WO2018088018A1 - ショットキーバリアダイオード及びこれを備える電子回路 - Google Patents

ショットキーバリアダイオード及びこれを備える電子回路 Download PDF

Info

Publication number
WO2018088018A1
WO2018088018A1 PCT/JP2017/032612 JP2017032612W WO2018088018A1 WO 2018088018 A1 WO2018088018 A1 WO 2018088018A1 JP 2017032612 W JP2017032612 W JP 2017032612W WO 2018088018 A1 WO2018088018 A1 WO 2018088018A1
Authority
WO
WIPO (PCT)
Prior art keywords
schottky barrier
semiconductor substrate
barrier diode
recess
concave portion
Prior art date
Application number
PCT/JP2017/032612
Other languages
English (en)
French (fr)
Inventor
潤 平林
裕 松尾
藤田 実
潤 有馬
Original Assignee
Tdk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk株式会社 filed Critical Tdk株式会社
Priority to EP17869159.8A priority Critical patent/EP3540784B1/en
Priority to US16/348,592 priority patent/US10840384B2/en
Priority to CN201780068998.0A priority patent/CN109923678B/zh
Publication of WO2018088018A1 publication Critical patent/WO2018088018A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02414Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02576N-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/24Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only semiconductor materials not provided for in groups H01L29/16, H01L29/18, H01L29/20, H01L29/22
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/47Schottky barrier electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/1015Shape
    • H01L2924/10155Shape being other than a cuboid
    • H01L2924/10158Shape being other than a cuboid at the passive surface

