WO2018086522A1 - 一种中空泡沫材料及其制备方法和应用 - Google Patents

一种中空泡沫材料及其制备方法和应用 Download PDF

Info

Publication number
WO2018086522A1
WO2018086522A1 PCT/CN2017/109865 CN2017109865W WO2018086522A1 WO 2018086522 A1 WO2018086522 A1 WO 2018086522A1 CN 2017109865 W CN2017109865 W CN 2017109865W WO 2018086522 A1 WO2018086522 A1 WO 2018086522A1
Authority
WO
WIPO (PCT)
Prior art keywords
tube wall
hollow
foam material
microchannel
acid
Prior art date
Application number
PCT/CN2017/109865
Other languages
English (en)
French (fr)
Inventor
张劲松
高勇
田冲
杨振明
杨晓丹
矫义来
Original Assignee
中国科学院金属研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院金属研究所 filed Critical 中国科学院金属研究所
Publication of WO2018086522A1 publication Critical patent/WO2018086522A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • C04B38/0615Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances the burned-out substance being a monolitic element having approximately the same dimensions as the final article, e.g. a porous polyurethane sheet or a prepreg obtained by bonding together resin particles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B26/00Compositions of mortars, concrete or artificial stone, containing only organic binders, e.g. polymer or resin concrete
    • C04B26/02Macromolecular compounds
    • C04B26/10Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B26/12Condensation polymers of aldehydes or ketones
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B26/00Compositions of mortars, concrete or artificial stone, containing only organic binders, e.g. polymer or resin concrete
    • C04B26/02Macromolecular compounds
    • C04B26/10Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B26/12Condensation polymers of aldehydes or ketones
    • C04B26/122Phenol-formaldehyde condensation polymers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B26/00Compositions of mortars, concrete or artificial stone, containing only organic binders, e.g. polymer or resin concrete
    • C04B26/02Macromolecular compounds
    • C04B26/10Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B26/14Polyepoxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/08Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by adding porous substances
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/10Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by using foaming agents or by using mechanical means, e.g. adding preformed foam
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00482Coating or impregnation materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/428Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9669Resistance against chemicals, e.g. against molten glass or molten salts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/14Applications used for foams
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend

Definitions

  • the hollow microchannel (c) has an outer diameter (d2) of 0.1 mm to 10 mm and an inner diameter (d3) of 0.02 mm to 9 mm.
  • the carbon material is selected from one or more of the following: graphite, amorphous carbon, graphene, diamond, activated carbon, ordered mesoporous carbon, disordered mesoporous carbon, carbon fiber, carbon nanotube, carbon microtube .
  • the foam material preform prepared in the step (2) is pyrolyzed under the protection of an inert gas, the heating rate is 1 to 10 ° C / min, and the pyrolysis temperature is 600 to 900 ° C.
  • the holding time is 10 to 300 min, and the obtained sample is treated by one or more of the following operations: acid solution cleaning, alkali solution cleaning, acetone cleaning, absolute ethanol washing, deionized water washing, and air roasting; Hollow foam material forming precursor;
  • This step is selected from one or a combination of two or more of the following: (a) The foam molding precursor obtained in the step (3) is subjected to high-temperature sintering in a protective atmosphere at a temperature of 900 to 2,500 ° C.
  • the metal material is selected from the group consisting of Li, Na, K, Al, Ca, Sr, Mg, Ni, Fe, Cu, V, Cr, Mo, W, Mn, Co, Zn, Y, Zr, Nb, Ag, Pd And one or more of Ru, Rh, Au, Pt, Ta, a lanthanide metal, a metal element of a lanthanoid metal, an alloy containing the above element, a metal solid solution or an intermetallic compound;
  • the solvent is one or more of water, ethanol, acetone, ethylene glycol, toluene, and xylene.
  • the hollow foam material of the invention can be applied to any of the following fields: membrane separation material, reaction separation material, filter material, extraction separation material, reaction extraction separation material, catalytic carrier material, microreactor, micro heat exchange material, composite material Enhance Body, electrode material, sound absorbing/noise reduction material, heat insulating material, fluid distribution material, material for reaction fractionation, material for reactive distillation, fixed valve in fractional/rectification column, etc.
  • the hollow foam material of the present invention has three types of pores: a macroscopic three-dimensional interconnected mesh, a three-dimensionally connected hollow microchannel, and micro- or/and nano-scale pores in the microchannel tube wall.
  • the hollow foam material utilizes multiple types of pores and multi-stage pores to facilitate mass transfer, momentum transfer and heat transfer through the fluid in the hollow foam.
  • the cross section of the microchannel (c) of the present invention is nearly round or elliptical, which is advantageous for obtaining a microchannel tube wall having a uniform thickness, and the structural stability of the microchannel tube wall is improved.
  • the hollow foam material of the three-dimensional network according to the present invention has high mass transfer efficiency and mechanical properties, high temperature resistance, corrosion resistance and oxidation resistance.
  • the hollow foam material of the present invention is a brand new porous material, which has wide application prospects and can be applied to the following fields: membrane separation materials, reaction separation materials, filter materials, extraction separation materials, reaction extraction separation. Materials, catalytic carrier materials, microreactors, micro heat exchange materials, composite reinforcements, electrode materials, sound absorbing/noise reduction materials, heat insulating materials, fluid distribution materials, materials for reactive fractionation, materials for reactive distillation, fractions / Fixed valve in the distillation column, etc.
  • Figure 1 is a macroscopic view of a hollow foam material having a porous tube wall according to the present invention.
  • Figure 3 is a perspective view of a hollow microchannel tube wall of a hollow foam material having a porous tube wall according to the present invention.
  • FIG. 4 is a microscopic topography of a hollow microchannel tube wall of a hollow foam material having a porous tube wall according to the present invention.
  • Figure 6 is a partially enlarged perspective view of a hollow foam material having a dense tube wall according to the present invention.
  • Figure 7 is a perspective view of a hollow microchannel tube wall of a hollow foam material having a dense tube wall according to the present invention.
  • Figure 8 is a flow chart showing the preparation process of the hollow foam material of the present invention.
  • microchannel tube wall green layer slurry silicon carbide powder (average particle size 5 ⁇ m), silicon powder (average particle size 3.5 ⁇ m), phenolic resin, p-toluenesulfonic acid (curing agent), ethanol According to the ratio of 50 to 500g: 50 to 500g: 50 to 200g: (greater than 0 to 0.2) phenolic resin mass: 1000mL, the microchannel tube wall green layer slurry is prepared by sufficient ball milling.
  • Post-treatment (optional): The sample obtained in the step (6) is subjected to one or more of the following operations: acid solution washing, alkaline solution washing, organic solvent (including but not limited to acetone, no Water ethanol) washing, deionized water washing, air roasting, and inert gas atmosphere for calcination to obtain a three-dimensional network of hollow foam materials.
  • the hollow foam material is mainly composed of silicon carbide, and its structure is macroscopically constructed by a three-dimensionally connected supporting skeleton network, and the average size of the macroscopic three-dimensional communicating openings is 2.5 mm.
  • the support skeleton itself is a three-dimensionally connected microchannel having a hollow structure, the inner diameter of the hollow microchannel has an average size of 250 ⁇ m, and the outer diameter has an average size of 550 ⁇ m.
  • the microchannel tube wall is a dense structure, and its chemical composition mainly includes silicon carbide and silicon.
  • the preparation process of the present embodiment is a process for preparing a hollow foamed alumina material having a porous structure of a microchannel tube wall.
  • This embodiment differs from Embodiment 1 in that the epoxy resin in the step (1) is replaced by polyurethane.
  • the slurry composition of the microchannel tube wall green layer is: alumina powder (average particle size 5 ⁇ m), phenolic resin, p-toluenesulfonic acid (curing agent), ethanol, ratio 50-500 g: 50 ⁇ 200 g: (greater than 0 to 0.2) phenolic resin mass: 1000 mL.
  • a polyurethane resin foam having an average mesh size of 3 mm in the step (3) was replaced with a polyurethane resin foam having an average mesh size of 5 mm.
  • the thickness of the skeleton rib of the supporting skeleton reaches a predetermined design value of 600 ⁇ m.
  • the obtained hollow foam material had an average mesh size of 4 mm in the macroscopic three-dimensional communication opening.
  • the support skeleton itself is a three-dimensionally connected microchannel having a hollow structure, the inner diameter of the hollow microchannel has an average size of 550 ⁇ m, and the outer diameter has an average size of 1000 ⁇ m.
  • the chemical composition of the microchannel tube wall mainly comprises alumina, and the microchannel tube wall contains pores of nanometer to micrometer pore size, the average pore diameter is 4 ⁇ m, and the porosity is 70%.
  • the preparation process of the present embodiment is a process for preparing a hollow foamed alumina material having a dense structure of a microchannel tube wall.
  • This embodiment differs from Embodiment 1 in that the epoxy resin in the step (1) is replaced by polyurethane.
  • the slurry composition of the microchannel tube wall green layer is: alumina powder (average particle diameter 5 ⁇ m), aluminum sol (a(Al 2 O 3 ⁇ nH 2 O) ⁇ bHx ⁇ cH 2 O) Water, according to the ratio of 50 ⁇ 500g: 50 ⁇ 500g: 1000mL.
  • a polyurethane resin foam having an average mesh size of 3 mm in the step (3) was replaced with a polyurethane resin foam having an average mesh size of 5 mm.
  • the thickness of the skeleton rib of the supporting skeleton reaches a pre-design value of 1100 ⁇ m.
  • the obtained hollow foam material had an average mesh size of 4 mm in the macroscopic three-dimensional communication opening.
  • the support skeleton itself is a three-dimensionally connected microchannel having a hollow structure, the inner diameter of the hollow microchannel has an average size of 1000 ⁇ m, and the outer diameter has an average size of 1600 ⁇ m.
  • the microchannel tube wall is a dense structure whose chemical composition mainly contains alumina.
  • the preparation process of the present embodiment is a preparation process of a hollow foam sialon material having a porous structure microchannel tube wall: this embodiment is different from the embodiment 1 in that the epoxy resin in the step (1) is replaced by polyurethane.
  • a polyurethane resin foam having an average mesh size of 8 mm was substituted for the polyurethane resin foam having an average pore diameter of 3 mm in the step (3).
  • the slurry composition is: silicon carbide powder (average particle diameter 5 ⁇ m), silicon powder (average particle diameter 3.5 ⁇ m), silica powder (average particle diameter 1 ⁇ m), activated alumina powder (average particle diameter) 2 ⁇ m), phenolic resin, p-toluenesulfonic acid (curing agent), ethanol, 50 to 500 g: 50 to 500 g: 50 to 500 g: 50 to 500 g: 50 to 200 g: (greater than 0 to 0.2) phenolic resin quality: 1000 mL .
  • the thickness of the skeleton rib of the supporting skeleton reaches a pre-design value of 2200 ⁇ m.
  • the pre-formed molding precursor is sintered at a high temperature in a high-purity nitrogen atmosphere at a temperature of 1200 to 2500 ° C for 10 minutes to 6 hours.
  • the obtained hollow foam material had an average mesh size of 5 mm in the macroscopic three-dimensional communicating opening.
  • the support skeleton itself is a three-dimensionally connected microchannel having a hollow structure, the inner diameter of the hollow microchannel has an average size of 2000 ⁇ m, and the outer diameter has an average size of 3000 ⁇ m.
  • the chemical composition of the microchannel tube wall mainly includes sialon (Si 6-x Al x O x N 8-x ), and the microchannel tube wall contains pores of nanometer to micrometer pore size, the average pore diameter is 3 ⁇ m, and the porosity is 30. %.
  • the preparation process of the present embodiment is a preparation process of a hollow foamed silicon carbide material having a microchannel tube wall having an asymmetric porous structure: this embodiment is different from the embodiment 1 in that the epoxy resin in the step (1) is replaced by polyurethane.
  • a polyurethane resin foam having an average mesh size of 5 mm was used in place of the polyurethane resin foam having an average mesh size of 3 mm in the step (3).
