WO2018083722A1 - 高光電変換効率太陽電池及び高光電変換効率太陽電池の製造方法 - Google Patents

高光電変換効率太陽電池及び高光電変換効率太陽電池の製造方法 Download PDF

Info

Publication number
WO2018083722A1
WO2018083722A1 PCT/JP2016/004824 JP2016004824W WO2018083722A1 WO 2018083722 A1 WO2018083722 A1 WO 2018083722A1 JP 2016004824 W JP2016004824 W JP 2016004824W WO 2018083722 A1 WO2018083722 A1 WO 2018083722A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
type region
type
passivation film
film
Prior art date
Application number
PCT/JP2016/004824
Other languages
English (en)
French (fr)
Inventor
洋 橋上
渡部 武紀
大塚 寛之
怜 三田
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Priority to EP16886817.2A priority Critical patent/EP3343639A4/en
Priority to PCT/JP2016/004824 priority patent/WO2018083722A1/ja
Priority to JP2017519721A priority patent/JP6330108B1/ja
Priority to KR1020197012861A priority patent/KR102674774B1/ko
Priority to US16/076,173 priority patent/US11631779B2/en
Priority to CN201680090602.8A priority patent/CN110073498A/zh
Priority to TW106106848A priority patent/TWI650872B/zh
Publication of WO2018083722A1 publication Critical patent/WO2018083722A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells back-junction, i.e. rearside emitter, solar cells, e.g. interdigitated base-emitter regions back-junction cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • H01L31/182Special manufacturing methods for polycrystalline Si, e.g. Si ribbon, poly Si ingots, thin films of polycrystalline Si
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1868Passivation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/546Polycrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a high photoelectric conversion efficiency solar cell and a method for producing the high photoelectric conversion efficiency solar cell.
  • FIG. 10 is a schematic cross-sectional view showing the basic structure of a back electrode type solar cell.
  • the light receiving surface is shown downward in the figure.
  • a p-type region 1002 in which an additive imparting p-type conductivity is diffused at a high concentration is formed on the non-light-receiving surface of the substrate 1001, and an n-type conductive layer is adjacent to the p-type region 1002.
  • An n-type region 1003 is formed in which an additive for imparting properties is diffused at a high concentration.
  • the upper surface of the p-type region 1002 and the n-type region 1003 and the opposite surface (light receiving surface) are covered with passivation films 1004 and 1005 for reducing loss due to recombination of photoexcited carriers, respectively.
  • a positive electrode 1006 and a negative electrode 1007 are formed through the passivation film 1004.
  • a light confinement texture having irregularities of several microns is formed on the light receiving surface of the substrate 1001.
  • the back electrode type solar cell Since the back electrode type solar cell has no electrode on the light receiving surface, it is necessary to allow charge carriers excited mainly by short wavelength light to reach the back surface without recombination.
  • dangling bonds (silicon dangling bonds) serving as charge carrier recombination centers exist at a high density on the surface of the substrate, and thus the passivation film 1005 is required to have very high passivation performance.
  • the recombination ratio of charge carriers is the sum of the bulk recombination ratio in the crystal bulk and the surface recombination ratio in the crystal surface.
  • bulk recombination increases as the additive impurity concentration (charge carrier concentration at room temperature) increases. This is because crystal defects due to the added impurities and direct recombination of the Auger process becomes apparent as the carrier concentration increases. Therefore, in general, in a high concentration region such as the p-type region 1002 and the n-type region 1003, the maximum added impurity concentration in the substrate depth direction is suppressed to, for example, the first half of 10 18 atoms / cm 3 to effectively reduce the surface. By covering with a passivation film, carrier recombination loss on the back surface is suppressed.
  • surface passivation has two elements: chemical termination and field effect.
  • the electric field effect is that an electric field is generated on the substrate surface by the fixed charges built in the passivation film, the charge carrier concentration near the surface is reduced, and recombination on the surface is reduced.
  • silicon nitride having a positive charge and aluminum oxide having a negative charge are commonly used as field effect passivation.
  • the passivation effect of the field effect type passivation can be obtained regardless of the conductivity type of the substrate surface applied in principle.
  • the minority carrier flows into the electrode having the opposite polarity to the electrode to be originally collected, It is known that the output of the battery is reduced.
  • Patent Document 1 an aluminum oxide film is formed on the surface of the p-type region of the back electrode type solar cell, silicon oxide is applied to the surface of the n-type region, and silicon nitride is applied to the light receiving surface.
  • silicon oxide is applied to the surface of the n-type region
  • silicon nitride is applied to the light receiving surface.
  • silicon oxide is a typical example of chemical termination type passivation.
  • silicon oxide has a positive charge, depending on the manufacturing method, the fixed charge density is 1 to 2 orders of magnitude lower than that of general silicon nitride, and the defect density at the interface with crystalline silicon is relatively low. It has been recognized as a material that can be used for both mold surfaces and n-type surfaces.
  • Non-Patent Document 1 (Mulligan)
  • silicon oxide is applied to both the light receiving surface and the back surface of a solar cell using an n-type substrate.
  • the formation of the silicon oxide film generally requires a heat treatment at 700 ° C. to 1100 ° C.
  • the added impurities in the high-concentration diffusion layer are re-diffused or redistributed due to segregation in the thermal oxide film.
  • the solar cell characteristics deteriorated.
  • a sufficient passivation effect cannot be obtained or the quality is not stable. There was a problem.
  • a surface electric field layer (FSF: Front Surface Field) is further formed on the light receiving surface side. Methods have been taken to improve the solar cell performance by applying a field effect.
  • FSF is formed by thermally diffusing boron or phosphorus so that the impurity concentration is 1 to 2 digits lower than the high concentration layer formed on the back surface in order to suppress the loss of long wavelength light due to free carrier absorption. Therefore, the FSF formation process is additionally required, and there is a problem that the manufacturing cost of the solar cell increases.
  • the present invention has been made in view of the above problems, and an object thereof is to provide a solar cell having high photoelectric conversion efficiency and low cost. Another object of the present invention is to provide a method for manufacturing a solar cell that is easy to manufacture, has a high passivation effect, and has high photoelectric conversion efficiency.
  • a p-type region having a p-type conductivity type and an n-type conductivity type are imparted to the first main surface of a crystalline silicon substrate.
  • an n-type region having a maximum concentration of 5 ⁇ 10 18 atoms / cm 3 or more in the substrate depth direction is disposed, and a first passivation film is disposed to cover the p-type region and the n-type region
  • a back electrode type solar cell in which a second passivation film is disposed on the second main surface, which is the surface opposite to the first main surface, so as to cover the second main surface,
  • the solar cell is characterized in that the first passivation film and the second passivation film are made of a compound containing aluminum oxide.
  • both the first and second main surfaces have a high passivation effect, and thus a solar cell with high photoelectric conversion efficiency is obtained. be able to. Further, since the manufacturing is simple, an inexpensive solar cell can be obtained.
  • the second main surface has the same conductivity type and conductivity as the conductivity type and conductivity in the bulk of the substrate, there is no need to provide a diffusion layer or the like on the second main surface, and the structure is simple. And an inexpensive solar cell.
  • an antireflection film is further disposed on the second passivation film.
  • a reflective film is further disposed on the first passivation film.
  • the antireflection film and the reflection film contain at least one of silicon oxide, magnesium fluoride, silicon nitride, tin oxide, and titanium oxide.
  • the reflective film and the antireflective film include at least one of silicon oxide, magnesium fluoride, silicon nitride, tin oxide, and titanium oxide
  • the reflective film and the antireflective film of the back electrode type solar cell are used. It can be used as a solar cell with better characteristics.
  • the occupied area of the p-type region on the first main surface is larger than the occupied area of the n-type region.
  • the present invention provides a solar cell module characterized by being formed by electrically connecting the above solar cells.
  • the solar cell of the present invention can be electrically connected to form a solar cell module.
  • the present invention provides a solar cell power generation system characterized by comprising a plurality of the above solar cell modules electrically connected.
  • a plurality of solar cell modules in which the solar cells of the present invention are electrically connected can be electrically connected to form a solar cell power generation system.
  • the present invention includes a step of forming a p-type region having a p-type conductivity type on a first main surface of a crystalline silicon substrate, An n-type region having an n-type conductivity type and an additive impurity imparting the n-type conductivity type having a maximum concentration of 5 ⁇ 10 18 atoms / cm 3 or more in the substrate depth direction is formed on the first main surface.
  • the first passivation film and the second passivation film with a compound containing aluminum oxide, a solar cell having a high passivation effect on both the first and second main surfaces and thus a high photoelectric conversion efficiency can be obtained. Can be manufactured. Moreover, since the manufacturing process is simple, the productivity is high and an inexpensive solar cell can be manufactured.
  • the step of forming the positive electrode and the step of forming the negative electrode include A sub-step of applying a conductive paste on the first passivation film or the reflective film; It is preferable to have a sub-step of heat-treating the crystalline silicon substrate coated with the conductive paste at a temperature of 700 ° C. or more and 890 ° C. or less for 1 second or more and 10 minutes or less.
  • the positive electrode and the negative electrode are formed in this way, the electrode can be easily formed, the productivity is increased, and an inexpensive solar cell can be manufactured.
  • the solar cell of this invention can be set as a cheap and high photoelectric conversion solar cell. Moreover, according to the manufacturing method of the solar cell of this invention, since the passivation effect of a passivation film can be improved and it can manufacture simply, a solar cell with high photoelectric conversion efficiency can be manufactured cheaply.
  • a p-type region 102 having a p-type conductivity type and an n-type conductivity type are imparted to the first main surface (back surface) of the crystalline silicon substrate 101.
  • An n-type region 103 having a maximum concentration of 5 ⁇ 10 18 atoms / cm 3 or more in the substrate depth direction of the added impurity is disposed, and the first passivation film 104 covers the p-type region 102 and the n-type region 103.
  • the passivation film 104 and the second passivation film 105 are made of a compound containing aluminum oxide.
  • a positive electrode 106 and a negative electrode 107 are disposed on the p-type region 102 and the n-type region 103, respectively.
  • the first passivation film 104 and the second passivation film 105 are made of a compound containing aluminum oxide, both the first and second main surfaces have a high passivation effect, and thus a solar cell with high photoelectric conversion efficiency. It can be. Further, since the manufacturing is simple, an inexpensive solar cell can be obtained.
  • the second main surface has the same conductivity type and conductivity as the conductivity type and conductivity in the bulk of the crystalline silicon substrate 101.
  • a diffusion layer FSF layer or the like
  • the solar cell can be a simple and inexpensive structure.
  • FIGS. 2 to 4 the same components as those of the solar cell of FIG. 1 are denoted by the same reference numerals.
  • the solar cell 200 of the present invention is preferably one in which an antireflection film 108 is further disposed on the second passivation film 105.
  • an antireflection film 108 is further disposed on the second passivation film 105.
  • the solar cell 300 of the present invention is preferably such that a reflective film 109 is further disposed on the first passivation film 104.
  • a reflective film 109 is further disposed on the first passivation film 104.
  • the solar cell 400 of the present invention has a configuration in which the antireflection film 108 is disposed on the second passivation film 105 and the reflection film 109 is disposed on the first passivation film 104. You can also. By setting it as such a structure, it can be set as a solar cell with still higher photoelectric conversion efficiency.
  • the antireflection film 108 and the reflection film 109 include at least one of silicon oxide, magnesium fluoride, silicon nitride, tin oxide, and titanium oxide.
  • Such a reflection film and an antireflection film are suitable as a reflection film and an antireflection film for a back electrode type solar cell, and a solar cell with better characteristics can be obtained.
  • the occupied area of the p-type region 102 on the first main surface is preferably larger than the occupied area of the n-type region 103. Since the passivation effect by aluminum oxide is greater for the p-type region than for the n-type region, a solar cell with higher photoelectric conversion efficiency can be obtained if the area occupied by the p-type region is large.
