WO2018062352A1 - 放熱シート - Google Patents

放熱シート Download PDF

Info

Publication number
WO2018062352A1
WO2018062352A1 PCT/JP2017/035119 JP2017035119W WO2018062352A1 WO 2018062352 A1 WO2018062352 A1 WO 2018062352A1 JP 2017035119 W JP2017035119 W JP 2017035119W WO 2018062352 A1 WO2018062352 A1 WO 2018062352A1
Authority
WO
WIPO (PCT)
Prior art keywords
sheet
heat dissipation
fibrous carbon
heat
carbon
Prior art date
Application number
PCT/JP2017/035119
Other languages
English (en)
French (fr)
Inventor
金柱 車
伸弥 小村
大道 高弘
Original Assignee
帝人株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US16/337,229 priority Critical patent/US20190300771A1/en
Application filed by 帝人株式会社 filed Critical 帝人株式会社
Priority to CN201780060063.8A priority patent/CN109790309A/zh
Priority to US16/337,229 priority patent/US11104834B2/en
Priority to EP17856301.1A priority patent/EP3521349B1/en
Priority to KR1020197010981A priority patent/KR102471797B1/ko
Priority to JP2018542832A priority patent/JP6775594B2/ja
Publication of WO2018062352A1 publication Critical patent/WO2018062352A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/042Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3733Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon having a heterogeneous or anisotropic structure, e.g. powder or fibres in a matrix, wire mesh, porous structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3737Organic materials with or without a thermoconductive filler
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/004Additives being defined by their length
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/016Additives defined by their aspect ratio

