WO2015151422A1 - 太陽電池および太陽電池の製造方法 - Google Patents

太陽電池および太陽電池の製造方法 Download PDF

Info

Publication number
WO2015151422A1
WO2015151422A1 PCT/JP2015/001413 JP2015001413W WO2015151422A1 WO 2015151422 A1 WO2015151422 A1 WO 2015151422A1 JP 2015001413 W JP2015001413 W JP 2015001413W WO 2015151422 A1 WO2015151422 A1 WO 2015151422A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
conductivity type
solar cell
top cell
cell according
Prior art date
Application number
PCT/JP2015/001413
Other languages
English (en)
French (fr)
Inventor
幸美 市川
Original Assignee
国立研究開発法人科学技術振興機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人科学技術振興機構 filed Critical 国立研究開発法人科学技術振興機構
Priority to JP2016511357A priority Critical patent/JP6188921B2/ja
Priority to CN201580017041.4A priority patent/CN106165120B/zh
Publication of WO2015151422A1 publication Critical patent/WO2015151422A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • H01L31/0747Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells comprising a heterojunction of crystalline and amorphous materials, e.g. heterojunction with intrinsic thin layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/043Mechanically stacked PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells back-junction, i.e. rearside emitter, solar cells, e.g. interdigitated base-emitter regions back-junction cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Definitions