Definitions

  • the present invention relates to a Schottky barrier diode and an electronic circuit including the same, and more particularly to a Schottky barrier diode using gallium oxide and an electronic circuit including the same.
  • a Schottky barrier diode is a rectifying device that uses a Schottky barrier generated by a metal-semiconductor junction, and has a feature that the forward voltage is lower and the switching speed is faster than a normal diode having a PN junction. is doing. For this reason, the Schottky barrier diode may be used as a switching element for a power device.
  • a Schottky barrier diode When a Schottky barrier diode is used as a switching element for a power device, it is necessary to ensure a sufficient reverse breakdown voltage. Therefore, instead of silicon (Si), silicon carbide (SiC) having a larger band gap, gallium nitride (GaN), gallium oxide (Ga 2 O 3 ), or the like may be used. In particular, gallium oxide has a very large band gap of 4.8 to 4.9 eV and a dielectric breakdown electric field of 7 to 8 MV / cm. Therefore, Schottky barrier diodes using gallium oxide are used for power devices. It is very promising as a switching element. An example of a Schottky barrier diode using gallium oxide is described in Patent Document 1.
  • gallium oxide has a much lower thermal conductivity than silicon (Si), silicon carbide (SiC), gallium nitride (GaN), and the like. For this reason, when a Schottky barrier diode using gallium oxide is used as a switching element for a power device, heat generated by a forward current is not efficiently radiated to the outside of the element, and the element is likely to deteriorate. .
  • the Schottky barrier diode described in Patent Document 1 has improved heat dissipation while suppressing heat generation due to forward current by reducing the thickness of the gallium oxide substrate to 50 ⁇ m or less.
  • the present invention provides a Schottky barrier diode using gallium oxide, which is capable of suppressing heat generation and improving heat dissipation while ensuring mechanical strength and handling properties. For the purpose.
  • a Schottky barrier diode has a first surface and a second surface located on the opposite side of the first surface, and is a semiconductor made of gallium oxide provided with a recess on the second surface side.
  • an electronic circuit includes a circuit board having an electrode pattern, the Schottky barrier diode mounted on the circuit board, and at least a portion embedded in the recess of the semiconductor substrate. And a conductive member connecting the cathode electrode.
  • the recess is provided in the semiconductor substrate made of gallium oxide, the thickness of the portion where the forward current flows can be selectively reduced. As a result, it is possible to reduce heat generation and improve heat dissipation while ensuring mechanical strength and handling properties. For this reason, it is possible to suppress an increase in the temperature of the element despite using gallium oxide having a low thermal conductivity.
  • the recess of the semiconductor substrate includes a bottom surface that overlaps the first surface in a plan view, and an inner wall surface that connects the bottom surface and the second surface, and the cathode electrode includes at least the recess. Preferably, it is formed on the bottom surface. According to this, since the current path of the forward current can be made the shortest, heat generation can be further reduced.
  • the cathode electrode may be further formed on the inner wall surface of the recess, or may be further formed on the second surface located outside the recess. According to these, since the wettability of the solder is improved at the time of mounting, the mounting reliability is improved.
  • the area of the concave portion viewed from the stacking direction is smaller than the area of the anode electrode. According to this, it is possible to minimize the decrease in mechanical strength due to the formation of the recess while reducing the heat generation due to the forward current. Even in this case, it is preferable that the area of the concave portion viewed from the stacking direction is 50% or more of the area of the anode electrode. According to this, it becomes possible to fully improve heat dissipation.
  • the thickness of the semiconductor substrate at the position where the concave portion is formed is preferably 50 ⁇ m or more. According to this, a certain degree of mechanical strength is ensured even in the portion where the concave portion is formed. Therefore, for example, even when wire bonding is performed on the anode electrode, the semiconductor substrate is hardly damaged. Become.
  • the concave portion communicates with a side surface of the semiconductor substrate. According to this, when the solder is embedded in the recess during mounting, the air occupying the recess is discharged to the outside, so that no air layer is formed in the recess. For this reason, heat dissipation is not hindered by the air layer.
  • a plurality of the concave portions may be formed in a slit shape, or may be formed in a mesh shape.
  • FIG. 1 is a cross-sectional view showing a configuration of a Schottky barrier diode 10A according to the first embodiment of the present invention.
  • FIG. 2 is a top view of the Schottky barrier diode 10A.
  • FIG. 3 is a cross-sectional view showing a part of the electronic circuit 100 including the Schottky barrier diode 10A.
  • FIG. 4 is a cross-sectional view showing a configuration of a Schottky barrier diode 10B according to the second embodiment of the present invention.
  • FIG. 5 is a top view showing a configuration of a Schottky barrier diode 10C according to the third embodiment of the present invention.
  • FIG. 1 is a cross-sectional view showing a configuration of a Schottky barrier diode 10A according to the first embodiment of the present invention.
  • FIG. 2 is a top view of the Schottky barrier diode 10A.
  • FIG. 3 is a cross-sectional view showing a part of
  • FIG. 6 is a cross-sectional view showing a configuration of a Schottky barrier diode 10D according to the fourth embodiment of the present invention.
  • FIG. 7 is a bottom view of the Schottky barrier diode 10D.
  • FIG. 8 is a bottom view showing the configuration of a Schottky barrier diode 10E according to the fifth embodiment of the present invention.
  • FIG. 1 is a cross-sectional view showing a configuration of a Schottky barrier diode 10A according to the first embodiment of the present invention.
  • FIG. 2 is a top view of the Schottky barrier diode 10A.
  • the cross section shown in FIG. 1 corresponds to the cross section along the line AA in FIG.
  • the Schottky barrier diode 10A includes a semiconductor substrate 20 and an epitaxial layer 30 each made of gallium oxide ( ⁇ -Ga 2 O 3 ). Silicon (Si) or tin (Sn) is introduced into the semiconductor substrate 20 and the epitaxial layer 30 as an n-type dopant.
  • the dopant concentration is higher in the semiconductor substrate 20 than in the epitaxial layer 30, whereby the semiconductor substrate 20 functions as an n + layer and the epitaxial layer 30 functions as an n ⁇ layer.
  • the semiconductor substrate 20 is obtained by cutting a bulk crystal formed using a melt growth method or the like, and its thickness (height in the Z direction) is preferably at least 50 ⁇ m or more, and is about 250 ⁇ m. It is particularly preferred. This is because if the thickness of the semiconductor substrate 20 is less than 50 ⁇ m, the mechanical strength is insufficient, and it becomes difficult to handle the element during manufacturing and mounting. On the other hand, if the thickness of the semiconductor substrate 20 is about 250 ⁇ m, sufficient mechanical strength and handling properties can be ensured.
  • the planar size of the semiconductor substrate 20 is not particularly limited, but is generally selected according to the amount of current flowing through the element. If the maximum forward current is about 20 A, the width in the X direction and the Y direction The width at may be about 2.4 mm.
  • the semiconductor substrate 20 has a first surface 21 located on the upper surface side during mounting, and a second surface 22 opposite to the first surface 21 and located on the lower surface side during mounting.
  • An epitaxial layer 30 is formed on the entire surface of the first surface 21.
  • the epitaxial layer 30 is a thin film obtained by epitaxially growing gallium oxide on the first surface 21 of the semiconductor substrate 20 by using reactive sputtering, PLD method, MBE method, MOCVD method, HVPE method or the like, and functions as a drift layer.
  • the film thickness of the epitaxial layer 30 is not particularly limited, but is generally selected according to the reverse withstand voltage of the device. In order to ensure a withstand voltage of about 600 V, for example, it may be about 7 ⁇ m.
  • a recess 23 is formed in the second surface 22 of the semiconductor substrate 20, and the thickness of the semiconductor substrate 20 is selectively reduced in this portion.
  • the shape of the recess 23 viewed from the Z direction is circular, but the shape of the recess 23 is not limited to this.
  • the recess 23 can be formed by anisotropically etching the semiconductor substrate 20 from the second surface 22 side using a chlorine-based gas such as BCl 3 .
  • the bottom surface 24 of the recess 23 constitutes an XY plane parallel to the first surface 21, and the inner wall surface 25 of the recess 23 constitutes a curved surface parallel to the Z direction.
  • the bottom surface 24 does not have to be completely parallel to the first surface 21 and may be a surface that overlaps the first surface 21 in a plan view. Therefore, the bottom surface 24 may be inclined with respect to the XY plane or may be curved.
  • the inner wall surface 25 does not need to be a vertical plane completely parallel to the Z direction, and may be a plane connecting the bottom surface 24 and the second surface 22. Therefore, the inner wall surface 25 may have an inclination with respect to the Z direction.