  • the method for manufacturing a solar cell of the present invention includes a step of forming a p-type region having a p-type conductivity type on a first main surface of a crystalline silicon substrate, and an n-type having an n-type conductivity type on the first main surface.
  • a back electrode type solar cell comprising a step of forming a second passivation film so as to cover the surface, a step of forming a positive electrode in contact with the surface of the p-type region, and a step of forming a negative electrode in contact with the surface of the n-type region
  • the first passivation film and the second passivation film are formed of a compound containing aluminum oxide.
  • the substrate 101 in FIG. 5A is, for example, crystalline silicon having a p-type or n-type conductivity type with a resistivity of 0.1 to 10 ⁇ ⁇ cm. Although not shown in the drawing, it is preferable that an uneven structure (texture) for light confinement is formed on the substrate surface.
  • the concavo-convex structure can be obtained by immersing the substrate 101 in an acidic or alkaline solution for a certain time. In general, a mixed acid solution of hydrofluoric acid and acetic acid, phosphoric acid, sulfuric acid, water, or the like is used as the acidic solution. When the substrate 101 is immersed in the acidic solution, fine grooves on a rough surface during substrate processing are preferentially etched.
  • a concavo-convex structure is formed.
  • the alkaline solution potassium hydroxide, sodium hydroxide aqueous solution, or tetramethylammonium hydroxide aqueous solution is used.
  • Alkali etching progresses by forming Si—OH bonds, so that the etching rate depends on the crystal plane orientation, and a concavo-convex structure in which a surface with a low etching rate is exposed is obtained.
  • the uneven structure is not necessarily required on the non-light-receiving surface of the substrate 101. Rather, the effect of reducing the carrier recombination loss by reducing the surface area can be expected by flattening. In that case, spin etching using a chemical solution containing hydrofluoric acid or an inline single-sided cleaning machine can be used.
  • the concavo-convex structure After forming the concavo-convex structure, it is preferable to wash in an acidic aqueous solution of hydrochloric acid, sulfuric acid, nitric acid, hydrofluoric acid or the like or a mixture thereof. From the viewpoint of cost and characteristics, washing in hydrochloric acid is preferred. In order to improve the cleanliness, the hydrochloric acid solution may be mixed with 0.5 to 5% hydrogen peroxide and heated to 60 to 90 ° C. for washing.
  • a p-type region 102 is formed on one side (first main surface) of the substrate 101.
  • a diffusion source containing a group III element can be used for forming the p-type region.
  • vapor diffusion at 900 to 1000 ° C. using boron bromide is preferable.
  • diffusion is performed in a state where two substrates are overlapped, or a diffusion barrier such as silicon nitride is provided on the light receiving surface side. It is preferable to devise such that boron is not diffused on the light receiving surface.
  • the p-type region 102 may be formed by applying a boron compound to the substrate 101 and drying, followed by thermal diffusion at 900 to 1000 ° C. According to this method, boron diffusion to the non-coated surface can be suppressed relatively easily.
  • the added impurity concentration of the p-type region 102 may be 5 ⁇ 10 18 atoms / cm 3 or more and 5 ⁇ 10 20 atoms / cm 3 or less as a maximum value in the substrate depth direction, more preferably 8 ⁇ 10 18 atoms. / Cm 3 or more and 5 ⁇ 10 19 atoms / cm 3 or less are preferable. If it is less than 5 ⁇ 10 18 atoms / cm 3 , the contact resistance between the substrate 101 and the electrode increases, and if it exceeds 5 ⁇ 10 20 atoms / cm 3 , charge carriers are regenerated due to defects in the p + region and Auger recombination. Coupling becomes significant and the output of the solar cell is reduced.
  • a diffusion barrier 510 is formed on the p-type region 102.
  • a silicon nitride film or a silicon oxide film obtained by a chemical vapor volume method or a physical vapor deposition method can be suitably used.
  • a silicon oxide film obtained by heat treatment may be used.
  • the substrate 101 is heat-treated in an oxygen or water vapor atmosphere at 700 to 1100 ° C. to grow silicon oxide having a thickness of 20 to 200 nm.
  • the diffusion barrier 510 at the n-type region forming portion is partially removed to form an opening 511 to expose the p-type region 102.
  • the removal of the diffusion barrier 510 can be realized, for example, by screen-printing an etching paste at a desired location and performing a heat treatment at 100 to 400 ° C. Further, laser ablation with a simpler process may be used.
  • the opening area at this time needs to be optimally designed according to the conductivity type of the substrate 101, but generally the area of the high-concentration layer serving as the emitter is proportional to the solar cell characteristics.
  • the aluminum oxide used in the present invention can be applied to the n-type region, but is more effective for the p-type region. Due to this property, in the present invention, a higher effect can be expected with a back electrode type solar cell using an n-type substrate.
  • an n-type region 103 is formed in the opening 511 of the diffusion barrier.
  • an n-type region having n-type conductivity is formed on the first main surface of the substrate 101.
  • the n-type region 103 can be formed by using a diffusion source containing a group V element, but it is preferable to perform vapor phase diffusion at 800 to 980 ° C. using, for example, phosphorus oxychloride from the viewpoint of electrical characteristics and simplicity of the apparatus.
  • the n-type region 103 may be formed by applying a phosphorus compound to a substrate and drying it, followed by thermal diffusion at 800 to 980 ° C. According to this method, phosphorus diffusion to the non-coated surface can be suppressed relatively easily.
  • Phosphorus diffusion may be performed after the p-type region 102 exposed in the opening 511 of the diffusion barrier (for example, oxide film) is removed by etching, in addition to the above method.
  • the oxide film formed on the surface serves as a mask, and only the exposed portion of the p-type region 102 can be removed.
  • the impurity concentration of the n-type region 103 is preferably 5 ⁇ 10 18 atoms / cm 3 or more in the maximum value in the substrate depth direction in view of the relationship with the field effect of the aluminum oxide film described below.
  • the passivation ability by the field effect is determined by the fixed charge density of aluminum oxide and the carrier density of the substrate surface. If there is a negative fixed charge on the surface of the n-type region having an additive impurity concentration of less than 5 ⁇ 10 18 atoms / cm 3 , the minority carrier holes gather on the surface and greatly move to the inverted state. This reduces the carrier recombination ratio on the surface of the n-type region. However, on the other hand, minority carriers that recombine at the electrode increase, and as a result, the characteristics of the solar cell are degraded.
  • the electric field effect is reduced, but aluminum oxide maintains the passivation effect because it has a high chemical termination capability on the crystalline silicon surface. This effect is thought to be due to the formation of a silicon oxide film of several atomic layers at the interface between silicon and aluminum oxide when the aluminum oxide film is formed.
  • the concentration of the added impurity exceeds about 1 ⁇ 10 21 atoms / cm 3, the recombination of charge carriers due to defects in the n-type region and Auger recombination becomes prominent, which may reduce the output of the solar cell. There is. For this reason, it is preferable that the additive impurity concentration is 1 ⁇ 10 21 atoms / cm 3 or less.
  • the impurity concentration of the p-type region 102 and the n-type region 103 can be easily measured by secondary ion mass spectrometry.
  • FIG. 6 shows an example of a boron concentration distribution ((a) in FIG. 6) and a phosphorus concentration distribution ((b) in FIG. 6) measured by this method.
  • the shape of the concentration distribution varies depending on the additive impurity and diffusion conditions, the value indicated by the arrow in the figure is the maximum concentration of the additive impurity in the substrate depth direction.
  • the formation pattern of the p-type region and the n-type region may be, for example, a form in which the p-type region 102 and the n-type region 103 are linearly adjacent as shown in FIG.
  • an island-shaped n-type region 703 may be formed in the p-type region 702 as shown in FIG. 7B, and an island-type region 713 is formed in the n-type region 713 as shown in FIG.
  • the p-type region 712 may be formed.
  • the boron glass, diffusion barrier, and phosphorus glass formed on the diffusion surface are removed with hydrofluoric acid or the like.
  • hydrofluoric acid or the like In order to maintain the cleanliness of the surface of the substrate 101, more preferably, ammonia water or a tetramethylammonium hydroxide aqueous solution and 0.5 to 5% hydrogen peroxide are mixed and heated to 60 to 90 ° C. for cleaning. May be.
  • hydrochloric acid, sulfuric acid, nitric acid, or a mixture thereof, or these and 0.5 to 5% hydrogen peroxide may be mixed and heated to 60 to 90 ° C. for washing.
  • the oxide film on the substrate surface is preferably removed with a hydrofluoric acid aqueous solution at the final stage of cleaning.
  • a first passivation film 104 is formed on the p-type region 102 and the n-type region 103, and a second passivation film 105 is formed on the opposite surface (second main surface).
  • Any of the passivation films is a film formed of a compound containing aluminum oxide.
  • a chemical vapor deposition method such as plasma CVD, atmospheric pressure CVD, or low pressure CVD is mainly used as a method for forming aluminum oxide.
  • tetramethylaluminum is generally used as a precursor, and hydrogen, argon, or nitrogen is generally used when introducing a carrier gas into the precursor.
  • oxygen, carbon dioxide, nitrous oxide, water, ozone, or the like can be used.
  • a vacuum deposition method or a sputtering method may be used for forming a passivation film containing aluminum oxide.
  • it may be formed by a sol-gel method using a compound such as aluminum alkoxide.
  • the first passivation film 104 and the second passivation film 105 may be formed on both sides at the same time, or may be formed on each side.
  • an atomic layer deposition method is suitable.
  • the substrate 101 is placed in a reaction chamber maintained at about 100 to 350 ° C. so that both surfaces are in contact with the reaction gas, and an oxidizing gas and a precursor are alternately introduced into the reaction chamber and the gas is replaced, whereby the aluminum oxide film is formed. It is formed.
  • the composition of the first passivation film 104 and the second passivation film 105 may be changed.
  • conventional flat plate plasma CVD, sputtering, sol-gel method, and the like are suitable.
  • the thickness of the first passivation film 104 and the second passivation film 105 is 0.5 nm or more, preferably 3 nm to 30 nm (3 nm to 30 nm). By setting the film thickness of the first and second passivation films within this film thickness range, the passivation film coverage and the passivation effect on the substrate 101 can be obtained simultaneously.
  • the film thickness is 70 nm to 200 nm, more preferably 80 nm to 100 nm. It is good to do.
  • the film thickness is 70 nm or more and 200 nm or less, the function as a reflective film can be suitably exhibited.
  • a reflective film 109 made of a compound other than aluminum oxide may be formed on the first passivation film 104 as shown in FIG.
  • silicon oxide, magnesium fluoride, silicon nitride, tin oxide, titanium oxide, or the like can be used. These films may be formed by a method such as chemical vapor deposition, sputtering, or vacuum evaporation.
  • the thickness of the reflective film 109 is preferably about 80 to 250 nm, although it depends on the thickness of the first passivation film 104 and the refractive index of the reflective film 109.
  • the film thickness is preferably 70 nm to 200 nm, more preferably 80 nm to 150 nm. If the thickness of the second passivation film 105 is 70 nm or more and 200 nm or less, the function as a reflection film can be suitably exhibited.
  • an antireflection film 108 made of a compound other than aluminum oxide may be formed on the second passivation film 105 as shown in FIG.
  • silicon oxide, magnesium fluoride, silicon nitride, tin oxide, titanium oxide, or the like can be used for the antireflection film 108. These films may be formed by a method such as chemical vapor deposition, sputtering, or vacuum evaporation.
  • the thickness of the antireflection film 108 is preferably about 50 to 120 nm, although it depends on the thickness of the second passivation film 105 and the refractive index of the antireflection film.
  • a laminate of the passivation film 104 and the reflective film 109 is formed on the back surface of the solar cell, and the passivation film 105 and the antireflection film 108 are formed on the light receiving surface.
  • a laminate may be formed.
  • an aluminum oxide film improves the passivation effect by performing a heat treatment at 300 to 600 ° C., depending on the production method.
  • the film forming temperature is lower than these temperature ranges, after the aluminum oxide film is formed and before the reflection film or the antireflection film is laminated, the inert gas atmosphere in the above temperature band or the hydrogen mixed nitrogen atmosphere having a hydrogen concentration of 2 to 10% It is preferable to perform a heat treatment for 5 to 20 minutes.
  • a positive electrode 106 is formed on the p-type region 102, and a negative electrode 107 is formed on the n-type region 103.
  • the step of forming the positive electrode 106 and the step of forming the negative electrode 107 include a sub-step of applying a conductive paste on the first passivation film 104 or the reflective film 109, and a crystalline silicon substrate 101 coated with the conductive paste. May be subjected to a heat treatment at a temperature of 700 ° C. to 890 ° C. for 1 second to 10 minutes.
