离子部分取代:Na、Ca、K、Mg、Ge、Zr、Zn、Cr、Ga、Sn、Fe、Co、Mo、Mn,制备过程为:
按照SiO2:Al2O3:H3PO4:R:H2O=1.1:16:32:55:150(摩尔比).其中R为模板剂。
将硫酸铝与氢氧化钠溶液混合,然后加入硅溶胶,磷酸,TEA(R);去离子水,搅拌1h得到均一相的初始凝胶,然后将其转移到高压合成釜中,165℃静态晶化80h后骤冷、洗涤、干燥,即得到分子筛样品。
取上述样品,按照固液质量比为1:30的比例将其与0.5mol/L的待交换的金属离子硝酸盐溶液混合,在80℃下搅拌6h,洗涤,烘干,连续进行2次,550度焙烧3h,得到金属离子交换的CHA或AEI。
对应产物依次定义为分9-22。
表4 具有CHA或AEI拓扑结构的分子筛的制备及其性能参数
Figure PCTCN2017114446-appb-000005
Figure PCTCN2017114446-appb-000006
表5 其他元素组成的分子筛的制备及其性能参数
Figure PCTCN2017114446-appb-000007
Figure PCTCN2017114446-appb-000008
三、催化剂的制备
将所需比例的催化剂A和催化剂B加入容器中,利用这些物料和/或容器的高速运动产生的挤压力、撞击力、裁剪力、摩擦力等中的一种或两种以上作用实现分离、破碎、混匀等目的,通过调变温度与载气气氛实现机械能、热能与化学能的转换,进一步调节不同组分间的相互作用。
机械混合过程中,可以设置混合温度20-100℃,可以在气氛中或者直接在空气中进行,气氛为:a)氮气和/或惰性气体,b)氢气与氮气和/或惰性气体的混合气,其中氢气于混合气中的体积为5~50%,c)CO与氮气和/或惰性气体的混合气,其中CO于混合气中的体积为5~20%,d)O2与氮气和/或惰性气体的混合气,其中O2于混合气中的体积为5-20%,所述惰性气体为氦气、氩气、氖气中的一种或两种以上。
机械搅拌:在搅拌槽中,采用搅拌棒将催化剂A和B进行混合,通过控制搅拌时间(5min-120min)和速率(30-300转/min),可以调节催化剂A和B的混合程度和相对距离。
球磨:利用磨料与催化剂在研磨罐内高速翻滚,对催化剂产生强烈冲击、碾压,达到分散、混合催化剂A和B的作用。通过控制磨料(材质可以是不锈钢、玛瑙、石英。尺寸范围:5mm-15mm)。与催化剂的比例(质量比范围:20-100:1),可以调节催化剂的粒度及相对距离。
摇床混合法:将催化剂A和B预混合,并装入容器中;通过控制摇床的往复振荡或圆周振荡,实现催化剂A和B的混合;通过调节振荡速度(范围:1-70转/分)和时间(范围:5min-120min),实现均匀混合并调节其相对距离。
机械研磨法:将催化剂A和B预混合,并装入容器中;在一定的压力(范围:5公斤-20公斤)下,通过研具与混合的催化剂进行相对运动(速率范围:30-300转/min),达到调节催化剂粒度、相对距离和实现均匀混合的作用。
具体的催化剂制备及其参数特征如表6所示。