  • the present invention relates to solar cell technology, and more particularly, to a silicon solar cell having a higher photoelectric conversion efficiency than a conventional solar cell and a method for manufacturing the same.
  • tandem solar cells in which a plurality of photoelectric conversion units are stacked are known in order to improve photoelectric conversion efficiency by photoelectrically converting sunlight in a wide wavelength range.
  • Patent Documents 1 to 3. In order to further improve the photoelectric conversion efficiency of such a tandem solar cell, it is necessary to further increase the utilization efficiency of light and improve the output current.
  • a heterojunction solar cell in which amorphous Si is deposited on both sides of the single crystal Si wafer, and on the side opposite to the incident light side.
  • This is a back contact solar cell in which an emitter and a back surface electric field region (BSF region) are formed on the surface.
  • BSF region back surface electric field region
  • the present invention has been made in view of such problems, and its object is to reduce the Auger recombination in the crystalline Si layer by thinning the crystalline Si layer of the top cell, and An object of the present invention is to provide a tandem Si solar cell with high photoelectric conversion efficiency and a manufacturing method thereof, in which a thin crystalline Si layer is not damaged even in a manufacturing process.
  • a solar cell according to the present invention has a top cell provided on a main surface of a base, and the top cell is sequentially formed from a light incident side, a transparent conductive layer and a first conductive layer.
  • the substrate is provided with a back electrode, and the thickness of the second conductivity type crystalline Si layer of the top cell is 30 ⁇ m or less.
  • the thickness of the second conductivity type crystalline Si layer of the top cell is 3 ⁇ m to 30 ⁇ m.
  • the thickness of the second conductivity type crystalline Si layer of the top cell is 4 ⁇ m to 20 ⁇ m.
  • the thickness of the second conductivity type crystalline Si layer of the top cell is 5 ⁇ m to 10 ⁇ m.
  • the top cell includes an i-type amorphous Si material layer between the first conductive type amorphous Si material layer and the second conductive type crystalline Si layer.
  • the top cell includes an i-type amorphous Si layer between the second conductive crystalline Si layer and the second conductive amorphous Si layer.
  • an insulating transparent passivation layer is provided between the top cell and the substrate.
  • the insulating transparent passivation layer is a layer made of silicon oxide or aluminum oxide.
  • the substrate is made of single crystal Si.
  • the base is made of single crystal Si, and a layer made of indium tin oxide (ITO) is provided between the top cell and the base.
  • ITO indium tin oxide
  • the base is a bottom cell made of single-crystal Si
  • the top cell side is a second conductivity type region
  • a first conductivity type region is formed below the top cell side
  • the bottom cell has the back surface
  • a back electrode is provided and tandemized.
  • the bottom cell includes a second conductivity type layer having a donor concentration higher than that of the second conductivity type region on the top cell side of the second conductivity type region.
  • the top cell includes a second transparent conductive layer provided below the second conductive amorphous Si layer.
  • the surface of the second transparent conductive layer is exposed in a comb shape having a bus bar portion and a plurality of finger portions extending from the bus bar portion. Has been.
  • a first comb-shaped light receiving surface electrode electrically connected to the transparent conductive layer and a surface of the top cell are electrically connected to the second transparent conductive layer.
  • a second comb-shaped light-receiving surface electrode is provided.
  • region formed in the comb-tooth shape which has a bus-bar part and the several finger part extended from this bus-bar part on the back surface side of the said bottom cell, a bus-bar part, and this bus-bar
  • a second second conductivity type region having a donor concentration higher than that of the second conductivity type region is formed, the first conductivity type region having a plurality of finger portions extending from the first portion; The finger portions and the finger portions of the second second conductivity type region are alternately located at a predetermined interval.
  • the back surface of the bottom cell is electrically connected to the first comb-shaped back electrode electrically connected to the first conductivity type region, and to the second second conductivity type region.
  • a second comb-like back electrode is provided.
  • the bus bar portion of the first comb-shaped light receiving surface electrode and the bus bar portion of the second comb-shaped back surface electrode are on one end side.
  • the bus bar portion of the second comb-shaped light-receiving surface electrode and the bus bar portion of the first comb-shaped back electrode are positioned in parallel on the other end side.
  • the transparent conductive layer provided in the top cell is indium tin oxide (ITO).
  • ITO indium tin oxide
  • the transparent conductive layer provided on the light incident side of the top cell also serves as an antireflection layer.
  • the second conductivity type crystalline Si layer of the top cell is designed to have a thickness such that the generated currents of the top cell and the bottom cell are the same.
  • the stacked structure including the transparent conductive layer, the first conductive type amorphous Si material layer, the second conductive type crystalline Si layer, and the second conductive type amorphous Si layer included in the top cell has the solar cell from above. When viewed, it has an array structure in which a plurality of nanowires or walls arranged two-dimensionally at a predetermined interval are aligned in a predetermined direction and partitioned into a plurality of wall-shaped nanowalls arranged two-dimensionally at a predetermined interval, The diameter of the nanowire or the thickness of the nanowall is 10 nm or less at the site of the second conductivity type crystalline Si layer.
  • the nanowires or nanowalls adjacent to each other are separated by an insulating material.
  • a method for manufacturing a solar cell according to the present invention is a method for manufacturing a solar cell having a top cell on a substrate, wherein a second conductivity type amorphous Si layer is formed on a surface region, and the second conductivity type amorphous Si layer is formed.
  • the first second-conductivity-type Si crystal substrate on which a transparent conductive layer is provided and the surface of the substrate on which the transparent conductive layer or the insulating transparent passivation layer is formed are bonded at a temperature of 400 ° C. or lower.
  • the substrate has a second second conductive layer in which a second conductive type layer having a donor concentration higher than the bulk is formed in a surface region, and an insulating transparent passivation layer is provided on the second conductive type layer.
  • Type Si crystal substrate a second conductive type layer having a donor concentration higher than the bulk is formed in a surface region, and an insulating transparent passivation layer is provided on the second conductive type layer.
  • the first step includes a sub-step of performing a surface activation process on at least one of the surface of the first second conductivity type Si crystal substrate and the surface of the base.
  • the surface activation treatment is performed by at least one of plasma treatment and ozone treatment.
  • the transparent conductive layer is indium tin oxide (ITO), and the insulating transparent passivation layer is a layer made of silicon oxide or aluminum oxide.
  • ITO indium tin oxide
  • the insulating transparent passivation layer is a layer made of silicon oxide or aluminum oxide.
  • a conductive crystal Si layer is used.
  • a third step of forming a first conductivity type amorphous Si material layer opposite to the second conductivity type above the second conductivity type crystalline Si layer is provided. I have.
  • the third step includes a plurality of nanowires that two-dimensionally arrange the second conductive crystalline Si layers at predetermined intervals prior to the formation of the first conductive amorphous Si material layer.
  • the second conductivity type crystalline Si layer is a nanowire having a diameter of 10 nm or less, or a plurality of wall-shaped nanowalls whose wall surfaces are aligned in a predetermined direction and are two-dimensionally arranged at predetermined intervals.
  • a sub-step is provided for partitioning into nanowalls having a thickness of 10 nm or less at the portion of the conductive crystal Si layer.
  • the solar cell according to the present invention employs a structure in which the second conductivity type crystalline Si layer of the top cell is significantly thinner than the conventional one.
  • the open-circuit voltage of the top cell is 0.1 V or more higher than that in which the second conductivity type crystalline Si layer is 100 ⁇ m, and the current can be taken out at a high voltage, so that the photoelectric conversion efficiency is improved.
  • the output can be taken out from the top cell and the bottom cell independently, so it is necessary to match the generated current required for the series-connected tandem cell. Absent.
  • the solar cell manufacturing method according to the present invention applies so-called “bonding” technology, and performs “bonding” between the top cell and the base or the bottom cell at 400 ° C. or lower. There is no separation and no deterioration in film quality, and no new defects are generated in the crystalline Si layer. For this reason, when this invention is used as a tandem solar cell, the deterioration of the heterojunction cell accompanying tandemization does not occur.
  • FIG. 5 (A) explaining the aspect of the light-receiving surface electrode when it sees from the light-incidence side (upper) of the solar cell which concerns on this invention, and the aspect of the back electrode when it sees from the back side (lower) FIG.
  • FIG. 5B is an explanatory diagram (FIG. 5B). It is a figure which shows the outline of the cross-section of the part shown with the broken line in the figure of FIG. 5 (A) and FIG. 5 (B) in the case of setting it as a 2 terminal tandem cell structure. It is a flowchart of the example of a process which manufactures the solar cell concerning this invention. It is a perspective view for conceptually explaining the configuration of a tandem solar cell in the case of an array structure in which a top cell is partitioned into a plurality of wall-like nanowalls that are two-dimensionally arranged at a predetermined interval.
  • the first conductivity type is assumed to be p-type
  • the second conductivity type is assumed to be n-type.
  • the opposite relationship that is, the first conductivity type is assumed to be n-type and the second conductivity type is assumed to be second-type. May be p-type.
  • the “amorphous Si material layer” is described as an amorphous Si layer, but in addition to this, an amorphous SiO layer, an amorphous SiN layer, or the like may be used.
  • the solar cell according to the present invention may be a solar cell in which a top cell is provided on a substrate without including a bottom cell. That is, the “bottom cell” does not necessarily function as a solar battery.
  • FIG. 1 is a cross-sectional view for explaining the outline of the basic structure of a tandem silicon solar cell according to the present invention.
  • This solar cell 300 is a tandem solar cell in which a top cell 100 provided on the light incident side (upper side in the drawing) and a bottom cell 200 provided below the top cell 100 are stacked.
  • the top cell 100 is manufactured by a process example described later using the first n-type Si crystal substrate 10.
  • the top cell 100 includes a transparent conductive layer 110, a p-type amorphous Si layer 120 as a p-type amorphous material layer, an n-type crystalline Si layer 130, and an n-type amorphous Si layer 140 sequentially from the light incident side.
  • a second transparent conductive layer 150 is provided below the n-type amorphous Si layer 140, and the transparent conductive layer 110 and the second transparent conductive layer 150 are connected to two electrode layers. By doing so, the output of the top cell 100 can be taken out independently of the bottom cell 200.
  • the transparent conductive layer 110 is made of indium tin oxide (ITO), for example, and can also serve as an antireflection layer.
  • a light receiving surface electrode (not shown) provided on the surface of the top cell 100 will be described later.
  • the p-type amorphous material layer may be a p-type amorphous SiO layer or a p-type amorphous SiN layer instead of the p-type amorphous Si layer 120 described above.
  • an i-type amorphous Si layer as an i-type amorphous material layer may be provided between the p-type amorphous Si layer 120 and the n-type crystalline Si layer 130.
  • an i-type amorphous Si layer may be provided.
  • An amorphous SiO layer or i-type amorphous SiN layer may be provided.
  • the p-type amorphous Si layer 120, the i-type amorphous Si layer, and the n-type amorphous Si layer 140 are almost all hydrogenated amorphous layers. This is the same even when the p-type amorphous Si layer 120 and the i-type amorphous Si layer are the other amorphous Si material layers described above.
  • the bottom cell 200 is manufactured by a process example described later using the second n-type Si crystal substrate 20.
  • the bottom cell 200 is made of single crystal Si, the top cell side is an n-type region 210, and a p-type region 220 as an emitter layer is provided below (that is, the back side of the solar cell).
  • an n-type layer 230 having a higher donor concentration than the n-type region as a bulk is provided as a surface electric field layer (FSF) on the top cell side of the n-type region 210 of the bottom cell 200.
  • FSF surface electric field layer
  • a second n-type layer 240 having a donor concentration higher than that of the n-type region as a bulk is formed as a back surface field layer (BSF) adjacent to the p-type region 220 as the emitter layer.
  • BSF back surface field layer
  • a first back electrode 260 and a second back electrode 270 are electrically connected to the p-type region 220 and the second n-type layer 240, which are emitter layers, via an insulating film 250, respectively.
  • the output of the bottom cell 200 can be taken out independently of the top cell 100.
  • the p-type region 220 is formed in a comb-like shape having a bus bar portion and a plurality of finger portions extending from the bus bar portion, and the second n-type region 240 is similarly formed in the bus bar portion. And a plurality of finger portions extending from the bus bar portion, and the finger portions of the p-type region 220 and the finger portions of the second n-type region 240 are alternately positioned at a predetermined interval.
  • the bus bar portion does not necessarily have the p-type conductivity, but for convenience, the bus bar portion is also referred to as a “p-type region”.
  • the bus bar portion does not necessarily have an n-type conductivity type, but for convenience, the bus bar portion is also referred to as an “n-type region”.
  • the finger portions of the p-type region 220 and the finger portions of the second n-type region 240 are “p-type” and “n-type”, respectively, and these finger portions are alternately arranged in stripes at predetermined intervals. You may make it locate in this.
  • the layer denoted by reference numeral 160 provided between the top cell 100 and the bottom cell 200 is an insulating transparent passivation layer, and is a layer used for bonding in the manufacturing process described later.
  • the insulating transparent passivation layer 160 is a layer made of, for example, silicon oxide or aluminum oxide.
  • each layer of the top cell 100 can be designed as follows, for example.
  • the transparent conductive layer 110 is ITO of about 0.1 ⁇ m
  • the total thickness of the p-type amorphous Si layer 120 and the i-type amorphous Si layer is about 0.01 ⁇ m
  • the thickness of the n-type crystalline Si layer 130 is 30 ⁇ m or less
  • the i-type amorphous Si layer The total thickness of the n-type amorphous Si layer 140 is about 0.01 ⁇ m
  • the second transparent conductive layer 150 is about 0.1 ⁇ m.
  • the thickness of the n-type crystalline Si layer of the top cell is preferably 3 ⁇ m to 30 ⁇ m, more preferably 4 ⁇ m to 20 ⁇ m, and still more preferably 5 ⁇ m to 10 ⁇ m. The reason will be described later.
  • each layer of the bottom cell 200 made of single-crystal Si can be designed as follows, for example.
  • the n-type region 210 as a bulk has a thickness of about 200 to 500 ⁇ m and a specific resistance of about 1 ⁇ cm
  • the p-type region 220 as an emitter layer has an acceptor concentration of about 5 ⁇ 10 19 cm ⁇ 3 and a thickness of about 2 to 3 ⁇ m.
  • the n-type layer 230 as the front surface field layer (FSF) has a donor concentration of about 1 ⁇ 10 19 cm ⁇ 3 and a thickness of about 0.1 to 1 ⁇ m.
  • the second n-type layer as the back surface field layer (BSF) No. 240 has a donor concentration of about 5 ⁇ 10 19 cm ⁇ 3 to 1 ⁇ 10 20 cm ⁇ 3 and a thickness of about 1 to 2 ⁇ m.
  • SiO 2 is preferably used as the insulating film 250. Also, SiO 2 is suitably used for the insulating transparent passivation layer 160 provided between the top cell 100 and the bottom cell 200, and the thickness thereof is, for example, about 0.1 ⁇ m.
  • the light receiving surface electrode described later and the above-described back surface electrodes 260 and 270 are formed by patterning a metal (for example, Al or Ag) formed on the entire surface by sputtering or vapor deposition, or a paste such as Al or Ag. It can be formed by baking after screen printing.
  • a metal for example, Al or Ag
  • FIG. 2 is a diagram showing a simulation result of the dependence of photoelectric conversion efficiency on the thickness of the top cell n-type crystalline Si layer.
  • the photoelectric conversion efficiency is obtained using the thickness of the bottom cell as 300 ⁇ m and the thickness of the n-type crystal Si layer of the top cell as a parameter.
  • the photoelectric conversion efficiency when the thickness of the n-type crystalline Si layer of the top cell is 100 ⁇ m is almost equal to that when the thickness of the n-type crystalline Si layer is 1 ⁇ m (23.5%), and the thickness is 100 ⁇ m. If it exceeds, it is below this value.
  • the thickness of the n-type crystal Si layer is 30 ⁇ m or less, a photoelectric conversion efficiency of 24% or more is obtained, and when the thickness of the n-type crystal Si layer is in the range of 3 to 30 ⁇ m, a photoelectric conversion efficiency of 24% or more is obtained. . Further, when the thickness of the n-type crystalline Si layer is 4 ⁇ m to 20 ⁇ m, a photoelectric conversion efficiency exceeding 24.1% is obtained, and when the thickness is 5 ⁇ m to 10 ⁇ m, a photoelectric conversion efficiency exceeding 24.2% is obtained.
  • FIG. 3 is a diagram showing a simulation result of the thickness dependence of the n-type crystalline Si layer of the open voltage V OC of the top cell.
  • the value of the open voltage V OC obtained assuming bulk silicon is shown in FIG. It is indicated by a circle.
  • FIG. 3A shows the open circuit voltage when the thickness of the n-type crystalline Si layer is in the range of 1 to 100 ⁇ m
  • FIG. 3B shows the thickness of the n-type crystalline Si layer within the range of 1 to 10 ⁇ m.
  • the open circuit voltage at is shown.
  • the n-type crystalline Si layer has a thickness of 10 ⁇ m or less, a significant improvement in the open-circuit voltage is recognized. From the results shown in FIG. Considering the fact that the photoelectric conversion efficiency gradually decreases when the thickness is less than 5 ⁇ m, it is considered that the most preferable thickness range of the n-type crystalline Si layer is 5 ⁇ m to 10 ⁇ m.
