WO2018092680A1 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
WO2018092680A1
WO2018092680A1 PCT/JP2017/040490 JP2017040490W WO2018092680A1 WO 2018092680 A1 WO2018092680 A1 WO 2018092680A1 JP 2017040490 W JP2017040490 W JP 2017040490W WO 2018092680 A1 WO2018092680 A1 WO 2018092680A1
Authority
WO
WIPO (PCT)
Prior art keywords
trench
insulating film
gate insulating
gate
semiconductor device
Prior art date
Application number
PCT/JP2017/040490
Other languages
English (en)
French (fr)
Inventor
正清 住友
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to CN201780067304.1A priority Critical patent/CN109891597A/zh
Publication of WO2018092680A1 publication Critical patent/WO2018092680A1/ja
Priority to US16/351,755 priority patent/US10720518B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7396Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions
    • H01L29/7397Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions and a gate structure lying on a slanted or vertical surface or formed in a groove, e.g. trench gate IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0804Emitter regions of bipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0821Collector regions of bipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1004Base region of bipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • H01L29/407Recessed field plates, e.g. trench field plates, buried field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41708Emitter or collector electrodes for bipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • H01L29/4236Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • H01L29/42376Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the length or the sectional shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs

Definitions

  • the present disclosure relates to a semiconductor device in which a trench gate type insulated gate bipolar transistor (hereinafter simply referred to as IGBT) element is formed.
  • IGBT trench gate type insulated gate bipolar transistor
  • a semiconductor device in which an IGBT element is formed has an N ⁇ type drift layer, and a P type base layer is formed on the drift layer. A plurality of trenches are formed so as to penetrate the base layer. In each trench, a gate insulating film is formed so as to cover a wall surface of the trench, and a gate electrode is formed on the gate insulating film. ing. Further, an N + -type emitter region is formed in the surface layer portion of the base layer so as to be in contact with the side surface of the trench.
  • a P-type collector layer is formed on the opposite side of the base layer with the drift layer interposed therebetween.
  • An upper electrode electrically connected to the base layer and the emitter region is formed, and a lower electrode electrically connected to the collector layer is formed.
  • some of the plurality of gate electrodes are connected to the upper electrode and have the same potential as the upper electrode. That is, some gate electrodes of the plurality of gate electrodes are dummy gate electrodes.
  • the semiconductor device since a part of the gate electrode is connected to the upper electrode, the semiconductor device shifts from an off state in which no current flows to an on state in which current flows. At this time, it has been found that the switching loss tends to increase.
  • This disclosure is intended to provide a semiconductor device capable of reducing switching loss when shifting from an off state to an on state.
  • a semiconductor device includes a first conductivity type drift layer, a second conductivity type base layer formed on the drift layer, and a side of the drift layer opposite to the base layer side.
  • a second conductivity type collector layer formed on the gate layer, a gate insulating film formed on the wall surface of each of the plurality of trenches formed so as to penetrate the base layer and reach the drift layer, and formed on the gate insulating film, respectively
  • a plurality of gate electrodes a gate voltage is applied to a part of the gate electrodes, and the remaining gate electrodes are electrically connected to the first electrodes to form the first electrodes.
  • a trench in which a part of the gate electrode is disposed is a first trench
  • a trench in which the remaining gate electrode is disposed is a second trench
  • a gate insulating film formed on a wall surface of the first trench is a first gate insulating film
  • the gate insulating film formed on the wall surface of the second trench is the second gate insulating film
  • all of the second gate insulating film formed on the side surface of the second trench and on the region in contact with the drift layer The second capacitance per unit area of the portion of the first gate insulating film is equal to or lower than the first capacitance per unit area of the portion formed on the side surface of the first trench and on the region in contact with the base layer.
  • at least a portion of the second capacitance is smaller than the first capacitance.
  • FIG. 4 It is sectional drawing of the semiconductor device in 1st Embodiment. 4 is a timing chart showing the relationship among a gate-emitter voltage Vge, a collector-emitter current Ice, and a collector-emitter voltage Vce when the semiconductor device transitions from an off state to an on state.
  • 3 is a simulation result showing a hole density at a time point T1 in FIG. 2 in the semiconductor device shown in FIG. 3 is a simulation result showing a hole density at a time point T2 in FIG. 2 in the semiconductor device shown in FIG. 3 is a simulation result showing the hole density at time T3 in FIG. 2 in the semiconductor device shown in FIG. 3 is a simulation result showing a hole density at a time T4 in FIG. 2 in the semiconductor device shown in FIG.
  • FIG. 3 is a simulation result showing a hole density at a time T5 in FIG. 2 in the semiconductor device shown in FIG. 3 is a simulation result showing a hole density at a time point T6 in FIG. 2 in the semiconductor device shown in FIG. 3 is a simulation result showing a hole density at time T7 in FIG. 2 in the semiconductor device shown in FIG.
  • It is a simulation result which shows the hole density in time T3 in FIG. 2 in the conventional semiconductor device.
  • a first embodiment will be described. Note that the semiconductor device of this embodiment is preferably used as a power switching element used in a power supply circuit such as an inverter or a DC / DC converter.
  • the semiconductor device has an N ⁇ type semiconductor substrate 10 that functions as a drift layer 11.
  • a P-type base layer 12 is formed on the drift layer 11 (that is, on the one surface 10a side of the semiconductor substrate 10).
  • a plurality of trenches 13a and 13b that penetrate the base layer 12 and reach the drift layer 11 are formed in the semiconductor substrate 10, and the base layer 12 is divided by the plurality of trenches 13a and 13b.
  • the plurality of trenches 13a and 13b are formed at equal intervals in a stripe shape along one direction (that is, the depth direction in FIG. 1) of the surface 10a of the semiconductor substrate 10. .
  • the trench 13a will be described as the first trench 13a
  • the trench 13b will be described as the second trench 13b.
  • the first trench 13a is embedded by a first gate insulating film 14a formed so as to cover the wall surface of the first trench 13a and a first gate electrode 15a formed on the first gate insulating film 14a.
  • the second trench 13b includes a second gate insulating film 14b formed so as to cover the wall surface of the second trench 13b, and a second gate electrode 15b formed on the second gate insulating film 14b. Embedded.
  • the first gate insulating film 14a and the second gate insulating film 14b are each composed of a silicon oxide film (SiO 2 ) or the like, and the first gate electrode 15a and the second gate electrode 15b are each made of poly It is composed of silicon or the like.
  • the first trench 13 a and the second trench 13 b are directions perpendicular to the extending direction of the first trench 13 a and the second trench 13 b and along the surface direction of the semiconductor substrate 10 ( That is, they are alternately formed in the left and right direction on the paper surface in FIG.
  • first trench 13a and the second trench 13b are, for example, a plurality of the first trenches 13a and the second trenches 13b in a direction perpendicular to the extending direction of the first trenches 13a and the second trenches 13b and along the surface direction of the semiconductor substrate 10.
  • the arrangement order may be changed as appropriate.
  • the first gate insulating film 14a has a substantially uniform thickness for each portion on the wall surface of the first trench 13a. Specifically, as will be described later, the first gate electrode 15a is connected to an external gate circuit, and an inversion layer (that is, a channel region) is formed in a portion of the base layer 12 in contact with the first trench 13a. A predetermined gate voltage is applied from the gate circuit. That is, the thickness of the portion of the first gate insulating film 14a that is in contact with the base layer 12 is defined to be a thickness at which the inversion layer can be formed. In other words, the thickness of the portion of the first gate insulating film 14a that is in contact with the base layer 12 is defined by the thickness of the portion that determines the threshold voltage Vth of the MOS gate. The thickness of the other part of the first gate insulating film 14a is also equal to the thickness of the part in contact with the base layer 12 in the first gate insulating film 14a.
  • the second gate insulating film 14b has a substantially uniform thickness for each portion on the wall surface of the second trench 13b. However, the second gate insulating film 14b is generally thicker than the first gate insulating film 14a. In the present embodiment, the second gate insulating film 14b is twice as thick as the first gate insulating film 14a.
  • the capacitance per unit area of the portion formed on the side surface of the second trench 13b and in contact with the drift layer 11 is defined as the second capacitance.
  • a capacitance per unit area of a portion of the first gate insulating film 14a formed on the side surface of the first trench 13a and in contact with the base layer 12 is defined as a first capacitance.
  • the second capacity of all the parts is set to be equal to or less than the first capacity.
  • the second capacitance of all portions is smaller than the first capacitance.
  • N + -type emitter region 16 and a P + -type body region 17 are formed in the surface layer portion of the base layer 12.
  • the emitter region 16 is configured to have a higher impurity concentration than the drift layer 11, is terminated in the base layer 12, and is in contact with the side surface of the first trench 13 a.
  • the body region 17 has a higher impurity concentration than the base layer 12 and is formed so as to terminate in the base layer 12, similarly to the emitter region 16.
  • the emitter region 16 extends in a rod shape so as to be in contact with the side surface of the first trench 13a along the extending direction of the first trench 13a, and terminates inside the tip of the first trench 13a. It is said that.
  • the body region 17 extends in a rod shape so as to be in contact with the side surface of the second trench 13b along the extending direction of the second trench 13b, and terminates on the inner side of the tip of the second trench 13b. .
  • the body region 17 is formed deeper than the emitter region 16 with respect to the one surface 10 a of the semiconductor substrate 10.
  • An interlayer insulating film 18 made of BPSG (abbreviation of Boro-phosphosilicate glass) or the like is formed on one surface 10 a of the semiconductor substrate 10.
  • a first contact hole 18 a that exposes a part of the emitter region 16 and the body region 17 is formed, and a second contact hole 18 b that exposes the second gate electrode 15 b is formed.
  • the interlayer insulating film 18 is electrically connected to the emitter region 16 and the body region 17 through the first contact hole 18a, and is also connected to the second gate electrode 15b through the second contact hole 18b.
  • An upper electrode 19 is formed. That is, in the present embodiment, the second gate electrode 15b has the same potential as the upper electrode 19, and functions as a so-called dummy gate electrode.
  • the first gate electrode 15a corresponds to a part of the gate electrode
  • the second gate electrode 15b corresponds to the remaining gate electrode
  • the upper electrode 19 corresponds to the first electrode.
  • the first gate electrode 15a is electrically connected to an external gate circuit via a gate wiring and a gate pad (not shown), and a predetermined gate voltage is applied from the gate circuit.
  • An N-type field stop layer (hereinafter simply referred to as an FS layer) 20 is formed on the side of the drift layer 11 opposite to the base layer 12 side (that is, the other surface 10b side of the semiconductor substrate 10).
  • this FS layer 20 is not necessarily required, it is possible to improve the breakdown voltage and steady loss performance by preventing the depletion layer from spreading, and to increase the injection amount of holes injected from the other surface 10b side of the semiconductor substrate 10. Be prepared to control.
  • a P-type collector layer 21 is formed on the opposite side of the drift layer 11 with the FS layer 20 in between.
  • the collector layer 21 and the collector layer 21 are electrically connected to the collector layer 21 (that is, on the other surface 10b of the semiconductor substrate 10).
  • a lower electrode 22 to be connected is formed. In the present embodiment, the lower electrode corresponds to the second electrode.
  • N + type and N ⁇ type correspond to the first conductivity type
  • P type and P + type correspond to the second conductivity type
  • the thickness of the second gate insulating film 14b is made equal to the thickness of the first gate insulating film 14a with reference to FIGS. 2 to 5, and the second gate electrode 15b is electrically connected to the upper electrode 19.
  • 3A to 3F are simulation results showing the hole density of the semiconductor device of this embodiment at each time point in FIG. 2, and FIGS. 4A to 4F are conventional semiconductor devices at each time point in FIG. It is a simulation result which shows the hole density of. Specifically, FIGS. 3A and 4A show the hole density at time T1, FIGS. 3B and 4B show the hole density at time T2, FIGS.
  • FIGS. 3C and 4C show the hole density at time T3
  • FIGS. FIG. 4D shows the hole density at time T4.
  • 3E and 4E show the hole density at time T5
  • FIGS. 3F and 4F show the hole density at time T6
  • FIGS. 3G and 4G show the hole density at time T7.
  • the semiconductor device transitions from the off state to the on state, the upper electrode 19 is grounded and a positive voltage is applied to the lower electrode 22, and a predetermined gate is applied to the first gate electrode 15a from an external gate circuit. A voltage is applied. As a result, the gate-emitter voltage Vge gradually increases. After that, when the gate potential of the first gate electrode 15a becomes equal to or higher than the threshold voltage Vth of the MOS gate at the time T1, the semiconductor device has an inversion layer (that is, a channel) Region) is formed. In the semiconductor device, electrons are supplied from the emitter region 16 to the drift layer 11 through the inversion layer, and holes are supplied from the collector layer 21 to the drift layer 11.
  • the inversion layer that is, a channel
  • the resistance value of the drift layer 11 decreases due to conductivity modulation, the collector-emitter current Ice begins to flow, and the collector-emitter voltage (hereinafter simply referred to as the collector voltage) Vce decreases. start.
  • the collector voltage Vce becomes substantially constant after reaching the minimum value at time T7.
  • it becomes substantially constant after reaching the minimum value at time T6 before time T7. That is, in the semiconductor device of this embodiment, the collector voltage Vce can be reduced to the minimum value earlier than the conventional semiconductor device, and the switching loss when shifting from the off state to the on state can be reduced.
  • the drift layer 11 in the second trench 13b Electric charges are accumulated in the contact portion, and a p-type inversion layer is formed. As shown in FIGS. 3A and 4A, the drift layer 11 has a depletion layer d formed between the inversion layer and the drift layer 11.
  • the hole density of the drift layer 11 is gradually increased, so that the depletion layer d is reduced.
  • the depletion layer d disappears from the vicinity of the side surface of the second trench 13b at time T7.
  • the holes supplied to the drift layer 11 are attracted to the inversion layer through the depletion layer d and pass through the inversion layer. Then, it is swept out to the base layer 12 side. Therefore, in the conventional semiconductor device, as shown in FIG. 2, the collector voltage Vce gradually decreases from the vicinity of time T3, and the period until the collector voltage Vce reaches the minimum value becomes longer.
  • the second gate insulating film 14b is thicker than the first gate insulating film 14a, and the second capacitance is smaller than the first capacitance.
  • connects the 2nd trench 13b of the drift layer 11 decreases. That is, in the semiconductor device of this embodiment, as shown in FIG. 3A, the spread of the depletion layer d is suppressed as compared with FIG. 4A. And in the semiconductor device of this embodiment, the hole supplied to the drift layer 11 becomes difficult to be swept out to the base layer 12 side by suppressing the spread of the depletion layer d.
  • the depletion layer d gradually decreases as in the conventional semiconductor device, but is shown in FIG. 3F.
  • the depletion layer d disappears from the vicinity of the side surface of the second trench 13b at time T6. Therefore, in the semiconductor device of this embodiment, the collector voltage Vce can be lowered to the minimum value at an early stage as compared with the conventional semiconductor device, and the switching loss when shifting from the off state to the on state can be reduced. Can do.
  • the second gate insulating film 14b is thicker than the first gate insulating film 14a, and the second capacitance is smaller than the first capacitance. For this reason, in the semiconductor device of this embodiment, when the semiconductor device is shifted from the off state to the on state, an inversion layer is hardly formed in a portion of the drift layer 11 that is in contact with the second trench 13b. Spreading can be suppressed. Therefore, in the semiconductor device of this embodiment, the holes supplied to the drift layer 11 can be suppressed from being swept out through the inversion layer, and the collector voltage Vce can be lowered to the minimum value at an early stage. Can be reduced.
  • the second gate insulating film 14 b is formed such that the thickness of the portion formed on the region in contact with the base layer 12 in the second trench 13 b is the first gate insulating film 14 a. Is equal to the thickness. In the second gate insulating film 14b, the thickness of the portion formed on the region in contact with the drift layer 11 in the second trench 13b is made larger than the thickness of the first gate insulating film 14a.
  • the portion on the bottom side of the second trench 13b among the portions formed on the region in contact with the drift layer 11 in the second trench 13b is thickened.
  • the portion on the base layer 12 side of the portion formed on the region in contact with the drift layer 11 in the second trench 13b is made equal to the thickness of the first gate insulating film 14a.
  • the width of the portion located on the base layer 12 side is made equal to the width of the first gate electrode 15a
  • the width of the portion located on the drift layer 11 side is located on the base layer 12 side. It is narrower than the width of the part.
  • the width is a direction perpendicular to the extending direction of the first trench 13 a and the second trench 13 b and along the surface direction of the one surface 10 a of the semiconductor substrate 10.
  • the second gate insulating film 14b has a second capacitance in the portion on the base layer 12 side in the portion formed on the region in contact with the drift layer 11 in the side surface of the second trench 13b. It is made equal to 1 capacity. Further, in the second gate insulating film 14b, in the portion formed on the region in contact with the drift layer 11 in the side surface of the second trench 13b, the second capacitance at the bottom side of the second trench 13b is the first capacitance. Have been smaller.
  • a part of the second capacitance of the second gate insulating film 14b is made smaller than the first capacitance, and the other part of the second capacitance is made equal to the first capacitance. Since the spread of the depletion layer d can be suppressed, the same effect as in the first embodiment can be obtained.
  • the first gate insulating film 14a has the same configuration as the second gate insulating film 14b. That is, in the first gate insulating film 14a, the thickness of the portion formed on the region in contact with the drift layer 11 in the first trench 13a is made thicker than the thickness of the portion formed on the region in contact with the base layer 12. ing. In other words, the first gate insulating film 14a is thickened at a portion different from the portion that determines the threshold voltage Vth.
  • the same effects as those of the second embodiment can be obtained.
  • the first gate insulating film 14a and the second gate insulating film 14b have the same configuration, the first gate insulating film 14a and the second gate insulating film 14b are formed in the same process. Therefore, the manufacturing process can be simplified.
  • the second gate insulating film 14b has the same thickness as the first gate insulating film 14a.
  • the second gate insulating film 14b is made of a material having a dielectric constant lower than that of the silicon oxide film constituting the first gate insulating film 14a.
  • the second capacitance of the second gate insulating film 14b is made smaller than the first capacitance of the first gate insulating film 14a.
  • a fluorine-added silicon oxide film (SiOF), a carbon-added silicon oxide film (SiOC), or the like is used as the material having a dielectric constant smaller than that of the silicon oxide film.
  • the second gate insulating film 14b is made of a material having a dielectric constant smaller than that of the first gate insulating film 14a, the second capacitance is smaller than the first capacitance. The effect similar to that of the first embodiment can be obtained.
  • the first conductivity type is the N type and the second conductivity type is the P type has been described, but the first conductivity type is the P type and the second conductivity type is the N type. It can also be a type.
  • the body region 17 may not be in contact with the second trench 13b. That is, the base layer 12 may be present between the body region 17 and the second trench 13b. Further, in the semiconductor device, in addition to the emitter region 16 in contact with the side surface of the first trench 13a, the emitter region 16 in contact with the side surface of the second trench 13b may be formed.
  • the second gate electrode 15b and the upper electrode 19 may not be directly electrically connected via the second contact hole 18b.
  • the semiconductor device includes a gate pad different from the gate pad to which the first gate electrode 15 a is connected, and the different gate pad is electrically connected to the second gate electrode 15 b and the upper electrode 19. Also good. That is, the second gate electrode 15b may be electrically connected to the upper electrode 19 via a gate pad different from the gate pad to which the first gate electrode 15a is connected.
  • the switching loss increases because the holes supplied to the drift layer 11 are formed along the side surfaces of the second trench 13b. This is because it is swept out to the base layer 12 side through the inversion layer.
  • the second gate insulating film 14b has the second trench 13b provided that the portion of the side surface of the second trench 13b on the region in contact with the drift layer 11 is thickened. The portion on the bottom surface of the plate may not be thickened.
  • a portion of the second gate insulating film 14b formed on the bottom surface of the second trench 13b may be formed of a silicon oxide film.
  • the second gate insulating film 14b is formed on a portion of the side surface of the second trench 13b that is in contact with the drift layer 11, and the portion on the base layer 12 side is It may be thickened. That is, the thickness of the portion formed on the region in contact with the drift layer 11 in the side surface of the second trench 13b in the second gate insulating film 14b may be as follows. That is, the thickness of this portion is equal to or greater than the thickness of the portion defining the threshold voltage Vth in the first gate insulating film 14a, and at least part of the thickness is the threshold voltage Vth in the first gate insulating film 14a. What is necessary is just to be thicker than the thickness of the part to prescribe
  • the 2nd gate insulating film 14b should just be made as follows in the part formed in the area
  • the width of the second gate electrode 15b may be constant in the thickness direction of the semiconductor substrate 10.
  • the width of the bottom side portion of the second trench 13b is made longer than the width of the opening side, and the second trench 13b of the second gate insulating film 14b. What is necessary is just to thicken the part of the bottom part side.
  • the second gate insulating film 14b is the first gate as long as the second capacitance is equal to or lower than the first capacitance and at least a portion of the second capacitance is smaller than the first capacitance. It may be thinner than the gate insulating film 14a.
  • the fourth embodiment may be combined with the first to third embodiments, and the second gate insulating film 14b may be made of a material having a lower dielectric constant than the first gate insulating film 14a.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

半導体装置は、第1トレンチ(13a)上に第1ゲート絶縁膜(14a)を介して第1ゲート電極(15a)が配置されると共に、第2トレンチ(13b)上に第2ゲート絶縁膜(14b)を介して第2ゲート電極(15b)が配置され、第1ゲート電極(15a)にゲート電圧が印加され、第2ゲート電極(15b)が第1電極(19)と電気的に接続される。そして、第2ゲート絶縁膜(14b)のうち、第2トレンチ(13b)の側面であって、ドリフト層(11)と接する領域上に形成された全ての部分の単位面積当たりの第2容量を、第1ゲート絶縁膜(14a)のうち、第1トレンチ(13a)の側面であって、ベース層(12)と接する領域上に形成された部分の単位面積当たりの第1容量以下とし、かつ少なくとも一部の第2容量を第1容量より小さくする。

Description

半導体装置 関連出願への相互参照
 本出願は、2016年11月15日に出願された日本特許出願番号2016-222540号に基づくもので、ここにその記載内容が参照により組み入れられる。
 本開示は、トレンチゲート型の絶縁ゲート型バイポーラトランジスタ(以下、単にIGBTという)素子が形成された半導体装置に関する。
 従来より、インバータ等に使用されるスイッチング素子として、IGBT素子が形成された半導体装置を用いることが提案されている(例えば、特許文献1参照)。例えば、IGBT素子が形成された半導体装置は、N型のドリフト層を有し、このドリフト層上にP型のベース層が形成されている。そして、ベース層を貫通するように複数のトレンチが形成されており、各トレンチには、トレンチの壁面を覆うようにゲート絶縁膜が形成されていると共に、ゲート絶縁膜上にゲート電極が形成されている。さらに、ベース層の表層部には、トレンチの側面に接するようにN型のエミッタ領域が形成されている。
 また、ドリフト層を挟んでベース層と反対側には、P型のコレクタ層が形成されている。そして、ベース層およびエミッタ領域と電気的に接続される上部電極が形成され、コレクタ層と電気的に接続される下部電極が形成されている。
 このような半導体装置では、導通損失の低減を図るため、複数のゲート電極の一部のゲート電極が上部電極と接続されて当該上部電極と同電位とされている。つまり、複数のゲート電極の一部のゲート電極は、ダミーゲート電極とされている。
特開2004-22941号公報
 しかしながら、上記半導体装置では、本発明者らの詳細の検討によれば、ゲート電極の一部が上部電極と接続されているため、電流が流れていないオフ状態から電流を流すオン状態へ移行する際、スイッチング損失が大きくなり易いことが判明した。
 本開示は、オフ状態からオン状態に移行する際のスイッチング損失を低減できる半導体装置を提供することを目的とする。
 本開示の1つの観点によれば、半導体装置は、第1導電型のドリフト層と、ドリフト層上に形成された第2導電型のベース層と、ドリフト層のうちのベース層側と反対側に形成された第2導電型のコレクタ層と、ベース層を貫通してドリフト層に達するように形成された複数のトレンチの壁面にそれぞれ形成されたゲート絶縁膜と、ゲート絶縁膜上にそれぞれ形成された複数のゲート電極と、ベース層の表層部に形成され、トレンチと接する第1導電型のエミッタ領域と、ベース層およびエミッタ領域と電気的に接続される第1電極と、コレクタ層と電気的に接続される第2電極と、を備え、複数のゲート電極は、一部のゲート電極にゲート電圧が印加され、残部のゲート電極が第1電極と電気的に接続されることで第1電極と同電位とされており、一部のゲート電極が配置されるトレンチを第1トレンチ、残部のゲート電極が配置されるトレンチを第2トレンチ、第1トレンチの壁面に形成されたゲート絶縁膜を第1ゲート絶縁膜、第2トレンチの壁面に形成されたゲート絶縁膜を第2ゲート絶縁膜とすると、第2ゲート絶縁膜のうち、第2トレンチの側面であって、ドリフト層と接する領域上に形成された全ての部分の単位面積当たりの第2容量は、第1ゲート絶縁膜のうち、第1トレンチの側面であって、ベース層と接する領域上に形成された部分の単位面積当たりの第1容量以下とされ、かつ少なくとも一部の第2容量は第1容量より小さくされている。
 これによれば、半導体装置は、オフ状態からオン状態に移行する際、ドリフト層のうちの第2トレンチと接する部分に反転層が形成され難くなり、空乏層の広がりが抑制される。したがって、このような半導体装置では、ドリフト層に供給されたキャリア(例えば、ホール)が反転層を介して掃き出されることを抑制できる。このため、このような半導体装置は、早期にコレクタ-エミッタ間電圧を最小値まで低下させることができ、スイッチング損失の低減を図ることができる。
第1実施形態における半導体装置の断面図である。 半導体装置がオフ状態からオン状態へ移行する際のゲート-エミッタ間電圧Vge、コレクタ-エミッタ間電流Ice、およびコレクタ-エミッタ間電圧Vceの関係を示すタイミングチャートである。 図1に示す半導体装置における図2中の時点T1のホール密度を示すシミュレーション結果である。 図1に示す半導体装置における図2中の時点T2のホール密度を示すシミュレーション結果である。 図1に示す半導体装置における図2中の時点T3のホール密度を示すシミュレーション結果である。 図1に示す半導体装置における図2中の時点T4のホール密度を示すシミュレーション結果である。 図1に示す半導体装置における図2中の時点T5のホール密度を示すシミュレーション結果である。 図1に示す半導体装置における図2中の時点T6のホール密度を示すシミュレーション結果である。 図1に示す半導体装置における図2中の時点T7のホール密度を示すシミュレーション結果である。 従来の半導体装置における図2中の時点T1のホール密度を示すシミュレーション結果である。 従来の半導体装置における図2中の時点T2のホール密度を示すシミュレーション結果である。 従来の半導体装置における図2中の時点T3のホール密度を示すシミュレーション結果である。 従来の半導体装置における図2中の時点T4のホール密度を示すシミュレーション結果である。 従来の半導体装置における図2中の時点T5のホール密度を示すシミュレーション結果である。 従来の半導体装置における図2中の時点T6のホール密度を示すシミュレーション結果である。 従来の半導体装置における図2中の時点T7のホール密度を示すシミュレーション結果である。 図4Eに対応するホール電流を示すシミュレーション結果である。 第2実施形態における半導体装置の断面図である。 第3実施形態における半導体装置の断面図である。 第4実施形態における半導体装置の断面図である。
 以下、本開示の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、同一符号を付して説明を行う。
 (第1実施形態)
 第1実施形態について説明する。なお、本実施形態の半導体装置は、例えば、インバータ、DC/DCコンバータ等の電源回路に使用されるパワースイッチング素子として利用されると好適である。
 図1に示されるように、半導体装置は、ドリフト層11として機能するN型の半導体基板10を有している。そして、ドリフト層11上(すなわち、半導体基板10の一面10a側)には、P型のベース層12が形成されている。
 また、半導体基板10には、ベース層12を貫通してドリフト層11に達する複数のトレンチ13a、13bが形成されており、ベース層12は複数のトレンチ13a、13bによって分断されている。本実施形態では、複数のトレンチ13a、13bは、半導体基板10の一面10aの面方向のうちの一方向(すなわち、図1中紙面奥行き方向)に沿ってストライプ状に等間隔に形成されている。以下では、トレンチ13aを第1トレンチ13aとし、トレンチ13bを第2トレンチ13bとして説明する。
 第1トレンチ13aは、第1トレンチ13aの壁面を覆うように形成された第1ゲート絶縁膜14aと、当該第1ゲート絶縁膜14aの上に形成された第1ゲート電極15aとにより埋め込まれている。同様に、第2トレンチ13bは、第2トレンチ13bの壁面を覆うように形成された第2ゲート絶縁膜14bと、当該第2ゲート絶縁膜14bの上に形成された第2ゲート電極15bとにより埋め込まれている。
 なお、本実施形態では、第1ゲート絶縁膜14aおよび第2ゲート絶縁膜14bは、それぞれシリコン酸化膜(SiO)等で構成され、第1ゲート電極15aおよび第2ゲート電極15bは、それぞれポリシリコン等で構成されている。また、本実施形態では、第1トレンチ13aおよび第2トレンチ13bは、第1トレンチ13aおよび第2トレンチ13bの延設方向と直交する方向であって、半導体基板10の面方向に沿った方向(すなわち、図1中紙面左右方向)に交互に形成されている。但し、第1トレンチ13aおよび第2トレンチ13bは、例えば、第1トレンチ13aおよび第2トレンチ13bの延設方向と直交する方向であって、半導体基板10の面方向に沿った方向に複数ずつ纏めて形成されていてもよく、配置順序は適宜変更可能である。
 ここで、本実施形態の第1ゲート絶縁膜14aおよび第2ゲート絶縁膜14bの構成について説明する。
 第1ゲート絶縁膜14aは、第1トレンチ13aの壁面上において、部分毎に厚さがほぼ均一とされている。具体的には、第1ゲート電極15aは、後述するように、外部のゲート回路と接続され、ベース層12のうちの第1トレンチ13aと接する部分に反転層(すなわち、チャネル領域)が形成されるように当該ゲート回路から所定のゲート電圧が印加される。つまり、第1ゲート絶縁膜14aのうちのベース層12と接する部分の厚さは、反転層が形成可能な厚さに規定される。言い換えると、第1ゲート絶縁膜14aのうちのベース層12と接する部分の厚さは、MOSゲートの閾値電圧Vthを決定する部分の厚さで規定される。そして、第1ゲート絶縁膜14aは、他の部分の厚さも、第1ゲート絶縁膜14aのうちのベース層12と接する部分の厚さと等しくされている。
 第2ゲート絶縁膜14bは、第2トレンチ13bの壁面上において、部分毎に厚さがほぼ均一とされている。但し、第2ゲート絶縁膜14bは、全体的に第1ゲート絶縁膜14aの厚さより厚くされており、本実施形態では、第1ゲート絶縁膜14aの2倍の厚さとされている。
 ここで、第2ゲート絶縁膜14bのうち、第2トレンチ13bの側面であって、ドリフト層11と接する領域上に形成された部分の単位面積当たりの容量を第2容量とする。また、第1ゲート絶縁膜14aのうち、第1トレンチ13aの側面であって、ベース層12と接する領域上に形成された部分の単位面積当たりの容量を第1容量とする。
 そして、全ての部分の第2容量は、第1容量以下とされている。本実施形態では、第2ゲート絶縁膜14bの厚さが全体的に第1ゲート絶縁膜14aの厚さより厚くされているため、全ての部分の第2容量は、第1容量より小さくなる。
 ベース層12の表層部には、N型のエミッタ領域16およびP型のボディ領域17が形成されている。具体的には、エミッタ領域16は、ドリフト層11よりも高不純物濃度で構成され、ベース層12内において終端し、かつ、第1トレンチ13aの側面に接するように形成されている。一方、ボディ領域17は、ベース層12よりも高不純物濃度で構成され、エミッタ領域16と同様に、ベース層12内において終端するように形成されている。
 より詳しくは、エミッタ領域16は、第1トレンチ13aの延設方向に沿って当該第1トレンチ13aの側面に接するように棒状に延設され、第1トレンチ13aの先端よりも内側で終端する構造とされている。ボディ領域17は、第2トレンチ13bの延設方向に沿って当該第2トレンチ13bの側面に接するように棒状に延設され、第2トレンチ13bの先端よりも内側で終端する構造とされている。また、ボディ領域17は、半導体基板10の一面10aを基準としてエミッタ領域16よりも深く形成されている。
 半導体基板10の一面10a上には、BPSG(Boro-phospho silicate glassの略)等で構成される層間絶縁膜18が形成されている。層間絶縁膜18には、エミッタ領域16の一部およびボディ領域17を露出させる第1コンタクトホール18aが形成されていると共に、第2ゲート電極15bを露出させる第2コンタクトホール18bが形成されている。そして、層間絶縁膜18上には、第1コンタクトホール18aを介してエミッタ領域16およびボディ領域17と電気的に接続されると共に、第2コンタクトホール18bを介して第2ゲート電極15bとも接続される上部電極19が形成されている。つまり、本実施形態では、第2ゲート電極15bは、上部電極19と同電位とされており、いわゆるダミーゲート電極として機能する。
 なお、本実施形態では、第1ゲート電極15aが一部のゲート電極に相当し、第2ゲート電極15bが残部のゲート電極に相当し、上部電極19が第1電極に相当している。また、第1ゲート電極15aは、図示しないゲート配線およびゲートパッド等を介して外部のゲート回路と電気的に接続され、当該ゲート回路から所定のゲート電圧が印加される。
 ドリフト層11のうちのベース層12側と反対側(すなわち、半導体基板10の他面10b側)には、N型のフィールドストップ層(以下では、単にFS層という)20が形成されている。このFS層20は、必ずしも必要なものではないが、空乏層の広がりを防ぐことで耐圧と定常損失の性能向上を図ると共に、半導体基板10の他面10b側から注入されるホールの注入量を制御するために備えてある。
 そして、FS層20を挟んでドリフト層11と反対側には、P型のコレクタ層21が形成され、コレクタ層21上(すなわち、半導体基板10の他面10b上)にはコレクタ層21と電気的に接続される下部電極22が形成されている。なお、本実施形態では、下部電極が第2電極に相当している。
 以上が本実施形態における半導体装置の構成である。なお、本実施形態では、N型、N型が第1導電型に相当しており、P型、P型が第2導電型に相当している。
 次に、上記半導体装置において、電流が流れていないオフ状態から電流が流れるオン状態に移行する際の状態について説明する。
 なお、以下では、図2~図5を参照しつつ、第2ゲート絶縁膜14bの厚さが第1ゲート絶縁膜14aの厚さと等しくされ、第2ゲート電極15bが上部電極19と電気的に接続されている半導体装置(以下では、従来の半導体装置という)と比較して説明する。また、図3A~図3Fは、図2中の各時点における本実施形態の半導体装置のホール密度を示すシミュレーション結果であり、図4A~図4Fは、図2中の各時点における従来の半導体装置のホール密度を示すシミュレーション結果である。具体的には、図3Aおよび図4Aは時点T1のホール密度を示し、図3Bおよび図4Bは時点T2のホール密度を示し、図3Cおよび図4Cは時点T3のホール密度を示し、図3Dおよび図4Dは時点T4のホール密度を示す。また、図3Eおよび図4Eは時点T5のホール密度を示し、図3Fおよび図4Fは時点T6のホール密度を示し、図3Gおよび図4Gは時点T7のホール密度を示している。
 上記半導体装置がオフ状態からオン状態に移行する際には、上部電極19を接地すると共に下部電極22に正の電圧が印加された状態で第1ゲート電極15aに外部のゲート回路から所定のゲート電圧が印加される。これにより、ゲート-エミッタ間電圧Vgeが徐々に上昇する。その後、半導体装置は、時点T1にて、第1ゲート電極15aのゲート電位がMOSゲートの閾値電圧Vth以上となると、ベース層12のうちの第1トレンチ13aと接する部分に反転層(すなわち、チャネル領域)が形成される。そして、半導体装置は、エミッタ領域16から反転層を介して電子がドリフト層11に供給されると共に、コレクタ層21からホールがドリフト層11に供給される。これにより、半導体装置は、伝導度変調によってドリフト層11の抵抗値が低下し、コレクタ-エミッタ間電流Iceが流れ始めると共に、コレクタ-エミッタ間電圧(以下では、単にコレクタ電圧という)Vceが低下し始める。
 そして、コレクタ電圧Vceは、従来の半導体装置では、時点T7にて最小値となった後にほぼ一定となる。これに対し、本実施形態の半導体装置では、時点T7以前の時点T6にて最小値となった後にほぼ一定となる。つまり、本実施形態の半導体装置では、従来の半導体装置より早期にコレクタ電圧Vceを最小値に低下させることができ、オフ状態からオン状態に移行する際のスイッチング損失の低減を図ることができる。
 具体的な原理について説明すると、第2ゲート電極15bが上部電極19と電気的に接続されている半導体装置では、オフ状態からオン状態に移行する際、第2トレンチ13bのうちのドリフト層11と接する部分に電荷が蓄積されてp型の反転層が形成される。そして、図3Aおよび図4Aに示されるように、ドリフト層11には、この反転層との間で構成される空乏層dが広がる。
 その後、従来の半導体装置では、図4B~図4Gの各図に示されるように、徐々にドリフト層11のホール密度が高くなることで空乏層dが小さくなる。そして、図4Gに示されるように、従来の半導体装置では、時点T7にて空乏層dが第2トレンチ13bの側面近傍から消滅する。但し、空乏層dが消滅するまでの過程では、図5中の矢印Aに示されるように、ドリフト層11に供給されたホールが空乏層dを介して反転層に引き寄せられ、反転層を通過してベース層12側に掃き出されてしまう。このため、従来の半導体装置では、図2に示されるように、時点T3近傍からコレクタ電圧Vceの低下が緩やかになり、コレクタ電圧Vceが最小値に達するまでの期間が長くなる。
 これに対し、本実施形態では、第2ゲート絶縁膜14bが第1ゲート絶縁膜14aより厚くされ、第2容量が第1容量より小さくされている。このため、本実施形態の半導体装置では、従来の半導体装置と比較して、ドリフト層11のうちの第2トレンチ13bと接する領域に蓄積される電荷が少なくなる。つまり、本実施形態の半導体装置では、図3Aに示されるように、図4Aと比較して、空乏層dの広がりが抑制される。そして、本実施形態の半導体装置では、空乏層dの広がりが抑制されることにより、ドリフト層11に供給されたホールがベース層12側に掃き出され難くなる。このため、本実施形態の半導体装置では、図3B~図3Gの各図に示されるように、徐々に空乏層dが小さくなるのは従来の半導体装置と同様であるが、図3Fに示されるように、時点T6にて空乏層dが第2トレンチ13bの側面近傍から消滅する。したがって、本実施形態の半導体装置では、従来の半導体装置と比較して、早期にコレクタ電圧Vceを最小値まで低下させることができ、オフ状態からオン状態に移行する際のスイッチング損失を低減することができる。
 以上説明したように、本実施形態の半導体装置では、第2ゲート絶縁膜14bは、第1ゲート絶縁膜14aより厚くされ、第2容量が第1容量より小さくされている。このため、本実施形態の半導体装置では、半導体装置をオフ状態からオン状態に移行する際、ドリフト層11のうちの第2トレンチ13bと接する部分に反転層が形成され難くなり、空乏層dの広がりを抑制できる。したがって、本実施形態の半導体装置では、ドリフト層11に供給されたホールが反転層を介して掃き出されることを抑制でき、早期にコレクタ電圧Vceを最小値まで低下させることができるため、スイッチング損失の低減を図ることができる。
 (第2実施形態)
 第2実施形態について説明する。本実施形態は、第1実施形態に対して、第2ゲート絶縁膜14bの構成を変更したものであり、その他に関しては第1実施形態と同様であるため、ここでは説明を省略する。
 本実施形態では、図6に示されるように、第2ゲート絶縁膜14bは、第2トレンチ13bのうちのベース層12と接する領域上に形成された部分の厚さが第1ゲート絶縁膜14aの厚さと等しくされている。そして、第2ゲート絶縁膜14bは、第2トレンチ13bのうちのドリフト層11と接する領域上に形成された部分の厚さが、第1ゲート絶縁膜14aの厚さより厚くされている。
 より詳しくは、第2ゲート絶縁膜14bは、第2トレンチ13bにおけるドリフト層11と接する領域上に形成された部分のうちの当該第2トレンチ13bの底部側の部分が厚くされている。そして、第2ゲート絶縁膜14bは、第2トレンチ13bにおけるドリフト層11と接する領域上に形成された部分のうちのベース層12側の部分が第1ゲート絶縁膜14aの厚さと等しくされている。言い換えると、第2ゲート電極15bは、ベース層12側に位置する部分の幅が第1ゲート電極15aの幅と等しくされ、ドリフト層11側に位置する部分の幅がベース層12側に位置する部分の幅より狭くされている。なお、ここでの幅とは、第1トレンチ13aおよび第2トレンチ13bの延設方向と直交する方向であって、半導体基板10の一面10aの面方向に沿った方向のことである。
 つまり、本実施形態では、第2ゲート絶縁膜14bは、第2トレンチ13bの側面のうちのドリフト層11と接する領域上に形成された部分において、ベース層12側の部分の第2容量が第1容量と等しくされている。また、第2ゲート絶縁膜14bは、第2トレンチ13bの側面のうちのドリフト層11と接する領域上に形成された部分において、第2トレンチ13bの底部側の部分の第2容量が第1容量より小さくされている。
 このように、半導体装置は、第2ゲート絶縁膜14bのうちの一部分の第2容量が第1容量より小さくなるようにし、他の部分の第2容量が第1容量と等しくなるようにしても空乏層dの広がりを抑制できるため、上記第1実施形態と同様の効果を得ることができる。
 (第3実施形態)
 第3実施形態について説明する。本実施形態は、第2実施形態に対して、第1ゲート絶縁膜14aの構成を変更したものであり、その他に関しては第2実施形態と同様であるため、ここでは説明を省略する。
 本実施形態では、図7に示されるように、第1ゲート絶縁膜14aは、第2ゲート絶縁膜14bと同様の構成とされている。すなわち、第1ゲート絶縁膜14aは、第1トレンチ13aのうちのドリフト層11と接する領域上に形成された部分の厚さがベース層12と接する領域上に形成された部分の厚さより厚くされている。言い換えると、第1ゲート絶縁膜14aは、閾値電圧Vthを決定する部分と異なる部分が厚くされている。
 このような半導体装置としても上記第2実施形態と同様の効果を得ることができる。また、この半導体装置では、第1ゲート絶縁膜14aおよび第2ゲート絶縁膜14bが同様の構成とされているため、第1ゲート絶縁膜14aおよび第2ゲート絶縁膜14bを同様の工程で形成することができ、製造工程の簡略化を図ることができる。
 (第4実施形態)
 第4実施形態について説明する。本実施形態は、第1実施形態に対して、第2ゲート絶縁膜14bの構成を変更したものであり、その他に関しては第1実施形態と同様であるため、ここでは説明を省略する。
 本実施形態では、図8に示されるように、第2ゲート絶縁膜14bは、第1ゲート絶縁膜14aと厚さが等しくされている。但し、第2ゲート絶縁膜14bは、第1ゲート絶縁膜14aを構成するシリコン酸化膜より誘電率が小さい材料で構成されている。このため、本実施形態の半導体装置においても、第2ゲート絶縁膜14bの第2容量は、第1ゲート絶縁膜14aの第1容量より小さくされている。なお、シリコン酸化膜より誘電率が小さい材料としては、例えば、フッ素添加シリコン酸化膜(SiOF)、炭素添加シリコン酸化膜(SiOC)等が用いられる。
 以上説明したように、半導体装置は、第2ゲート絶縁膜14bを第1ゲート絶縁膜14aより誘電率が小さい材料で構成しても、第2容量が第1容量より小さくなるため、空乏層dの広がりを抑制でき、上記第1実施形態と同様の効果を得ることができる。
 (他の実施形態)
 本開示は、実施形態に準拠して記述されたが、本開示は当該実施形態や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。
 例えば、上記各実施形態の半導体装置では、第1導電型をN型とし、第2導電型をP型とした例について説明したが、第1導電型をP型とし、第2導電型をN型とすることもできる。
 また、上記各実施形態の半導体装置では、ボディ領域17は、第2トレンチ13bと接していなくてもよい。つまり、ボディ領域17と第2トレンチ13bとの間にベース層12が存在する構成としてもよい。さらに、半導体装置は、第1トレンチ13aの側面に接するエミッタ領域16に加え、第2トレンチ13bの側面に接するエミッタ領域16が形成されていてもよい。
 そして、上記各実施形態の半導体装置は、第2ゲート電極15bと上部電極19とが第2コンタクトホール18bを介して直接電気的に接続されていなくてもよい。例えば、半導体装置は、第1ゲート電極15aが接続されるゲートパッドと異なるゲートパッドを備えるようにし、当該異なるゲートパッドが第2ゲート電極15bおよび上部電極19と電気的に接続されるようにしてもよい。つまり、第2ゲート電極15bは、第1ゲート電極15aが接続されるゲートパッドと異なるゲートパッドを介して上部電極19と電気的に接続されていてもよい。
 また、上記各実施形態において、半導体装置をオフ状態からオン状態に移行する際、スイッチング損失が増大するのは、ドリフト層11に供給されたホールが第2トレンチ13bの側面に沿って形成された反転層を介してベース層12側に掃き出されるためである。このため、上記第1~第3実施形態において、第2ゲート絶縁膜14bは、第2トレンチ13bの側面のうちのドリフト層11と接する領域上の部分が厚くされていれば、第2トレンチ13bの底面上の部分は厚くされていなくてもよい。同様に、上記第4実施形態において、第2ゲート絶縁膜14bは、第2トレンチ13bの底面上に形成される部分がシリコン酸化膜で構成されていてもよい。
 また、上記第2、第3実施形態では、第2ゲート絶縁膜14bは、第2トレンチ13bの側面のうちのドリフト層11と接する領域上に形成された部分において、ベース層12側の部分が厚くされていてもよい。つまり、第2ゲート絶縁膜14bにおける第2トレンチ13bの側面のうちのドリフト層11と接する領域上に形成された部分の厚さは、次のようにされていればよい。すなわち、この部分の厚さは、第1ゲート絶縁膜14aのうちの閾値電圧Vthを規定する部分の厚さ以上とされ、かつ少なくとも一部が第1ゲート絶縁膜14aのうちの閾値電圧Vthを規定する部分の厚さより厚くされていればよい。同様に、上記第4実施形態において、第2ゲート絶縁膜14bは、第2トレンチ13bの側面のうちのドリフト層11と接する領域上に形成された部分において、次のようにされていればよい。すなわち、この部分は、第1ゲート絶縁膜14aのうちの閾値電圧Vthを規定する部分の誘電率以下とされ、かつ少なくとも一部が第1ゲート絶縁膜14aのうちの閾値電圧Vthを規定する部分の誘電率より小さくされていればよい。
 また、上記第2実施形態の半導体装置では、第2ゲート電極15bの幅が半導体基板10の厚さ方向に一定とされていてもよい。なお、このような構成とする場合には、第2トレンチ13bのうちの底部側の部分の幅を開口部側の幅より長くなるようにし、第2ゲート絶縁膜14bのうちの第2トレンチ13bにおける底部側の部分を厚くすればよい。
 さらに、上記第4実施形態の半導体装置では、第2容量が第1容量以下となり、かつ少なくとも一部の第2容量が第1容量より小さくなるのであれば、第2ゲート絶縁膜14bは第1ゲート絶縁膜14aより薄くされていてもよい。
 そして、上記各実施形態を適宜組み合わせることもできる。例えば、第1~第3実施形態に第4実施形態を組み合わせ、第2ゲート絶縁膜14bを第1ゲート絶縁膜14aより誘電率が低い材料で構成するようにしてもよい。

Claims (3)

  1.  ゲート絶縁膜(14a、14b)上にゲート電極(15a、15b)が配置された半導体装置であって、
     第1導電型のドリフト層(11)と、
     前記ドリフト層上に形成された第2導電型のベース層(12)と、
     前記ドリフト層のうちの前記ベース層側と反対側に形成された第2導電型のコレクタ層(21)と、
     前記ベース層を貫通して前記ドリフト層に達するように形成された複数のトレンチ(13a、13b)の壁面にそれぞれ形成された前記ゲート絶縁膜と、
     前記ゲート絶縁膜上にそれぞれ形成された複数の前記ゲート電極と、
     前記ベース層の表層部に形成され、前記トレンチと接する第1導電型のエミッタ領域(16)と、
     前記ベース層および前記エミッタ領域と電気的に接続される第1電極(19)と、
     前記コレクタ層と電気的に接続される第2電極(22)と、を備え、
     複数の前記ゲート電極は、一部のゲート電極(15a)にゲート電圧が印加され、残部のゲート電極(15b)が前記第1電極と電気的に接続されることで前記第1電極と同電位とされており、
     前記一部のゲート電極が配置されるトレンチを第1トレンチ(13a)、前記残部のゲート電極が配置されるトレンチを第2トレンチ(13b)、前記第1トレンチの壁面に形成されたゲート絶縁膜を第1ゲート絶縁膜(14a)、前記第2トレンチの壁面に形成されたゲート絶縁膜を第2ゲート絶縁膜(14b)とすると、
     前記第2ゲート絶縁膜のうち、前記第2トレンチの側面であって、前記ドリフト層と接する領域上に形成された全ての部分の単位面積当たりの第2容量は、前記第1ゲート絶縁膜のうち、前記第1トレンチの側面であって、前記ベース層と接する領域上に形成された部分の単位面積当たりの第1容量以下とされ、かつ少なくとも一部の第2容量は第1容量より小さくされている半導体装置。
  2.  前記第2ゲート絶縁膜のうち、前記第2トレンチの側面であって、前記ドリフト層と接する領域上に形成された全ての部分の厚さは、前記第1ゲート絶縁膜のうち、前記第1トレンチの側面であって、前記ベース層と接する領域上に形成された部分の厚さ以上とされている請求項1に記載の半導体装置。
  3.  前記第2ゲート絶縁膜のうち、前記第2トレンチの側面であって、前記ドリフト層と接する領域上に形成された全ての部分の誘電率は、前記第1ゲート絶縁膜のうち、前記第1トレンチの側面であって、前記ベース層と接する領域上に形成された部分の誘電率以下とされている請求項1または2に記載の半導体装置。
PCT/JP2017/040490 2016-11-15 2017-11-09 半導体装置 WO2018092680A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780067304.1A CN109891597A (zh) 2016-11-15 2017-11-09 半导体装置
US16/351,755 US10720518B2 (en) 2016-11-15 2019-03-13 Semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016222540A JP2018082010A (ja) 2016-11-15 2016-11-15 半導体装置
JP2016-222540 2016-11-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/351,755 Continuation US10720518B2 (en) 2016-11-15 2019-03-13 Semiconductor device

Publications (1)

Publication Number Publication Date
WO2018092680A1 true WO2018092680A1 (ja) 2018-05-24

Family

ID=62145233

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/040490 WO2018092680A1 (ja) 2016-11-15 2017-11-09 半導体装置

Country Status (4)

Country Link
US (1) US10720518B2 (ja)
JP (1) JP2018082010A (ja)
CN (1) CN109891597A (ja)
WO (1) WO2018092680A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11257916B2 (en) * 2019-03-14 2022-02-22 Semiconductor Components Industries, Llc Electronic device having multi-thickness gate insulator
JP7184681B2 (ja) * 2019-03-18 2022-12-06 株式会社東芝 半導体装置およびその制御方法
JP7337619B2 (ja) 2019-09-17 2023-09-04 株式会社東芝 半導体装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006245477A (ja) * 2005-03-07 2006-09-14 Toshiba Corp 半導体装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004022941A (ja) 2002-06-19 2004-01-22 Toshiba Corp 半導体装置
JP5831598B2 (ja) * 2010-12-08 2015-12-09 株式会社デンソー 絶縁ゲート型半導体装置
JP2012204377A (ja) * 2011-03-23 2012-10-22 Toshiba Corp 電力用半導体装置
JP6182849B2 (ja) 2012-11-13 2017-08-23 サンケン電気株式会社 半導体装置の製造方法
US9337185B2 (en) * 2013-12-19 2016-05-10 Infineon Technologies Ag Semiconductor devices
US9337270B2 (en) * 2013-12-19 2016-05-10 Infineon Technologies Ag Semiconductor device
CN104103523A (zh) * 2014-07-25 2014-10-15 苏州东微半导体有限公司 一种带u形沟槽的功率器件的制造方法
JP2016046416A (ja) * 2014-08-25 2016-04-04 富士電機株式会社 半導体装置
JP6260515B2 (ja) * 2014-11-13 2018-01-17 三菱電機株式会社 半導体装置
DE102014119466A1 (de) * 2014-12-22 2016-06-23 Infineon Technologies Ag Halbleitervorrichtung mit streifenförmigen trenchgatestrukturen und gateverbinderstruktur
WO2016136230A1 (ja) * 2015-02-25 2016-09-01 株式会社デンソー 半導体装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006245477A (ja) * 2005-03-07 2006-09-14 Toshiba Corp 半導体装置

Also Published As

Publication number Publication date
US10720518B2 (en) 2020-07-21
US20190214491A1 (en) 2019-07-11
CN109891597A (zh) 2019-06-14
JP2018082010A (ja) 2018-05-24

Similar Documents

Publication Publication Date Title
JP6720569B2 (ja) 半導体装置
JP5742672B2 (ja) 半導体装置
JP6253769B2 (ja) 電力用半導体装置
WO2016009616A1 (ja) 半導体装置
JP4205128B2 (ja) 高耐圧半導体装置およびその製造方法
JP2005340626A (ja) 半導体装置
WO2013179648A1 (ja) 半導体装置
WO2017033315A1 (ja) 半導体素子
CN103855217B (zh) 包括沟槽的半导体器件和制造半导体器件的方法
JP5200373B2 (ja) 半導体装置
WO2018092680A1 (ja) 半導体装置
JP2006245477A (ja) 半導体装置
JP2011055017A (ja) 半導体装置
KR20160029630A (ko) 반도체 장치
JP2014154739A (ja) 半導体装置
JP2005327806A (ja) 絶縁ゲート型バイポーラトランジスタ
JP7330092B2 (ja) 半導体装置
US10748988B2 (en) Semiconductor device
JP2016062975A (ja) 半導体装置およびその製造方法
JP6729478B2 (ja) 半導体装置
JP2007266622A (ja) 高耐圧半導体装置およびその製造方法
US9391183B2 (en) Semiconductor device
WO2016136230A1 (ja) 半導体装置
JP3193413U (ja) 半導体装置
JP6038737B2 (ja) 半導体装置及びそれを用いた電力変換装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17871388

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17871388

Country of ref document: EP

Kind code of ref document: A1