  • the depth D and the diameter W of the recess 23 are not particularly limited, but when the thickness of the semiconductor substrate 20 is 250 ⁇ m, the depth D may be about 50 to 225 ⁇ m and the diameter W may be about 100 to 200 ⁇ m.
  • the thickness of the semiconductor substrate 20 at the position where the recess 23 is formed is preferably 50 ⁇ m or more. This is because if the thickness of the semiconductor substrate 20 at this position is less than 50 ⁇ m, the mechanical strength at this portion is insufficient, and the semiconductor substrate 20 may be damaged during wire bonding or the like.
  • the thickness of the semiconductor substrate 20 at the position where the recess 23 is formed is preferably 100 ⁇ m or less. .
  • an insulating film 31 having an opening 32 is formed on the upper surface of the epitaxial layer 30, and an anode electrode 40 is further formed thereon.
  • the anode electrode 40 is in Schottky contact with the epitaxial layer 30 through the opening 32 of the insulating film 31.
  • the insulating film 31 is made of, for example, silicon oxide (SiO 2 ) and has a thickness of about 300 nm.
  • the anode electrode 40 is made of, for example, a laminated film of platinum (Pt), titanium (Ti), and gold (Au). The film thickness is about 150 nm for the platinum layer, about 5 nm for the titanium layer, and about 230 nm for the gold layer. .
  • the anode electrode 40 is provided at a position overlapping the concave portion 23 in a plan view (viewed from the Z direction, which is the stacking direction).
  • the XY area of the recess 23 is preferably smaller than the XY area of the anode electrode 40 so that the entire recess 23 overlaps the anode electrode 40 in plan view.
  • the XY area of the recess 23 is preferably 50% or more of the XY area of the anode electrode 40.
  • a cathode electrode 50 is provided on the second surface 22 of the semiconductor substrate 20.
  • the cathode electrode 50 is formed on the bottom surface 24 of the recess 23 and the second surface 22 located outside the recess 23, both of which are in ohmic contact with the semiconductor substrate 20.
  • it is not indispensable to form the cathode electrode 50 outside the recess 23.
  • it is preferable to form the cathode electrode 50 in addition to 23.
  • the anode electrode 40 and the cathode electrode 50 face each other in the Z direction through the semiconductor substrate 20 having the epitaxial layer 30 and the recess 23. For this reason, when a forward voltage is applied between the anode electrode 40 and the cathode electrode 50, a forward current flows through the portion thinned by the recess 23. That is, compared to the case where the recess 23 is not formed, the current path between the anode electrode 40 and the cathode electrode 50 is shortened, so that heat generation due to the resistance component of gallium oxide can be reduced. In addition, since the semiconductor substrate 20 is thinned only in the recess 23 and has a sufficient thickness outside the recess 23, the mechanical strength and handling properties of the semiconductor substrate 20 are ensured. be able to.
  • FIG. 3 is a cross-sectional view showing a part of the electronic circuit 100 including the Schottky barrier diode 10A according to the present embodiment.
  • the electronic circuit 100 shown in FIG. 3 includes a circuit board 60 having an electrode pattern 61 and a Schottky barrier diode 10A mounted on the circuit board 60.
  • the anode electrode 40 of the Schottky barrier diode 10A is connected to another electrode pattern (not shown) via the bonding wire 62, and the cathode electrode 50 of the Schottky barrier diode 10A is connected to the electrode pattern 61 via the solder 63. Is done.
  • solder 63 As shown in FIG. 3, a part of the solder 63 is embedded in the recess 23 provided in the semiconductor substrate 20. Thereby, the cathode electrode 50 and the electrode pattern 61 formed on the bottom surface 24 of the recess 23 are electrically connected via the solder 63. Since the solder 63 has a much higher thermal conductivity than the semiconductor substrate 20 made of gallium oxide, the heat generated by flowing a forward current through the Schottky barrier diode 10A is solder 63 buried in the recess 23. The heat is efficiently radiated to the circuit board 60 side. For this reason, even though gallium oxide having a low thermal conductivity is used as the material of the semiconductor substrate 20, it is possible to ensure high heat dissipation.
  • the conductive member that connects the cathode electrode 50 and the electrode pattern 61 is not limited to solder, and other conductive materials may be used.
  • the Schottky barrier diode 10A ensures the mechanical strength and handling properties because the thickness of the semiconductor substrate 20 is selectively reduced in the portion where the recess 23 is formed.
  • heat generation can be suppressed and good heat dissipation characteristics can be obtained. For this reason, it becomes possible to utilize suitably as a switching element for power devices.
  • FIG. 4 is a cross-sectional view showing a configuration of a Schottky barrier diode 10B according to the second embodiment of the present invention.
  • the Schottky barrier diode 10B according to the second embodiment of the present invention is in accordance with the first embodiment described above in that the cathode electrode 50 is also formed on the inner wall surface 25 of the recess 23. This is different from the Schottky barrier diode 10A. Since the other configuration is the same as that of the Schottky barrier diode 10A according to the first embodiment, the same elements are denoted by the same reference numerals, and redundant description is omitted.
  • the cathode electrode 50 is also formed on the inner wall surface 25 of the recess 23, the ohmic contact area between the semiconductor substrate 20 and the cathode electrode 50 can be increased.
  • the wettability of the solder 63 embedded in the recess 23 is improved by the cathode electrode 50 formed on the inner wall surface 25 of the recess 23, the connection reliability is improved.
  • FIG. 5 is a top view showing a configuration of a Schottky barrier diode 10C according to the third embodiment of the present invention.
  • the Schottky barrier diode 10 ⁇ / b> C according to the third embodiment of the present invention is described above in that a communication hole 23 a that connects the recess 23 and the side surface of the semiconductor substrate 20 is provided in the semiconductor substrate 20.
  • This is different from the Schottky barrier diode 10A according to the first embodiment. Since the other configuration is the same as that of the Schottky barrier diode 10A according to the first embodiment, the same elements are denoted by the same reference numerals, and redundant description is omitted.
  • FIG. 6 is a cross-sectional view showing a configuration of a Schottky barrier diode 10D according to the fourth embodiment of the present invention.
  • FIG. 7 is a bottom view of the semiconductor substrate 20 used in the present embodiment as viewed from the second surface 22 side.
  • the Schottky barrier diode 10D according to the fourth embodiment of the present invention is different from the Schottky according to the first embodiment described above in that a plurality of recesses 23 are formed in a slit shape. This is different from the barrier diode 10A. Since the other configuration is the same as that of the Schottky barrier diode 10A according to the first embodiment, the same elements are denoted by the same reference numerals, and redundant description is omitted.
  • the recess 23 is constituted by six slits extending in the Y direction. If the recess 23 has such a shape, the mechanical strength of the semiconductor substrate 20 can be increased compared to the first embodiment, and the circuit board 60 using the solder 63 can be formed as in the third embodiment. An air layer is not formed in the recess 23 during mounting.
  • FIG. 8 is a bottom view showing the configuration of a Schottky barrier diode 10E according to the fifth embodiment of the present invention.
  • the Schottky barrier diode 10E according to the fifth embodiment of the present invention is different from the Schottky barrier diode 10A according to the first embodiment described above in that the recess 23 is formed in a mesh shape. It is different. Since the other configuration is the same as that of the Schottky barrier diode 10A according to the first embodiment, the same elements are denoted by the same reference numerals, and redundant description is omitted.
  • the concave portion 23 is constituted by six slits extending in the X direction and six slits extending in the Y direction, and the concave portion 23 is meshed in plan view by intersecting these. It is made into a shape. If the concave portion 23 has such a shape, the mechanical strength of the semiconductor substrate 20 can be increased as compared with the first embodiment, and an air layer is formed in the concave portion 23 as compared with the fifth embodiment. It becomes difficult to be done.
  • the solder 63 fills the entire recess 23 and has a thickness of 50 ⁇ m from the second surface 22 located outside the recess 23. Then, assuming that a cold plate corresponding to the circuit board 60 is held at 25 ° C. and a forward current is passed from the anode electrode 40 to the cathode electrode 50 so that the power consumption is 2.4 W, the anode electrode 40 The temperature at the center position was simulated.
  • the temperature rises to 54.9 ° C. when the recess 23 is not provided in the semiconductor substrate 20, whereas the temperature is suppressed to 50 ° C. or less when the recess 23 is provided in the semiconductor substrate 20. It was. In particular, when the depth D of the recess 23 is 200 ⁇ m or more, it was confirmed that the temperature was suppressed to about 40 ° C. or less, and a very high heat dissipation effect was obtained.