  • FIG. 4 is a diagram for explaining an aspect of the light-receiving surface electrode provided in the solar cell according to the present invention.
  • the first light receiving surface electrode 170 electrically connected to the above-described transparent conductive layer 110 and the second electrically connected to the second transparent conductive layer 150.
  • the light receiving surface electrode 180 is provided and the transparent conductive layer 110 and the second transparent conductive layer 150 are two electrode layers, whereby the output of the top cell 100 can be taken out independently of the bottom cell 200.
  • the output of the bottom cell 200 can be obtained by changing the output of the bottom cell 200 to that of the top cell 100 by using the p-type region 220 as the emitter layer and the second n-type layer 240 as two electrode layers. Can be taken out independently.
  • FIG. 5A and FIG. 5B are diagrams for explaining aspects of the light-receiving surface electrode when viewed from the light incident side (upper side) of the solar cell 300 (FIG. 5A) and the solar cell 300, respectively. It is a figure (FIG.5 (B)) explaining the aspect of a back surface electrode when it sees from a back surface side (downward).
  • the top cell 100 is provided with a first comb-shaped light-receiving surface electrode 170 and a second comb-shaped light-receiving surface electrode 180 when viewed from above. ing.
  • the surface of the second transparent conductive layer 150 of the top cell 100 is exposed in a comb-like shape having a bus bar portion and a plurality of finger portions extending from the bus bar portion.
  • the surface electrode 170 is electrically connected to the transparent conductive layer 110
  • the second comb-shaped light receiving surface electrode 180 is electrically connected to the second transparent conductive layer 150.
  • the output of the top cell 100 can be taken out independently of the bottom cell 200.
  • the p-type region 220 formed in a comb-teeth shape having a bus bar portion and a plurality of finger portions extending from the bus bar portion, the bus bar portion and the bus bar portion
  • a second n-type region 240 having a donor concentration higher than that of the n-type region 210 as a bulk is formed in a comb-like shape having a plurality of extending finger portions.
  • the finger portions of the second n-type region 240 are alternately positioned at a predetermined interval.
  • a first comb-like back electrode 260 electrically connected to the p-type region 220 and a second comb tooth electrically connected to the second n-type region 240 are formed on the back surface of the bottom cell 200.
  • a back electrode 270 is provided so that the output of the bottom cell 200 can be taken out independently of the top cell 100.
  • the structure of the light receiving surface electrode in this manner is particularly effective when the loss due to the high sheet resistance of the transparent conductive layers (110, 150) of the top cell 100 cannot be ignored. Since the output of the top cell 100 and the output of the bottom cell 200 can be taken out independently, it is not necessary to match the generated currents of the two like a two-terminal tandem cell electrically connected in series. There are few restrictions.
  • a module is manufactured by incorporating several cells.
  • the top cells or the bottom cells are connected in series, and the terminal box of the module has four terminals.
  • the power generation currents of the top cell 100 and the bottom cell 200 can be made the same by adjusting the thickness of the crystalline Si layer 130 of the top cell 100.
  • two terminals can be realized.
  • the output of the top cell and the bottom cell may be connected in series and incorporated in the module, or the output from the top cell and the output from the bottom cell may be connected in series in the terminal box of the module to form two terminals.
  • FIG. 6 is a diagram showing an outline of a cross-sectional structure of a portion indicated by a broken line in FIGS. 5 (A) and 5 (B).
  • the thickness of the crystalline Si 130 layer of the top cell 100 is adjusted so that the optimum operating currents of the top cell 100 and the bottom cell 200 are substantially equal.
  • the comb-teeth electrode electrically connected to the bus bar of the comb-teeth electrode 260 for taking out the output from the emitter of the bottom cell 200 and the second transparent conductive layer 150 provided on the n-type amorphous Si layer side of the top cell 100
  • the 180 bus bars are connected by a conductive material 280 so as to cross the end of the bottom cell 200 in the cell thickness direction.
  • the bus bars of the comb electrodes to be connected are arranged so as to be the same edge of the cell. That is, when the solar cell 100 is viewed from above, the bus bar portion of the second transparent conductive layer 150 that is the second comb-shaped light-receiving surface electrode and the first comb-shaped back surface electrode are the first.
  • the bus bar portion of the back electrode 260 is positioned in parallel on the other end side.
  • the bus bar portion of the first transparent conductive layer 110 that is the first comb-shaped light-receiving surface electrode and the bus bar portion of the second back electrode 270 that is the second comb-shaped back surface electrode are on the other end side. It will be located in parallel.
  • the insulating film 250 on the back surface of the cell is an oxide film formed by thermal oxidation or plasma CVD
  • the end face of the cell is also covered with such an insulating film 250, and the thickness of the cell
  • a conductive paste such as an Ag paste having a thickness of several ⁇ m or more. If such a conductive paste is used, the voltage drop at the connection location due to the generated current is compared to the generated voltage just by applying and baking the end of the cell so as to be in contact with the two buses described above. It can be made sufficiently small.
  • the first conductivity type is p-type and the second conductivity type is n-type.
  • the opposite relationship that is, the first conductivity type is n-type and the second conductivity type is n-type.
  • the type may be p-type as described above.
  • the “amorphous Si material layer” can be an amorphous SiO layer or an amorphous SiN layer instead of an amorphous Si layer.
  • FIG. 7 is a flowchart of an example process for manufacturing a solar cell according to the present invention.
  • the two n-type single crystal Si substrates (10, 20) described above are prepared.
  • the thickness of the Si substrate is not particularly limited, but is generally 200 to 500 ⁇ m.
  • the first n-type Si crystal substrate 10 is for making a top cell
  • the second n-type Si crystal substrate 20 is for making a bottom cell.
  • the first n-type Si crystal substrate 10 may be a single-side polished finish, but the second n-type Si crystal substrate 20 is a double-side polished finish.
  • the specific resistance value of the Si substrate is a design item of the solar cell, but here, a specific resistance value of about 1 ⁇ cm is used.
  • n-type hydrogenated amorphous Si layer 140 is formed on the surface of the first n-type Si crystal substrate 10 (S101), and a transparent conductive layer 150 made of ITO is formed on the n-type hydrogenated amorphous Si layer 140.
  • Form (S102) is formed on the surface of the first n-type Si crystal substrate 10 (S101), and a transparent conductive layer 150 made of ITO is formed on the n-type hydrogenated amorphous Si layer 140.
  • n + region phosphorus concentration 10 19 ⁇ 10 20 cm -3 or so
  • the p + region boron concentration 10 19 ⁇ 10 20 cm -3 of about p
  • the + layer is formed in a stripe shape (or comb shape), and these are used as the second n-type layer 240 as the back surface field layer (BSF) and the p-type region 220 as the emitter layer (S201).
  • BSF back surface field layer
  • S201 emitter layer
  • an n-type layer 230 (n + layer having a phosphorous concentration of about 10 19 cm ⁇ 3 ) is formed on the surface of the second n-type Si crystal substrate 20 as a surface electric field layer (FSF) (S202).
  • FSF surface electric field layer
  • This FSF layer is formed by a thermal diffusion method or an ion implantation method.
  • the passivation film is a thermal oxide film, a deposited oxide film by CVD, a hydrogenated amorphous SiO film by plasma CVD or hot wire CVD, or the like.
  • At least one of the surface of the first n-type Si crystal substrate 10 that is, the transparent conductive layer 150 made of ITO
  • the surface of the second n-type Si crystal substrate 20 that is, the insulating transparent passivation layer 160.
  • a surface activation treatment is performed (S301). This surface activation treatment is, for example, plasma treatment or ozone treatment.
  • the surface of the first n-type Si crystal substrate that is, the transparent conductive layer 150 made of ITO
  • the second n-type are applied by applying a known bonding technique between semiconductor substrates.
  • the surfaces of the Si crystal substrates that is, the insulating transparent passivation layer 160 made of silicon oxide or aluminum oxide
  • This bonding is performed at a temperature of 400 ° C. or lower. This is because the deterioration of the film quality due to the separation of hydrogen from the hydrogenated amorphous Si layer of the top cell and the introduction of defects into the crystalline Si layer of the top cell are suppressed, and the deterioration of the solar cell characteristics during tandemization is not caused. is there.
  • a hydrogenated amorphous SiO film may be further deposited on the transparent conductive layer 150 made of ITO on the top cell side.
  • the crystal part on the back surface side of the first n-type Si crystal substrate is removed, and the thickness is reduced to 30 ⁇ m or less (generally 10 ⁇ m or less) to form the n-type crystal Si layer 130 of the top cell. (S303).
  • This thinning step may be performed by a method such as a so-called “smart cut method” in addition to mechanically polishing the back side of the first n-type Si crystal substrate.
  • a predetermined dose amount of hydrogen is implanted into the surface region of the first n-type Si crystal substrate to form a hydrogen ion implanted layer.
  • the n-type crystal Si layer is peeled from the first n-type Si crystal substrate to form an n-type crystal Si layer of the top cell.
  • the polishing damage layer is removed by etching as necessary, and the thickness of the crystalline Si layer is adjusted to a desired value.
  • a hydrogenated i-type amorphous Si layer, a hydrogenated p-type amorphous Si layer 120, and a transparent conductive layer 110 made of ITO are sequentially laminated on the light incident surface side (S304 to S306).
  • a part of the second transparent conductive layer 150 is exposed by photolithography technology (S307), and the light receiving surface electrodes 170 and 180 are formed (S308).
  • the first light receiving surface electrode 170 is electrically connected to the transparent conductive layer 110
  • the second light receiving surface electrode 180 is electrically connected to the second transparent conductive layer 150, thereby completing the top cell.
  • contact holes are formed on the back side of the second n-type Si crystal substrate to form back electrodes 260 and 270 as shown in FIG. 4 (S309), and the top cell is completed and a solar cell is formed. Is also completed.
  • the open circuit voltage can be increased by reducing the thickness of the crystalline Si layer of the top cell as in the solar cell according to the present invention.
  • the thickness of the crystalline Si layer of the top cell is reduced, the light absorption length (optical path length) of the top cell is shortened.
  • the short-circuit current density is reduced and the output is higher than that of the cell having a thick crystalline Si layer.
  • the solar cell of the present invention since the solar cell of the present invention has a tandem structure, light that could not be absorbed by the top cell is absorbed by the bottom cell and can be used for power generation. As a result, the conversion efficiency is improved as compared with the case where power is generated by the bottom cell alone by the amount by which the power generation current of the top cell can be extracted at a high voltage.
  • the solar cell according to the present invention employs a structure in which the second conductivity type crystalline Si layer of the top cell is significantly thinner than the conventional one.
  • the open-circuit voltage of the top cell is 0.1 V or more higher than that in which the second conductivity type crystalline Si layer is 100 ⁇ m, and the current can be taken out at a high voltage, so that the photoelectric conversion efficiency is improved.
  • the solar cell manufacturing method according to the present invention applies so-called “bonding” technology, and performs “bonding” between the top cell and the bottom cell at 400 ° C. or lower, so that hydrogen is released from the hydrogenated amorphous Si layer.
  • the film quality is not deteriorated and no new defect is generated in the crystalline Si layer, so that the deterioration of the heterojunction cell due to the tandemization does not occur.
  • the solar cell according to the present invention is a tandem solar cell.
  • the solar cell according to the present invention does not necessarily have to be a tandem type, and may be a solar cell in which the above-described top cell is provided on a base without including a bottom cell. That is, the “bottom cell” described above does not necessarily function as a solar battery.
  • the solar cell according to the present invention has a top cell provided on the main surface of the substrate, and the top cell is from the light incident side. And a laminated structure having a transparent conductive layer, a first conductive type amorphous Si material layer, a second conductive type crystalline Si layer opposite to the first conductive type, and a second conductive type amorphous Si layer,
  • single crystal Si may be used as the substrate.
  • the base is made of single crystal Si, a mode in which a layer made of indium tin oxide (ITO) is provided between the top cell and the base may be adopted.
  • ITO indium tin oxide
  • the substrate has a second conductivity type layer in which a second conductivity type layer having a donor concentration higher than that of the bulk is formed in the surface region, and an insulating transparent passivation layer is provided on the second conductivity type layer. It is good also as an aspect which is a Si crystal substrate.
  • the above-described step S303 (after bonding, the crystal part on the back surface side of the first n-type Si crystal substrate is removed, and the thickness is reduced to 30 ⁇ m or less to form the n-type crystal of the top cell.
  • a step of forming a first conductivity type amorphous Si material layer opposite to the second conductivity type above the second conductivity type crystalline Si layer may be provided. Good.
  • the structure of the top cell may be an aspect in which nanowires and nanowalls are arrayed. By setting it as such a nanostructure, a quantum effect can be improved and the photoelectric conversion efficiency of a solar cell can be improved.
  • a solar cell including a top cell having such a structure includes a transparent conductive layer, a first conductive type amorphous Si material layer, a second conductive type crystalline Si layer, and a second conductive type amorphous Si layer provided in the top cell.
  • the structure is such that when the solar cell is viewed from above, a plurality of nanowires or wall surfaces arranged two-dimensionally at a predetermined interval are aligned in a predetermined direction and a plurality of wall-shaped nanowalls arranged two-dimensionally at a predetermined interval
  • the solar cell has a partitioned array structure, and the diameter of the nanowire or the thickness of the nanowall is 10 nm or less at the second conductive crystal Si layer.
  • the nanowires or nanowalls adjacent to each other are separated by an insulating material.
  • the first conductivity type amorphous Si material layer opposite to the second conductivity type above the second conductivity type crystalline Si layer the first conductivity type amorphous Prior to the formation of the Si material layer, a plurality of nanowires in which the second conductivity type crystalline Si layer is two-dimensionally arranged at a predetermined interval and having a diameter of 10 nm or less at a site of the second conductivity type crystal Si layer, or A sub-step of partitioning into a plurality of wall-shaped nanowalls whose wall surfaces are aligned in a predetermined direction and are two-dimensionally arranged at a predetermined interval and having a thickness of 10 nm or less at a portion of the second conductivity type crystalline Si layer; It is preferable to provide.
  • FIG. 8 is a perspective view for conceptually explaining the configuration of a tandem solar cell in the case of an array structure in which a top cell is partitioned into a plurality of wall-shaped nanowalls arranged two-dimensionally at a predetermined interval. is there.
  • the band gap of Si is about 1.1 eV in bulk, but when nano-order walls and wires are used, it is known that the band gap increases when the size is smaller than about 10 nm. Then, by changing the size (width) of the nanowall or nanowire, the band gap can be controlled by the quantum confinement effect. In other words, by making the top cell have a structure in which nanowalls and nanowires of such a size are two-dimensionally arranged, the performance as a solar cell can be enhanced by actively utilizing the quantum confinement effect. .
  • the effective band gap is about 1.6 eV, which is about 45% of the band gap of bulk silicon (about 1.1 eV).
  • the gap is widened and high efficiency can be expected.
  • FIG. 9 is a transmission electron microscope image obtained by observing a part of the top cell having an array structure partitioned into a plurality of wall-like Si nanowalls arranged two-dimensionally at a predetermined interval.
  • the size of the nanowall is 10 nm or less, and is about 2 nm in the example shown in this figure.
  • an insulating material SiO 2 or Al 2 O 3 ) is embedded between the nanowalls.
  • FIG. 10 is a diagram showing the wavelength dependence of the reflectance of the array structure (A) partitioned into nanowalls and the reflectance of the array structure (B) in which SiO 2 that is an insulating material is embedded between the nanowalls. is there.
  • Such a nanowall can be produced, for example, by the following process.
  • a wall having a width of several tens of nm is formed by patterning using immersion lithography. Thereby, for example, a wall having a width of about 75 nm and a height of about 1 ⁇ m can be formed.
  • the main surface of Si as the base material is the (1, 1, 0) plane, for example, the (1, -1, 1) plane is perpendicular to the (1, 1, 0) plane, so the wall surface is The (1, -1,1) plane wall can be formed perpendicular to the main surface.
  • an oxidation process and an etching process are repeated to form nanowalls having a width of several nm.
  • the same quantum effect can be obtained even if the nanowire has an array structure partitioned into a plurality of nanowires arranged two-dimensionally at a predetermined interval, and the nanowire has a diameter of 10 nm or less. It goes without saying that you can get it.
  • Si having a high photoelectric conversion efficiency is obtained by thinning the crystalline Si layer of the top cell to suppress Auger recombination in the crystalline Si layer, and without damaging the thin crystalline Si layer in the manufacturing process.
  • a solar cell and a method for manufacturing the same are provided.
  • first n-type Si crystal substrate 20 second n-type Si crystal substrate 100 top cell 110 transparent conductive layer 120 p-type amorphous Si layer 130 n-type crystal Si layer 140 n-type amorphous Si layer 150 second transparent conductive layer 160 Insulating transparent passivation layer 200