表6 催化剂的制备及其参数特征
Figure PCTCN2017114446-appb-000009
Figure PCTCN2017114446-appb-000010
Figure PCTCN2017114446-appb-000011
催化反应实例
以固定床反应为例,但是催化剂也适用于移动床反应器。该装置配备气体质量流量计、在线产物分析色谱(反应器的尾气直接与色谱的定量阀连接,进行周期实时采样分析)。
将上述本发明的催化剂2g,置于固定床反应器中,使用Ar置换反应器中的空气,然后再在H2气氛中升温至300℃,切换合成气(H2/CO摩尔比=0.2-3.5),合成气的压力为0.5-10MPa,升温至反应温度300-600℃,调节反应原料气的空速至500-8000ml/g/h。产物由在线色谱检测分析。
改变温度、压力和空速和合成气中H2/CO的摩尔比,可以改变反应性能。其中丙烯与丁烯选择性之和达到30-75%,低碳烯烃(乙烯、丙烯、丁烯选择性之和可以达到50-90%;由于催化剂金属复合物表面加氢活性不高,避免了甲烷的大量生成,甲烷选择性低。表7列出了催化剂的具体应用及其效果数据。
表7 催化剂的具体应用及其效果数据
Figure PCTCN2017114446-appb-000012
Figure PCTCN2017114446-appb-000013
Figure PCTCN2017114446-appb-000014
对比例1催化剂组份A为ZnO 9,组份B为分1。
对比例2中催化剂组份A为Zn 10,组份B为分1
对比例3采用的催化剂中组份A为金属ZnCo+分1,ZnCo摩尔比1:1,ZnCo与分1质量比1:1,其余参数及混合过程等均同催化剂A;
对比例4采用的催化剂为表面无氧空穴TiO2+分1,其余参数及混合过程等均同催化剂A;
对比例5采用的催化剂中分子筛为购自南开大学催化剂厂的商品SAPO-34,其NH3-TPD上中强酸脱附峰对应的温度在390℃。
对比例6采用的催化剂中分子筛为购自南开大学催化剂厂的商品ZSM-5,全微孔结构,Si/Al=30。
对比例5和6的反应结果表明,CHA或AEI的拓扑结构及其酸强度对产物选择性的调变至关重要。
对比例7采用的催化剂中金属氧化物与分子筛之间的距离为10mm,其余参数及混合过程等均同催化剂A。
对比例8采用的催化剂中金属氧化物位于分子筛孔道内,两者密切接触,其余参数等均同催化剂A。
对比例7和8的结果表明,组份A和组份B之间的距离对产物选择性也很重要。
文献(Jiao et al.,Science 351(2016)1065-1068)对比技术中,所使用的分子SAPO-34筛酸量较大,根据NH3-TPD测试,中强酸酸量达到0.32mol/kg,因此当转化率升高到35%,烯烃的选择性为69%,而烷烃的选择性为20%,烯烷比降为3.5,丙烯丁烯选择性为40-50%。
由上表可以看出分子筛的结构,包括CHA&AEI的拓扑结构及其酸强度和酸量,以及金属氧化物和分子筛之间的距离匹配至关重要,直接影响一氧化碳的转化率和丙烯丁烯的选择性。