Abstract

【課題】酸化ガリウムを用いたショットキーバリアダイオードの機械的強度及びハンドリング性を確保しつつ、発熱を抑え、放熱性を高める。 【解決手段】第2の表面22側に凹部23が設けられた酸化ガリウムからなる半導体基板20と、半導体基板の第1の表面21上に設けられた酸化ガリウムからなるエピタキシャル層30と、積層方向から見て凹部23と重なる位置に設けられ、エピタキシャル層30とショットキー接触するアノード電極40と、半導体基板20の凹部23内に設けられ、半導体基板20とオーミック接触するカソード電極50とを備える。本発明によれば、順方向電流が流れる部分の厚みが選択的に薄いことから、機械的強度及びハンドリング性を確保しつつ、発熱を低減し、放熱性を高めることができる。このため、熱伝導率の低い酸化ガリウムを用いているにもかかわらず、素子の温度上昇を抑制できる。

Description

ショットキーバリアダイオード及びこれを備える電子回路
 本発明はショットキーバリアダイオード及びこれを備える電子回路に関し、特に、酸化ガリウムを用いたショットキーバリアダイオード及びこれを備える電子回路に関する。
 ショットキーバリアダイオードは、金属と半導体の接合によって生じるショットキー障壁を利用した整流素子であり、PN接合を有する通常のダイオードに比べて順方向電圧が低く、且つ、スイッチング速度が速いという特徴を有している。このため、ショットキーバリアダイオードはパワーデバイス用のスイッチング素子として利用されることがある。
 ショットキーバリアダイオードをパワーデバイス用のスイッチング素子として用いる場合、十分な逆方向耐圧を確保する必要があることから、シリコン(Si)の代わりに、よりバンドギャップの大きい炭化シリコン(SiC)、窒化ガリウム(GaN)、酸化ガリウム(Ga)などが用いられることがある。中でも、酸化ガリウムは、バンドギャップが4.8~4.9eVと非常に大きく、絶縁破壊電界も7~8MV/cmと大きいことから、酸化ガリウムを用いたショットキーバリアダイオードは、パワーデバイス用のスイッチング素子として非常に有望である。酸化ガリウムを用いたショットキーバリアダイオードの例は、特許文献1に記載されている。
 しかしながら、酸化ガリウムは、シリコン(Si)、炭化シリコン(SiC)、窒化ガリウム(GaN)などに比べると、熱伝導率がかなり低い。このため、酸化ガリウムを用いたショットキーバリアダイオードをパワーデバイス用のスイッチング素子として用いると、順方向電流による発熱が素子の外部に効率的に放熱されず、素子が劣化しやすいという問題があった。この点に関し、特許文献1に記載されたショットキーバリアダイオードは、酸化ガリウム基板の厚さを50μm以下まで薄くすることによって、順方向電流による発熱を抑制しつつ、放熱性を向上させている。
特開2016-031953号公報
 しかしながら、酸化ガリウム基板を単純に薄くすると、素子の機械的強度が不足するばかりでなく、製造時や実装時における素子のハンドリングが困難となるという問題が生じる。
 したがって、本発明は、酸化ガリウムを用いたショットキーバリアダイオードであって、機械的強度やハンドリング性を確保しつつ、発熱が抑えられ、且つ、放熱性が高められたショットキーバリアダイオードを提供することを目的とする。
 本発明によるショットキーバリアダイオードは、第1の表面及び前記第1の表面の反対側に位置する第2の表面を有し、前記第2の表面側に凹部が設けられた酸化ガリウムからなる半導体基板と、前記半導体基板の前記第1の表面上に設けられた酸化ガリウムからなるエピタキシャル層と、積層方向から見て前記凹部と重なる位置に設けられ、前記エピタキシャル層とショットキー接触するアノード電極と、前記半導体基板の前記凹部内に設けられ、前記半導体基板とオーミック接触するカソード電極とを備えることを特徴とする。
 また、本発明による電子回路は、電極パターンを有する回路基板と、前記回路基板上に搭載された上記のショットキーバリアダイオードと、少なくとも一部が前記半導体基板の前記凹部に埋設され、前記電極パターンと前記カソード電極とを接続する導電部材とを備えることを特徴とする。
 本発明によれば、酸化ガリウムからなる半導体基板に凹部を設けていることから、順方向電流が流れる部分の厚みを選択的に薄くすることができる。これにより、機械的強度及びハンドリング性を確保しつつ、発熱を低減し、且つ、放熱性を高めることが可能となる。このため、熱伝導率の低い酸化ガリウムを用いているにもかかわらず、素子の温度上昇を抑制することが可能となる。
 本発明において、前記半導体基板の前記凹部は、平面視で前記第1の表面と重なる底面と、前記底面と前記第2の表面を繋ぐ内壁面とを含み、前記カソード電極は、前記凹部の少なくとも前記底面に形成されていることが好ましい。これによれば、順方向電流の電流パスを最短とすることができることから、発熱をより低減することが可能となる。
 この場合、前記カソード電極は、前記凹部の前記内壁面にさらに形成されていても構わないし、前記凹部の外に位置する前記第2の表面にさらに形成されていても構わない。これらによれば、実装時においてハンダの濡れ性が高められることから、実装信頼性が高められる。
 本発明において、前記積層方向から見た前記凹部の面積は、前記アノード電極の面積よりも小さいことが好ましい。これによれば、順方向電流による発熱を低減しつつ、凹部が形成されていることによる機械的強度の低下を最小限に抑えることが可能となる。この場合であっても、前記積層方向から見た前記凹部の面積は、前記アノード電極の面積の50%以上であることが好ましい。これによれば、放熱性を十分に高めることが可能となる。
 本発明において、前記凹部が形成された位置における前記半導体基板の厚さは、50μm以上であることが好ましい。これによれば、凹部が形成された部分においてもある程度の機械的強度が確保されることから、例えば、アノード電極に対してワイヤボンディングを行った場合であっても、半導体基板の破損が生じにくくなる。
 本発明において、前記凹部は、前記半導体基板の側面に連通していることが好ましい。これによれば、実装時においてハンダを凹部に埋設すると、凹部を占めていた空気が外部に排出されるため、凹部内に空気層が形成されることがない。このため、空気層によって放熱性が阻害されることがなくなる。この場合、前記凹部は、スリット状に複数形成されていても構わないし、メッシュ状に形成されていても構わない。
 このように、本発明によれば、酸化ガリウムを用いたショットキーバリアダイオードの機械的強度やハンドリング性を確保しつつ、発熱を抑制し、且つ、放熱性を高めることが可能となる。これにより、熱伝導率の低い酸化ガリウムを用いているにもかかわらず、素子の温度上昇を抑制することが可能となる。
図1は、本発明の第1の実施形態によるショットキーバリアダイオード10Aの構成を示す断面図である。 図2は、ショットキーバリアダイオード10Aの上面図である。 図3は、ショットキーバリアダイオード10Aを備える電子回路100の一部を示す断面図である。 図4は、本発明の第2の実施形態によるショットキーバリアダイオード10Bの構成を示す断面図である。 図5は、本発明の第3の実施形態によるショットキーバリアダイオード10Cの構成を示す上面図である。 図6は、本発明の第4の実施形態によるショットキーバリアダイオード10Dの構成を示す断面図である。 図7は、ショットキーバリアダイオード10Dの底面図である。 図8は、本発明の第5の実施形態によるショットキーバリアダイオード10Eの構成を示す底面図である。