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Sustainable Energy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 本発明に係る太陽電池(300)は、例えば、光入射側に設けられたトップセル(100)と、このトップセル(100)の下方に設けられたボトムセル(200)が積層されたタンデム型の太陽電池であり、トップセル(100)のエネルギーギャップは、ボトムセル(200)のエネルギーギャップよりも大きな材料が選択されている。本発明では、トップセル(100)の結晶Si層の厚みを30μm以下とし、好ましくは5μm~10μmの範囲とする。n型結晶Si層の厚みが10μm以下では、結晶Si層内におけるキャリアのオージェ再結合が顕著に抑制される結果、開放電圧の向上が顕著である。また、出力を、トップセル(100)とボトムセル(200)から各々独立に取り出すことができるため、直列接続型タンデムセルで必要となる発電電流のマッチングを取る必要がない。

Description

太陽電池および太陽電池の製造方法
 本発明は、太陽電池技術に関し、より詳細には、従来の太陽電池に比較して光電変換効率の高いシリコン太陽電池およびその製造方法に関する。
 太陽電池の分野においては、広波長域の太陽光を光電変換することで光電変換効率の向上を図るべく、複数の光電変換部を積層したタンデム型(多接合型)太陽電池が知られている(例えば、特許文献1~3を参照)。このようなタンデム型太陽電池の光電変換効率をさらに向上させるためには、光の利用効率をさらに高めて出力電流を向上させる必要がある。
 単結晶Siウェハを用いた太陽電池として、現在高い光電変換効率を実現しているのは、アモルファスSiを単結晶Siウェハの両面に堆積したヘテロ接合太陽電池と、入射光側とは反対側の面にエミッタと裏面電界領域(BSF領域)を形成したバックコンタクト太陽電池である。
 タンデム型Si太陽電池の光電変換効率の更なる向上のためには、結晶Si層内でのオージェ再結合の抑制が重要な課題となる。この課題解決のための方法のひとつに、結晶Si層の厚みを薄くすることがあり、研究レベルでは結晶Si層を100μm程度に薄くして比較的高い光電変換効率の太陽電池が得られている。
特開平10-335683号公報 特開2001-267598号公報 特開平2009-260310号公報
 上述のとおり、タンデム型Si太陽電池の光電変換効率の更なる向上のためには、結晶Si層の厚みを薄くして、結晶Si層内でのオージェ再結合を抑制することが効果的である。しかし、一方で、結晶Si層の厚みを薄くすると光吸収長が短くなるために短絡電流密度の減少を招き、太陽電池全体として評価すると、所望の光電変換効率には至らないという問題がある。さらに、太陽電池の製造工程において、薄い結晶Si層を破損させないための手法の開発も求められる。
 本発明は、このような問題に鑑みてなされたものであって、その目的とするところは、トップセルの結晶Si層を薄くして結晶Si層内でのオージェ再結合を抑制し、かつ、製造工程においても薄い結晶Si層が破損することのない、光電変換効率の高いタンデム型のSi太陽電池およびその製造方法を提供することにある。
 上述の課題を解決するために、本発明に係る太陽電池は、トップセルが基体の主面上に設けられており、前記トップセルは、光入射側から、順次、透明導電層、第1導電型アモルファスSi材料層、前記第1導電型とは逆の第2導電型結晶Si層、第2導電型アモルファスSi層を有する積層構造を有し、前記トップセルの表面には受光面電極が、前記基体には裏面電極が設けられており、前記トップセルの第2導電型結晶Si層の厚みが30μm以下である、ことを特徴とする。
 好ましくは、前記トップセルの第2導電型結晶Si層の厚みが3μm~30μmである。
 また、好ましくは、前記トップセルの第2導電型結晶Si層の厚みが4μm~20μmである。
 さらに、好ましくは、前記トップセルの第2導電型結晶Si層の厚みが5μm~10μmである。
 ある態様では、前記トップセルは、前記第1導電型アモルファスSi材料層と第2導電型結晶Si層の間に、i型アモルファスSi材料層を備えている。
 また、ある態様では、前記トップセルは、前記第2導電型結晶Si層と第2導電型アモルファスSi層との間に、i型アモルファスSi層を備えている。
 さらに、ある態様では、前記トップセルと前記基体の間に、絶縁性透明パッシベーション層を備えている。
 好ましくは、前記絶縁性透明パッシベーション層は、シリコン酸化物もしくはアルミニウム酸化物からなる層である。
 例えば、前記基体は単結晶Siからなる。
 ある態様では、前記基体は単結晶Siからなり、前記トップセルと前記基体の間に、酸化インジウム・スズ(ITO)からなる層を備えている。
 また、ある態様では、前記基体は単結晶Siからなるボトムセルであり、前記トップセル側が第2導電型領域であり、その下方に第1導電型領域が形成されており、該ボトムセルの裏面に前記裏面電極が設けられてタンデム化されている。
 さらに、ある態様では、前記ボトムセルは、前記第2導電型領域の前記トップセル側に、該第2導電型領域よりもドナー濃度の高い第2導電型層を備えている。
 また、ある態様では、前記トップセルは、前記第2導電型アモルファスSi層の下側に設けられた第2の透明導電層を備えている。
 さらに、ある態様では、前記トップセルは、上方から見たときに、前記第2の透明導電層の表面が、バスバー部と該バスバー部から延在する複数のフィンガー部を有する櫛歯状に露出されている。
 また、ある態様では、前記トップセルの表面に、前記透明導電層に電気的に接続される第1の櫛歯状の受光面電極と、前記第2の透明導電層に電気的に接続される第2の櫛歯状の受光面電極が設けられている。
 さらに、ある態様では、前記ボトムセルの裏面側には、バスバー部と該バスバー部から延在する複数のフィンガー部を有する櫛歯状に形成された前記第1導電型領域と、バスバー部と該バスバー部から延在する複数のフィンガー部を有する櫛歯状に形成され、前記第2導電型領域よりもドナー濃度の高い第2の第2導電型領域が形成されており、前記第1導電型領域のフィンガー部と前記第2の第2導電型領域のフィンガー部は、所定間隔で交互に位置している。
 好ましい態様では、前記ボトムセルの裏面に、前記第1導電型領域に電気的に接続される第1の櫛歯状の裏面電極と、前記第2の第2導電型領域に電気的に接続される第2の櫛歯状の裏面電極が設けられている。
 また、好ましい態様では、前記太陽電池を上方から見たときに、前記第1の櫛歯状の受光面電極のバスバー部と前記第2の櫛歯状の裏面電極のバスバー部が一方端側で平行に位置しており、前記第2の櫛歯状の受光面電極のバスバー部と前記第1の櫛歯状の裏面電極のバスバー部が他方端側で平行に位置している。
 例えば、前記トップセルに設けられた透明導電層は、酸化インジウム・スズ(ITO)である。
 好ましくは、前記トップセルの光入射側に設けられた透明導電層は反射防止層を兼ねている。
 また、好ましくは、前記トップセルの前記第2導電型結晶Si層が、前記トップセルと前記ボトムセルの発電電流が同じになる厚みに設計されている。
 さらに、好ましくは、前記トップセルが備える透明導電層、第1導電型アモルファスSi材料層、第2導電型結晶Si層、第2導電型アモルファスSi層を有する積層構造は、前記太陽電池を上方から見たときに、所定の間隔で2次元配列する複数のナノワイヤ若しくは壁面が所定の方向に揃い且つ所定の間隔で2次元配列する複数の壁状のナノウォールに区画されたアレイ構造を有し、前記ナノワイヤの直径若しくは前記ナノウォールの厚みが、前記第2導電型結晶Si層の部位において10nm以下である。
 また、好ましくは、互いに隣接する前記ナノワイヤ若しくは前記ナノウォールは、絶縁性物質により離間されている。
 本発明に係る太陽電池の製造方法は、基体上にトップセルを有する太陽電池の製造方法であって、表面領域に第2導電型アモルファスSi層が形成され、該第2導電型アモルファスSi層の上に透明導電層が設けられた第1の第2導電型Si結晶基板と、表面に透明導電層若しくは絶縁性透明パッシベーション層が形成された前記基体の表面同士を、400℃以下の温度で貼り合わせる第1のステップと、前記第1の第2導電型Si結晶基板を裏面から厚み30μm以下まで薄くして前記トップセルの第2導電型結晶Si層とする第2のステップと、を備えている。
 好ましくは、前記基体は、表面領域にバルクよりも高いドナー濃度の第2導電型層が形成され、該第2導電型層の上に絶縁性透明パッシベーション層が設けられた第2の第2導電型Si結晶基板である。
 また、好ましくは、前記第1のステップは、前記第1の第2導電型Si結晶基板の表面と前記基体の表面の少なくとも一方に、表面活性化処理を施すサブステップを備えている。
 例えば、前記表面活性化処理はプラズマ処理又はオゾン処理の少なくとも一方で実行される。
 例えば、前記透明導電層は酸化インジウム・スズ(ITO)であり、前記絶縁性透明パッシベーション層はシリコン酸化物もしくはアルミニウム酸化物からなる層である。
 ある態様では、前記第1のステップに先立ち、前記第1の第2導電型Si結晶基板の表面領域に所定のドーズ量の水素を注入して水素イオン注入層を形成するステップを備え、前記第2のステップにおいて、前記水素イオン注入層に機械的若しくは熱衝撃を付与することにより前記第1の第2導電型Si結晶基板から第2導電型結晶Si層を剥離させて前記トップセルの第2導電型結晶Si層とする。
 また、ある態様では、前記第2のステップの後に、前記第2導電型結晶Si層の上方に、第2導電型とは逆の第1導電型アモルファスSi材料層を形成する第3のステップを備えている。
 さらに、ある態様では、前記第3のステップは、前記第1導電型アモルファスSi材料層の形成に先立ち、前記第2導電型結晶Si層を、所定の間隔で2次元配列する複数のナノワイヤであって前記第2導電型結晶Si層の部位において直径が10nm以下のナノワイヤ、若しくは、壁面が所定の方向に揃い且つ所定の間隔で2次元配列する複数の壁状のナノウォールであって前記第2導電型結晶Si層の部位において厚みが10nm以下であるナノウォールに区画するサブステップを備えている。
 本発明に係る太陽電池は、トップセルの第2導電型結晶Si層を、従来のものに比較して顕著に薄くした構造を採用した。その結果、トップセルの開放電圧は、第2導電型結晶Si層を100μmとしたものに比較して、0.1V以上高くなり、高い電圧で電流を取り出すことができるため光電変換効率が向上する。
 また、本発明をタンデム型の太陽電池とした場合には、出力を、トップセルとボトムセルから各々独立に取り出すことができるため、直列接続型タンデムセルで必要となる発電電流のマッチングを取る必要がない。
 さらに、本発明に係る太陽電池の製造方法は、いわゆる「貼り合わせ」技術を応用し、トップセルと基体若しくはボトムセルの「貼り合わせ」を400℃以下で行うため、水素化アモルファスSi層から水素が離脱して膜質を低下させることがなく、結晶Si層への新たな欠陥生成もない。このため、本発明をタンデム型の太陽電池とした場合には、タンデム化に伴うヘテロ接合セルの劣化が生じない。
本発明に係るタンデム型のシリコン太陽電池の基本構造の概略を説明するための断面図である。 光電変換効率のトップセルn型結晶Si層の厚み依存性を示す図である。 トップセルの開放電圧のn型結晶Si層の厚み依存性のシミュレーション結果を示す図である。 本発明に係る太陽電池が備える受光面電極の態様を説明するための図である。 本発明に係る太陽電池の光入射側(上方)から見たときの受光面電極の態様を説明する図(図5(A))および裏面側(下方)から見たときの裏面電極の態様を説明する図(図5(B))である。 2端子タンデムセル構造にする場合の、図5(A)および図5(B)の図中に破線で示した部分の断面構造の概略を示す図である。 本発明に係る太陽電池を製造するプロセス例のフローチャートである。 トップセルが、所定の間隔で2次元配列する複数の壁状のナノウォールに区画されたアレイ構造の場合のタンデム型の太陽電池の構成を概念的に説明するための斜視図である。 所定の間隔で2次元配列する複数の壁状のSiのナノウォールに区画されたアレイ構造を有するトップセルの一部を観察した透過電子顕微鏡像である。 ナノウォールに区画されたアレイ構造(A)の反射率とナノウォール相互間に絶縁性物質であるSiOを埋め込んだアレイ構造(B)の反射率の波長依存性を示す図である。
 以下に、図面を参照して、本発明に係る太陽電池およびその製造方法について説明する。なお、以降の説明では、第1導電型をp型とし、第2導電型をn型として説明するが、これとは逆の関係、すなわち、第1導電型をn型とし、第2導電型をp型としてもよい。また、以降の説明では、「アモルファスSi材料層」をアモルファスSi層として説明するが、この他に、アモルファスSiO層やアモルファスSiN層などとすることもできる。
 以降では、本発明に係る太陽電池がタンデム型の太陽電池である場合について説明するが、タンデム型である必要は必ずしもない。本発明に係る太陽電池は、ボトムセルを備えることなく、基体上にトップセルが設けられた太陽電池であってもよい。つまり、「ボトムセル」が太陽電池として機能する必要は必ずしもない。
 [本発明に係るタンデム型太陽電池の基本構造の概略]
 図1は、本発明に係るタンデム型のシリコン太陽電池の基本構造の概略を説明するための断面図である。この太陽電池300は、光入射側(図の上側)に設けられたトップセル100と、このトップセル100の下方に設けられたボトムセル200が積層されたタンデム型の太陽電池である。