  • the method for forming the electrode is not particularly limited, but screen printing of a conductive paste or dispenser formation is preferable from the viewpoint of productivity.
  • the positive electrode 106 and the negative electrode 107 are formed by applying an Ag paste in which Ag powder and glass frit are mixed with an organic binder onto the p-type region 102 and the n-type region 103 via the passivation film 104. After drying, it is formed by firing at a temperature of about 700 ° C. to 890 ° C. for 1 second to 30 minutes, preferably 1 second to 10 minutes. By this heat treatment, the passivation film 104 or the passivation film 104 and the reflective film are eroded by the Ag paste, and the electrode and silicon are in electrical contact.
  • plating may be applied to form the electrodes.
  • the passivation film 104 at the location can be removed by, for example, laser ablation.
  • a solar cell module can be obtained by electrically connecting a plurality of the solar cells of the present invention described above.
  • FIG. 8 is a schematic view showing an example of the configuration of the non-light-receiving surface of the solar cell module 16 formed by electrically connecting the solar cells of the present invention.
  • the positive electrode 26 of the solar cell is electrically connected to the negative electrode 27 of the adjacent solar cell by the tab 12, and the number of solar cells 11 necessary for a predetermined output is connected.
  • the connected solar cells 11 are sealed with a cover glass, a filler, and a back sheet. Soda lime glass is widely used as the cover glass.
  • As the filler ethylene vinyl acetate, polyolefin, silicone, or the like is used.
  • a functional film using polyethylene terephthalate is generally used for the back sheet.
  • the positive electrode 26 of one solar cell is connected to the positive electrode terminal 13 of the solar cell module 16, and the negative electrode 27 of another solar cell is connected to the negative electrode terminal 14 of the solar cell module 16.
  • FIG. 9 shows a basic configuration of a solar cell power generation system in which the solar cell modules 16 of the present invention are connected.
  • the solar cell power generation system of the present invention is formed by electrically connecting a plurality of the solar cell modules 16 of the present invention described above.
  • a plurality of solar power modules 16 are connected in series by wiring 15 and supply generated power to an external load circuit 18 via an inverter 17.
  • the system may further include a secondary battery that stores the generated power.
  • Example 1 In a phosphorus-doped ⁇ 100> n-type as-cut silicon substrate with a 150 mm square, a thickness of 200 ⁇ m, and a specific resistance of 1 ⁇ ⁇ cm, after removing the damaged layer with a hot concentrated potassium hydroxide aqueous solution, the substrate in an 80 ° C. 5% potassium hydroxide aqueous solution was immersed for 20 minutes to form a random pyramid-like texture, followed by washing in a hydrochloric acid / hydrogen peroxide mixed solution.
  • a boron compound and binder mixture was spin-coated on the back surface of the substrate, and boron was diffused by heat treatment at 1000 ° C. for 30 minutes to form a p-type region. Thereafter, an oxidation heat treatment was further performed at 1000 ° C. for 2 hours to form an oxide film (silicon oxide film). After the oxide film was formed, the oxide film at the location where the n-type region on the back surface of the substrate was to be formed was removed in a line by laser irradiation with a wavelength of 532 nm.
  • n-type region was 5 ⁇ 10 19 atoms / cm. 3.
  • the n-type region was 3 ⁇ 10 19 atoms / cm 3 .
  • the substrate was immersed in a 10% HF aqueous solution to remove the glass layer and the oxide film, the substrate was further immersed in a mixture of hydrochloric acid and hydrogen peroxide at 80 ° C. and a 2% HF aqueous solution for cleaning. Drying was performed after rinsing with pure water.
  • An aluminum oxide film with a thickness of 100 nm was formed on the light-receiving surface of the cleaned substrate by an atomic layer deposition method, and an aluminum oxide film with a thickness of 10 nm was formed on the back side. Thereafter, the substrate was heat-treated in a nitrogen atmosphere at 450 ° C. for 15 minutes. A 90 nm-thick silicon nitride film was further formed on the back surface of the substrate by plasma CVD.
  • the Ag paste was applied to the p-type region and the n-type region by screen printing, and heat treatment was performed at 800 ° C. for 3 seconds to cure the Ag paste to obtain a solar cell. Finally, the xenon lamp light source type simulated sunlight was used to measure the output characteristics of the solar cell.
  • Example 2 On the back surface of the substrate on which the p-type region and the n-type region were formed in Example 1, aluminum oxide with a thickness of 100 nm was formed by atomic layer deposition, and further, aluminum oxide with a thickness of 10 nm was formed on the light receiving surface. Thereafter, the substrate was heat-treated in a nitrogen atmosphere at 450 ° C. for 15 minutes. A silicon nitride film having a thickness of 90 nm was further formed on the light receiving surface of the substrate by plasma CVD.
  • the Ag paste was applied to the p-type region and the n-type region by screen printing, and heat treatment was performed at 800 ° C. for 3 seconds to cure the Ag paste to obtain a solar cell. Finally, the xenon lamp light source type simulated sunlight was used to measure the output characteristics of the solar cell.
  • Example 3 Aluminum oxide having a thickness of 10 nm was formed by atomic layer deposition on both surfaces of the substrate on which the p-type region and the n-type region were formed in Example 1, and then the substrate was heat-treated in a nitrogen atmosphere at 450 ° C. for 15 minutes. A silicon nitride film having a thickness of 90 nm was further formed on both surfaces of the substrate by plasma CVD.
  • the Ag paste was applied to the p-type region and the n-type region by screen printing, and heat treatment was performed at 800 ° C. for 3 seconds to cure the Ag paste to obtain a solar cell. Finally, the xenon lamp light source type simulated sunlight was used to measure the output characteristics of the solar cell.
  • Example 4 A solar cell similar to that of Example 1 was fabricated using a boron-doped ⁇ 100> p-type as-cut silicon substrate having a 150 mm square, a thickness of 200 ⁇ m, and a specific resistance of 1 ⁇ ⁇ cm. Thereafter, the xenon lamp light source type pseudo sunlight was used to measure the output characteristics of the solar cell.
  • Example 5 In a phosphorus-doped ⁇ 100> n-type as-cut silicon substrate having a 150 mm square, a thickness of 200 ⁇ m, and a specific resistance of 1 ⁇ ⁇ cm, after removing the damaged layer with a hot concentrated potassium hydroxide aqueous solution, 20% in a 5% potassium hydroxide aqueous solution at 80 ° C. It was immersed for a minute to form a random pyramid-like texture, and subsequently washed in a hydrochloric acid / hydrogen peroxide mixed solution.
  • a boric acid compound / binder mixture was spin-coated on the back surface of the substrate, and boron was diffused by heat treatment at 1000 ° C. for 30 minutes to form a p-type region. Thereafter, an oxidation heat treatment was further performed at 1000 ° C. for 2 hours to form an oxide film. After the oxide film was formed, the oxide film at the location where the n-type region on the back surface of the substrate was to be formed was removed in an island shape by laser irradiation with a wavelength of 532 nm. Note that the occupied area of the n-type region at this time is reduced by 25% compared to the first embodiment.
  • n-type region was 5 ⁇ 10 19 atoms / cm. 3.
  • the n-type region was 3 ⁇ 10 19 atoms / cm 3 .
  • the substrate was immersed in a 10% HF aqueous solution to remove the glass layer and the oxide film, the substrate was further immersed in a mixture of hydrochloric acid and hydrogen peroxide at 80 ° C. and a 2% HF aqueous solution for cleaning. Drying was performed after rinsing with pure water.
  • An aluminum oxide film having a thickness of 10 nm was formed on both surfaces of the substrate by an atomic layer deposition method, and then the substrate was heat-treated in a nitrogen atmosphere at 450 ° C. for 15 minutes.
  • a silicon nitride film having a thickness of 90 nm was further formed on both surfaces of the substrate by plasma CVD.
  • the Ag paste was applied to the p-type region and the n-type region by screen printing, and heat treatment was performed at 800 ° C. for 3 seconds to cure the Ag paste to obtain a solar cell. Finally, the xenon lamp light source type simulated sunlight was used to measure the output characteristics of the solar cell.
  • Example 1 On the back surface of the substrate on which the p-type region and the n-type region were formed in Example 1, aluminum oxide having a thickness of 10 nm was formed by atomic layer deposition. Next, the p-type region was covered with an acid resist by screen printing and dried, and then the exposed aluminum oxide on the n-type region was removed with a 2% aqueous hydrofluoric acid solution. After removing the acid resist and cleaning the substrate, the substrate was heat-treated in a nitrogen atmosphere at 450 ° C. for 15 minutes. A silicon nitride film having a thickness of 90 nm was further formed on both surfaces of the substrate by plasma CVD.
  • the Ag paste was applied to the p-type region and the n-type region by screen printing, and heat treatment was performed at 800 ° C. for 3 seconds to cure the Ag paste to obtain a solar cell. Finally, the xenon lamp light source type simulated sunlight was used to measure the output characteristics of the solar cell.
  • Example 2 A phosphorous diffusion source in which a phosphorous compound and a binder are mixed is applied to the light-receiving surface of the substrate on which the p-type region and the n-type region are formed in Example 1, and heat treatment is performed at 820 ° C. for 10 minutes with the coated surfaces facing each other. Then, an FSF layer was formed on the light receiving surface. Next, the substrate was immersed in a 10% HF aqueous solution to remove the glass layer, and then further immersed in a mixed solution of hydrochloric acid and hydrogen peroxide at 80 ° C. and a 2% HF aqueous solution for cleaning. Dried after rinsing with water.
  • aluminum oxide having a thickness of 10 nm was formed on both surfaces of the substrate by an atomic layer deposition method.
  • the p-type region was covered with an acid resist by screen printing and dried, and then the exposed aluminum oxide on the n-type region was removed with a 2% aqueous hydrofluoric acid solution.
  • the substrate was heat-treated in a nitrogen atmosphere at 450 ° C. for 15 minutes.
  • a silicon nitride film having a thickness of 90 nm was further formed on both surfaces of the substrate by plasma CVD.
  • the Ag paste was applied to the p-type region and the n-type region by screen printing, and heat treatment was performed at 800 ° C. for 3 seconds to cure the Ag paste to obtain a solar cell. Finally, the xenon lamp light source type simulated sunlight was used to measure the output characteristics of the solar cell.
  • Example 3 A phosphorous diffusion source in which a phosphorous compound and a binder are mixed is applied to the light-receiving surface of the substrate on which the p-type region and the n-type region are formed in Example 1, and heat treatment is performed at 820 ° C. for 10 minutes with the coated surfaces facing each other. Then, an FSF layer was formed on the light receiving surface. Next, after immersing the substrate in a 10% aqueous HF solution to remove the glass layer, the substrate was further immersed in a mixture of hydrochloric acid and hydrogen peroxide at 80 ° C. and a 2% aqueous HF solution for cleaning. Drying was performed after rinsing with pure water.
  • the substrate was heat-treated in an oxygen atmosphere at 900 ° C. for 10 minutes to form silicon oxide films (film thickness: about 10 nm) on both surfaces of the substrate.
  • a silicon nitride film having a thickness of 90 nm was further formed on both surfaces of the substrate by plasma CVD.
  • the Ag paste was applied to the p-type region and the n-type region by screen printing, and heat treatment was performed at 800 ° C. for 3 seconds to cure the Ag paste to obtain a solar cell. Finally, the xenon lamp light source type simulated sunlight was used to measure the output characteristics of the solar cell.
  • Example 5 On the light-receiving surface of the substrate on which the p-type region and the n-type region were formed in Example 4, aluminum oxide having a thickness of 10 nm was formed by atomic layer deposition, and the substrate was heat-treated in a nitrogen atmosphere at 450 ° C. for 15 minutes. A silicon nitride film having a thickness of 90 nm was further formed on both surfaces of the substrate by plasma CVD.
  • the Ag paste was applied to the p-type region and the n-type region by screen printing, and heat treatment was performed at 800 ° C. for 3 seconds to cure the Ag paste to obtain a solar cell. Finally, the xenon lamp light source type simulated sunlight was used to measure the output characteristics of the solar cell.
  • the characteristics of the solar cells of Examples 1 to 5 and Comparative Examples 1 to 5 are summarized in Table 1 below.
  • J sc is the short circuit current
  • V oc is the open circuit voltage
  • FF is the fill factor
  • the conversion efficiency of the solar cell according to the present invention was 22.0% or more, indicating a higher conversion efficiency than the comparative example. Further, from the results of Example 5, it was shown that the present invention is particularly effective in the solar cell structure in which the occupied area of the p-type region is larger.
  • the present invention is not limited to the above embodiment.
  • the above-described embodiment is an exemplification, and the present invention has substantially the same configuration as the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本発明は、結晶シリコン基板の第1主表面に、p型の導電型を有するp型領域と、n型の導電型を有しn型の導電型を付与する添加不純物の基板深さ方向における最大濃度が5×1018atoms/cm以上であるn型領域とが配置され、p型領域とn型領域を覆うように第1パッシベーション膜が配置され、第1主表面の反対側の表面である第2主表面に、第2主表面を覆うように第2パッシベーション膜が配置された裏面電極型太陽電池であって、第1パッシベーション膜と第2パッシベーション膜が酸化アルミニウムを含む化合物からなる太陽電池である。これにより、安価かつ光電変換効率が高い太陽電池が提供される。