Definitions

  • the present invention relates to a heat dissipation sheet. Specifically, the present invention relates to a heat radiating sheet containing fibrous carbon and having excellent thermal conductivity.
  • Carbon nanomaterials especially fibrous carbon having an average fiber diameter of 1 ⁇ m or less, have excellent properties such as high crystallinity, high conductivity, high strength, high elastic modulus, light weight, etc. Used as a nanofiller for composite materials. Its use is not limited to reinforcing nano fillers for the purpose of improving mechanical strength. Utilizing the high conductivity of carbon materials, it can be used as an additive material for various batteries and capacitor electrodes, electromagnetic shielding materials, and antistatic materials. As a conductive nanofiller for use in an electric field, or as a nanofiller to be blended in an electrostatic coating for resin, studies are being made.
  • Patent Document 1 describes a sheet-like thermally conductive molded article having a thickness of 100 to 3000 ⁇ m, which includes a pitch-based carbon fiber filler having an average fiber diameter of 2 to 20 ⁇ m, a thermoplastic resin and / or a thermosetting resin.
  • the crystal size (La) derived from the growth direction of the hexagonal network surface is 20 nm or more (Example 1 is 70 nm), and the crystallinity is also excellent.
  • this pitch-based carbon fiber filler cannot be said to have sufficient characteristics as a heat-dissipating sheet because the fiber diameter is large.
  • the pitch-based carbon fiber filler has a structure in which the graphene sheet is closed when the shape of the filler end face is observed with a transmission electron microscope.
  • the graphite layer When the graphene sheet is closed, the end of the graphene sheet itself constituting the carbon fiber is not exposed at the end of the carbon fiber, the graphite layer is bent in a substantially U shape, and the bent portion is at the end of the carbon fiber. It is in an exposed state.
  • Patent Document 2 discloses a thermally conductive sheet filled with carbon fibers and an inorganic filler.
  • the average fiber length of the carbon fibers is 50 to 250 ⁇ m
  • the average particle size of the inorganic filler is 1 to 10 ⁇ m
  • the average thickness of the heat conductive sheet is 500 ⁇ m or less, and excellent high thermal conductivity even when the thickness is small. It is described that both excellent flexibility can be achieved.
  • the average short axis diameter of the carbon fibers constituting the heat conductive sheet is as thick as 6 to 15 ⁇ m.
  • the inorganic filler is alumina
  • the average particle size is slightly small, 1 to 10 ⁇ m.
  • the carbon fibers are oriented in the thickness direction of the heat conductive sheet (perpendicular to the sheet surface) (paragraph 0052). What is the heat conductivity in the sheet extrusion direction (hereinafter referred to as the in-plane direction)? Not considered.
  • the fiber diameter is large (6 to 15 ⁇ m) and the fiber length is long (50 to 250 ⁇ m)
  • the number of carbon fibers contained in the sheet is small, and the sheet extrusion direction (one direction in the plane)
  • the thermal conduction path is not formed.
  • JP 2009-132810 A Japanese Patent Laying-Open No. 2015-029071
  • the 1st subject of this invention is providing the heat-radiation sheet which has high heat dissipation compared with the conventional heat-radiation sheet.
  • the second problem of the present invention is that the heat dissipation sheet has moderate flexibility and excellent heat conductivity not only in the direction parallel to the surface of the heat dissipation sheet (hereinafter also referred to as “in-plane direction”) but also in the thickness direction. Is to provide.
  • a heat dissipating sheet comprising fibrous carbon and a polymer,
  • the fibrous carbon has an average effective fiber length of 5 to 120 ⁇ m, an average fiber diameter of 200 to 900 nm, and an average aspect ratio of 30 to 10,000.
  • a heat-dissipating sheet, wherein the fibrous carbon content is 5 to 85 mass% with respect to the total amount of the fibrous carbon and the polymer.
  • the orientation degree of the fibrous carbon obtained by the X-ray diffraction method of the heat dissipation sheet is [1]
  • the heat radiation sheet according to [1], wherein an orientation degree A in a direction parallel to the surface of the heat radiation sheet and exhibiting the highest degree of orientation is 55 to 95%.
  • the thermal conductivity P in one direction that is parallel to the surface of the heat dissipation sheet and exhibits the highest degree of orientation is 2 to 200 times the thermal conductivity T in the thickness direction of the heat dissipation sheet. [1] or [2].
  • the inventions described in [1] to [3] are heat dissipation sheets comprising a predetermined amount of ultrafine fibrous carbon having a predetermined effective fiber length.
  • the fibrous carbon preferably has a degree of orientation of the fibrous carbon in a predetermined range in the in-plane direction of the heat dissipation sheet. Furthermore, it is preferable that the thermal conductivity in the in-plane direction of the heat dissipation sheet and the thermal conductivity in the thickness direction are in a predetermined range.
  • the filler particles are mesocarbon microbeads (MCMB), boron nitride (BN), silicon carbide (SiC), aluminum nitride (AlN), silicon oxide, silicon (silicon), metal particles, titania, silica, and
  • MCMB mesocarbon microbeads
  • BN boron nitride
  • SiC silicon carbide
  • AlN aluminum nitride
  • silicon oxide silicon
  • metal particles titania, silica
  • the heat radiation sheet according to [4] which is at least one inorganic substance selected from the group consisting of alumina.
  • the thermal conductivity p in a direction parallel to the surface of the heat radiating sheet and exhibiting the highest degree of orientation is 1.5 to 50 times the thermal conductivity t in the thickness direction of the heat radiating sheet. [4] or [5].
  • the invention according to [4] is a heat dissipation sheet further containing filler particles of a predetermined size.
  • the filler particles are preferably the predetermined substance described in [5].
  • the thermal conductivity in the in-plane direction of the heat dissipation sheet and the thermal conductivity in the thickness direction are in a predetermined range.
  • the invention described in [8] is a heat dissipation sheet made of a carbon fiber molded body including carbon fibers aligned in the thickness direction of the sheet.
  • This carbon fiber molded body contains carbon fibers that are aligned in a predetermined direction, and is a material that significantly improves the thermal conductivity in the axial direction of the carbon fibers.
  • the invention according to [9] is a heat radiation sheet comprising a predetermined amount of carbon nanotubes having a predetermined size. Since these carbon nanotubes aggregate in the heat dissipation sheet due to their properties, the carbon nanotube improves the thermal conductivity in the thickness direction of the heat dissipation sheet.
  • the fibrous carbon is fibrous carbon having a thickness (Lc) of 1 to 200 nm and a crystallite length (La) of 20 to 500 nm as measured by an X-ray diffraction method.
  • Lc thickness of 1 to 200 nm
  • La crystallite length of 20 to 500 nm as measured by an X-ray diffraction method.
  • the heat dissipation sheet according to any one of [9].
  • the invention according to [11] is a heat dissipation sheet in which fibrous carbon is limited to a predetermined substance.
  • the invention described in [12] is a heat dissipation sheet whose thickness is limited to a predetermined range.
  • the heat radiating sheet with high heat conductivity compared with the heat radiating sheet known by the prior art is provided.
  • a heat dissipation sheet having particularly excellent thermal conductivity in a specific direction of the heat dissipation sheet is provided.
  • a heat radiating sheet excellent in thermal conductivity in the thickness direction as well as in the in-plane direction of the heat radiating sheet is provided.
  • Such a heat radiating sheet can be formed very thin and has a higher thermal conductivity than conventional products. Therefore, it is promising for applications that generate a large amount of heat and have limited space (for example, smartphones, heaters, copier rollers, LEDs, automobiles, and CPUs).
  • FIG. 2 is an electron micrograph (2000 times) of the ultrafine fibrous carbon of Production Example 1.
  • FIG. 2 is a reference diagram in which the electron micrograph of FIG. 7 is an electron micrograph of the surface of a heat dissipation sheet of Example 7.
  • FIG. 14 is an electron micrograph of the surface of a heat dissipation sheet of Comparative Example 13.
  • Fibrous carbon 1-1. Fibrous Carbon Properties Fibrous carbon in the present invention has a fiber shape substantially composed of only carbon, and a typical example is carbon fiber.
  • the fibrous carbon may be, for example, a fiber in which graphite, graphene, carbon nanotube, carbon nanohorn, fullerene, carbon black, and activated carbon are bonded and connected by fusion or adhesion.
  • the fibrous carbon may have a fibrous form as a whole.
  • the fibrous carbon may be in contact with and bonded to one having an aspect ratio less than the preferable range described later, and the fibers Also included are those having a shape (for example, those in which spherical carbons are connected in a bead shape, or those in which at least one or a plurality of extremely short fibers are connected by fusion or the like).
  • the fibrous carbon in the present invention is highly effective in forming a heat conductive network in the heat dissipation sheet, and is preferably a carbon fiber from the viewpoint of improving heat dissipation characteristics.
  • the carbon fiber include vapor growth carbon materials such as carbon nanotubes and carbon nanoribbons. Pitch-based carbon fibers are preferable to PAN-based carbon fibers because high crystallinity is required.
  • the said fibrous carbon is not specifically limited, It is preferable that it is a linear structure which does not have a branch substantially.
  • the term “branch” means that the main axis of fibrous carbon is branched in the middle, or the main axis of fibrous carbon has a branch-like minor axis.
  • the linear structure having substantially no branch means that the degree of branching of the fibrous carbon is 0.01 piece / ⁇ m or less.
  • the average fiber diameter of the fibrous carbon is in the range of 200 to 900 nm.
  • the upper limit is preferably 600 nm, more preferably 500 nm, and even more preferably 400 nm.
  • the lower limit is preferably 210 nm, and more preferably 220 nm.
  • the fibrous carbon When the average fiber diameter of the fibrous carbon is in the range of 200 to 900 nm, the fibrous carbon is likely to be regularly arranged mainly in one direction within the surface in the heat-dissipating sheet, and the fibrous carbons are in proper contact with each other. . For this reason, a heat radiation path in one specific direction is efficiently formed. If it is less than 200 nm, it becomes difficult for the fibrous carbon to form a linear structure. Further, since the bulk density is very small, the handling property is inferior, and it is difficult to disperse the fibrous carbon. Moreover, when forming a heat-radiation sheet, fibrous carbons contact excessively, there exists a tendency for thermal conductivity resistance to increase and thermal conductivity to fall.
  • the fiber diameter and effective fiber length in the present invention mean values measured from a photograph taken at a magnification of 2,000 with a field emission scanning electron microscope.
  • the effective fiber length of fiber carbon and its average effective fiber length are preferably in the range of 5 to 120 ⁇ m, more preferably 5 to 100 ⁇ m, still more preferably 8 to 70 ⁇ m, and more preferably 10 to 50 ⁇ m. Most preferred. When it is less than 5 ⁇ m, the thermal conductivity in the heat dissipation sheet is lowered, which is not preferable. If it exceeds 120 ⁇ m, the dispersibility of the fibrous carbon is impaired, which is not preferable. That is, when the fibrous carbon is too long, the fibrous carbon tends to be oriented in the in-plane direction of the heat-dissipating sheet, and handling and molding tend to be difficult.
  • the effective fiber length is defined not by the actual fiber length but by the effective length. This is because fibrous carbon does not always contribute to heat conduction with the actual fiber length in the heat dissipation sheet. For example, the fiber may be bent or rounded in the heat dissipation sheet, and the actual fiber length may not contribute to heat conduction.
  • the effective length of fibrous carbon is defined as the length of the longest line segment where both ends are in contact with a single fibrous carbon. In other words, it is the maximum linear distance at which a single piece of fibrous carbon can conduct heat. That is, when the fibrous carbon has a complete linear structure, the effective length is substantially equal to the fiber length. When the fibrous carbon has a branched structure or is rounded, it means the maximum length of a line segment connecting two points on the single fibrous carbon.
  • the ratio (aspect ratio, L / D) between the average effective fiber length (L) and the average fiber diameter (D) of the fibrous carbon is 30 or more, and preferably 40 or more.
  • the ratio (L / D) is 30 or more, a heat dissipation path is efficiently formed in the heat dissipation sheet, and a heat dissipation sheet with high thermal conductivity can be obtained. If it is less than 30, the formation of the heat dissipation path is likely to be insufficient in the heat dissipation sheet, and the thermal conductivity in the in-plane direction within the heat dissipation sheet is lowered.
  • the upper limit of the aspect ratio (L / D) is not particularly limited, but is generally 10000 or less, preferably 5000 or less, more preferably 1000 or less, and even more preferably 500 or less. , 200 or less, more preferably 100 or less, and particularly preferably 80 or less. When it exceeds 10,000, the dispersibility of fibrous carbon is impaired, which is not preferable.
  • the fibrous carbon has high crystallinity.
  • the crystallite length (La) measured by X-ray diffraction as an index of crystallinity is preferably 20 to 500 nm, more preferably 30 nm or more, further preferably 50 nm or more, and 80 nm. More preferably, it is 100 nm or more, more preferably 120 nm or more, and particularly preferably 140 nm or more. When it is less than 20 nm, the crystalline nature of the fibrous carbon is low and the thermal conductivity is not sufficient. On the other hand, the crystallite size is measured by the X-ray diffraction method. However, since the measurement error increases as the crystal grows greatly, the measurement limit is substantially 500 nm.
  • the crystallite length (La) measured by the X-ray diffraction method is measured by Japanese Industrial Standard JISR 7651 (2007 edition) “Method for measuring the lattice constant and crystallite size of carbon material”. Value.
  • the above-mentioned fibrous carbon has a crystal plane distance (d002) measured by an X-ray diffraction method of preferably 0.335 to 0.340 nm, and more preferably 0.335 to 0.339 nm.
  • d002 crystal plane distance measured by an X-ray diffraction method
  • the fibrous carbon has a thickness (Lc) of a net plane group of graphene (a net plane group) of 1.0 to 200 nm. If it is less than 1.0 nm, the thermal conductivity of the fibrous carbon is remarkably lowered, which is not preferable.
  • Lc is more preferably 5 to 130 nm, still more preferably 10 to 130 nm.
  • the fibrous carbon used in the heat dissipation sheet of the present invention preferably has high crystallinity.
  • the fibrous carbon having high crystallinity can impart conductivity to the heat dissipation sheet.
  • the fibrous carbon used for the heat dissipation sheet of the present invention preferably has high conductivity even in a state where the filling density of the fibrous carbon is low. Fibrous carbon having high conductivity in a state where the packing density is low can impart heat conductivity and conductivity to the heat dissipation sheet at a low addition concentration.
  • the powder volume resistivity of the fibrous carbon when filled at a packing density of 0.4 g / cm 3 is preferably 1 ⁇ ⁇ cm or less, more preferably 0.5 ⁇ ⁇ cm or less. preferable. If it exceeds 1 ⁇ ⁇ cm, the amount of fibrous carbon added to improve thermal conductivity and conductivity is undesirably increased.
  • the lower limit is not particularly limited, but is about 0.0001 ⁇ ⁇ cm.
  • the manufacturing method of the pitch-type carbon fiber which is a preferable form as the fibrous carbon of this invention is demonstrated below.
  • the pitch-based carbon fiber production method of the present invention can be produced, for example, through the following steps (1) to (4).
  • a resin composition comprising a thermoplastic resin and a mesophase pitch of 1 to 150 parts by mass with respect to 100 parts by mass of the thermoplastic resin is molded in a molten state, whereby the mesophase pitch is fiberized to form a resin.
  • thermoplastic resin used in the method for producing pitch-based carbon fibers of the present invention can produce resin composite fibers and needs to be easily removed in the thermoplastic resin removal step.
  • thermoplastic resins include polyolefin, polymethacrylate, polymethylmethacrylate and other polyacrylate polymers, polystyrene, polycarbonate, polyarylate, polyester, polyamide, polyester carbonate, polysulfone, polyimide, polyetherimide, polyketone, and polylactic acid. Is exemplified. Among these, polyolefin is preferably used.
  • polyolefins include polyethylene, polypropylene, poly-4-methylpentene-1, and copolymers containing these. From the viewpoint of easy removal in the thermoplastic resin removal step, it is preferable to use polyethylene.
  • Polyethylene includes high pressure method low density polyethylene, gas phase method / solution method / high pressure method linear low density polyethylene and other low density polyethylene, medium density polyethylene and high density polyethylene homopolymers; ethylene and ⁇ -olefin And copolymers of ethylene and other vinyl monomers such as ethylene / vinyl acetate copolymer.
  • the thermoplastic resin used in the present invention preferably has a melt mass flow rate (MFR) measured in accordance with JIS K 7210 (1999) of 0.1 to 10 g / 10 min, preferably 0.1 to 5 g / min. 10 min is more preferable, and 0.1 to 3 g / 10 min is particularly preferable.
  • MFR melt mass flow rate
  • the mesophase pitch can be finely dispersed in the thermoplastic resin.
  • the fiber diameter of the obtained carbon fiber can be further reduced by stretching the fiber.
  • the thermoplastic resin used in the present invention can be easily melt-kneaded with mesophase pitch, so that the glass transition temperature is 250 ° C. or lower when amorphous and the melting point is 300 ° C. or lower when crystalline. preferable.
  • the mesophase pitch is a pitch that can form an optically anisotropic phase (liquid crystal phase) in a molten state.
  • the mesophase pitch used in the present invention include those using a distillation residue of coal or petroleum as a raw material and those using an aromatic hydrocarbon such as naphthalene as a raw material.
  • coal-derived mesophase pitch can be obtained by a process mainly including hydrogenation and heat treatment of coal tar pitch; a process mainly including hydrogenation, heat treatment and solvent extraction.
  • a coal tar pitch having a softening point of 80 ° C. from which quinoline insolubles have been removed is hydrogenated at a pressure of 13 MPa and a temperature of 340 ° C. in the presence of a Ni—Mo catalyst to obtain a hydrogenated coal tar pitch.
  • the hydrogenated coal tar pitch is heat-treated at 480 ° C. under normal pressure, and then reduced in pressure to remove low boiling point components to obtain a crude mesophase pitch.
  • a purified mesophase pitch can be obtained.
  • the optical anisotropy content (mesophase ratio) of the mesophase pitch is preferably 80% or more, and more preferably 90% or more.
  • the mesophase pitch preferably has a softening point of 100 to 400 ° C, more preferably 150 to 350 ° C.
  • the resin composition comprising a thermoplastic resin and mesophase pitch (hereinafter also referred to as mesophase pitch composition) used in the pitch-based carbon fiber production method of the present invention includes a thermoplastic resin and 100 parts by mass of the thermoplastic resin. 1 to 150 parts by mass of mesophase pitch.
  • the mesophase pitch content is more preferably 5 to 100 parts by mass. If the mesophase pitch content exceeds 150 parts by mass, a resin composite fiber having a desired fiber diameter cannot be obtained, and if it is less than 1 part by mass, the target carbon fiber cannot be produced at a low cost. Since it occurs, it is not preferable.
  • the dispersion diameter of the mesophase pitch in the thermoplastic resin is preferably 0.01 to 50 ⁇ m, and more preferably 0.01 to 30 ⁇ m. If the dispersion diameter of the mesophase pitch in the thermoplastic resin is out of the range of 0.01 to 50 ⁇ m, it may be difficult to produce a desired carbon fiber.
  • the mesophase pitch composition the mesophase pitch forms a spherical or elliptical island phase, but the dispersion diameter in the present invention means the diameter when the island phase is spherical, The major axis diameter is meant.
  • the dispersion diameter of 0.01 to 50 ⁇ m is preferably maintained within the above range even after the mesophase pitch composition is held at 300 ° C. for 3 minutes, and is also maintained after being held at 300 ° C. for 5 minutes. It is more preferable that it is maintained even after being held at 300 ° C. for 10 minutes.
  • the mesophase pitch composition is kept in a molten state, the mesophase pitch aggregates with time in the resin composition.
  • the dispersion diameter exceeds 50 ⁇ m, it may be difficult to produce a desired carbon fiber.
  • the aggregation rate of mesophase pitch in the resin composition varies depending on the type of thermoplastic resin and mesophase pitch used.
  • the mesophase pitch composition can be produced by kneading a thermoplastic resin and mesophase pitch in a molten state. Melting and kneading of the thermoplastic resin and the mesophase pitch can be performed using a known apparatus. For example, at least one selected from the group consisting of a single-screw kneader, a twin-screw kneader, a mixing roll, and a Banbury mixer can be used.
  • a biaxial kneader is preferably used for the purpose of satisfactorily microdispersing the mesophase pitch in the thermoplastic resin, and in particular, a biaxial kneader in which each axis rotates in the same direction is used. preferable.
  • the kneading temperature is not particularly limited as long as the thermoplastic resin and mesophase pitch are in a molten state, but is preferably 100 to 400 ° C, and more preferably 150 to 350 ° C.
  • the kneading temperature is less than 100 ° C.
  • the mesophase pitch is not in a molten state, and it is difficult to micro-disperse it in the thermoplastic resin.
  • disassembly of a thermoplastic resin or a mesophase pitch may advance.
  • the melt kneading time is preferably 0.5 to 20 minutes, more preferably 1 to 15 minutes. When the melt kneading time is less than 0.5 minutes, it is difficult to micro-disperse the mesophase pitch in the thermoplastic resin. On the other hand, when it exceeds 20 minutes, the productivity of carbon fibers is significantly reduced.
  • the melt-kneading is preferably performed in an inert atmosphere having an oxygen gas content of less than 10% by volume, more preferably performed in an inert atmosphere having an oxygen gas content of less than 5% by volume, and the oxygen gas content is It is particularly preferred to carry out in an inert atmosphere of less than 1% volume.
  • the mesophase pitch used in the present invention may be modified by reacting with oxygen at the time of melt kneading to inhibit micro-dispersion in the thermoplastic resin. For this reason, it is preferable to perform melt kneading in an inert atmosphere in order to suppress the reaction between oxygen and mesophase pitch.
  • the method for producing the resin composite fiber from the above mesophase pitch composition is not limited as long as a desired carbon fiber can be produced, but the method for melt spinning the mesophase pitch composition using a spinneret, the mesophase pitch using a rectangular die A method for melt-forming the composition can be exemplified.
  • orientation control operation it is preferable to perform an orientation control operation to increase the molecular orientation of the mesophase pitch contained in the resin composite fiber at the stage of obtaining the resin composite fiber.
  • orientation control operations it is necessary to deform the melted mesophase pitch in order to increase the molecular orientation of the melted mesophase pitch.
  • orientation control operations include a method of applying strain due to shear to a mesophase pitch in a molten state and a method of applying strain due to elongation. One of these methods may be performed, or both may be used in combination.
  • a method of applying strain due to elongation is preferable because it has a large effect of improving molecular orientation.
  • strain due to shearing there is a method of increasing the linear velocity of the mesophase pitch composition in the molten state.
  • the strain due to shearing can be applied by increasing the passing speed of the melted mesophase pitch composition in the spinneret or rectangular die channel.
  • Examples of the method of applying strain due to elongation include a method of gradually increasing the linear velocity of the melted mesophase pitch composition toward the discharge side of the spinneret or rectangular die. Specifically, a method of gradually decreasing the cross-sectional area of the flow path of the base toward the discharge side (deformation inside the base), or a mesophase pitch composition discharged from the discharge hole of the spinneret or the rectangular base, For example, a method of drawing at a linear velocity larger than the velocity (deformation outside the base) may be used. In the case of deformation inside the die, the mesophase pitch whose molecular orientation is enhanced by the deformation tends to decrease the molecular orientation due to thermal relaxation.
  • the mesophase pitch whose molecular orientation is enhanced by the deformation is immediately cooled to decrease the fluidity, so that the molecular orientation of the mesophase pitch is maintained. Therefore, as the orientation control operation, a method of applying strain due to elongation outside the die is preferable.
  • the shear strain rate and the elongation strain rate are each 5 to 10000 s ⁇ 1 , preferably 100 to 1400 s ⁇ 1 . If it is less than 5 s ⁇ 1 , the molecular orientation of the mesophase pitch cannot be sufficiently improved. If it exceeds 10,000 s ⁇ 1 , the mesophase pitch cannot be deformed and cannot be deformed into a fiber shape.
  • the temperature during the operation for increasing the molecular orientation of the mesophase pitch needs to be higher than the melting temperature of the mesophase pitch, preferably 150 to 400 ° C., more preferably 180 to 350 ° C. When it exceeds 400 ° C., the deformation relaxation rate of the mesophase pitch is increased, and it is difficult to maintain the fiber form.
  • the draft ratio which is the ratio between the discharge linear velocity and the take-off velocity, is preferably 2 to 100, and more preferably 2 to 50. If it is larger than 100, the mesophase pitch cannot be deformed and cannot be deformed into a fibrous form, which is not preferable. If it is less than 2, the molecular orientation of the mesophase pitch cannot be increased, and as a result, the crystallinity of the obtained fibrous carbon is lowered.
  • the fiberization step of the resin composite fiber may have a cooling step.
  • the cooling step include a method of cooling the atmosphere downstream of the spinneret in the case of melt spinning. In the case of melt film formation, a method of providing a cooling drum downstream of the rectangular die can be used.
  • the cooling step it is possible to adjust the region in which the mesophase pitch is deformed by extension, and to adjust the strain rate. Further, by providing a cooling step, the resin composite fiber after spinning or film formation is immediately cooled and solidified to enable stable molding.
  • the resin composite fibers obtained as described above are stabilized (also referred to as infusible) mesophase pitch fibers contained in the resin composite fibers to produce resin composite stabilized fibers.
  • Stabilization can be performed by a known method such as gas flow treatment using air, oxygen, ozone, nitrogen dioxide, halogen or the like, solution treatment using an acidic aqueous solution or the like. From the viewpoint of productivity, infusibilization by gas flow treatment is preferred.
  • the gas component to be used is preferably air, oxygen, or a mixed gas containing these from the viewpoint of ease of handling, and it is particularly preferable to use air from the viewpoint of cost.
  • the concentration of oxygen gas used is preferably in the range of 10 to 100% by volume of the total gas composition. If the oxygen gas concentration is less than 10% by volume of the total gas composition, it takes a long time to stabilize the mesophase pitch contained in the resin composite fiber.
  • the stabilization reaction temperature is preferably 50 to 350 ° C, more preferably 60 to 300 ° C, still more preferably 100 to 300 ° C, and particularly preferably 200 to 300 ° C.
  • the stabilization treatment time is preferably 10 to 1200 minutes, more preferably 10 to 600 minutes, further preferably 30 to 300 minutes, and particularly preferably 60 to 210 minutes.
  • the softening point of the mesophase pitch is remarkably increased by the stabilization process.
  • the softening point of the mesophase pitch is preferably 400 ° C. or higher, and more preferably 500 ° C. or higher.
  • thermoplastic resin removal step Next, in the resin composite stabilized fiber obtained as described above, the thermoplastic resin contained therein is removed and the stabilized fiber is separated. In this step, the thermoplastic resin is decomposed and removed while suppressing thermal decomposition of the stabilizing fiber.
  • the method for decomposing and removing the thermoplastic resin include a method for removing the thermoplastic resin using a solvent and a method for thermally decomposing and removing the thermoplastic resin.
  • the thermal decomposition of the thermoplastic resin is preferably performed in an inert gas atmosphere.
  • the inert gas atmosphere here refers to a gas atmosphere such as carbon dioxide, nitrogen, and argon, and the oxygen concentration is preferably 30 ppm by volume or less, and more preferably 20 ppm by volume or less.
  • the inert gas used in this step it is preferable to use carbon dioxide and nitrogen from the viewpoint of cost, and it is particularly preferable to use nitrogen.
  • the thermal decomposition of the thermoplastic resin can also be performed under reduced pressure.
  • the thermoplastic resin By thermally decomposing under reduced pressure, the thermoplastic resin can be sufficiently removed.
  • the carbon fiber or graphitized fiber obtained by carbonizing or graphitizing the stabilizing fiber can reduce fusion between the fibers.
  • the atmospheric pressure is preferably as low as possible, but is preferably 50 kPa or less, more preferably 30 kPa or less, still more preferably 10 kPa or less, and particularly preferably 5 kPa or less.
  • the lower limit of the pressure is generally 0.01 kPa or more.
  • a trace amount of oxygen or inert gas may be present as long as the above atmospheric pressure is maintained.
  • the presence of a trace amount of inert gas is particularly preferable because fusion between fibers due to thermal degradation of the thermoplastic resin is suppressed.
  • the trace amount of oxygen means that the oxygen concentration is 30 ppm by volume or less
  • the trace amount of inert gas means that the inert gas concentration is 20 ppm by volume or less.
  • the kind of the inert gas used is as described above.
  • the temperature of the thermal decomposition is preferably 350 to 600 ° C., more preferably 380 to 550 ° C.
  • the thermal decomposition time is preferably 0.1 to 10 hours, and more preferably 0.5 to 10 hours.
  • the stabilization step and the thermoplastic resin removal step are preferably performed by holding the resin composite fiber or the resin composite stabilized fiber on the support substrate at a weight per unit area of 2 kg / m 2 or less.
  • a weight per unit area of 2 kg / m 2 or less.
  • the material of the support substrate it is necessary that deformation and corrosion do not occur due to the solvent or heating.
  • the heat resistant temperature of the support base material it is preferable that the supporting base material has a heat resistance of 600 ° C. or higher because it does not need to be deformed at the thermal decomposition temperature in the thermoplastic resin removing step.
  • examples of such materials include metal materials such as stainless steel and ceramic materials such as alumina and silica.
  • the shape of the support base material is preferably a shape having air permeability in a direction perpendicular to the surface.
  • a mesh structure is preferable.
  • the mesh opening is preferably 0.1 to 5 mm.
  • the mesh opening is larger than 5 mm, the fibers tend to aggregate on the mesh line by the heat treatment, and the stabilization of the mesophase pitch and the removal of the thermoplastic resin may be insufficient.
  • the mesh opening is less than 0.1 mm, the air permeability of the support substrate may be reduced due to the decrease in the hole area ratio of the support substrate.
  • the carbon fiber of the present invention can be obtained by carbonizing and / or graphitizing the stabilizing fiber in an inert atmosphere.
  • a container used in that case a crucible made of graphite is preferable.
  • carbonization refers to heating at a relatively low temperature (preferably about 1000 ° C.)
  • graphitization refers to growing graphite crystals by heating at a higher temperature (about 3000 ° C.).
  • Examples of the inert gas used during carbonization and / or graphitization of the stabilizing fiber include nitrogen and argon.
  • the oxygen concentration in the inert atmosphere is preferably 20 ppm by volume or less, and more preferably 10 ppm by volume or less.
  • the heating temperature during carbonization and / or graphitization is preferably 500 to 3500 ° C, more preferably 800 to 3200 ° C.
  • the firing time is preferably 0.1 to 24 hours, more preferably 0.2 to 10 hours.
  • the carbonization and / or graphitization may be performed at a relatively low temperature.
  • carbonization and / or graphitization at 1000 to 2400 ° C. can increase the proportion of carbon fibers having a long effective fiber length.
  • the lower limit of the heating temperature is preferably 1000 ° C., more preferably 1200 ° C., further preferably 1300 ° C., even more preferably 1400 ° C. or more, and particularly preferably 1500 ° C. or more.
  • crystallization progresses too much and carbon fiber may break easily.
  • the carbon fiber production method of the present invention may have a pulverization treatment step.
  • the pulverization treatment is preferably performed after the thermoplastic resin removal step and / or after the carbonization firing step.
  • a pulverization method it is preferable to apply a fine pulverizer such as a jet mill, a ball mill, a bead mill, an impeller mill, or a cutter mill, and classification may be performed as necessary after pulverization.
  • a fine pulverizer such as a jet mill, a ball mill, a bead mill, an impeller mill, or a cutter mill, and classification may be performed as necessary after pulverization.
  • wet pulverization the dispersion medium is removed after pulverization, but if secondary aggregation occurs significantly at this time, subsequent handling becomes very difficult. In such a case, it is preferable to perform a crushing operation using a ball mill or a jet mill after drying.
  • the polymer in the present invention may be either a thermoplastic polymer or a thermosetting polymer. Any polymer can be used as long as the fibrous carbon can be uniformly dispersed in the polymer. In the present specification, the polymer may be referred to as a binder.
  • thermoplastic polymer examples include various polymers such as fluorine-based, polyamide-based, acrylic-based, polyurethane-based, and vinyl-based polymers. Among these, polyvinylidene fluoride, polyimide, Conex and the like are preferable in that they do not deform the heat dissipation sheet against thermal stress or external force that may occur between the electronic component and the heat dissipation sheet.
  • thermosetting polymer examples include various silicon-based and epoxy-based polymers. Among these, since silicon gel and silicon rubber have flexibility, they are preferable in that a gap can be prevented from being generated between the electronic component and the heat dissipation sheet.
  • the blending amount of the fibrous carbon and the polymer is 5 to 85% by mass of the fibrous carbon with respect to the total amount of the fibrous carbon and the polymer.
  • the lower limit of the amount of fibrous carbon is preferably 8% by mass, more preferably 10% by mass, and particularly preferably 15% by mass.
  • the upper limit of the amount of fibrous carbon is preferably 80% by mass, more preferably 70% by mass, and particularly preferably 60% by mass.
  • the heat dissipation sheet of the present invention can contain filler particles. By blending the filler particles, the thermal conductivity in the thickness direction of the heat dissipation sheet can be improved.
  • the shape of the filler particles include a spherical shape, an elliptical shape, a lump shape, and a granular shape. Those average particle diameters are calculated assuming that they are true spheres in the case of shapes other than spherical. That is, when the shape is elliptical, it is the long diameter, and when it is a block or granular shape, it means the longest length.
  • the filler particles may be solid or hollow.
  • the filler particles used in the present invention may be either inorganic or organic.
  • inorganic substances include mesocarbon microbeads (MCMB), boron nitride (BN), silicon carbide (SiC), aluminum nitride (AlN), silicon (silicon), silica, alumina, copper, silver and other metal particles, oxidation Silicon and titania are preferable, and these may be used alone or in combination of two or more.
  • mesocarbon microbeads (MCMB) are preferable.
  • the average particle diameter of the filler particles is preferably in the range of 1 to 150 times the average fiber diameter of the fibrous carbon described above.
  • the lower limit of the average particle diameter of the filler particles is preferably 1.5 times, more preferably 3 times, further preferably 5 times, further preferably 10 times, and 30 times. More preferably, it is particularly preferably 50 times.
  • the upper limit of the average particle diameter of the filler particles is preferably 120 times, and more preferably 100 times. When it is less than 1 time, the filler particles are aggregated to deteriorate dispersibility, and the thermal conductivity in the thickness direction of the heat dissipation sheet cannot be sufficiently increased. If it exceeds 150 times, the moldability of the heat-dissipating sheet is poor and the adhesion with the heating element is poor, so that the thermal conductivity cannot be sufficiently increased.
  • the average particle diameter is preferably 1 to 50 ⁇ m, more preferably 5 to 30 ⁇ m, and particularly preferably 5 to 25 ⁇ m.
  • the average particle diameter is less than 1 ⁇ m, the particles are aggregated to deteriorate dispersibility, and the heat conductivity in the thickness direction of the heat dissipation sheet cannot be sufficiently increased. If it exceeds 50 ⁇ m, the number of fillers contained in the heat dissipation sheet is small, it becomes difficult to form a heat conduction path, and the heat conductivity in the thickness direction of the heat dissipation sheet cannot be sufficiently increased.
  • the filler particles may be subjected to a surface treatment.
  • the surface treatment include hydrophilic treatment or surface treatment with a coupling agent.
  • the surface treatment is performed, the aggregation of filler particles is reduced, and the dispersibility in the heat dissipation sheet may be improved to improve the thermal conductivity.