 以下、添付図面を参照しながら、本発明の好ましい実施形態について詳細に説明する。
<第1の実施形態>
 図1は、本発明の第1の実施形態によるショットキーバリアダイオード10Aの構成を示す断面図である。また、図2は、ショットキーバリアダイオード10Aの上面図である。尚、図1に示す断面は、図2のA-A線に沿った断面に相当する。
 図1に示すように、本実施形態によるショットキーバリアダイオード10Aは、いずれも酸化ガリウム(β-Ga)からなる半導体基板20及びエピタキシャル層30を備える。半導体基板20及びエピタキシャル層30には、n型ドーパントとしてシリコン(Si)又はスズ(Sn)が導入されている。ドーパントの濃度は、エピタキシャル層30よりも半導体基板20の方が高く、これにより半導体基板20はn層、エピタキシャル層30はn層として機能する。
 半導体基板20は、融液成長法などを用いて形成されたバルク結晶を切断加工したものであり、その厚み(Z方向における高さ)は、少なくとも50μm以上であることが好ましく、250μm程度であることが特に好ましい。これは、半導体基板20の厚みが50μm未満であると、機械的強度が不足するとともに、製造時及び実装時における素子のハンドリングが困難となるからである。これに対し、半導体基板20の厚みが250μm程度であれば、十分な機械的強度及びハンドリング性を確保することが可能となる。半導体基板20の平面サイズについては特に限定されないが、一般的に素子に流す電流量に応じて選択することになり、順方向の最大電流量が20A程度であれば、X方向における幅及びY方向における幅を2.4mm程度とすればよい。
 半導体基板20は、実装時において上面側に位置する第1の表面21と、第1の表面21の反対側であって、実装時において下面側に位置する第2の表面22を有する。第1の表面21の全面には、エピタキシャル層30が形成されている。エピタキシャル層30は、半導体基板20の第1の表面21に反応性スパッタリング、PLD法、MBE法、MOCVD法、HVPE法などを用いて酸化ガリウムをエピタキシャル成長させた薄膜であり、ドリフト層として機能する。エピタキシャル層30の膜厚については特に限定されないが、一般的に素子の逆方向耐電圧に応じて選択することになり、600V程度の耐圧を確保するためには、例えば7μm程度とすればよい。
 図1及び図2に示すように、半導体基板20の第2の表面22には凹部23が形成されており、この部分において、半導体基板20の厚さが選択的に薄くなっている。本実施形態では、Z方向から見た凹部23の形状が円形であるが、凹部23の形状がこれに限定されるものではない。凹部23は、半導体基板20を第2の表面22側から例えばBClなどの塩素系ガスを用いて異方性エッチングすることによって形成することができる。図1に示す例では、凹部23の底面24は第1の表面21と平行なXY平面を構成し、凹部23の内壁面25はZ方向と平行な湾曲面を構成する。但し、底面24が第1の表面21に対して完全に平行である必要はなく、平面視で第1の表面21と重なる面であれば足りる。したがって、底面24がXY平面に対して傾きを有していても構わないし、湾曲していても構わない。また、内壁面25についても、Z方向と完全に平行な垂直面である必要はなく、底面24と第2の表面22を繋ぐ面であれば足りる。したがって、内壁面25がZ方向に対して傾きを有していても構わない。
 凹部23の深さD及び径Wについては特に限定されないが、半導体基板20の厚さが250μmである場合、深さDは50~225μm程度、径Wは100~200μm程度とすればよい。また、深さDについては、凹部23が形成された位置における半導体基板20の厚さ、つまり、第1の表面21と底面24のZ方向における距離を50μm以上とすることが好ましい。これは、当該位置における半導体基板20の厚さが50μm未満であると、この部分における機械的強度が不足し、ワイヤボンディング時などにおいて半導体基板20が破損するおそれがあるからである。一方、凹部23の深さDが小さすぎると、発熱抑制効果や放熱効果が十分に得られないことから、凹部23が形成された位置における半導体基板20の厚さを100μm以下とすることが好ましい。
 図1に示すように、エピタキシャル層30の上面には、開口部32を有する絶縁膜31が形成されており、さらにその上にアノード電極40が形成されている。これにより、アノード電極40は、絶縁膜31の開口部32を介してエピタキシャル層30とショットキー接触する。絶縁膜31は例えば酸化シリコン(SiO)からなり、その膜厚は300nm程度である。アノード電極40は、例えば白金(Pt)、チタン(Ti)及び金(Au)の積層膜からなり、その膜厚は、白金層が150nm程度、チタン層が5nm程度、金層が230nm程度である。
 図1及び図2に示すように、アノード電極40は、平面視で(積層方向であるZ方向から見て)凹部23と重なる位置に設けられている。特に、平面視で凹部23の全体がアノード電極40と重なるよう、アノード電極40のXY面積よりも凹部23のXY面積が小さいことが好ましい。しかしながら、凹部23のXY面積が小さすぎると、後述する放熱効果が不十分となることから、凹部23のXY面積は、アノード電極40のXY面積の50%以上であることが好ましい。
 一方、半導体基板20の第2の表面22には、カソード電極50が設けられる。本実施形態においては、カソード電極50が凹部23の底面24と、凹部23の外に位置する第2の表面22に形成されており、これらはいずれも半導体基板20とオーミック接触している。本発明において、凹部23の外にカソード電極50を形成することは必須でないが、回路基板への実装時における接続信頼性やハンダの濡れ性などを考慮すれば、図1に示すように、凹部23の外にもカソード電極50を形成することが好ましい。
 以上の構成により、アノード電極40とカソード電極50は、エピタキシャル層30及び凹部23を有する半導体基板20を介してZ方向に対向することになる。このため、アノード電極40とカソード電極50の間に順方向電圧を印加すれば、凹部23によって薄型化された部分に順方向電流が流れる。つまり、凹部23を形成しない場合に比べ、アノード電極40とカソード電極50との間の電流パスが短くなるため、酸化ガリウムの抵抗成分による発熱を低減することが可能となる。しかも、半導体基板20が薄型化されているのは凹部23のみであり、凹部23の外側においては十分な厚さを有していることから、半導体基板20の機械的強度やハンドリング性を確保することができる。
 図3は、本実施形態によるショットキーバリアダイオード10Aを備える電子回路100の一部を示す断面図である。
 図3に示す電子回路100は、電極パターン61を有する回路基板60と、回路基板60上に搭載されたショットキーバリアダイオード10Aとを備える。そして、ショットキーバリアダイオード10Aのアノード電極40は、ボンディングワイヤ62を介して図示しない他の電極パターンに接続され、ショットキーバリアダイオード10Aのカソード電極50は、ハンダ63を介して電極パターン61に接続される。
 図3に示すように、ハンダ63の一部は半導体基板20に設けられた凹部23に埋設されている。これにより、凹部23の底面24に形成されたカソード電極50と電極パターン61がハンダ63を介して電気的に接続される。そして、ハンダ63は、酸化ガリウムからなる半導体基板20よりも熱伝導率が非常に高いことから、ショットキーバリアダイオード10Aに順方向電流を流すことによって生じる熱は、凹部23に埋設されたハンダ63を介して回路基板60側へ効率よく放熱される。このため、熱伝導率の低い酸化ガリウムを半導体基板20の材料として使用しているにもかかわらず、高い放熱性を確保することが可能となる。尚、カソード電極50と電極パターン61を接続する導電部材としてはハンダに限定されるものではなく、他の導電材料を用いても構わない。
 以上説明したように、本実施形態によるショットキーバリアダイオード10Aは、凹部23を形成した部分において半導体基板20の厚さを選択的に薄くしていることから、機械的強度やハンドリング性を確保しつつ、発熱を抑制することができるとともに、良好な放熱特性を得ることが可能となる。このため、パワーデバイス用のスイッチング素子として好適に利用することが可能となる。
 以下、本発明の他の実施形態について説明する。
<第2の実施形態>
 図4は、本発明の第2の実施形態によるショットキーバリアダイオード10Bの構成を示す断面図である。
 図4に示すように、本発明の第2の実施形態によるショットキーバリアダイオード10Bは、凹部23の内壁面25にもカソード電極50が形成されている点において、上述した第1の実施形態によるショットキーバリアダイオード10Aと相違している。その他の構成は、第1の実施形態によるショットキーバリアダイオード10Aと同一であることから、同一の要素には同一の符号を付し、重複する説明は省略する。
 本実施形態においては、凹部23の内壁面25もカソード電極50が形成されていることから、半導体基板20とカソード電極50とのオーミック接触面積を拡大することができる。しかも、凹部23の内壁面25に形成されたカソード電極50によって、凹部23に埋設されたハンダ63の濡れ性が向上することから、接続信頼性が高められる。
<第3の実施形態>
 図5は、本発明の第3の実施形態によるショットキーバリアダイオード10Cの構成を示す上面図である。
 図5に示すように、本発明の第3の実施形態によるショットキーバリアダイオード10Cは、凹部23と半導体基板20の側面を繋ぐ連通孔23aが半導体基板20に設けられている点において、上述した第1の実施形態によるショットキーバリアダイオード10Aと相違している。その他の構成は、第1の実施形態によるショットキーバリアダイオード10Aと同一であることから、同一の要素には同一の符号を付し、重複する説明は省略する。
 図5に示す例では、連通孔23aが4箇所設けられており、凹部23は半導体基板のXZ側面及びYZ側面に連通している。これにより、回路基板60への実装時においてハンダ63を凹部23に埋設すると、凹部23を占めていた空気が連通孔23aを介して外部に排出される。その結果、凹部23内に空気層が形成されないため、空気層によって放熱性が阻害されることが無くなる。
<第4の実施形態>
 図6は、本発明の第4の実施形態によるショットキーバリアダイオード10Dの構成を示す断面図である。また、図7は、本実施形態において使用する半導体基板20を第2の表面22側から見た底面図である。
 図6及び図7に示すように、本発明の第4の実施形態によるショットキーバリアダイオード10Dは、凹部23がスリット状に複数形成されている点において、上述した第1の実施形態によるショットキーバリアダイオード10Aと相違している。その他の構成は、第1の実施形態によるショットキーバリアダイオード10Aと同一であることから、同一の要素には同一の符号を付し、重複する説明は省略する。
 本実施形態においては、凹部23がY方向に延在する6本のスリットによって構成されている。凹部23をこのような形状とすれば、第1の実施形態よりも半導体基板20の機械的強度を高めることができるとともに、第3の実施形態と同様、ハンダ63を用いた回路基板60への実装時において凹部23内に空気層が形成されることがない。
<第5の実施形態>
 図8は、本発明の第5の実施形態によるショットキーバリアダイオード10Eの構成を示す底面図である。
 図8に示すように、本発明の第5の実施形態によるショットキーバリアダイオード10Eは、凹部23がメッシュ状に形成されている点において、上述した第1の実施形態によるショットキーバリアダイオード10Aと相違している。その他の構成は、第1の実施形態によるショットキーバリアダイオード10Aと同一であることから、同一の要素には同一の符号を付し、重複する説明は省略する。
 本実施形態においては、凹部23がX方向に延在する6本のスリットと、Y方向に延在する6本のスリットによって構成されており、これらが交差することによって平面視で凹部23がメッシュ状とされている。凹部23をこのような形状とすれば、第1の実施形態よりも半導体基板20の機械的強度を高めることができるとともに、第5の実施形態に比べてよりいっそう凹部23内に空気層が形成されにくくなる。
 以上、本発明の好ましい実施形態について説明したが、本発明は、上記の実施形態に限定されることなく、本発明の主旨を逸脱しない範囲で種々の変更が可能であり、それらも本発明の範囲内に包含されるものであることはいうまでもない。
 図3に示した電子回路100と同じ構成を有するシミュレーションモデルを想定し、アノード電極40及びカソード電極50の材料としてAuを用い、凹部23の深さD及び径Wを種々変化させた場合における素子温度をシミュレーションした。凹部23の平面形状は正方形とした。シミュレーションモデルにおいては、半導体基板20のサイズをX=2.4mm、Y=2.4mm、Z=250μmとし、アノード電極40のサイズをX=2.1mm、Y=2.1mm、Z=0.3μmとした。ハンダ63は、凹部23の全体を満たすとともに、凹部23の外に位置する第2の表面22から50μmの厚さを有するものとした。そして、回路基板60に相当するコールドプレートを25℃に保持し、消費電力が2.4Wとなるよう、アノード電極40からカソード電極50に順方向電流を流した場合を想定し、アノード電極40の中心位置における温度をシミュレーションした。
 シミュレーション結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、半導体基板20に凹部23を設けない場合は温度が54.9℃まで上昇したのに対し、半導体基板20に凹部23を設けた場合は、温度が50℃以下に抑えられた。特に、凹部23の深さDが200μm以上である場合は、温度が約40℃以下まで抑えられ、非常に高い放熱効果が得られることが確認された。
 また、凹部23の深さDが大きいほど素子温度は低くなったが、D=200μmである場合とD=225μmである場合とで大きな差は認められなかった。他方、D=225μmである場合は、半導体基板20の厚みが25μmまで薄くなり、機械的強度が不足するおそれがある。この点を考慮すれば、D=200μmとした方が有利であると考えられる。
 凹部23の幅Wについては、W=1mmである場合における凹部23の面積はアノード電極40の約23%であり、W=2mmである場合における凹部23の面積はアノード電極40の約91%である。両者のシミュレーション結果に大きな差は認められないが、凹部23の幅Wが大きい方がより素子温度が低かった。
10A~10E  ショットキーバリアダイオード
20   半導体基板
21   第1の表面
22   第2の表面
23   凹部
23a  連通孔
24   底面
25   内壁面
30   エピタキシャル層
31   絶縁膜
32   開口部
40   アノード電極
50   カソード電極
60   回路基板
61   電極パターン
62   ボンディングワイヤ
63   ハンダ
100  電子回路