Description

高光電変換効率太陽電池及び高光電変換効率太陽電池の製造方法
 本発明は、高光電変換効率太陽電池及び高光電変換効率太陽電池の製造方法に関する。
 結晶シリコン太陽電池の光電変換効率を向上させる手法として、近年では受光面の電極を廃して電極の影による光学的損失を無くした、所謂裏面電極型太陽電池が広く検討されるようになってきた。
 図10は裏面電極型太陽電池の基本構造を示す断面模式図である。図10では、受光面は同図中下向きで示してある。裏面電極型太陽電池1000では、基板1001の非受光面に、p型の導電性を付与する添加物が高濃度拡散されたp型領域1002が形成され、これに隣接するようにn型の導電性を付与する添加物が高濃度拡散されたn型領域1003が形成されている。
 p型領域1002とn型領域1003の上及びその反対側の面(受光面)は、光励起されたキャリアの再結合による損失を低減するためのパッシベーション膜1004、1005で夫々覆われている。そして正電極1006と負電極1007がパッシベーション膜1004を貫通して形成されている。また、図10には示されていないが、基板1001の受光面には、数ミクロンの凹凸をもった光閉じ込めのためのテクスチャが形成される。
 裏面電極型太陽電池では受光面に電極が無いため、主に短波長光によって励起された電荷キャリアを、再結合させることなく裏面まで到達させる必要がある。実際には基板表面では電荷キャリアの再結合中心となるダングリングボンド(シリコンの未結合手)が高密度で存在するため、パッシベーション膜1005には非常に高いパッシベーション性能が要求される。
 ところで、電荷キャリアの再結合割合は、結晶バルクでのバルク再結合割合と、結晶表面での表面再結合割合の和である。一般に、結晶シリコンでは添加不純物濃度(室温での電荷キャリア濃度)が高くなると、バルク再結合が増加する。これは添加不純物に起因した結晶欠陥や、キャリア濃度が高くなるにしたがってオージェ過程の直接再結合が顕在化するためである。そのため一般には、p型領域1002およびn型領域1003のような高濃度領域においては、基板深さ方向の最大添加不純物濃度を例えば1018atoms/cm台前半に抑え、その表面を効果的なパッシベーション膜で覆うことで、裏面におけるキャリア再結合損失を抑制している。
 また、表面パッシベーションには化学終端と電界効果の2つの要素がある。電界効果は、パッシベーション膜に内蔵された固定電荷によって基板表面に電界を生じさせ、表面近傍の電荷キャリア濃度を減じ、表面での再結合を低減するというものである。太陽電池では、正電荷をもつ窒化シリコンや負電荷をもつ酸化アルミニウムが電界効果型パッシベーションとして一般的によく用いられる。
 電界効果型パッシベーションのパッシベーション効果は、原理的に適用する基板表面の導電型に関係なく得られる。しかし、基板表面の多数キャリアと同じ極性の固定電荷をもつ膜を適用し、且つ同面へ電極が形成されると、少数キャリアが本来収集されるべき電極とは逆極性の電極へ流れ込み、太陽電池の出力が低下することが知られている。
 この問題に対し、特許文献1では、裏面電極型太陽電池のp型領域表面には酸化アルミニウム膜を形成し、n型領域表面には酸化シリコンを適用し、また受光面には窒化シリコンを適用する例が記載されている。
 一方、化学終端型パッシベーションでは、代表的例として酸化シリコンが挙げられる。酸化シリコンは正電荷を持つものの、製法にもよるが、一般的な窒化シリコンと比べて固定電荷密度が1~2桁低く、結晶シリコンとの界面における欠陥密度が比較的低いという特徴から、p型表面とn型表面のどちらにも使用できる素材として認識されてきた。非特許文献1(Mulligan)における例では、n型基板を使った太陽電池の受光面と裏面の両方に酸化シリコンを適用している。
特開2008-010746号公報
William P. Mulligan et al.,Proceedings of 19th EUPVSEC pp.387―390(2004).
 しかしながら、特許文献1の太陽電池における裏面構造は、パッシベーション効果が高い一方、パターニングが必要になることから工程が複雑であり、その結果、高コストになるという問題があった。また、受光面のパッシベーションに適用される窒化シリコンは、正の固定電荷密度が高いことから電界効果が期待できる一方で、ダングリングボンド終端能力は一般にあまり高くない。そのため抵抗率の高い基板においては電界効果によって十分なパッシベーション効果が得られるが、より高い出力電圧が期待できる低抵抗基板においてはパッシベーション効果が著しく低下するという問題があった。
 また、酸化シリコン膜の形成には、一般に700℃~1100℃の熱処理が必要になるため、高濃度拡散層の添加不純物が再拡散したり、熱酸化膜への偏析によって再分布したりして、太陽電池特性が低下するという問題があった。一方で、基板を室温の硝酸に浸漬させたり、200℃から450℃程度のオゾン雰囲気に曝して酸化シリコン膜を形成する方法もあるが、十分なパッシベーション効果が得られなかったり、品質が安定しないという問題があった。
 そのため、酸化シリコンパッシベーションを適用する際には、非特許文献1に記載の太陽電池に見られるように、受光面側へさらに表面電界層(FSF:Front Surface Field)を形成して受光面表面に電界効果を付与して太陽電池性能を改善する方法が採られてきた。
 しかし、FSFはフリーキャリア吸収による長波長光の損失を抑制するため、裏面に形成する高濃度層に比べて不純物濃度が1~2桁低くなるようにボロンやリンを熱拡散させて形成する。そのため、FSF形成工程が追加的に必要になり、太陽電池の製造コストが高くなるという問題があった。
 本発明は、上記問題点に鑑みてなされたものであって、光電変換効率が高くかつ安価な太陽電池を提供することを目的とする。また、本発明は、製造が簡便でパッシベーション効果が高く、高光電変換効率が高い太陽電池の製造方法を提供することを目的とする。
 上記目的を達成するために、本発明は、結晶シリコン基板の第1主表面に、p型の導電型を有するp型領域と、n型の導電型を有し該n型の導電型を付与する添加不純物の基板深さ方向における最大濃度が5×1018atoms/cm以上であるn型領域とが配置され、前記p型領域と前記n型領域を覆うように第1パッシベーション膜が配置され、前記第1主表面の反対側の表面である第2主表面に、該第2主表面を覆うように第2パッシベーション膜が配置された裏面電極型太陽電池であって、
 前記第1パッシベーション膜と前記第2パッシベーション膜が酸化アルミニウムを含む化合物からなるものであることを特徴とする太陽電池を提供する。
 このように、第1パッシベーション膜と第2パッシベーション膜が酸化アルミニウムを含む化合物からなることにより、第1及び第2の主表面の両方においてパッシベーション効果が高く、そのため光電変換効率の高い太陽電池とすることができる。また、製造が簡便であるので安価な太陽電池とすることができる。
 このとき、前記第2主表面の少なくとも一部は、前記結晶シリコン基板のバルクにおける導電型及び導電率と同じ導電型及び導電率を有することが好ましい。
 このように、第2主表面の少なくとも一部が基板のバルクにおける導電型及び導電率と同じ導電型及び導電率であれば、第2主表面に拡散層等を設ける必要がなく、構造が簡単で安価な太陽電池とすることができる。
 また、前記第2パッシベーション膜の上に、さらに反射防止膜が配置されたものであることが好ましい。
 このように、第2パッシベーション膜の上に反射防止膜が配置されることにより、受光面での反射が抑制され、より光電変換効率の高い太陽電池とすることができる。
 また、前記第1パッシベーション膜の上に、さらに反射膜が配置されたものであることが好ましい。
 このように、第1パッシベーション膜の上に反射膜が配置されることにより、裏面での反射が促進され、より光電変換効率の高い太陽電池とすることができる。
 また、前記反射防止膜及び前記反射膜が、酸化シリコン、フッ化マグネシウム、窒化シリコン、酸化錫、及び、酸化チタンの少なくともいずれかを含むものであることが好ましい。
 このように、酸化シリコン、フッ化マグネシウム、窒化シリコン、酸化錫、及び、酸化チタンの少なくともいずれかを含む反射膜及び反射防止膜であれば、裏面電極型の太陽電池の反射膜及び反射防止膜として好適であり、より特性の良い太陽電池とすることができる。
 また、前記第一主表面における前記p型領域の占有面積が前記n型領域の占有面積よりも大きいことが好ましい。
 酸化アルミニウムによるパッシベーション効果はn型領域よりもp型領域に対して大きいので、p型領域の占有面積がより大きければ、より光電変換効率の高い太陽電池とすることができる。
 また、本発明は、上記の太陽電池を電気的に接続して成るものであることを特徴とする太陽電池モジュールを提供する。
 このように、本発明の太陽電池を電気的に接続して太陽電池モジュールとすることができる。
 また、本発明は上記の太陽電池モジュールを電気的に複数接続して成るものであることを特徴とする太陽電池発電システムを提供する。
 このように、本発明の太陽電池を電気的に接続した太陽電池モジュールは、電気的に複数接続して太陽電池発電システムとすることができる。
 上記目的を達成するために、本発明は、結晶シリコン基板の第1主表面に、p型の導電型を有するp型領域を形成する工程と、
 前記第1主表面に、n型の導電型を有し該n型の導電型を付与する添加不純物の基板深さ方向における最大濃度が5×1018atoms/cm以上であるn型領域を形成する工程と、
 前記p型領域と前記n型領域を覆うように第1パッシベーション膜を形成する工程と、
 前記第1主表面の反対側の表面である第2主表面に、該第2主表面を覆うように第2パッシベーション膜を形成する工程と、
 前記p型領域の表面に接する正電極を形成する工程と、
 前記n型領域の表面に接する負電極を形成する工程と
 を有する裏面電極型太陽電池の製造方法であって、
 前記第1パッシベーション膜と前記第2パッシベーション膜を、酸化アルミニウムを含む化合物により形成することを特徴とする太陽電池の製造方法を提供する。
 このように、第1パッシベーション膜と第2パッシベーション膜を酸化アルミニウムを含む化合物により形成することにより、第1及び第2の主表面の両方においてパッシベーション効果が高く、そのため光電変換効率の高い太陽電池を製造することができる。また、製造工程が簡便であるので生産性が高く、安価な太陽電池を製造することができる。
 このとき、前記第2パッシベーション膜の上に、さらに反射防止膜を形成する工程を有することが好ましい。
 このように、第2パッシベーション膜の上に反射防止膜を形成することにより、受光面での反射が抑制され、より光電変換効率の高い太陽電池を製造することができる。
 また、前記第1パッシベーション膜の上に、さらに反射膜を形成する工程を有することが好ましい。
 このように、第1パッシベーション膜の上に反射膜を形成することにより、裏面での反射が促進され、より光電変換効率の高い太陽電池を製造することができる。
 また、前記正電極を形成する工程及び前記負電極を形成する工程は、
 前記第1パッシベーション膜又は前記反射膜の上に導電性ペーストを塗布するサブステップと、
 前記導電性ペーストを塗布した前記結晶シリコン基板を、700℃以上890℃以下の温度において、1秒以上10分以下で熱処理するサブステップを有することが好ましい。
 このようにして正電極及び負電極を形成すれば、簡便に電極を形成することができ、生産性が高まり、安価な太陽電池を製造することができる。
 本発明の太陽電池であれば、安価かつ光電変換効率が高い太陽電池とすることができる。また、本発明の太陽電池の製造方法によれば、パッシベーション膜のパッシベーション効果を高めることができ、簡便に製造できるため、光電変換効率の高い太陽電池を安価に製造することができる。
本発明に係る裏面電極型太陽電池の一実施態様を示す断面模式図である。 本発明に係る裏面電極型太陽電池の別の一実施態様を示す断面模式図である。 本発明に係る裏面電極型太陽電池のさらに別の実施態様を示す断面模式図である。 本発明に係る裏面電極型太陽電池のさらに別の実施態様を示す断面模式図である。 本発明に係る裏面電極型太陽電池の製造方法の一例を示す工程フロー図である。 不純物の基板深さ方向の濃度分布の一例を示す図である。 本発明に係る裏面電極型太陽電池の裏面構造を示す模式図である。 本発明に係る太陽電池モジュールの一例を示す概観図である。 本発明に係る太陽電池発電システムの模式図である。 一般的な裏面電極型太陽電池の断面模式図である。
 上記のように、近年、裏面電極型太陽電池において高いパッシベーション効果を簡便に得られるようにすることが問題となっていた。本発明者らは、このような高いパッシベーション効果を得る対策について鋭意検討して、本発明を完成させた。
 以下、本発明について、図を参照しながら詳細に説明するが、本発明はこれに限定されるものではない。
 以下に、本発明の太陽電池の実施態様を図1を用いて具体的に説明する。本発明の太陽電池は、結晶シリコン基板101の第1主表面(裏面)に、p型の導電型を有するp型領域102と、n型の導電型を有し該n型の導電型を付与する添加不純物の基板深さ方向における最大濃度が5×1018atoms/cm以上であるn型領域103とが配置され、p型領域102とn型領域103を覆うように第1パッシベーション膜104が配置され、第1主表面の反対側の表面である第2主表面に、該第2主表面を覆うように第2パッシベーション膜105が配置された裏面電極型太陽電池100であり、第1パッシベーション膜104と第2パッシベーション膜105が酸化アルミニウムを含む化合物からなるものである。なお、p型領域102とn型領域103の上にはそれぞれ正電極106と負電極107が配置されている。
 このように、第1パッシベーション膜104と第2パッシベーション膜105が酸化アルミニウムを含む化合物からなることにより、第1及び第2の主表面の両方においてパッシベーション効果が高く、そのため光電変換効率の高い太陽電池とすることができる。また、製造が簡便であるので安価な太陽電池とすることができる。