Claims (10)

  1. 一种催化剂,其特征在于:所述催化剂为复合催化剂A+B,由催化剂组份A和催化剂组份B以机械混合方式复合在一起,催化剂组份A的活性成份为活性金属氧化物,催化剂组份B为CHA与/或AEI拓扑结构的分子筛;活性金属氧化物为MnO、MnCr2O4、MnAl2O4,MnZrO4、ZnO、ZnCr2O4、ZnAl2O4、CoAl2O4、FeAl2O4中的一种或二种以上。
  2. 所述具有CHA与AEI拓扑结构的分子筛的骨架元素组成可以是Si-O、Si-Al-O、Si-Al-P-O、Al-P-O、Ga-P-O、Ga-Si-Al-O、Zn-Al-P-O、Mg-Al-P-O、Co-Al-P-O中的一种或二种以上;
    所述CHA拓扑结构的分子筛组成Si-O及以外的骨架元素组成中(Si+Zn+Mg+Co)与(Al+Ga)的摩尔比小于0.6;优选0.001-0.48;
    所述AEI拓扑结构的分子筛组成Si-O及以外的骨架元素组成中(Si+Zn+Mg+Co)与(Al+Ga)的摩尔比小于0.6;优选0.001-0.48。
  3. 按照权利要求1和2所述的催化剂,其特征在于:所述分子筛具有中强酸特点,中强酸位点的量是0-0.3mol/kg;优选为0.003-0.2mol/kg,更优选为0.003-0.06mol/kg;
    其中,中强酸对应NH3-TPD脱附峰的峰顶对应的温度范围为275-500℃;用丙酮作为探针分子,13C-NMR化学位移位于210-220ppm范围。
  4. 按照权利要求1所述的催化剂,其特征在于,组分A优选为MnO、MnCr2O4、MnAl2O4,MnZrO4、ZnAl2O4、CoAl2O4、FeAl2O4中的一种或二种以上。
  5. 按照权利要求1所述的催化剂,其特征在于:催化剂组份A的活性金属氧化物和组份B的颗粒的几何中心之间间距介于5μm-40mm之间;当组分A选自MnO、MnCr2O4、MnAl2O4,MnZrO4时,组分A和B颗粒之间的间距优选为100μm-5mm,更优选为200μm-4mm;当组分选自ZnAl2O4、CoAl2O4、FeAl2O4,组分A和B颗粒之间的间距优选为200μm-3mm;当组分选自ZnCr2O4时,组分A和B颗粒之间的间距优选为500μm-3mm。
  6. 按照权利要求1所述的催化剂,其特征在于:催化剂组份A中的活性成份与催化剂组份B之间的重量比在0.1-20倍范围之间,优选为0.3-5。
  7. 按照权利要求1或4所述的催化剂,其特征在于:活性金属氧化物由大小为5-30nm的晶粒构成,从晶粒表面至晶粒内部方向深度为0.3nm的距离范围内,存在大量氧空位,其中氧原子摩尔量占理论化学计量比氧摩尔含量的80%以下,优选为80%-10%,更优选为60-10%,最优选为50-10%;表面氧空位定义为:100%-氧原子摩尔量占理论化学计量比氧摩尔量的百分数,对应的氧空位浓度优选为20-90%,更优选为40-90%,最优选为50-90%。
  8. 按照权利要求1所述的催化剂,其特征在于:所述催化剂A中还添加有分散剂,分散剂为Al2O3、SiO2、Cr2O3、ZrO2、TiO2中的一种或二种以上,活性金属氧化物分散于分散剂中,分散剂于催化剂A中的含量在0.05-90wt%,其余为活性金属氧化物。
  9. 按照权利要求1和6所述的催化剂,其特征在于:
    分子筛骨架的O元素上可以连接或不连接H;且所述H可以通过离子交换的方式被Na、Ca、K、Mg、Ge、Zr、Zn、Cr、Ga、Sn、Fe、Co、Mo、Mn中的一种或两种以上全部或部分取代,总的取代金属与氧的摩尔比是0.0002-0.001。
  10. 一种合成气直接转化制低碳烯烃的方法,其特征在于:其以合成气为反应原料,在固定床或移动床上进行转化反应,所采用的催化剂为权利要求1-9任一所述的催化剂;
    合成气的压力为0.5-10MPa,反应温度为300-600℃,空速为300-10000h-1,所述反应用合成气H2/CO摩尔比例为0.2-3.5,优选为0.3-2.5。
PCT/CN2017/114446 2016-12-05 2017-12-04 一种催化剂及合成气直接转化制低碳烯烃的方法 WO2018103603A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2019528864A JP6778821B2 (ja) 2016-12-05 2017-12-04 触媒及び合成ガスの直接変換による低級オレフィンの製造方法
RU2019120684A RU2727897C1 (ru) 2016-12-05 2017-12-04 Катализатор и способ для прямого превращения синтез-газа в легкие олефины
EP17877891.6A EP3549672A4 (en) 2016-12-05 2017-12-04 CATALYST AND PROCESS FOR PREPARING LOWER ALKENE BY DIRECT CONVERSION OF SYNTHETIC GAS
US16/463,142 US10960387B2 (en) 2016-12-05 2017-12-04 Catalyst and method for direct conversion of syngas to light olefins
ZA2019/03455A ZA201903455B (en) 2016-12-05 2019-05-30 Catalyst and method for preparing lower alkene using direct conversion of syngas

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611101851.0A CN108144643B (zh) 2016-12-05 2016-12-05 一种催化剂及合成气直接转化制低碳烯烃的方法
CN2016111018510 2016-12-05

Publications (1)

Publication Number Publication Date
WO2018103603A1 true WO2018103603A1 (zh) 2018-06-14

Family

ID=62470804

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/114446 WO2018103603A1 (zh) 2016-12-05 2017-12-04 一种催化剂及合成气直接转化制低碳烯烃的方法

Country Status (8)

Country Link
US (1) US10960387B2 (zh)
EP (1) EP3549672A4 (zh)
JP (1) JP6778821B2 (zh)
CN (1) CN108144643B (zh)
RU (1) RU2727897C1 (zh)
SA (1) SA519401920B1 (zh)
WO (1) WO2018103603A1 (zh)
ZA (1) ZA201903455B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019030279A1 (en) * 2017-08-08 2019-02-14 Basf Se COMPOSITION COMPRISING A MIXED METAL OXIDE AND A MOLDING COMPRISING A ZEOLITHIC MATERIAL HAVING A TYPE OF CHA STRUCTURE AND AN ALKALINE-EARTH METAL
EP3593901A4 (en) * 2016-12-30 2020-11-04 Shanghai Advanced Research Institute, Chinese Academy of Sciences CATALYST FOR THE PREPARATION OF HYDROCARBONS FROM CARBON DIOXIDE BY ONE-STEP HYDROGENATION AND ITS PREPARATION PROCESS
CN112691701A (zh) * 2019-10-23 2021-04-23 中国石油化工股份有限公司 催化剂组合物的成型方法及其在低碳烯烃生产中的用途
US20210347711A1 (en) * 2018-12-21 2021-11-11 Dalian Institute Of Chemical Physics, Chinese Academy Of Sciences Method for preparing light olefin through catalytic syngas with high selectivity by heteroatom-doped zeolite
US20220032252A1 (en) * 2018-12-03 2022-02-03 Furukawa Electric Co., Ltd. Apparatus for producing lower olefin-containing gas and method for producing lower olefin-containing gas
RU2772383C1 (ru) * 2018-12-21 2022-05-19 Далянь Инститьют Оф Кемикал Физикс, Чайниз Экэдеми Оф Сайенсиз Катализатор и способ получения жидкого топлива с низким содержанием ароматических углеводородов путем прямой конверсии синтез-газа

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2909139T3 (es) * 2016-12-09 2022-05-05 Velocys Tech Limited Proceso para el manejo de un reactor tubular altamente productivo
CN109999816B (zh) * 2018-01-04 2021-10-29 郑州轻工业学院 一种用于合成气直接催化转化制低碳烯烃的方法
CN109939728B (zh) * 2018-01-26 2020-08-14 中国科学院大连化学物理研究所 一种负载催化剂及合成气直接转化制低碳烯烃的方法
CN109939667B (zh) * 2018-01-26 2021-01-05 中国科学院大连化学物理研究所 一种催化剂及合成气直接转化制低碳烯烃的方法
CN109289910A (zh) * 2018-09-27 2019-02-01 太原理工大学 一种合成气直接转化制低碳烯烃的催化剂、制备方法及其应用
CN109261199B (zh) * 2018-09-27 2021-03-19 太原理工大学 一种高稳定性合成气直接制低碳烯烃的催化剂、制备方法及其应用
CN111115655B (zh) * 2018-10-30 2022-07-12 中国石油化工股份有限公司 共晶纳米分子筛、制备方法及其应用
CN111111761B (zh) * 2018-10-30 2023-01-31 中国石油化工股份有限公司 制低碳烯烃的催化剂及其应用
CN110227539A (zh) * 2019-06-21 2019-09-13 太原理工大学 一种合成气直接转化制低碳烯烃的双功能催化剂、制备方法及应用
CN110152725A (zh) * 2019-06-25 2019-08-23 华东理工大学 一种复合催化剂及合成气直接制低碳烯烃的方法
CN112295597B (zh) * 2019-08-01 2021-08-06 中国科学院大连化学物理研究所 一种催化合成气直接转化制富含btx的芳烃的催化剂及其应用
CN112973660B (zh) * 2019-12-14 2022-04-22 中国科学院大连化学物理研究所 一种高分散的非贵金属催化剂及其制备方法与应用
CN112973659B (zh) * 2019-12-14 2023-08-29 中国科学院大连化学物理研究所 一种含sapo-17分子筛的双功能催化剂及在合成气制低碳烯烃反应中的应用
CN114433221B (zh) * 2020-10-20 2024-01-30 中国石油化工股份有限公司 一种改性的金属氧化物-分子筛复合物及其制法和应用
CN112808301B (zh) * 2021-01-04 2022-01-11 大连理工大学 一种复合催化剂及其催化甲醛完全氧化消除的方法
CN115703074B (zh) * 2021-08-06 2024-05-17 中国科学院大连化学物理研究所 一种含MnGaOx的双功能催化剂及其在一氧化碳高温加氢制低碳烯烃中的应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1083415A (zh) 1992-09-03 1994-03-09 中国科学院大连化学物理研究所 合成气制低碳烯烃含铁锰催化剂及合成反应
US20070244000A1 (en) * 2006-04-13 2007-10-18 Michel Molinier Producing olefin product from syngas
CN103508828A (zh) * 2012-06-30 2014-01-15 中国科学院大连化学物理研究所 一种合成气制乙烷和丙烷的方法
WO2016007607A1 (en) * 2014-07-11 2016-01-14 Dow Global Technologies Llc Conversion of carbon monoxide, carbon dioxide, or a combination thereof over hybrid catalyst

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3228270A1 (de) * 1982-07-29 1984-02-02 Degussa Ag, 6000 Frankfurt Katalysator fuer die herstellung von kohlenwasserstoffen und das verfahren zu dessen herstellung
CN1242845C (zh) 2003-04-15 2006-02-22 北京化工大学 用于合成气制乙烯、丙烯、丁烯反应的铁/活性炭催化剂
CN100566831C (zh) * 2005-06-22 2009-12-09 中国石油化工股份有限公司 用于合成气制取二甲醚的催化剂
CN101747160B (zh) * 2008-11-28 2013-06-05 中国石油化工股份有限公司 一种由合成气制备甲醇、二甲醚和低碳烯烃的方法
US7943673B2 (en) * 2008-12-10 2011-05-17 Chevron U.S.A. Inc. Process for conversion of synthesis gas to hydrocarbons using a zeolite-methanol catalyst system
MY160507A (en) * 2010-05-10 2017-03-15 Casale Sa Process for the production of light olefins from synthesis gas
CN102294259A (zh) * 2010-06-24 2011-12-28 中国石油化工股份有限公司 由合成气制低碳含氧化合物的催化剂及其制备方法
EA022583B1 (ru) * 2010-11-02 2016-01-29 Сауди Бейсик Индастриз Корпорейшн Способ получения низших олефинов с использованием катализатора на основе zsm-5
CN104549447B (zh) * 2013-10-28 2017-07-14 中国石油化工股份有限公司 合成气制烯烃催化剂及其制备方法
CN103752337B (zh) * 2013-12-09 2016-01-27 中国科学院山西煤炭化学研究所 利用费托合成尾气制备低碳烯烃的催化剂及制法和应用
FR3018702B1 (fr) * 2014-03-20 2017-10-20 Ifp Energies Now Catalyseur fischer-tropsch a base d'un metal du groupe viiib et d'un support d'oxydes comprenant de l'alumine, de la silice, une spinelle et du phosphore
CN105944756B (zh) * 2016-05-24 2019-01-29 华南理工大学 一种MnCu-SAPO-34分子筛催化剂及其制备方法与用途

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1083415A (zh) 1992-09-03 1994-03-09 中国科学院大连化学物理研究所 合成气制低碳烯烃含铁锰催化剂及合成反应
US20070244000A1 (en) * 2006-04-13 2007-10-18 Michel Molinier Producing olefin product from syngas
CN103508828A (zh) * 2012-06-30 2014-01-15 中国科学院大连化学物理研究所 一种合成气制乙烷和丙烷的方法
WO2016007607A1 (en) * 2014-07-11 2016-01-14 Dow Global Technologies Llc Conversion of carbon monoxide, carbon dioxide, or a combination thereof over hybrid catalyst

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JIAO ET AL., SCIENCE, vol. 351, 2016, pages 1065 - 1068
JIAO, FENG ET AL.: "Selective Conversion of Syngas to Light Olefins", CATALYSIS, vol. 6277, no. 351, 4 March 2016 (2016-03-04) - 1068, pages 1065, XP055515785 *
See also references of EP3549672A4

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3593901A4 (en) * 2016-12-30 2020-11-04 Shanghai Advanced Research Institute, Chinese Academy of Sciences CATALYST FOR THE PREPARATION OF HYDROCARBONS FROM CARBON DIOXIDE BY ONE-STEP HYDROGENATION AND ITS PREPARATION PROCESS
WO2019030279A1 (en) * 2017-08-08 2019-02-14 Basf Se COMPOSITION COMPRISING A MIXED METAL OXIDE AND A MOLDING COMPRISING A ZEOLITHIC MATERIAL HAVING A TYPE OF CHA STRUCTURE AND AN ALKALINE-EARTH METAL
US20220032252A1 (en) * 2018-12-03 2022-02-03 Furukawa Electric Co., Ltd. Apparatus for producing lower olefin-containing gas and method for producing lower olefin-containing gas
US11925930B2 (en) * 2018-12-03 2024-03-12 Furukawa Electric Co., Ltd. Apparatus for producing lower olefin-containing gas and method for producing lower olefin-containing gas
US20210347711A1 (en) * 2018-12-21 2021-11-11 Dalian Institute Of Chemical Physics, Chinese Academy Of Sciences Method for preparing light olefin through catalytic syngas with high selectivity by heteroatom-doped zeolite
EP3900829A4 (en) * 2018-12-21 2022-03-09 Dalian Institute of Chemical Physics, Chinese Academy of Sciences PROCESS FOR THE PRODUCTION OF LOW-CARBON OLEFINS WITH HIGH SELECTIVITY FROM SYNTHESIS GAS CATALYSED BY A HETEROATOME-DOPED MOLECULAR SIEVE
RU2772383C1 (ru) * 2018-12-21 2022-05-19 Далянь Инститьют Оф Кемикал Физикс, Чайниз Экэдеми Оф Сайенсиз Катализатор и способ получения жидкого топлива с низким содержанием ароматических углеводородов путем прямой конверсии синтез-газа
RU2778293C1 (ru) * 2018-12-21 2022-08-17 Далянь Инститьют Оф Кемикал Физикс, Чайниз Экэдеми Оф Сайенсиз Каталитический высокоселективный способ получения олефинов с низким числом атомов углерода с применением легированного гетероатомами молекулярного сита и синтез-газа
US11999671B2 (en) * 2018-12-21 2024-06-04 Dalian Institute Of Chemical Physics, Cas Method for preparing light olefin through catalytic syngas with high selectivity by heteroatom-doped zeolite
CN112691701A (zh) * 2019-10-23 2021-04-23 中国石油化工股份有限公司 催化剂组合物的成型方法及其在低碳烯烃生产中的用途

Also Published As

Publication number Publication date
RU2727897C1 (ru) 2020-07-24
US20190275505A1 (en) 2019-09-12
JP6778821B2 (ja) 2020-11-04
EP3549672A1 (en) 2019-10-09
CN108144643B (zh) 2020-03-10
SA519401920B1 (ar) 2023-01-12
JP2019536623A (ja) 2019-12-19
ZA201903455B (en) 2020-02-26
US10960387B2 (en) 2021-03-30
EP3549672A4 (en) 2020-12-09
CN108144643A (zh) 2018-06-12

Similar Documents

Publication Publication Date Title
WO2018103603A1 (zh) 一种催化剂及合成气直接转化制低碳烯烃的方法
CN107661774B (zh) 一种催化剂及合成气直接转化制低碳烯烃的方法
WO2018219365A1 (zh) 一种催化剂及合成气直接转化制低碳烯烃的方法
AU2019211888B2 (en) Catalyst and method for directly converting synthesis gas into low-carbon olefin
CN108568313B (zh) 一种催化剂及一氧化碳加氢直接转化制低碳烯烃的方法
CN109939728B (zh) 一种负载催化剂及合成气直接转化制低碳烯烃的方法
CN109745965B (zh) 一种含CeZr氧化物的催化剂及一氧化碳加氢直接转化制低碳烯烃的方法
WO2020125487A1 (zh) 一种掺杂杂原子分子筛催化合成气高选择性制低碳烯烃的方法
CN111346672A (zh) 一种掺杂杂原子分子筛催化合成气高选择性制低碳烯烃的方法
WO2019144951A1 (zh) 一种催化剂及合成气直接转化制乙烯的方法
WO2018214476A1 (zh) 一种碱修饰的催化剂及一氧化碳加氢反应制乙烯的方法
WO2018214471A1 (zh) 一种双功能催化剂及一氧化碳加氢制乙烯的方法
WO2018161670A1 (zh) 一种催化剂及合成气直接转化制乙烯的方法
WO2018219364A1 (zh) 一种催化剂及合成气直接转化制液体燃料联产低碳烯烃的方法
WO2019144953A1 (zh) 一种有机碱修饰的复合催化剂及一氧化碳加氢制乙烯的方法
WO2019144955A1 (zh) 一种含lf型b酸催化剂及合成气直接转化制乙烯的方法
CN112973659B (zh) 一种含sapo-17分子筛的双功能催化剂及在合成气制低碳烯烃反应中的应用
CN112973781B (zh) 一种催化剂及合成气直接转化制c2和c3烯烃的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17877891

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019528864

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017877891

Country of ref document: EP