  • the filler particles are preferably blended in an amount of 5% by mass or more, more preferably 10% by mass or more, even more preferably 15% by mass or more, based on the mass of the entire heat dissipation sheet of the present invention, more preferably 20% by mass. % Or more is particularly preferable.
  • the blending amount of the filler particles is preferably 45% by mass or less, more preferably 40% by mass or less, and particularly preferably 35% by mass or less.
  • the heat dissipation sheet of the present invention contains the above fibrous carbon and polymer as essential components and filler particles as optional components.
  • arbitrary components such as a flame retardant and a coloring agent, can be mix
  • an inorganic or organic material other than fibrous carbon such as carbon black such as graphite (graphite), boron nitride, silica, alumina, alumina nitride, acetylene black, etc. May be included at a ratio of 25% by mass or less with respect to the entire heat radiation sheet.
  • carbon black such as graphite (graphite), boron nitride, silica, alumina, alumina nitride, acetylene black, etc.
  • an inorganic material or an organic material other than fibrous carbon for example, conductive and insulating materials that are different particles.
  • Carbon black such as graphite (graphite), carbon nanotube, boron nitride, silica, alumina, alumina nitride, acetylene black, etc., which is a conductive filler, may be contained in a proportion of 25% by mass or less with respect to the entire heat dissipation sheet.
  • the carbon nanotubes described below can be blended as a substance that complements the thermal conductivity in the thickness direction of the heat dissipation sheet.
  • Examples of the carbon nanotube (CNT) include carbon nanotubes having an average fiber length of 2 to 120 ⁇ m and an average fiber diameter of 0.4 to 50 nm. Since such CNT aggregates moderately, it is difficult to orient in the in-plane direction of the heat dissipation sheet even though it is fibrous. Therefore, the thermal conductivity in the thickness direction of the heat dissipation sheet can be improved.
  • the blending amount of CNT is preferably 1 to 60% by mass, and more preferably 2 to 50% by mass with respect to the heat dissipation sheet.
  • Heat dissipation sheet 5-1 Properties of Heat Dissipation Sheet of First Aspect
  • the heat dissipation sheet of the present invention of the first aspect is excellent in thermal conductivity, and in particular, the thermal conductivity in one direction in the plane (X direction (usually MD direction)) is good.
  • the fibrous carbon has a high aspect ratio, so that the fibrous carbon is basically oriented in the MD direction (X direction) in the surface of the heat-dissipating sheet, and usually in the TD direction (Y direction). ) And the thickness direction (Z direction).
  • the orientation degree of fibrous carbon is preferably within a predetermined range.
  • the orientation degree A in a direction parallel to the surface of the heat dissipation sheet and exhibiting the highest degree of orientation is preferably 55 to 95%, more preferably 60 to 95%. It is more preferably 70 to 95%, and particularly preferably 75 to 95%.
  • the fibrous carbons are arranged mainly in parallel in one direction, and substantially all of the adjacent fibrous carbons in front, rear, left, and right are in proper contact. Therefore, many heat conduction paths are formed in the X direction, and the heat conductivity is higher than that in the Y direction and the Z direction.
  • the heat dissipation sheet of the present invention can efficiently release the heat applied to the heat dissipation sheet in one specific direction (X direction) within the surface.
  • the orientation degree B in the direction parallel to the surface of the heat dissipation sheet and perpendicular to the one direction showing the highest degree of orientation is preferably 5 to 45%, more preferably 10 to 40%. preferable.
  • the thermal conductivity P in a direction parallel to the surface of the heat radiating sheet and showing the highest degree of orientation is 2 to 200 times the thermal conductivity T in the thickness direction of the heat radiating sheet. It is preferable.
  • the lower limit of P / T is preferably 5 times, more preferably 10 times, further preferably 20 times, further preferably 30 times, and particularly preferably 45 times.
  • the upper limit of P / T is preferably 150 times, more preferably 90 times, and even more preferably 80 times.
  • the heat dissipation sheet having such orientation characteristics can release heat in a predetermined direction parallel to the sheet surface.
  • Such a heat dissipation sheet can be manufactured by blending the above-mentioned fibrous carbon in the heat dissipation sheet.
  • Sheeting may be performed by a known method and a known condition. For example, when the sheeting method is a solution casting method, the value of P / T can be controlled by appropriately adjusting the viscosity of the solution and the solution casting speed.
  • the heat dissipating sheet of the present invention of the second aspect is excellent in thermal conductivity, and in particular, only in one in-plane (X direction (normally MD direction)) thermal conductivity.
  • the thermal conductivity in the thickness direction (Z direction) of the heat dissipation sheet is excellent.
  • the maximum value of the thermal conductivity p in the in-plane direction (X direction) of the heat radiation sheet is preferably 1.5 to 100 times the thermal conductivity t in the thickness direction.
  • the upper limit of p / t is preferably 60 times, more preferably 50 times, further preferably 40 times, further preferably 35 times, and particularly preferably 30 times.
  • the heat dissipation sheet having such orientation characteristics can release heat not only in the direction parallel to the sheet surface but also in the thickness direction. In addition, heat can be efficiently transferred from the heat source to the heat dissipation sheet.
  • Such a heat dissipation sheet can be produced by containing filler particles having a particle diameter of 1 to 150 times the average fiber diameter of fibrous carbon.
  • the thermal conductivity in the thickness direction can be increased as the particle diameter of the filler particles is increased and the content of the filler particles is increased. That is, the value of p / t can be adjusted as appropriate depending on the average particle size and blending amount of the filler particles.
  • the degree of orientation refers to a value measured by the method described in the examples.
  • the thickness of the heat radiation sheet of the first and second aspects of the present invention is preferably 0.01 to 1 mm, and more preferably 0.1 to 1 mm. When deviating from the above range, it becomes difficult to see the thermal conductivity anisotropy in the X, Y and Z directions.
  • the maximum value of the thermal conductivity in the in-plane direction of the sheet is preferably 2 to 200 W ⁇ m ⁇ 1 ⁇ K ⁇ 1 , more preferably 5 to 150 W ⁇ m ⁇ 1 ⁇ K ⁇ 1 .
  • the thermal conductivity in the thickness direction of the sheet is preferably 3 to 150 W ⁇ m ⁇ 1 ⁇ K ⁇ 1 , more preferably 5 to 100 W ⁇ m ⁇ 1 ⁇ K ⁇ 1 .
  • the heat dissipation sheet of the present invention has a maximum thermal conductivity in one direction (for example, MD direction) in the in-plane direction when polyvinylidene fluoride is 90% by mass as a binder and the proportion of fibrous carbon is 10% by mass. When measured, it has a thermal conductivity of 11.33 W ⁇ m ⁇ 1 ⁇ K ⁇ 1 or higher.
  • the thermal conductivity of 11.33 W ⁇ m ⁇ 1 ⁇ K ⁇ 1 is about one order of magnitude higher than that of polyvinylidene fluoride used as a matrix.
  • the heat radiation sheet of the present invention can be produced by a conventionally known sheet production method such as a melt molding method, a solution casting method, or a dip method.
  • a melt molding method such as a melt molding method, a solution casting method, or a dip method.
  • the solution casting method using pitch-based carbon fiber as the fibrous carbon and using polyvinylidene fluoride as the binder will be described.
  • fibrous carbon and polyvinylidene fluoride are mixed in a solvent for dissolving polyvinylidene fluoride (for example, N-methyl-2-pyrrolidone) to dissolve the polyvinylidene fluoride and disperse the fibrous carbon.
  • a solvent for dissolving polyvinylidene fluoride for example, N-methyl-2-pyrrolidone
  • this slurry is poured onto a base material such as a release film, and shaped to have a predetermined thickness by a doctor blade or the like.
  • the solvent can be removed by depressurization or heating and peeled off from the substrate to obtain a sheet.
  • fibrous carbon and polyvinylidene fluoride are mixed in a solvent for dissolving polyvinylidene fluoride (for example, N-methyl-2-pyrrolidone) to dissolve the polyvinylidene fluoride and disperse the fibrous carbon.
  • a solvent for dissolving polyvinylidene fluoride for example, N-methyl-2-pyrrolidone
  • filler particles, carbon nanotubes, and the like are included as necessary.
  • this slurry is poured onto a base material such as a release film, and shaped to have a predetermined thickness by a doctor blade or the like. Subsequently, the solvent can be removed by depressurization or heating and peeled off from the substrate to obtain a sheet.
  • the slurry can be changed so that a desired in-plane orientation degree of the fibrous carbon can be obtained, for example, depending on the solid content concentration or the solution casting speed.
  • the fibrous carbon can be oriented with a high degree of orientation A (55 to 95%) in one direction in the plane.
  • the solution casting speed is preferably in the range of 0.2 to 60 cm / min. Further, as the average effective fiber length of the fibrous carbon is longer, the number of contact points of the fibrous carbon increases or the number of overlaps increases, so that the orientation degree A tends to increase.
  • the heat dissipation sheet of the present invention of the third aspect is particularly excellent in the thermal conductivity in the sheet thickness direction (Z direction).
  • the thermal conductivity in the thickness direction (Z direction) of the heat dissipation sheet is preferably 1.0 to 100 times, and preferably 2.0 to 80 times the maximum value of the thermal conductivity in the in-plane direction of the sheet. More preferred.
  • a heat dissipation sheet having such characteristics can efficiently release heat in the sheet thickness direction.
  • Such a heat dissipation sheet can be manufactured by slicing a predetermined carbon fiber molded body.
  • the carbon fiber molded body include a carbon fiber molded body including carbon fibers that are aligned in a predetermined direction. That is, a carbon fiber rod-shaped body produced by impregnating or coating a resin or the like on carbon fibers aligned in a predetermined direction is exemplified. Or the rod-shaped body which orientated the fibrous carbon in this mixture in one direction by extrusion-molding the mixture of the said fibrous carbon and resin is illustrated. By slicing these rod-shaped bodies in a direction perpendicular to the axis of the rod-shaped body, the heat dissipation sheet of the third aspect can be produced.
  • the carbon fiber is fixed by a resin or the like. Therefore, the heat dissipation sheet obtained by slicing this can form a heat conduction path in the thickness direction of the sheet, and can improve the heat conductivity in the thickness direction of the sheet.
  • X-ray diffraction measurement is based on RIG-2100 manufactured by Rigaku Corporation in accordance with JIS R7651 method, and lattice spacing (d002) and crystallite size (La, Lc) It was measured.
  • the powder volume resistivity was measured using a powder resistance system (MCP-PD51) manufactured by Dia Instruments Co., Ltd. under a load of 0.25 to 2.50 kN. Measurement was performed using an electrode unit of the type.
  • the volume resistivity was a value of volume resistivity when the packing density was 0.4 g / cm 3 from the relationship of the volume resistivity accompanying the change of the packing density.
  • thermal conductivity in the in-plane direction (MD direction) and the film thickness direction of the heat-dissipating sheet was measured under the conditions of the in-plane method using LFA447 manufactured by Netch Japan.
  • the measurement sample was prepared by punching a film-formed heat dissipation sheet to a size of 1.8 ⁇ .
  • the thermal conductivity as described below is a value in a direction indicating the maximum in the in-plane direction (MD direction) of the heat dissipation sheet.
  • the dispersion diameter of the mesophase pitch in the thermoplastic resin was 0.05 to 2 ⁇ m.
  • the mesophase pitch composition was kept at 300 ° C. for 10 minutes, but no mesophase pitch aggregation was observed, and the dispersion diameter was 0.05 to 2 ⁇ m.
  • this mesophase pitch composition was molded into a planar body having a thickness of 60 ⁇ m using a rectangular die having a slit width of 0.2 mm, a slit length of 100 mm, and an introduction angle of 60 °.
  • the die temperature is 340 ° C.
  • the discharge rate is 2.4 kg / hour
  • the shear rate is 1000 s ⁇ 1
  • the draft ratio which is the ratio between the discharge linear velocity and the take-off velocity
  • 25 the distance from the discharge port to the cooling drum is 50 mm. there were.
  • the elongation strain rate inside the die was 95 s ⁇ 1 and the elongation strain rate outside the die was 208 s ⁇ 1 .
  • the obtained planar body was arranged in a non-woven fabric shape so that the basis weight of the short fibers was 30 g / m 2 on a wire net having an opening of 1.46 mm and a wire diameter of 0.35 mm.
  • the nonwoven fabric made of resin composite stabilized fiber was produced by holding the nonwoven fabric made of resin composite fiber in a hot air dryer at 215 ° C. for 3 hours. Next, the nonwoven fabric was placed in a vacuum gas replacement furnace, the interior of the furnace was replaced with nitrogen, the pressure was reduced to 1 kPa, and the thermoplastic resin was removed by heating from this state. As heating conditions, the temperature was raised to 500 ° C. at a rate of temperature rise of 5 ° C./min, and held at the same temperature for 60 minutes.
  • the nonwoven fabric from which the thermoplastic resin had been removed was added to an ethanol solvent, and vibration was applied for 30 minutes with an ultrasonic oscillator to disperse the stabilized fibers in the solvent. By filtering the stabilizing fiber dispersed in the solvent, a nonwoven fabric in which the stabilizing fiber was dispersed was produced.
  • the nonwoven fabric in which the stabilizing fiber was dispersed was heated to 1000 ° C. at 5 ° C./min under a nitrogen gas flow in a vacuum gas replacement furnace, heat-treated at the same temperature for 0.5 hour, and then cooled to room temperature. Furthermore, this non-woven fabric is placed in a graphite crucible and is heated in a vacuum using an ultra-high temperature furnace (manufactured by Kurata Giken Co., Ltd., SCC-U-80 / 150 type, soaking part 80 mm (diameter) ⁇ 150 mm (height)). The temperature was raised from room temperature to 2000 ° C. at 10 ° C./min.
  • the fiber diameter of the fibrous carbon obtained through the graphitization treatment is 150 to 600 nm (average fiber diameter 280 nm), and the ratio of the average effective fiber length (L) to the average fiber diameter (D) (L / D) was 60, there was no branching (branching degree of 0.01 / ⁇ m or less), and the carbon was very excellent in dispersibility.
  • the lattice spacing (d002) of this ultrafine fibrous carbon is 0.3370 nm
  • the crystallite length (La) is 336.3 nm
  • the thickness of the net plane group (Lc). was 66.7 nm, and it was fibrous carbon with high crystallinity.
  • the powder volume resistivity when filled at a packing density of 0.4 g / cm 3 was 0.14 ⁇ ⁇ cm.
  • Example 1 N-methyl-2-pyrrolidone was used as a solvent, and polyvinylidene fluoride (manufactured by Kureha Co., Ltd.) was dissolved in the solvent so that the binder concentration was 10% by mass.
  • the fibrous carbon (Production Example 1) was added to this solution and kneaded to obtain a slurry.
  • the blending amount of the fibrous carbon was 50% by mass with respect to the total amount of the solvent and the fibrous carbon.
  • This slurry was cast on a polytetrafluoroethylene (PTFE) film and formed into a thickness of 0.3 mm by a doctor blade method at a casting speed of 0.5 cm / min. After heat treatment at 80 ° C.
  • PTFE polytetrafluoroethylene
  • heat treatment was further performed at 150 ° C. for 2 hours to obtain a heat radiation sheet having a length of 200 cm, a width of 150 cm, and a thickness of 0.1 mm.
  • This heat dissipation sheet had a smooth surface and was flexible.
  • Table 1 shows values of thermal conductivity in the in-plane direction (MD direction) and the thickness direction of the heat dissipation sheet.
  • Example 2 A heat radiating sheet was obtained in the same manner as in Example 1 except that the amount of the fibrous carbon was 25% by mass.
  • Table 1 shows values of thermal conductivity in the in-plane direction (MD direction) and the thickness direction of the heat dissipation sheet.
  • Example 3 A heat radiating sheet was obtained in the same manner as in Example 1 except that the amount of the fibrous carbon was changed to 10% by mass.
  • Table 1 shows values of thermal conductivity in the in-plane direction (MD direction) and the thickness direction of the heat dissipation sheet.
  • Table 1 shows values of thermal conductivity in the in-plane direction (MD direction) of the heat dissipation sheet.
  • Table 1 shows values of thermal conductivity in the in-plane direction (MD direction) of the heat dissipation sheet. Since the average fiber diameter was small, it was difficult to align in the plane, and an aggregate of vapor-grown carbon fibers was observed.
  • Example 5 A heat radiating sheet was obtained in the same manner as in Example 1 except that acetylene black (manufactured by Electrochemical Co., Ltd.) having an average particle diameter of 50 nm was used instead of fibrous carbon.
  • Table 1 shows values of thermal conductivity in the in-plane direction (MD direction) of the heat dissipation sheet.
  • Example 6 A heat radiating sheet was obtained in the same manner as in Example 2 except that acetylene black (manufactured by Electrochemical Co., Ltd.) having an average particle diameter of 50 nm was used instead of fibrous carbon.
  • Table 1 shows values of thermal conductivity in the in-plane direction (MD direction) of the heat dissipation sheet.
  • Example 4 N-methyl-2-pyrrolidone was used as a solvent, and polyvinylidene fluoride (manufactured by Kureha Co., Ltd.) was dissolved in this solvent. Next, the fibrous carbon (Production Example 1) and MCMB particles (particle size: 10 to 20 ⁇ m, manufactured by Osaka Gas Co., Ltd.) were added to this solution and kneaded to obtain a slurry. The blending amount of the fibrous carbon was 50% by mass with respect to the total amount of the solvent and the fibrous carbon. This slurry was poured onto a PTFE film and molded to a thickness of 0.5 mm by the doctor blade method. After heat treatment at 80 ° C.
  • the fibrous carbon was oriented in the in-plane direction (MD direction) of the heat dissipation sheet.
  • the compounding amount of each component with respect to the mass of the heat dissipation sheet is 45 mass% for fibrous carbon, 5 mass% for MCMB particles, and 50 mass% for polyvinylidene fluoride.
  • Example 5 A heat radiating sheet was obtained in the same manner as in Example 4 except that the blending amount of each component with respect to the mass of the heat radiating sheet was changed to 25% by mass of fibrous carbon, 25% by mass of MCMB particles, and 50% by mass of polyvinylidene fluoride. It was.
  • Example 6 A heat radiating sheet was obtained in the same manner as in Example 4 except that the blending amount of each component with respect to the mass of the heat radiating sheet was changed to 5% by mass of fibrous carbon, 45% by mass of MCMB particles, and 50% by mass of polyvinylidene fluoride. It was.
  • Example 7 A heat radiating sheet was obtained in the same manner as in Example 4 except that 5% by mass of acetylene black particles (particle size: 50 to 100 nm, manufactured by Denka Co., Ltd.) was used instead of MCMB.
  • Example 8 A heat radiating sheet was obtained in the same manner as in Example 5 except that 25% by mass of acetylene black particles (particle size: 50 to 100 nm, manufactured by Denka Co., Ltd.) was used instead of MCMB.
  • Example 9 A heat radiating sheet was obtained in the same manner as in Example 6 except that 45% by mass of acetylene black particles (particle size: 50 to 100 nm, manufactured by Denka Co., Ltd.) was used instead of MCMB.
  • Example 10 A heat radiating sheet was obtained in the same manner as in Example 4 except that 5% by mass of boron nitride particles (particle size: 150 nm, manufactured by Sigma-Aldrich Japan Co., Ltd.) was used instead of MCMB.
  • Example 11 A heat radiating sheet was obtained in the same manner as in Example 5 except that 25% by mass of boron nitride particles (particle size: 150 nm, manufactured by Sigma-Aldrich Japan Co., Ltd.) was used instead of MCMB.
  • Example 12 A heat radiating sheet was obtained in the same manner as in Example 6 except that 45% by mass of boron nitride particles (particle size: 150 nm, manufactured by Sigma-Aldrich Japan Co., Ltd.) was used instead of MCMB.
  • Example 1 A heat radiating sheet was obtained in the same manner as in Example 4 except that the blending amount of each component with respect to the mass of the heat radiating sheet was changed to 10% by mass of fibrous carbon, 0% by mass of MCMB particles, and 90% by mass of polyvinylidene fluoride. It was.
  • Example 2 A heat radiating sheet was obtained in the same manner as in Example 4 except that the blending amount of each component with respect to the mass of the heat radiating sheet was changed to 25% by mass of fibrous carbon, 0% by mass of MCMB particles, and 75% by mass of polyvinylidene fluoride. It was.
  • Example 3 A heat radiating sheet was obtained in the same manner as in Example 4 except that the blending amount of each component with respect to the mass of the heat radiating sheet was changed to 50% by mass of fibrous carbon, 0% by mass of MCMB particles, and 50% by mass of polyvinylidene fluoride. It was.
  • filler particles having a particle diameter of 1 to 150 times the average fiber diameter of the fibrous carbon are contained. Therefore, it is speculated that an appropriate heat conduction path is formed in the thickness direction between the carbon fibers and the filler particles. Therefore, the heat dissipation sheet having improved thermal conductivity in the thickness direction while maintaining good thermal conductivity in one direction (normally MD direction (fiber axis direction)) in which the orientation degree of the fibrous carbon in the in-plane direction is the highest.
  • the fillers of Comparative Examples 1 to 6 have a particle diameter smaller than the fiber diameter, they are buried between the fibers, the heat conduction path is not effectively formed, and the thermal conductivity in the thickness direction hardly increases. It is inferred that it is in a state.
  • Example 7 N-methyl-2-pyrrolidone was used as a solvent, and polyamide (“Technola” (registered trademark) manufactured by Teijin Limited) was dissolved in this solvent. Next, the fibrous carbon (Production Example 1) was added to this solution and kneaded to obtain a slurry. The blending amount of the fibrous carbon was 30% by mass with respect to the total amount of the solvent and the fibrous carbon. This slurry was poured onto heat-resistant glass and formed into a thickness of 0.1 mm by the doctor blade method. After heat treatment at 80 ° C. for 1 hour, heat treatment was further performed at 150 ° C.
  • the obtained heat-dissipating sheet had a smooth and smooth surface.
  • the surface of the heat radiating sheet was observed and photographed using a scanning electron microscope (S-2400, manufactured by Hitachi, Ltd.). This photograph is shown in FIG. Table 3 shows the mechanical properties of this heat dissipation sheet. Further, Table 4 shows the thermal conductivity in the in-plane direction of the heat radiating sheet.
  • Table 4 shows values of thermal conductivity in the in-plane direction (MD direction) of the heat dissipation sheet.
  • a heat radiating sheet was obtained in the same manner as in Example 7 except that 12.5% by mass was mixed and the mixed amount was 25% by mass with respect to the total amount of the solvent and fibrous carbon.
  • Table 4 shows values of thermal conductivity in the in-plane direction (MD direction) of the heat dissipation sheet.
  • Table 4 shows values of thermal conductivity in the in-plane direction (MD direction) of the heat dissipation sheet.
  • Example 11 A heat radiating sheet was obtained in the same manner as in Example 7 except that the amount of the fibrous carbon blended was 10% by mass with respect to the total amount of the solvent and carbon fiber (CNF).
  • Table 4 shows values of thermal conductivity in the in-plane direction (MD direction) of the heat dissipation sheet.
  • Example 7 except that 10% by mass of pitch-based carbon fiber (“Lahima” (registered trademark) manufactured by Teijin Limited) having an average fiber diameter of 10 ⁇ m and an average fiber length of 150 ⁇ m was blended as the fibrous carbon.
  • a heat dissipation sheet was obtained.
  • Table 4 shows values of thermal conductivity in the in-plane direction (MD direction) of the heat dissipation sheet. As for the obtained heat dissipation sheet, unevenness was seen over the whole surface. The surface of the heat radiating sheet was observed and photographed using a scanning electron microscope (S-2400, manufactured by Hitachi, Ltd.). This photograph is shown in FIG. Table 3 shows the mechanical properties of this heat dissipation sheet. Furthermore, Table 4 shows values of thermal conductivity in the in-plane direction (MD direction) of the heat dissipation sheet.
  • Example 12 N-methyl-2-pyrrolidone was used as a solvent, and polyamide (“Technola” (registered trademark) manufactured by Teijin Ltd.) was dissolved in this solvent so that the binder concentration was 6% by mass.
  • the fibrous carbon (Production Example 1) was added to this solution and kneaded to obtain a slurry.
  • the blending amount of the fibrous carbon was 30% by mass with respect to the total amount of the solvent and the fibrous carbon.
  • This slurry was poured onto heat-resistant glass and formed into a thickness of 0.3 mm by a doctor blade method. After heat treatment at 80 ° C. for 1 hour, heat treatment was further performed at 150 ° C.
  • a heat radiation sheet having a length of 200 cm, a width of 150 cm, and a thickness of 0.05 mm.
  • This heat dissipation sheet had a smooth surface and was flexible.
  • the surface vicinity and the inside of the heat radiating sheet were observed with a scanning electron microscope (S-2400, manufactured by Hitachi, Ltd.) (3,000 times).
  • the fibrous carbon was oriented in parallel to the sheet surface, and in the interior (center portion), the fibrous carbon was randomly oriented three-dimensionally.
  • the surface vicinity in the depth direction of a heat radiating sheet means the area
  • Table 5 shows values of the thermal conductivity in the in-plane direction (MD direction) of the heat dissipation sheet.
  • Example 13 A heat radiating sheet was obtained in the same manner as in Example 12 except that the thickness of the heat radiating sheet was 0.12 mm.
  • Table 5 shows values of the thermal conductivity in the in-plane direction (MD direction) of the heat dissipation sheet.
  • Production Example 2 The fibrous carbon of Production Example 1 was pulverized to produce fibrous carbon (S-CNF) having a short fiber length.
  • the average effective fiber length was 6.0 ⁇ m.
  • the average fiber diameter is the same as in Production Example 1.
  • Example 14 N-methyl-2-pyrrolidone was used as a solvent, and polyamide (“Conex” (registered trademark) manufactured by Teijin Ltd.) was dissolved in the solvent so that the binder concentration was 16% by mass.
  • the fibrous carbon (Production Example 2) was added to this solution and kneaded to obtain a slurry.
  • the blending amount of the fibrous carbon was 30% by mass with respect to the total amount of the solvent and the fibrous carbon.
  • This slurry was poured onto a PTFE film and molded to a thickness of 0.1 mm by the doctor blade method. After heat treatment at 80 ° C. for 1 hour, heat treatment was further performed at 150 ° C. for 3 hours to obtain a heat radiation sheet having a length of 200 cm, a width of 150 cm, and a thickness of 0.05 mm.
  • Table 6 shows values of thermal conductivity in the in-plane direction (MD direction) of the heat radiating sheet.
  • Example 15 A heat radiating sheet was obtained in the same manner as in Example 14 except that the fibrous carbon of Production Example 1 was used instead of the fibrous carbon (S-CNF) of Production Example 2.
  • Table 6 shows values of thermal conductivity in the in-plane direction and the thickness direction of the heat dissipation sheet.
  • Example 16 A heat radiating sheet was obtained in the same manner as in Example 14 except that the amount of fibrous carbon (S-CNF) was changed to 50% by mass. Table 6 shows the heat conductivity in the thickness direction of the obtained heat dissipation sheet.
  • Example 17 A heat radiating sheet was obtained in the same manner as in Example 14 except that the amount of fibrous carbon (S-CNF) was changed to 70% by mass. Table 6 shows the heat conductivity in the thickness direction of the obtained heat dissipation sheet.
  • Example 18 The amount of fibrous carbon (S-CNF) was changed to 10% by mass, and 30% by mass of boron nitride particles (manufactured by Sigma-Aldrich Japan Co., Ltd., particle diameter 150 nm) was added. To obtain a heat dissipation sheet. Table 6 shows the heat conductivity in the thickness direction of the obtained heat dissipation sheet.
  • Example 19 The amount of fibrous carbon (S-CNF) was changed to 30% by mass, and 30% by mass of boron nitride particles (manufactured by Sigma-Aldrich Japan Co., Ltd., particle diameter 150 nm) was added. To obtain a heat dissipation sheet. Table 6 shows the heat conductivity in the thickness direction of the obtained heat dissipation sheet.
  • Low-temperature graphitized fibrous carbon was produced in the same manner as in Production Example 1 except that the graphitization temperature was 1500 ° C.
  • This low-temperature graphitized carbon fiber had a fiber diameter of 150 to 450 nm (average fiber diameter 250 nm) and an average effective fiber length of 68 ⁇ m.
  • the ratio of the average effective fiber length (L) to the average fiber diameter (D) (L / D) is 272, there is no branching (degree of branching: 0.01 / ⁇ m or less), and carbon is extremely excellent in dispersibility It was a fiber.
  • the lattice spacing (d002) of this carbon fiber is 0.34310 nm
  • the crystallite length (La) is less than the measurement lower limit
  • the thickness (Lc) of the net plane group is 10 nm. It was a carbon fiber.
  • Example 20 N-methyl-2-pyrrolidone was used as a solvent, and polyamide (“Conex” (registered trademark) manufactured by Teijin Ltd.) was dissolved in the solvent so that the binder concentration was 16% by mass. Next, low-temperature graphitized fibrous carbon (Production Example 3) was added to this solution and kneaded to obtain a slurry. The blending amount of the fibrous carbon was 40% by mass with respect to the total amount of the solvent and the fibrous carbon. This slurry was poured onto heat-resistant glass and formed into a thickness of 0.3 mm by a doctor blade method. After heat treatment at 80 ° C. for 1 hour, heat treatment was further performed at 150 ° C. for 3 hours to obtain a heat radiation sheet having a length of 200 cm, a width of 150 cm, and a thickness of 0.12 mm. Table 7 shows values of thermal conductivity in the in-plane direction (MD direction) of the heat radiating sheet.
  • MD direction in-plane direction
  • Example 21 A heat radiating sheet was obtained in the same manner as in Example 20 except that the blending amount of the low-temperature graphitized fibrous carbon in Production Example 3 was changed to 60% by mass. Table 7 shows the heat conductivity in the thickness direction of the obtained heat dissipation sheet.
  • Example 22 A heat-dissipating sheet was obtained in the same manner as in Example 20 except that the blending amount of the low-temperature graphitized fibrous carbon in Production Example 3 was changed to 10% by mass and 30% by mass of fibrous carbon in Production Example 1 was further added.
  • Table 7 shows the heat conductivity in the thickness direction of the obtained heat dissipation sheet.
  • Example 23 A heat radiating sheet was obtained in the same manner as in Example 20 except that the blending amount of the low-temperature graphitized fibrous carbon of Production Example 3 was changed to 30% by mass and that 10% by mass of the fibrous carbon of Production Example 1 was further added.
  • Table 7 shows the heat conductivity in the thickness direction of the obtained heat dissipation sheet.
  • Example 24 An epoxy resin (commercial product) and the fibrous carbon of Production Example 1 were mixed. The blending amount of the fibrous carbon was 30% by mass with respect to the total amount of the epoxy resin and the fibrous carbon. This was put into a syringe and extruded to prepare 30 rod-shaped molded bodies. The rod-shaped molded body had a length of 100 mm and a diameter of 10 mm. The 30 rod-shaped compacts were bundled, and an epoxy resin was further added, followed by heat treatment at 70 ° C. for 2 hours to obtain a single compact.
  • the molded body was sliced perpendicularly to the fiber axis direction and the surface was polished to obtain a disk-shaped carbon fiber molded sheet having a thickness of 0.1 mm and a diameter of 16 mm.
  • Table 8 shows the thermal conductivity in the sheet in-plane direction and the thickness direction of the obtained carbon fiber molded body.
  • Example 25 Thirty thread-like molded bodies of Example 1 were placed in a bottle-shaped container having a diameter of 28 mm that was vertically set up. Next, N-methyl-2-pyrrolidone was used as a solvent, and 16% by mass of Conex (manufactured by Teijin Ltd.) was dissolved in this solvent. Subsequently, the fibrous carbon of Production Example 1 was mixed with this solution to obtain a slurry. The slurry was poured into the vessel and heat-treated at 80 ° C. for 1 hour and 150 ° C. for 2 hours.
  • the molded body was taken out from the container, sliced perpendicularly to the fiber axis direction of the molded body, and the surface was polished to obtain a circular heat radiating sheet having a thickness of 0.1 mm and a diameter of 18 mm.
  • a disk-shaped carbon fiber molded body sheet was obtained.
  • Table 8 shows the thermal conductivity in the sheet in-plane direction and the thickness direction of the obtained carbon fiber molded body.
  • Example 26 N-methyl-2-pyrrolidone was used as a solvent, and polyamide (“Technola” (registered trademark) manufactured by Teijin Ltd.) was dissolved in this solvent so that the binder concentration was 6% by mass.
  • fibrous carbon (Production Example 1) was added to this solution and kneaded to obtain a slurry. The blending amount of the fibrous carbon was 30% by mass with respect to the total amount of the solvent and the fibrous carbon. This slurry was poured onto heat-resistant glass and formed into a thickness of 0.12 mm by a doctor blade method. After heat treatment at 80 ° C. for 1 hour, heat treatment was further performed at 150 ° C. for 3 hours to obtain a heat radiation sheet having a length of 200 cm, a width of 150 cm, and a thickness of 0.05 mm. Table 9 shows values of thermal conductivity in the in-plane direction (MD direction) of the heat radiating sheet.
  • Example 27 A heat radiating sheet was obtained in the same manner as in Example 26 except that the amount of fibrous carbon was changed to 50% by mass. Table 8 shows the heat conductivity in the thickness direction of the obtained heat radiating sheet.
  • Example 28 The amount of fibrous carbon is changed to 50% by mass, and instead of polyamide, polyimide ("Uimide (registered trademark) varnish AR type” manufactured by Unitika Ltd.) is used so that the binder concentration becomes 18% by mass. Otherwise, a heat radiating sheet was obtained in the same manner as in Example 26. Table 9 shows the surface direction thermal conductivity of the obtained heat radiation sheet.
  • Example 29 N-methyl-2-pyrrolidone was used as a solvent, and polyamide (“Conex” (registered trademark) manufactured by Teijin Ltd.) was dissolved in the solvent so that the binder concentration was 16% by mass. Next, fibrous carbon (Production Example 1) was added to this solution and kneaded to obtain a slurry. The blending amount of the fibrous carbon was 30% by mass with respect to the total amount of the solvent and the fibrous carbon. Otherwise, a heat radiating sheet was obtained in the same manner as in Example 26. Table 9 shows the surface direction thermal conductivity of the obtained heat radiation sheet.
  • Example 30 N-methyl-2-pyrrolidone was used as a solvent, and polyamide (“Conex (registered trademark)” manufactured by Teijin Ltd.) was dissolved in this solvent so that the concentration of the binder was 16% by mass.
  • fibrous carbon Production Example 1
  • SiO 2 trade name
  • TOSPAL 120 trade name
  • the blending amount of the fibrous carbon was 20% by mass with respect to the total amount of the solvent, the fibrous carbon, and the filler.
  • the blending amount of the filler was 5% by mass with respect to the total amount of the solvent, fibrous carbon, and filler.
  • This slurry was poured onto a PTFE film and formed into a thickness of 0.3 mm by the doctor blade method. After heat treatment at 80 ° C. for 1 hour, heat treatment was further performed at 150 ° C. for 3 hours to obtain a heat radiation sheet having a length of 200 cm, a width of 150 cm, and a thickness of 0.12 mm.
  • Table 10 shows values of the thermal conductivity in the in-plane direction (MD direction) of the heat radiating sheet.
  • Example 31 A heat radiating sheet was obtained in the same manner as in Example 30 except that the amount of fibrous carbon was changed to 5% by mass and the amount of SiO 2 was changed to 20% by mass. Table 10 shows the thermal conductivity of the obtained heat dissipation sheet.
  • Example 32 In place of SiO 2 , Al 2 O 3 powder (manufactured by Hiroshima Wako Co., Ltd., “reagent grade”, average particle diameter 5 ⁇ m) was used, and the blending amount was changed to 5% by mass, as in Example 30. A heat dissipation sheet was obtained. Table 10 shows the thermal conductivity of the obtained heat dissipation sheet.
  • Example 33 A heat radiating sheet was obtained in the same manner as in Example 31 except that Al 2 O 3 powder was used instead of SiO 2 .
  • Table 10 shows the thermal conductivity of the obtained heat dissipation sheet.
  • Example 34 N-methyl-2-pyrrolidone was used as a solvent, and polyamide (“Technola” (registered trademark) manufactured by Teijin Limited) was dissolved in this solvent so that the concentration of the binder was 6% by mass. Next, in this solution, fibrous carbon (Production Example 1) and carbon nanotubes (“FloTube 9000” (trade name) manufactured by CNano Co., Ltd.), a single fiber having an average fiber diameter of 11 nm and an average fiber length of 10 ⁇ m Aggregated aggregates) were added and kneaded to obtain a slurry. The blending amount of the fibrous carbon was 30% by mass with respect to the total amount of the solvent, the fibrous carbon, and the filler.
  • the blending amount of the filler was 10% by mass with respect to the total amount of the solvent, fibrous carbon, and filler.
  • This slurry was poured onto heat-resistant glass and formed into a thickness of 0.12 mm by a doctor blade method. After heat treatment at 80 ° C. for 1 hour, heat treatment was further performed at 150 ° C. for 3 hours to obtain a heat radiation sheet having a length of 200 cm, a width of 150 cm, and a thickness of 0.05 mm.
  • Table 11 shows the values of the thermal conductivity in the in-plane direction and the thickness direction of this heat radiation sheet.
  • Example 35 A heat radiating sheet was obtained in the same manner as in Example 34 except that the amount of fibrous carbon was changed to 30% by mass and the amount of CNT was changed to 30% by mass. Table 11 shows the thermal conductivity of the obtained heat dissipation sheet.
  • Example 36 A heat radiating sheet was obtained in the same manner as in Example 34 except that the amount of fibrous carbon was changed to 30% by mass and the amount of CNT was changed to 50% by mass. Table 11 shows the thermal conductivity of the obtained heat dissipation sheet.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Thermal Sciences (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Inorganic Fibers (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Reinforced Plastic Materials (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

本発明により、繊維状炭素と、ポリマーと、を含有して成る放熱シートであって、前記繊維状炭素は、平均実効繊維長が5~120μm、平均繊維径が200~900nm、平均アスペクト比が30~10000であり、前記繊維状炭素の含有率が、前記繊維状炭素と前記ポリマーとの合計量に対して5~85質量%である放熱シートが提供される。

Description

放熱シート
 本発明は、放熱シートに関する。詳しくは、繊維状炭素を含有して成る、熱伝導性に優れた放熱シートに関する。
 カーボンナノ材料、特に、平均繊維径が1μm以下である繊維状炭素は、高結晶性、高導電性、高強度、高弾性率、軽量等の優れた特性を有していることから、高性能複合材料のナノフィラーとして使用されている。その用途は、機械的強度向上を目的とした補強用ナノフィラーに留まらず、炭素材料に備わった高導電性を生かし、各種電池やキャパシタの電極への添加材料、電磁波シールド材、静電防止材用の導電性ナノフィラーとして、或いは樹脂向けの静電塗料に配合するナノフィラーとしての用途が検討されている。また、繊維状炭素としての化学的安定性、熱的安定性、微細構造の特徴を生かし、フラットディスプレー等の電界電子放出材料としての用途も期待されている。また、高い熱伝導性を生かした放熱材料としての用途が大きく期待されている。
 特許文献1には、平均繊維径が2~20μmであるピッチ系炭素繊維フィラーと熱可塑性樹脂及び/又は熱硬化性樹脂を含む厚みが100~3000μmのシート状熱伝導性成形体が記載されている。六角網面の成長方向に由来する結晶サイズ(La)は20nm以上(実施例1は70nm)であり結晶性も優れている。
 しかしながら、このピッチ系炭素繊維フィラーは、繊維径が大きいためか、放熱シートとしての特性は十分とは言えなかった。また、このピッチ系炭素繊維フィラーは、透過型電子顕微鏡でフィラー端面の形状を観察すると、グラフェンシートが閉じた構造になっている。グラフェンシートが閉じているとは、炭素繊維を構成するグラフェンシートそのものの端部が炭素繊維端部に露出することなく、グラファイト層が略U字上に湾曲し、湾曲部分が炭素繊維端部に露出している状態である。
 特許文献2には、炭素繊維と無機物フィラーを充填した熱伝導性シートが開示されている。炭素繊維の平均繊維長が50~250μmであり、無機物フィラーの平均粒径が1~10μmであり、熱伝導性シートの平均厚みは500μm以下であり、厚みが薄くても優れた高熱伝導性と、優れた柔軟性とを両立できることが記載されている。
 しかしながら、この熱伝導性シートを構成する炭素繊維の平均短軸径は6~15μmと太い。無機物フィラーがアルミナの場合、平均粒径は1~10μmとやや小さい。そのため、アルミナが炭素繊維中に点分散される形態になることから、熱抵抗が大きく、厚み方向の熱伝導性は十分とは言えない。また、繊維径が太いので、柔軟性が十分に優れているとは言いがたい。なお、炭素繊維は、熱伝導性シートの厚み方向(シート面に対し垂直配向)に配向しており(段落0052)、シートの押出方向(以下、面内方向という)の熱伝導性については何ら考慮されていない。すなわち、繊維径が太く(6~15μm)、繊維長が長いため(50~250μm)、シート中に含まれる炭素繊維の数(含まれる量)が少なく、シートの押出方向(面内の一方向)の熱伝導性に対しては、熱伝導パスが形成されていない。
特開2009-132810号公報 特開2015-029071号公報
 本発明の第1の課題は、従来の放熱シートと比較して高い放熱性を有する放熱シートを提供することにある。
 本発明の第2の課題は、適度な柔軟性を有するとともに、放熱シートの面と平行方向(以下、「面内方向」ともいう)のみならず、厚み方向の熱伝導性に優れた放熱シートを提供することにある。
 本発明者らは、上記の従来技術に鑑みて鋭意検討を重ねた結果、繊維状炭素の繊維径、繊維長、及びシート内における配向性を制御することにより、高い熱伝導性を有する放熱シートが得られることを見出した。
 さらには、所定のフィラーを配合することにより、面内方向のみならず、厚み方向の熱伝導性にも優れた放熱シートが得られることを見出した。
 これらの知見により本発明を完成するに至った。
 上記課題を解決する本発明は以下に記載するものである。
 〔1〕 繊維状炭素と、ポリマーと、を含有して成る放熱シートであって、
 前記繊維状炭素は、平均実効繊維長が5~120μm、平均繊維径が200~900nm、平均アスペクト比が30~10000であり、
 前記繊維状炭素の含有率が、前記繊維状炭素と前記ポリマーとの合計量に対して5~85質量%であることを特徴とする放熱シート。
 〔2〕 前記放熱シートのX線回折法により求めた繊維状炭素の配向度が、
 前記放熱シートの面と平行方向であって、最も高い配向度を示す一方向の配向度Aが55~95%である〔1〕に記載の放熱シート。
 〔3〕 前記放熱シートの面と平行方向であって、最も高い配向度を示す一方向における熱伝導率Pが、前記放熱シートの厚み方向における熱伝導率Tの2~200倍である、〔1〕又は〔2〕に記載の放熱シート。
 〔1〕~〔3〕に記載の発明は、所定の実効繊維長を有する極細の繊維状炭素を所定量含有して成る放熱シートである。この繊維状炭素は、放熱シートの面内方向において繊維状炭素の配向度が所定範囲にあることが好ましい。さらに、放熱シートの面内方向における熱伝導率と厚み方向における熱伝導率とが所定範囲にあることが好ましい。
 〔4〕 平均粒子径が前記繊維状炭素の平均繊維径に対して1~150倍であるフィラー粒子を、放熱シートに対して5~45質量%さらに含有する〔1〕に記載の放熱シート。
 〔5〕 前記フィラー粒子が、メソカーボンマイクロビーズ(MCMB)、窒化ホウ素(BN)、炭化ケイ素(SiC)、窒化アルミ(AlN)、酸化ケイ素、ケイ素(シリコン)、金属粒子、チタニア、シリカ、及びアルミナからなる群から選ばれる少なくとも一種の無機物である〔4〕に記載の放熱シート。
 〔6〕 前記放熱シートの面と平行方向であって、最も高い配向度を示す一方向における熱伝導率pが、前記放熱シートの厚み方向における熱伝導率tの1.5~50倍である、〔4〕又は〔5〕に記載の放熱シート。
 〔4〕に記載の発明は、所定の大きさのフィラー粒子をさらに含有して成る放熱シートである。フィラー粒子は〔5〕に記載の所定の物質であることが好ましい。この〔4〕又は〔5〕に記載の放熱シートは、放熱シートの面内方向における熱伝導率と厚み方向における熱伝導率とが所定範囲にあることが好ましい。
 〔7〕 シートの厚み方向における熱伝導率が、シートの面内方向における熱伝導率の最大値の1.0~100倍である〔1〕に記載の放熱シート。
 〔8〕 シートの厚み方向に引き揃えられた炭素繊維を含有する炭素繊維成形体を含んで成る〔7〕に記載の放熱シート。
 〔7〕及び〔8〕に記載の発明は、シートの厚み方向に引き揃えられた炭素繊維を含んで成る炭素繊維成形体から成る放熱シートである。この炭素繊維成形体は、所定方向に引き揃えられた炭素繊維を含有して成り、該炭素繊維の軸方向に対する熱伝導性を顕著に向上させる材料である。
 〔9〕 平均繊維長が2~120μmであり、平均繊維径が0.4~50nmであるカーボンナノチューブを、放熱シートに対して1~60質量%さらに含有する〔1〕~〔8〕の何れかに記載の放熱シート。
 〔9〕に記載の発明は、所定の大きさのカーボンナノチューブを所定量含有して成る放熱シートである。このカーボンナノチューブは、その性質上、放熱シート内で凝集するため、放熱シートの厚み方向における熱伝導率を向上させる。
 〔10〕 前記繊維状炭素がピッチ系炭素繊維である、〔1〕~〔8〕の何れかに記載の放熱シート。
 〔11〕 前記繊維状炭素が、X線回折法で測定した網平面群の厚さ(Lc)が1~200nmであって、結晶子長さ(La)が20~500nmの繊維状炭素である〔1〕~〔9〕の何れかに記載の放熱シート。
 〔10〕及び〔11〕に記載の発明は、繊維状炭素が所定の物質に限定された放熱シートである。
 〔12〕 厚みが0.01~1mmの範囲である、〔1〕~〔10〕の何れかに記載の放熱シート。
 〔12〕に記載の発明は、厚みが所定範囲に限定された放熱シートである。
 〔13〕 前記ポリマーがポリアミドである、〔1〕~〔11〕の何れかに記載の放熱シート。
 本発明によれば、従来技術知られていた放熱シートと比較して熱伝導性が高い放熱シートが提供される。また、放熱シートの特定の一方向における熱伝導率が特に優れた放熱シートが提供される。さらには、放熱シートの面内方向だけでなく、厚み方向における熱伝導率が優れた放熱シートが提供される。
 このような放熱シートは、極めて薄く形成できるとともに、従来品と比較して高い熱伝導率を有する。そのため、発熱量が多く、スペースに制限がある用途(例えば、スマートフォン、ヒーター、複写機ローラ、LED、自動車、CPU)に有望である。
 
製造例1の極細繊維状炭素の電子顕微鏡写真(2000倍)である。 図1の電子顕微鏡写真を白黒2値で出力した参考図である。 実施例7の放熱シート表面の電子顕微鏡写真である。 比較例13の放熱シート表面の電子顕微鏡写真である。
 以下、本発明について説明する。
1.繊維状炭素
 1-1. 繊維状炭素の性状
 本発明における繊維状炭素は、実質的に炭素のみから構成される繊維形状をしているものであり、代表的なものとしては炭素繊維が挙げられる。ここで繊維状炭素は、例えば、黒鉛、グラフェン、カーボンナノチューブ、カーボンナノホーン、フラーレン、カーボンブラック、活性炭が融着や接着等により結合、連結して繊維状になっているものであってもよい。具体的には、この繊維状炭素は、全体として繊維状の形態を有していればよく、例えば、後述するアスペクト比の好ましい範囲未満のものが接触したり結合したりして一体的に繊維形状を持っているもの(例えば、球状炭素が数珠状に連なっているもの、極めて短い少なくとも1本または複数本の繊維が融着等によりつながっているものなど)も含む。
 本発明における繊維状炭素は、放熱シート内に熱伝導性のネットワークを形成する効果が高く、放熱特性向上の観点から炭素繊維であることが好ましい。炭素繊維としては、例えば、カーボンナノチューブ、カーボンナノリボンなどの気相成長炭素材料も含まれる。結晶性が高いことが必要であることから、PAN系炭素繊維よりもピッチ系炭素繊維が好ましい。
 上記繊維状炭素は特に限定されるものではないが、実質的に分岐を有さない直線構造であることが好ましい。分岐とは、繊維状炭素の主軸が中途で枝分かれしていることや、繊維状炭素の主軸が枝状の副軸を有することをいう。実質的に分岐を有さない直線構造とは、繊維状炭素の分岐度が0.01個/μm以下であることを意味する。
 上記繊維状炭素の平均繊維径は、200~900nmの範囲である。該上限値は、600nmであることが好ましく、500nmであることがより好ましく、400nmであることがさらに好ましい。該下限値は、210nmであることが好ましく、220nmであることがより好ましい。
 繊維状炭素の平均繊維径が200~900nmの範囲であると、繊維状炭素が放熱シート内の面内の一方向に主として規則的に配列しやすく、かつ当該繊維状炭素同士が適度に接触する。そのため、ある特定の一方向への放熱パスが効率的に形成される。200nm未満であると、繊維状炭素が直線構造を形成し難くなる。また、嵩密度が非常に小さいためハンドリング性が劣る上、繊維状炭素を分散させることが困難となる。また、放熱シートを形成した際に、繊維状炭素同士が過度に接触して熱伝導抵抗が増加し、熱伝導性が低下する傾向がある。900nm超である場合、放熱シート内において繊維状炭素同士の隙間が生じ易くなり、十分な熱伝導パスを形成することが困難となる場合がある。さらには、得られる熱伝導性シートの表面に凹凸が形成されやすくなり、発熱体との接触面積が減少して放熱効率が低下する傾向がある。
 ここで、本発明における繊維径や実効繊維長は、電界放射型走査電子顕微鏡によって倍率2,000倍で撮影した写真図より測定された値を意味する。
 繊維状炭素の実効繊維長及びその平均実効繊維長は、5~120μmの範囲が好ましく、5~100μmであることがより好ましく、8~70μmであることがさらに好ましく、10~50μmであることが最も好ましい。5μm未満である場合、放熱シート内の熱伝導性が低くなるため好ましくない。120μm超の場合、繊維状炭素の分散性が損なわれることから好ましくない。即ち、繊維状炭素が長すぎる場合、繊維状炭素が放熱シートの面内方向に配向し易くなりすぎて、取扱い性や成形が困難になりやすい。
 本発明において実効繊維長は、実際の繊維長ではなく、実効長によって定義される。なぜなら、繊維状炭素は、放熱シート内において実際の繊維長で熱伝導に寄与しているとは限らないからである。例えば、放熱シート内で繊維が折れ曲がったり丸まったりして、実際の繊維長で熱伝導に寄与していない場合がある。本発明において、繊維状炭素の実効長は、単体の繊維状炭素に両端が接する最長の線分の長さとして定義される。換言すれば、単体の繊維状炭素が熱伝導することができる最大の直線距離である。即ち、繊維状炭素が完全な直線構造を有する場合は、実効長はその繊維長と略等しい。繊維状炭素が分岐構造を有する場合や丸まっている場合は、その単体の繊維状炭素上にある2点間を結ぶ最大の線分の長さをいう。
 上記繊維状炭素の平均実効繊維長(L)と平均繊維径(D)との比(アスペクト比、L/D)は30以上であり、40以上であることが好ましい。比(L/D)を30以上とすることにより、放熱シート中において放熱パスが効率的に形成され、熱伝導率の高い放熱シートを得ることができる。30未満の場合、放熱シート中において放熱パスの形成が不十分になり易く、放熱シート内の面内方向の熱伝導率が低くなる。アスペクト比(L/D)の上限値は特に限定されないが、一般的には10000以下であり、5000以下であることが好ましく、1000以下であることがより好ましく、500以下であることがさらに好ましく、200以下であることがさらに好ましく、100以下であることがさらに好ましく、80以下であることが特に好ましい。10000を超える場合、繊維状炭素の分散性が損なわれることから好ましくない。
 上記繊維状炭素は、その結晶性が高いことが好ましい。結晶性の指標であるX線回折法で測定した結晶子長さ(La)は、20~500nmであることが好ましく、30nm以上であることがより好ましく、50nm以上であることがさらに好ましく、80nm以上であることがさらに好ましく、100nm以上であることがさらに好ましく、120nm以上であることがさらに好ましく、140nm以上が特に好ましい。20nm未満である場合、繊維状炭素の結晶性が低く熱伝導性が十分ではない。一方、結晶子サイズは、X線回折法によって測定を行うが、結晶が大きく発達すると測定誤差が大きくなることから、実質的には500nmが測定の限界である。
 本発明において、X線回折法で測定した結晶子長さ(La)とは、日本工業規格JISR 7651(2007年度版)「炭素材料の格子定数及び結晶子の大きさ測定方法」により測定される値をいう。
 上記繊維状炭素は、X線回折法で測定した結晶面間隔(d002)が0.335~0.340nmであることが好ましく、0.335~0.339nmであることがより好ましい。0.335~0.340nmの範囲であることにより、黒鉛結晶性が高く、放熱性と耐酸化性が優れる。
 上記繊維状炭素は、グラフェン(網平面群)の網平面群の厚さ(Lc)が1.0~200nmであることが好ましい。1.0nm未満である場合、繊維状炭素の熱伝導率が著しく低下してしまうため好ましくない。Lcはより好ましくは5~130nm、さらに好ましくは10~130nmである。
 上述のように本発明の放熱シートに用いる繊維状炭素は、高い結晶性を有することが好ましい。高い結晶性を有する繊維状炭素は、放熱シートに導電性を付与することが可能である。本発明の放熱シートに用いる繊維状炭素は、繊維状炭素の充填密度が低い状態においても高い導電性を有することが好ましい。充填密度が低い状態において高い導電性を有する繊維状炭素は、低い添加濃度で熱伝導性及び導電性を放熱シートに付与することができる。具体的には、充填密度0.4g/cmで充填した際の繊維状炭素の粉体体積抵抗率は、1Ω・cm以下であることが好ましく、0.5Ω・cm以下であることがより好ましい。1Ω・cmを超える場合、熱伝導性及び導電性を向上させるのに要する繊維状炭素の添加量が多くなり好ましくない。下限値は特に限定されないが、0.0001Ω・cm程度である。
 
 1-2. 繊維状炭素の製造方法
 本発明の繊維状炭素として好ましい形態であるピッチ系炭素繊維の製造方法について以下に説明する。本発明のピッチ系炭素繊維の製造方法は、例えば次に記載する(1)~(4)の工程を経ることにより製造することができる。
 (1)熱可塑性樹脂と、該熱可塑性樹脂100質量部に対して1~150質量部のメソフェーズピッチと、からなる樹脂組成物を溶融状態で成形することにより、前記メソフェーズピッチを繊維化して樹脂複合繊維を得る繊維化工程であって、必要に応じて前記メソフェーズピッチの分子配向性を高める配向制御操作を有する繊維化工程と、
 (2)前記樹脂複合繊維を安定化し、樹脂複合安定化繊維を得る安定化工程と、
 (3)前記樹脂複合安定化繊維から前記熱可塑性樹脂を除去して安定化繊維を得る熱可塑性樹脂除去工程と、
 (4)前記安定化繊維を不活性雰囲気下で加熱して炭素化乃至黒鉛化し、極細炭素繊維を得る炭化焼成工程。
 <熱可塑性樹脂> 
 本発明のピッチ系炭素繊維の製造方法で使用する熱可塑性樹脂は、樹脂複合繊維を製造することができるとともに、熱可塑性樹脂除去工程において容易に除去される必要がある。このような熱可塑性樹脂としては、ポリオレフィン、ポリメタクリレート、ポリメチルメタクリレート等のポリアクリレート系ポリマー、ポリスチレン、ポリカーボネート、ポリアリレート、ポリエステル、ポリアミド、ポリエステルカーボネート、ポリサルホン、ポリイミド、ポリエーテルイミド、ポリケトン、ポリ乳酸が例示される。これらの中でも、ポリオレフィンが好ましく用いられる。
 ポリオレフィンの具体例としては、ポリエチレン、ポリプロピレン、ポリ-4-メチルペンテン-1、及びこれらを含む共重合体が挙げられる。熱可塑性樹脂除去工程において除去し易いという観点からは、ポリエチレンを用いることが好ましい。ポリエチレンとしては、高圧法低密度ポリエチレンや気相法・溶液法・高圧法直鎖状低密度ポリエチレンなどの低密度ポリエチレン、中密度ポリエチレン、及び高密度ポリエチレンなどの単独重合体;エチレンとα-オレフィンとの共重合体やエチレン・酢酸ビニル共重合体などのエチレンと他のビニル系単量体との共重合体が挙げられる。
 本発明で使用する熱可塑性樹脂は、JIS K 7210 (1999年度)に準拠して測定されたメルトマスフローレート(MFR)が0.1~10g/10minであることが好ましく、0.1~5g/10minであることがより好ましく、0.1~3g/10minであることが特に好ましい。MFRが上記範囲であると、熱可塑性樹脂中にメソフェーズピッチを良好にミクロ分散させることができる。また、樹脂複合繊維を成形する際に、繊維が引き延ばされることにより、得られる炭素繊維の繊維径をより小さくすることができる。本発明で使用する熱可塑性樹脂は、メソフェーズピッチと容易に溶融混練できるという点から、非晶性の場合はガラス転移温度が250℃以下、結晶性の場合は融点が300℃以下であることが好ましい。
 <メソフェーズピッチ>
 メソフェーズピッチとは溶融状態において光学的異方性相(液晶相)を形成しうるピッチである。本発明で使用するメソフェーズピッチとしては、石炭や石油の蒸留残渣を原料とするものや、ナフタレン等の芳香族炭化水素を原料とするものが挙げられる。例えば、石炭由来のメソフェーズピッチは、コールタールピッチの水素添加・熱処理を主体とする処理;水素添加・熱処理・溶剤抽出を主体とする処理等により得られる。
 より具体的には、以下の方法により得ることができる。
 先ず、キノリン不溶分を除去した軟化点80℃のコールタールピッチを、Ni-Mo系触媒存在下、圧力13MPa、温度340℃で水添し、水素化コールタールピッチを得る。この水素化コールタールピッチを常圧下、480℃で熱処理した後、減圧して低沸点分を除去し、粗メソフェーズピッチを得る。この粗メソフェーズピッチを温度340℃でフィルターを用いてろ過を行って異物を取り除くことにより、精製メソフェーズピッチを得ることができる。
 メソフェーズピッチの光学的異方性含有量(メソフェーズ率)は、80%以上であることが好ましく、90%以上であることがより好ましい。
 また、上記メソフェーズピッチは、軟化点が100~400℃であることが好ましく、150~350℃であることがより好ましい。
 <樹脂組成物> 
 本発明のピッチ系炭素繊維の製造方法において用いられる、熱可塑性樹脂とメソフェーズピッチとから成る樹脂組成物(以下、メソフェーズピッチ組成物ともいう)は、熱可塑性樹脂と、該熱可塑性樹脂100質量部に対して1~150質量部のメソフェーズピッチと、を含んで成ることが好ましい。メソフェーズピッチの含有量は5~100質量部であることがより好ましい。メソフェーズピッチの含有量が150質量部を超えると所望の繊維径を有する樹脂複合繊維が得られず、1質量部未満であると目的とする炭素繊維を安価に製造することができない等の問題が生じるため好ましくない。
 繊維径が900nm以下である炭素繊維を製造するためには、熱可塑性樹脂中におけるメソフェーズピッチの分散径を0.01~50μmとすることが好ましく、0.01~30μmとすることがより好ましい。熱可塑性樹脂中におけるメソフェーズピッチの分散径が0.01~50μmの範囲を逸脱すると、所望の炭素繊維を製造することが困難となることがある。なお、メソフェーズピッチ組成物中において、メソフェーズピッチは球状又は楕円状の島相を形成するが、本発明における分散径とは、島相が球状の場合はその直径を意味し、楕円状の場合はその長軸径を意味する。
 上記0.01~50μmの分散径は、メソフェーズピッチ組成物を300℃で3分間保持した後においても上記範囲を維持していることが好ましく、300℃で5分間保持した後においても維持していることがより好ましく、300℃で10分間保持した後においても維持していることが特に好ましい。一般に、メソフェーズピッチ組成物を溶融状態で保持しておくと、樹脂組成物中においてメソフェーズピッチが時間と共に凝集する。メソフェーズピッチが凝集してその分散径が50μmを超えると、所望の炭素繊維を製造することが困難となることがある。樹脂組成物中におけるメソフェーズピッチの凝集速度は、使用する熱可塑性樹脂及びメソフェーズピッチの種類により変動する。
 メソフェーズピッチ組成物は、熱可塑性樹脂とメソフェーズピッチとを溶融状態において混練することにより製造することができる。熱可塑性樹脂とメソフェーズピッチとの溶融混練は公知の装置を用いて行うことができる。例えば、一軸式混練機、二軸式混練機、ミキシングロール、バンバリーミキサーからなる群より選ばれる1種類以上を用いることができる。これらの中でも、熱可塑性樹脂中にメソフェーズピッチを良好にミクロ分散させるという目的から、二軸式混練機を用いることが好ましく、特に各軸が同方向に回転する二軸式混練機を用いることが好ましい。
 混練温度としては、熱可塑性樹脂とメソフェーズピッチとが溶融状態であれば特に制限されないが、100~400℃であることが好ましく、150~350℃であることが好ましい。混練温度が100℃未満であると、メソフェーズピッチが溶融状態にならず、熱可塑性樹脂中にミクロ分散させることが困難である。一方、400℃を超える場合、熱可塑性樹脂又はメソフェーズピッチの分解が進行する場合がある。また、溶融混練の時間としては、0.5~20分間であることが好ましく、1~15分間であることがより好ましい。溶融混練の時間が0.5分間未満の場合、熱可塑性樹脂中へのメソフェーズピッチのミクロ分散が困難である。一方、20分間を超える場合、炭素繊維の生産性が著しく低下する。
 溶融混練は、酸素ガス含有量が10体積%未満の不活性雰囲気下で行うことが好ましく、酸素ガス含有量が5体積%未満の不活性雰囲気下で行うことがより好ましく、酸素ガス含有量が1%体積未満の不活性雰囲気下で行うことが特に好ましい。本発明で使用するメソフェーズピッチは、溶融混練時に酸素と反応することにより変性して、熱可塑性樹脂中へのミクロ分散を阻害する場合がある。このため、酸素とメソフェーズピッチとの反応を抑制するために不活性雰囲気下で溶融混練を行うことが好ましい。
 <樹脂複合繊維>
 上記のメソフェーズピッチ組成物から樹脂複合繊維を製造する方法としては、所望の炭素繊維が作製できれば限定されないが、紡糸口金を用いてメソフェーズピッチ組成物を溶融紡糸する方法、矩形口金を用いてメソフェーズピッチ組成物を溶融製膜する方法を例示することができる。
 本発明の炭素繊維を得るためには、樹脂複合繊維を得る段階において、樹脂複合繊維に含まれるメソフェーズピッチの分子配向性を高める配向制御操作を行うことが好ましい。配向制御操作では、溶融状態のメソフェーズピッチの分子配向性を高めるために、溶融状態のメソフェーズピッチを変形させることが必要である。このような配向制御操作としては、溶融状態のメソフェーズピッチにせん断によるひずみを加える方法や伸長によるひずみを加える方法を例示することができる。これらの方法は一方のみで行っても良いし、両方を併用しても良い。特に、伸長によるひずみを加える方法は、分子配向性を高める効果が大きいため好ましい。
 せん断によるひずみを加える方法としては、溶融状態のメソフェーズピッチ組成物の線速度を大きくする方法が挙げられる。具体的には、紡糸口金又は矩形口金の流路内において、溶融状態のメソフェーズピッチ組成物の通過速度を高くすることにより、せん断によるひずみを加えることができる。
 伸長によるひずみを加える方法としては、溶融状態のメソフェーズピッチ組成物の線速度を、紡糸口金又は矩形口金の吐出側に向けて徐々に大きくする方法が例示される。具体的には、口金の流路の断面積を吐出側に向けて漸減させる方法(口金内部での変形)や、紡糸口金又は矩形口金の吐出孔から吐出されたメソフェーズピッチ組成物を、吐出線速度よりも大きな線速度で引き取る方法(口金外部での変形)などが挙げられる。口金内部での変形の場合、変形により分子配向性が高められたメソフェーズピッチは、熱緩和によって分子配向性が低下し易くなる。一方、口金外部での変形の場合、変形により分子配向性が高められたメソフェーズピッチが直ちに冷却されて流動性が低下することにより、メソフェーズピッチの分子配向性が保たれる。そのため、配向制御操作としては、口金外部において伸長によるひずみを加える方法が好ましい。
 これらの方法は、せん断ひずみ速度や伸長ひずみ速度を制御することが重要である。
 せん断ひずみ速度及び伸長ひずみ速度は、それぞれ5~10000s-1であり、100から1400s-1であることが好ましい。5s-1未満である場合、メソフェーズピッチの分子配向性を十分に高めることができない。10000s-1を超える場合、メソフェーズピッチの変形が追随できず、繊維状に変形させることができなくなる。
 上記のように制御することにより、メソフェーズピッチの分子配向性を高めることができるとともに、繊維径の変動係数が小さい炭素繊維を得ることができる。
 メソフェーズピッチの分子配向性を高める操作の際の温度は、メソフェーズピッチの溶融温度よりも高いことが必要であり、150~400℃であることが好ましく、180~350℃であることがより好ましい。400℃を超える場合、メソフェーズピッチの変形緩和速度が大きくなり、繊維の形態を保つことが難しくなる。
 吐出線速度と引取り速度との比率であるドラフト比は、2~100であることが好ましく、2~50であることがより好ましい。100より大きいとメソフェーズピッチの変形が追随できず、繊維状に変形させることができなくなるので好ましくない。2未満であるとメソフェーズピッチの分子配向性を高くすることができず、その結果、得られる繊維状炭素の結晶性が低くなる。
 また、樹脂複合繊維の繊維化工程は冷却工程を有していてもよい。冷却工程としては、例えば、溶融紡糸の場合、紡糸口金の下流の雰囲気を冷却する方法が挙げられる。溶融製膜の場合、矩形口金の下流に冷却ドラムを設ける方法が挙げられる。冷却工程を設けることにより、メソフェーズピッチが伸長によって変形する領域を調整でき、ひずみの速度を調整することができる。また、冷却工程を設けることにより、紡糸又は製膜後の樹脂複合繊維を直ちに冷却固化させて安定した成形を可能とする。
 <樹脂複合安定化繊維>
 上記のようにして得られた樹脂複合繊維は、該樹脂複合繊維に含まれるメソフェーズピッチ繊維を安定化(不融化ともいう)して樹脂複合安定化繊維が作製される。安定化は、空気、酸素、オゾン、二酸化窒素、ハロゲンなどを用いるガス気流処理、酸性水溶液などを用いる溶液処理など公知の方法で行うことができる。生産性の面からガス気流処理による不融化が好ましい。
 使用するガス成分としては、取り扱いの容易性から空気、酸素、又はこれらを含む混合ガスであることが好ましく、コストの関係から空気を用いるのが特に好ましい。使用する酸素ガス濃度としては、全ガス組成の10~100体積%の範囲にあることが好ましい。酸素ガス濃度が全ガス組成の10体積%未満であると、樹脂複合繊維に含まれるメソフェーズピッチの安定化に多大の時間を要する。
 安定化の反応温度は、50~350℃が好ましく、60~300℃がより好ましく、100~300℃がさらに好ましく、200~300℃が特に好ましい。安定化の処理時間は、10~1200分間が好ましく、10~600分間がより好ましく、30~300分間がさらに好ましく、60~210分間が特に好ましい。
 上記安定化処理によりメソフェーズピッチの軟化点は著しく上昇する。所望の炭素繊維を得るという目的から、メソフェーズピッチの軟化点は400℃以上となることが好ましく、500℃以上となることがさらに好ましい。
 <熱可塑性樹脂除去工程>
 次に、上述のようにして得られる樹脂複合安定化繊維は、その中に含まれる熱可塑性樹脂が除去されて安定化繊維が分離される。この工程では、安定化繊維の熱分解を抑制しながら、熱可塑性樹脂を分解・除去する。熱可塑性樹脂を分解・除去する方法としては、例えば、溶剤を用いて熱可塑性樹脂を除去する方法や、熱可塑性樹脂を熱分解して除去する方法が挙げられる。
 熱可塑性樹脂の熱分解は、不活性ガス雰囲気下で行うことが好ましい。ここでいう不活性ガス雰囲気とは、二酸化炭素、窒素、アルゴン等のガス雰囲気をいい、その酸素濃度は30体積ppm以下であることが好ましく、20体積ppm以下であることがより好ましい。本工程で使用する不活性ガスとしては、コストの関係から二酸化炭素及び窒素を用いることが好ましく、窒素を用いることが特に好ましい。
 熱可塑性樹脂の熱分解は減圧下で行うこともできる。減圧下で熱分解することにより、熱可塑性樹脂を十分に除去することができる。その結果、安定化繊維を炭素化又は黒鉛化して得られる炭素繊維又は黒鉛化繊維は、繊維間における融着を少なくすることができる。雰囲気圧力は低いほど好ましいが、50kPa以下であることが好ましく、30kPa以下であることがより好ましく、10kPa以下であることがさらに好ましく、5kPa以下であることが特に好ましい。一方、完全な真空は達成が困難であるため、圧力の下限は一般に0.01kPa以上である。
 熱可塑性樹脂の熱分解を減圧下で行う場合、上記の雰囲気圧力が保たれれば、微量の酸素や不活性ガスが存在してもよい。特に微量の不活性ガスが存在すると、熱可塑性樹脂の熱劣化による繊維間の融着が抑制されるため好ましい。なお、ここでいう微量の酸素とは、酸素濃度が30体積ppm以下であることをいい、微量の不活性ガスとは、不活性ガス濃度が20体積ppm以下であることをいう。用いる不活性ガスの種類は、上述したとおりである。
 熱分解の温度は、350~600℃であることが好ましく、380~550℃であることがより好ましい。熱分解の温度が350℃未満である場合、安定化繊維の熱分解は抑えられるものの、熱可塑性樹脂の熱分解を十分行うことができない場合がある。一方、600℃を超える場合、熱可塑性樹脂の熱分解は十分行うことができるものの、安定化繊維までが熱分解される場合があり、その結果、収率が低下し易い。熱分解の時間としては、0.1~10時間であることが好ましく、0.5~10時間であることがより好ましい。
 本発明の製造方法では、安定化工程及び熱可塑性樹脂除去工程は、樹脂複合繊維又は樹脂複合安定化繊維を、支持基材上に目付け2kg/m以下で保持して行うことが好ましい。支持基材に保持することによって、安定化処理時又は熱可塑性樹脂除去時の加熱処理に起因して生じる樹脂複合繊維又は樹脂複合安定化繊維の凝集を抑制することができ、通気性を保つことが可能となる。
 支持基材の材質としては、溶剤や加熱によって変形や腐食を生じないことが必要である。また、支持基材の耐熱温度としては、上記の熱可塑性樹脂除去工程の熱分解温度で変形しないことが必要であることから、600℃以上の耐熱性を有していることが好ましい。このような材質としては、ステンレスなどの金属材料やアルミナ、シリカなどのセラミックス材料を挙げることができる。
 また、支持基材の形状としては、面に対して垂直方向への通気性を有する形状であることが好ましい。このような形状としては網目構造が好ましい。網目の目開きは0.1~5mmであることが好ましい。目開きが5mmよりも大きい場合、加熱処理によって網目の線上に繊維が凝集し易くなり、メソフェーズピッチの安定化や熱可塑性樹脂の除去が不十分となる場合がある。一方、網目の目開きが0.1mm未満である場合、支持基材の開孔率の減少により、支持基材の通気性が低下する場合がある。
 <炭化焼成工程>
 上記安定化繊維を不活性雰囲気下で炭素化及び/又は黒鉛化することにより、本発明の炭素繊維が得られる。その際に使用する容器としては、黒鉛製のルツボ状のものが好ましい。ここで、炭素化とは比較的低温(好ましくは1000℃程度)で加熱することをいい、黒鉛化とはさらに高温で加熱(3000℃程度)することにより黒鉛の結晶を成長させることをいう。
 上記安定化繊維の炭素化及び/又は黒鉛化時に使用される不活性ガスとしては、窒素、アルゴン等が挙げられる。不活性雰囲気中の酸素濃度は、20体積ppm以下であることが好ましく、10体積ppm以下であることがより好ましい。炭素化及び/又は黒鉛化時の加熱温度は、500~3500℃が好ましく、800~3200℃がより好ましい。焼成時間は、0.1~24時間が好ましく、0.2~10時間がより好ましい。
 なお、本発明においては、炭素化及び/又は黒鉛化の温度は、比較的低温で行っても良い。例えば1000~2400℃で炭素化及び/又は黒鉛化することにより、実効繊維長の長い炭素繊維の割合が多くすることができる。加熱温度の下限値としては、1000℃であることが好ましく、1200℃がより好ましく、1300℃がさらに好ましく、1400℃以上がさらにより好ましく、1500℃以上であることが特に好ましい。なお、2400℃以上である場合、結晶化が進み過ぎて炭素繊維が折損し易くなる場合がある。
 <粉砕処理>
 本発明の炭素繊維の製造方法は、粉砕処理工程を有していても良い。粉砕処理は、熱可塑性樹脂除去工程後、及び/又は、炭化焼成工程後において実施するのが好ましい。粉砕方法としては、ジェットミル、ボールミル、ビーズミル、インペラーミル、カッターミル等の微粉砕機を適用することが好ましく、粉砕後に必要に応じて分級を行ってもよい。湿式粉砕の場合、粉砕後に分散媒体を除去するが、この際に2次凝集が顕著に生じるとその後の取り扱いが非常に困難となる。このような場合は、乾燥後、ボールミルやジェットミル等を用いて解砕操作を行うことが好ましい。
 
2.ポリマー
 本発明におけるポリマーは、熱可塑性ポリマー、又は熱硬化性ポリマーのいずれであってもよい。ポリマー中に前記繊維状炭素を均一に分散することができるものであればあらゆるポリマーを用いることができる。なお、本明細書中、ポリマーをバインダーと称することがある。
 熱可塑性ポリマーとしては、例えば、フッ素系、ポリアミド系、アクリル系、ポリウレタン系、ビニル系の各種ポリマーを挙げることができる。この中で、ポリフッ化ビ二リデン、ポリイミド、コーネックスなどは、電子部品と放熱シートとの間に起こり得る熱的な応力や外的な力に対して放熱シートを変形させない点で好ましい。
 熱硬化性ポリマーとしては、例えば、シリコン系、エポキシ系の各種ポリマーを挙げることができる。この中でも、シリコンゲルやシリコンゴムは柔軟性を有するため、電子部品と放熱シートとの間に空隙が生じることを防ぐことができる点で好ましい。
 繊維状炭素とポリマーとの配合量としては、繊維状炭素とポリマーとの合計量に対し、繊維状炭素が5~85質量%である。繊維状炭素の配合量の下限は、8質量%であることが好ましく、10質量%であることがより好ましく、15質量%であることが特に好ましい。繊維状炭素の配合量の上限は、80質量%であることが好ましく、70質量%であることがより好ましく、60質量%であることが特に好ましい。
 繊維状炭素の配合量が5質量%未満では、用途にもよるが、熱伝導性が不十分となる。また、85質量%を超えると、バインダー中に繊維状炭素を均一に分散することが困難になったり、放熱シートの成形性に影響が出る場合がある。
 
3.フィラー粒子
 本発明の放熱シートはフィラー粒子を配合することができる。フィラー粒子を配合することにより、放熱シートの厚み方向への熱伝導性を向上できる。フィラー粒子の形状としては、球状、楕円形状、塊状、粒状を例示することができる。それらの平均粒径は、球状以外の形状の場合は、真球と看做して算出する。即ち、楕円状の場合は長径であり、塊状や粒状の場合は最長の長さを意味する。また、フィラー粒子は中実でもよいが、中空でもよい。
 本発明に用いるフィラー粒子としては、無機物、有機物のいずれであってもよい。無機物としては、例えば、メソカーボンマイクロビーズ(MCMB)、窒化ホウ素(BN)、炭化ケイ素(SiC)、窒化アルミ(AlN)、ケイ素(シリコン)、シリカ、アルミナ、銅、銀などの金属粒子、酸化珪素、チタニアが好ましく、これらは1種単独で使用してもよいし、2種以上を併用してもよい。これらの中で好ましくは、メソカーボンマイクロビーズ(MCMB)である。
 フィラー粒子の平均粒子径としては、上述の繊維状炭素の平均繊維径に対して1~150倍の範囲にあることが好ましい。フィラー粒子の平均粒子径の下限は、1.5倍であることが好ましく、3倍であることがより好ましく、5倍であることがさらに好ましく、10倍であることがさらに好ましく、30倍であることがさらに好ましく、50倍であることが特に好ましい。フィラー粒子の平均粒子径の上限は、120倍であることが好ましく、100倍であることがより好ましい。1倍未満の場合、フィラー粒子同士の凝集が生じて分散性が悪くなり、放熱シートの厚み方向の熱伝導率を十分上げることができない。150倍を超えると、放熱シートの成形性が悪く、発熱体との密着性が悪いため熱伝導率を十分上げることができない。
 フィラー粒子がメソカーボンマイクロビーズ(MCMB)の場合、その平均粒子径は1~50μmが好ましく、5~30μmがより好ましく、5~25μmが特に好ましい。前記平均粒子径が1μm未満であると、粒子同士の凝集が生じて分散性が悪くなり、放熱シートの厚み方向の熱伝導率を十分上げることができない。50μmを超えると、前記放熱シート中に含まれるフィラー数が少なく、熱伝導パスを形成し難くなり、放熱シートの厚み方向の熱伝導率を十分上げることができない。
 なお、フィラー粒子は、表面処理が施されていてもよい。表面処理としては、親水化処理又はカップリング剤による表面処理を例示することができる。表面処理を施すとフィラー粒子同士の凝集が少なくなり、放熱シート内における分散性が向上して熱伝導率を向上できる場合がある。
 フィラー粒子の含有量としては、特に制限はなく、目的に応じて適宜選択することができる。フィラー粒子は、本発明の放熱シート全体の質量を基準として、5質量%以上配合することが好ましく、10質量%以上配合することがより好ましく、15質量%以上配合することがさらに好ましく、20質量%以上配合することが特に好ましい。一方、フィラー粒子の配合量は、45質量%以下であることが好ましく、40質量%以下であることがより好ましく、35質量%以下であることが特に好ましい。
4.その他の物質
 本発明の放熱シートは、上記の繊維状炭素及びポリマーを必須成分とし、フィラー粒子を任意成分とする。この他にも、難燃化材、着色剤等の任意の成分を配合することができる。
 本発明の放熱シート中には、さらに放熱性を高める目的で、繊維状炭素以外の無機材料又は有機材料、例えばグラファイト(黒鉛)、窒化ホウ素、シリカ、アルミナ、窒化アルミナ、アセチレンブラックなどのカーボンブラックを、前記放熱シート全体に対し、25質量%以下の割合で含んでいてもよい。
 また、本発明の放熱シート中には、平面内、あるいは厚み方向の機械的強度、電気特性を制御するために、繊維状炭素以外の無機材料または有機材料、例えば異種粒子である導電性及び絶縁性フィラーであるグラファイト(黒鉛)、カーボンナノチューブ、窒化ホウ素、シリカ、アルミナ、窒化アルミナ、アセチレンブラックなどのカーボンブラックなどを、前記放熱シート全体に対し、25質量%以下の割合で含んでいてもよい。
 特に、放熱シートの厚み方向における熱伝導性を補完する物質として、以下に記載するカーボンナノチューブを配合することもできる。
 カーボンナノチューブ(CNT)としては、平均繊維長が2~120μmであり、平均繊維径が0.4~50nmであるカーボンナノチューブを例示することができる。このようなCNTは、適度に凝集するため、繊維状であるにも関わらず、放熱シートの面内方向に配向し難い。そのため、放熱シートの厚み方向への熱伝導性を向上できる。CNTの配合量は、放熱シートに対して1~60質量%であることが好ましく、2~50質量%であることがより好ましい。
 
5.放熱シート
5-1. 第1態様の放熱シートの性状
 第1態様の本発明の放熱シートは、熱伝導性に優れ、特に面内の一方向(X方向(通常MD方向))の熱伝導率が良好である。製造方法にもよるが、通常は、上記繊維状炭素のアスペクト比が高いので、繊維状炭素は基本的に放熱シートの面内のMD方向(X方向)に配向し、通常TD方向(Y方向)および厚み方向(Z方向)にはあまり配向していないからである。
 本発明の放熱シートは、繊維状炭素の配向度が所定の範囲にあることが好ましい。具体的には、放熱シートの面と平行方向であって、最も高い配向度を示す一方向の配向度Aが55~95%であることが好ましく、60~95%であることがより好ましく、70~95%であることがさらに好ましく、75~95%であることが特に好ましい。この範囲にあることにより、繊維状炭素が主として一方向に並列的に配列し、かつ前後左右の隣り合った繊維状炭素同士は実質的に全部が適度に接触している。そのため、X方向に熱伝導パスが多く形成され、Y方向及びZ方向に比べて熱伝導率が高くなる。本発明の放熱シートは、放熱シートに与えられた熱を、面内の特定の一方向(X方向)に効率的に逃がすことができる。
 放熱シートの面と平行方向であって、前述の最も高い配向度を示す一方向と直交する方向の配向度Bは、5~45%であることが好ましく、10~40%であることがより好ましい。
 本発明の放熱シートは、放熱シートの面と平行方向であって、最も高い配向度を示す一方向における熱伝導率Pが、放熱シートの厚み方向における熱伝導率Tの2~200倍であることが好ましい。P/Tの下限は、5倍であることが好ましく、10倍であることがより好ましく、20倍であることがさらに好ましく、30倍であることがさらに好ましく、45倍であることが特に好ましい。P/Tの上限は、150倍であることが好ましく、90倍であることがより好ましく、80倍であることがさらに好ましい。このような配向特性を有する放熱シートは、シート面と平行方向であって所定の方向に熱を逃がすことができる。
 このような放熱シートは、放熱シート内に上述の繊維状炭素を配合することにより製造できる。シート化は公知の方法かつ公知の条件で行えば良い。例えば、シート化の方法が溶液キャスト法である場合、溶液の粘度や溶液キャスト速度を適宜調整することによりP/Tの値を制御できる。
 
5-2. 第2態様の放熱シートの性状
 第2態様の本発明の放熱シートは、熱伝導性に優れ、特に面内の一方向(X方向(通常MD方向))の熱伝導率が良好であるだけでなく、放熱シートの厚み方向(Z方向)の熱伝導性が優れる。放熱シートの面内方向(X方向)における熱伝導率pの最大値は、厚み方向における熱伝導率tの1.5~100倍であることが好ましい。p/tの上限は、60倍であることが好ましく、50倍であることがより好ましく、40倍であることがさらに好ましく、35倍であることがさらに好ましく、30倍であることが特に好ましい。このような配向特性を有する放熱シートは、シート面と平行方向のみならず、厚さ方向に熱を逃がすことができる。また、熱源から放熱シートへ効率的に伝熱することが可能となる。
 このような放熱シートは、粒子径が繊維状炭素の平均繊維径に対して1~150倍のフィラー粒子を含有させることにより、製造することができる。特に、フィラー粒子の粒子径大きくするほど、また、フィラー粒子の含有量を増やすほど、厚み方向における熱伝導率を高くすることができる。即ち、p/tの値はフィラー粒子の平均粒子径及び配合量によって適宜調整できる。
 なお、本発明において配向度とは、実施例に記載の方法で測定された値をいう。
 本発明の第1態様及び第2態様の放熱シートの厚みとしては、0.01~1mmであることが好ましく、0.1~1mmであることがより好ましい。上記範囲を逸脱するとX、Y及びZ方向における熱伝導性の異方性が見られにくくなる。
 シートの面内方向における熱伝導率の最大値は2~200W・m-1・K-1であることが好ましく、5~150W・m-1・K-1であることがより好ましい。
 また、シートの厚み方向における熱伝導率は3~150W・m-1・K-1であることが好ましく、5~100W・m-1・K-1であることがより好ましい。
 本発明の放熱シートは、バインダーとしてポリフッ化ビニリデンを90質量%とし、繊維状炭素の割合が10質量%とした場合の、面内方向の一方向(例えばMD方向)の最大の熱伝導率を測定すると11.33W・m-1・K-1以上の熱伝導率を有する。11.33W・m-1・K-1の熱伝導率は、マトリクスとして用いているポリフッ化ビニリデンの熱伝導率と比較すると約一桁高い熱伝導率である。
 
5-3. 放熱シートの製造方法
 本発明の放熱シートは、溶融成形法、溶液キャスト法、ディップ法等の従来公知のシートの製造方法により製造することができる。以下、繊維状炭素としてピッチ系炭素繊維を用い、バインダーとしてポリフッ化ビ二リデンを用いる溶液キャスト法の場合について説明する。
 この場合、繊維状炭素とポリフッ化ビニリデンとを、ポリフッ化ビニリデンを溶解させる溶剤(例えばN-メチル-2-ピロリドン)中で混合して、ポリフッ化ビニリデンを溶解するとともに、繊維状炭素を分散させてスラリーを調製する。次に、このスラリーを、離形フィルムなどの基材上に流し、ドクターブレード等により所定の厚みになるように成形する。続いて、減圧又は加熱により溶剤を除去し、基材から剥がしてシートを得ることができる。
 この場合、繊維状炭素とポリフッ化ビニリデンとを、ポリフッ化ビニリデンを溶解させる溶剤(例えばN-メチル-2-ピロリドン)中で混合して、ポリフッ化ビニリデンを溶解するとともに、繊維状炭素を分散させてスラリーを調製する。また必要に応じてフィラー粒子やカーボンナノチューブ等を含有させる。次に、このスラリーを、離形フィルムなどの基材上に流し、ドクターブレード等により所定の厚みになるように成形する。続いて、減圧又は加熱により溶剤を除去し、基材から剥がしてシートを得ることができる。上記スラリーは、例えば固形分濃度や溶液キャスト速度によって繊維状炭素の所望の面内配向度が得られるように変えることができるが、固形分濃度を15~55質量%の範囲内とすることで、繊維状炭素が面内の一方向に高い配向度A(55~95%)で配向させることができる。このとき、溶液キャスト速度は0.2~60cm/分の範囲が好ましい。また、繊維状炭素の平均実効繊維長が長いほど、繊維状炭素の接点が増えたり、重なりが多くなるため、配向度Aも高くなる傾向がある。
 この際、電場や磁場によって繊維状炭素を所定方向に配向させることも好ましい。
5-4. 第3態様の放熱シートの性状及び製造方法
 第3態様の本発明の放熱シートは、特にシートの厚み方向(Z方向)の熱伝導率が優れる。放熱シートの厚み方向(Z方向)における熱伝導率は、シートの面内方向における熱伝導率の最大値の1.0~100倍であることが好ましく、2.0~80倍であることがより好ましい。このような特性を有する放熱シートは、シート厚さ方向に効率的に熱を逃がすことができる。
 このような放熱シートは、所定の炭素繊維成形体をスライスすることにより製造することができる。
 炭素繊維成形体としては、所定方向に引き揃えられた炭素繊維を含んで成る炭素繊維成形体を例示することができる。即ち、所定方向に引き揃えられた炭素繊維に樹脂等を含浸乃至被覆して作製される炭素繊維の棒状体が例示される。又は、上記繊維状炭素と樹脂との混合物を押し出し成形することにより、該混合物中の繊維状炭素を一方向に配向させた棒状体が例示される。これらの棒状体を棒状体の軸と直交する方向にスライスすることにより、第3態様の放熱シートを作製することができる。このような炭素繊維成形体は、炭素繊維が樹脂等によって固定化されている。そのため、これをスライスすることにより得られる放熱シートは、シートの厚み方向に熱伝導パスを形成することができ、シートの厚み方向への熱伝導性を向上できる。
 以下、実施例により本発明をさらに具体的に説明するが、本発明はこれにより何ら限定されない。実施例中の各種測定や分析は、それぞれ以下の方法に従って行った。
(1)繊維状炭素等の形状確認
 卓上電子顕微鏡(日本電子株式会社製、型式NeoScope JCM-6000)を用いて観察及び写真撮影を行った。繊維状炭素等の平均繊維径は、得られた電子顕微鏡写真から無作為に300箇所を選択して繊維径を測定し、それらすべての測定結果(n=300)の平均値とした。平均実効繊維長についても同様に算出した。
(2)配向度の測定
 放熱シート中の繊維状炭素の配向度は、X線回折装置のリカク社製「RINT-TTRIII」を用いて以下の測定条件により測定される。
 ・X線源:Cu-Kα (λ=1.5418Å)、50kV-300mA(15kW)、
 ・平行ビーム法:繊維試料台使用、
 ・測定:2θ固定26.3°、試料台360°回転、
 ・解析:得られたグラファイト(002)回折ピークの方位角分布曲線の半値幅の値に基づいて算出する。
(3)繊維状炭素等のX線回折測定
 X線回折測定はリガク社製RINT-2100を用いてJIS R7651法に準拠し、格子面間隔(d002)、結晶子大きさ(La、Lc)を測定した。
(4)粉体体積抵抗率の測定方法
 粉体体積抵抗率の測定はダイヤインスツルメンツ社製の粉体抵抗システム(MCP-PD51)を用いて0.25~2.50kNの荷重下で四探針方式の電極ユニットを用いて測定した。体積抵抗率は充填密度の変化に伴う体積抵抗率の関係から充填密度が0.4g/cm時の体積抵抗率の値とした。
(5)熱伝導率の測定
 放熱シートの面内方向(MD方向)及び膜厚方向の熱伝導率は、ネッチジャパン社製LFA447を用いて、インプレン法の条件により測定した。測定試料は、製膜した放熱シートを1.8φの大きさに打ち抜いて作成した。なお、以下に記載の熱伝導率は、放熱シートの面内方向(MD方向)において、最大を示す方向の値である。
(6)せん断速度の算出
 矩形口金内部でのせん断速度は、口金内の位置によって相違し一定ではないが、下記式(1)により、みかけせん断速度として算出した。
Figure JPOXMLDOC01-appb-M000001
 
(7)伸長ひずみ速度の算出
 口金内部での伸長ひずみ速度、及び口金外部での伸長ひずみ速度は、一定とはならないが、変形開始から変形終了までの範囲において一定の伸長ひずみ速度で変形すると仮定し、下記式(2)により伸長ひずみ速度を算出した。
Figure JPOXMLDOC01-appb-M000002
 
[製造例1]
<繊維状炭素の製造>
 熱可塑性樹脂として高密度ポリエチレン(株式会社プライムポリマー社製、ハイゼックス5000SR;350℃、600s-1における溶融粘度14Pa・s、MFR=0.37g/10min)90質量部と、メソフェーズピッチとしてメソフェーズピッチAR-MPH(三菱ガス化学株式会社製)10質量部と、を同方向二軸押出機(東芝機械株式会社製TEM-26SS、バレル温度310℃、窒素気流下)で溶融混練してメソフェーズピッチ組成物を作製した。メソフェーズピッチの熱可塑性樹脂中への分散径は0.05~2μmであった。また、このメソフェーズピッチ組成物を300℃で10分間保持したが、メソフェーズピッチの凝集は認められず、分散径は0.05~2μmであった。
 次いで、このメソフェーズピッチ組成物を、スリット幅0.2mm、スリット長さ100mm、導入角60°の矩形口金を用いて厚み60μmの面状体に成形した。口金温度は340℃、吐出量は2.4kg/時間、せん断速度は1000s-1、吐出線速度と引取り速度との比率であるドラフト比は25、吐出口から冷却ドラムまでの距離は50mmであった。この条件での口金内部での伸長ひずみ速度は95s-1であり、口金外部での伸長ひずみ速度は208s-1であった。目開き1.46mm、線径0.35mmの金網上に、得られた面状体を短繊維の目付けが30g/mになるように不織布状に配置した。
 この樹脂複合繊維から成る不織布を215℃の熱風乾燥機の中で3時間保持させることにより、樹脂複合安定化繊維から成る不織布を作製した。次に、この不織布を真空ガス置換炉内に入れ、炉内を窒素置換した後に1kPaまで減圧し、この状態から加熱することにより、熱可塑性樹脂を除去した。加熱条件は、昇温速度5℃/分で500℃まで昇温後、同温度で60分間保持した。
 この熱可塑性樹脂が除去された不織布をエタノール溶媒中に加え、超音波発振器により30分間、振動を加えることによって、溶媒中に安定化繊維を分散させた。溶媒中に分散させた安定化繊維をろ過することによって、安定化繊維を分散させた不織布を作製した。
 この安定化繊維を分散させた不織布を、真空ガス置換炉内で窒素ガス流通下、5℃/分で1000℃まで昇温して同温度で0.5時間熱処理した後、室温まで冷却した。更に、この不織布を、黒鉛ルツボに納め、超高温炉(倉田技研社製、SCC-U-80/150型、均熱部80mm(直径)×150mm(高さ))を用いて、真空中で室温から2000℃まで10℃/分で昇温した。2000℃に到達後、0.05MPa(ゲージ圧)のアルゴンガス(99.999%)雰囲気としてから、10℃/分の昇温速度で3000℃まで昇温し、3000℃で0.5時間熱処理した。得られた繊維状炭素の電子顕微鏡写真を図1に示す。
 以上のように黒鉛化処理を経て得られた繊維状炭素の繊維径は150~600nm(平均繊維径280nm)であり、平均実効繊維長(L)と平均繊維径(D)との比(L/D)が60であり、分岐がなく(分岐度0.01個/μm以下)、非常に分散性に優れた繊維状炭素であった。また、X線回折法で測定した結果から、この極細繊維状炭素の格子面間隔(d002)は0.3370nm、結晶子長さ(La)は336.3nm、網平面群の厚さ(Lc)は66.7nmであり、結晶性の高い繊維状炭素であった。また、充填密度0.4g/cmで充填した際の粉体体積抵抗率は、0.14Ω・cmであった。
[実施例1]
 溶剤としてN-メチル-2-ピロリドンを用い、この溶剤に、バインダーの濃度が10質量%となるようにポリフッ化ビ二リデン(クレハ株式会社製)を溶解させた。次いで、この溶液に、上記繊維状炭素(製造例1)を加えて混練し、スラリーを得た。繊維状炭素の配合量は、溶剤と繊維状炭素との合計量に対して50質量%とした。このスラリーを、ポリテトラフルオロエチレン(PTFE)フィルムの上に流して、キャスト速度0.5cm/分の速さでドクターブレード法により、厚み0.3mmに成形した。80℃で1時間熱処理後、更に150℃で2時間熱処理して縦200cm、横150cm、厚み0.1mmの放熱シートを得た。この放熱シートは表面がなめらかでしなやかさがあった。放熱シートの面内方向(MD方向)及び厚み方向の熱伝導率の値を表1に示す。
[実施例2]
 上記繊維状炭素の配合量を25質量%とした以外は実施例1と同様にして放熱シートを得た。放熱シートの面内方向(MD方向)及び厚み方向の熱伝導率の値を表1に示す。
[実施例3]
 上記繊維状炭素の配合量を10質量%とした以外は実施例1と同様にして放熱シートを得た。放熱シートの面内方向(MD方向)及び厚み方向の熱伝導率の値を表1に示す。
[比較例1]
 繊維状炭素として、平均繊維径が10μm、平均繊維長が150μmのピッチ系炭素繊維(帝人株式会社製 「ラヒーマ」、アスペクト比15、La=212)を用いた以外は実施例1と同様にして放熱シートを得た。放熱シートの面内方向(MD方向)及び厚み方向の熱伝導率の値を表1に示す。
[比較例2]
 繊維状炭素として、平均繊維径が10μm、平均繊維長が150μmのピッチ系炭素繊維(帝人株式会社製 「ラヒーマ」、アスペクト比15、La=212)を用いた以外は実施例2と同様にして放熱シートを得た。放熱シートの面内方向(MD方向)及び厚み方向の熱伝導率の値を表1に示す。平均繊維径とアスペクト比が小さいため、配向度が高い割に熱伝導率は低くなっている。
[比較例3]
 繊維状炭素として、平均繊維径が160nm、平均繊維長が6μmの気相成長炭素繊維(昭和電工株式会社製、La=40nm)を用いた以外は実施例1と同様にして放熱シートを得た。放熱シートの面内方向(MD方向)の熱伝導率の値を表1に示す。
[比較例4]
 繊維状炭素として、平均繊維径が160nm、平均繊維長が6μmの気相成長炭素繊維(昭和電工株式会社製、La=40nm)を用いた以外は実施例2と同様にして放熱シートを得た。放熱シートの面内方向(MD方向)の熱伝導率の値を表1に示す。平均繊維径が小さいため、面内に配向し難く、気相成長炭素繊維の集合体が見られた。
[比較例5]
 繊維状炭素に代えて、平均粒子径が50nmのアセチレンブラック(電気化学株式会社製)を用いた以外は実施例1と同様にして放熱シートを得た。放熱シートの面内方向(MD方向)の熱伝導率の値を表1に示す。
[比較例6]
 繊維状炭素に代えて、平均粒子径が50nmのアセチレンブラック(電気化学株式会社製)を用いた以外は実施例2と同様にして放熱シートを得た。放熱シートの面内方向(MD方向)の熱伝導率の値を表1に示す。
Figure JPOXMLDOC01-appb-T000003
 
 
[実施例4]
 溶剤としてN-メチル-2-ピロリドンを用い、この溶剤にポリフッ化ビ二リデン(クレハ株式会社製)を溶解させた。次いで、この溶液に、上記繊維状炭素(製造例1)、MCMB粒子(粒子径10~20μm、大阪ガス株式会社製)を加えて混練し、スラリーを得た。繊維状炭素の配合量は、溶剤と繊維状炭素との合計量に対して50質量%とした。このスラリーを、PTFEフィルムの上に流してドクターブレード法により、厚み0.5mmに成形した。80℃で1時間熱処理後、更に150℃で2時間熱処理して放熱シートを得た。繊維状炭素は放熱シートの面内方向(MD方向)に配向していた。放熱シートの質量に対する各成分の配合量は、繊維状炭素が45質量%、MCMB粒子が5質量%、ポリフッ化ビ二リデンが50質量%である。
[実施例5]
 放熱シートの質量に対する各成分の配合量を、繊維状炭素25質量%、MCMB粒子25質量%、ポリフッ化ビ二リデン50質量%にそれぞれ変更した他は実施例4と同様して放熱シートを得た。
[実施例6]
 放熱シートの質量に対する各成分の配合量を、繊維状炭素5質量%、MCMB粒子45質量%、ポリフッ化ビ二リデン50質量%にそれぞれ変更した他は実施例4と同様して放熱シートを得た。
[比較例7]
 MCMBに代えてアセチレンブラック粒子(粒子径50~100nm、デンカ株式会社製)を5質量%用いた他は実施例4と同様して放熱シートを得た。
[比較例8]
 MCMBに代えてアセチレンブラック粒子(粒子径50~100nm、デンカ株式会社製)を25質量%用いた他は実施例5と同様して放熱シートを得た。
[比較例9]
 MCMBに代えてアセチレンブラック粒子(粒子径50~100nm、デンカ株式会社製)を45質量%用いた他は実施例6と同様して放熱シートを得た。
[比較例10]
 MCMBに代えて窒化ホウ素粒子(粒子径150nm、シグマ・アルドリッチジャパン株式会社製)を5質量%用いた他は実施例4と同様して放熱シートを得た。
[比較例11]
 MCMBに代えて窒化ホウ素粒子(粒子径150nm、シグマ・アルドリッチジャパン株式会社製)を25質量%用いた他は実施例5と同様して放熱シートを得た。
[比較例12]
 MCMBに代えて窒化ホウ素粒子(粒子径150nm、シグマ・アルドリッチジャパン株式会社製)を45質量%用いた他は実施例6と同様して放熱シートを得た。
[参考例1]
 放熱シートの質量に対する各成分の配合量を、繊維状炭素10質量%、MCMB粒子0質量%、ポリフッ化ビ二リデン90質量%にそれぞれ変更した他は実施例4と同様して放熱シートを得た。
[参考例2]
 放熱シートの質量に対する各成分の配合量を、繊維状炭素25質量%、MCMB粒子0質量%、ポリフッ化ビ二リデン75質量%にそれぞれ変更した他は実施例4と同様して放熱シートを得た。
[参考例3]
 放熱シートの質量に対する各成分の配合量を、繊維状炭素50質量%、MCMB粒子0質量%、ポリフッ化ビ二リデン50質量%にそれぞれ変更した他は実施例4と同様して放熱シートを得た。
Figure JPOXMLDOC01-appb-T000004
 
 
 本発明によれば、粒子径が該繊維状炭素の平均繊維径に対して1~150倍の大きさのフィラー粒子を含有している。そのため、炭素繊維とフィラー粒子の間で厚み方向に適度な熱伝導パスが形成されると推察される。したがって、繊維状炭素の面内方向の配向度が最も高い一方向(通常MD方向(繊維軸方向))の良好な熱伝導率を維持したまま、厚み方向の熱伝導率が向上した放熱シートが提供される。それに対し、比較例1~6のフィラーは粒子径が繊維径に比べて小さいため、繊維間に埋もれてしまい、熱伝導パスが効果的に形成されず、厚み方向の熱伝導率がほとんど増加しない状態であると推察される。
 
[実施例7]
 溶剤としてN-メチル-2-ピロリドンを用い、この溶剤にポリアミド(帝人株式会社製「テクノーラ」(登録商標))を溶解させた。次いで、この溶液に、上記繊維状炭素(製造例1)を加えて混練し、スラリーを得た。繊維状炭素の配合量は、溶剤と繊維状炭素との合計量に対して30質量%とした。このスラリーを、耐熱性ガラス上に流してドクターブレード法により、厚み0.1mmに成形した。80℃で1時間熱処理後、更に150℃で3時間熱処理して、縦200cm、横150cm、厚み0.05mmの放熱シートを得た。得られた放熱シートは表面がなめらかな平坦でしなやかさがあった。この放熱シート表面を走査型電子顕微鏡(株式会社日立製作所製S-2400)を用いて観察及び写真撮影を行った。この写真を図3に示す。この放熱シートの機械物性を表3に示す。更に、この放熱シートの面内方向における熱伝導率を表4に示す。
[実施例8]
 上記繊維状炭素の配合量を5質量%とし、さらに平均繊維径が10μm、平均繊維長が150μmのピッチ系炭素繊維(帝人株式会社製 「ラヒーマ」、アスペクト比15、La=212)を20質量%配合し、溶剤と繊維状炭素の合計量に対し25質量%の配合量になるようにした以外は実施例7と同様にして放熱シートを得た。放熱シートの面内方向(MD方向)の熱伝導率の値を表4に示す。
[実施例9]
 上記繊維状炭素の配合量を12.5質量%とし、さらに平均繊維径が10μm、平均繊維長が150μmのピッチ系炭素繊維(帝人株式会社製 「ラヒーマ」、アスペクト比15、La=212)を12.5質量%配合し、溶剤と繊維状炭素の合計量に対し25質量%の配合量になるようにした以外は実施例7と同様にして放熱シートを得た。放熱シートの面内方向(MD方向)の熱伝導率の値を表4に示す。
[実施例10]
 上記繊維状炭素の配合量を20質量%とし、さらに平均繊維径が10μm、平均繊維長が150μmのピッチ系炭素繊維(帝人株式会社製 「ラヒーマ」、アスペクト比15、La=212)を5質量%配合し、溶剤と繊維状炭素の合計量に対し25質量%の配合量になるようにした以外は実施例7と同様にして放熱シートを得た。放熱シートの面内方向(MD方向)の熱伝導率の値を表4に示す。
[実施例11]
 上記繊維状炭素の配合量を溶剤と炭素繊維(CNF)の合計量に対し10質量%とした以外は実施例7と同様にして放熱シートを得た。放熱シートの面内方向(MD方向)の熱伝導率の値を表4に示す。
[比較例13]
 上記繊維状炭素として、平均繊維径が10μm、平均繊維長が150μmのピッチ系炭素繊維(帝人株式会社製 「ラヒーマ」(登録商標))を10質量%配合した以外は実施例7と同様にして放熱シートを得た。放熱シートの面内方向(MD方向)の熱伝導率の値を表4に示す。得られた放熱シートは表面全体にわたって凸凹が見られた。この放熱シート表面を走査型電子顕微鏡(株式会社日立製作所製S-2400)を用いて観察及び写真撮影を行った。この写真を図4に示す。この放熱シートの機械物性を表3に示す。更に、放熱シートの面内方向(MD方向)の熱伝導率の値を表4に示す。
[参考例4]
 繊維状炭素として、平均繊維径が160nm、平均繊維長が6μmの気相成長炭素繊維(昭和電工株式会社製、La=40nm)を用いた以外は実施例7と同様にして放熱シートを得た。この放熱シートの機械物性を表3に示す。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
[実施例12]
 溶剤としてN-メチル-2-ピロリドンを用い、この溶剤に、バインダーの濃度が6質量%となるようにポリアミド(帝人株式会社製「テクノーラ」(登録商標))を溶解させた。次いで、この溶液に、上記繊維状炭素(製造例1)を加えて混練し、スラリーを得た。繊維状炭素の配合量は、溶剤と繊維状炭素との合計量に対して30質量%とした。このスラリーを、耐熱性ガラス上に流してドクターブレード法により、厚み0.3mmに成形した。80℃で1時間熱処理後、更に150℃で3時間熱処理して縦200cm、横150cm、厚み0.05mmの放熱シートを得た。この放熱シートは表面がなめらかでしなやかさがあった。この放熱シートの表面近傍と内部との形態を、走査型電子顕微鏡(株式会社日立製作所製S-2400)で観察した(3,000倍)。表面近傍は、繊維状炭素がシート面内に対して平行に配向し、内部(中央部)は繊維状炭素が3次元的にランダムに配向していた。なお、放熱シートの深さ方向における表面近傍とは、表面から厚みに対して20%の深さまでの領域をいう。
 放熱シートの面内方向(MD方向)の熱伝導率の値を表5に示す。
[実施例13]
 放熱シートの厚みを0.12mmとした他は実施例12と同様にして放熱シートを得た。放熱シートの面内方向(MD方向)の熱伝導率の値を表5に示す。
[参考例4、5]
 繊維状炭素の含有量を10質量%とした他は実施例12、13と同様にして放熱シートをそれぞれ得た(参考例4は厚み50μm、参考例5は厚み120μm)。放熱シートの面内方向(MD方向)の熱伝導率の値を表5に示す。
 
Figure JPOXMLDOC01-appb-T000007
 CNF含有量が少ない場合、薄膜である方が熱伝導率が高くなった(参考例4-5)。
 
[製造例2]
 製造例1の繊維状炭素を粉砕し、繊維長の短い繊維状炭素(S-CNF)を作製した。平均実効繊維長は6.0μmであった。平均繊維径は、製造例1と同一である。
 
[実施例14]
 溶剤としてN-メチル-2-ピロリドンを用い、この溶剤に、バインダーの濃度が16質量%となるようにポリアミド(帝人株式会社製「コーネックス」(登録商標))を溶解させた。次いで、この溶液に、上記繊維状炭素(製造例2)を加えて混練し、スラリーを得た。繊維状炭素の配合量は、溶剤と繊維状炭素との合計量に対して30質量%とした。このスラリーを、PTFEフィルムの上に流してドクターブレード法により、厚み0.1mmに成形した。80℃で1時間熱処理後、更に150℃で3時間熱処理して縦200cm、横150cm、厚み0.05mmの放熱シートを得た。この放熱シートの面内方向(MD方向)の熱伝導率の値を表6に示す。
 
[実施例15]
 製造例2の繊維状炭素(S-CNF)に代えて、製造例1の繊維状炭素を用いた他は実施例14と同様にして放熱シートを得た。放熱シートの面内方向及び厚み方向の熱伝導率の値を表6に示す。
 
[参考例6]
 製造例2の繊維状炭素(S-CNF)に代えて、平均繊維径が10μm、平均繊維長が150μmのピッチ系炭素繊維(帝人株式会社製 「ラヒーマ」、アスペクト比15、La=212)を用いた他は実施例14と同様して放熱シートを得た。得られた放熱シートの面内方向及び厚み方向の熱伝導率を表6に示す。
 
[実施例16]
 繊維状炭素(S-CNF)の配合量を50質量%に変更した他は実施例14と同様して放熱シートを得た。得られた放熱シートの厚み方向熱伝導率を表6に示す。
 
[実施例17]
 繊維状炭素(S-CNF)の配合量を70質量%に変更した他は実施例14と同様して放熱シートを得た。得られた放熱シートの厚み方向熱伝導率を表6に示す。
 
[実施例18]
 繊維状炭素(S-CNF)の配合量を10質量%に変更し、さらに、窒化ホウ素粒子(シグマ・アルドリッチジャパン株式会社製、粒子径150nm)を30質量%加えた他は実施例14と同様して放熱シートを得た。得られた放熱シートの厚み方向熱伝導率を表6に示す。
 
[実施例19]
 繊維状炭素(S-CNF)の配合量を30質量%に変更し、さらに、窒化ホウ素粒子(シグマ・アルドリッチジャパン株式会社製、粒子径150nm)を30質量%加えた他は実施例14と同様して放熱シートを得た。得られた放熱シートの厚み方向熱伝導率を表6に示す。
 
Figure JPOXMLDOC01-appb-T000008
 
[製造例3]
 黒鉛化処理温度を1500℃とした以外は、製造例1と同様にして低温黒鉛化繊維状炭素を製造した。この低温黒鉛化炭素繊維は、繊維径は150~450nm(平均繊維径250nm)であり、平均実効繊維長が68μmであった。平均実効繊維長(L)と平均繊維径(D)との比(L/D)が272であり、分岐がなく(分岐度0.01個/μm以下)、非常に分散性に優れた炭素繊維であった。また、X線回折法で測定した結果から、この炭素繊維の格子面間隔(d002)は0.34310nm、結晶子長さ(La)は測定下限以下、網平面群の厚さ(Lc)は10nmである炭素繊維であった。
 
[実施例20]
 溶剤としてN-メチル-2-ピロリドンを用い、この溶剤に、バインダーの濃度が16質量%となるようにポリアミド(帝人株式会社製「コーネックス」(登録商標))を溶解させた。次いで、この溶液に、低温黒鉛化繊維状炭素(製造例3)を加えて混練し、スラリーを得た。繊維状炭素の配合量は、溶剤と繊維状炭素との合計量に対して40質量%とした。このスラリーを、耐熱ガラス上に流してドクターブレード法により、厚み0.3mmに成形した。80℃で1時間熱処理後、更に150℃で3時間熱処理して縦200cm、横150cm、厚み0.12mmの放熱シートを得た。この放熱シートの面内方向(MD方向)の熱伝導率の値を表7に示す。
 
[実施例21]
 製造例3の低温黒鉛化繊維状炭素の配合量を60質量%に変更した他は実施例20と同様して放熱シートを得た。得られた放熱シートの厚み方向熱伝導率を表7に示す。
 
[実施例22]
 製造例3の低温黒鉛化繊維状炭素の配合量を10質量%に変更し、さらに製造例1の繊維状炭素を30質量%加えた他は実施例20と同様して放熱シートを得た。得られた放熱シートの厚み方向熱伝導率を表7に示す。
 
[実施例23]
 製造例3の低温黒鉛化繊維状炭素の配合量を30質量%に変更し、さらに製造例1の繊維状炭素を10質量%加えた他は実施例20と同様して放熱シートを得た。得られた放熱シートの厚み方向熱伝導率を表7に示す。
 
Figure JPOXMLDOC01-appb-T000009
[実施例24]
エポキシ樹脂(市販品)と製造例1の繊維状炭素とを混合した。繊維状炭素の配合量は、エポキシ樹脂と繊維状炭素との合計量に対して30質量%とした。これを注射器に入れ押出しすることにより、棒状成形体を30本作成した。この棒状成形体の長さは100mm、直径は10mmであった。この30本の棒状成形体を束ねて更にエポキシ樹脂を加え、70℃で2時間熱処理し、1つの成形体とした。この成形体の繊維軸方向に対して垂直にスライスして表面を研磨し、厚み0.1mm、直径16mmの円盤状の炭素繊維成形体のシートを得た。得られた炭素繊維成形体のシート面内方向及び厚み方向における熱伝導率を表8に示す。
 
[実施例25]
 実施例1の30本の糸状成形体を、垂直に立てた直径28mmのビン状の容器に入れた。次に、溶剤としてN-メチル-2-ピロリドンを用い、この溶剤にコーネックス(帝人株式会社製)16質量%を溶解させた。次いで、この溶液に、製造例1の繊維状炭素を混合してスラリーを得た。このスラリーを上記容器に流し込み、80℃1時間、150℃2時間熱処理した。続いて、容器から成形体を取り出し、その成形体の繊維軸方向に対して垂直にスライスして表面を研磨し、厚み0.1mm、18mm径の円形の放熱シートを得た。円盤状の炭素繊維成形体のシートを得た。得られた炭素繊維成形体のシート面内方向及び厚み方向における熱伝導率を表8に示す。
 
Figure JPOXMLDOC01-appb-T000010
[実施例26]
 溶剤としてN-メチル-2-ピロリドンを用い、この溶剤に、バインダーの濃度が6質量%となるようにポリアミド(帝人株式会社製「テクノーラ」(登録商標))を溶解させた。次いで、この溶液に、繊維状炭素(製造例1)を加えて混練し、スラリーを得た。繊維状炭素の配合量は、溶剤と繊維状炭素との合計量に対して30質量%とした。このスラリーを、耐熱性ガラス上に流してドクターブレード法により、厚み0.12mmに成形した。80℃で1時間熱処理後、更に150℃で3時間熱処理して縦200cm、横150cm、厚み0.05mmの放熱シートを得た。この放熱シートの面内方向(MD方向)の熱伝導率の値を表9に示す。
 
[実施例27]
 繊維状炭素の配合量を50質量%に変更した他は実施例26と同様して放熱シートを得た。得られた放熱シートの厚み方向熱伝導率を表8に示す。
 
[実施例28]
 繊維状炭素の配合量を50質量%に変更し、かつポリアミドに代えてポリイミド(ユニチカ株式会社製「Uイミド(登録商標)ワニスARタイプ」)をバインダーの濃度が18質量%となるように用いた他は実施例26と同様して放熱シートを得た。得られた放熱シートの面方向熱伝導率を表9に示す。
 
[実施例29]
 溶剤としてN-メチル-2-ピロリドンを用い、この溶剤に、バインダーの濃度が16質量%となるようにポリアミド(帝人株式会社製「コーネックス」(登録商標))を溶解させた。次いで、この溶液に、繊維状炭素(製造例1)を加えて混練し、スラリーを得た。繊維状炭素の配合量は、溶剤と繊維状炭素との合計量に対して30質量%とした。その他は実施例26と同様して放熱シートを得た。得られた放熱シートの面方向熱伝導率を表9に示す。
 
Figure JPOXMLDOC01-appb-T000011
[実施例30]
 溶剤としてN-メチル-2-ピロリドンを用い、この溶剤に、バインダーの濃度が16質量%となるようにポリアミド(帝人株式会社製「コーネックス(登録商標))を溶解させた。次いで、この溶液に、繊維状炭素(製造例1)と、フィラーとしてSiO(「トスパル120」(商品名)、東芝シリコン株式会社製、平均粒子径2μmの球状粒子)を加えて混練し、スラリーを得た。繊維状炭素の配合量は、溶剤と繊維状炭素とフィラーとの合計量に対して20質量%とした。フィラーの配合量は、溶剤と繊維状炭素とフィラーとの合計量に対して5質量%とした。このスラリーを、PTFEフィルム上に流してドクターブレード法により、厚み0.3mmに成形した。80℃で1時間熱処理後、更に150℃で3時間熱処理して縦200cm、横150cm、厚み0.12mmの放熱シートを得た。この放熱シートの面内方向(MD方向)の熱伝導率の値を表10に示す。
 
[実施例31]
 繊維状炭素の配合量を5質量%に変更し、SiOの配合量を20質量%に変更した他は実施例30と同様して放熱シートを得た。得られた放熱シートの熱伝導率を表10に示す。
 
[実施例32]
 SiOに代えてAl粉末(広島和光株式会社製、「試薬グレード」、平均粒子径5μm)を用いるとともに、その配合量を5質量%に変更した他は実施例30と同様して放熱シートを得た。得られた放熱シートの熱伝導率を表10に示す。
 
[実施例33]
 SiOに代えてAl粉末を用いた他は実施例31と同様して放熱シートを得た。得られた放熱シートの熱伝導率を表10に示す。
 
Figure JPOXMLDOC01-appb-T000012
[実施例34]
 溶剤としてN-メチル-2-ピロリドンを用い、この溶剤に、バインダーの濃度が6質量%となるようにポリアミド(帝人株式会社製「テクノーラ」(登録商標))を溶解させた。次いで、この溶液に、繊維状炭素(製造例1)と、フィラーとしてカーボンナノチューブ(CNano社製「FloTube9000」(商品名)、平均繊維径が11nmであり、平均繊維長が10μmである単繊維が凝集している集合物)を加えて混練し、スラリーを得た。繊維状炭素の配合量は、溶剤と繊維状炭素とフィラーとの合計量に対して30質量%とした。フィラーの配合量は、溶剤と繊維状炭素とフィラーとの合計量に対して10質量%とした。このスラリーを、耐熱性ガラス上に流してドクターブレード法により、厚み0.12mmに成形した。80℃で1時間熱処理後、更に150℃で3時間熱処理して縦200cm、横150cm、厚み0.05mmの放熱シートを得た。この放熱シートの面内方向及び厚み方向の熱伝導率の値を表11に示す。
 
[実施例35]
 繊維状炭素の配合量を30質量%に変更し、CNTの配合量を30質量%に変更した他は実施例34と同様して放熱シートを得た。得られた放熱シートの熱伝導率を表11に示す。
 
[実施例36]
 繊維状炭素の配合量を30質量%に変更し、CNTの配合量を50質量%に変更した他は実施例34と同様して放熱シートを得た。得られた放熱シートの熱伝導率を表11に示す。
 
Figure JPOXMLDOC01-appb-T000013

Claims (13)

  1.  繊維状炭素と、ポリマーと、を含有して成る放熱シートであって、
     前記繊維状炭素は、平均実効繊維長が5~120μm、平均繊維径が200~900nm、平均アスペクト比が30~10000であり、
     前記繊維状炭素の含有率が、前記繊維状炭素と前記ポリマーとの合計量に対して5~85質量%であることを特徴とする放熱シート。
  2.  前記放熱シートのX線回折法により求めた繊維状炭素の配向度が、
     前記放熱シートの面と平行方向であって、最も高い配向度を示す一方向の配向度Aが55~95%である請求項1に記載の放熱シート。
  3.  前記放熱シートの面と平行方向であって、最も高い配向度を示す一方向における熱伝導率Pが、前記放熱シートの厚み方向における熱伝導率Tの2~200倍である、請求項1又は2に記載の放熱シート。
  4.  平均粒子径が前記繊維状炭素の平均繊維径に対して1~150倍であるフィラー粒子を、放熱シートに対して5~45質量%さらに含有する請求項1に記載の放熱シート。
  5.  前記フィラー粒子が、メソカーボンマイクロビーズ(MCMB)、窒化ホウ素(BN)、炭化ケイ素(SiC)、窒化アルミ(AlN)、酸化ケイ素、ケイ素(シリコン)、金属粒子、チタニア、シリカ、及びアルミナからなる群から選ばれる少なくとも一種の無機物である請求項4に記載の放熱シート。
  6.  シートの面内方向における熱伝導率の最大値が、シートの厚み方向における熱伝導率の1.5~50倍である、請求項4又は5に記載の放熱シート。
  7.  シートの厚み方向における熱伝導率が、シートの面内方向における熱伝導率の最大値の1.0~100倍である、請求項1に記載の放熱シート。
  8.  シートの厚み方向に引き揃えられた炭素繊維を含有する炭素繊維成形体を含んで成る請求項7に記載の放熱シート。
  9.  平均繊維長が2~120μmであり、平均繊維径が0.4~50nmであるカーボンナノチューブを、放熱シートに対して1~60質量%さらに含有する請求項1~8の何れか1項に記載の放熱シート。
  10.  前記繊維状炭素がピッチ系炭素繊維である、請求項1~8の何れか1項に記載の放熱シート。
  11.  前記繊維状炭素が、X線回折法で測定した網平面群の厚さ(Lc)が1~200nmであって、結晶子長さ(La)が20~500nmの繊維状炭素である請求項1~8の何れか1項に記載の放熱シート。
  12.  厚みが0.01~1mmの範囲である、請求項1~10の何れか1項に記載の放熱シート。
  13.  前記ポリマーがポリアミドである、請求項1~11の何れか1項に記載の放熱シート。
     
PCT/JP2017/035119 2016-09-28 2017-09-28 放熱シート WO2018062352A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US16/337,229 US20190300771A1 (en) 2016-09-28 2016-09-28 Heat dissipation sheet
CN201780060063.8A CN109790309A (zh) 2016-09-28 2017-09-28 散热片
US16/337,229 US11104834B2 (en) 2016-09-28 2017-09-28 Heat dissipation sheet
EP17856301.1A EP3521349B1 (en) 2016-09-28 2017-09-28 Heat dissipation sheet
KR1020197010981A KR102471797B1 (ko) 2016-09-28 2017-09-28 방열 시트
JP2018542832A JP6775594B2 (ja) 2016-09-28 2017-09-28 放熱シート

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016189720 2016-09-28
JP2016-189720 2016-09-28
JP2016225832 2016-11-21
JP2016-225832 2016-11-21

Publications (1)

Publication Number Publication Date
WO2018062352A1 true WO2018062352A1 (ja) 2018-04-05

Family

ID=61760321

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/035119 WO2018062352A1 (ja) 2016-09-28 2017-09-28 放熱シート

Country Status (7)

Country Link
US (2) US20190300771A1 (ja)
EP (1) EP3521349B1 (ja)
JP (2) JP6775594B2 (ja)
KR (1) KR102471797B1 (ja)
CN (1) CN109790309A (ja)
TW (1) TWI752091B (ja)
WO (1) WO2018062352A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11739206B2 (en) * 2018-08-28 2023-08-29 Daikin Industries, Ltd. Resin composition and molded article
CN115448745B (zh) * 2022-09-21 2023-04-25 亚太中碳(山西)新材料科技有限公司 一种定向导热导电石墨碳膜及定向导热碳件的制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005150362A (ja) * 2003-11-14 2005-06-09 Dainippon Printing Co Ltd 高熱伝導性シートおよびその製造方法
JP2006335958A (ja) * 2005-06-03 2006-12-14 Polymatech Co Ltd 熱伝導性成形体、並びにその製造方法及び取付け方法
JP2008303324A (ja) * 2007-06-08 2008-12-18 Bando Chem Ind Ltd ゴム組成物、ゴム成形体、放熱シート及びその製造方法
JP2011165792A (ja) * 2010-02-08 2011-08-25 Teijin Dupont Films Japan Ltd 放熱性二軸延伸フィルム
JP2012122082A (ja) * 2004-11-29 2012-06-28 Showa Denko Kk 炭素材料を含む熱伝導性複合材料用組成物及びその用途
JP2012171986A (ja) * 2011-02-17 2012-09-10 Teijin Ltd 熱伝導性組成物
JP2013038179A (ja) * 2011-08-05 2013-02-21 Teijin Dupont Films Japan Ltd 高熱伝導性二軸延伸ポリエステルフィルム
WO2016129257A1 (ja) * 2015-02-10 2016-08-18 日本ゼオン株式会社 熱伝導シートおよびその製造方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0481762A3 (en) * 1990-10-19 1993-03-10 Tonen Corporation Pitch-based carbon fiber
JP4697829B2 (ja) * 2001-03-15 2011-06-08 ポリマテック株式会社 カーボンナノチューブ複合成形体及びその製造方法
JP4454353B2 (ja) * 2003-05-09 2010-04-21 昭和電工株式会社 直線性微細炭素繊維及びそれを用いた樹脂複合体
WO2005087991A1 (ja) * 2004-03-11 2005-09-22 Teijin Limited 炭素繊維
JP3932341B2 (ja) * 2005-04-26 2007-06-20 島根県 ナノファイバ含有ピッチ系炭素繊維およびその製造方法
JP4897360B2 (ja) * 2006-06-08 2012-03-14 ポリマテック株式会社 熱伝導性成形体及びその製造方法
JP4938466B2 (ja) * 2007-01-12 2012-05-23 帝人株式会社 電子実装基板、光反射性熱伝導カバーレイフィルム
JP2008186590A (ja) * 2007-01-26 2008-08-14 Teijin Ltd 高熱伝導性導電性組成物、導電性ペースト、導電性接着剤
JP5080295B2 (ja) * 2007-01-26 2012-11-21 帝人株式会社 放熱性実装基板およびその製造方法
JP2008208159A (ja) * 2007-02-23 2008-09-11 Teijin Ltd 耐熱性熱伝導複合材料、耐熱性熱伝導シート
JP2009030215A (ja) * 2007-06-27 2009-02-12 Teijin Ltd 炭素繊維及びそれを用いた成形体
JP4971958B2 (ja) 2007-11-30 2012-07-11 帝人株式会社 シート状熱伝導性成形体
CN102057086B (zh) * 2008-04-08 2013-05-29 帝人株式会社 碳纤维及其制造方法
WO2010090343A1 (ja) * 2009-02-05 2010-08-12 帝人株式会社 黒鉛化炭素片分散液およびその製造方法
JP2010214628A (ja) * 2009-03-13 2010-09-30 Teijin Ltd 複合中空パイプおよびその製造方法
WO2011158942A1 (ja) * 2010-06-17 2011-12-22 ソニーケミカル&インフォメーションデバイス株式会社 熱伝導性シート及びその製造方法
JP2012072364A (ja) * 2010-08-31 2012-04-12 Toyo Aluminium Kk 熱伝導性樹脂組成物およびそれを含む放熱材
JP5779693B2 (ja) 2013-06-27 2015-09-16 デクセリアルズ株式会社 熱伝導性シート、及びその製造方法、並びに半導体装置
JP6666088B2 (ja) * 2014-08-07 2020-03-13 帝人株式会社 非水電解質二次電池用として好適な複合体
US20180231337A1 (en) * 2015-08-24 2018-08-16 Zeon Corporation Heat conductive sheet and method of manufacturing the same
JP6294951B2 (ja) * 2016-01-26 2018-03-14 デクセリアルズ株式会社 熱伝導シート、熱伝導シートの製造方法、放熱部材及び半導体装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005150362A (ja) * 2003-11-14 2005-06-09 Dainippon Printing Co Ltd 高熱伝導性シートおよびその製造方法
JP2012122082A (ja) * 2004-11-29 2012-06-28 Showa Denko Kk 炭素材料を含む熱伝導性複合材料用組成物及びその用途
JP2006335958A (ja) * 2005-06-03 2006-12-14 Polymatech Co Ltd 熱伝導性成形体、並びにその製造方法及び取付け方法
JP2008303324A (ja) * 2007-06-08 2008-12-18 Bando Chem Ind Ltd ゴム組成物、ゴム成形体、放熱シート及びその製造方法
JP2011165792A (ja) * 2010-02-08 2011-08-25 Teijin Dupont Films Japan Ltd 放熱性二軸延伸フィルム
JP2012171986A (ja) * 2011-02-17 2012-09-10 Teijin Ltd 熱伝導性組成物
JP2013038179A (ja) * 2011-08-05 2013-02-21 Teijin Dupont Films Japan Ltd 高熱伝導性二軸延伸ポリエステルフィルム
WO2016129257A1 (ja) * 2015-02-10 2016-08-18 日本ゼオン株式会社 熱伝導シートおよびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3521349A4 *

Also Published As

Publication number Publication date
US11104834B2 (en) 2021-08-31
TWI752091B (zh) 2022-01-11
KR102471797B1 (ko) 2022-11-28
EP3521349A4 (en) 2019-10-09
JP2021008629A (ja) 2021-01-28
JP6775594B2 (ja) 2020-10-28
KR20190062450A (ko) 2019-06-05
TW201827559A (zh) 2018-08-01
JPWO2018062352A1 (ja) 2019-07-04
EP3521349B1 (en) 2023-02-15
CN109790309A (zh) 2019-05-21
EP3521349A1 (en) 2019-08-07
JP6941215B2 (ja) 2021-09-29
US20190300771A1 (en) 2019-10-03

Similar Documents

Publication Publication Date Title
JP4538502B2 (ja) ピッチ系炭素繊維、マットおよびそれらを含む樹脂成形体
KR101529747B1 (ko) 탄소 섬유 및 그 제조 방법
JP3971437B2 (ja) 炭素繊維およびマットの製造のための方法
JP2008303263A (ja) 熱伝導性塗料
JP2008069474A (ja) 補強材・放熱材に適する炭素繊維集合体
JP6523070B2 (ja) 極細炭素繊維の製造方法及び極細炭素繊維並びにこの極細炭素繊維を含む炭素系導電助剤
JP2012171986A (ja) 熱伝導性組成物
JP6941215B2 (ja) 放熱シート
JP2009191392A (ja) ピッチ系炭素繊維フィラー及びそれを用いた成形体
WO2020045243A1 (ja) 炭素繊維集合体及びその製造方法、並びに非水電解質二次電池用電極合剤層
JP2007119647A (ja) 複合材料
JP2011037919A (ja) 熱伝導性棒状樹脂成形体
JP7155329B2 (ja) ピッチ系炭素繊維ミルド、熱伝導性成形体及びピッチ系炭素繊維ミルドの製造方法
JPWO2008108482A1 (ja) ピッチ系炭素繊維、その製造方法および成形体
JP7402631B2 (ja) 極細炭素繊維混合物、その製造方法、及び炭素系導電助剤
JP6738202B2 (ja) 極細炭素繊維の製造方法
JP4971958B2 (ja) シート状熱伝導性成形体
JP2012082295A (ja) 熱伝導性組成物
JP2009215403A (ja) シート状熱伝導性成形体
Velasco-Soto et al. Carbon polymer nanocomposites
JP4342871B2 (ja) 極細炭素繊維及びその製造方法
JP2009108423A (ja) 熱伝導性フィラー及びそれを用いた成形体
JP2009108118A (ja) ピッチ系炭素短繊維フィラー及びそれを用いた成形体
JP2008214818A (ja) 炭素短繊維集合体、熱伝導性成形体及びその製造方法
JP2009108119A (ja) 熱伝導性フィラー及びそれを用いた成形体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17856301

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018542832

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197010981

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017856301

Country of ref document: EP

Effective date: 20190429