 このとき、第2主表面の少なくとも一部は、結晶シリコン基板101のバルクにおける導電型及び導電率と同じ導電型及び導電率を有することが好ましい。このように、第2主表面の少なくとも一部が基板のバルクにおける導電型及び導電率と同じ導電型及び導電率であれば、第2主表面に拡散層(FSF層等)等を設ける必要がなく、構造が簡単で安価な太陽電池とすることができる。
 図2~図4を参照して、本発明のさらなる態様を説明する。図2~図4において、図1の太陽電池と同様の構成要素は同じ符号を用いて示した。
 図2に示すように本発明の太陽電池200は、第2パッシベーション膜105の上に、さらに反射防止膜108が配置されたものであることが好ましい。このように、第2パッシベーション膜105の上に反射防止膜108が配置されることにより、受光面での反射が抑制され、より光電変換効率の高い太陽電池とすることができる。
 また、図3に示すように本発明の太陽電池300は、第1パッシベーション膜104の上に、さらに反射膜109が配置されたものであることが好ましい。このように、第1パッシベーション膜104の上に反射膜109が配置されることにより、裏面での反射が促進され、より光電変換効率の高い太陽電池とすることができる。
 また、図4に示すように本発明の太陽電池400は、第2パッシベーション膜105の上に反射防止膜108が配置され、第1パッシベーション膜104の上に反射膜109が配置された構成とすることもできる。このような構成とすることにより、一層光電変換効率の高い太陽電池とすることができる。
 また、反射防止膜108及び反射膜109が、酸化シリコン、フッ化マグネシウム、窒化シリコン、酸化錫、及び、酸化チタンの少なくともいずれかを含むものであることが好ましい。このような反射膜及び反射防止膜であれば、裏面電極型の太陽電池の反射膜及び反射防止膜として好適であり、より特性の良い太陽電池とすることができる。
 また、図1~図4のいずれの態様の太陽電池においても、第一主表面におけるp型領域102の占有面積がn型領域103の占有面積よりも大きいことが好ましい。酸化アルミニウムによるパッシベーション効果はn型領域よりもp型領域に対してより大きいので、p型領域の占有面積が大きければ、より光電変換効率の高い太陽電池とすることができる。
 次に、本発明の太陽電池の製造方法について説明する。本発明の太陽電池の製造方法は、結晶シリコン基板の第1主表面に、p型の導電型を有するp型領域を形成する工程と、第1主表面に、n型の導電型を有するn型領域を形成する工程と、p型領域とn型領域を覆うように第1パッシベーション膜を形成する工程と、第1主表面の反対側の表面である第2主表面に、第2主表面を覆うように第2パッシベーション膜を形成する工程と、p型領域の表面に接する正電極を形成する工程と、n型領域の表面に接する負電極を形成する工程とを有する裏面電極型太陽電池の製造方法であり、第1パッシベーション膜と第2パッシベーション膜を、酸化アルミニウムを含む化合物により形成する。
 以下では、図5を参照して、本発明の太陽電池(図1の態様)の製造方法の一例について説明するが、本発明はこれに限定されるものではない。
 図5(a)の基板101は、例えば、抵抗率が0.1~10Ω・cmのp型又はn型の導電型をもつ結晶シリコンである。図には示していないが、基板表面には光閉じ込めのための凹凸構造(テクスチャ)が形成されることが好ましい。凹凸構造は、基板101を酸性又はアルカリ溶液に一定時間浸漬することで得られる。酸性溶液には一般にフッ硝酸と酢酸、リン酸、硫酸、水などの混合酸溶液が用いられ、これに基板101を浸漬すると、基板加工時に荒れた表面の微細な溝が優先的にエッチングされるなどして、凹凸構造が形成される。また、アルカリ溶液は、水酸化カリウムや水酸化ナトリウム水溶液、あるいは水酸化テトラメチルアンモニウム水溶液が用いられる。アルカリエッチングはSi-OH結合を形成することでエッチングを進行させるためエッチング速度が結晶面方位に依存し、エッチング速度の遅い面が露出した凹凸構造が得られる。
 基板101の非受光面では必ずしも凹凸構造は必要ない。むしろ平坦化することにより表面積を減じてキャリア再結合損失を低減する効果が期待できる。その場合には、フッ硝酸を含んだ薬液を使用したスピンエッチングやインライン型の片面洗浄機が利用できる。
 凹凸構造形成後、塩酸、硫酸、硝酸、フッ酸等、もしくは、これらの混合液の酸性水溶液中で洗浄することが好ましい。コスト的及び特性的観点から、塩酸中での洗浄が好ましい。清浄度を向上するため、塩酸溶液中に、0.5~5%の過酸化水素を混合させ、60~90℃に加温して洗浄してもよい。
 次に、図5(b)に示すように、基板101の片面(第1主表面)にp型領域102を形成する。III族元素を含んだ拡散源であればp型領域形成に使用できるが、電気的特性と装置の簡易性から、例えば臭化ボロンを用いて900~1000℃で気相拡散するのがよい。本発明の太陽電池はp型領域を裏面にのみ形成する必要があり、これを達成するために基板同士を2枚重ね合わせた状態で拡散したり、受光面側に窒化シリコンなどの拡散バリアを形成したりして、受光面にボロンが拡散されないように工夫を施すことが好ましい。また、気相拡散の他、ボロン化合物を基板101に塗布して乾燥した後、900~1000℃で熱拡散してp型領域102を形成しても良い。この方法によれば、比較的容易に非塗布面へのボロン拡散が抑制できる。
 p型領域102の添加不純物濃度は、基板深さ方向の最大値で5×1018atoms/cm以上5×1020atoms/cm以下にするのが良く、さらに好ましくは8×1018atoms/cm以上5×1019atoms/cm以下程度にするのが良い。5×1018atoms/cm未満であると基板101と電極の接触抵抗が大きくなり、5×1020atoms/cmを超えると、p領域中の欠陥とオージェ再結合による電荷キャリアの再結合が顕著になって太陽電池の出力が低下する。
 次に、図5(c)に示すように、p型領域102の上に、拡散バリア510を形成する。これには、化学気相体積法や物理蒸着法で得られる窒化シリコン膜や酸化シリコン膜が好適に使用できる。膜の製造方法にもよるが、概ね厚さ50~400nmの膜を形成するのが好ましい。これらの他、熱処理で得られる酸化シリコン膜を用いても良い。この場合、基板101を700~1100℃の酸素又は水蒸気雰囲気中で熱処理し、20~200nmの酸化シリコンを成長させる。
 続いて図5(d)に示すようにn型領域形成箇所の拡散バリア510を部分的に除去して開口部511を形成し、p型領域102を露出させる。拡散バリア510の除去は、例えばエッチングペーストを所望箇所にスクリーン印刷し、100~400℃での熱処理を行うことで実現できる。また、工程がより簡素なレーザーアブレーションを用いてもよい。
 尚、この時の開口面積は、基板101の導電型によって最適な設計が求められるが、一般的にはエミッタとなる高濃度層の面積と太陽電池特性は比例の関係になる。本発明で用いる酸化アルミニウムはn型領域にも適用可能であるが、p型領域に対してより効果が高い。この性質上、本発明ではn型基板を用いた裏面電極型太陽電池でより高い効果が期待できる。
 次に、図5(e)に示すように、拡散バリアの開口部511において、n型領域103を形成する。このようにして、基板101の第1主表面に、n型の導電型を有するn型領域を形成する。V族元素を含んだ拡散源であればn型領域103を形成できるが、電気的特性と装置の簡易性から、例えばオキシ塩化リンを用いて800~980℃で気相拡散するのがよい。本発明の太陽電池はn型領域103を裏面(第1主表面)にのみ形成する必要があり、これを達成するために基板同士を2枚重ね合わせた状態で拡散したり、受光面側に窒化シリコンなどの拡散バリアを形成(不図示)したりして、受光面にリンが拡散されないように工夫を施すことが好ましい。また、気相拡散の他、リン化合物を基板に塗布して乾燥した後、800~980℃で熱拡散してn型領域103を形成しても良い。この方法によれば、比較的容易に非塗布面へのリン拡散が抑制できる。
 リン拡散は、上記の方法の他、拡散バリア(例えば酸化膜)の開口部511に露出したp型領域102をエッチング除去してから行っても良い。この場合、例えば基板101を水酸化ナトリウム水溶液や水酸化カリウム水溶液に浸漬することで、表面に形成されている酸化膜がマスクとして働き、p型領域102の露出部だけを除去できる。
 n型領域103の不純物濃度は、以下に述べる酸化アルミニウム膜の電界効果との関係から、基板深さ方向の最大値で5×1018atoms/cm以上にすることが好ましい。
 電界効果によるパッシベーション能力は、酸化アルミニウムの固定電荷密度と基板表面のキャリア密度で決定される。添加不純物濃度が5×1018atoms/cm未満のn型領域表面に負の固定電荷があると、少数キャリアの正孔が表面に集まって大きく反転状態へ向かう。これによりn型領域表面のキャリア再結合割合が低下する。しかしこのことは一方で、電極で再結合する少数キャリアが増加し、結果的には太陽電池の特性を低下させることになる。添加不純物濃度が5×1018atoms/cm以上の領域では電界効果は低下するが、酸化アルミニウムは結晶シリコン表面の化学終端能力も高いためパッシベーション効果が維持される。この効果は、酸化アルミニウム製膜時にシリコンと酸化アルミニウムとの界面に数原子層程度のシリコン酸化膜が形成されるためだと考えられている。
 一方で、添加不純物濃度が1×1021atoms/cm程度を超えると、n型領域中の欠陥とオージェ再結合による電荷キャリアの再結合が顕著になることによる太陽電池の出力の低下のおそれがある。このため、添加不純物濃度は1×1021atoms/cm以下にするのが好ましい。
 上記p型領域102とn型領域103の不純物濃度は、二次イオン質量分析法により容易に測定できる。図6はこの方法により測定したボロン濃度分布(図6中の(a))とリン濃度分布(図6中の(b))の例を示したものである。添加不純物や拡散条件により、濃度分布の形状は異なるが、同図中の矢印で示した値が添加不純物の基板深さ方向における最大濃度である。
 p型領域とn型領域の形成パターンは、例えば図7(a)に示すようにp型領域102とn型領域103が直線状に隣接する形式でも良い。また、図7(b)に示すようにp型領域702の中に島状のn型領域703が形成される形式でもよく、図7(c)に示すようにn型領域713の中に島状のp型領域712が形成される形式でもよい。
 なお、p型領域の形成工程とn型領域の形成工程の順序は逆であっても構わない。
 リン拡散後、拡散面に形成されたボロンガラス、拡散バリア、リンガラスをフッ酸などで除去する。基板101の表面の清浄性を保つため、より好ましくは、アンモニア水や水酸化テトラメチルアンモニウム水溶液と0.5~5%の過酸化水素を混合させ、60~90℃に加温して洗浄してもよい。これに加えて、さらに塩酸、硫酸、硝酸、もしくはこれらの混合液、あるいはこれらと0.5~5%の過酸化水素を混合させ、60~90℃に加温して洗浄してもよい。また、好ましくは洗浄の最後の段階でフッ酸水溶液により基板表面の酸化膜を除去するのが良い。
 次に、図5(f)に示すように、p型領域102とn型領域103の上に第1パッシベーション膜104、さらに、その反対面(第2主表面)に第2パッシベーション膜105を形成する。いずれのパッシベーション膜も酸化アルミニウムを含む化合物により形成された膜である。酸化アルミニウムの製膜方法には、原子層堆積法の他、プラズマCVD、大気圧CVD、あるいは減圧CVDなどの化学気相堆積法が主に用いられる。これらの手法では、プリカーサとしてテトラメチルアルミニウムを使い、また、プリカーサにキャリアガスを導入する場合は水素やアルゴン又は窒素を用いるのが一般的である。アルミニウムの酸化剤には、酸素、二酸化炭素、亜酸化窒素、水又はオゾンなどが使用できる。
 また、酸化アルミニウムを含むパッシベーション膜の形成には、真空蒸着法やスパッタ法を用いてもよい。また、アルミニウムアルコキシドなどの化合物を使ったゾルゲル法によって形成しても良い。
 第1パッシベーション膜104と第2パッシベーション膜105は両面を同時に形成しても良いし、片面ずつ形成しても良い。同時に形成する場合には、原子層堆積法が適している。この場合、100~350℃程度に保った反応室へ、両面が反応ガスに触れるように基板101を設置し、そこへ酸化ガスとプリカーサを交互に導入及びガス置換することで、酸化アルミニウム膜が形成される。
 第1パッシベーション膜104と第2パッシベーション膜105の組成を変えても良い。このような片面ずつの膜形成では、従来型の平板型プラズマCVDやスパッタ及びゾルゲル法などが適している。
 第1パッシベーション膜104及び第2パッシベーション膜105の厚さは0.5nm以上、好ましくは3nm~30nm(3nm以上30nm以下)とするのが良い。第1及び第2パッシベーション膜の膜厚をこの膜厚範囲にすることで、基板101に対するパッシベーション膜のカバレッジとパッシベーション効果を同時に得ることができる。
 また、第1パッシベーション膜104に、太陽電池裏面に到達する光を再度基板内へ反射させる反射膜としての機能を兼ねさせる場合には、膜厚を70nm以上200nm以下、より好ましくは80nm以上100nm以下とするのがよい。膜厚が70nm以上200nm以下であれば、反射膜としての機能を好適に発揮させることができる。
 基板裏面の光反射を改善するために、図3のように第1パッシベーション膜104の上に、さらに酸化アルミニウム以外の化合物からなる反射膜109を形成しても良い。反射膜109には酸化シリコン、フッ化マグネシウム、窒化シリコン、酸化錫、酸化チタンなどが使用できる。これらの膜は化学気相堆積やスパッタ、真空蒸着などの手法で形成してよい。反射膜109の膜厚は、第1パッシベーション膜104の膜厚や反射膜109の屈折率にもよるが、概ね80~250nmとするのが良い。