  • the slurry A in the step (2) is first used for the “hanging slurry-excess slurry-semi-cure” operation cycle for several times; (2) The middle slurry B is subjected to a "hanging slurry - removing excess slurry - semi-curing" operation cycle several times.
  • the obtained hollow foam material had an average mesh size of 4 mm in the macroscopic three-dimensional communication opening.
  • the support skeleton itself is a three-dimensionally connected microchannel having a hollow structure, the inner diameter of the hollow microchannel has an average size of 550 ⁇ m, and the outer diameter has an average size of 1000 ⁇ m.
  • the preparation process of the present embodiment is a preparation process of a hollow foamed stainless steel material having a porous structure microchannel tube wall.
  • the difference between this embodiment and the embodiment 1 is that the epoxy resin in the step (1) is replaced by polyurethane to average A polyurethane resin foam having a mesh size of 5 mm was substituted for the polyurethane resin foam having an average pore diameter of 3 mm in the step (3).
  • the slurry composition is: 316L stainless steel powder (particle size range 10 ⁇ 30 ⁇ m), phenolic resin, polyvinyl butyral, curing agent, ethanol according to the ratio of 50 ⁇ 500g: 50 ⁇ 200g: 50 ⁇ 200 g: (greater than 0 to 0.2) phenolic resin mass: 1000 mL.
  • the thickness of the supporting skeleton rib reaches a pre-design value of 600 ⁇ m.
  • the obtained hollow foam material had an average mesh size of 4 mm in the macroscopic three-dimensional communication opening.
  • the preparation process of the present embodiment is a preparation process of a hollow foamed copper material having a porous structure microchannel tube wall: this embodiment is different from the embodiment 1 in that the epoxy resin in the step (1) is replaced by polyurethane to average A polyurethane resin foam having a mesh size of 6 mm was substituted for the polyurethane resin foam having an average pore diameter of 3 mm in the step (3).
  • the slurry composition is: copper oxide powder (particle size range 10 to 30 ⁇ m), copper powder (particle size range 10 to 30 ⁇ m), phenolic resin, polyvinyl butyral, curing agent, ethanol According to the ratio of 50 to 500 g: 50 to 500 g: 50 to 200 g: 50 to 200 g: (greater than 0 to 0.2) phenolic resin mass: 1000 mL.
  • the thickness of the supporting skeleton rib reaches a pre-design value of 600 ⁇ m.
  • the obtained hollow foam material had an average mesh size of 5 mm in the macroscopic three-dimensional communicating opening.
  • the preparation process of the present embodiment is a preparation process of a hollow foamed copper material having a dense structure of a microchannel tube wall, and specifically the following main steps:
  • Preparation of thickening slurry polyvinyl alcohol powder, epoxy resin, curing agent and ethanol are fully ball milled to make thickening slurry, polyvinyl alcohol, epoxy resin, curing agent and ethanol.
  • the ratio is 50-500g: more than 0-500g: 10-100g: 1000mL (that is, every 1000mL solvent in the slurry, corresponding to 50-500g polyvinyl alcohol powder, more than 0-500g epoxy resin and 10-100g epoxy resin Corresponding curing agent).
  • microchannel tube wall green layer plating solution according to the main salt (copper sulfate, copper chloride, basic copper carbonate, copper tartrate, copper acetate) 10 ⁇ 100g / L; complexing agent (potassium sodium tartrate) , sodium citrate, sodium gluconate, triethanolamine, tetrahydroxypropyl ethylenediamine, glycerol, glycolic acid or EDTA disodium salt) 10 ⁇ 100g / L; reducing agent (formaldehyde, hydrazine, borohydride, dimethyl Aminoborane, sodium hypophosphite) 10 ⁇ 100g/L; additive (stabilizer, accelerator, leveling agent or brightener) 10 ⁇ 50g/L; pH adjuster (sodium hydroxide, sodium carbonate) 10 ⁇ 50g /L is formulated with an aqueous solution of electroless copper plating.
  • main salt copper sulfate, copper chloride, basic copper carbonate, copper tartrate, copper acetate
  • the "dip slurry-excess slurry-semi-cure" operation is repeated several times until the thickness of the network skeleton ribs The degree reached a pre-design value of 550 ⁇ m.
  • Preparation of foam preform the construction of the green layer of the hollow wall of the three-dimensional interconnected network.
  • the three-dimensional connected sacrificial template foam with the thickness of the network skeleton ribs has been thickened to a pre-designed value, and the sample is cut into a desired shape and size, and fully immersed in a 30-50 g/L stannous chloride solution for 3 to 5 minutes. Then, the sample is placed in a 0.5 to 1 g/L palladium chloride solution for 1 to 2 minutes.
  • the electroless copper plating operation time is determined to be 1 to 10 hours.
  • the pre-formed foam material is subjected to the removal operation of the sacrificial template foam under the protection of high-purity argon gas (argon gas integral number ⁇ 99.999%) or other inert gas, and the heating rate is 1 to 10 ° C. /min, treatment temperature 650 ° C, holding time 10 ⁇ 300min, the obtained sample can be selected to do one or two of the following methods: acid solution cleaning, alkaline solution cleaning, acetone cleaning, anhydrous ethanol cleaning, go Ionized water cleaning, air roasting, and complete drying to obtain a hollow foam molding precursor.
  • argon gas argon gas integral number ⁇ 99.999% or other inert gas
  • the molding precursor is subjected to high-temperature sintering under high-purity argon gas protection or vacuum conditions, the temperature is 800 to 1050 ° C, the heating rate is 0.5 to 2 ° C / min, and the holding time is 10 min to 6 h.
  • Post-treatment (optional): The sample obtained in the step (6) is subjected to one or more of the following operations: acid solution washing, alkaline solution washing, organic solvent (including but not limited to acetone, no Water ethanol) washing, deionized water washing, air roasting, and inert gas atmosphere for calcination to obtain a three-dimensional network of hollow foam materials.
  • the obtained hollow foam material is macroscopically constructed by a three-dimensionally connected support skeleton network, and the average size of the mesh of the macroscopic three-dimensional communication opening is 2.5 mm.
  • the support skeleton itself is a three-dimensionally connected microchannel having a hollow structure, the inner diameter of the hollow microchannel has an average size of 500 ⁇ m, and the outer diameter has an average size of 900 ⁇ m.
  • the microchannel tube wall is a dense structure whose chemical composition mainly contains copper.
  • Preparation of thickening slurry The active magnesium oxide powder, polyurethane, curing agent and ethanol are fully ball milled to form a thickened slurry, and the ratio of active magnesium oxide powder, polyurethane, curing agent and ethanol is 50. ⁇ 500g: more than 0 to 500g: 10 to 100g: 1000mL (that is, for every 1000mL of ethanol in the slurry, there are 50 to 500g of active magnesium oxide powder, more than 0 to 500g of polyurethane, and 10 to 100g of epoxy resin corresponding curing agent).
  • microchannel tube wall green layer slurry polytetrafluoroethylene powder (average particle size 10 ⁇ m), polytetrafluoroethylene emulsion (solid content 60wt%), waterborne polyurethane according to ratio 50 ⁇ 500g: 1000g : 50 ⁇ 500g, the microchannel tube wall green layer slurry is prepared by sufficient ball milling.
  • the "dip slurry-excess slurry-semi-cure" operation is repeated several times until the thickness of the network skeleton ribs The degree reached a pre-design value of 450 ⁇ m.
  • Preparation of foam preform the construction of the green layer of the hollow wall of the three-dimensional interconnected network.
  • the three-dimensional connected sacrificial template foam having a network skeleton rib thickness has been thickened to a pre-designed value is cut to a desired shape and size, and then fully immersed in the microchannel tube wall green layer slurry prepared in the step (2). After removing excess slurry from the stencil foam cell, it is semi-cured at 80-100 °C.
  • the “hanging slurry-excess slurry-semi-cure” operation can be cycled several times, and finally the obtained skeleton foam is completely cured at 100-120 °C.
  • the construction of the microchannel tube wall green layer is completed to obtain a preformed body foam material.
  • Molding process The molding precursor is subjected to molding operation under the protection of high purity argon gas, the temperature is 120-300 ° C, and the holding time is 10 min to 6 h.
  • Post-treatment (optional): The sample obtained in the step (6) is subjected to one or more of the following operations: acid solution washing, alkaline solution washing, organic solvent (including but not limited to acetone, no Water ethanol) washing, deionized water washing, air roasting, and inert gas atmosphere for calcination to obtain a three-dimensional network of hollow foam materials.
  • the obtained hollow foam material is macroscopically constructed by a three-dimensionally connected supporting skeleton network, and the average size of the mesh of the macroscopic three-dimensional communicating opening is 4 mm.
  • the support skeleton itself is a three-dimensionally connected microchannel having a hollow structure, the inner diameter of the hollow microchannel has an average size of 400 ⁇ m, and the outer diameter has an average size of 900 ⁇ m.
  • the chemical composition of the microchannel tube wall mainly includes polytetrafluoroethylene.
  • the microchannel tube wall is a porous tube wall structure containing pores of nanometer to micrometer pore size, with an average pore diameter of 5 ⁇ m and a porosity of 50%.
  • the preparation process of the present embodiment is a preparation process of a hollow foamed polyethylene material having a porous structure microchannel tube wall, specifically the following main steps:
  • the difference between this embodiment and the embodiment 10 is that the microchannel tube in the step (2)
  • a microchannel tube wall green layer slurry is formed.
  • a polyurethane resin foam having an average mesh size of 5 mm in the step (3) was replaced with a polyurethane resin foam having an average mesh size of 8 mm.
  • step (3) the thickness of the skeleton rib of the supporting skeleton reaches a predetermined design value of 600 ⁇ m.
  • the semi-curing temperature in the step (4) was 50 ° C, and the final curing temperature was 60 ° C.
  • the molding temperature is 70 to 220 ° C, and the holding time is 5 to 3 hours.
  • the obtained hollow foam material had an average mesh size of 6.5 mm in macroscopic three-dimensional communicating openings.
  • the support skeleton itself is a three-dimensionally connected microchannel having a hollow structure, the inner diameter of the hollow microchannel has an average size of 550 ⁇ m, and the outer diameter has an average size of 1000 ⁇ m.
  • the microchannel tube wall is a dense structure, and its chemical composition mainly comprises polyethylene.
  • the preparation process of the present embodiment is a process for preparing a hollow foamed carbon material having a porous structure of a microchannel tube wall.
  • This embodiment differs from Embodiment 1 in that the epoxy resin in the step (1) is replaced by polyurethane.
  • the microchannel tube wall green layer slurry composition is: activated carbon powder (average particle size 5 ⁇ m), phenolic resin, p-toluenesulfonic acid (curing agent), ethanol according to the ratio of 50 to 500 g: 50 ⁇ 200g: (greater than 0 to 0.2) phenolic resin quality: 1000mL, the microchannel tube wall green layer slurry is prepared by sufficient ball milling.
  • a polyurethane resin foam having an average mesh size of 3 mm in the step (3) was replaced with a polyurethane resin foam having an average mesh size of 5 mm.
  • the thickness of the skeleton rib of the supporting skeleton reaches a pre-design value of 1100 ⁇ m.
  • the obtained hollow foam material had an average mesh size of 4 mm in the macroscopic three-dimensional communication opening.
  • the support skeleton itself is a three-dimensionally connected microchannel having a hollow structure, the inner diameter of the hollow microchannel has an average size of 1000 ⁇ m, and the outer diameter has an average size of 1600 ⁇ m.
  • the chemical composition of the microchannel tube wall mainly includes activated carbon and amorphous carbon.
  • the microchannel tube wall is a porous tube wall structure containing pores of sub-nanometer to micron pore size with an average pore diameter of 1 ⁇ m and porosity. It is 60%.
  • the preparation process of the present embodiment is a process for preparing a hollow foamed graphite material having a dense structure of a microchannel tube wall.
  • This embodiment differs from Embodiment 1 in that the epoxy resin in the step (1) is replaced by polyurethane.
  • the microchannel tube wall green layer slurry composition is: activated carbon powder (average particle size 5 ⁇ m), phenolic resin, p-toluenesulfonic acid (curing agent), ethanol according to the ratio of 50 to 500 g: 50 ⁇ 200g: (greater than 0 to 0.2) phenolic resin quality: 1000mL, the microchannel tube wall green layer slurry is prepared by sufficient ball milling.
  • the support skeleton itself is a three-dimensionally connected microchannel having a hollow structure, the inner diameter of the hollow microchannel has an average size of 600 ⁇ m, and the outer diameter has an average size of 1200 ⁇ m.
  • the microchannel tube wall is a dense tube wall structure, and its chemical composition mainly contains graphite.

Abstract

一种中空泡沫材料及其制备方法和应用。该中空泡沫材料在宏观上由三维连通的支撑骨架网络构建而成,支撑骨架自身为三维连通的具有中空结构的微通道,微通道管壁为致密的,或为含有纳米级和/或微米级孔径的孔隙。利用具有三维连通网络结构的高分子树脂泡沫材料,采用结构设计和制备方法,制得三维连通网络的中空泡沫材料。该中空泡沫材料同时具有尺寸可调控的三种类型的孔隙:宏观三维连通的开孔网孔、三维连通的中空微通道、微通道管壁本体内的纳米级和/或微米级孔径的孔隙。

Description

一种中空泡沫材料及其制备方法和应用 技术领域
本发明涉及泡沫材料领域,具体地说是一种三维连通的中空泡沫材料及其制备方法和应用。
背景技术
泡沫材料是一种特殊的多孔材料,其几何结构特征是以多边形封闭环为基本单元,各基本单元相互连接形成的三维连通网络。此类结构的材料拥有质量轻、孔隙率可调、高渗透率等诸多优点,流体在其三维连通的网孔里的质量传递、动量传递、热量传递效率均可以得到有效提高。因而,在化工过程强化领域,泡沫材料的制备和应用正逐渐受到广泛的重视。
然而,利用基于K.Schwartzwalder的发明专利US3090094所述的制备方法所获得的传统的泡沫材料,尽管在其支撑骨架内可能会含有中空结构,但是受其制备工艺中模板结构的限制,支撑骨架横截面的中空孔隙的孔型形状和尺寸大小均无法调控。这导致了传统的泡沫材料在需要精细调控流体的分布或者需要同时调控多种流体时,现有的传统泡沫材料的三维连通的开孔结构将难以实现。
中空材料是一种内部含有特定空腔的材料,目前研究热点主要集中在中空纤维材料,即纤维轴向具有细管状空腔的化学纤维。中空纤维管壁上布满微孔,孔径以能截留物质的分子量表达,截留分子量可达几千至几十万。因此,由中空纤维组装成的组件在微滤、超滤、透析、气体分离、反渗透及蒸发渗透器等领域得到广泛研究与应用。
尽管中空纤维自身具有很多优点,由其组装而成的器件在实际应用过程中,流体的流动状态大多以平行流或交错流为主,物质的传递主要受扩散定律限制,传质效率不高。另一方面,目前中空纤维主要成分是化学纤维,因此使用温度一般不超过400℃。因此,亟需研发一种具有较高传质效率与力学性能、耐高温、耐腐蚀、抗氧化的新型中空材料。
发明内容
本发明的目的在于提供一种中空泡沫材料的结构设计及其制备方法和应用,解决现有技术中流体传质效率低、材料不耐高温、不抗氧化、耐腐蚀性差、力学性能差等问题。
本发明创造性地将中空结构引入泡沫材料中,研制出中空泡沫材料,使其兼具泡沫材料的三维连通网络开孔结构和中空材料的细管状空腔结构。同时,针对中空泡沫材料的创新性孔结构提出针对性的制备工艺,是本发明的主要创新点之一。
本发明的技术方案是:
一种三维连通的中空泡沫材料,该中空泡沫材料在宏观上由支撑骨架(a)三维连通以形成开孔(b)网络结构,其中,支撑骨架(a)本身具有尺寸可控的、中空的微通道(c),该微通道(c)的横断面为近圆状或椭圆状。
所述中空的微通道(c)的管壁为多孔结构管壁或致密结构管壁。
所述多孔结构管壁本体含有纳米级和/或微米级孔径的孔隙。
所述管壁本体的材质可为均质或非均质。
所述管壁本体的物理结构或化学结构可为各向同性的或各向异性的。
所述开孔(b)的网孔尺寸(d1)为0.2mm~20mm。
所述中空的微通道(c)的外径尺寸(d2)为0.1mm~10mm,内径尺寸(d3)为0.02mm~9mm。
所述多孔管壁含有的孔隙的孔径尺寸范围为0.1nm~100μm,管壁的孔隙率p为0<p≤70%。
所述中空泡沫材料的材质选自以下的一种或两种以上:金属、陶瓷、高分子、碳材料。
所述金属材质选自包含Li、Na、K、Al、Ca、Sr、Mg、Ni、Fe、Cu、V、Cr、Mo、W、Mn、Co、Zn、Y、Zr、Nb、Ag、Pd、Ru、Rh、Au、Pt、Ta、镧系金属、锕系金属的金属单质、包含上述元素的合金、金属固溶体或金属间化合物中的一种或两种以上;
所述陶瓷材质选自以下的一种或两种以上:(1)氧化物及复合氧化物:Al2O3、SiO2、ZrO2、MgO、CaO、BeO、SrO、NiO、CuO、TiO2、V2O5、Fe3O、RuO2、WO3、ZnO、SnO2、CdO、Nb2O5、PbO、Pb3O4、Bi2O3、MoO3、Cr2O3、Y2O3、MnO、MnO2、Mn2O3、Mn3O4、CoO、Co3O4、Co2O3、镧系氧化物、锕系氧化物;莫来石(3Al2O3·2SiO2)、铝镁尖晶石(MgO·3Al2O3)、镁铬尖晶石(MgO·Cr2O3)、锆英石(ZrO2·SiO2)、正硅酸钙(2CaO·SiO2)、镁橄榄石(2MgO·SiO2)、钙钛矿型复合氧化物(CaTiO3或掺杂的CaTiO3、BaTiO3或掺杂的BaTiO3、LiNbO3或掺杂的LiNbO3、SrZrO3或掺杂的SrZrO3、LaMnO3或掺杂的LaMnO3、掺杂的SrCoyFe1-yO3-δ,0<y<1,0<δ<3、A位替代的LaxA1-xCoyFe1-yO3-δ,其中A=Sr、Ba、Ca,0<x<1,0<y<1,0<δ<3);(2)碳化物:碳化硅、碳化锆、碳化钨、碳化钛、碳化硼、碳化钽、碳化钒、碳化铬、碳化铌、碳化钼、碳化铁、碳化锰;(3)氮化物:α-Si3N4、β-Si3N4、AlN、Si6-xAlxOxN8-x、BN;(4)Si;
所述高分子材质选自以下的一种或两种以上:(1)聚烯烃类:聚四氟乙烯、聚偏氟乙烯、聚乙烯、聚丙烯、聚丙乙烯、聚氯乙烯、聚苯乙烯、聚丙烯腈;(2)聚酰胺类:聚己内酰胺(PA6)、聚癸二酰己二胺(PA610)、聚十一内酰胺(PA11)、聚十二烷二酰己二胺(PA612)、聚癸二酰癸二胺(PA1010);(3)聚酯类:聚氨酯、聚甲基丙烯酸甲酯、聚异三聚氰酸酯(PIR)、聚碳酸酯、聚对苯二甲酸二丁酯(PBT)、聚对苯二甲酸乙二醇酯(PET);(4)聚醚类:聚苯醚、聚苯硫醚;
所述碳材料材选自以下的一种或两种以上:石墨、无定型碳、石墨烯、金刚石、活性炭、有序介孔碳、无序介孔碳、碳纤维、碳纳米管、碳微米管。
本发明还提出来一种制备上述中空泡沫材料的方法,该制备方法包括如下步骤:
(1)牺牲模板泡沫材料的制备工序:首先,采用具有三维连通网络结构的高分子树脂泡沫材料作为初始模板材料,所述高分子树脂泡沫材料为环氧树脂、酚醛树脂、呋喃树脂、聚氨酯、聚酯、聚醚中的一种或两种以上;其次,对所述高分子树脂泡沫材料的网络骨架筋进行增粗处理,直至骨架筋粗细程度达到中空微通道的内径所需尺寸0.02mm~9mm,由此制得牺牲模板泡沫材料;
(2)泡沫材料预制体制备工序:该工序选自以下的一种或两种以上的组合:(a)配制微通道管壁生坯层浆料,将步骤(1)中所得牺牲模板泡沫材料充分浸入至该生坯层浆料中,随后取出,除去多余的浆料后于80~150℃进行半固化;循环进行上述“浸渍浆料-去除多余浆料-半固化”操作直至微通道管壁生坯层的厚度达到预先设计值,最后将样品于100~300℃完全固化,制得泡沫材料预制体;(b)采用电镀法,在牺牲模板泡沫材料的骨架筋表面构建微通道管壁生坯层,由此制得泡沫材料预制体;(c)采用化学镀法,在牺牲模板泡沫材料的骨架筋表面构建微通道管壁生坯层,由此制得泡沫材料预制体;(d)采用溶液刻蚀法,对微通道管壁生坯层进行刻蚀处理,构建具有特定几何结构或者特定化学物质分布的微通道管壁生坯层,由此制得泡沫材料预制体;(e)采用水热反应法生长出的特定晶体,构建微通道管壁生坯层,由此制得泡沫材料预制体;(f)采用阳极氧化法,对微通道管壁生坯层进行阳极氧化处理,构建具有特定几何结构或者特定化学物质分布的微通道管壁生坯层,由此制得泡沫材料预制体;(g)采用溶胶-凝胶法,构建微通道管壁生坯层,由此制得泡沫材料预制体;(h)采用Langmuir-Blodgett法,构建具有Langmuir-Blodgett膜特征的薄膜层生坯层,由此制得泡沫材料预制体;(i)采用物理气相沉积法,构建微通道管壁生坯层,由此制得泡沫材料预制体;(j)采用化学气相沉积法,构建微通道管壁生坯层,由此制得泡沫材料预制体;
(3)牺牲模板泡沫材料的去除工序:将步骤(2)中制得的泡沫材料预制体在惰性气体保护下进行热解,升温速率1~10℃/min,热解温度600~900℃,保温时间10~300min,获得的样品按如下操作中的一种或两种以上进行处理:酸溶液清洗、碱溶液清洗、丙酮清洗、无水乙醇清洗、去离子水清洗、空气中焙烧;制得中空泡沫材料成型前驱体;
(4)成型工序:该工序选自以下的一种或两种以上的组合:(a)将步骤(3)所得的的泡沫材料成型前驱体在保护气氛下进行高温烧结,温度900~2500℃,保温时间10min~6h;所述保护气氛选自高纯氩气保护、高纯氢气保护、高纯氮气保护、高纯氢氩混合气保护、真空条件中的一种或两种以上;(b)采用电镀法进行成型操作;(c)采用化学镀法进行成型操作;(d)采用溶液刻蚀法进行成型操作;(e)采用水热反应法进行成型操作;(f)采用阳极氧化法进行成型操作;(g)采用溶胶-凝胶法进行成型操作;(h)采用Langmuir-Blodgett法进行成型操作;(i)采用物理气相沉积法进行成型操作;(j)采用化学气相沉积法进行成型操作;(k)采用对样品施加电压进行通电加热完成成型操作;
(5)后处理工序:将步骤(4)中获得的成型后样品进行如下操作中的一种或两种以上:酸溶液清洗、碱溶液清洗、丙酮清洗、无水乙醇清洗、去离子水清洗、空气中焙烧,由此制得三维连通的中空泡沫材料。
步骤(1)中的增粗处理选自以下的一种或两种以上:电镀法增粗、化学镀法增粗、溶胶-凝胶法。
步骤(1)中的增粗处理按如下步骤进行:按主成分:溶剂=100g:(50~200)g的比例配制增粗浆料,将初始模板材料浸入至增粗浆料中,循环进行浸渍-去除多余浆料-半固化操作直至骨架筋粗细程度达到中空微通道的内径所需尺寸0.02mm~9mm,其中,增粗浆料的 主成分选自以下物质中的一种或两种以上:聚氨酯、酚醛树脂、环氧树脂、呋喃树脂、聚乙烯醇、聚乙烯醇缩丁醛、异氰酸酯、改性异氰酸酯、羧甲基纤维素、醋酸纤维素、淀粉、氧化铝、氧化镁、氧化硅、氧化钙、三氧化二铁、四氧化三铁、氧化钴、氧化锰、氧化铜、氧化锌、氧化锡、氧化镍、石墨、无定型碳、石墨烯、金刚石、活性炭、有序介孔碳、无序介孔碳、碳纤维、碳纳米管、碳微米管、钾盐、钠盐、钙盐、镁盐、铝盐、亚铁盐、铁盐、铜盐、锰盐、镍盐、锌盐、铵盐、酒石酸盐、亚硫酸氢盐、亚硫酸盐、硫代硫酸盐、卤化物盐、磺化物盐、水杨酸盐、苯甲酸盐、醋酸盐、磷酸盐、碳酸盐、碳酸氢盐、乳酸盐、硫酸盐、硝酸盐、Li、Na、K、Al、Ca、Sr、Mg、Ni、Fe、Cu、V、Cr、Mo、W、Mn、Co、Zn、Y、Zr、Nb、Ag、Pd、Ru、Rh、Au、Pt、Ta、镧系金属、锕系金属的金属单质、包含上述元素的合金、金属固溶体或金属间化合物;溶剂选自以下的一种或两种以上:水、乙醇、丙酮、乙二醇、环己烷、正己烷、甲苯、二甲苯、四氢呋喃。
步骤(2)中,所述微通道管壁生坯层浆料由主成分粉料、粘结剂、固化剂、溶剂按50~500g:50~200g:(大于0至0.2)倍粘结剂质量:1000mL的配比、经充分球磨混料制成;
其中,主成分粉料选自金属、陶瓷、高分子或碳材料的一种或两种以上;
所述金属材质选自包含Li、Na、K、Al、Ca、Sr、Mg、Ni、Fe、Cu、V、Cr、Mo、W、Mn、Co、Zn、Y、Zr、Nb、Ag、Pd、Ru、Rh、Au、Pt、Ta、镧系金属、锕系金属的金属单质、包含上述元素的合金、金属固溶体或金属间化合物中的一种或两种以上;
所述陶瓷材质选自以下的一种或两种以上:(1)氧化物及复合氧化物:Al2O3、SiO2、ZrO2、MgO、CaO、BeO、SrO、NiO、CuO、TiO2、V2O5、Fe3O、RuO2、WO3、ZnO、SnO2、CdO、Nb2O5、PbO、Pb3O4、Bi2O3、MoO3、Cr2O3、Y2O3、MnO、MnO2、Mn2O3、Mn3O4、CoO、Co3O4、Co2O3、镧系氧化物、锕系氧化物;莫来石(3Al2O3·2SiO2)、铝镁尖晶石(MgO·3Al2O3)、镁铬尖晶石(MgO·Cr2O3)、锆英石(ZrO2·SiO2)、正硅酸钙(2CaO·SiO2)、镁橄榄石(2MgO·SiO2)、钙钛矿型复合氧化物(CaTiO3或掺杂的CaTiO3、BaTiO3或掺杂的BaTiO3、LiNbO3或掺杂的LiNbO3、SrZrO3或掺杂的SrZrO3、LaMnO3或掺杂的LaMnO3、掺杂的SrCoyFe1-yO3-δ,0<y<1,0<δ<3、A位替代的LaxA1-xCoyFe1-yO3-δ,其中A=Sr、Ba、Ca,0<x<1,0<y<1,0<δ<3);(2)碳化物:碳化硅、碳化锆、碳化钨、碳化钛、碳化硼、碳化钽、碳化钒、碳化铬、碳化铌、碳化钼、碳化铁、碳化锰;(3)氮化物:α-Si3N4、β-Si3N4、AlN、Si6-xAlxOxN8-x、BN;(4)Si;
所述高分子材质选自以下的一种或两种以上:(1)聚烯烃类:聚四氟乙烯、聚偏氟乙烯、聚乙烯、聚丙烯、聚丙乙烯、聚氯乙烯、聚苯乙烯、聚丙烯腈;(2)聚酰胺类:聚己内酰胺(PA6)、聚癸二酰己二胺(PA610)、聚十一内酰胺(PA11)、聚十二烷二酰己二胺(PA612)、聚癸二酰癸二胺(PA1010);(3)聚酯类:聚氨酯、聚甲基丙烯酸甲酯、聚异三聚氰酸酯(PIR)、聚碳酸酯、聚对苯二甲酸二丁酯(PBT)、聚对苯二甲酸乙二醇酯(PET);(4)聚醚类:聚苯醚、聚苯硫醚;
所述碳材料材选自以下的一种或两种以上:石墨、无定型碳、石墨烯、金刚石、活性炭、 有序介孔碳、无序介孔碳、碳纤维、碳纳米管、碳微米管;
粘结剂为聚乙烯醇、聚乙烯醇缩丁醛、羧甲基纤维素、壳聚糖、海藻酸、海藻酸钠、环氧树脂、酚醛树脂、呋喃树脂、聚氨酯、聚碳硅烷、聚硼氮烷、聚硼硅氧烷、聚硼硅氮烷、聚锆硼硅氮烷的一种或两种以上;
固化剂为甲醛、戊二醛、对苯二亚甲基醛、水溶性胺-甲醛缩合物、二甲基脲、三甲基三聚氰胺、二甲基乙基脲、硫酸钠、硫酸锌、硼酸、硼砂、硅烷类交联剂、重铬酸盐、硝酸铬、铬的络合物、铜氨氢氧化物、尿素、蜜胺、苯酚、聚异氰酸酯、草酸二乙酯、草酸二甲酯、丙二醇、有机钛、环氧氯丙烷、氯乙醇、四硼酸钠、N-羟甲基丙烯酰胺、N,N’-亚甲基双丙烯酰胺、β-环糊精、异丙基丙烯酰胺、丙烯酰胺、丙烯酸、甲基丙烯酸甲酯、香草醛、京尼平、乙二醛、聚(N-乙烯乙二醇)-乙醛、聚丙烯腈、琥珀酸及其衍生物、氨基乙酸、赖氨酸、二异氰酰基己烷、偏苯三甲酸酐、溴癸烷、对叠氮基苯甲酸、肝磷脂、乙二醇二缩水甘油醚、氯甲代氧丙环、乙酸、柠檬酸、甲酸、羟基乙酸、乳酸、羟基丁二酸、丙酸、脂肪酸、柠檬酸钠、氯化钙、聚乙二醇、脂肪二胺类物质、多胺类物质、芳香族多胺类物质、双氰双胺类物质、咪唑类物质、改性胺类物质、三氟化硼及络合物、低分子聚酰胺、六亚甲基四胺、苯磺酰氯、对甲苯磺酰氯、硫酸乙酯、石油磺酸、对甲苯磺酸、对甲苯磺酸钠、多聚甲醛、氢氧化钠、乙酸甘油酯、碳酸丙烯酯、羟甲基脲、硫酸、盐酸、磷酸、草酸、已二酸、苯磺酸、苯酐、马来酸酐、3,3′-二氯-4,4′-二氨基二苯基甲烷、二乙烯基苯中的一种或两种以上;
溶剂为水、乙醇、丙酮、乙二醇、甲苯、二甲苯中的一种或两种以上。
步骤(2)所述的微通道管壁生坯层浆料内还含有造孔剂以调控微通道管壁的孔隙结构。所述调控步骤优选为:(1)造孔剂选自金属造孔剂、氧化物造孔剂、高分子造孔剂、无机盐造孔剂、碳材料造孔剂的一种或两种以上,造孔剂的颗粒大小为1nm~100μm,造孔剂是加入量为微通道管壁生坯层浆料总质量的0.001%~20%;(2)分阶段、依次采用含有同种或不同种造孔剂的微通道管壁生坯层浆料进行“浸渍浆料-去除多余浆料-半固化”循环操作,形成具有均质或非均质微通道管壁生坯层的泡沫材料预制体。
步骤(2)所述的微通道管壁生坯层的结构可为部分有孔隙结构、均匀孔隙结构或完全无孔隙结构。
所述孔隙通过步骤(3)、(4)、(5)中任一步或两步以上组合的操作将孔隙去除,进而制备出具有致密结构微通道管壁的中空泡沫材料。
在步骤(5)之后还包括功能化修饰工序,即通过电镀法、化学镀法、溶液刻蚀法、阳极氧化法、溶胶-凝胶法、水热反应法、蒸汽相转化法、Langmuir-Blodgett法、物理气相沉积法、化学气相沉积法的一种或两种以上对微通道管壁的外壁表面、内壁面、或管壁本身所含的纳米孔或微米孔进行功能化修饰。
本发明的中空泡沫材料可应用于下述任一领域:膜分离材料、反应分离材料、过滤材料、萃取分离材料、反应萃取分离材料、催化载体材料、微反应器、微换热材料、复合材料增强 体、电极材料、吸声/降噪材料、隔热材料、流体分布材料、反应分馏用材料、反应精馏用材料、分/精馏塔内固定阀等。
本发明具有如下优点及有益效果:
1、本发明所述的中空泡沫材料具有三种类型的孔隙:宏观三维连通网孔、三维连通的中空微通道、微通道管壁内的微米或/和纳米级孔隙。该中空泡沫材料综合利用多类型孔隙与多级尺度孔隙,有利于流经该中空泡沫材料内的流体进行质量传递、动量传递和热量传递。
2、本发明微通道(c)的横断面为近圆状或椭圆状,有利于制得厚度均匀的微通道管壁,且微通道管壁的结构稳定性得到提高。
3、与一般的泡沫材料相比,本发明中空结构的引入有利于制备具有特殊结构的新型功能材料与复合材料。
4、本发明所述的三维连通网络的中空泡沫材料具有较高传质效率与力学性能、耐高温、耐腐蚀、抗氧化等特点。
5、本发明技术工艺简单,无需复杂设备。中空泡沫材料耐高温、抗氧化、耐腐蚀,具有较好的力学性能。
6、本发明所述的中空泡沫材料是一种全新的多孔材料,其具有广泛的应用前景,可应用于如下诸多领域:膜分离材料、反应分离材料、过滤材料、萃取分离材料、反应萃取分离材料、催化载体材料、微反应器、微换热材料、复合材料增强体、电极材料、吸声/降噪材料、隔热材料、流体分布材料、反应分馏用材料、反应精馏用材料、分/精馏塔内固定阀等。
附图说明
图1为本发明所述具有多孔管壁的中空泡沫材料的宏观形貌。
图2为本发明所述具有多孔管壁的中空泡沫材料的局部放大形貌。
图3为本发明所述具有多孔管壁的中空泡沫材料的中空微通道管壁形貌。
图4为本发明所述具有多孔管壁的中空泡沫材料的中空微通道管壁微观形貌。
图5为本发明所述具有致密管壁的中空泡沫材料的宏观形貌。
图6为本发明所述具有致密管壁的中空泡沫材料的局部放大形貌。
图7为本发明所述具有致密管壁的中空泡沫材料的中空微通道管壁形貌。
图8为本发明所述中空泡沫材料的制备工艺流程图。
具体实施方式
如图8所示,在中空泡沫材料的结构设计及其制备工艺的具体实施方式中,本发明以主要成分及造孔剂粉料、高分子材料、溶剂为基本原料配制浆料,以骨架筋经过增粗处理的三维连通牺牲模板泡沫材料作为模板材料,采用“浸渍浆料-去除多余浆料-烘干固化-预处理-高温烧结成型-后处理(选用)”为代表的制备工艺(“浸渍浆料-去除多余浆料-烘干固化”操作即为构建骨架筋微通道管壁生坯层,此操作可以循环进行直至微通道管壁生坯层厚度达到设计值),按照制备中空泡沫材料的具体过程,列举如下几种实施例:
实施例1
本实施例制备工艺为具有多孔结构的微通道管壁的中空泡沫碳化硅材料的制备工艺:
(1)增粗浆料的配制:将聚乙烯醇粉、环氧树脂、固化剂、乙醇经充分球磨混料制成增粗浆料,聚乙烯醇、环氧树脂、固化剂、乙醇的配比为50~500g:大于0至500g:10~100g:1000mL(即浆料中每1000mL溶剂,对应有50~500g聚乙烯醇粉料、大于0至500g环氧树脂和10~100g环氧树脂对应的固化剂)。
(2)微通道管壁生坯层浆料的配制:将碳化硅粉料(平均粒径5μm)、硅粉(平均粒径3.5μm)、酚醛树脂、对甲苯磺酸(固化剂)、乙醇按配比50~500g:50~500g:50~200g:(大于0至0.2)倍酚醛树脂质量:1000mL,经充分球磨混料制成微通道管壁生坯层浆料。
(3)牺牲模板泡沫材料的制备:采用平均网孔尺寸为3mm的具有三维连通网络结构的聚氨酯树脂泡沫材料,对聚氨酯树脂泡沫材料的网络骨架筋进行增粗处理:将聚氨酯树脂泡沫浸入步骤(1)所制备的增粗浆料中,取出后除去泡沫模板材料网孔中多余的浆料后,于80~150℃半固化。根据最终需要制备的中空泡沫材料的中空微通道的内径所需尺寸(0.02mm~9mm)要求,循环进行“浸挂浆料-除多余浆料-半固化”操作若干次直至网络骨架筋的粗细程度达到预先设计值550μm。
(4)泡沫材料预制体制备:即三维连通网络中空微通道的管壁生坯层的构建。将网络骨架筋粗细程度已增粗至预先设计值的三维连通牺牲模板泡沫材料剪裁至所需形状和尺寸,然后将其充分浸入步骤(2)配制的微通道管壁生坯层浆料中,除去模板泡沫材料网孔中多余的浆料后,于80~150℃半固化。根据预先设计的中空微通道管壁厚度的要求,“挂浆料-除多余浆料-半固化”操作可以循环进行若干次,最后将获得的骨架泡沫于200~300℃完全固化,完成微通道管壁生坯层的构建,获得预制体泡沫材料。
(5)牺牲模板泡沫材料的去除:将预制体泡沫材料在高纯氩气(氩气体积分数≥99.999%)或其他惰性气体保护下进行牺牲模板泡沫材料的去除操作,升温速率1~10℃/min,处理温度600~900℃,保温时间10~300min,获得的样品可以选择进行如下操作中的一种或两种以上方法处理:酸溶液清洗、碱溶液清洗、丙酮清洗、无水乙醇清洗、去离子水清洗、空气中焙烧、完全烘干,制得中空泡沫材料成型前驱体。
(6)成型工序:将成型前驱体在高纯氩气保护或真空条件下进行高温烧结,温度900~2500℃,保温时间10min~6h。
(7)后处理(选用):将步骤(6)中获得的样品进行如下操作中的一种或两种以上方法处理:酸溶液清洗、碱溶液清洗、有机溶剂(包括但不限于丙酮、无水乙醇)清洗、去离子水清洗、空气中焙烧、惰性气氛保护下煅烧,制得三维连通网络的中空泡沫材料。此中空泡沫材料主要由碳化硅组成,在宏观上其结构由三维连通的支撑骨架网络构建而成,宏观三维连通开孔的网孔尺寸的平均值为2.5mm。网络骨架自身为三维连通的具有中空结构的微通道,中空微通道内径的平均尺寸为500μm,外径的平均尺寸为900μm。微通道管壁的化学构成主要包含碳化硅,微通道管壁含有纳米级至微米级孔径的孔隙,平均孔径为5μm,孔隙率为50%。
实施例2
本实施例制备工艺为具有致密结构的微通道管壁的中空泡沫碳化硅材料的制备工艺:本实施例与实施例1不同之处在于,步骤(6)所述的成型工序为:将成型前驱体置于真空烧结炉中,在成型前驱体样品上均匀放置平均颗粒尺寸为3mm的硅粉颗粒。抽真空条件下,温度900~2500℃,保温时间10min~6h。所获得的中空泡沫材料,宏观三维连通开孔的网孔尺寸的平均值为0.5mm。支撑骨架自身为三维连通的具有中空结构的微通道,中空微通道内径的平均尺寸为250μm,外径的平均尺寸为550μm。微通道管壁为致密结构,其化学构成主要包含碳化硅和硅。
实施例3
本实施例制备工艺为具有多孔结构的微通道管壁的中空泡沫氧化铝材料的制备工艺:本实施例与实施例1不同之处在于,以聚氨酯代替步骤(1)中的环氧树脂。步骤(2)中,微通道管壁生坯层浆料组成为:氧化铝粉料(平均粒径5μm)、酚醛树脂、对甲苯磺酸(固化剂)、乙醇按配比50~500g:50~200g:(大于0至0.2)倍酚醛树脂质量:1000mL。以平均网孔尺寸为5mm的聚氨酯树脂泡沫材料代替步骤(3)中平均孔径为3mm的聚氨酯树脂泡沫。步骤(3)中支撑骨架的骨架筋粗细程度达到预先设计值600μm。所获得的中空泡沫材料,宏观三维连通开孔的网孔尺寸的平均值为4mm。支撑骨架自身为三维连通的具有中空结构的微通道,中空微通道内径的平均尺寸为550μm,外径的平均尺寸为1000μm。微通道管壁的化学构成主要包含氧化铝,微通道管壁含有纳米级至微米级孔径的孔隙,平均孔径为4μm,孔隙率为70%。
实施例4
本实施例制备工艺为具有致密结构的微通道管壁的中空泡沫氧化铝材料的制备工艺:本实施例与实施例1不同之处在于,以聚氨酯代替步骤(1)中的环氧树脂。步骤(2)中,微通道管壁生坯层浆料组成为:氧化铝粉料(平均粒径5μm)、铝溶胶(a(Al2O3·nH2O)·bHx·cH2O)、水按配比50~500g:50~500g:1000mL。以平均网孔尺寸为5mm的聚氨酯树脂泡沫材料代替步骤(3)中平均孔径为3mm的聚氨酯树脂泡沫。步骤(3)中支撑骨架的骨架筋粗细程度达到预先设计值1100μm。所获得的中空泡沫材料,宏观三维连通开孔的网孔尺寸的平均值为4mm。支撑骨架自身为三维连通的具有中空结构的微通道,中空微通道内径的平均尺寸为1000μm,外径的平均尺寸为1600μm。微通道管壁为致密结构,其化学构成主要包含氧化铝。
实施例5
本实施例制备工艺为具有多孔结构的微通道管壁的中空泡沫塞隆材料的制备工艺:本实施例与实施例1不同之处在于,以聚氨酯代替步骤(1)中的环氧树脂,以平均网孔尺寸为8mm的聚氨酯树脂泡沫材料代替步骤(3)中平均孔径为3mm的聚氨酯树脂泡沫。步骤(2)中,浆料组成为:碳化硅粉料(平均粒径5μm)、硅粉(平均粒径3.5μm)、氧化硅粉(平均粒径1μm)、活性氧化铝粉(平均粒径2μm)、酚醛树脂、对甲苯磺酸(固化剂)、乙醇按配比50~500g:50~500g:50~500g:50~500g:50~200g:(大于0至0.2)倍酚醛树脂质量: 1000mL。步骤(3)中支撑骨架的骨架筋粗细程度达到预先设计值2200μm。步骤(6)中将预处理后的成型前驱体在高纯氮气气氛中进行高温烧结,温度为1200~2500℃,保温10min~6h。所获得的中空泡沫材料,宏观三维连通开孔的网孔尺寸的平均值为5mm。支撑骨架自身为三维连通的具有中空结构的微通道,中空微通道内径的平均尺寸为2000μm,外径的平均尺寸为3000μm。微通道管壁的化学构成主要包含塞隆(Si6-xAlxOxN8-x),且微通道管壁含有纳米级至微米级孔径的孔隙,平均孔径为3μm,孔隙率为30%。
实施例6
本实施例制备工艺为具有非对称多孔结构的微通道管壁的中空泡沫碳化硅材料的制备工艺:本实施例与实施例1不同之处在于,以聚氨酯代替步骤(1)中的环氧树脂,以平均网孔尺寸为5mm的聚氨酯树脂泡沫材料代替步骤(3)中平均孔径为3mm的聚氨酯树脂泡沫。步骤(2)中,配制两种浆料,其中浆料A的组成为:碳化硅粉料(平均粒径5μm)、硅粉(平均粒径3.5μm)、酚醛树脂、对甲苯磺酸(固化剂)、乙醇按配比50~500g:50~500g:50~200g:(大于0至0.2)倍酚醛树脂质量:1000mL。浆料B的组成为:碳化硅粉料(平均粒径0.5μm)、硅粉(平均粒径0.5μm)、酚醛树脂、对甲苯磺酸(固化剂)、乙醇按配比50~500g:50~500g:50~200g:(大于0至0.2)倍酚醛树脂质量:1000mL。步骤(3)中支撑骨架的骨架筋粗细程度达到预先设计值600μm。步骤(4)中微通道管壁生坯层的构建过程中,先利用步骤(2)中浆料A进行“挂浆料-除多余浆料-半固化”操作循环进行若干次;再利用步骤(2)中浆料B进行“挂浆料-除多余浆料-半固化”操作循环进行若干次。所获得的中空泡沫材料,宏观三维连通开孔的网孔尺寸的平均值为4mm。支撑骨架自身为三维连通的具有中空结构的微通道,中空微通道内径的平均尺寸为550μm,外径的平均尺寸为1000μm。微通道管壁的化学构成主要包含碳化硅,且微通道管壁含有不对称的纳米级至微米级孔径的孔隙(即微通道管壁层的孔隙结构为各向异性的),其中靠管壁内壁侧200μm厚度区域平均孔径为4μm,孔隙率50%。靠管壁外壁侧25μm厚度区域平均孔径为1μm,孔隙率为45%。
实施例7
本实施例制备工艺为具有多孔结构的微通道管壁的中空泡沫不锈钢材料的制备工艺,本实施例与实施例1不同之处在于,以聚氨酯代替步骤(1)中的环氧树脂,以平均网孔尺寸为5mm的聚氨酯树脂泡沫材料代替步骤(3)中平均孔径为3mm的聚氨酯树脂泡沫。步骤(2)中,浆料组成为:316L不锈钢粉料(粒径范围10~30μm)、酚醛树脂、聚乙烯醇缩丁醛、固化剂、乙醇按配比50~500g:50~200g:50~200g:(大于0至0.2)倍酚醛树脂质量:1000mL。步骤(3)中支撑骨架筋粗细程度达到预先设计值600μm。所获得的中空泡沫材料,宏观三维连通开孔的网孔尺寸的平均值为4mm。支撑骨架自身为三维连通的具有中空结构的微通道,中空微通道内径的平均尺寸为550μm,外径的平均尺寸为1000μm。微通道管壁的化学构成主要包含316L不锈钢,微通道管壁含有纳米级至微米级孔径的孔隙,平均孔径为5μm,孔隙率为50%。
实施例8
本实施例制备工艺为具有多孔结构的微通道管壁的中空泡沫铜材料的制备工艺:本实施例与实施例1不同之处在于,以聚氨酯代替步骤(1)中的环氧树脂,以平均网孔尺寸为6mm的聚氨酯树脂泡沫材料代替步骤(3)中平均孔径为3mm的聚氨酯树脂泡沫。步骤(2)中,浆料组成为:氧化铜粉料(粒径范围10~30μm)、铜粉料(粒径范围10~30μm)、酚醛树脂、聚乙烯醇缩丁醛、固化剂、乙醇按配比50~500g:50~500g:50~200g:50~200g:(大于0至0.2)倍酚醛树脂质量:1000mL。步骤(3)中支撑骨架筋粗细程度达到预先设计值600μm。所获得的中空泡沫材料,宏观三维连通开孔的网孔尺寸的平均值为5mm。支撑骨架自身为三维连通的具有中空结构的微通道,中空微通道内径的平均尺寸为550μm,外径的平均尺寸为1000μm。微通道管壁的化学构成主要包含铜,微通道管壁含有纳米级至微米级孔径的孔隙,平均孔径为3μm,孔隙率为40%。
实施例9
本实施例制备工艺为具有致密结构的微通道管壁的中空泡沫铜材料的制备工艺,具体为如下主要步骤:
(1)增粗浆料的配制:将聚乙烯醇粉、环氧树脂、固化剂、乙醇经充分球磨混料制成增粗浆料,聚乙烯醇、环氧树脂、固化剂、乙醇的配比为50~500g:大于0至500g:10~100g:1000mL(即浆料中每1000mL溶剂,对应有50~500g聚乙烯醇粉料、大于0至500g环氧树脂和10~100g环氧树脂对应的固化剂)。
(2)微通道管壁生坯层镀液的配制:按照主盐(硫酸铜、氯化铜、碱式碳酸铜、酒石酸铜、醋酸铜)10~100g/L;络合剂(酒石酸钾钠、柠檬酸钠、葡萄糖酸钠、三乙醇胺、四羟丙基乙二胺、甘油、甘醇酸或EDTA二钠盐)10~100g/L;还原剂(甲醛、肼、硼氢化物、二甲氨基硼烷、次亚磷酸钠)10~100g/L;添加剂(稳定剂、促进剂、整平剂或光亮剂)10~50g/L;pH调节剂(氢氧化钠、碳酸钠)10~50g/L配制化学镀铜水溶液。
(3)牺牲模板泡沫材料的制备:采用平均网孔尺寸为3mm的具有三维连通网络结构的聚氨酯树脂泡沫材料,对聚氨酯树脂泡沫材料的网络骨架筋进行增粗处理:将聚氨酯树脂泡沫浸入步骤(1)所制备的增粗浆料中,取出后除去泡沫模板材料网孔中多余的浆料后,于80~150℃半固化。根据最终需要制备的中空泡沫材料的中空微通道的内径所需尺寸(0.02mm~9mm)要求,循环进行“浸挂浆料-除多余浆料-半固化”操作若干次直至网络骨架筋的粗细程度达到预先设计值550μm。
(4)泡沫材料预制体制备:即三维连通网络中空微通道的管壁生坯层的构建。将网络骨架筋粗细程度已增粗至预先设计值的三维连通牺牲模板泡沫材料剪裁至所需形状和尺寸的样品,将其充分浸入30~50g/L的氯化亚锡溶液中处理3~5min,然后将样品放入0.5~1g/L的氯化钯溶液中处理1~2min。取出后除去三维连通开孔内的多余溶液,放入步骤(2)配制的微通道管壁生坯层镀液中,维持pH值为11~13,温度为20~100℃进行化学镀铜操作。根据预先设计的中空微通道管壁厚度的要求确定化学镀铜操作时间1~10h,最后将样品取出、清洗后干燥,完成微通道管壁生坯层的构建,获得预制体泡沫材料。
(5)牺牲模板泡沫材料的去除:将预制体泡沫材料在高纯氩气(氩气体积分数≥99.999%)或其他惰性气体保护下进行牺牲模板泡沫材料的去除操作,升温速率1~10℃/min,处理温度650℃,保温时间10~300min,获得的样品可以选择进行如下操作中的一种或两种以上方法处理:酸溶液清洗、碱溶液清洗、丙酮清洗、无水乙醇清洗、去离子水清洗、空气中焙烧、完全烘干,制得中空泡沫材料成型前驱体。
(6)成型工序:将成型前驱体在高纯氩气保护或真空条件下进行高温烧结,温度800~1050℃,升温速率0.5~2℃/min,保温时间10min~6h。
(7)后处理(选用):将步骤(6)中获得的样品进行如下操作中的一种或两种以上方法处理:酸溶液清洗、碱溶液清洗、有机溶剂(包括但不限于丙酮、无水乙醇)清洗、去离子水清洗、空气中焙烧、惰性气氛保护下煅烧,制得三维连通网络的中空泡沫材料。所获得的中空泡沫材料,在宏观上其结构由三维连通的支撑骨架网络构建而成,宏观三维连通开孔的网孔尺寸的平均值为2.5mm。支撑骨架自身为三维连通的具有中空结构的微通道,中空微通道内径的平均尺寸为500μm,外径的平均尺寸为900μm。微通道管壁为致密结构,其化学构成主要包含铜。
实施例10
本实施例制备工艺为具有多孔管壁结构的微通道管壁的中空泡沫材料的制备工艺,具体为如下主要步骤:
(1)增粗浆料的配制:将活性氧化镁粉、聚氨酯、固化剂、乙醇经充分球磨混料制成增粗浆料,活性氧化镁粉、聚氨酯、固化剂、乙醇的配比为50~500g:大于0至500g:10~100g:1000mL(即浆料中每1000mL乙醇,对应有50~500g活性氧化镁粉、大于0至500g聚氨酯和10~100g环氧树脂对应的固化剂)。
(2)微通道管壁生坯层浆料的配制:将聚四氟乙烯粉料(平均粒径10μm)、聚四氟乙烯乳液(固含量60wt%)、水性聚氨酯按配比50~500g:1000g:50~500g,经充分球磨混料制成微通道管壁生坯层浆料。
(3)牺牲模板泡沫材料的制备:采用平均网孔尺寸为5mm的具有三维连通网络结构的聚氨酯树脂泡沫材料,对聚氨酯树脂泡沫材料的网络骨架筋进行增粗处理:将聚氨酯树脂泡沫浸入步骤(1)所制备的增粗浆料中,取出后除去泡沫模板材料网孔中多余的浆料后,于80~150℃半固化。根据最终需要制备的中空泡沫材料的中空微通道的内径所需尺寸(0.02mm~9mm)要求,循环进行“浸挂浆料-除多余浆料-半固化”操作若干次直至网络骨架筋的粗细程度达到预先设计值450μm。
(4)泡沫材料预制体制备:即三维连通网络中空微通道的管壁生坯层的构建。将网络骨架筋粗细程度已增粗至预先设计值的三维连通牺牲模板泡沫材料剪裁至所需形状和尺寸,然后将其充分浸入步骤(2)配制的微通道管壁生坯层浆料中,除去模板泡沫材料网孔中多余的浆料后,于80~100℃半固化。根据预先设计的中空微通道管壁厚度的要求,“挂浆料-除多余浆料-半固化”操作可以循环进行若干次,最后将获得的骨架泡沫于100~120℃完全固化, 完成微通道管壁生坯层的构建,获得预制体泡沫材料。
(5)牺牲模板泡沫材料的去除:将预制体泡沫材料在酸溶液清洗,然后去离子水清洗,完全烘干后制得中空泡沫材料成型前驱体。
(6)成型工序:将成型前驱体在高纯氩气保护下进行成型操作,温度120~300℃,保温时间10min~6h。
(7)后处理(选用):将步骤(6)中获得的样品进行如下操作中的一种或两种以上方法处理:酸溶液清洗、碱溶液清洗、有机溶剂(包括但不限于丙酮、无水乙醇)清洗、去离子水清洗、空气中焙烧、惰性气氛保护下煅烧,制得三维连通网络的中空泡沫材料。所获得的中空泡沫材料,在宏观上其结构由三维连通的支撑骨架网络构建而成,宏观三维连通开孔的网孔尺寸的平均值为4mm。支撑骨架自身为三维连通的具有中空结构的微通道,中空微通道内径的平均尺寸为400μm,外径的平均尺寸为900μm。微通道管壁的化学构成主要包含聚四氟乙烯,微通道管壁为多孔管壁结构,含有纳米级至微米级孔径的孔隙,平均孔径为5μm,孔隙率为50%。
实施例11
本实施例制备工艺为具有多孔结构的微通道管壁的中空泡沫聚乙烯材料的制备工艺,具体为如下主要步骤:本实施例与实施例10不同之处在于,步骤(2)中微通道管壁生坯层浆料的配制:将聚乙烯粉料(平均粒径10μm)、聚乙烯乳液(固含量40%)、水性聚氨酯按配比50~500g:1000g:50~500g,经充分球磨混料制成微通道管壁生坯层浆料。以平均网孔尺寸为8mm的聚氨酯树脂泡沫材料代替步骤(3)中平均孔径为5mm的聚氨酯树脂泡沫。步骤(3)中支撑骨架的骨架筋粗细程度达到预先设计值600μm。步骤(4)中半固化温度为50℃,最终固化温度为60℃。步骤(6)中,成型温度为70~220℃,保温时间5min~3h。所获得的中空泡沫材料,宏观三维连通开孔的网孔尺寸的平均值为6.5mm。支撑骨架自身为三维连通的具有中空结构的微通道,中空微通道内径的平均尺寸为550μm,外径的平均尺寸为1000μm。微通道管壁为致密结构,其化学构成主要包含聚乙烯。
实施例12
本实施例制备工艺为具有多孔结构的微通道管壁的中空泡沫碳材料的制备工艺:本实施例与实施例1不同之处在于,以聚氨酯代替步骤(1)中的环氧树脂。步骤(2)中,微通道管壁生坯层浆料组成为:活性碳粉料(平均粒径5μm)、酚醛树脂、对甲苯磺酸(固化剂)、乙醇按配比50~500g:50~200g:(大于0至0.2)倍酚醛树脂质量:1000mL,经充分球磨混料制成微通道管壁生坯层浆料。以平均网孔尺寸为5mm的聚氨酯树脂泡沫材料代替步骤(3)中平均孔径为3mm的聚氨酯树脂泡沫。步骤(3)中支撑骨架的骨架筋粗细程度达到预先设计值1100μm。所获得的中空泡沫材料,宏观三维连通开孔的网孔尺寸的平均值为4mm。支撑骨架自身为三维连通的具有中空结构的微通道,中空微通道内径的平均尺寸为1000μm,外径的平均尺寸为1600μm。微通道管壁的化学构成主要包含活性炭和无定性碳,微通道管壁为多孔管壁结构,含有亚纳米级至微米级孔径的孔隙,平均孔径为1μm,孔隙率 为60%。
实施例13
本实施例制备工艺为具有致密结构的微通道管壁的中空泡沫石墨材料的制备工艺:本实施例与实施例1不同之处在于,以聚氨酯代替步骤(1)中的环氧树脂。步骤(2)中,微通道管壁生坯层浆料组成为:活性碳粉料(平均粒径5μm)、酚醛树脂、对甲苯磺酸(固化剂)、乙醇按配比50~500g:50~200g:(大于0至0.2)倍酚醛树脂质量:1000mL,经充分球磨混料制成微通道管壁生坯层浆料。以平均网孔尺寸为5mm的聚氨酯树脂泡沫材料代替步骤(3)中平均孔径为3mm的聚氨酯树脂泡沫。步骤(3)中支撑骨架的骨架筋粗细程度达到预先设计值800μm。步骤(7)中的后处理工序为:对步骤(6)中制备的样品在惰性气氛下进行高温石墨化处理,温度600℃~3000℃。所获得的中空泡沫材料,宏观三维连通开孔的网孔尺寸的平均值为4mm。支撑骨架自身为三维连通的具有中空结构的微通道,中空微通道内径的平均尺寸为600μm,外径的平均尺寸为1200μm。微通道管壁为致密管壁结构,其化学构成主要包含石墨。
实施例14
本实施例制备工艺为具有致密结构的微通道管壁的中空泡沫铝/碳化硅复合材料的制备工艺:本实施例与实施例1不同之处在于,以聚氨酯代替步骤(1)中的环氧树脂。以平均网孔尺寸为5mm的聚氨酯树脂泡沫材料代替步骤(3)中平均孔径为3mm的聚氨酯树脂泡沫。步骤(3)中支撑骨架的骨架筋粗细程度达到预先设计值1000μm。步骤(7)的后处理工序中,对步骤(6)中制备的具有多孔结构的微通道管壁的中空泡沫碳化硅材料,针对其微通道管壁区域进行局部高温液相渗铝操作,渗铝温度为600℃~1000℃,时间1min~3h。所获得的中空泡沫材料,宏观三维连通开孔的网孔尺寸的平均值为4mm。支撑骨架自身为三维连通的具有中空结构的微通道,中空微通道内径的平均尺寸为800μm,外径的平均尺寸为1600μm。微通道管壁为致密结构,其化学构成主要包含碳化硅和铝。
如图1所示,从具有多孔管壁的中空泡沫材料的宏观形貌可以看出,该中空泡沫材料具有典型的泡沫多孔结构,拥有三维连通的宏观开孔网络孔隙。
如图2所示,从具有多孔管壁的中空泡沫材料的局部放大形貌可以看出,由支撑骨架(a)三维连通以形成开孔(b)网络结构。其中,支撑骨架(a)本身具有尺寸可控的、中空的微通道(c),该微通道(c)的横断面为近圆状或椭圆状。
如图3所示,从具有多孔管壁的中空泡沫材料的中空微通道管壁形貌可以看出,该微通道管壁为多孔结构。
如图4所示,从具有多孔管壁的中空泡沫材料的中空微通道管壁微观形貌可以看出,管壁本体为微米级颗粒构成,颗粒之间具有孔隙结构。
如图5所示,从具有致密管壁的中空泡沫材料的宏观形貌可以看出,该中空泡沫材料具有典型的泡沫多孔结构,拥有三维连通的宏观开孔网络孔隙。
如图6所示,从具有致密管壁的中空泡沫材料的局部放大形貌可以看出,支撑骨架自身 为中空微通道。
如图7所示,从具有致密管壁的中空泡沫材料的中空微通道管壁形貌可以看出,中空微通道管壁自身为致密结构。
具体实施方式表明,本发明所述的三维连通网络的中空泡沫材料,宏观结构为三维连通的支撑骨架,支撑骨架自身为三维连通的具有中空结构的微通道,微通道管壁内含有纳米级或/和微米级孔径的孔隙。采用具有三维连通网络结构的高分子树脂泡沫材料作为初始模板材料,进行增粗处理后制得骨架筋粗细达设定值的牺牲模板泡沫材料。将牺牲模板泡沫材料剪裁后的模板材料浸入由主成分粉料、高分子树脂、溶剂经球磨充分均匀混合制成的微通道管壁生坯层浆料中,取出后除去模板内网孔中的多余浆料,烘干,循环若干次“浸渍-除浆料-烘干”操作。然后高温固化后于保护气氛下热解预处理,得到与原始泡沫形状类似的三维连通网络的泡沫结构成型前驱体。经成型工序、后处理工序,制得中空泡沫材料。该技术工艺简单,无需复杂设备。所制备的中空泡沫材料为新型泡沫多孔材料,创新点在于其同时具有三种类型的孔隙:宏观三维连通的开孔网络、三维连通的中空微通道、微通道管壁内的纳米级或/和微米级孔隙。该中空泡沫材料耐高温、抗氧化、耐腐蚀,具有较好的力学性能。

Claims (20)

  1. 一种三维连通的中空泡沫材料,其特征在于,该中空泡沫材料在宏观上由支撑骨架(a)三维连通以形成开孔(b)网络结构,其中,支撑骨架(a)本身具有尺寸可控的、中空的微通道(c),该微通道(c)的横断面为近圆状或椭圆状。
  2. 根据权利要求1所述的中空泡沫材料,其特征在于,所述中空的微通道(c)的管壁为多孔结构管壁或致密结构管壁。
  3. 根据前述任一权利要求所述的中空泡沫材料,其特征在于,所述多孔结构管壁本体含有纳米级和/或微米级孔径的孔隙。
  4. 根据前述任一权利要求所述的中空泡沫材料,其特征在于,所述管壁本体的材质可为均质或非均质。
  5. 根据前述任一权利要求所述的中空泡沫材料,其特征在于,所述管壁本体的物理结构或化学结构可为各向同性的或各向异性的。
  6. 根据前述任一权利要求所述的中空泡沫材料,其特征在于,所述开孔(b)的网孔尺寸d1为0.2mm~20mm。
  7. 根据前述任一权利要求所述的中空泡沫材料,其特征在于,所述中空的微通道(c)的外径尺寸d2为0.1mm~10mm,内径尺寸d3为0.02mm~9mm。
  8. 根据前述任一权利要求所述的中空泡沫材料,其特征在于,所述多孔管壁含有的孔隙的孔径尺寸范围为0.1nm~100μm,管壁的孔隙率p为0<p≤70%。
  9. 根据前述任一权利要求所述的中空泡沫材料,其特征在于,所述中空泡沫材料的材质选自以下的一种或两种以上:金属、陶瓷、高分子、碳材料。
  10. 根据权利要求9所述的中空泡沫材料,其特征在于,所述金属材质选自包含Li、Na、K、Al、Ca、Sr、Mg、Ni、Fe、Cu、V、Cr、Mo、W、Mn、Co、Zn、Y、Zr、Nb、Ag、Pd、Ru、Rh、Au、Pt、Ta、镧系金属、锕系金属的金属单质、包含上述元素的合金、金属固溶体或金属间化合物中的一种或两种以上;
    所述陶瓷材质选自以下的一种或两种以上:(1)氧化物及复合氧化物:Al2O3、SiO2、ZrO2、MgO、CaO、BeO、SrO、NiO、CuO、TiO2、V2O5、Fe3O、RuO2、WO3、ZnO、SnO2、CdO、Nb2O5、PbO、Pb3O4、Bi2O3、MoO3、Cr2O3、Y2O3、MnO、MnO2、Mn2O3、Mn3O4、CoO、Co3O4、Co2O3、镧系氧化物、锕系氧化物、莫来石3Al2O3·2SiO2、铝镁尖晶石MgO·3Al2O3、镁铬尖晶石MgO·Cr2O3、锆英石ZrO2·SiO2、正硅酸钙2CaO·SiO2、镁橄榄石2MgO·SiO2、钙钛矿型复合氧化物,钙钛矿型复合氧化物为CaTiO3或掺杂的CaTiO3、BaTiO3或掺杂的BaTiO3、LiNbO3或掺杂的LiNbO3、SrZrO3或掺杂的SrZrO3、LaMnO3或掺杂的LaMnO3、掺杂的SrCoyFe1-yO3-δ,0<y<1,0<δ<3、A位替代的LaxA1-xCoyFe1-yO3-δ,其中A=Sr、Ba、Ca,0<x<1,0<y<1,0<δ<3;(2)碳化物:碳化硅、碳化锆、碳化钨、碳化钛、碳化硼、碳化钽、碳化钒、碳化铬、碳化铌、碳化钼、碳化铁、碳化锰;(3)氮化物:α-Si3N4、β-Si3N4、AlN、Si6-xAlxOxN8-x、BN;(4)Si;
    所述高分子材质选自以下的一种或两种以上:(1)聚烯烃类:聚四氟乙烯、聚偏氟乙烯、聚乙烯、聚丙烯、聚丙乙烯、聚氯乙烯、聚苯乙烯、聚丙烯腈;(2)聚酰胺类:聚己内酰胺PA6、聚癸二酰己二胺PA610、聚十一内酰胺PA11、聚十二烷二酰己二胺PA612、聚癸二酰癸二胺PA1010;(3)聚酯类:聚氨酯、聚甲基丙烯酸甲酯、聚异三聚氰酸酯、聚碳酸酯、聚对苯二甲酸二丁酯、聚对苯二甲酸乙二醇酯;(4)聚醚类:聚苯醚、聚苯硫醚;
    所述碳材料材选自以下的一种或两种以上:石墨、无定型碳、石墨烯、金刚石、活性炭、有序介孔碳、无序介孔碳、碳纤维、碳纳米管、碳微米管。
  11. 如权利要求1~10任一项所述的中空泡沫材料的制备方法,其特征在于,该制备方法包括如下步骤:
    (1)牺牲模板泡沫材料的制备工序:首先,采用具有三维连通网络结构的高分子树脂泡沫材料作为初始模板材料,所述高分子树脂泡沫材料为环氧树脂、酚醛树脂、呋喃树脂、聚氨酯、聚酯、聚醚中的一种或两种以上;其次,对所述高分子树脂泡沫材料的网络骨架筋进行增粗处理,直至骨架筋粗细程度达到中空微通道的内径所需尺寸0.02mm~9mm,由此制得牺牲模板泡沫材料;
    (2)泡沫材料预制体制备工序:该工序选自以下的一种或两种以上的组合:(a)配制微通道管壁生坯层浆料,将步骤(1)中所得牺牲模板泡沫材料充分浸入至该生坯层浆料中,随后取出,除去多余的浆料后于80~150℃进行半固化;循环进行上述“浸渍浆料-去除多余浆料-半固化”操作直至微通道管壁生坯层的厚度达到预先设计值,最后将样品于100~300℃完全固化,制得泡沫材料预制体;(b)采用电镀法,在牺牲模板泡沫材料的骨架筋表面构建微通道管壁生坯层,由此制得泡沫材料预制体;(c)采用化学镀法,在牺牲模板泡沫材料的骨架筋表面构建微通道管壁生坯层,由此制得泡沫材料预制体;(d)采用溶液刻蚀法,对微通道管壁生坯层进行刻蚀处理,构建具有特定几何结构或者特定化学物质分布的微通道管壁生坯层,由此制得泡沫材料预制体;(e)采用水热反应法生长出的特定晶体,构建微通道管壁生坯层,由此制得泡沫材料预制体;(f)采用阳极氧化法,对微通道管壁生坯层进行阳极氧化处理,构建具有特定几何结构或者特定化学物质分布的微通道管壁生坯层,由此制得泡沫材料预制体;(g)采用溶胶-凝胶法,构建微通道管壁生坯层,由此制得泡沫材料预制体;(h)采用Langmuir-Blodgett法,构建具有Langmuir-Blodgett膜特征的薄膜层生坯层,由此制得泡沫材料预制体;(i)采用物理气相沉积法,构建微通道管壁生坯层,由此制得泡沫材料预制体;(j)采用化学气相沉积法,构建微通道管壁生坯层,由此制得泡沫材料预制体;
    (3)牺牲模板泡沫材料的去除工序:将步骤(2)中制得的泡沫材料预制体在惰性气体保护下进行热解,升温速率1~10℃/min,热解温度600~900℃,保温时间10~300min,获得的样品按如下操作中的一种或两种以上进行处理:酸溶液清洗、碱溶液清洗、丙酮清洗、无水乙醇清洗、去离子水清洗、空气中焙烧;制得中空泡沫材料成型前驱体;
    (4)成型工序:该工序选自以下的一种或两种以上的组合:(a)将步骤(3)所得的的泡沫材料成型前驱体在保护气氛下进行高温烧结,温度900~2500℃,保温时间10min~6h; 所述保护气氛选自高纯氩气保护、高纯氢气保护、高纯氮气保护、高纯氢氩混合气保护、真空条件中的一种或两种以上;(b)采用电镀法进行成型操作;(c)采用化学镀法进行成型操作;(d)采用溶液刻蚀法进行成型操作;(e)采用水热反应法进行成型操作;(f)采用阳极氧化法进行成型操作;(g)采用溶胶-凝胶法进行成型操作;(h)采用Langmuir-Blodgett法进行成型操作;(i)采用物理气相沉积法进行成型操作;(j)采用化学气相沉积法进行成型操作;(k)采用对样品施加电压进行通电加热完成成型操作;
    (5)后处理工序:将步骤(4)中获得的成型后样品进行如下操作中的一种或两种以上:酸溶液清洗、碱溶液清洗、丙酮清洗、无水乙醇清洗、去离子水清洗、空气中焙烧,由此制得三维连通的中空泡沫材料。
  12. 根据权利要求11所述的中空泡沫材料的制备方法,其特征在于,步骤(1)中的增粗处理选自以下的一种或两种以上:电镀法增粗、化学镀法增粗、溶胶-凝胶法。
  13. 按照权利要求11所述的中空泡沫材料的制备方法,其特征在于,步骤(1)中的增粗处理按如下步骤进行:按主成分:溶剂=100:(50~200)的质量比例配制增粗浆料,将初始模板材料浸入至增粗浆料中,循环进行浸渍-去除多余浆料-半固化操作直至骨架筋粗细程度达到中空微通道的内径所需尺寸0.02mm~9mm;其中,增粗浆料的主成分选自以下物质中的一种或两种以上:聚氨酯、酚醛树脂、环氧树脂、呋喃树脂、聚乙烯醇、聚乙烯醇缩丁醛、异氰酸酯、改性异氰酸酯、羧甲基纤维素、醋酸纤维素、淀粉、氧化铝、氧化镁、氧化硅、氧化钙、三氧化二铁、四氧化三铁、氧化钴、氧化锰、氧化铜、氧化锌、氧化锡、氧化镍、石墨、无定型碳、石墨烯、金刚石、活性炭、有序介孔碳、无序介孔碳、碳纤维、碳纳米管、碳微米管、尿素、钾盐、钠盐、钙盐、镁盐、铝盐、亚铁盐、铁盐、铜盐、锰盐、镍盐、锌盐、铵盐、酒石酸盐、亚硫酸氢盐、亚硫酸盐、硫代硫酸盐、卤化物盐、磺化物盐、水杨酸盐、苯甲酸盐、醋酸盐、磷酸盐、碳酸盐、碳酸氢盐、乳酸盐、硫酸盐、硝酸盐、Li、Na、K、Al、Ca、Sr、Mg、Ni、Fe、Cu、V、Cr、Mo、W、Mn、Co、Zn、Y、Zr、Nb、Ag、Pd、Ru、Rh、Au、Pt、Ta、镧系金属、锕系金属的金属单质、包含上述元素的合金、金属固溶体或金属间化合物;溶剂选自以下的一种或两种以上:水、乙醇、丙酮、乙二醇、环己烷、正己烷、甲苯、二甲苯、四氢呋喃。
  14. 按照权利要求11~13任一权利要求所述的制备方法,其特征在于,步骤(2)中,所述微通道管壁生坯层浆料由主成分粉料、粘结剂、固化剂、溶剂按50~500g:50~200g:(大于0至0.2)倍粘结剂质量:1000mL的配比、经充分球磨混料制成;
    其中,主成分粉料选自金属、陶瓷、高分子或碳材料的一种或两种以上;
    所述金属材质选自包含Li、Na、K、Al、Ca、Sr、Mg、Ni、Fe、Cu、V、Cr、Mo、W、Mn、Co、Zn、Y、Zr、Nb、Ag、Pd、Ru、Rh、Au、Pt、Ta、镧系金属、锕系金属的金属单质、包含上述元素的合金、金属固溶体或金属间化合物中的一种或两种以上;
    所述陶瓷材质选自以下的一种或两种以上:(1)氧化物及复合氧化物:Al2O3、SiO2、ZrO2、MgO、CaO、BeO、SrO、NiO、CuO、TiO2、V2O5、Fe3O、RuO2、WO3、ZnO、SnO2、CdO、 Nb2O5、PbO、Pb3O4、Bi2O3、MoO3、Cr2O3、Y2O3、MnO、MnO2、Mn2O3、Mn3O4、CoO、Co3O4、Co2O3、镧系氧化物、锕系氧化物;莫来石(3Al2O3·2SiO2)、铝镁尖晶石(MgO·3Al2O3)、镁铬尖晶石(MgO·Cr2O3)、锆英石(ZrO2·SiO2)、正硅酸钙(2CaO·SiO2)、镁橄榄石(2MgO·SiO2)、钙钛矿型复合氧化物(CaTiO3或掺杂的CaTiO3、BaTiO3或掺杂的BaTiO3、LiNbO3或掺杂的LiNbO3、SrZrO3或掺杂的SrZrO3、LaMnO3或掺杂的LaMnO3、掺杂的SrCoyFe1-yO3-δ,0<y<1,0<δ<3、A位替代的LaxA1-xCoyFe1-yO3-δ,其中A=Sr、Ba、Ca,0<x<1,0<y<1,0<δ<3);(2)碳化物:碳化硅、碳化锆、碳化钨、碳化钛、碳化硼、碳化钽、碳化钒、碳化铬、碳化铌、碳化钼、碳化铁、碳化锰;(3)氮化物:α-Si3N4、β-Si3N4、AlN、Si6-xAlxOxN8-x、BN;(4)Si;
    所述高分子材质选自以下的一种或两种以上:(1)聚烯烃类:聚四氟乙烯、聚偏氟乙烯、聚乙烯、聚丙烯、聚丙乙烯、聚氯乙烯、聚苯乙烯、聚丙烯腈;(2)聚酰胺类:聚己内酰胺(PA6)、聚癸二酰己二胺(PA610)、聚十一内酰胺(PA11)、聚十二烷二酰己二胺(PA612)、聚癸二酰癸二胺(PA1010);(3)聚酯类:聚氨酯、聚甲基丙烯酸甲酯、聚异三聚氰酸酯、聚碳酸酯、聚对苯二甲酸二丁酯、聚对苯二甲酸乙二醇酯(4)聚醚类:聚苯醚、聚苯硫醚;
    所述碳材料材选自以下的一种或两种以上:石墨、无定型碳、石墨烯、金刚石、活性炭、有序介孔碳、无序介孔碳、碳纤维、碳纳米管、碳微米管;
    粘结剂为聚乙烯醇、聚乙烯醇缩丁醛、羧甲基纤维素、壳聚糖、海藻酸、海藻酸钠、环氧树脂、酚醛树脂、呋喃树脂、聚氨酯、聚碳硅烷、聚硼氮烷、聚硼硅氧烷、聚硼硅氮烷、聚锆硼硅氮烷的一种或两种以上;
    固化剂为甲醛、戊二醛、对苯二亚甲基醛、水溶性胺-甲醛缩合物、二甲基脲、三甲基三聚氰胺、二甲基乙基脲、硫酸钠、硫酸锌、硼酸、硼砂、硅烷类交联剂、重铬酸盐、硝酸铬、铬的络合物、铜氨氢氧化物、尿素、蜜胺、苯酚、聚异氰酸酯、草酸二乙酯、草酸二甲酯、丙二醇、有机钛、环氧氯丙烷、氯乙醇、四硼酸钠、N-羟甲基丙烯酰胺、N,N’-亚甲基双丙烯酰胺、β-环糊精、异丙基丙烯酰胺、丙烯酰胺、丙烯酸、甲基丙烯酸甲酯、香草醛、京尼平、乙二醛、聚(N-乙烯乙二醇)-乙醛、聚丙烯腈、琥珀酸及其衍生物、氨基乙酸、赖氨酸、二异氰酰基己烷、偏苯三甲酸酐、溴癸烷、对叠氮基苯甲酸、肝磷脂、乙二醇二缩水甘油醚、氯甲代氧丙环、乙酸、柠檬酸、甲酸、羟基乙酸、乳酸、羟基丁二酸、丙酸、脂肪酸、柠檬酸钠、氯化钙、聚乙二醇、脂肪二胺类物质、多胺类物质、芳香族多胺类物质、双氰双胺类物质、咪唑类物质、改性胺类物质、三氟化硼及络合物、低分子聚酰胺、六亚甲基四胺、苯磺酰氯、对甲苯磺酰氯、硫酸乙酯、石油磺酸、对甲苯磺酸、对甲苯磺酸钠、多聚甲醛、氢氧化钠、乙酸甘油酯、碳酸丙烯酯、羟甲基脲、硫酸、盐酸、磷酸、草酸、已二酸、苯磺酸、苯酐、马来酸酐、3,3′-二氯-4,4′-二氨基二苯基甲烷、二乙烯基苯中的一种或两种以上;
    溶剂为水、乙醇、丙酮、乙二醇、甲苯、二甲苯中的一种或两种以上。
  15. 按照权利要求11~14任一权利要求所述的制备方法,其特征在于,步骤(2)所述 的微通道管壁生坯层浆料内还含有造孔剂以调控微通道管壁的孔隙结构。
  16. 按照权利要求15所述的制备方法,其特征在于,所述调控步骤优选为:(1)造孔剂选自金属造孔剂、氧化物造孔剂、高分子造孔剂、无机盐造孔剂、碳材料造孔剂的一种或两种以上,造孔剂的颗粒大小为1nm~100μm,造孔剂是加入量为微通道管壁生坯层浆料总质量的0.001%~20%;(2)分阶段、依次采用含有同种或不同种造孔剂的微通道管壁生坯层浆料进行“浸渍浆料-去除多余浆料-半固化”循环操作,形成具有均质或非均质微通道管壁生坯层的泡沫材料预制体。
  17. 按照权利要求11~16任一权利要求所述的制备方法,其特征在于,步骤(2)所述的微通道管壁生坯层的结构可为部分有孔隙结构、均匀孔隙结构或完全无孔隙结构。
  18. 按照权利要求17所述的中空泡沫材料及其制备方法,其特征在于,所述孔隙通过步骤(3)、(4)、(5)中任一步或两步以上组合的操作将孔隙去除,进而制备出具有致密结构微通道管壁的中空泡沫材料。
  19. 按照权利要求11~18任一权利要求所述的中空泡沫材料的制备方法,其特征在于,在步骤(5)之后还包括功能化修饰工序,即通过电镀法、化学镀法、溶液刻蚀法、阳极氧化法、溶胶-凝胶法、水热反应法、蒸汽相转化法、Langmuir-Blodgett法、物理气相沉积法、化学气相沉积法的一种或两种以上对微通道管壁的外壁表面、内壁面、或管壁本身所含的纳米孔或微米孔进行功能化修饰。
  20. 按照前述任一权利1~10要求所述的中空泡沫材料或任一权利要求11~19的制备方法所得的中空泡沫材料的应用,其特征在于,该中空泡沫材料用于下述任一领域:膜分离材料、反应分离材料、过滤材料、萃取分离材料、反应萃取分离材料、催化载体材料、微反应器、微换热材料、复合材料增强体、电极材料、吸声/降噪材料、隔热材料、流体分布材料、反应分馏用材料、反应精馏用材料、分/精馏塔内固定阀。
PCT/CN2017/109865 2016-11-09 2017-11-08 一种中空泡沫材料及其制备方法和应用 WO2018086522A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611001541.1 2016-11-09
CN201611001541.1A CN108069725B (zh) 2016-11-09 2016-11-09 一种中空泡沫材料及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2018086522A1 true WO2018086522A1 (zh) 2018-05-17

Family

ID=62109353

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/109865 WO2018086522A1 (zh) 2016-11-09 2017-11-08 一种中空泡沫材料及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN108069725B (zh)
WO (1) WO2018086522A1 (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110319719A (zh) * 2019-06-28 2019-10-11 河海大学常州校区 一种抗积垢管式换热器
CN110526239A (zh) * 2019-09-20 2019-12-03 黄淮学院 一种石墨烯微孔泡沫及其制备方法和应用
CN110526742A (zh) * 2019-09-04 2019-12-03 鞍钢股份有限公司 一种提高lf石墨电极使用寿命的浸渍液
US10759697B1 (en) 2019-06-11 2020-09-01 MSB Global, Inc. Curable formulations for structural and non-structural applications
CN112480516A (zh) * 2020-12-02 2021-03-12 上海朗亿功能材料有限公司 一种透明防雾树脂、塑料制品及其制备方法
CN112608136A (zh) * 2020-12-19 2021-04-06 西北工业大学 一种高气孔率陶瓷型芯的光固化3d打印制造方法
CN112661190A (zh) * 2021-02-07 2021-04-16 中国科学院兰州化学物理研究所 一种四氧化三锰纳米颗粒的制备及应用
CN112745135A (zh) * 2021-01-08 2021-05-04 武汉科技大学 一种氧化镁-碳化硅-碳多孔陶瓷过滤器及其制备方法
CN113912924A (zh) * 2021-11-05 2022-01-11 杭州老板电器股份有限公司 复合降噪材料及其制备方法、设备壳体和设备
CN114085515A (zh) * 2021-10-28 2022-02-25 安能(广州)科学技术有限公司 一种含有纳米无机莫来石氧化铝中空微珠的耐热、阻燃、耐磨轮胎
WO2024000684A1 (zh) * 2022-06-30 2024-01-04 瑞声科技(南京)有限公司 一种泡沫铜的制备方法

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108675331B (zh) * 2018-05-27 2020-02-07 南京航空航天大学 一种Al2O3气凝胶/碳泡沫复合绝热材料的制备方法
CN108610088A (zh) * 2018-06-04 2018-10-02 武汉科技大学 一种氧化铝-莫来石多孔隔热陶瓷及其制备方法
CN108516839B (zh) * 2018-07-03 2021-04-30 辽宁大学 一种氮化硼泡沫的制备方法及应用
CN108842081B (zh) * 2018-07-05 2019-06-21 西安航空学院 一种真空气压浸渗制备Al/SiC-C-SiC复合材料的制备方法
CN108640661A (zh) * 2018-07-11 2018-10-12 佛山陵朝新材料有限公司 一种多孔氧化物陶瓷的制备方法
CN110746192B (zh) * 2018-07-24 2021-09-24 中国科学院金属研究所 一种高导热率纯质多孔碳化硅材料及其制备方法和应用
CN109135261A (zh) * 2018-08-10 2019-01-04 苏州华龙化工有限公司 一种玻璃棉基复合吸声材料的制备方法
CN109133931B (zh) * 2018-09-14 2019-11-22 宁波设会物联网科技有限公司 以可热固化聚碳硅烷和聚氨酯制备碳化硅泡沫陶瓷的方法
CN109307613B (zh) * 2018-10-18 2021-07-02 中国石油天然气股份有限公司 一种制备人造岩心的方法及装置
CN109786772A (zh) * 2019-03-13 2019-05-21 深圳道童新能源有限公司 一种适用于燃料电池的催化剂的制备方法
CN110407582B (zh) * 2019-08-05 2022-02-15 衢州学院 一种基于凝胶成型的碳化硅微反应器制备方法
CN112444152B (zh) * 2019-09-03 2022-01-11 广州力及热管理科技有限公司 一种链状铜金属毛细结构及其制作方法
CN110551911A (zh) * 2019-09-27 2019-12-10 中南大学 一种具有高吸水性的微米孔毛细结构泡沫铝块体
CN110767879B (zh) * 2019-10-08 2022-07-19 天津大学 一种基于高活性镍正极的镍锌电池的制备方法
CN110947392B (zh) * 2019-11-20 2022-09-30 中国科学院青岛生物能源与过程研究所 二氧化碳电化学还原制备甲酸的催化剂及其制备方法
CN111530416B (zh) * 2020-04-23 2022-04-19 中国科学院合肥物质科学研究院 一种多孔碳包裹的锰铁氧化物复合材料及其制备方法和应用
CN111545223B (zh) * 2020-05-11 2022-12-09 浙江工业大学 一种基于环糊精的包合型金属氟化物催化剂及其制备方法和应用
CN111790443B (zh) * 2020-07-17 2022-11-04 万华化学集团股份有限公司 一种负载型催化剂及其制备方法和应用
CN112174678B (zh) * 2020-09-23 2022-04-05 中国科学院金属研究所 一种高强度二维陶瓷丝网材料及其制备方法
CN112299851B (zh) * 2020-09-23 2022-05-31 中国科学院金属研究所 一种具有高抗热震性能的陶瓷丝网波纹介质材料及其制备方法和应用
CN112500795B (zh) * 2020-10-23 2023-10-03 福建比美特环保集团有限公司 一种具有除甲醛功能的墙衣制备工艺
CN112609100A (zh) * 2020-11-27 2021-04-06 西南科技大学 泡沫铜及其制备方法和应用
CN112675830B (zh) * 2021-01-12 2022-04-22 万华化学集团股份有限公司 一种羟醛缩合催化剂、制备方法和用其制备甲基丙烯酸甲酯的方法
CN112851395B (zh) * 2021-03-02 2022-08-05 武汉理工大学 定向层状多孔SiC材料及其原位合成方法
CN113135742A (zh) * 2021-04-21 2021-07-20 广东工业大学 一种通过陶瓷前驱体骨架成型的精细陶瓷材料及其制备方法和应用
CN113071606B (zh) * 2021-05-18 2022-09-06 河南章全机电设备有限公司 一种水文监测浮标防护装置
CN113337289B (zh) * 2021-06-29 2022-04-08 安徽农巧施农业科技有限公司 一种天然土壤修复剂
CN113652081B (zh) * 2021-08-23 2023-03-28 湖北世丰新材料有限公司 一种抗菌阻燃泡沫塑料
CN114106559B (zh) * 2021-11-11 2023-05-23 华东理工大学 一种高导热高绝缘硅橡胶复合材料的制备方法
CN114479295B (zh) * 2022-03-30 2022-06-17 潍坊硕邑化学有限公司 一种氯化聚乙烯橡胶及其制备方法
CN114656278A (zh) * 2022-04-29 2022-06-24 武汉理碳环保科技有限公司 一种用于碳封存的镁橄榄石基泡沫陶瓷及其制备方法
CN115504792B (zh) * 2022-10-18 2023-07-28 福建华清电子材料科技有限公司 一种高强度氮化铝陶瓷的制备方法
CN116179919A (zh) * 2023-03-07 2023-05-30 宋艺楠 一种纳米金属复合陶瓷材料及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1986490A (zh) * 2005-12-23 2007-06-27 中国科学院金属研究所 一种高强高韧SiC/Al泡沫材料及其制备方法
CN102101785A (zh) * 2009-12-18 2011-06-22 中国科学院金属研究所 一种双尺度的碳化硅泡沫陶瓷材料及其制备方法
CN102676863A (zh) * 2011-03-14 2012-09-19 中国科学院金属研究所 一种TiC/Ti复合泡沫材料及其制备方法
CN103964887A (zh) * 2014-04-30 2014-08-06 中国科学院金属研究所 一种高机械强度泡沫陶瓷材料及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102842354A (zh) * 2011-06-20 2012-12-26 中国科学院上海硅酸盐研究所 三维网络结构的石墨烯基背电极材料及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1986490A (zh) * 2005-12-23 2007-06-27 中国科学院金属研究所 一种高强高韧SiC/Al泡沫材料及其制备方法
CN102101785A (zh) * 2009-12-18 2011-06-22 中国科学院金属研究所 一种双尺度的碳化硅泡沫陶瓷材料及其制备方法
CN102676863A (zh) * 2011-03-14 2012-09-19 中国科学院金属研究所 一种TiC/Ti复合泡沫材料及其制备方法
CN103964887A (zh) * 2014-04-30 2014-08-06 中国科学院金属研究所 一种高机械强度泡沫陶瓷材料及其制备方法

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10759697B1 (en) 2019-06-11 2020-09-01 MSB Global, Inc. Curable formulations for structural and non-structural applications
US11008252B2 (en) 2019-06-11 2021-05-18 MSB Global, Inc. Curable formulations for structural and non-structural applications
US11655187B2 (en) 2019-06-11 2023-05-23 Partanna Global, Inc. Curable formulations for structural and non-structural applications
CN110319719A (zh) * 2019-06-28 2019-10-11 河海大学常州校区 一种抗积垢管式换热器
CN110526742A (zh) * 2019-09-04 2019-12-03 鞍钢股份有限公司 一种提高lf石墨电极使用寿命的浸渍液
CN110526239A (zh) * 2019-09-20 2019-12-03 黄淮学院 一种石墨烯微孔泡沫及其制备方法和应用
CN112480516A (zh) * 2020-12-02 2021-03-12 上海朗亿功能材料有限公司 一种透明防雾树脂、塑料制品及其制备方法
CN112480516B (zh) * 2020-12-02 2023-06-16 上海朗亿功能材料有限公司 一种透明防雾树脂、塑料制品及其制备方法
CN112608136A (zh) * 2020-12-19 2021-04-06 西北工业大学 一种高气孔率陶瓷型芯的光固化3d打印制造方法
CN112745135B (zh) * 2021-01-08 2022-11-29 武汉科技大学 一种氧化镁-碳化硅-碳多孔陶瓷过滤器及其制备方法
CN112745135A (zh) * 2021-01-08 2021-05-04 武汉科技大学 一种氧化镁-碳化硅-碳多孔陶瓷过滤器及其制备方法
CN112661190A (zh) * 2021-02-07 2021-04-16 中国科学院兰州化学物理研究所 一种四氧化三锰纳米颗粒的制备及应用
CN114085515A (zh) * 2021-10-28 2022-02-25 安能(广州)科学技术有限公司 一种含有纳米无机莫来石氧化铝中空微珠的耐热、阻燃、耐磨轮胎
CN113912924A (zh) * 2021-11-05 2022-01-11 杭州老板电器股份有限公司 复合降噪材料及其制备方法、设备壳体和设备
WO2024000684A1 (zh) * 2022-06-30 2024-01-04 瑞声科技(南京)有限公司 一种泡沫铜的制备方法

Also Published As

Publication number Publication date
CN108069725A (zh) 2018-05-25
CN108069725B (zh) 2021-05-18

Similar Documents

Publication Publication Date Title
WO2018086522A1 (zh) 一种中空泡沫材料及其制备方法和应用
CN110386827B (zh) 一种反模泡沫材料及其制备方法和应用
Nishihora et al. Manufacturing porous ceramic materials by tape casting—A review
JP5937569B2 (ja) ハニカム形状セラミック製分離膜構造体
Meille Review on methods to deposit catalysts on structured surfaces
CN109745971B (zh) 一种基于中空泡沫材料的结构化催化剂及其应用
JP6008943B2 (ja) ハニカム形状セラミック多孔質体、その製造方法、及びハニカム形状セラミック分離膜構造体
EP2311551A1 (en) A curlable carbon membrane and preparation method thereof
CN110950651A (zh) 一种基于墨水直书写3d打印技术制备多级多孔陶瓷的方法
Sun et al. Ultra thin Pd membrane on α-Al2O3 hollow fiber by electroless plating: high permeance and selectivity
JP6043337B2 (ja) セラミック分離膜及び脱水方法
US20140291245A1 (en) Ceramic separation filter and dehydration method
US20040182242A1 (en) Supporting base for gas separation membrane, producing method thereof and gas separation filter
CN107261860A (zh) 一种溶胶‑凝胶法制备金属氧化物水处理膜的方法
CN112058092A (zh) 一种有机无机二氧化硅杂化膜的制备方法及应用
Chen et al. Halloysite nanotube-based electrospun ceramic nanofibre mat: a novel support for zeolite membranes
JP2008156170A (ja) 高強度マクロポーラス多孔質セラミックスの製造方法及びその多孔体
CN109569313A (zh) 一种平板陶瓷分离膜及其喷涂制备方法
KR101766866B1 (ko) 분말이 코팅된 원통형 또는 튜브형 지지체의 제조방법 및 이를 위한 장치
KR20080078294A (ko) 나노기공 금속 분리막 및 그 제조방법
JP4911916B2 (ja) 水素分離装置
KR101123271B1 (ko) 대면적 고온 기체분리막의 제조 방법
JP2007222853A (ja) 触媒担体およびその製造方法
JP6702884B2 (ja) ガス分離方法
KR20080093776A (ko) 나노기공 금속 분리막 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17870248

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17870248

Country of ref document: EP

Kind code of ref document: A1