 トップセル100は、第1のn型Si結晶基板10を用い、後述するプロセス例により作製される。このトップセル100は、光入射側から、順次、透明導電層110、p型アモルファス材料層としてのp型アモルファスSi層120、n型結晶Si層130、n型アモルファスSi層140を備えている。図1に示した例では、n型アモルファスSi層140の下側に、第2の透明導電層150が設けられており、透明導電層110と第2の透明導電層150を2つの電極層とすることにより、トップセル100の出力を、ボトムセル200とは独立に取り出すことができる。透明導電層110は、例えば、酸化インジウム・スズ(ITO)からなり、反射防止層を兼ねさせることもできる。なお、トップセル100の表面に設けられる受光面電極(不図示)については、後述する。
 なお、p型アモルファス材料層は、上述のp型アモルファスSi層120に代えて、p型アモルファスSiO層やp型アモルファスSiN層とするようにしてもよい。また、このp型アモルファスSi層120とn型結晶Si層130との間に、i型アモルファス材料層としてのi型アモルファスSi層を設けてもよく、i型アモルファスSi層に代えて、i型アモルファスSiO層やi型アモルファスSiN層を設けるようにしてもよい。
 なお、上述のp型アモルファスSi層120、i型アモルファスSi層、n型アモルファスSi層140は何れも、殆どの場合、水素化されたアモルファス層とされる。この点は、p型アモルファスSi層120およびi型アモルファスSi層が上述した他のアモルファスSi材料層であった場合でも同様である。
 ボトムセル200は、第2のn型Si結晶基板20を用い、後述するプロセス例により作製される。このボトムセル200は、単結晶Siからなり、トップセル側がn型領域210であり、その下方(すなわち太陽電池の裏面側)に、エミッタ層としてのp型領域220が設けられている。
 また、この図に示した例では、ボトムセル200のn型領域210のトップセル側に、表面電界層(FSF)として、バルクとしてのn型領域よりもドナー濃度の高いn型層230が設けられている。さらに、エミッタ層としてのp型領域220に隣接して、裏面電界層(BSF)として、バルクとしてのn型領域よりもドナー濃度の高い第2のn型層240が形成されている。
 エミッタ層であるp型領域220と第2のn型層240のそれぞれには、絶縁性膜250を介して、第1の裏面電極260と第2の裏面電極270が電気的に接続され、エミッタ層であるp型領域220と第2のn型層240を2つの電極層とすることにより、ボトムセル200の出力を、トップセル100とは独立に取り出すことができる。
 なお、後述する態様では、p型領域220を、バスバー部と該バスバー部から延在する複数のフィンガー部を有する櫛歯状に形成するとともに、第2のn型領域240も同様に、バスバー部と該バスバー部から延在する複数のフィンガー部を有する櫛歯状に形成し、p型領域220のフィンガー部と第2のn型領域240のフィンガー部を、所定間隔で交互に位置させる。
 ここで、上述のp型領域220のうち、バスバー部は必ずしもp型の導電型とされている必要はないが、便宜上、当該バスバー部も含めて「p型領域」という。同様に、上述の第2のn型領域240のうち、バスバー部は必ずしもn型の導電型とされている必要はないが、便宜上、当該バスバー部も含めて「n型領域」という。換言すれば、p型領域220のフィンガー部および第2のn型領域240のフィンガー部がそれぞれ「p型」および「n型」」であり、これらのフィンガー部が、所定間隔でストライプ状に交互に位置させるようにしてもよい。
 トップセル100とボトムセル200の間に設けられた符号160で示した層は絶縁性透明パッシベーション層であり、後述の製造プロセスで貼り合わせに用いられる層である。この絶縁性透明パッシベーション層160は、例えば、シリコン酸化物やアルミニウム酸化物からなる層である。
 トップセル100の各層の組成や厚み等は、例えば、下記のように設計することができる。透明導電層110は0.1μm程度のITO、p型アモルファスSi層120とi型アモルファスSi層の総厚は0.01μm程度、n型結晶Si層130の厚みは30μm以下、i型アモルファスSi層とn型アモルファスSi層140の総厚は0.01μm程度、第2の透明導電層150は0.1μm程度のITOである。なお、トップセルのn型結晶Si層の厚みは、好ましくは3μm~30μm、より好ましくは4μm~20μm、さらに好ましくは5μm~10μmである。その理由については後述する。
 単結晶Siからなるボトムセル200の各層の厚み等は、例えば、下記のように設計することができる。バルクとしてのn型領域210は厚みが200~500μm程度でその比抵抗は1Ωcm程度、エミッタ層としてのp型領域220はアクセプタ濃度が5×1019cm-3程度でその厚みは2~3μm程度、表面電界層(FSF)としてのn型層230はドナー濃度が1×1019cm-3程度でその厚みは0.1~1μm程度、裏面電界層(BSF)としての第2のn型層240はドナー濃度が5×1019cm-3~1×1020cm-3程度でその厚みは1~2μm程度である。
 なお、絶縁性膜250としてはSiO2が好適に用いられる。また、トップセル100とボトムセル200の間に設けられる絶縁性透明パッシベーション層160にもSiO2が好適に用いられ、その厚みは例えば0.1μm程度である。
 また、後述する受光面電極や、上述の裏面電極260、270は、スパッタや蒸着で全面に形成した金属(例えば、AlやAgなど)をパターニングして形成するか、AlやAgなどのペーストを用いてスクリーン印刷後焼成して形成することができる。
 [トップセルのn型結晶Si層の厚み]
 図2は、光電変換効率のトップセルn型結晶Si層の厚み依存性のシミュレーション結果を示す図である。このシミュレーションでは、ボトムセルの厚みを300μmとし、トップセルのn型結晶Si層の厚みをパラメータとして光電変換効率を求めている。この結果によれば、トップセルのn型結晶Si層の厚みが100μmの場合の光電変換効率はn型結晶Si層の厚みが1μmの場合と概ね等しく(23.5%)、厚みが100μmを超えるとこの値を下回る。
 n型結晶Si層の厚みが30μm以下では光電変換効率24%以上が得られており、n型結晶Si層の厚みが3~30μmの範囲にあると光電変換効率24%以上が得られている。また、n型結晶Si層の厚みが4μm~20μmの範囲では24.1%を超える光電変換効率が得られ、5μm~10μmの範囲では24.2%を超える光電変換効率が得られている。
 図3は、トップセルの開放電圧VOCのn型結晶Si層の厚み依存性のシミュレーション結果を示す図で、バルクのシリコンを想定して得られた開放電圧VOCの値を、図中に丸印で示した。図3(A)にはn型結晶Si層の厚みが1~100μmの範囲での開放電圧が示されており、図3(B)にはn型結晶Si層の厚みが1~10μmの範囲での開放電圧が示されている。
 これらの図に示した結果によれば、n型結晶Si層の厚みが10~20μm近辺で、開放電圧の向上が認められ、特に、n型結晶Si層の厚みが10μm以下では、開放電圧の向上が顕著であり0.8V以上の値が得られている。これは、n型結晶Si層の厚みが薄くなったことにより、結晶Si層内におけるキャリアのオージェ再結合が顕著に抑制されることを示している。
 図3に示した結果によれば、n型結晶Si層の厚みが10μm以下で顕著な開放電圧の向上が認められる一方で、図2に示した結果からは、n型結晶Si層の厚みが5μmよりも薄くなると徐々に光電変換効率が低下している事実を考慮すると、最も好ましいn型結晶Si層の厚み範囲は5μm~10μmであると考えられる。
 [トップセルとボトムセルからの出力取り出し]
 図4は、本発明に係る太陽電池が備える受光面電極の態様を説明するための図である。この態様では、トップセル100の表面に、上述の透明導電層110に電気的に接続される第1の受光面電極170と、第2の透明導電層150に電気的に接続される第2の受光面電極180が設けられ、透明導電層110と第2の透明導電層150を2つの電極層とすることにより、トップセル100の出力を、ボトムセル200とは独立に取り出すことができる。
 なお、既に説明したように、ボトムセル200の出力も、エミッタ層であるp型領域220と第2のn型層240を2つの電極層とすることにより、ボトムセル200の出力を、トップセル100とは独立に取り出すことができる。
 図5(A)および図5(B)はそれぞれ、太陽電池300の光入射側(上方)から見たときの受光面電極の態様を説明する図(図5(A))および太陽電池300の裏面側(下方)から見たときの裏面電極の態様を説明する図(図5(B))である。
 図5(A)に示したように、トップセル100には、上方から見たときに、第1の櫛歯状の受光面電極170と第2の櫛歯状の受光面電極180が設けられている。そして、トップセル100の第2の透明導電層150の表面は、バスバー部と該バスバー部から延在する複数のフィンガー部を有する櫛歯状に露出されており、第1の櫛歯状の受光面電極170は透明導電層110に電気的に接続され、第2の櫛歯状の受光面電極180は第2の透明導電層150に電気的に接続される。
 つまり、トップセル100は、上方から見たときに、第2の透明導電層150の表面が、バスバー部と該バスバー部から延在する複数のフィンガー部を有する櫛歯状に露出されており、透明導電層110に電気的に接続される第1の櫛歯状の受光面電極170と、第2の透明導電層150に電気的に接続される第2の櫛歯状の受光面電極180が設けられ、これにより、トップセル100の出力を、ボトムセル200とは独立に取り出すことを可能としている。
 また、この態様では、ボトムセル200の裏面側には、バスバー部と該バスバー部から延在する複数のフィンガー部を有する櫛歯状に形成されたp型領域220と、バスバー部と該バスバー部から延在する複数のフィンガー部を有する櫛歯状に形成され、バルクとしてのn型領域210よりもドナー濃度の高い第2のn型領域240が形成されており、p型領域220のフィンガー部と第2のn型領域240のフィンガー部は、所定間隔で交互に位置している。
 そして、ボトムセル200の裏面に、p型領域220に電気的に接続される第1の櫛歯状の裏面電極260と、第2のn型領域240に電気的に接続される第2の櫛歯状の裏面電極270が設けられ、これにより、ボトムセル200の出力を、トップセル100とは独立に取り出すことを可能としている。
 このような態様の受光面電極の構造は、トップセル100の透明導電層(110、150)のシート抵抗が高いことによる損失が無視できない場合に、特に効果的である。そして、トップセル100の出力とボトムセル200の出力を独立に取り出すことができるため、電気的に直列接続された2端子タンデムセルのように両者の発電電流のマッチングを取る必要はなく、セル設計の制約は少ない。
 また、上述の態様では、トップセル100の出力端子は入射光面側にあることとなり、ボトムセル200の出力端子は裏面側にあることとなるため、何枚かのセルを組み込んでモジュールを作製する場合には、トップセル同士、あるいはボトムセル同士を直列に接続して、モジュールの端子ボックスは4端子にする。
 なお、トップセル100の結晶Si層130の厚さを調整することにより、トップセル100とボトムセル200の発電電流が同じになるようにすることも可能である。この場合には2端子化も実現し得る。例えば、トップセルとボトムセルの出力を直列接続して、モジュールに組み込んでもよいし、モジュールの端子ボックス内でトップセルからの出力とボトムセルからの出力を直列に接続して2端子にしてもよい。
 2端子タンデムセル構造にするには、例えば、以下のような電極間接続関係を採用することができる。
 図6は、図5(A)および図5(B)の図中に破線で示した部分の断面構造の概略を示す図である。まず、トップセル100とボトムセル200の最適動作電流がほぼ等しくなるように、トップセル100の結晶Si130層の厚さを調整する。その後、ボトムセル200のエミッタからの出力を取り出すための櫛歯電極260の母線と、トップセル100のn型アモルファスSi層側に設けた第2の透明導電層150に電気的に接続する櫛歯電極180の母線を、ボトムセル200の端部をセルの厚さ方向に横切る形に、導電性材料280で接続する。
 この場合、接続しようとする櫛歯電極の母線同士をセルの同じ端部縁になるように配置しておく。つまり、太陽電池100を上方から見たときに、第2の櫛歯状の受光面電極である第2の透明導電層150のバスバー部と第1の櫛歯状の裏面電極である第1の裏面電極260のバスバー部が他方端側で平行に位置させる。一方、第1の櫛歯状の受光面電極である第1の透明導電層110のバスバー部と第2の櫛歯状の裏面電極である第2の裏面電極270のバスバー部は、他方端側で平行に位置することになる。
 このような電極間の接続に際しては、発電電流による電圧降下が十分に小さくなるように行う。セルの裏面の絶縁性膜250が熱酸化やプラズマCVDで形成された酸化膜である場合には、セルの端面もこのような絶縁性膜250で被覆されていること、そして、セルの厚さは数百μmであることを考慮すると、厚さが数μm以上のAgペーストなどの導電性ペーストを用いることが好ましい。このような導電性ペーストを用いれば、セルの端部に、上述の両母線に接触するように塗布して焼成するだけで、発電電流による当該接続箇所での電圧降下は、発電電圧に比べて十分小さくすることができる。
 以下に、上述した構造の本発明に係る太陽電池の製造方法の概要を、例示により説明する。なお、下記実施例では、第1導電型をp型とし、第2導電型をn型とされているが、これとは逆の関係、すなわち、第1導電型をn型とし、第2導電型をp型としてもよいことは、既に述べたとおりである。また、「アモルファスSi材料層」がアモルファスSi層ではなく、アモルファスSiO層やアモルファスSiN層などとすることもできることも、既に述べたとおりである。
 図7は、本発明に係る太陽電池を製造するプロセス例のフローチャートである。まず、上述した2枚のn型単結晶Si基板(10、20)を準備する。Si基板の厚みに特別な制限はないが、一般的には、200~500μmである。第1のn型Si結晶基板10はトップセル作製用のものであり、第2のn型Si結晶基板20はボトムセル作製用のものである。下記の実施例では、第1のn型Si結晶基板10は片面ポリッシュ仕上げのもので差し支えないが、第2のn型Si結晶基板20は両面ポリッシュ仕上げのものを用いている。また、Si基板の比抵抗値は太陽電池の設計事項であるが、ここでは、1Ωcm程度のものを用いている。
 第1のn型Si結晶基板10の表面に、n型水素化アモルファスSi層140を形成し(S101)、さらに、このn型水素化アモルファスSi層140の上にITOから成る透明導電層150を形成する(S102)。
 一方、第2のn型Si結晶基板20の裏面には、n+領域(リン濃度1019~1020cm-3程度)とp+領域(ボロン濃度1019~1020cm-3程度のp+層)をストライプ状(乃至は櫛型状)に形成し、これらを裏面電界層(BSF)としての第2のn型層240およびエミッタ層としてのp型領域220とする(S201)。これらのn+領域やp+領域の形成は、イオン注入法や熱拡散法あるいはレーザードーピング法などによる。
 次いで、第2のn型Si結晶基板20の表面に、表面電界層(FSF)としてのn型層230(リン濃度1019cm-3程度のn+層)を形成する(S202)。このFSF層は、熱拡散法やイオン注入法により形成される。
 これに続き、表面電界層(FSF)としてのn型層230の上に、絶縁性透明パッシベーション層160を形成する(S203)。このパッシベーション膜は、熱酸化膜、CVDによる堆積酸化膜、プラズマCVDやホットワイヤーCVDによる水素化アモルファスSiO膜などである。
 次に、第1のn型Si結晶基板10の表面(つまり、ITOから成る透明導電層150)と第2のn型Si結晶基板20の表面(つまり、絶縁性透明パッシベーション層160)の少なくとも一方に、表面活性化処理を施す(S301)。この表面活性化処理は、例えば、プラズマ処理やオゾン処理である。
 この表面活性化処理に続き、既に公知の半導体基板同士の貼り合わせ技術を応用して、第1のn型Si結晶基板の表面(つまり、ITOから成る透明導電層150)と第2のn型Si結晶基板の表面(つまり、シリコン酸化物やアルミニウム酸化物などからなる絶縁性透明パッシベーション層160)同士を貼り合わせる(S302)。なお、この貼り合わせは、400℃以下の温度で行う。これは、トップセルの水素化アモルファスSi層からの水素の離脱による膜質の低下と、トップセルの結晶Si層への欠陥導入を抑制し、タンデム化に際しての太陽電池特性の劣化を生じさせないためである。
 なお、この貼り合わせの強度を高める目的で、トップセル側であるITOから成る透明導電層150の上に、更に、水素化アモルファスSiO膜を堆積しておいてもよい。
 この貼り合わせの後、第1のn型Si結晶基板の裏面側の結晶部分を取り除き、厚み30μm以下(一般的には10μm以下)まで薄くして、トップセルのn型結晶Si層130を形成する(S303)。
 この薄化工程は、第1のn型Si結晶基板の裏面側を機械的に研磨することのほか、いわゆる「スマートカット法」などの手法によってもよい。
 スマートカット法による場合には、ステップS101に先立ち、第1のn型Si結晶基板の表面領域に所定のドーズ量の水素を注入して水素イオン注入層を形成しておき、ステップS303において、上記水素イオン注入層に機械的若しくは熱衝撃を付与することにより第1のn型Si結晶基板からn型結晶Si層を剥離させてトップセルのn型結晶Si層とする。
 このような薄化工程の後、必要に応じて、研磨ダメージ層のエッチング除去を行い、結晶Si層の厚みを所望の値に調整する。
 その後、光入射面側に、水素化i型アモルファスSi層、水素化p型アモルファスSi層120、ITOから成る透明導電層110を、順次、積層する(S304~S306)。
 次いで、フォトリソ技術により、図4に示したように、第2の透明導電層150の一部を露出させ(S307)、受光面電極170、180を形成する(S308)。これにより、第1の受光面電極170が透明導電層110に電気的に接続され、第2の受光面電極180が第2の透明導電層150に電気的に接続され、トップセルが完成する。
 最後に、第2のn型Si結晶基板の裏面側にコンタクトホールを形成して、図4に示したような裏面電極260、270を形成し(S309)、トップセルが完成するとともに太陽電池としても完成する。
 既に説明したように、本発明に係る太陽電池のように、トップセルの結晶Si層の厚さを薄くすることにより、開放電圧を高めることが可能である。一方で、トップセルの結晶Si層の厚さが薄くなると、トップセルの光吸収長(光路長)が短くなり、その結果、短絡電流密度は小さくなり出力は結晶Si層が厚いセルに比較して低下する。しかし、本発明の太陽電池はタンデム構造であるため、トップセルで吸収できなかった光はボトムセルで吸収され、発電に供することができる。その結果、トップセルの発電電流を高い電圧で取り出すことができる分だけ、ボトムセル単体で発電する場合に比べて変換効率が改善される。
 このように、本発明に係る太陽電池は、トップセルの第2導電型結晶Si層を、従来のものに比較して顕著に薄くした構造を採用した。その結果、トップセルの開放電圧は、第2導電型結晶Si層を100μmとしたものに比較して、0.1V以上高くなり、高い電圧で電流を取り出すことができるため光電変換効率が向上する。
 また、出力を、トップセルとボトムセルから各々独立に取り出すことができるため、直列接続型タンデムセルで必要となる発電電流のマッチングを取る必要がない。
 さらに、本発明に係る太陽電池の製造方法は、いわゆる「貼り合わせ」技術を応用し、トップセルとボトムセルの「貼り合わせ」を400℃以下で行うため、水素化アモルファスSi層から水素が離脱して膜質を低下させることがなく、結晶Si層への新たな欠陥生成もないため、タンデム化に伴うヘテロ接合セルの劣化が生じない。
 これまでは、本発明に係る太陽電池がタンデム型の太陽電池である場合について説明した。しかし、本発明に係る太陽電池は必ずしもタンデム型である必要はなく、ボトムセルを備えることなく、基体上に上述のトップセルが設けられた太陽電池であってもよい。つまり、上述した「ボトムセル」が太陽電池として機能する必要は必ずしもない。
 上述した「ボトムセル」を太陽電池とせず、いわゆる基体である場合には、本発明に係る太陽電池は、トップセルが基体の主面上に設けられており、前記トップセルは、光入射側から、順次、透明導電層、第1導電型アモルファスSi材料層、前記第1導電型とは逆の第2導電型結晶Si層、第2導電型アモルファスSi層を有する積層構造を有し、前記トップセルの表面には受光面電極が、前記基体には裏面電極が設けられており、前記トップセルの第2導電型結晶Si層の厚みが30μm以下である、ことを特徴とする太陽電池ということになる。
 この場合の基体としては、例えば、単結晶Siを用いることとしてもよい。また、基体が単結晶Siからなる場合、トップセルと基体の間に、酸化インジウム・スズ(ITO)からなる層を備えている態様としてもよい。
 さらに、上記基体は、表面領域にバルクよりも高いドナー濃度の第2導電型層が形成され、該第2導電型層の上に絶縁性透明パッシベーション層が設けられた第2の第2導電型Si結晶基板である態様としてもよい。
 この場合、太陽電池の製造に際し、上述したステップS303(貼り合わせの後、第1のn型Si結晶基板の裏面側の結晶部分を取り除き、厚み30μm以下まで薄くして、トップセルのn型結晶Si層130を形成するステップ)の後に、第2導電型結晶Si層の上方に、第2導電型とは逆の第1導電型アモルファスSi材料層を形成するステップを備えるようにすることとしてもよい。
 また、トップセルの構造を、ナノワイヤやナノウォールがアレイ配列された態様のものとしてもよい。このようなナノ構造のものとすることにより、量子効果を高め、太陽電池の光電変換効率を高めることができる。
 このような構造のトップセルを備えた太陽電池は、前記トップセルが備える透明導電層、第1導電型アモルファスSi材料層、第2導電型結晶Si層、第2導電型アモルファスSi層を有する積層構造は、前記太陽電池を上方から見たときに、所定の間隔で2次元配列する複数のナノワイヤ若しくは壁面が所定の方向に揃い且つ所定の間隔で2次元配列する複数の壁状のナノウォールに区画されたアレイ構造を有し、前記ナノワイヤの直径若しくは前記ナノウォールの厚みが、前記第2導電型結晶Si層の部位において10nm以下である、太陽電池と言うことになる。
 斯かる態様を採用する場合、互いに隣接する前記ナノワイヤ若しくは前記ナノウォールは、絶縁性物質により離間されているようにすることが好ましい。
 また、ナノ構造のトップセルとする際には、第2導電型結晶Si層の上方に第2導電型とは逆の第1導電型アモルファスSi材料層を形成するステップにおいて、第1導電型アモルファスSi材料層の形成に先立ち、第2導電型結晶Si層を、所定の間隔で2次元配列する複数のナノワイヤであって第2導電型結晶Si層の部位において直径が10nm以下のナノワイヤ、若しくは、壁面が所定の方向に揃い且つ所定の間隔で2次元配列する複数の壁状のナノウォールであって第2導電型結晶Si層の部位において厚みが10nm以下であるナノウォールに区画するサブステップを備えていることが好ましい。
 図8は、トップセルが、所定の間隔で2次元配列する複数の壁状のナノウォールに区画されたアレイ構造の場合のタンデム型の太陽電池の構成を概念的に説明するための斜視図である。
 Siのバンドギャップはバルクでは1.1eV程度であるが、ナノオーダーのウォールやワイヤとした場合、その大きさが10nm程度よりも小さくなると大きくなることが知られている。そして、ナノウォールやナノワイヤのサイズ(幅)を変えることにより、量子閉じ込め効果によるバンドギャップ制御が可能である。つまり、トップセルを、このような大きさのナノウォールやナノワイヤを2次元配列させた構造のものとすることで、量子閉じ込め効果を積極的に利用して太陽電池としての性能を高めることができる。
 ナノウォールを想定すると、理論的には、ウォールの厚みを2nmまで狭めると、実効的なバンドギャップは約1.6eVとなり、バルクのシリコンのバンドギャップ(約1.1eV)よりも45%程度バンドギャップが広がり、高効率化が期待できる。
 図9は、所定の間隔で2次元配列する複数の壁状のSiのナノウォールに区画されたアレイ構造を有するトップセルの一部を観察した透過電子顕微鏡像である。ナノウォールのサイズは10nm以下であり、この図に示した例では約2nmである。また、ナノウォール相互間には、絶縁性物質(SiOやAl)が埋め込まれている。
 図10は、ナノウォールに区画されたアレイ構造(A)の反射率とナノウォール相互間に絶縁性物質であるSiOを埋め込んだアレイ構造(B)の反射率の波長依存性を示す図である。
 この図から明らかなように、ナノウォール相互間に絶縁性物質を埋め込むことにより反射率は低く抑えられ、太陽光の利用効率が高まる。
 このようなナノウォールは、例えば、下記のプロセスにより作製することができる。先ず、液浸リソグラフィーを用いたパターニングで数十nm幅のウォールを形成する。これにより、例えば、幅が75nm程度、高さが1μm程度のウォールを形成することができる。なお、基材となるSiの主面が(1,1,0)面であるとすると、例えば(1,-1,1)面は(1,1,0)面に直行するから、壁面が(1,-1,1)面のウォールを主面に垂直に形成することができる。これに次いで、酸化処理およびエッチング処理を繰り返すことにより、幅が数nmのナノウォールを形成する。
 なお、上述のナノウォールに代えて、所定の間隔で2次元配列する複数のナノワイヤに区画されたアレイ構造のものとし、そのナノワイヤの直径を10nm以下のサイズのものとしても、同様の量子効果を得ることができることは言うまでもない。
 本発明により、トップセルの結晶Si層を薄くして結晶Si層内でのオージェ再結合を抑制し、かつ、製造工程においても薄い結晶Si層が破損することのない、光電変換効率の高いSi太陽電池およびその製造方法が提供される。
 10 第1のn型Si結晶基板
 20 第2のn型Si結晶基板
 100 トップセル
 110 透明導電層
 120 p型アモルファスSi層
 130 n型結晶Si層
 140 n型アモルファスSi層
 150 第2の透明導電層
 160 絶縁性透明パッシベーション層
 200 ボトムセル
 210 n型領域
 220 エミッタ層としてのp型領域
 230 ドナー濃度の高いn型層
 240 ドナー濃度の高い第2のn型層
 250 絶縁性膜
 260 第1の裏面電極
 270 第2の裏面電極
 280 導電性材料
 300 太陽電池

Claims (31)

  1.  トップセルが基体の主面上に設けられており、
     前記トップセルは、光入射側から、順次、透明導電層、第1導電型アモルファスSi材料層、前記第1導電型とは逆の第2導電型結晶Si層、第2導電型アモルファスSi層を有する積層構造を有し、
     前記トップセルの表面には受光面電極が、前記基体には裏面電極が設けられており、
     前記トップセルの第2導電型結晶Si層の厚みが30μm以下である、ことを特徴とする太陽電池。
  2.  前記トップセルの第2導電型結晶Si層の厚みが3μm~30μmである、請求項1に記載の太陽電池。
  3.  前記トップセルの第2導電型結晶Si層の厚みが4μm~20μmである、請求項2に記載の太陽電池。
  4.  前記トップセルの第2導電型結晶Si層の厚みが5μm~10μmである、請求項3に記載の太陽電池。
  5.  前記トップセルは、前記第1導電型アモルファスSi材料層と第2導電型結晶Si層の間に、i型アモルファスSi材料層を備えている、請求項1~4の何れか1項に記載の太陽電池。
  6.  前記トップセルは、前記第2導電型結晶Si層と第2導電型アモルファスSi層との間に、i型アモルファスSi層を備えている、請求項1~5の何れか1項に記載の太陽電池。
  7.  前記トップセルと前記基体の間に、絶縁性透明パッシベーション層を備えている、請求項1~6の何れか1項に記載の太陽電池。
  8.  前記絶縁性透明パッシベーション層は、シリコン酸化物もしくはアルミニウム酸化物からなる層である、請求項7に記載の太陽電池。
  9.  前記基体は単結晶Siからなる、請求項1~8の何れか1項に記載の太陽電池。
  10.  前記基体は単結晶Siからなり、前記トップセルと前記基体の間に、酸化インジウム・スズ(ITO)からなる層を備えている、請求項9に記載の太陽電池。
  11.  前記基体は単結晶Siからなるボトムセルであり、前記トップセル側が第2導電型領域であり、その下方に第1導電型領域が形成されており、該ボトムセルの裏面に前記裏面電極が設けられてタンデム化されている、請求項9または10に記載の太陽電池。
  12.  前記ボトムセルは、前記第2導電型領域の前記トップセル側に、該第2導電型領域よりもドナー濃度の高い第2導電型層を備えている、請求項11に記載の太陽電池。
  13.  前記トップセルは、前記第2導電型アモルファスSi層の下側に設けられた第2の透明導電層を備えている、請求項1~12の何れか1項に記載の太陽電池。
  14.  前記トップセルは、上方から見たときに、前記第2の透明導電層の表面が、バスバー部と該バスバー部から延在する複数のフィンガー部を有する櫛歯状に露出されている、請求項13に記載の太陽電池。
  15.  前記トップセルの表面に、前記透明導電層に電気的に接続される第1の櫛歯状の受光面電極と、前記第2の透明導電層に電気的に接続される第2の櫛歯状の受光面電極が設けられている、請求項14に記載の太陽電池。
  16.  前記ボトムセルの裏面側には、バスバー部と該バスバー部から延在する複数のフィンガー部を有する櫛歯状に形成された前記第1導電型領域と、バスバー部と該バスバー部から延在する複数のフィンガー部を有する櫛歯状に形成され、前記第2導電型領域よりもドナー濃度の高い第2の第2導電型領域が形成されており、前記第1導電型領域のフィンガー部と前記第2の第2導電型領域のフィンガー部は、所定間隔で交互に位置している、請求項11~15の何れか1項に記載の太陽電池。
  17.  前記ボトムセルの裏面に、前記第1導電型領域に電気的に接続される第1の櫛歯状の裏面電極と、前記第2の第2導電型領域に電気的に接続される第2の櫛歯状の裏面電極が設けられている、請求項16に記載の太陽電池。
  18.  前記太陽電池を上方から見たときに、前記第1の櫛歯状の受光面電極のバスバー部と前記第2の櫛歯状の裏面電極のバスバー部が一方端側で平行に位置しており、前記第2の櫛歯状の受光面電極のバスバー部と前記第1の櫛歯状の裏面電極のバスバー部が他方端側で平行に位置している、請求項15および17に記載の太陽電池。
  19.  前記トップセルに設けられた透明導電層は、酸化インジウム・スズ(ITO)である、請求項1~18の何れか1項に記載の太陽電池。
  20.  前記トップセルの光入射側に設けられた透明導電層は反射防止層を兼ねている、請求項1~19の何れか1項に記載の太陽電池。
  21.  前記トップセルの前記第2導電型結晶Si層が、前記トップセルと前記ボトムセルの発電電流が同じになる厚みに設計されている、請求項11~20の何れか1項に記載の太陽電池。
  22.  前記トップセルが備える透明導電層、第1導電型アモルファスSi材料層、第2導電型結晶Si層、第2導電型アモルファスSi層を有する積層構造は、前記太陽電池を上方から見たときに、所定の間隔で2次元配列する複数のナノワイヤ若しくは壁面が所定の方向に揃い且つ所定の間隔で2次元配列する複数の壁状のナノウォールに区画されたアレイ構造を有し、前記ナノワイヤの直径若しくは前記ナノウォールの厚みが、前記第2導電型結晶Si層の部位において10nm以下である、請求項1~21の何れか1項に記載の太陽電池。
  23.  互いに隣接する前記ナノワイヤ若しくは前記ナノウォールは、絶縁性物質により離間されている、請求項22に記載の太陽電池。
  24.  基体上にトップセルを有する太陽電池の製造方法であって、
     表面領域に第2導電型アモルファスSi層が形成され、該第2導電型アモルファスSi層の上に透明導電層が設けられた第1の第2導電型Si結晶基板と、表面に透明導電層若しくは絶縁性透明パッシベーション層が形成された前記基体の表面同士を、400℃以下の温度で貼り合わせる第1のステップと、
     前記第1の第2導電型Si結晶基板を裏面から厚み30μm以下まで薄くして前記トップセルの第2導電型結晶Si層とする第2のステップと、を備えている太陽電池の製造方法。
  25.  前記基体は、表面領域にバルクよりも高いドナー濃度の第2導電型層が形成され、該第2導電型層の上に絶縁性透明パッシベーション層が設けられた第2の第2導電型Si結晶基板である、請求項24に記載の太陽電池の製造方法。
  26.  前記第1のステップは、前記第1の第2導電型Si結晶基板の表面と前記基体の表面の少なくとも一方に、表面活性化処理を施すサブステップを備えている、請求項24または25に記載の太陽電池の製造方法。
  27.  前記表面活性化処理はプラズマ処理又はオゾン処理の少なくとも一方で実行される、請求項26に記載の太陽電池の製造方法。
  28.  前記透明導電層は酸化インジウム・スズ(ITO)であり、前記絶縁性透明パッシベーション層はシリコン酸化物もしくはアルミニウム酸化物からなる層である、請求項24~27の何れか1項に記載の太陽電池の製造方法。
  29.  前記第1のステップに先立ち、前記第1の第2導電型Si結晶基板の表面領域に所定のドーズ量の水素を注入して水素イオン注入層を形成するステップを備え、
     前記第2のステップにおいて、前記水素イオン注入層に機械的若しくは熱衝撃を付与することにより前記第1の第2導電型Si結晶基板から第2導電型結晶Si層を剥離させて前記トップセルの第2導電型結晶Si層とする、請求項24~28の何れか1項に記載の太陽電池の製造方法。
  30.  前記第2のステップの後に、前記第2導電型結晶Si層の上方に、第2導電型とは逆の第1導電型アモルファスSi材料層を形成する第3のステップを備えている、請求項29に記載の太陽電池の製造方法。
  31.  前記第3のステップは、前記第1導電型アモルファスSi材料層の形成に先立ち、前記第2導電型結晶Si層を、所定の間隔で2次元配列する複数のナノワイヤであって前記第2導電型結晶Si層の部位において直径が10nm以下のナノワイヤ、若しくは、壁面が所定の方向に揃い且つ所定の間隔で2次元配列する複数の壁状のナノウォールであって前記第2導電型結晶Si層の部位において厚みが10nm以下であるナノウォールに区画するサブステップを備えている、請求項30に記載の太陽電池の製造方法。
PCT/JP2015/001413 2014-03-31 2015-03-13 太陽電池および太陽電池の製造方法 WO2015151422A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016511357A JP6188921B2 (ja) 2014-03-31 2015-03-13 太陽電池および太陽電池の製造方法
CN201580017041.4A CN106165120B (zh) 2014-03-31 2015-03-13 太阳能电池及太阳能电池的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-073369 2014-03-31
JP2014073369 2014-03-31

Publications (1)

Publication Number Publication Date
WO2015151422A1 true WO2015151422A1 (ja) 2015-10-08

Family

ID=54239774

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/001413 WO2015151422A1 (ja) 2014-03-31 2015-03-13 太陽電池および太陽電池の製造方法

Country Status (4)

Country Link
JP (1) JP6188921B2 (ja)
CN (1) CN106165120B (ja)
TW (1) TWI597857B (ja)
WO (1) WO2015151422A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016066630A1 (en) * 2014-10-28 2016-05-06 Sol Voltaics Ab Dual layer photovoltaic device
WO2017093695A1 (fr) * 2015-12-04 2017-06-08 Centre National De La Recherche Scientifique - Cnrs - Cellule photovoltaique
CN110073498A (zh) * 2016-11-07 2019-07-30 信越化学工业株式会社 高光电变换效率太阳能电池及高光电变换效率太阳能电池的制造方法
WO2020130318A1 (ko) * 2018-12-18 2020-06-25 엘지전자 주식회사 텐덤 태양전지

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115498071B (zh) * 2022-09-20 2024-05-14 通威太阳能(成都)有限公司 电池的制备方法、电池和电子产品

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08213645A (ja) * 1995-02-02 1996-08-20 Sony Corp 基体から素子形成層を分離する方法
WO1999025029A1 (fr) * 1997-11-10 1999-05-20 Kaneka Corporation Procede de production d'un transducteur photoelectrique a film mince de silicium et dispositif de dcpv active par plasma
JP2008117858A (ja) * 2006-11-01 2008-05-22 Shin Etsu Chem Co Ltd 単結晶シリコン太陽電池の製造方法及び単結晶シリコン太陽電池
WO2009034858A1 (ja) * 2007-09-10 2009-03-19 Masayoshi Murata 集積化タンデム型薄膜シリコン太陽電池モジュール及びその製造方法
JP2009260310A (ja) * 2008-03-28 2009-11-05 Semiconductor Energy Lab Co Ltd 光電変換装置の製造方法及び光電変換装置
WO2014002256A1 (ja) * 2012-06-29 2014-01-03 三洋電機株式会社 太陽電池

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001189478A (ja) * 1999-12-28 2001-07-10 Sanyo Electric Co Ltd 半導体素子及びその製造方法
JP3702240B2 (ja) * 2002-03-26 2005-10-05 三洋電機株式会社 半導体素子及びその製造方法
JP4070648B2 (ja) * 2003-03-25 2008-04-02 三洋電機株式会社 光起電力素子
KR20080079058A (ko) * 2007-02-26 2008-08-29 엘지전자 주식회사 박막형 태양전지 모듈과 그의 제조방법
CN101924156A (zh) * 2009-06-11 2010-12-22 亚洲太阳科技有限公司 复合式串联或并联的薄膜太阳能电池及其制作方法
JP5840095B2 (ja) * 2011-10-31 2016-01-06 三菱電機株式会社 太陽電池の製造装置、及び太陽電池の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08213645A (ja) * 1995-02-02 1996-08-20 Sony Corp 基体から素子形成層を分離する方法
WO1999025029A1 (fr) * 1997-11-10 1999-05-20 Kaneka Corporation Procede de production d'un transducteur photoelectrique a film mince de silicium et dispositif de dcpv active par plasma
JP2008117858A (ja) * 2006-11-01 2008-05-22 Shin Etsu Chem Co Ltd 単結晶シリコン太陽電池の製造方法及び単結晶シリコン太陽電池
WO2009034858A1 (ja) * 2007-09-10 2009-03-19 Masayoshi Murata 集積化タンデム型薄膜シリコン太陽電池モジュール及びその製造方法
JP2009260310A (ja) * 2008-03-28 2009-11-05 Semiconductor Energy Lab Co Ltd 光電変換装置の製造方法及び光電変換装置
WO2014002256A1 (ja) * 2012-06-29 2014-01-03 三洋電機株式会社 太陽電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HIROSHI TOMIZAWA: "Si Nano-wall Tandem Cells", 74TH JSAP AUTUMN MEETING, pages 16 - 083 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016066630A1 (en) * 2014-10-28 2016-05-06 Sol Voltaics Ab Dual layer photovoltaic device
WO2017093695A1 (fr) * 2015-12-04 2017-06-08 Centre National De La Recherche Scientifique - Cnrs - Cellule photovoltaique
FR3044827A1 (fr) * 2015-12-04 2017-06-09 Centre Nat De La Rech Scient - Cnrs - Cellule photovoltaique
CN109496369A (zh) * 2015-12-04 2019-03-19 法国国家科学研究中心 光伏电池
US10636928B2 (en) 2015-12-04 2020-04-28 Centre National De La Recherche Scientifique Photovoltaic cell
CN109496369B (zh) * 2015-12-04 2022-10-21 法国国家科学研究中心 光伏电池
CN110073498A (zh) * 2016-11-07 2019-07-30 信越化学工业株式会社 高光电变换效率太阳能电池及高光电变换效率太阳能电池的制造方法
US11631779B2 (en) 2016-11-07 2023-04-18 Shin-Etsu Chemical Co., Ltd. Solar cell with high photoelectric conversion efficiency and method for manufacturing solar cell with high photoelectric conversion efficiency
WO2020130318A1 (ko) * 2018-12-18 2020-06-25 엘지전자 주식회사 텐덤 태양전지
US11616160B2 (en) 2018-12-18 2023-03-28 Shangrao Jinko Solar Technology Development Co., Ltd Tandem solar cell
US11830958B2 (en) 2018-12-18 2023-11-28 Shangrao Jinko Solar Technology Development Co., Ltd Tandem solar cell

Also Published As

Publication number Publication date
JP6188921B2 (ja) 2017-08-30
CN106165120B (zh) 2018-01-30
TWI597857B (zh) 2017-09-01
TW201539774A (zh) 2015-10-16
CN106165120A (zh) 2016-11-23
JPWO2015151422A1 (ja) 2017-04-13

Similar Documents

Publication Publication Date Title
JP5230222B2 (ja) 太陽電池
JP6059173B2 (ja) 太陽電池
KR101031246B1 (ko) 박막형 태양전지 및 그 제조방법, 및 그를 이용한 박막형 태양전지 모듈 및 태양광 발전 시스템
US8158878B2 (en) Thin film solar cell module
JP6188921B2 (ja) 太陽電池および太陽電池の製造方法
JP5815776B2 (ja) 太陽電池
KR101889775B1 (ko) 태양 전지 및 이의 제조 방법
KR20140027047A (ko) 개선된 패시베이션을 구비하는 광전 디바이스 및 모듈 및 제조 방법
JP2006120745A (ja) 薄膜シリコン積層型太陽電池
JP2011035092A (ja) 裏面接合型太陽電池及びそれを用いた太陽電池モジュール
US20130192663A1 (en) Single and multi-junction light and carrier collection management cells
JP7023976B2 (ja) P型perc両面太陽電池の製造方法
JP2017534184A (ja) 2層光発電デバイス
WO2015098426A1 (ja) 太陽電池及びその製造方法
TW200947724A (en) Using 3D integrated diffractive gratings in solar cells
JP6414767B2 (ja) 太陽電池セル
JP2002118273A (ja) 集積型ハイブリッド薄膜光電変換装置
TWI506801B (zh) 太陽能電池組
JP5174114B2 (ja) 太陽電池
WO2012057604A1 (en) Nanostructure-based photovoltaic cell
JP2009141059A (ja) 薄膜光電変換装置
JP2017069462A (ja) 太陽電池および太陽電池モジュール
US9947824B1 (en) Solar cell employing nanocrystalline superlattice material and amorphous structure and method of constructing the same
JP5094949B2 (ja) 太陽電池
JP4875725B2 (ja) 薄膜シリコン積層型太陽電池の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15772803

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016511357

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase
122 Ep: pct application non-entry in european phase

Ref document number: 15772803

Country of ref document: EP

Kind code of ref document: A1