 一方、第2パッシベーション膜105に反射防止膜としての機能を兼ねさせる場合には、膜厚を70nm以上200nm以下、より好ましくは80nm以上150nm以下とするのがよい。第2パッシベーション膜105の膜厚が70nm以上200nm以下であれば、反射膜としての機能を好適に発揮させることができる。
 また、受光面の反射防止効果を改善するために、図2のように第2パッシベーション膜105の上に、さらに酸化アルミニウム以外の化合物からなる反射防止膜108を形成しても良い。反射防止膜108には酸化シリコン、フッ化マグネシウム、窒化シリコン、酸化錫、酸化チタンなどが使用できる。これらの膜は化学気相堆積やスパッタ、真空蒸着などの手法で形成してよい。反射防止膜108の膜厚は、第2パッシベーション膜105の膜厚や反射防止膜の屈折率にもよるが、概ね50~120nmとするのが良い。
 また図4に示すように、図2と図3の特徴を併せて、太陽電池の裏面にパッシベーション膜104と反射膜109の積層体を形成し、受光面にパッシベーション膜105と反射防止膜108の積層体を形成しても良い。
 酸化アルミニウム膜は、製法にもよるが、300~600℃の熱処理を施すことでパッシベーション効果が改善することが知られている。製膜温度がこれらの温度帯より低い場合には、酸化アルミニウム製膜後、反射膜や反射防止膜の積層前に上記温度帯の不活性ガス雰囲気もしくは水素濃度2~10%の水素混合窒素雰囲気で5~20分の熱処理を行うことが好ましい。
 次に、図5(g)に示すようにp型領域102の上に正電極106を、n型領域103の上に負電極107を形成する。この正電極106を形成する工程及び負電極107を形成する工程は、第1パッシベーション膜104又は反射膜109の上に導電性ペーストを塗布するサブステップと、導電性ペーストを塗布した結晶シリコン基板101を、700℃以上890℃以下の温度において、1秒以上10分以下で熱処理するサブステップを有していてよい。ここで、電極の形成方法に特に制限は無いが、生産性の観点から、導電性ペーストのスクリーン印刷又はディスペンサー形成が良い。具体的には、正電極106及び負電極107は、Ag粉末及びガラスフリットを有機バインダーと混合したAgペーストを、パッシベーション膜104を介してp型領域102とn型領域103の上へ塗布して乾燥後、1秒以上30分間以下、好ましくは1秒以上10分以下、700℃以上890℃程度の温度で焼成することにより形成される。この熱処理によりパッシベーション膜104、もしくはパッシベーション膜104と反射膜がAgペーストに侵食され、電極とシリコンが電気的に接触する。
 また、電極の形成にはメッキを適用しても良い。この場合は電極形成箇所の基板表面を露出させる必要があるため、当該箇所のパッシベーション膜104を、例えばレーザーアブレーションで除去することができる。
 上述した本発明の太陽電池を、複数電気的に接続することで太陽電池モジュールが得られる。図8は、本発明の太陽電池を電気的に接続して成る太陽電池モジュール16の非受光面における構成の一例を示す概観図である。太陽電池の正電極26が隣接する太陽電池の負電極27にタブ12によって電気的に接続され、所定の出力に必要な枚数の太陽電池11が連結されている。接続された太陽電池11は、図には示してないが、カバーガラスと充填剤、さらにバックシートによって封止されている。カバーガラスにはソーダライムガラスが広く使用される。また充填剤にはエチレンビニルアセテートやポリオレフィン又はシリコーンなどが使用される。バックシートにはポリエチレンテレフタレートを使用した機能性フィルムが一般的に用いられている。なお、1つの太陽電池の正電極26は太陽電池モジュール16の正極端子13に接続され、別の1つの太陽電池の負電極27は太陽電池モジュール16の負極端子14に接続されている。
 図9は本発明の太陽電池モジュール16を連結した太陽電池発電システムの基本構成を示したものである。本発明の太陽電池発電システムは、上述した本発明の太陽電池モジュール16を電気的に複数接続して成るものである。図9に示したように、複数の太陽電モジュール16が配線15で直列に連結され、インバータ17を経由して外部負荷回路18に発電電力を供給する。同図には示していないが、当該システムは発電した電力を蓄電する2次電池をさらに備えていて良い。
 以下、実施例及び比較例を示して本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。
(実施例1)
 150mm角、厚さ200μm、比抵抗1Ω・cmのリンドープ<100>n型アズカットシリコン基板において、熱濃水酸化カリウム水溶液によりダメージ層を除去後、80℃の5%水酸化カリウム水溶液中に基板を20分間浸漬し、ランダムピラミッド状のテクスチャを形成し、引き続き塩酸/過酸化水素混合溶液中で洗浄を行った。
 次いで、基板裏面にホウ素化合物とバインダーの混合物をスピンコートし、1000℃で、30分間の熱処理でボロン拡散し、p型領域を形成した。その後、さらに続けて1000℃、2時間の酸化熱処理を行い、酸化膜(シリコン酸化膜)を形成した。酸化膜形成後、基板裏面のn型領域を形成する箇所の酸化膜を、波長532nmのレーザー照射でライン状に除去した。
 次に、受光面を向い合せて2枚1組にした基板を石英ボートに装填し、オキシ塩化リンを用いて820℃で30分間の熱処理を行い、n型領域を形成した。この工程の後、任意抽出したサンプルにおいて、p型領域とn型領域の基板深さ方向におけるピーク不純物濃度を二次イオン質量分光法で測定したところ、p型領域は5×1019atoms/cm、n型領域は3×1019atoms/cmであった。
 その基板を10%のHF水溶液に浸漬してガラス層と酸化膜を除去した後、さらに80℃の塩酸水と過酸化水素水の混合液と2%のHF水溶液に順次浸漬して洗浄し、純水でのリンス後に乾燥した。
 洗浄後の基板の受光面に原子層堆積法により膜厚100nmの酸化アルミニウムを形成し、さらに、その裏側に膜厚10nmの酸化アルミニウムを形成した。その後、基板を450℃の窒素雰囲気で15分間熱処理した。基板裏面には、さらにプラズマCVDにより、膜厚90nmの窒化シリコン膜を形成した。
 上記p型領域とn型領域上に、スクリーン印刷によりAgペーストを塗布し、800℃、3秒間の熱処理を行ってAgペーストを硬化させ、太陽電池を得た。最後に、キセノンランプ光源式の疑似太陽光を使い、太陽電池の出力特性を測定した。
(実施例2)
 実施例1でp型領域とn型領域を形成した基板の裏面に、原子層堆積法により膜厚100nmの酸化アルミニウムを形成し、さらに、受光面に膜厚10nmの酸化アルミニウムを形成した。その後、その基板を450℃の窒素雰囲気で15分間熱処理した。基板受光面には、さらにプラズマCVDにより、膜厚90nmの窒化シリコン膜を形成した。
 上記p型領域とn型領域上に、スクリーン印刷によりAgペーストを塗布し、800℃、3秒間の熱処理を行ってAgペーストを硬化させ、太陽電池を得た。最後に、キセノンランプ光源式の疑似太陽光を使い、太陽電池の出力特性を測定した。
(実施例3)
 実施例1でp型領域とn型領域を形成した基板の両面に、原子層堆積法により膜厚10nmの酸化アルミニウムを形成し、その後、基板を450℃の窒素雰囲気で15分間熱処理した。基板両面には、さらにプラズマCVDにより、膜厚90nmの窒化シリコン膜を形成した。
 上記p型領域とn型領域上に、スクリーン印刷によりAgペーストを塗布し、800℃、3秒間の熱処理を行ってAgペーストを硬化させ、太陽電池を得た。最後に、キセノンランプ光源式の疑似太陽光を使い、太陽電池の出力特性を測定した。
(実施例4)
 150mm角、厚さ200μm、比抵抗1Ω・cmのボロンドープ<100>p型アズカットシリコン基板を用い、実施例1と同様の太陽電池を作製した。その後、キセノンランプ光源式の疑似太陽光を使い、太陽電池の出力特性を測定した。
(実施例5)
 150mm角、厚さ200μm、比抵抗1Ω・cmのリンドープ<100>n型アズカットシリコン基板において、熱濃水酸化カリウム水溶液によりダメージ層を除去後、80℃の5%水酸化カリウム水溶液中に20分間浸漬し、ランダムピラミッド状のテクスチャを形成し、引き続き塩酸/過酸化水素混合溶液中で洗浄を行った。
 次いで、基板裏面にホウ酸化合物とバインダーの混合物をスピンコートし、1000℃で、30分間の熱処理でボロン拡散し、p型領域を形成した。その後、さらに続けて1000℃、2時間の酸化熱処理を行い、酸化膜を形成した。酸化膜形成後、基板裏面のn型領域を形成する箇所の酸化膜を、波長532nmのレーザー照射で島状に除去した。尚、この時のn型領域の占有面積は実施例1に比べて25%削減してある。
 次に、受光面を向い合せて2枚1組にした基板を石英ボートに装填し、オキシ塩化リンを用いて820℃で30分間の熱処理を行い、n型領域を形成した。この工程の後、任意抽出したサンプルにおいて、p型領域とn型領域の基板深さ方向におけるピーク不純物濃度を二次イオン質量分光法で測定したところ、p型領域は5×1019atoms/cm、n型領域は3×1019atoms/cmであった。
 その基板を10%のHF水溶液に浸漬してガラス層と酸化膜を除去した後、さらに80℃の塩酸水と過酸化水素水の混合液と2%のHF水溶液に順次浸漬して洗浄し、純水でのリンス後に乾燥した。
 基板の両面に、原子層堆積法により膜厚10nmの酸化アルミニウムを形成し、その後基板を450℃の窒素雰囲気で15分間熱処理した。基板両面には、さらにプラズマCVDにより、膜厚90nmの窒化シリコン膜を形成した。
 上記p型領域とn型領域に、スクリーン印刷によりAgペーストを塗布し、800℃、3秒間の熱処理を行ってAgペーストを硬化させ、太陽電池を得た。最後に、キセノンランプ光源式の疑似太陽光を使い、太陽電池の出力特性を測定した。
(比較例1)
 実施例1でp型領域とn型領域を形成した基板の裏面に、原子層堆積法により膜厚10nmの酸化アルミニウムを形成した。次に、スクリーン印刷によりp型領域を酸レジストで覆って乾燥させた後、露出しているn型領域上の酸化アルミニウムを2%のフッ酸水溶液で除去した。酸レジスト除去及び基板洗浄後、基板を450℃の窒素雰囲気で15分間熱処理した。基板両面には、さらにプラズマCVDにより、膜厚90nmの窒化シリコン膜を形成した。
 上記p型領域とn型領域に、スクリーン印刷によりAgペーストを塗布し、800℃、3秒間の熱処理を行ってAgペーストを硬化させ、太陽電池を得た。最後に、キセノンランプ光源式の疑似太陽光を使い、太陽電池の出力特性を測定した。
(比較例2)
 実施例1でp型領域とn型領域を形成した基板の受光面にリン化合物とバインダーを混合させたリン拡散源を塗布し、塗布面を向かい合わせた状態で820℃、10分の熱処理を行い、受光面にFSF層を形成した。次に、基板を10%のHF水溶液に浸漬してガラス層を除去した後、さらに80℃の塩酸水と過酸化水素水の混合液と2%のHF水溶液に順次浸漬して洗浄し、純水でのリンス後に乾燥した。
 その後、基板両面に原子層堆積法により膜厚10nmの酸化アルミニウムを形成した。次に、スクリーン印刷によりp型領域を酸レジストで覆って乾燥させた後、露出しているn型領域上の酸化アルミニウムを2%のフッ酸水溶液で除去した。酸レジスト除去及び基板洗浄後、基板を450℃の窒素雰囲気で15分間熱処理した。基板両面には、さらにプラズマCVDにより、膜厚90nmの窒化シリコン膜を形成した。
 上記p型領域とn型領域に、スクリーン印刷によりAgペーストを塗布し、800℃、3秒間の熱処理を行ってAgペーストを硬化させ、太陽電池を得た。最後に、キセノンランプ光源式の疑似太陽光を使い、太陽電池の出力特性を測定した。
(比較例3)
 実施例1でp型領域とn型領域を形成した基板の受光面にリン化合物とバインダーを混合させたリン拡散源を塗布し、塗布面を向かい合わせた状態で820℃、10分の熱処理を行い、受光面にFSF層を形成した。次に、基板を10%のHF水溶液に浸漬してガラス層を除去した後、さらに80℃の塩酸水と過酸化水素水の混合液と2%のHF水溶液に順次浸漬して洗浄後し、純水でのリンス後に乾燥した。
 その後、基板を900℃の酸素雰囲気で10分間熱処理し、基板の両面に酸化シリコン膜(膜厚約10nm)を形成した。基板両面には、さらにプラズマCVDにより、膜厚90nmの窒化シリコン膜を形成した。
 上記p型領域とn型領域に、スクリーン印刷によりAgペーストを塗布し、800℃、3秒間の熱処理を行ってAgペーストを硬化させ、太陽電池を得た。最後に、キセノンランプ光源式の疑似太陽光を使い、太陽電池の出力特性を測定した。
(比較例4)
 実施例3と同様の工程で作製した太陽電池において、リン拡散条件を調整し、n型領域の基板深さ方向におけるピーク不純物濃度を3×1018atoms/cmとした。最後に、キセノンランプ光源式の疑似太陽光を使い、太陽電池の出力特性を測定した。
(比較例5)
 実施例4でp型領域とn型領域を形成した基板の受光面に、原子層堆積法により膜厚10nmの酸化アルミニウムを形成し、基板を450℃の窒素雰囲気で15分間熱処理した。基板両面には、さらにプラズマCVDにより、膜厚90nmの窒化シリコン膜を形成した。
 上記p型領域とn型領域に、スクリーン印刷によりAgペーストを塗布し、800℃、3秒間の熱処理を行ってAgペーストを硬化させ、太陽電池を得た。最後に、キセノンランプ光源式の疑似太陽光を使い、太陽電池の出力特性を測定した。
 上記実施例1~5及び比較例1~5の太陽電池の特性をまとめて以下の表1に示す。表1において、Jscは短絡電流、Vocは開放電圧、FFは曲線因子、Eff.は変換効率である。本発明による太陽電池の変換効率はいずれも22.0%以上であり、比較例より高い変換効率を示した。また、実施例5の結果から、本発明はp型領域の占有面積がより大きい太陽電池構造において、特に有効であることが示された。
Figure JPOXMLDOC01-appb-T000001
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。
 