Claims (11)

  1.  第1の表面及び前記第1の表面の反対側に位置する第2の表面を有し、前記第2の表面側に凹部が設けられた酸化ガリウムからなる半導体基板と、
     前記半導体基板の前記第1の表面上に設けられた酸化ガリウムからなるエピタキシャル層と、
     積層方向から見て前記凹部と重なる位置に設けられ、前記エピタキシャル層とショットキー接触するアノード電極と、
     前記半導体基板の前記凹部内に設けられ、前記半導体基板とオーミック接触するカソード電極と、を備えることを特徴とするショットキーバリアダイオード。
  2.  前記半導体基板の前記凹部は、平面視で前記第1の表面と重なる底面と、前記底面と前記第2の表面を繋ぐ内壁面とを含み、
     前記カソード電極は、前記凹部の少なくとも前記底面に形成されていることを特徴とする請求項1に記載のショットキーバリアダイオード。
  3.  前記カソード電極は、前記凹部の前記内壁面にさらに形成されていることを特徴とする請求項2に記載のショットキーバリアダイオード。
  4.  前記カソード電極は、前記凹部の外に位置する前記第2の表面にさらに形成されていることを特徴とする請求項2又は3に記載のショットキーバリアダイオード。
  5.  前記積層方向から見た前記凹部の面積は、前記アノード電極の面積よりも小さいことを特徴とする請求項2乃至4のいずれか一項に記載のショットキーバリアダイオード。
  6.  前記積層方向から見た前記凹部の面積は、前記アノード電極の面積の50%以上であることを特徴とする請求項5に記載のショットキーバリアダイオード。
  7.  前記凹部が形成された位置における前記半導体基板の厚さは、50μm以上であることを特徴とする請求項1乃至6のいずれか一項に記載のショットキーバリアダイオード。
  8.  前記凹部は、前記半導体基板の側面に連通していることを特徴とする請求項1乃至7のいずれか一項に記載のショットキーバリアダイオード。
  9.  前記凹部は、スリット状に複数形成されていることを特徴とする請求項8に記載のショットキーバリアダイオード。
  10.  前記凹部は、メッシュ状に形成されていることを特徴とする請求項8に記載のショットキーバリアダイオード。
  11.  電極パターンを有する回路基板と、
     前記回路基板上に搭載された請求項1乃至10のいずれか一項に記載のショットキーバリアダイオードと、
     少なくとも一部が前記半導体基板の前記凹部に埋設され、前記電極パターンと前記カソード電極とを接続する導電部材と、を備えることを特徴とする電子回路。
PCT/JP2017/032612 2016-11-09 2017-09-11 ショットキーバリアダイオード及びこれを備える電子回路 WO2018088018A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP17869159.8A EP3540784B1 (en) 2016-11-09 2017-09-11 Schottky barrier diode and electronic circuit provided with same
US16/348,592 US10840384B2 (en) 2016-11-09 2017-09-11 Schottky barrier diode and electronic circuit provided with same
CN201780068998.0A CN109923678B (zh) 2016-11-09 2017-09-11 肖特基势垒二极管和具备其的电子电路

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016218652A JP6812758B2 (ja) 2016-11-09 2016-11-09 ショットキーバリアダイオード及びこれを備える電子回路
JP2016-218652 2016-11-09

Publications (1)

Publication Number Publication Date
WO2018088018A1 true WO2018088018A1 (ja) 2018-05-17

Family

ID=62110519

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/032612 WO2018088018A1 (ja) 2016-11-09 2017-09-11 ショットキーバリアダイオード及びこれを備える電子回路

Country Status (5)

Country Link
US (1) US10840384B2 (ja)
EP (1) EP3540784B1 (ja)
JP (1) JP6812758B2 (ja)
CN (1) CN109923678B (ja)
WO (1) WO2018088018A1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019003861A1 (ja) * 2017-06-29 2019-01-03 三菱電機株式会社 酸化物半導体装置、および、酸化物半導体装置の製造方法
JP2020043126A (ja) * 2018-09-06 2020-03-19 住友電気工業株式会社 炭化珪素半導体装置および炭化珪素半導体モジュール
CN109920857B (zh) * 2019-03-19 2021-11-30 珠海镓未来科技有限公司 一种肖特基二极管及其制备方法
JP7316865B2 (ja) 2019-07-22 2023-07-28 ルネサスエレクトロニクス株式会社 半導体装置
JP2021106191A (ja) * 2019-12-26 2021-07-26 株式会社ノベルクリスタルテクノロジー 半導体素子及びその製造方法、並びに半導体装置及びその製造方法
JP7391326B2 (ja) * 2019-12-26 2023-12-05 株式会社ノベルクリスタルテクノロジー 半導体装置
CN112382664A (zh) * 2020-11-03 2021-02-19 广东省科学院半导体研究所 一种倒装mosfet器件及其制作方法
CN112382665A (zh) * 2020-11-03 2021-02-19 广东省科学院半导体研究所 一种氧化镓基mosfet器件及其制作方法
US20230290886A1 (en) * 2021-04-15 2023-09-14 Enkris Semiconductor, Inc. Semiconductor structures and manufacturing methods thereof
CN116169157A (zh) * 2021-11-25 2023-05-26 广州华瑞升阳投资有限公司 一种氧化镓器件及制备方法
CN114446904A (zh) * 2021-12-30 2022-05-06 光梓信息科技(深圳)有限公司 基于纳米级散热器的晶圆封装结构及方法
WO2023181801A1 (ja) * 2022-03-24 2023-09-28 ローム株式会社 半導体装置およびその製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002170963A (ja) * 2000-12-01 2002-06-14 Sanken Electric Co Ltd 半導体素子、半導体装置、及び半導体素子の製造方法
JP2010182958A (ja) * 2009-02-06 2010-08-19 Seiko Instruments Inc 半導体装置および半導体装置の製造方法
JP2013102081A (ja) * 2011-11-09 2013-05-23 Tamura Seisakusho Co Ltd ショットキーバリアダイオード
JP2013201413A (ja) * 2012-02-21 2013-10-03 Rohm Co Ltd 半導体装置および半導体装置の製造方法
JP2016031953A (ja) 2014-07-25 2016-03-07 株式会社タムラ製作所 半導体素子及びその製造方法、半導体基板、並びに結晶積層構造体

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2868194B2 (ja) 1992-03-25 1999-03-10 松下電工株式会社 半導体装置における放熱構造
JPH07336009A (ja) 1994-06-10 1995-12-22 Fujitsu General Ltd 半導体素子の放熱構造
JP4744682B2 (ja) * 2000-09-21 2011-08-10 三菱電機株式会社 ショットキーバリアダイオード
JP2006156658A (ja) * 2004-11-29 2006-06-15 Toshiba Corp 半導体装置
JP4907955B2 (ja) * 2005-11-10 2012-04-04 パナソニック株式会社 ショットキーバリアダイオード及びその製造方法
CN101499480B (zh) 2008-01-30 2013-03-20 松下电器产业株式会社 半导体芯片及半导体装置
JP2009182217A (ja) * 2008-01-31 2009-08-13 Sumitomo Electric Ind Ltd 半導体装置およびその製造方法
US7842974B2 (en) * 2009-02-18 2010-11-30 Alpha & Omega Semiconductor, Inc. Gallium nitride heterojunction schottky diode
US9142623B2 (en) * 2011-09-08 2015-09-22 Tamura Corporation Substrate for epitaxial growth, and crystal laminate structure
JP5841417B2 (ja) * 2011-11-30 2016-01-13 株式会社日立製作所 窒化物半導体ダイオード
JP6004561B2 (ja) * 2012-03-30 2016-10-12 国立研究開発法人産業技術総合研究所 炭化珪素半導体素子の製造方法
JP6137955B2 (ja) * 2013-06-14 2017-05-31 新電元工業株式会社 炭化ケイ素半導体装置及び炭化ケイ素半導体装置の製造方法
CN112038416B (zh) * 2020-09-15 2021-09-03 西安电子科技大学 基于p型NiO薄膜和斜面终端结构的肖特基二极管及其制作方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002170963A (ja) * 2000-12-01 2002-06-14 Sanken Electric Co Ltd 半導体素子、半導体装置、及び半導体素子の製造方法
JP2010182958A (ja) * 2009-02-06 2010-08-19 Seiko Instruments Inc 半導体装置および半導体装置の製造方法
JP2013102081A (ja) * 2011-11-09 2013-05-23 Tamura Seisakusho Co Ltd ショットキーバリアダイオード
JP2013201413A (ja) * 2012-02-21 2013-10-03 Rohm Co Ltd 半導体装置および半導体装置の製造方法
JP2016031953A (ja) 2014-07-25 2016-03-07 株式会社タムラ製作所 半導体素子及びその製造方法、半導体基板、並びに結晶積層構造体

Also Published As

Publication number Publication date
EP3540784B1 (en) 2023-08-16
EP3540784A4 (en) 2020-05-20
US20200058804A1 (en) 2020-02-20
CN109923678A (zh) 2019-06-21
CN109923678B (zh) 2023-01-31
JP2018078177A (ja) 2018-05-17
EP3540784A1 (en) 2019-09-18
US10840384B2 (en) 2020-11-17
JP6812758B2 (ja) 2021-01-13

Similar Documents

Publication Publication Date Title
WO2018088018A1 (ja) ショットキーバリアダイオード及びこれを備える電子回路
US8981432B2 (en) Method and system for gallium nitride electronic devices using engineered substrates
TWI467775B (zh) 改良正向傳導的氮化鎵半導體裝置
US9640632B2 (en) Semiconductor device having improved heat dissipation
JPWO2019003861A1 (ja) 酸化物半導体装置、および、酸化物半導体装置の製造方法
US20220115342A1 (en) Electronic component and semiconductor device
JP2009117485A (ja) 窒化物半導体装置
US8476731B2 (en) Nitride semiconductor diode
JP5261923B2 (ja) 化合物半導体素子
JP2007305954A (ja) 電界効果トランジスタ及びその装置
JP2007129166A (ja) 半導体装置及びその製造方法
CN107534060A (zh) 具有大接合焊盘和减小接触电阻的GaN基肖特基二极管
US20120056196A1 (en) Semiconductor device and manufacturing method thereof
CN114430861A (zh) 半导体装置
JP6795032B2 (ja) 半導体装置
WO2018179768A1 (ja) 半導体装置
US20210296448A1 (en) SiC SEMICONDUCTOR DEVICE
JP5362187B2 (ja) 半導体素子
JP2006237430A (ja) 窒化物半導体装置
JP2018206871A (ja) 半導体素子及びその製造方法
JP3128178U (ja) 化合物半導体素子
CN106486545A (zh) 半导体单元
WO2021186936A1 (ja) ショットキーバリアダイオード
JP6630410B1 (ja) SiC半導体装置
JP2010027734A (ja) 窒化物半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17869159

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017869159

Country of ref document: EP

Effective date: 20190611