Claims (12)

  1.  結晶シリコン基板の第1主表面に、p型の導電型を有するp型領域と、n型の導電型を有し該n型の導電型を付与する添加不純物の基板深さ方向における最大濃度が5×1018atoms/cm以上であるn型領域とが配置され、前記p型領域と前記n型領域を覆うように第1パッシベーション膜が配置され、前記第1主表面の反対側の表面である第2主表面に、該第2主表面を覆うように第2パッシベーション膜が配置された裏面電極型太陽電池であって、
     前記第1パッシベーション膜と前記第2パッシベーション膜が酸化アルミニウムを含む化合物からなるものであることを特徴とする太陽電池。
  2.  前記第2主表面の少なくとも一部は、前記結晶シリコン基板のバルクにおける導電型及び導電率と同じ導電型及び導電率を有することを特徴とする請求項1に記載の太陽電池。
  3.  前記第2パッシベーション膜の上に、さらに反射防止膜が配置されたものであることを特徴とする請求項1又は請求項2に記載の太陽電池。
  4.  前記第1パッシベーション膜の上に、さらに反射膜が配置されたものであることを特徴とする請求項1から請求項3のいずれか1項に記載の太陽電池。
  5.  前記反射防止膜及び前記反射膜が、酸化シリコン、フッ化マグネシウム、窒化シリコン、酸化錫、及び、酸化チタンの少なくともいずれかを含むものであることを特徴とする請求項1から請求項4のいずれか1項に記載の太陽電池。
  6.  前記第一主表面における前記p型領域の占有面積が前記n型領域の占有面積よりも大きいことを特徴とする請求項1から請求項5のいずれか1項に記載の太陽電池。
  7.  請求項1から請求項6のいずれか1項に記載の太陽電池を電気的に接続して成るものであることを特徴とする太陽電池モジュール。
  8.  請求項7に記載の太陽電池モジュールを電気的に複数接続して成るものであることを特徴とする太陽電池発電システム。
  9.  結晶シリコン基板の第1主表面に、p型の導電型を有するp型領域を形成する工程と、
     前記第1主表面に、n型の導電型を有し該n型の導電型を付与する添加不純物の基板深さ方向における最大濃度が5×1018atoms/cm以上であるn型領域を形成する工程と、
     前記p型領域と前記n型領域を覆うように第1パッシベーション膜を形成する工程と、
     前記第1主表面の反対側の表面である第2主表面に、該第2主表面を覆うように第2パッシベーション膜を形成する工程と、
     前記p型領域の表面に接する正電極を形成する工程と、
     前記n型領域の表面に接する負電極を形成する工程と
     を有する裏面電極型太陽電池の製造方法であって、
     前記第1パッシベーション膜と前記第2パッシベーション膜を、酸化アルミニウムを含む化合物により形成することを特徴とする太陽電池の製造方法。
  10.  前記第2パッシベーション膜の上に、さらに反射防止膜を形成する工程を有することを特徴とする請求項9に記載の太陽電池の製造方法。
  11.  前記第1パッシベーション膜の上に、さらに反射膜を形成する工程を有することを特徴とする請求項9又は請求項10に記載の太陽電池の製造方法。
  12.  前記正電極を形成する工程及び前記負電極を形成する工程は、
     前記第1パッシベーション膜又は前記反射膜の上に導電性ペーストを塗布するサブステップと、
     前記導電性ペーストを塗布した前記結晶シリコン基板を、700℃以上890℃以下の温度において、1秒以上10分以下で熱処理するサブステップを有することを特徴とする請求項9から請求項11のいずれか1項に記載の太陽電池の製造方法。
     
PCT/JP2016/004824 2016-11-07 2016-11-07 高光電変換効率太陽電池及び高光電変換効率太陽電池の製造方法 WO2018083722A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP16886817.2A EP3343639A4 (en) 2016-11-07 2016-11-07 Solar cell with high photoelectric conversion efficiency and method for producing solar cell with high photoelectric conversion efficiency
PCT/JP2016/004824 WO2018083722A1 (ja) 2016-11-07 2016-11-07 高光電変換効率太陽電池及び高光電変換効率太陽電池の製造方法
JP2017519721A JP6330108B1 (ja) 2016-11-07 2016-11-07 高光電変換効率太陽電池及び高光電変換効率太陽電池の製造方法
KR1020197012861A KR102674774B1 (ko) 2016-11-07 2016-11-07 고광전변환효율 태양전지 및 고광전변환효율 태양전지의 제조 방법
US16/076,173 US11631779B2 (en) 2016-11-07 2016-11-07 Solar cell with high photoelectric conversion efficiency and method for manufacturing solar cell with high photoelectric conversion efficiency
CN201680090602.8A CN110073498A (zh) 2016-11-07 2016-11-07 高光电变换效率太阳能电池及高光电变换效率太阳能电池的制造方法
TW106106848A TWI650872B (zh) 2016-11-07 2017-03-02 太陽能電池及其製造方法、太陽能電池模組及太陽能電池發電系統

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/004824 WO2018083722A1 (ja) 2016-11-07 2016-11-07 高光電変換効率太陽電池及び高光電変換効率太陽電池の製造方法

Publications (1)

Publication Number Publication Date
WO2018083722A1 true WO2018083722A1 (ja) 2018-05-11

Family

ID=62076818

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/004824 WO2018083722A1 (ja) 2016-11-07 2016-11-07 高光電変換効率太陽電池及び高光電変換効率太陽電池の製造方法

Country Status (7)

Country Link
US (1) US11631779B2 (ja)
EP (1) EP3343639A4 (ja)
JP (1) JP6330108B1 (ja)
KR (1) KR102674774B1 (ja)
CN (1) CN110073498A (ja)
TW (1) TWI650872B (ja)
WO (1) WO2018083722A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109065639A (zh) * 2018-06-22 2018-12-21 晶澳(扬州)太阳能科技有限公司 N型晶体硅太阳能电池及制备方法、光伏组件

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6741626B2 (ja) * 2017-06-26 2020-08-19 信越化学工業株式会社 高効率裏面電極型太陽電池及びその製造方法
CN117080277A (zh) * 2021-02-23 2023-11-17 浙江晶科能源有限公司 太阳能电池及其制作方法、光伏组件

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008010746A (ja) 2006-06-30 2008-01-17 Sharp Corp 太陽電池、および太陽電池の製造方法
JP2014072450A (ja) * 2012-09-28 2014-04-21 Hitachi Chemical Co Ltd 半導体基板パッシベーション膜形成用組成物、パッシベーション膜付半導体基板及びその製造方法、並びに太陽電池素子及びその製造方法
JP2015507315A (ja) * 2011-11-11 2015-03-05 サムスン エレクトロニクス カンパニー リミテッド 導電性ペースト、前記導電性ペーストを用いて形成された電極を含む電子素子及び太陽電池
US20150068591A1 (en) * 2013-09-12 2015-03-12 International Business Machines Corporation Shallow junction photovoltaic devices
WO2016051628A1 (ja) * 2014-09-30 2016-04-07 信越化学工業株式会社 太陽電池及びその製造方法

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3300812B2 (ja) * 2000-01-19 2002-07-08 独立行政法人産業技術総合研究所 光電変換素子
JP4945916B2 (ja) * 2005-04-08 2012-06-06 トヨタ自動車株式会社 光電変換素子
JP2006332273A (ja) * 2005-05-25 2006-12-07 Sharp Corp 裏面電極型太陽電池
US8481845B2 (en) * 2008-02-05 2013-07-09 Gtat Corporation Method to form a photovoltaic cell comprising a thin lamina
KR101155343B1 (ko) * 2008-02-25 2012-06-11 엘지전자 주식회사 백 콘택 태양전지의 제조 방법
JP5149376B2 (ja) * 2008-03-31 2013-02-20 京セラ株式会社 太陽電池素子及び太陽電池モジュール
US20090314338A1 (en) * 2008-06-19 2009-12-24 Renewable Energy Corporation Asa Coating for thin-film solar cells
KR20110138394A (ko) * 2009-03-26 2011-12-27 비피 코포레이션 노쓰 아메리카 인코포레이티드 열적으로 확산된 도핑된 영역들에서 레이저 소성된 콘택들을 갖는 태양 전지를 위한 장치 및 방법
MY162597A (en) * 2009-09-18 2017-06-30 Shinetsu Chemical Co Solar cell, method for manufacturing solar cell, and solar cell module
JP5215330B2 (ja) 2010-02-01 2013-06-19 シャープ株式会社 裏面電極型太陽電池の製造方法、裏面電極型太陽電池および裏面電極型太陽電池モジュール
JP5213188B2 (ja) * 2010-04-27 2013-06-19 シャープ株式会社 裏面電極型太陽電池、および裏面電極型太陽電池の製造方法
JP4831709B2 (ja) 2010-05-21 2011-12-07 シャープ株式会社 半導体装置および半導体装置の製造方法
JP5636760B2 (ja) 2010-06-21 2014-12-10 シャープ株式会社 シリコンウエハ、半導体装置、シリコンウエハの製造方法および半導体装置の製造方法
US8809097B1 (en) * 2010-09-22 2014-08-19 Crystal Solar Incorporated Passivated emitter rear locally patterned epitaxial solar cell
US20120111399A1 (en) * 2010-11-08 2012-05-10 E. I. Du Pont De Nemours And Company Solar cell electrode
CN103493148B (zh) * 2011-04-21 2016-01-20 昭荣化学工业株式会社 导电性糊膏
CN102222726B (zh) 2011-05-13 2013-06-26 晶澳(扬州)太阳能科技有限公司 采用离子注入法制作交错背接触ibc晶体硅太阳能电池的工艺
WO2013000025A1 (en) * 2011-06-30 2013-01-03 Newsouth Innovations Pty Limited Metallisation method
JP2013012668A (ja) 2011-06-30 2013-01-17 Sharp Corp 太陽電池用ウエハ、太陽電池およびその製造方法
JP2013012667A (ja) 2011-06-30 2013-01-17 Sharp Corp 太陽電池用ウエハ、太陽電池およびその製造方法
CN202585429U (zh) * 2011-12-27 2012-12-05 广东爱康太阳能科技有限公司 一种背面点接触晶硅太阳电池
JP5924945B2 (ja) 2012-01-11 2016-05-25 東洋アルミニウム株式会社 ペースト組成物
JP2013222747A (ja) 2012-04-13 2013-10-28 Nagase Chemtex Corp 塗布拡散剤組成物、塗布拡散剤組成物の製造方法、太陽電池及び太陽電池の製造方法
TWI569461B (zh) 2012-07-19 2017-02-01 日立化成股份有限公司 太陽電池元件及其製造方法及太陽電池模組
CN202749376U (zh) * 2012-08-16 2013-02-20 西安黄河光伏科技股份有限公司 一种背钝化太阳能电池
US9379258B2 (en) * 2012-11-05 2016-06-28 Solexel, Inc. Fabrication methods for monolithically isled back contact back junction solar cells
JP2014154656A (ja) 2013-02-07 2014-08-25 Dainippon Screen Mfg Co Ltd 結晶シリコン型太陽電池、およびその製造方法
US20150243812A1 (en) * 2013-06-20 2015-08-27 PLANT PV, Inc. Silver nanoparticle based composite solar metallization paste
KR102053140B1 (ko) * 2013-09-09 2019-12-06 엘지전자 주식회사 태양 전지
CN103618033A (zh) * 2013-12-05 2014-03-05 欧贝黎新能源科技股份有限公司 一种背钝化太阳电池的丝网印刷生产制备法
WO2015151422A1 (ja) 2014-03-31 2015-10-08 国立研究開発法人科学技術振興機構 太陽電池および太陽電池の製造方法
JP6238884B2 (ja) 2014-12-19 2017-11-29 三菱電機株式会社 光起電力素子およびその製造方法
CN105789342B (zh) 2016-03-07 2018-01-23 中山大学 一种氧化物‑金属多层膜背接触晶体硅太阳电池及其制备方法
CN105914249B (zh) 2016-06-27 2018-07-17 泰州隆基乐叶光伏科技有限公司 全背电极接触晶硅太阳能电池结构及其制备方法
WO2018078667A1 (ja) 2016-10-25 2018-05-03 信越化学工業株式会社 高光電変換効率太陽電池及び高光電変換効率太陽電池の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008010746A (ja) 2006-06-30 2008-01-17 Sharp Corp 太陽電池、および太陽電池の製造方法
JP2015507315A (ja) * 2011-11-11 2015-03-05 サムスン エレクトロニクス カンパニー リミテッド 導電性ペースト、前記導電性ペーストを用いて形成された電極を含む電子素子及び太陽電池
JP2014072450A (ja) * 2012-09-28 2014-04-21 Hitachi Chemical Co Ltd 半導体基板パッシベーション膜形成用組成物、パッシベーション膜付半導体基板及びその製造方法、並びに太陽電池素子及びその製造方法
US20150068591A1 (en) * 2013-09-12 2015-03-12 International Business Machines Corporation Shallow junction photovoltaic devices
WO2016051628A1 (ja) * 2014-09-30 2016-04-07 信越化学工業株式会社 太陽電池及びその製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3343639A4
WILLIAM P. MULLIGAN ET AL., PROCEEDINGS OF 19TH EUPVSEC, 2004, pages 387 - 390

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109065639A (zh) * 2018-06-22 2018-12-21 晶澳(扬州)太阳能科技有限公司 N型晶体硅太阳能电池及制备方法、光伏组件

Also Published As

Publication number Publication date
EP3343639A4 (en) 2018-09-26
US11631779B2 (en) 2023-04-18
EP3343639A1 (en) 2018-07-04
KR102674774B1 (ko) 2024-06-12
TW201818557A (zh) 2018-05-16
JP6330108B1 (ja) 2018-05-23
TWI650872B (zh) 2019-02-11
JPWO2018083722A1 (ja) 2018-11-08
US20190181288A1 (en) 2019-06-13
KR20190079622A (ko) 2019-07-05
CN110073498A (zh) 2019-07-30

Similar Documents

Publication Publication Date Title
JP6285545B2 (ja) 太陽電池素子および太陽電池モジュール
WO2012133692A1 (ja) 太陽電池素子および太陽電池モジュール
WO2011145731A1 (ja) 太陽電池素子およびその製造方法ならびに太陽電池モジュール
JP5737204B2 (ja) 太陽電池及びその製造方法
JP5991945B2 (ja) 太陽電池および太陽電池モジュール
JP2013165160A (ja) 太陽電池の製造方法及び太陽電池
JP2014011246A (ja) 太陽電池素子および太陽電池モジュール
JP6330108B1 (ja) 高光電変換効率太陽電池及び高光電変換効率太陽電池の製造方法
WO2013100085A1 (ja) 太陽電池素子、太陽電池素子の製造方法および太陽電池モジュール
JP6688244B2 (ja) 高効率太陽電池の製造方法及び太陽電池セルの製造システム
CN117352591A (zh) 太阳能电池的制造方法
JP2016139762A (ja) 太陽電池素子の製造方法
CN115207169B (zh) P型ibc太阳能电池片及其制备方法、电池组件和光伏系统
JP6162076B2 (ja) 太陽電池モジュールおよびその製造方法
JP5744202B2 (ja) アルミナ膜の形成方法
KR102581702B1 (ko) 고광전변환효율 태양전지 및 고광전변환효율 태양전지의 제조방법
JP2015106585A (ja) 太陽電池素子の製造方法および太陽電池モジュール
KR102563642B1 (ko) 고효율 이면전극형 태양전지 및 그 제조방법
WO2017057618A1 (ja) 太陽電池素子およびその製造方法並びに太陽電池モジュール
JP5316491B2 (ja) 太陽電池の製造方法
JP2015106586A (ja) 太陽電池素子の製造方法および太陽電池モジュール

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017519721

Country of ref document: JP

REEP Request for entry into the european phase

Ref document number: 2016886817

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20197012861

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE