WO2018061191A1 - 冷間鍛造用鋼及びその製造方法 - Google Patents

冷間鍛造用鋼及びその製造方法 Download PDF

Info

Publication number
WO2018061191A1
WO2018061191A1 PCT/JP2016/079080 JP2016079080W WO2018061191A1 WO 2018061191 A1 WO2018061191 A1 WO 2018061191A1 JP 2016079080 W JP2016079080 W JP 2016079080W WO 2018061191 A1 WO2018061191 A1 WO 2018061191A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel
sulfides
less
sulfide
content
Prior art date
Application number
PCT/JP2016/079080
Other languages
English (en)
French (fr)
Inventor
聡 志賀
久保田 学
一 長谷川
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to CN201680089645.4A priority Critical patent/CN109790604B/zh
Priority to EP16917741.7A priority patent/EP3521470B1/en
Priority to PCT/JP2016/079080 priority patent/WO2018061191A1/ja
Priority to US16/334,705 priority patent/US11111568B2/en
Priority to JP2018541842A priority patent/JP6801717B2/ja
Priority to KR1020197008428A priority patent/KR102226488B1/ko
Publication of WO2018061191A1 publication Critical patent/WO2018061191A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D27/00Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
    • B22D27/04Influencing the temperature of the metal, e.g. by heating or cooling the mould
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0075Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for rods of limited length
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • C21D1/32Soft annealing, e.g. spheroidising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/28Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for plain shafts
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/32Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for gear wheels, worm wheels, or the like
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/525Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length for wire, for rods

Definitions

  • the present invention relates to a steel for cold forging and a manufacturing method thereof.
  • Machine structural steel is used for machine parts such as industrial machines, construction machines, and transport machines represented by automobiles.
  • Machine structural steel is generally roughly processed by hot forging and then machined to finish a machine part having a predetermined shape. Therefore, workability and machinability are required for machine structural steel.
  • cold forging Since cold forging has higher dimensional accuracy than hot forging, it has the advantage of reducing the amount of cutting after forging. For this reason, in recent years, in the above rough machining, there are an increasing number of parts that are roughly formed by cold forging. However, when cold forging is performed, cracks are more likely to occur in the steel than when hot forging is performed. For this reason, cold forging steel used for cold forging is required to have not only machinability but also a property that prevents cracking during cold forging (hereinafter referred to as cold forgeability).
  • Patent Documents 1 and 2 propose a technique for improving the machinability of a steel material by controlling the form of sulfide.
  • Patent Document 1 discloses a case-hardened steel in which machinability is improved by controlling the solidification rate during casting and finely dispersing sulfides in order to suppress the coarsening of sulfides.
  • Patent Document 2 discloses a case-hardened steel having improved machinability by dispersing a submicron level sulfide.
  • Patent Document 1 and Patent Document 2 although machinability after hot forging is studied, no consideration is given to machinability after spheroidizing annealing and cold forging. Moreover, in patent document 2, the cold forgeability is not considered.
  • Patent Document 3 and Patent Document 4 disclose free-cutting steel that has improved chip disposal by reducing the interparticle distance of sulfide inclusions.
  • Patent Document 3 and Patent Document 4 when coarse sulfide is present, if the interparticle distance is small, cracks during cold forging are more likely to occur. May be reduced.
  • patent document 3 although the machinability after hot forging is examined, the machinability after spheroidizing annealing and cold forging is not taken into consideration at all.
  • the present invention has been made in view of the above situation.
  • the objective of this invention is providing the steel for cold forging excellent in cold forgeability and machinability, and its manufacturing method.
  • the present inventors conducted research and examination on cold forging steel and obtained the following knowledge.
  • the annealing before cold forging is effective for improving the cold forgeability of the steel material.
  • annealing is performed, so that the chips when cut become longer and the chip disposal becomes worse.
  • the surface roughness of the steel material after cutting increases.
  • Non-patent literature W.Kurz and D.J.Fisher, “Fundamentals of Solidification”, Trans Tech Publications, Ltd., Switzerland (Switzerland), 1998, p. 256
  • the primary arm interval ⁇ of the dendrite depends on the solid-liquid interface energy ⁇ , and if this ⁇ can be reduced, ⁇ decreases. If ⁇ can be reduced, the size of Mn sulfide crystallized between dendritic trees can be reduced.
  • the present inventors have newly found that by containing a small amount of Bi in steel, the solid-liquid interface energy can be reduced and the size of the sulfide can be refined.
  • the present invention has been completed based on the above findings, and the gist thereof is as follows (1) to (5).
  • the steel for cold forging according to one embodiment of the present invention has a chemical composition of mass%, C: 0.05 to 0.30%, Si: 0.05 to 0.45%, Mn: 0 .40-2.00%, S: 0.008-less than 0.040%, Cr: 0.01-3.00%, Al: 0.010-0.100%, Bi: 0.0001-0.
  • d is an average value of equivalent circle diameters of sulfides having an equivalent circle diameter of 1.0 ⁇ m or more
  • is a standard deviation of equivalent circle diameters of sulfides having an equivalent circle diameter of 1.0 ⁇ m or more
  • SA is the number of sulfides having an equivalent circle diameter of 1.0 ⁇ m or more and less than 3.0 ⁇ m
  • SB is the number of sulfides having an equivalent circle diameter of 1.0 ⁇ m or more.
  • the chemical component is mass%, Mo: 0.02 to 1.00%, Ni: 0.10 to 1.00%, V: It may contain one or more selected from the group consisting of 0.03-0.30%, B: 0.0005-0.0200%, and Mg: 0.0001-0.0035%. Good.
  • the chemical components are in mass%, Ti: 0.002 to 0.060%, and Nb: 0.010 to 0.00. You may contain 1 type or 2 types selected from the group which consists of 080%.
  • a method for producing a cold forging steel according to another aspect of the present invention comprises the chemical component according to any one of (1) to (3) above and is within a range of 15 mm from the surface.
  • the method for producing a steel for cold forging as described in (4) above is the temperature from the liquidus temperature to the solidus temperature at a depth of 15 mm from the surface of the slab in the casting step.
  • the average cooling rate in the region may be 120 ° C./min to 500 ° C./min.
  • the steel for cold forging excellent in cold forgeability and machinability, and its manufacturing method can be provided.
  • the steel for cold forging according to the above aspect of the present invention is machinability when performing a cutting process after directly or if necessary performing normalizing on a rough formed product by cold forging after annealing. Is excellent. For this reason, the ratio of the cutting cost to the manufacturing cost of steel parts such as gears, shafts and pulleys for automobiles and industrial machines can be reduced, and the quality of the parts can be improved.
  • a steel for cold forging which is excellent in machinability after cold forging, that is, machinability before carburizing, carbonitriding or nitriding, which is a material for steel parts such as gears, shafts and pulleys is obtained. .
  • the steel for cold forging according to one embodiment of the present invention (the steel for cold forging according to the present embodiment) will be described in detail.
  • the machinability and cold forgeability will be further described. From the viewpoint of machinability, it is important to increase the S content. By containing S, the tool life and chip disposal during cutting are improved. This effect is determined by the total amount of S content and is not easily influenced by the shape of the sulfide. Therefore, to improve machinability, it is desirable to produce sulfide in the steel.
  • the sulfide in steel becomes a starting point of fracture due to deformation of the sulfide itself during cold forging.
  • coarse sulfides greatly reduce the cold forgeability such as the critical compressibility. Specifically, if the maximum equivalent circle diameter of a sulfide observed with an optical microscope exceeds 10.0 ⁇ m, it is likely to become a starting point of crack generation during cold forging.
  • hot working such as hot rolling or hot forging is performed in the process of producing case-hardened steel, coarse sulfides are stretched and machinability is often lowered. Therefore, in the cold forging steel according to this embodiment, it is desirable to refine the sulfide.
  • the dendrite structure greatly affects the particle size of the sulfide. The finer the dendrite structure, the smaller the particle size of the sulfide.
  • the cold forging steel according to the present embodiment has a predetermined chemical component
  • d is an average value of the equivalent circle diameter of sulfide
  • is a standard deviation of the equivalent circle diameter of sulfide
  • SA is equivalent to a circle.
  • the metal structure comprising a sulfide of 1.0 ⁇ 10.0 [mu] m in circle equivalent diameter 1200 / mm 2 or more, the average distance between the sulfide is less than 30.0.
  • C 0.05 to 0.30% Carbon (C) increases the tensile strength and fatigue strength of steel. Therefore, the C content is set to 0.05% or more. Preferably it is 0.10% or more, more preferably 0.15% or more. On the other hand, if there is too much C content, the cold forgeability of steel will fall and machinability will also fall. Therefore, the C content is 0.30% or less. Preferably it is 0.28% or less, More preferably, it is 0.25% or less.
  • Si 0.05 to 0.45% Silicon (Si) is dissolved in the ferrite in the steel to increase the tensile strength of the steel. Therefore, the Si content is set to 0.05% or more. Preferably it is 0.15% or more, more preferably 0.20% or more. On the other hand, if there is too much Si content, the cold forgeability of steel will fall. Therefore, the Si content is 0.45% or less. Preferably it is 0.40% or less, More preferably, it is 0.35% or less.
  • Mn 0.40 to 2.00%
  • Manganese (Mn) dissolves in steel to increase the tensile strength and fatigue strength of the steel and enhance the hardenability of the steel. Further, Mn combines with sulfur (S) in the steel to form a Mn sulfide and enhances the machinability of the steel. Therefore, the Mn content is 0.40% or more.
  • S sulfur
  • the preferable Mn content is 0.60% or more, and the more preferable Mn content is 0.75% or more.
  • the Mn content is 2.00% or less.
  • the preferable Mn content is 1.50% or less, and the more preferable Mn content is 1.20% or less.
  • S 0.008% or more and less than 0.040%
  • Sulfur (S) combines with Mn in steel to form a Mn sulfide, thereby improving the machinability of the steel. Therefore, the S content is 0.008% or more.
  • the preferable S content is 0.010% or more, and the more preferable S content is 0.015% or more.
  • the S content is less than 0.040%.
  • the preferable S content is less than 0.030%, and the more preferable S content is less than 0.025%.
  • Chromium (Cr) increases the hardenability of the steel and increases the tensile strength, and the surface hardness of the steel after carburizing and induction hardening. Since the machine part manufactured by the steel for cold forging according to the present embodiment may harden the surface of the steel by carburizing or induction hardening, the Cr content is 0.01% in order to obtain these effects. That's it. When the hardenability and tensile strength of steel are further increased, the preferable Cr content is 0.03% or more, and the more preferable Cr content is 0.10% or more. On the other hand, when there is too much Cr content, the cold forgeability and fatigue strength of steel will fall. Therefore, the Cr content is 3.00% or less. When further improving the cold forgeability and fatigue strength, the preferable Cr content is 2.00% or less, the more preferable Cr content is 1.50% or less, and the more preferable Cr content is 1.20%. It is as follows.
  • Al 0.010 to 0.100%
  • Al is an element having a deoxidizing action.
  • Al is an element that combines with N to form AlN and is effective in preventing austenite grain coarsening during carburizing heating.
  • the Al content is set to 0.010% or more.
  • Preferably it is 0.030% or more.
  • the Al content is 0.100% or less.
  • the upper limit with preferable Al content is 0.060%.
  • Bi 0.0001 to 0.0050%
  • Bi is an important element in the present invention.
  • the Bi content needs to be 0.0001% or more.
  • the Bi content is preferably 0.0010% or more.
  • the Bi content is set to 0.0050% or less.
  • the Bi content may be 0.0048% or less.
  • N 0.0250% or less Nitrogen (N) is contained as an impurity. N dissolved in the steel increases the deformation resistance during cold forging of the steel and lowers the cold forgeability. Further, when B is contained, if the content of N is high, BN is generated and the effect of improving the hardenability of B is reduced. Therefore, when B is contained, when Ti or Nb is not contained, the N content is preferably as small as possible. Therefore, the N content is 0.0250% or less. A preferable N content is 0.0180% or less, and a more preferable N content is 0.0150% or less. Since it is preferable that the N content is small, it may be 0%.
  • P 0.050% or less Phosphorus (P) is an impurity. P reduces the cold forgeability and hot workability of steel. Therefore, it is preferable that the P content is small. When the P content exceeds 0.050%, the decrease in cold forgeability and hot workability becomes particularly large, so the P content is made 0.050% or less. A preferable P content is 0.035% or less, and a more preferable P content is 0.020% or less. Since it is preferable that the P content is small, it may be 0%.
  • O oxygen
  • oxygen is liable to form a hard oxide inclusion by bonding with Al, and lowers bending fatigue strength.
  • the content of O is set to 0.0020% or less.
  • the content of O as an impurity element is preferably 0.0010% or less, more desirably as small as possible within a range that does not increase the cost in the steelmaking process, and may be 0%.
  • the remainder of the chemical composition of the cold forging steel according to this embodiment is basically composed of Fe and impurities.
  • the impurities referred to here are ores and scraps used as raw materials for steel, or elements mixed in from the environment of the manufacturing process.
  • the impurity is, for example, copper (Cu), nickel (Ni), etc. in addition to the above-described P, O, and N.
  • the contents of Cu and Ni as impurities are the same as the contents of Cu and Ni in the SCr steel and SCM steel defined in JIS G4053 alloy steel for machine structural use, and the Cu content is 0.30% or less.
  • the Ni content is preferably 0.25% or less.
  • the steel for cold forging according to the present embodiment further includes one or more selected from the group consisting of Mo, V, B, Mg, Ti, and Nb within a range described below. It may be contained instead of a part of Fe. Mo, V, B and Mg are all effective in increasing the fatigue strength of steel. Ti and Nb are effective in increasing the cold forgeability and fatigue strength of steel. However, since these elements do not necessarily need to be contained, the lower limit is 0%.
  • Mo 0 to 1.00% Molybdenum (Mo) increases the hardenability of the steel and increases the fatigue strength of the steel. Moreover, Mo suppresses an incomplete quenching layer in the carburizing process. If Mo is contained even a little, the above effect can be obtained. If the Mo content is 0.02% or more, the above effect is remarkably obtained, which is preferable. More preferably, it is 0.05% or more. On the other hand, if there is too much Mo content, the machinability of steel will fall. Furthermore, the manufacturing cost of steel increases. Therefore, even when it contains, Mo content is 1.00% or less. Preferably it is 0.50% or less, More preferably, it is 0.30% or less.
  • Nickel (Ni) has an effect of increasing the hardenability of the steel and is an effective element for increasing the fatigue strength. Therefore, you may make it contain as needed.
  • the Ni content is preferably 0.10% or more.
  • the amount of Ni in the case of containing is 1.00% or less.
  • the amount of Ni is preferably 0.80% or less.
  • V 0 to 0.30%
  • Vanadium (V) forms carbides in the steel and increases the fatigue strength of the steel. Vanadium carbide precipitates in ferrite and increases the strength of the steel core (the portion other than the surface layer). If V is contained even a little, the above effect can be obtained. If the V content is 0.03% or more, the above effect is remarkably obtained, which is preferable. More preferably, it is 0.04% or more, More preferably, it is 0.05% or more. On the other hand, if there is too much V content, the cold forgeability and fatigue strength of steel will fall. Therefore, even when contained, the V content is 0.30% or less. Preferably it is 0.20% or less, More preferably, it is 0.10% or less.
  • B 0 to 0.0200% Boron (B) increases the hardenability of the steel and increases the fatigue strength. If B is contained even a little, the above effect can be obtained. If the B content is 0.0005% or more, the above effect is remarkably obtained, which is preferable. More preferably, it is 0.0010% or more, More preferably, it is 0.0020% or more. On the other hand, when the B content exceeds 0.0200%, the effect is saturated. Therefore, even when it contains, B content is 0.0200% or less. Preferably, it is 0.0120% or less, More preferably, it is 0.0100% or less.
  • Mg 0 to 0.0035%
  • Magnesium (Mg) like Al, deoxidizes steel and refines oxides in the steel. As the oxide in the steel becomes finer, the probability that the coarse oxide is the starting point of fracture is reduced, and the fatigue strength of the steel is increased. If Mg is contained even a little, the above effect can be obtained. If the Mg content is 0.0001% or more, the above effect is remarkably obtained, which is preferable. More preferably, it is 0.0003% or more, More preferably, it is 0.0005% or more. On the other hand, if there is too much Mg content, the said effect will be saturated and the machinability of steel will fall. Therefore, even when it contains, Mg content is 0.0035% or less. Preferably it is 0.0030% or less, More preferably, it is 0.0025% or less.
  • Titanium (Ti) is an element that produces fine carbides, nitrides, and carbonitrides in steel and refines austenite crystal grains by a pinning effect. When the austenite crystal grains are refined, the cold forgeability and fatigue strength of the steel increase. If Ti is contained even a little, the above effect can be obtained. A Ti content of 0.002% or more is preferable because the above effect can be obtained remarkably. More preferably, it is 0.005% or more, More preferably, it is 0.010% or more. On the other hand, if there is too much Ti content, the machinability and cold forgeability of steel will fall. Therefore, even when contained, the Ti content is 0.060% or less. Preferably it is 0.040% or less, More preferably, it is 0.030% or less.
  • Nb 0 to 0.080% Niobium (Nb), like Ti, produces fine carbides, nitrides, and carbonitrides to refine the austenite crystal grains and increase the cold forgeability and fatigue strength of the steel. If Nb is contained even a little, the above effect can be obtained. If the Nb content is 0.010% or more, the above effect is remarkably obtained, which is preferable. More preferably, it is 0.015% or more, More preferably, it is 0.020% or more. On the other hand, if there is too much Nb content, the said effect will be saturated and the machinability of steel will fall. Therefore, even when it contains, Nb content is 0.080% or less. Preferably it is 0.050% or less, More preferably, it is 0.040% or less.
  • the steel for cold forging according to the present embodiment includes the above-described basic element and has at least a chemical composition composed of the remaining Fe and impurities, or selected from the above-described basic element and the above-described selective element. 1 type, and has a chemical composition consisting of the balance Fe and impurities.
  • the metal structure contains 1200 / mm 2 or more of sulfides having an equivalent circle diameter of 1.0 to 10.0 ⁇ m] Sulfides are useful for improving machinability. However, when the S content is increased, machinability is improved, but coarse sulfides are increased. Coarse sulfides stretched by hot rolling or the like impairs cold forgeability. Therefore, it is necessary to control the size and number density of sulfides. Specifically, in the cold forging steel according to the present embodiment, the number of sulfides having an equivalent circle diameter of 1.0 to 10.0 ⁇ m is set to 1200 pieces / mm 2 or more in the metal structure.
  • the equivalent circle diameter is less than 1200 pieces / mm 2 with 1.0 to 10.0 ⁇ m of sulfide, the number of sulfides contributing to chip breaking is not sufficient, and the machinability deteriorates. . Although it is not necessary to limit an upper limit, it is difficult to set it to more than 2000 pieces / mm 2 .
  • the reason why sulfides with an equivalent circle diameter of 1.0 to 10.0 ⁇ m were targeted is that sulfides exceeding 10.0 ⁇ m are the starting point of destruction, and small sulfides less than 1.0 ⁇ m are controlled. This is because there is no effect on cold forgeability and chip disposal.
  • An increase in the number density of sulfides less than 1.0 ⁇ m or a number density of sulfides greater than 10.0 ⁇ m is not preferable because it leads to a decrease in the number density of sulfides having an equivalent circle diameter of 1.0 to 10.0 ⁇ m.
  • the equivalent circle diameter of the sulfide is the diameter of a circle having an area equal to the area of the sulfide, and can be obtained by image analysis. Similarly, the number of sulfides can be obtained by image analysis. Moreover, what is necessary is just to confirm that an inclusion is a sulfide by the energy dispersive X-ray analysis attached to a scanning electron microscope.
  • the average distance between sulfides needs to be less than 30.0 ⁇ m.
  • the present inventors conducted various experiments on the relationship between the average distance between sulfides (interparticle distance between sulfides) and chip disposal, and as a result, the interparticle distance between sulfides was 30.0 ⁇ m. If it is less than this, it has confirmed that favorable chip disposal property is obtained.
  • the average distance between sulfides becomes short, it tends to be a starting point of destruction, so the average distance is preferably 10.0 ⁇ m or more.
  • the interparticle distance between sulfides can be determined by image analysis.
  • d in the formula (1) is an average value ( ⁇ m) of the equivalent circle diameter of the sulfide having the equivalent circle diameter of 1.0 ⁇ m or more
  • is the equivalent circle diameter of the sulfide having the equivalent circle diameter of 1.0 ⁇ m or more. Standard deviation.
  • SA in the formula (2) is the number of sulfides having an equivalent circle diameter of 1.0 ⁇ m or more and less than 3.0 ⁇ m
  • SB is the number of sulfides having an equivalent circle diameter of 1.0 ⁇ m or more.
  • the equivalent circle diameter of the sulfide is the diameter of a circle having an area equal to the area of the sulfide, and can be obtained by image analysis.
  • the number of sulfides and the interparticle distance between sulfides can be determined by image analysis. Specifically, it can be determined by the following procedure. That is, the D / 4 position of the round bar after spheroidizing annealing was cut parallel to the axial direction, a test piece for observing sulfide was collected, the test piece was filled with resin, A test surface parallel to the longitudinal direction is mirror-polished. The predetermined positions of these polished test pieces are photographed at a magnification of 100 with a scanning electron microscope, and images of an inspection reference area (region) of 0.9 mm 2 are prepared for 10 visual fields. That is, the observation field of sulfide is 9 mm 2 .
  • a sulfide is identified based on the contrast of the reflected electron image observed with a scanning electron microscope, and the particle size distribution of the sulfide having an equivalent circle diameter of 1.0 ⁇ m or more in the observation field (image). Is detected.
  • the number of sulfides can be obtained.
  • the equivalent circle diameter can be obtained by converting the equivalent circle diameter indicating the diameter of a circle having the same area as the sulfide area.
  • the average distance between sulfides is obtained from the observation field of view (image) in which the particle size distribution of sulfides is detected, and the center of gravity of the sulfide having an equivalent circle diameter of 1.0 ⁇ m or more is obtained.
  • the distance between the center of gravity of each sulfide is measured, and the distance of the sulfide existing closest to each sulfide is measured. Then, for the total number of sulfides in each field of view, the measured value of the nearest sulfide distance is measured, and the average distance is taken as the average distance between sulfides.
  • the solidification structure of the continuous cast slab usually has a dendrite form. Sulfides in steel materials often crystallize before solidification (in molten steel) or during solidification, and are greatly affected by the dendrite primary arm interval. That is, if the dendrite primary arm interval is small, the sulfide crystallized between the trees will be small. Therefore, if the dendrite primary arm interval of the steel slab is reduced to, for example, less than 600 ⁇ m, the proportion of fine sulfide crystallized from the dendrite trees is increased, and the sulfide exceeding 10.0 ⁇ m is eliminated, the cold Forgeability is improved.
  • the variation of the equivalent circle diameter of the sulfide detected per observation field 9 mm 2 is calculated as the standard deviation ⁇ , and the average equivalent circle diameter d is added to this standard deviation 3 ⁇ .
  • the value was defined as the left side (F1) of the formula (1), and F1 was defined as the following formula (1 ′).
  • d and ⁇ in the formula (1 ′) are the same as d and ⁇ in the formula (1).
  • the F1 value can be observed with an optical microscope existing in the cold forged molten steel according to this embodiment, which is predicted from the equivalent circle diameter of the sulfide and the standard deviation of the equivalent circle diameter observed within the observation field of 9 mm 2.
  • the maximum equivalent circle diameter is shown in 99.7% of the sulfides among various sulfides. That is, when the F1 value is 10.0 ⁇ m or less, the steel for cold forging according to the present embodiment has almost no sulfide having a maximum equivalent circle diameter of more than 10.0 ⁇ m.
  • the equivalent circle diameter of the sulfides to be observed was set to 1.0 ⁇ m or more is that it is practically a general-purpose instrument, and the particle size and components can be statistically handled. This is because even if controlled, there is little influence on cold forgeability and chip disposal.
  • the value of F1 is less than 10.0 ⁇ m.
  • SA and SB are the same as SA and SB in equation (2). If the F2 value is less than 0.30, the ratio of fine sulfides that are difficult to become a stress concentration source at the time of chip separation during cutting is reduced, so that chip disposal is improved. The reason why the equivalent circle diameter of the sulfide to be observed was set to 1.0 ⁇ m or more is that, even if a sulfide smaller than this is controlled, there is no effect on cold forgeability and chip disposal.
  • the cold forging steel according to the present embodiment is not limited to the manufacturing method as long as it has the above-described characteristics, but has the above-mentioned chemical components and has a dendrite primary arm interval within a range of 15 mm from the surface.
  • the hot working includes a hot working process in which the slab is made into a steel slab by forging and / or a hot rolling process in which the slab or the steel slab is hot rolled.
  • spheroidizing annealing is preferable for annealing.
  • a steel slab satisfying the above chemical composition is produced by a continuous casting method.
  • An ingot (steel ingot) may be formed by an ingot-making method.
  • Examples of casting conditions include a 220 ⁇ 220 mm square mold, a superheat of the molten steel in the tundish at 10 to 50 ° C., and a casting speed of 1.0 to 1.5 m / min.
  • the average in the temperature range from the liquidus temperature to the solidus temperature at a depth of 15 mm from the slab surface.
  • the cooling rate is desirably 120 ° C./min or more and 500 ° C./min or less. If the distance between the dendrite primary arms is less than 600 ⁇ m, the sulfide is finely dispersed, which is advantageous in obtaining the sulfide of the cold forged molten steel according to the present embodiment described above.
  • the average cooling rate is less than 120 ° C./min, it becomes difficult to make the dendrite primary arm interval less than 600 ⁇ m at a depth of 15 mm from the slab surface, and there is a possibility that the sulfide cannot be finely dispersed.
  • the average cooling rate exceeds 500 ° C./min, the sulfide crystallized from between the dendrite trees becomes too fine, and the chip processing property may be lowered.
  • the temperature range from the liquidus temperature to the solidus temperature is the temperature range from the start of solidification to the end of solidification of the slab. Therefore, the average cooling temperature in this temperature range means the average solidification rate of the slab.
  • the average cooling rate can be achieved by, for example, controlling the mold cross-sectional size, casting speed, etc. to appropriate values, or increasing the amount of cooling water used for water cooling immediately after casting. This is applicable to both continuous casting and ingot casting methods.
  • the cooling rate at a position 15 mm deep from the above slab surface is obtained by etching a cross section of the obtained slab with picric acid, and a pitch of 5 mm in the casting direction at each position 15 mm deep from the slab surface.
  • the cooling rate in each slab is obtained by the above formula, and the optimum casting condition is determined from the obtained cooling rate, whereby the average cooling rate is determined. Can be controlled. Further, in order to reduce center segregation, reduction may be applied during the solidification of continuous casting.
  • Hot working process In the hot working process, the slab or ingot is processed into a steel material by hot working such as hot forging, or the slab or ingot is hot worked to produce a billet (steel piece). May be hot-rolled to obtain steel materials such as steel bars and wire rods. Hot working and hot rolling may be performed by a known method according to required mechanical properties.
  • a spheroidizing annealing process is performed on the manufactured steel bar or wire.
  • the cold forgeability of the steel material can be enhanced by the spheroidizing annealing treatment.
  • Spheroidizing annealing may be performed by a known method.
  • the cold forging steel according to the present embodiment is obtained.
  • Steels A to L shown in Table 1 are steels having a chemical composition defined in the present invention.
  • steels M to Y are comparative steels whose chemical compositions deviate from the conditions specified in the present invention.
  • the underlined values in Table 1 indicate that they are outside the scope of the present invention.
  • the slab obtained by continuous casting was once cooled to room temperature, and a test piece for observing a dendrite structure was collected from the cooled slab.
  • each slab was heated at 1250 ° C. for 2 hours, the heated slab was hot forged, and after hot forging, it was allowed to cool to produce a plurality of round bars (bars) having a diameter of 30 mm.
  • a spheroidizing annealing treatment was performed on a round bar having a diameter of 30 mm. Specifically, the above round bar was soaked at 1300 ° C. for 1 hour using a heating furnace. Next, the round bar was transferred to another heating furnace, soaked at 925 ° C. for 1 hour, and after soaking, the round bar was allowed to cool. Next, the round bar was heated again and soaked at 765 ° C. for 10 hours. After soaking, the round bar was cooled to 650 ° C. at a cooling rate of 15 ° C./h. Thereafter, the round bar was allowed to cool. In this way, cold forging steels having test numbers 1 to 27 were produced. These were subjected to microstructure and sulfide observation, cold forgeability test, and machinability test.
  • the solidified structure was obtained by etching the cross section of the above slab with picric acid, measuring 100 points of the primary dendrite arm spacing at a 15 mm position in the depth direction from the slab surface at a pitch of 5 mm in the casting direction, and calculating the average value. Asked.
  • Microstructure observation method The microstructure of the round bar after the spheroidizing annealing treatment was observed. A D / 4 position of the round bar was cut in parallel to the axial direction, and a specimen for microstructural observation was collected. The cut surface of the test piece was polished and corroded with a nital corrosive solution, and after the corrosion, the microstructure of the central portion of the cut surface was observed with a 400 ⁇ optical microscope.
  • the microstructures of the round bars of each test number were structures in which spherical cementite was dispersed in ferrite.
  • the observation field of sulfide is 9 mm 2 .
  • a sulfide was identified based on the contrast of a reflected electron image observed with a scanning electron microscope, and it was confirmed by EDS whether the sulfide was a predetermined sulfide.
  • the observation area was displayed as a gray scale image.
  • the contrasts of the matrix (parent phase), sulfide, and oxide in the reflected electron image were different.
  • the particle size distribution of sulfides having an equivalent circle diameter of 1.0 ⁇ m or more in the observation field (image) was detected.
  • the average distance between sulfides is obtained from the observation field of view (image) in which the particle size distribution of sulfides is detected, and the center of gravity of the sulfide having an equivalent circle diameter of 1.0 ⁇ m or more is obtained.
  • the distance between the centers of gravity of each sulfide was measured, and the distance between the sulfides closest to each sulfide was measured.
  • the actual value of the distance between nearest sulfides was measured for the total number of sulfides in each field of view, and the average distance was taken as the average distance between sulfides.
  • Table 2 shows the F1 and F2 values, the number density of sulfides of 1.0 to 10.0 ⁇ m, and the distance between the sulfides.
  • the underline in Table 2 means outside the scope of the present invention.
  • a round bar test piece was prepared from the R / 2 position of a round bar having a diameter of 30 mm after spheroidizing annealing.
  • the round bar test piece is a test piece having a diameter of 10 mm and a length of 15 mm centered on the R / 2 position of a round bar having a diameter of 30 mm.
  • the longitudinal direction of the round bar test piece is a forging shaft of a round bar having a diameter of 30 mm. And parallel.
  • the target of cold forgeability was set to 75% or more, which is practically acceptable in terms of the critical compression ratio.
  • the remainder of the round steel bar with a diameter of 30 mm subjected to spheroidizing annealing was cold-drawn at a surface reduction rate of 30.6% to obtain a bar steel with a diameter of 25 mm.
  • the cold drawn steel bar was cut into a length of 500 mm to obtain a test material for turning.
  • the outer peripheral portion of the test material having a diameter of 25 mm and a length of 500 mm obtained in this manner was turned using an NC lathe under the following conditions, and the chip processability was investigated as machinability.
  • Chip disposal was evaluated by the following method. Chips discharged in 10 seconds during the machinability test were collected. The length of the collected chips was examined, and 10 chips were selected in order from the longest. The total weight of the ten selected chips was defined as “chip weight”. When the total number of chips was less than 10 as a result of long chip connection, the total weight of the collected chips was measured, and the value converted to the number of 10 chips was defined as “chip weight”. For example, when the total number of chips is 7 and the total weight is 12 g, the chip weight was calculated to be 12 g ⁇ 10 pieces / 7 pieces.
  • chip weight was 15 g or less, it was judged that the chip disposal was high. When the chip weight exceeded 15 g, it was evaluated that the chip processability was low.
  • the chemical compositions of the steels having the test numbers 1 to 12 are within the range of the chemical composition of the steel for cold forging according to the present invention, and the formula (1
  • the number density of sulfides satisfying the formula (2) and 1.0 to 10.0 ⁇ m and the distance between the sulfides were within the scope of the present invention.
  • the steels with test numbers 1 to 12 had excellent cold forgeability and machinability after cold forging.
  • Test No. 13 steel was within the range of the chemical composition of the present invention. However, since the cooling rate at the time of casting was too fast, a large amount of fine Mn sulfide was generated and the formula (2) was not satisfied. As a result, the Mn sulfide did not play the role of the notch effect at the time of cutting, so the chip weight exceeded 15 g.
  • Test No. 14 steel was within the chemical composition of the cold forging steel according to the present embodiment. However, since the cooling rate at the time of casting was slow, the number of sulfides of 1.0 to 10.0 ⁇ m was small. Moreover, the average distance between sulfides was 30.0 ⁇ m or more. As a result, machinability was low.
  • Test number 15 and test number 16 did not contain Bi, and the S content was less than the lower limit of the specified value. Therefore, although the equivalent circle diameter of the generated sulfide was small and satisfied the formula (1), the number of sulfides of 1.0 to 10.0 ⁇ m was small, and the average distance between sulfides was 30.0 ⁇ m or more. Although cold forgeability was high, machinability was low. Specifically, the chip weight exceeded 15 g.
  • Test numbers 17 to 20 did not contain Bi. Therefore, the formula (1) was not satisfied. Coarse sulfide was present, and the number of sulfides of 1.0 to 10.0 ⁇ m was small, so the cold forgeability was below the standard value.
  • Test No. 21 contained Bi but the S content exceeded the upper limit of the specified value. As a result, although the dendrite primary arm interval was not more than the specified value, the formula (1) was not satisfied, so the cold forgeability was below the reference value. It is presumed that the cold forgeability was below the standard value because of the large S content and the presence of coarse sulfides.
  • Test number 22 and test number 23 contained Bi, but the S content was below the lower limit of the specified value. As a result, although the formula (1) was satisfied and the cold forgeability was not less than the standard value, the formula (2) was not satisfied, and there were many sulfides having an equivalent circle diameter of less than 3 ⁇ m, and the average distance between the sulfides was 30 ⁇ m. As a result, the chip weight exceeded 15 g.
  • Test number 24 and test number 25 contained Bi but the S content exceeded the upper limit of the specified value. As a result, although the dendrite primary arm interval was less than or equal to the specified value, the formula (1) was not satisfied. Therefore, the cold forgeability was below the standard value.
  • Test number 27 did not contain Bi. Therefore, the number of sulfides of 1.0 to 10.0 ⁇ m was small, and the average distance between sulfides was 30.0 ⁇ m or more. As a result, the cold forgeability was high, but the machinability was low. Specifically, the chip weight exceeded 15 g.
  • the ratio of the cutting cost to the manufacturing cost of steel parts such as gears, shafts and pulleys for automobiles and industrial machines can be reduced, and the quality of the parts can be reduced. Can be improved.
  • steel for cold forging that is excellent in machinability after cold forging, that is, machinability before carburizing, carbonitriding, or nitriding, which is a material for steel parts such as gears, shafts, and pulleys can be obtained. . Therefore, industrial applicability is high.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Continuous Casting (AREA)

Abstract

この冷間鍛造用鋼は、所定の化学組成を有し、d+3σ≦10.0およびSA/SB<0.30を満たし、金属組織中に、円相当径で1.0~10.0μmの硫化物を1200個/mm以上含み、前記硫化物同士の平均距離が30.0μm未満である。ここで、dは円相当径1.0μm以上の硫化物の円相当径の平均値であり、σは前記円相当径1.0μm以上の硫化物の前記円相当径の標準偏差であり、SAは円相当径で1.0μm以上3.0μm未満の硫化物の個数であり、SBは前記円相当径1.0μm以上の前記硫化物の個数である。

Description

冷間鍛造用鋼及びその製造方法
 本発明は、冷間鍛造用鋼及びその製造方法に関する。
 機械構造用鋼は、産業用機械、建設用機械、及び、自動車に代表される輸送用機械、等の機械部品に用いられる。機械構造用鋼は一般的に、熱間鍛造により粗加工された後、切削加工されて所定の形状を有する機械部品に仕上げられる。そのため、機械構造用鋼には、加工性と被削性とが求められる。
 冷間鍛造は、熱間鍛造と比べて寸法精度が高いので、鍛造後の切削加工量を低減できることなどのメリットがある。このため、近年、上記の粗加工において、冷間鍛造で粗成形される部品が多くなっている。しかしながら、冷間鍛造を行うと、熱間鍛造を行う場合に比べて鋼材に割れが発生しやすい。そのため、冷間鍛造に利用される冷間鍛造用鋼には、被削性とともに、冷間鍛造時に割れが発生しにくい特性(以下、冷間鍛造性という)が求められる。
 冷間鍛造によって鋼材を粗成形する場合、鍛造での変形抵抗を下げて冷間鍛造性を向上させるために、鍛造前に球状化焼鈍を施すことが多い。しかしながら、鋼に球状化焼鈍を行うと、冷間鍛造後の切削加工時の被削性が低下するという問題がある。
 鋼に硫黄(S)を含有させると、Sは鋼中のマンガン(Mn)と結合して硫化物を主体とする硫化物系介在物(以下、硫化物という)を形成する。この硫化物が、被削性を向上させることはよく知られている。そのため、被削性を高めるには、S含有量を高めることが考えられる。しかしながら、S含有量を高めると、粗大な硫化物(MnS、CaS等)が多量に生成し、冷間鍛造性が低下する。
 したがって、従来、冷間鍛造性と被削性とを両立させることは困難であった。従来の冷間鍛造用鋼は、S含有量を低減することにより冷間鍛造性や疲労強度の低下を抑制しており、その結果、被削性が低かった。
 特許文献1及び特許文献2には、硫化物の形態制御などによって、鋼材の被削性を向上する技術が提案されている。例えば、特許文献1には、硫化物の粗大化を抑制するために、鋳造時の凝固速度を制御し、硫化物を微細に分散させることにより被削性を向上させた肌焼鋼が開示されている。また、特許文献2には、サブミクロンレベルの硫化物を分散させることにより、被削性を向上させた肌焼鋼が開示されている。
 しかしながら、特許文献1及び特許文献2では、熱間鍛造後の被削性については検討されているものの、球状化焼鈍及び冷間鍛造を行った後の被削性については何ら考慮されていない。また、特許文献2では、冷間鍛造性についても考慮されていない。
 特許文献3及び特許文献4には、硫化物系介在物の粒子間距離を小さくすることにより、切りくず処理性を向上させた快削鋼が開示されている。
 しかしながら、特許文献3及び特許文献4に開示された技術においては、粗大な硫化物が存在した場合には、粒子間距離が小さいと、かえって冷間鍛造時の割れが発生しやすく、冷間鍛造性が低下する恐れがある。また、特許文献3では、熱間鍛造後の被削性については検討されているものの、球状化焼鈍及び冷間鍛造後の被削性について何ら考慮されていない。
 上述の通り、従来、冷間鍛造性を損ねることなく、被削性を向上させた冷間鍛造用鋼は得られていなかった。
日本国特許第5114689号公報 日本国特許第5114753号公報 日本国特開2000-282171号公報 日本国特許第4924422号公報
 本発明は、上記現状に鑑みてなされた。本発明の目的は、冷間鍛造性及び被削性に優れた冷間鍛造用鋼及びその製造方法を提供することである。
 本発明者らは、冷間鍛造用鋼に関する研究及び検討を行い、以下の知見を得た。
(a)冷間鍛造前の焼鈍(球状化焼鈍)は、鋼材の冷間鍛造性を向上させるために有効である。しかしながら、焼鈍を行うと、鋼材の延性が向上するので、切削した時の切粉が長くなり、切りくず処理性が悪くなる。また、切削後の鋼材の表面粗さも大きくなる。
(b)切削は切りくずを分離する破壊現象であり、それを促進させるにはマトリクス(母材)を脆化させることが有効である。硫化物を微細分散させることにより、破壊を容易にして、切りくず処理性を向上させることができる。さらに、硫化物間の粒子間距離が短いと、切りくずの分断性が向上する。一方、硫化物が大きく少数分散していると、切りくず分離の起点となる硫化物の間隔が長くなり、結果として切りくずが長くなりやすくなる。
(c)本発明者らは、硫化物の円相当径と切りくず処理性との関係について種々実験を行った。その結果、平均円相当径が1.0μm以上の硫化物のうち、平均円相当径が3.0μm未満の硫化物の個数分率が30%を超えると、切りくず処理性が低下するという知見を得た。すなわち、極端に微細な硫化物を減らすことで、より少ない硫化物総量で優れた被削性を得られることを知見した。これは、平均円相当径が3.0μm未満の微細な硫化物は、切りくず分離の際の応力集中源として有効に機能しがたいためであると考えられる。
(d)冷間鍛造性の指標となる冷間鍛造時の割れは次のようなメカニズムで発生すると推測されている。すなわち、粗大な硫化物とマトリクス(母相)との境界にボイドが形成され、複数のボイドが連結することにより、き裂が形成される。このき裂は、塑性変形が進むにつれ成長する。そして、き裂同士が連結することにより、割れが発生する。そのため、冷間鍛造性を向上するためには、粗大な硫化物を低減することが重要である。
(e)さらに、本発明者らは、最大硫化物寸法と冷間鍛造性との関係について種々実験を行った。その結果、観察される硫化物の最大円相当径が10.0μmを超えると、冷間鍛造性が低下することを知見した。
(f)鋼材中の硫化物は、凝固前(溶鋼中)または凝固時に晶出することが多く、硫化物の大きさは、凝固時の冷却速度に大きく影響を受ける。また、連続鋳造鋳片の凝固組織は、通常はデンドライト形態を呈しており、このデンドライトは、凝固過程における溶質元素の拡散に起因して形成され、溶質元素は、デンドライトの樹間部において濃化する。すなわち、Mnは、デンドライトの樹間部において濃化し、Mn硫化物が樹間に晶出する。
(g)Mn硫化物を微細に分散させるには、デンドライトの樹間の間隔を短くする必要がある。デンドライトの1次アーム間隔に関する研究は従来から行われており、下記の非特許文献によれば、下記(A)式で表すことができる。
  λ∝(D×σ×ΔT)0.25 …(A)
 ここで、λ:デンドライトの1次アーム間隔(μm)、D:拡散係数(m/s)、σ:固液界面エネルギー(J/m)、ΔT:凝固温度範囲(℃)である。
 非特許文献:W.Kurz and D.J.Fisher著、「Fundamentals of Solidification」、Trans Tech Publications Ltd., (Switzerland)、1998年、p.256
 この(A)式から、デンドライトの1次アーム間隔λは、固液界面エネルギーσに依存しており、このσを低減できればλが減少することがわかる。λを減少させることができれば、デンドライト樹間に晶出するMn硫化物サイズを低減させることができる。
 本発明者らは、鋼にBiを微量含有させることにより、固液界面エネルギー低減させることができ、硫化物のサイズを微細化できることを新たに見出した。
 本発明は、上記の知見に基づいて完成されたものであり、その要旨は、下記(1)~(5)の通りである。
(1)本発明の一態様に係る冷間鍛造用鋼は、化学成分が、質量%で、C:0.05~0.30%、Si:0.05~0.45%、Mn:0.40~2.00%、S:0.008~0.040%未満、Cr:0.01~3.00%、Al:0.010~0.100%、Bi:0.0001~0.0050%、Mo:0~1.00%、Ni:0~1.00%、V:0~0.30%、B:0~0.0200%、Mg:0~0.0035%、Ti:0~0.060%、及びNb:0~0.080%、を含有するとともに、残部がFeおよび不純物からなり、前記不純物に含まれるN、PおよびOが、N:0.0250%以下、P:0.050%以下、O:0.0020%以下であり、下記式(1)および下記式(2)を満たし、金属組織中に、円相当径で1.0~10.0μmの硫化物を1200個/mm以上含み、前記硫化物同士の平均距離が30.0μm未満である。
 d+3σ≦10.0    ・・・(1)
 SA/SB<0.30    ・・・(2)
 式(1)におけるdは円相当径が1.0μm以上の硫化物の円相当径の平均値であり、σは前記円相当径が1.0μm以上の硫化物の前記円相当径の標準偏差であり、式(2)におけるSAは円相当径が1.0μm以上3.0μm未満の硫化物の個数であり、SBは前記円相当径が1.0μm以上の前記硫化物の個数である。
(2)上記(1)に記載の冷間鍛造用鋼は、前記化学成分が、質量%で、Mo:0.02~1.00%、Ni:0.10~1.00%、V:0.03~0.30%、B:0.0005~0.0200%、及びMg:0.0001~0.0035%、からなる群から選択される1種または2種以上を含有してもよい。
(3)上記(1)または(2)に記載の冷間鍛造用鋼は、前記化学成分が、質量%で、Ti:0.002~0.060%、及びNb:0.010~0.080%、からなる群から選択される1種または2種を含有してもよい。
(4)本発明の別の態様に係る冷間鍛造用鋼の製造方法は、上記(1)~(3)の何れか一項に記載の化学成分を有し、かつ表面から15mmの範囲内におけるデンドライト1次アーム間隔が600μm未満である鋳片を鋳造する鋳造工程と;前記鋳片を熱間加工して鋼材を得る熱間加工工程と;前記鋼材を焼鈍する焼鈍工程と;を有する。
(5)上記(4)に記載の冷間鍛造用鋼の製造方法は、前記鋳造工程において、前記鋳片の前記表面から15mmの深さにおける、液相線温度から固相線温度までの温度域内の平均冷却速度を120℃/min以上500℃/min以下としてもよい。
 本発明の上記態様によれば、冷間鍛造性及び被削性に優れた冷間鍛造用鋼及びその製造方法を提供できる。
 本発明の上記態様に係る冷間鍛造用鋼は、焼鈍後の冷間鍛造による粗成形品を直接に、または必要に応じて焼きならしを行ってから、切削加工を施す際の被削性に優れている。このため、自動車、産業機械用の歯車、シャフト、プーリーなどの鋼製部品の製造費用に占める切削加工コストの割合を低減でき、また部品の品質を向上することができる。
 また、本発明の上記態様に係る冷間鍛造用鋼の製造方法では、所定の化学成分を有する鋳片を鋳造することで、硫化物の晶出核となるデンドライト組織を微細化させて、鋼中の硫化物を微細分散させる。そのため、歯車、シャフト、プーリーなどの鋼製部品の素材となる、冷間鍛造後の被削性、つまり、浸炭、浸炭窒化または窒化前の被削性に優れた冷間鍛造用鋼が得られる。
 以下、本発明の一実施形態に係る冷間鍛造用鋼(本実施形態に係る冷間鍛造用鋼)を詳細に説明する。
 肌焼鋼などの機械構造用鋼を歯車などの部品形状に加工するには、連続鋳造した鋳片を圧延した後、熱間鍛造または冷間鍛造を行い、次いで切削し、更に浸炭焼き入れ等の表面硬化処理を実施する。鋼中の硫化物は、冷間鍛造性を低下させるが、被削性の向上に極めて有効である。被削材である肌焼鋼中の硫化物は、切削工具の摩耗による工具変化を抑制し、いわゆる工具寿命を延ばす効果を発現する。
 被削性および冷間鍛造性について、更に説明する。
 被削性の観点からは、S含有量の増加が重要である。Sを含有させることにより、切削時の工具寿命および切りくず処理性が向上する。この効果は、S含有量の総量で決まり、硫化物の形状の影響を受けにくい。したがって、被削性を高めるには、鋼中に硫化物を生じさせることが望ましい。
 一方、鋼中の硫化物は、冷間鍛造時に硫化物自体が変形して破壊の起点となる。特に、粗大な硫化物は、限界圧縮率などの冷間鍛造性を大きく低下させる。具体的には、光学顕微鏡で観察される硫化物の最大円相当径が10.0μmを超えると冷間鍛造の際に割れ発生の起点となりやすい。また、肌焼鋼を製造する過程で熱間圧延や熱間鍛造といった熱間加工を施すと、粗大な硫化物が延伸して被削性が低下することが多い。そのため、本実施形態に係る冷間鍛造用鋼では、硫化物を微細化することが望ましい。
 硫化物の粗大化を抑制するためには、溶鋼中の固液界面エネルギーを低減して、鋳造後の鋳片のデンドライト組織を微細化することが望ましい。デンドライト組織は、硫化物の粒径に大きく影響し、デンドライト組織が微細になるほど硫化物の粒径も小さくなる。
 硫化物を安定的にかつ効果的に微細分散させるには、微量のBiを添加し、溶鋼中の固液界面エネルギーを低減させることが好ましい。これは、固液界面エネルギーが低減すると、デンドライト組織が微細となり、そこから晶出する硫化物が微細化するからである。
 S含有量を増量すると被削性は向上するが、冷間鍛造性の低下を招く。一方、同じ量のSを含む鋼を比較した場合、硫化物が微細化な方が、より良好な冷間鍛造性を示す。以上のことから、S含有量を増加させ、かつ、硫化物を微細化することにより、冷間鍛造性と被削性とを両立させることができる。
 そのため、本実施形態に係る冷間鍛造用鋼は、所定の化学成分を有し、dを硫化物の円相当径の平均値、σを硫化物の円相当径の標準偏差、SAを円相当径で1.0μm以上3.0μm未満の硫化物の個数、SBを円相当径で1.0μm以上の前記硫化物の個数とした場合に、d+3σ≦10.0、かつ、SA/SB<0.30を満たし、金属組織中に、円相当径で1.0~10.0μmの硫化物を1200個/mm以上含み、硫化物同士の平均距離が30.0μm未満である。
 以下、本実施形態に係る冷間鍛造用鋼について、さらに説明する。まず、各成分元素の含有量について説明する。ここで、成分についての「%」は特に断りがない限り、質量%である。
 C:0.05~0.30%
 炭素(C)は、鋼の引張強度及び疲労強度を高める。そのため、C含有量を0.05%以上とする。好ましくは0.10%以上、より好ましくは0.15%以上である。一方、C含有量が多すぎれば、鋼の冷間鍛造性が低下し、被削性も低下する。したがって、C含有量は0.30%以下である。好ましくは0.28%以下であり、さらに好ましくは、0.25%以下である。
 Si:0.05~0.45%
 シリコン(Si)は、鋼中のフェライトに固溶して、鋼の引張強度を高める。そのため、Si含有量を0.05%以上とする。好ましくは0.15%以上、さらに好ましくは0.20%以上である。一方、Si含有量が多すぎれば、鋼の冷間鍛造性が低下する。したがって、Si含有量は、0.45%以下である。好ましくは0.40%以下であり、さらに好ましくは0.35%以下である。
 Mn:0.40~2.00%
 マンガン(Mn)は、鋼に固溶して鋼の引張強度及び疲労強度を高め、鋼の焼入れ性を高める。Mnはさらに、鋼中の硫黄(S)と結合してMn硫化物を形成し、鋼の被削性を高める。そのため、Mn含有量を0.40%以上とする。鋼の引張強度、疲労強度及び焼入れ性を高める場合、好ましいMn含有量は0.60%以上であり、さらに好ましいMn含有量は0.75%以上である。一方、Mn含有量が高すぎれば、鋼の冷間鍛造性が低下する。したがって、Mn含有量は、2.00%以下である。鋼の冷間鍛造性をさらに高める場合、好ましいMn含有量は1.50%以下であり、さらに好ましいMn含有量は1.20%以下である。
 S:0.008%以上、0.040%未満
 硫黄(S)は、鋼中のMnと結合してMn硫化物を形成し、鋼の被削性を高める。そのため、S含有量を0.008%以上とする。より鋼の被削性を高める場合、好ましいS含有量は0.010%以上であり、さらに好ましいS含有量は、0.015%以上である。一方、Sを過剰に含有すれば、鋼の冷間鍛造性や疲労強度が低下する。したがって、S含有量は、0.040%未満である。鋼の冷間鍛造性をさらに高める場合、好ましいS含有量は0.030%未満であり、さらに好ましいS含有量は、0.025%未満である。
 Cr:0.01~3.00%
 クロム(Cr)は、鋼の焼入れ性を高め、引張強度、及び浸炭処理や高周波焼入れ後の鋼の表面硬度を高める。本実施形態に係る冷間鍛造用鋼により製造される機械部品は、浸炭処理や高周波焼入れにより鋼の表面を硬化する場合があるので、これらの効果を得るため、Cr含有量を0.01%以上とする。鋼の焼入れ性及び引張強度をさらに高める場合、好ましいCr含有量は、0.03%以上であり、さらに好ましいCr含有量は、0.10%以上である。一方、Cr含有量が多すぎると、鋼の冷間鍛造性や疲労強度が低下する。したがって、Cr含有量は、3.00%以下である。冷間鍛造性及び疲労強度をさらに高める場合、好ましいCr含有量は2.00%以下であり、より好ましいCr含有量は1.50%以下であり、さらに好ましいCr含有量は、1.20%以下である。
 Al:0.010~0.100%
 Alは脱酸作用を有する元素である。またAlは、Nと結合してAlNを形成し、浸炭加熱時のオーステナイト粒粗大化防止に有効な元素である。しかしながら、Alの含有量が0.010%未満では、安定してオーステナイト粒の粗大化を防止できない。オーステナイト粒が粗大化した場合、曲げ疲労強度が低下する。そのため、Al含有量を0.010%以上とする。好ましくは0.030%以上である。一方、Alの含有量が0.100%を超えると、粗大な酸化物が形成されやすくなり、曲げ疲労強度が低下する。したがって、Alの含有量を0.100%以下とする。Al含有量の好ましい上限は0.060%である。
 Bi:0.0001~0.0050%
 Biは、本発明において重要な元素である。微量のBiを含有することによって、鋼の凝固組織が微細化し、その結果、硫化物が微細分散する。Mn硫化物の微細化効果を得るには、Biの含有量を0.0001%以上とする必要がある。被削性をさらに向上させるには、Bi含有量を0.0010%以上とすることが好ましい。一方、Biの含有量が0.0050%を超えると、デンドライト組織の微細化効果が飽和し、かつ鋼の熱間加工性が劣化し、熱間圧延が困難となる。そのため、Bi含有量を0.0050%以下とする。Bi含有量は0.0048%以下であってもよい。
 N:0.0250%以下
 窒素(N)は、不純物として含有される。鋼中に固溶するNは、鋼の冷間鍛造時の変形抵抗を大きくし、また冷間鍛造性を低下させる。また、Bを含有させる場合には、Nの含有量が高いとBNが生成され、Bの焼入れ性向上効果を低下させてしまう。したがって、Bを含む場合、TiやNbを含まない場合には、N含有量はなるべく少ない方が好ましい。そのため、N含有量を0.0250%以下とする。好ましいN含有量は、0.0180%以下であり、さらに好ましいN含有量は、0.0150%以下である。N含有量は少ない方が好ましいので、0%でもよい。
 一方、NをTiやNbとともに含有させると、窒化物や炭窒化物を生成することにより、オーステナイト結晶粒が微細化され、鋼の冷間鍛造性や疲労強度が高まる。Bを含まず、かつTiやNbを含有して窒化物や炭窒化物を積極的に生成する場合には、0.0060%以上含有させてもよい。
 P:0.050%以下
 燐(P)は不純物である。Pは鋼の冷間鍛造性や熱間加工性を低下させる。したがって、P含有量は少ない方が好ましい。P含有量が0.050%を超えると冷間鍛造性や熱間加工性の低下が特に大きくなるので、P含有量を0.050%以下とする。好ましいP含有量は0.035%以下であり、さらに好ましいP含有量は、0.020%以下である。P含有量は少ない方が好ましいので、0%でもよい。
 O:0.0020%以下
 O(酸素)は、Alと結合して硬質な酸化物系介在物を形成しやすく、曲げ疲労強度を低下させる。特に、Oの含有量が0.0020%を超えると、疲労強度の低下が著しくなる。したがって、Oの含有量を0.0020%以下とする。不純物元素としてのOの含有量は0.0010%以下にすることが好ましく、製鋼工程でのコスト上昇をきたさない範囲で、できる限り少なくすることがさらに望ましく、0%でもよい。
 本実施形態に係る冷間鍛造用鋼の化学組成の残部は、Fe及び不純物からなることを基本とする。ここでいう不純物は、鋼の原料として利用される鉱石やスクラップ、あるいは製造過程の環境等から混入する元素をいう。本実施の形態において、不純物は、上述したP、O、Nの他に、たとえば、銅(Cu)、ニッケル(Ni)等である。不純物であるCu及びNi含有量は、JIS G4053機械構造用合金鋼鋼材に規定されたSCr鋼及びSCM鋼中のCu及びNi含有量と同程度であり、Cu含有量は0.30%以下、Ni含有量は0.25%以下とすることが好ましい。
 [選択元素について]
 本実施形態に係る冷間鍛造用鋼は、上述した元素に加えて、さらに、Mo、V、B、Mg、Ti、Nbからなる群から選択された1種または2種以上を後述する範囲でFeの一部に代えて含有させてもよい。Mo、V、B及びMgはいずれも、鋼の疲労強度を高めるのに有効である。また、Ti、Nbは鋼の冷間鍛造性及び疲労強度を高めるのに有効である。しかしながら、これらの元素は必ずしも含有させる必要はないので、下限は0%である。
 Mo:0~1.00%
 モリブデン(Mo)は、鋼の焼入れ性を高め、鋼の疲労強度を高める。また、Moは、浸炭処理において、不完全焼入れ層を抑制する。Moを少しでも含有すれば、上記効果が得られる。Mo含有量が0.02%以上であれば、上記効果が顕著に得られるので好ましい。より好ましくは0.05%以上である。一方、Mo含有量が多すぎれば、鋼の被削性が低下する。さらに、鋼の製造コストも高くなる。したがって、含有させる場合でも、Mo含有量は、1.00%以下である。好ましくは0.50%以下であり、さらに好ましくは、0.30%以下である。
 Ni:0~1.00%
 ニッケル(Ni)は、鋼の焼入れ性を高める効果があり、より疲労強度を高めるために有効な元素である。そのため、必要に応じて含有させてもよい。Niの焼入れ性向上による疲労強度を高める効果を安定して得るためには、Ni含有量は0.10%以上であることが好ましい。しかしながら、Niの含有量が1.00%を超えると、焼入れ性の向上による疲労強度を高める効果が飽和するだけでなく、変形抵抗が高くなり冷間鍛造性の低下が顕著となる。そのため、含有させる場合のNiの量を1.00%以下とする。含有させる場合のNiの量は0.80%以下であることが好ましい。
 V:0~0.30%
 バナジウム(V)は、鋼中で炭化物を形成し、鋼の疲労強度を高める。バナジウム炭化物は、フェライト中に析出して鋼の芯部(表層以外の部分)の強度を高める。Vを少しでも含有すれば、上記効果が得られる。V含有量が0.03%以上であれば、上記効果が顕著に得られるので好ましい。より好ましくは0.04%以上、さらに好ましくは0.05%以上である。一方、V含有量が多すぎれば、鋼の冷間鍛造性及び疲労強度が低下する。したがって、含有させる場合でも、V含有量は0.30%以下である。好ましくは0.20%以下であり、さらに好ましくは、0.10%以下である。
 B:0~0.0200%
 ボロン(B)は、鋼の焼入れ性を高め、疲労強度を高める。Bが少しでも含有されれば、上記効果が得られる。B含有量が0.0005%以上であれば、上記効果が顕著に得られるので好ましい。より好ましく0.0010%以上、さらに好ましくは0.0020%以上である。一方、B含有量が0.0200%を超えると、その効果は飽和する。したがって、含有させる場合でも、B含有量は0.0200%以下である。好ましくは、0.0120%以下であり、さらに好ましくは、0.0100%以下である。
 Mg:0~0.0035%
 マグネシウム(Mg)は、Alと同様に、鋼を脱酸し、鋼中の酸化物を微細化する。鋼中の酸化物が微細化することにより、粗大酸化物を破壊起点とする確率が低下し、鋼の疲労強度が高まる。Mgを少しでも含有すれば、上記効果が得られる。Mg含有量が0.0001%以上であれば、上記効果が顕著に得られるので好ましい。より好ましくは0.0003%以上、さらに好ましくは0.0005%以上である。一方、Mg含有量が多すぎれば、上記効果は飽和し、かつ、鋼の被削性が低下する。したがって、含有させる場合でも、Mg含有量は0.0035%以下である。好ましくは0.0030%以下であり、さらに好ましくは、0.0025%以下である。
 Ti:0~0.060%
 チタン(Ti)は、鋼中で微細な炭化物や窒化物、炭窒化物を生成し、ピン止め効果によりオーステナイト結晶粒を微細化する元素である。オーステナイト結晶粒が微細化されると、鋼の冷間鍛造性や疲労強度が高まる。Tiが少しでも含有されれば、上記効果が得られる。Ti含有量が0.002%以上であれば、上記効果が顕著に得られるので好ましい。より好ましくは0.005%以上、さらに好ましくは0.010%以上である。一方、Ti含有量が多すぎれば、鋼の被削性及び冷間鍛造性が低下する。したがって、含有させる場合でも、Ti含有量は0.060%以下である。好ましくは0.040%以下であり、さらに好ましくは0.030%以下である。
 Nb:0~0.080%
 ニオブ(Nb)は、Tiと同様に、微細な炭化物や窒化物、炭窒化物を生成してオーステナイト結晶粒を微細化し、鋼の冷間鍛造性及び疲労強度を高める。Nbが少しでも含有されれば、上記効果が得られる。Nb含有量が0.010%以上であれば、上記効果が顕著に得られるので好ましい。より好ましくは0.015%以上、さらに好ましくは0.020%以上である。一方、Nb含有量が多すぎれば、上記効果は飽和し、かつ、鋼の被削性が低下する。したがって、含有させる場合でも、Nb含有量は0.080%以下である。好ましくは0.050%以下であり、さらに好ましくは0.040%以下である。
 以上のように、本実施形態に係る冷間鍛造用鋼は、上述の基本元素を含み、残部Fe及び不純物からなる化学組成、または、上述の基本元素と、上述の選択元素から選択される少なくとも1種とを含み、残部Fe及び不純物からなる化学組成を有する。
 次に、本実施形態に係る冷間鍛造用鋼の組織について説明する。
[金属組織中に円相当径で1.0~10.0μmの硫化物を1200個/mm以上含む]
 硫化物は、被削性の向上に有用である。ただし、S含有量を増加させると被削性は向上するものの、粗大な硫化物が増加する。熱間圧延等によって延伸した粗大な硫化物は、冷間鍛造性を損なう。そのため、硫化物のサイズ、個数密度を制御することが必要である。具体的には、本実施形態に係る冷間鍛造用鋼では、金属組織中に円相当径で1.0~10.0μmの硫化物を1200個/mm以上とする。円相当径で1.0~10.0μmの硫化物が1200個/mm未満であると、切りくずの分断に寄与する硫化物の個数が十分でなく、被削性が劣化するので好ましくない。上限を限定する必要はないが、2000個/mm超とすることは困難である。円相当径が1.0~10.0μmの硫化物を対象としたのは、10.0μmを超える硫化物は破壊の起点になるためであり、1.0μm未満の小さな硫化物は制御しても冷間鍛造性および切りくず処理性に効果がないためである。1.0μm未満の硫化物の個数密度または10.0μm超の硫化物の個数密度の増加は、円相当径で1.0~10.0μmの硫化物の個数密度の減少につながるため好ましくない。
 硫化物の円相当径は、硫化物の面積と等しい面積を有する円の直径であり、画像解析によって求めることができる。同様に、硫化物の個数は、画像解析によって求めることができる。また、介在物が硫化物であることは、走査電子顕微鏡に付属するエネルギー分散型X線解析によって確認すればよい。
[硫化物同士の平均距離が30.0μm未満]
 さらに、被削時の切りくず処理性を向上するには、微細な硫化物を分散させることが必要である。すなわち、硫化物同士の間隔を小さくすることが重要である。具体的には、硫化物同士の平均距離が30.0μm未満とする必要がある。本発明者らは、硫化物同士の平均距離(硫化物間の粒子間距離)と、切りくず処理性との関係について種々実験を行った結果、硫化物間の粒子間距離が、30.0μm未満であれば、良好な切りくず処理性が得られることを確認している。一方、硫化物同士の平均距離が短くなると、破壊の起点となりやすくなるので、平均距離は10.0μm以上であることが好ましい。
 硫化物間の粒子間距離は、画像解析によって求めることができる。
[d+3σ≦10.0]
[SA/SB<0.30]
 本実施形態における冷間鍛造用鋼では、さらに、式(1)及び(2)を満たす必要がある。
 d+3σ≦10.0(μm)   ・・・(1)
 SA/SB<0.30    ・・・(2)
 ここで、式(1)におけるdは円相当径1.0μm以上の硫化物の円相当径の平均値(μm)であり、σは円相当径1.0μm以上の硫化物の円相当径の標準偏差である。また、式(2)におけるSAは円相当径で1.0μm以上3.0μm未満の硫化物の個数であり、SBは円相当径で1.0μm以上の硫化物の個数である。
 硫化物の円相当径は、硫化物の面積と等しい面積を有する円の直径であり、画像解析によって求めることができる。同様に、硫化物の個数、硫化物間の粒子間距離についても、画像解析によって求めることができる。具体的には、以下の手順で求めることができる。すなわち、球状化焼鈍後の丸棒のD/4位置を軸方向に対して平行に切断し、硫化物観察用の試験片を採取し、試験片を樹脂埋めした後、冷間鍛造用鋼の長手方向と平行な被検面を鏡面研磨する。これらの研磨試験片の所定位置を走査電子顕微鏡にて100倍で写真撮影して、0.9mmの検査基準面積(領域)の画像を10視野分準備する。すなわち、硫化物の観察視野は、9mmである。各観察領域において、走査電子顕微鏡で観察される反射電子像のコントラストに基づいて、硫化物を特定し、その観察視野(画像)中の円相当径が1.0μm以上の硫化物の粒径分布を検出する。この観察視野画像を画像解析することで、硫化物の個数を求めることができる。また、硫化物の面積と同一の面積を有する円の直径を示す円相当径に換算して円相当径を求めることができる。また、硫化物間の平均距離は、硫化物の粒径分布を検出した観察視野(画像)から、円相当径が1.0μm以上の硫化物の重心を求め、各硫化物について他の硫化物との重心間距離を測定し、各硫化物について最も近接して存在する硫化物の距離を測定する。そして、各視野の硫化物全数を対象に、最近接硫化物間距離の実測値を測定し、その平均距離を硫化物間の平均距離とする。
 [式(1)について]
 連続鋳造鋳片の凝固組織は、通常はデンドライト形態を呈している。鋼材中の硫化物は、凝固前(溶鋼中)、または凝固時に晶出することが多く、デンドライト1次アーム間隔に大きく影響を受ける。すなわち、デンドライト1次アーム間隔が小さければ、樹間に晶出する硫化物は小さくなる。そのため、鋼の鋳片のデンドライト1次アーム間隔を、例えば600μm未満に低減して、デンドライト樹間から晶出した微細な硫化物の割合を増やし、10.0μm超える硫化物を無くせば、冷間鍛造性が向上する。本実施形態に係る冷間鍛造用鋼では、観察視野9mm当りに検出される硫化物の円相当径のばらつきを標準偏差σとして算出し、この標準偏差の3σに平均円相当径dを加えた値を式(1)の左辺(F1)とし、F1を次の式(1’)のとおり定義した。
 F1=d+3σ  (1’)
 ここで、式(1’)中のd及びσは、式(1)におけるd及びσと同じである。F1値は、観察視野9mmの範囲内で観察される硫化物の円相当径及び円相当径の標準偏差から予測される、本実施形態に係る冷間鍛造溶鋼に存在する光学顕微鏡で観察可能な硫化物のうち99.7%の個数の硫化物における最大円相当径を示している。すなわち、F1値が10.0μm以下であれば、本実施形態に係る冷間鍛造用鋼には、最大円相当径で10.0μm超の硫化物はほとんど存在しないことになる。最大円相当径で10.0μm超の粗大な硫化物が減少することにより、冷間鍛造性が向上する。また、切りくず処理性向上のため硫化物間の距離を小さくしたとしても、冷間鍛造性は低下しない。観察対象とした硫化物の円相当径を1.0μm以上としたのは、現実的に汎用の機器で、粒子のサイズと成分を統計的に扱うことが可能でかつ、これより小さな硫化物を制御しても冷間鍛造性および切りくず処理性に与える影響が少ないためである。好ましくは、F1の値は10.0μm未満である。
 [式(2)について]
 一方で、観察される硫化物のうち、円相当径が1.0μm以上3.0μm未満の硫化物の個数を、円相当径が1.0μm以上の硫化物の個数で除した値が0.30以上の場合に、切りくず処理性が低下する。この個数密度を式(2)の左辺(F2)とし、F2を次の式(2’)の通り定義した。
 F2=SA/SB  (2’)
 ここで、SA及びSBは式(2)におけるSA及びSBと同じである。F2値が0.30未満であれば、切削時の切りくず分断時に応力集中源になりにくい微細な硫化物の割合が少なくなるため、切りくず処理性が向上する。観察対象とした硫化物の円相当径を1.0μm以上としたのは、これより小さな硫化物を制御しても冷間鍛造性および切りくず処理性に効果がないためである。
[製造方法]
 本実施形態に係る冷間鍛造用鋼の好ましい製造方法を説明する。本実施形態に係る冷間鍛造用鋼は、上述の特徴を有していれば、製造方法に限定されないが、上記の化学成分を有し、かつ表面から15mmの範囲内におけるデンドライト1次アーム間隔が600μm未満である鋳片を連続鋳造し、この鋳片を熱間加工し、更に焼鈍することで、安定して製造されるので好ましい。ここで熱間加工は、鋳片を鍛造によって鋼片とする熱間加工工程、及び/又は、鋳片または鋼片を熱間圧延する熱間圧延工程を含む。また、焼鈍は球状化焼鈍が好ましい。
[鋳造工程]
 上記化学組成を満たす鋼の鋳片を連続鋳造法により製造する。造塊法によりインゴット(鋼塊)にしてもよい。鋳造条件は例えば、220×220mm角の鋳型を用いて、タンディッシュ内の溶鋼のスーパーヒートを10~50℃とし、鋳込み速度を1.0~1.5m/分とする条件を例示できる。
 さらに、デンドライト一次アーム間隔を600μm未満にするために、上記化学組成を有する溶鋼を鋳造する際に、鋳片表面から15mmの深さにおける液相線温度から固相線温度までの温度域内の平均冷却速度を120℃/min以上500℃/min以下とすることが望ましい。デンドライト1次アーム間隔を600μm未満とすれば、硫化物が微細に分散するので、上述した本実施形態に係る冷間鍛造溶鋼の硫化物を得るのに有利である。平均冷却速度が120℃/min未満では、鋳片表面から15mmの深さ位置におけるデンドライト一次アーム間隔を600μm未満とすることが困難となり、硫化物を微細分散できないおそれがある。一方、平均冷却速度が500℃/min超では、デンドライト樹間から晶出する硫化物が微細になり過ぎ、切りくず処理性が低下してしまう恐れがある。
 液相線温度から固相線温度までの温度域とは、鋳片の凝固開始から凝固終了までの温度域のことである。したがって、この温度域での平均冷却温度とは、鋳片の平均凝固速度を意味する。上記の平均冷却速度は、例えば、鋳型断面の大きさ、鋳込み速度等は適正な値に制御すること、または鋳込み直後において、水冷に用いる冷却水量を増大させるなどの手段により達成できる。これは、連続鋳造法および造塊法共に適用可能である。
 上記の鋳片表面から15mm深さの位置での冷却速度は、得られた鋳片の断面をピクリン酸にてエッチングし、鋳片表面から15mmの深さの位置のそれぞれについて鋳込み方向に5mmピッチでデンドライト2次アーム間隔λ(μm)を100点測定し、次式(C)に基づいて、その値からスラブの液相線温度から固相線温度までの温度域内の冷却速度A(℃/秒)を算出し、算術平均した平均である。
  λ=710×A-0.39  (C)
 そのため、例えば、予め鋳造条件を変更した複数の鋳片を製造し、各鋳片における冷却速度を上記式により求め、得られた冷却速度から最適な鋳造条件を決定することで、平均冷却速度を制御することができる。
 また、中心偏析低減のため、連続鋳造の凝固途中の段階で圧下を加えてもよい。
[熱間加工工程]
 熱間加工工程では、鋳片またはインゴットを熱間鍛造等の熱間加工により鋼材に加工する、または、鋳片又はインゴットを熱間加工して、ビレット(鋼片)を製造し、更に、ビレットを熱間圧延して、棒鋼や線材等の鋼材を得ればよい。熱間加工、熱間圧延は、求められる機械特性などに応じて、公知の方法で行えばよい。
[焼鈍工程]
 製造された棒鋼または線材等の鋼材に対して、球状化焼鈍処理を実施する。球状化焼鈍処理により、鋼材の冷間鍛造性を高めることができる。球状化焼鈍は公知の方法で行えばよい。
 このようにして、本実施形態に係る冷間鍛造用鋼が得られる。
[機械部品の製造方法]
 また、球状化焼鈍処理を実施された棒鋼、線材(冷間鍛造用鋼)を冷間鍛造し、粗形状の中間品を製造し、製造された中間品に対して、必要に応じて機械加工によって所定の形状に切削し、さらに周知の条件で、表面硬化処理を実施し、表面硬化処理後の中間品を機械加工により所定の形状に切削することで、冷間鍛造用鋼からなる機械部品が得られる。表面硬化処理は実施しなくてもよいが、実施する場合にはたとえば、浸炭処理や窒化処理、高周波焼入れである。
 表1に示す化学組成を有する鋼A~Yを270ton転炉で溶製し、連続鋳造機を用いて連続鋳造を実施して、220×220mm角の鋳片を製造した。なお、連続鋳造の凝固途中の段階で圧下を加えた。
 また、各鋼の鋳造において、鋳片の表面から15mmの深さの位置における液相線温度から固相線温度までの温度域内の平均冷却速度を、鋳型の冷却水量を変更することによって変更した。
 表1に示す鋼A~Lは、本発明で規定する化学組成を有する鋼である。一方、鋼M~Yは、化学組成が本発明で規定する条件から外れた比較例の鋼である。表1中の数値の下線は、本発明の範囲外であることを示す。
 連続鋳造により得られた鋳片を一旦室温まで冷却し、冷却した鋳片から、デンドライト組織観察用の試験片を採取した。
 その後、各鋳片を1250℃で2時間加熱し、加熱後の鋳片を熱間鍛造し、熱間鍛造後は放冷して、直径30mmの複数の丸棒(棒鋼)を製造した。
 次に、直径30mmの丸棒に対して、球状化焼鈍処理を実施した。具体的には、上述の丸棒を、加熱炉を用いて1300℃で1時間均熱した。次に、丸棒を別の加熱炉に移し、925℃で1時間均熱し、均熱後に丸棒を放冷した。次に、丸棒を再び加熱し、765℃で10時間均熱した。均熱後、15℃/hの冷却速度で丸棒を650℃まで冷却した。その後、丸棒を放冷した。このようにして、試験番号1~27の冷間鍛造用鋼を製造した。
 これらについて、ミクロ組織及び硫化物の観察、冷間鍛造性試験、被削性試験を行った。
[凝固組織観察方法]
 凝固組織は、上記の鋳片の断面をピクリン酸にてエッチングし、鋳片表面から深さ方向に15mmの位置を鋳込み方向に5mmピッチでデンドライト1次アーム間隔を100点測定し、平均値を求めた。
[ミクロ組織観察方法]
 球状化焼鈍処理後の丸棒のミクロ組織を観察した。丸棒のD/4位置を軸方向に対して平行に切断し、ミクロ組織観察用の試験片を採取した。試験片の切断面を研磨し、ナイタル腐食液で腐食し、腐食後、400倍の光学顕微鏡で、切断面の中央部のミクロ組織を観察した。各試験番号の丸棒のミクロ組織はいずれも、フェライトに球状セメンタイトが分散した組織であった。
 さらに、ミクロ組織観察用試験片を用いて、JIS Z2244に規定されたビッカース硬さ試験を実施した。5箇所の硬さを測定した結果、各丸棒のビッカース硬さはいずれもHv100~140の範囲内であり、各丸棒は、同程度の硬度を有していた。
[硫化物観察方法]
 球状化焼鈍後の丸棒のD/4位置を軸方向に対して平行に切断し、硫化物観察用の試験片を採取した。試験片を樹脂埋めした後、被検面を鏡面研磨した。被検面は、冷間鍛造用鋼の長手方向と平行である。被検面内の硫化物を走査電子顕微鏡とエネルギー分散型X線分光分析装置(EDS)により特定した。具体的には、縦10mm×横10mmの研磨試験片を10個作製し、これらの研磨試験片の所定位置を走査電子顕微鏡にて100倍で写真撮影して、0.9mmの検査基準面積(領域)の画像を10視野分準備した。すなわち、硫化物の観察視野は、9mmである。各観察領域において、走査電子顕微鏡で観察される反射電子像のコントラストに基づいて、硫化物を特定し、所定の硫化物であるかどうか、EDSにて確認した。反射電子像では、観察領域をグレースケール画像で表示した。反射電子像内におけるマトリクス(母相)、硫化物、酸化物のコントラストはそれぞれ異なるものとなった。その観察視野(画像)中の円相当径が1.0μm以上の硫化物の粒径分布を検出した。これらの寸法(直径)は、硫化物の面積と同一の面積を有する円の直径を示す円相当径に換算した。検出した硫化物の粒径分布から、硫化物の平均円相当径および標準偏差を算出した。
 また、硫化物間の平均距離は、硫化物の粒径分布を検出した観察視野(画像)から、円相当径が1.0μm以上の硫化物の重心を求め、各硫化物について他の硫化物との重心間距離を測定し、各硫化物について最も近接して存在する硫化物の距離を測定した。そして、各視野の硫化物全数を対象に最近接硫化物間距離の実測値を測定し、その平均距離を硫化物間の平均距離とした。
 表2に、F1値およびF2値、1.0~10.0μmの硫化物の個数密度及び硫化物間の距離を示す。ここで、表2中の下線は、本発明の範囲外であることを意味する。
 [冷間鍛造性試験]
 球状化焼鈍後の直径30mmの丸棒のR/2位置から、丸棒試験片を作製した。丸棒試験片は、直径30mmの丸棒のR/2位置を中心とした直径10mm、長さ15mmの試験片であり、丸棒試験片の長手方向は、直径30mmの丸棒の鍛伸軸と平行であった。
 各鋼について、8個の丸棒試験片を作製した。冷間圧縮試験には、500ton油圧プレスを使用した。8個の丸棒試験片を使用して圧縮率を段階的に引き上げて冷間圧縮を実施した。具体的には、初期圧縮率で8個の丸棒試験片を冷間圧縮した。冷間圧縮後、各丸棒試験片に割れが発生したか否かを目視により確認した。割れが確認された丸棒試験片を排除した後、残った丸棒試験片(つまり、割れが観察されなかった丸棒試験片)に対して、圧縮率を引き上げて冷間圧縮を再度実施した。実施後、割れの有無を確認した。割れが確認された丸棒試験片を排除した後、残った丸棒試験片に対して、圧縮率を引き上げて冷間圧縮を再度実施した。8個の試験片のうち、割れが確認された丸棒試験片が4個になるまで、上述の工程を繰り返した。8個の試験片のうち、4個の丸棒試験片に割れが確認されたときの圧縮率を「限界圧縮率」と定義した。80%の圧縮率で冷間圧縮を実施した後、割れが確認された丸棒試験片が4個以下である場合、その鋼の限界圧縮率は「80%」とした。
 冷間鍛造性の目標は、限界圧縮率において実用上問題ない75%以上とした。
 [被削性試験]
 各鋼について、上記の球状化焼鈍を施した直径30mmの棒鋼の残りを用いて、冷間鍛造の代わりに冷間での引抜きにより歪を与え、その引抜き後の被削性で冷間鍛造後の被削性を評価した。
 具体的には、球状化焼鈍を施した直径30mmの丸棒鋼の残りを、減面率30.6%で冷間引抜きして、直径25mmの棒鋼にした。この冷間引抜きした棒鋼を長さ500mmに切断して、旋削加工用の試験材を得た。
 このようにして得た直径25mmで長さ500mmの試験材の外周部を、NC旋盤を用いて、下記の条件で旋削加工し、被削性として、切りくず処理性を調査した。
 切りくず処理性は、以下の方法で評価した。被削性試験中の10秒間で排出された切りくずを回収した。回収された切りくずの長さを調べ、長いものから順に10個の切りくずを選択した。選択された10個の切りくずの総重量を「切りくず重量」と定義した。切りくずが長くつながった結果、切りくずの総数が10個未満である場合、回収された切りくずの総重量を測定し、10個の個数に換算した値を「切りくず重量」と定義した。例えば、切りくずの総数が7個であって、その総重量が12gである場合、切りくず重量は、12g×10個/7個、と計算した。
<使用チップ>
 母材材質:超硬P20種グレード
 コーティング:なし
<旋削加工条件>
 周速:150m/分
 送り:0.2mm/rev
 切り込み:0.4mm
 潤滑:水溶性切削油を使用
 切りくず重量が15g以下であれば、切りくず処理性が高いと判断した。切りくず重量が15gを超える場合、切りくず処理性が低いと評価した。
 表1及び表2に示すように、試験番号1~12の鋼(鋼A~L)の化学組成は、本発明の冷間鍛造用鋼の化学組成の範囲内であり、かつ、式(1)、式(2)を満たし、1.0~10.0μmの硫化物の個数密度及び硫化物間の距離が本発明の範囲内であった。その結果、試験番号1~12の鋼は、優れた冷間鍛造性および冷間鍛造後の被削性を有した。
 試験番号13の鋼は、本発明の化学組成の範囲内であった。しかしながら、鋳造時の冷却速度が速すぎたので、微細なMn硫化物が多量に生成し、式(2)を満たさなかった。その結果、Mn硫化物が切削時の切欠き効果の役割を果たさなかったため切りくず重量が15gを超えた。
 試験番号14の鋼は、本実施形態による冷間鍛造用鋼の化学組成の範囲内であった。しかしながら、鋳造時の冷却速度が遅かったので、1.0~10.0μmの硫化物個数が少なかった。また、硫化物間の平均距離が30.0μm以上であった。その結果、被削性が低かった。
 試験番号15および試験番号16は、Biを含有せず、S含有量が規定値の下限未満であった。そのため、生成した硫化物の円相当径が小さく式(1)を満たしたが、1.0~10.0μmの硫化物個数が少なく、硫化物間の平均距離が30.0μm以上であったため、冷間鍛造性は高いものの、被削性は低かった。具体的には、切りくず重量が15gを超えた。
 試験番号17~20は、Biを含有しなかった。そのため、式(1)を満たさなかった。粗大な硫化物が存在し、1.0~10.0μmの硫化物個数が少なかったため、冷間鍛造性が基準値を下回った。
 試験番号21は、Biを含有したがS含有量が規定値の上限を超えた。その結果、デンドライト1次アーム間隔は規定値以下であったものの式(1)を満たさなかったため、冷間鍛造性が基準値を下回った。S含有量が多く、粗大な硫化物が存在したため、冷間鍛造性が基準値を下回ったと推測される。
 試験番号22および試験番号23は、Biを含有したがS含有量が規定値の下限以下であった。その結果、式(1)を満たし冷間鍛造性は基準値以上であったものの、式(2)を満たさず円相当径3μm未満の硫化物が多く、かつ、硫化物間の平均距離が30μm以上であったため、切りくず重量が15gを超えた。
 試験番号24および試験番号25は、Biを含有したがS含有量が規定値の上限を超えた。その結果、デンドライト1次アーム間隔は規定値以下であったものの、式(1)を満たさなかった。そのため、冷間鍛造性が基準値を下回った。
 試験番号26は、Bi含有量が規定値の上限を超えた。その結果、式(1)を満たし、冷間鍛造性は規定値以上であったものの、式(2)を満たさなかった。そのため、円相当径3μm未満の硫化物が多く、切りくず重量が15gを超えた。
 試験番号27は、Biを含有しなかった。そのため、1.0~10.0μmの硫化物個数が少なく、硫化物間の平均距離が30.0μm以上であった。その結果、冷間鍛造性は高いものの、被削性は低かった。具体的には、切りくず重量が15gを超えた。
 以上、本発明の実施の形態を説明したが、上述した実施の形態は本発明を実施するための例示に過ぎない。よって、本発明は上述した実施の形態に限定されることなく、その趣旨を逸脱しない範囲内で上述した実施の形態を適宜変形して実施することが可能である。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 本発明の冷間鍛造用鋼及びその製造方法によれば、自動車、産業機械用の歯車、シャフト、プーリーなどの鋼製部品の製造費用に占める切削加工コストの割合を低減でき、また部品の品質を向上することができる。また、歯車、シャフト、プーリーなどの鋼製部品の素材となる、冷間鍛造後の被削性、つまり、浸炭、浸炭窒化または窒化前の被削性に優れた冷間鍛造用鋼が得られる。そのため、産業上の利用可能性が高い。

Claims (5)

  1.  化学成分が、質量%で、
    C:0.05~0.30%、
    Si:0.05~0.45%、
    Mn:0.40~2.00%、
    S:0.008~0.040%未満、
    Cr:0.01~3.00%、
    Al:0.010~0.100%、
    Bi:0.0001~0.0050%、
    Mo:0~1.00%、
    Ni:0~1.00%、
    V:0~0.30%、
    B:0~0.0200%、
    Mg:0~0.0035%、
    Ti:0~0.060%、及び
    Nb:0~0.080%、
    を含有するとともに、残部がFeおよび不純物からなり、
     前記不純物に含まれるN、PおよびOが、
    N:0.0250%以下、
    P:0.050%以下、
    O:0.0020%以下であり、
     下記式(1)および下記式(2)を満たし、
     金属組織中に、円相当径で1.0~10.0μmの硫化物を1200個/mm以上含み、
     前記硫化物同士の平均距離が30.0μm未満である
    ことを特徴とする冷間鍛造用鋼。
     d+3σ≦10.0    ・・・(1)
     SA/SB<0.30    ・・・(2)
     式(1)におけるdは円相当径が1.0μm以上の硫化物の円相当径の平均値であり、σは前記円相当径が1.0μm以上の硫化物の前記円相当径の標準偏差であり、式(2)におけるSAは円相当径が1.0μm以上3.0μm未満の硫化物の個数であり、SBは前記円相当径が1.0μm以上の前記硫化物の個数である。
  2.  前記化学成分が、質量%で、
    Mo:0.02~1.00%、
    Ni:0.10~1.00%、
    V:0.03~0.30%、
    B:0.0005~0.0200%、及び
    Mg:0.0001~0.0035%、
    からなる群から選択される1種または2種以上を含有する
    ことを特徴とする請求項1に記載の冷間鍛造用鋼。
  3.  前記化学成分が、質量%で、
    Ti:0.002~0.060%、及び
    Nb:0.010~0.080%、
    からなる群から選択される1種または2種を含有する
    ことを特徴とする請求項1又は請求項2に記載の冷間鍛造用鋼。
  4.  請求項1~請求項3の何れか一項に記載の化学成分を有し、かつ表面から15mmの範囲内におけるデンドライト1次アーム間隔が600μm未満である鋳片を鋳造する鋳造工程と;
     前記鋳片を熱間加工して鋼材を得る熱間加工工程と;
     前記鋼材を焼鈍する焼鈍工程と;
    を有することを特徴とする冷間鍛造用鋼の製造方法。
  5.  前記鋳造工程において、前記鋳片の前記表面から15mmの深さにおける、液相線温度から固相線温度までの温度域内の平均冷却速度を120℃/min以上500℃/min以下とすることを特徴とする請求項4に記載の冷間鍛造用鋼の製造方法。
PCT/JP2016/079080 2016-09-30 2016-09-30 冷間鍛造用鋼及びその製造方法 WO2018061191A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201680089645.4A CN109790604B (zh) 2016-09-30 2016-09-30 冷锻用钢及其制造方法
EP16917741.7A EP3521470B1 (en) 2016-09-30 2016-09-30 Steel for cold forging and a manufacturing method of a steel for cold forging
PCT/JP2016/079080 WO2018061191A1 (ja) 2016-09-30 2016-09-30 冷間鍛造用鋼及びその製造方法
US16/334,705 US11111568B2 (en) 2016-09-30 2016-09-30 Steel for cold forging and manufacturing method thereof
JP2018541842A JP6801717B2 (ja) 2016-09-30 2016-09-30 冷間鍛造用鋼及びその製造方法
KR1020197008428A KR102226488B1 (ko) 2016-09-30 2016-09-30 냉간 단조용 강 및 그 제조 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/079080 WO2018061191A1 (ja) 2016-09-30 2016-09-30 冷間鍛造用鋼及びその製造方法

Publications (1)

Publication Number Publication Date
WO2018061191A1 true WO2018061191A1 (ja) 2018-04-05

Family

ID=61760392

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/079080 WO2018061191A1 (ja) 2016-09-30 2016-09-30 冷間鍛造用鋼及びその製造方法

Country Status (6)

Country Link
US (1) US11111568B2 (ja)
EP (1) EP3521470B1 (ja)
JP (1) JP6801717B2 (ja)
KR (1) KR102226488B1 (ja)
CN (1) CN109790604B (ja)
WO (1) WO2018061191A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114015930A (zh) * 2021-09-22 2022-02-08 武安市裕华钢铁有限公司 一种高效率q235b微钛化钢种生产工艺

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4924422B1 (ja) 1966-07-25 1974-06-22
JPS5114689B1 (ja) 1969-04-02 1976-05-11
JPS5114753B1 (ja) 1970-12-17 1976-05-12
JP2000282171A (ja) 1999-03-31 2000-10-10 Kobe Steel Ltd 切り屑分断性および機械的特性に優れた機械構造用鋼
JP2001234279A (ja) * 2000-02-22 2001-08-28 Kobe Steel Ltd 切屑処理性に優れた冷間鍛造用鋼
JP2012035286A (ja) * 2010-08-05 2012-02-23 Sumitomo Metal Ind Ltd 鍛鋼ロールの製造方法
CN104120371A (zh) * 2014-07-16 2014-10-29 滁州市艾德模具设备有限公司 一种注塑模具用易切削钢材
JP2015007278A (ja) * 2013-06-26 2015-01-15 新日鐵住金株式会社 プラスチック成型用金型鋼の製造方法およびプラスチック成型用金型

Family Cites Families (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0759739B2 (ja) 1989-02-28 1995-06-28 新日本製鐵株式会社 高靭性熱間鍛造用非調質棒鋼
RU2060294C1 (ru) 1993-12-29 1996-05-20 Тарасов Виктор Алексеевич Сталь
JP3399780B2 (ja) 1997-04-22 2003-04-21 新日本製鐵株式会社 熱間鍛造用棒鋼の製造方法
JP3893756B2 (ja) 1998-07-08 2007-03-14 住友金属工業株式会社 熱間鍛造用鋼
JP2000319751A (ja) 1999-03-09 2000-11-21 Nippon Steel Corp 鍛造性と被削性に優れる鋼
DE19926003A1 (de) 1999-06-08 2000-12-14 Fischer Artur Werke Gmbh Haltevorrichtung für einen Getränkebehälter
JP2001131684A (ja) 1999-11-04 2001-05-15 Kobe Steel Ltd 切り屑処理性に優れた機械構造用鋼
JP3524479B2 (ja) 2000-08-31 2004-05-10 株式会社神戸製鋼所 機械的特性に優れた機械構造用快削鋼
JP2002089589A (ja) 2000-09-14 2002-03-27 Unisia Jecs Corp 車両用クラッチ装置
EP1337678B1 (en) 2000-12-01 2007-10-03 Posco Steel plate to be precipitating tin+mns for welded structures, method for manufacturing the same and welding fabric using the same
KR20070087240A (ko) * 2001-06-15 2007-08-27 신닛뽄세이테쯔 카부시키카이샤 고강도 알루미늄계 합금 도금 강판의 열간 프레스 방법
JP3602102B2 (ja) * 2002-02-05 2004-12-15 日本高周波鋼業株式会社 熱間工具鋼
JP2003293081A (ja) 2002-04-08 2003-10-15 Sanyo Special Steel Co Ltd 被削性および転動疲労特性に優れた機械構造用鋼
JP4115737B2 (ja) 2002-04-12 2008-07-09 山陽特殊製鋼株式会社 微細硫化物を利用した被削性と破断分割性に優れる機械構造用鋼
US7081174B2 (en) 2002-04-30 2006-07-25 Sanyo Special Steel Co., Ltd. Process for producing steel products having improved grain size properties and machinability
WO2004050932A1 (ja) 2002-11-15 2004-06-17 Nippon Steel Corporation 被削性に優れる鋼とその製造方法
JP3918787B2 (ja) 2003-08-01 2007-05-23 住友金属工業株式会社 低炭素快削鋼
JP4265776B2 (ja) 2004-02-18 2009-05-20 Jfe条鋼株式会社 被削性に優れた硫黄および硫黄複合快削鋼
JP4500709B2 (ja) * 2005-03-08 2010-07-14 Jfe条鋼株式会社 Bn快削鋼
KR20080007386A (ko) 2005-05-30 2008-01-18 수미도모 메탈 인더스트리즈, 리미티드 저탄소 유황 쾌삭강
JP4440845B2 (ja) * 2005-07-27 2010-03-24 株式会社神戸製鋼所 耐結晶粒粗大化特性、疲労特性及び被削性に優れた肌焼鋼並びにその製造方法
CN101617059A (zh) * 2007-02-23 2009-12-30 克里斯塔尔公司 热机械形成具有很高强度的最终产品的方法及由此制备的产品
JP2009173961A (ja) 2008-01-22 2009-08-06 Kobe Steel Ltd 鍛造用鋼およびこれを用いて得られる鍛造品
JP5114753B2 (ja) 2008-12-19 2013-01-09 新日鐵住金株式会社 被削性に優れる鋼およびその製造方法
JP5381785B2 (ja) 2010-02-16 2014-01-08 新日鐵住金株式会社 高強度鋼板用の連続鋳造鋳片、およびその鋳片から得られた鋼板
JP5503344B2 (ja) 2010-03-10 2014-05-28 株式会社神戸製鋼所 高強度肌焼き鋼部品およびその製造方法
CN102884212A (zh) 2010-10-06 2013-01-16 新日铁住金株式会社 表面硬化钢及其制造方法
EP2634279B1 (en) * 2010-10-27 2017-02-01 Nippon Steel & Sumitomo Metal Corporation Steel for surface hardening for machine structural use, and steel component for machine structural use and process for producing same
US9156117B2 (en) 2010-11-02 2015-10-13 Nippon Steel & Sumitomo Metal Corporation Method of cutting steel for machine structural use
US9796158B2 (en) 2011-02-10 2017-10-24 Nippon Steel & Sumitomo Metal Corporation Steel for carburizing, carburized steel component, and method of producing the same
WO2012108460A1 (ja) 2011-02-10 2012-08-16 新日本製鐵株式会社 浸炭用鋼、浸炭鋼部品、及び、その製造方法
JP5458048B2 (ja) 2011-03-29 2014-04-02 株式会社神戸製鋼所 肌焼鋼およびその製造方法、並びに肌焼鋼を用いた機械構造部品
JP5545273B2 (ja) 2011-06-24 2014-07-09 新日鐵住金株式会社 熱間鍛造用鋼
JP5682485B2 (ja) 2011-07-07 2015-03-11 新日鐵住金株式会社 冷鍛窒化用鋼材
JP5778055B2 (ja) 2012-02-15 2015-09-16 新日鐵住金株式会社 熱間鍛造用圧延棒鋼および熱間鍛造素形材ならびにコモンレールおよびその製造方法
JP5783101B2 (ja) * 2012-03-22 2015-09-24 新日鐵住金株式会社 窒化用鋼材
JP5761105B2 (ja) 2012-04-02 2015-08-12 新日鐵住金株式会社 冷鍛窒化用鋼、冷鍛窒化用鋼材および冷鍛窒化部品
JP5482971B2 (ja) 2012-04-05 2014-05-07 新日鐵住金株式会社 冷間鍛造性に優れた鋼線材または棒鋼
WO2013150669A1 (ja) * 2012-04-06 2013-10-10 新日鐵住金株式会社 合金化溶融亜鉛めっき熱延鋼板およびその製造方法
CN104350167B (zh) * 2012-06-08 2016-08-31 新日铁住金株式会社 钢线材或棒钢
US20160060744A1 (en) 2013-04-18 2016-03-03 Nippon Steel & Sumitomo Metal Corporation Case-hardening steel and case-hardened steel member
JP6111892B2 (ja) 2013-06-25 2017-04-12 新日鐵住金株式会社 鋳片の連続鋳造方法および連続鋳造鋳片
JP6068314B2 (ja) 2013-10-22 2017-01-25 株式会社神戸製鋼所 冷間加工性と浸炭熱処理後の表面硬さに優れる熱延鋼板
ES2759851T3 (es) * 2013-12-20 2020-05-12 Nippon Steel Corp Miembro de lámina de acero prensado en caliente y método para fabricar el mismo
AU2015219819B2 (en) 2014-02-24 2017-05-18 Nippon Steel Corporation Steel for induction hardening
WO2017068935A1 (ja) * 2015-10-19 2017-04-27 新日鐵住金株式会社 熱間鍛造用鋼及び熱間鍛造品
JP6468365B2 (ja) * 2015-11-27 2019-02-13 新日鐵住金株式会社 鋼、浸炭鋼部品、及び浸炭鋼部品の製造方法
KR102099767B1 (ko) * 2015-11-27 2020-04-10 닛폰세이테츠 가부시키가이샤 강, 침탄강 부품 및 침탄강 부품의 제조 방법

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4924422B1 (ja) 1966-07-25 1974-06-22
JPS5114689B1 (ja) 1969-04-02 1976-05-11
JPS5114753B1 (ja) 1970-12-17 1976-05-12
JP2000282171A (ja) 1999-03-31 2000-10-10 Kobe Steel Ltd 切り屑分断性および機械的特性に優れた機械構造用鋼
JP2001234279A (ja) * 2000-02-22 2001-08-28 Kobe Steel Ltd 切屑処理性に優れた冷間鍛造用鋼
JP2012035286A (ja) * 2010-08-05 2012-02-23 Sumitomo Metal Ind Ltd 鍛鋼ロールの製造方法
JP2015007278A (ja) * 2013-06-26 2015-01-15 新日鐵住金株式会社 プラスチック成型用金型鋼の製造方法およびプラスチック成型用金型
CN104120371A (zh) * 2014-07-16 2014-10-29 滁州市艾德模具设备有限公司 一种注塑模具用易切削钢材

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KOICHI ISOBE ET AL.: "Analysis about behavior of formation of MnS during solidification of resulphurized free cutting steel", JOURNAL OF THE IRON & STEEL INSTITUTE OF JAPAN, vol. 72, no. 12, September 1986 (1986-09-01), pages 273, XP009509728, DOI: doi:10.2355/tetsutohagane1955.72.12_S1043 *
See also references of EP3521470A4
W. KURZ; D. J. FISHER: "Fundamentals of Solidification", 1998, TRANS TECH PUBLICATIONS LTD., pages: 256

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114015930A (zh) * 2021-09-22 2022-02-08 武安市裕华钢铁有限公司 一种高效率q235b微钛化钢种生产工艺

Also Published As

Publication number Publication date
JP6801717B2 (ja) 2020-12-16
EP3521470B1 (en) 2024-08-21
CN109790604B (zh) 2021-09-10
JPWO2018061191A1 (ja) 2019-07-25
KR20190042656A (ko) 2019-04-24
US11111568B2 (en) 2021-09-07
US20190264305A1 (en) 2019-08-29
KR102226488B1 (ko) 2021-03-11
EP3521470A4 (en) 2020-03-18
EP3521470A1 (en) 2019-08-07
CN109790604A (zh) 2019-05-21

Similar Documents

Publication Publication Date Title
JP6468365B2 (ja) 鋼、浸炭鋼部品、及び浸炭鋼部品の製造方法
JP6468366B2 (ja) 鋼、浸炭鋼部品、及び浸炭鋼部品の製造方法
JP3614113B2 (ja) 被削性に優れた軸受要素部品用鋼材
EP3492614A1 (en) Steel for machine structures
JP6642237B2 (ja) 冷間鍛造用鋼およびその製造方法
EP3492615A1 (en) Steel for machine structures
JP6642236B2 (ja) 冷間鍛造用鋼
JP6683075B2 (ja) 浸炭用鋼、浸炭鋼部品及び浸炭鋼部品の製造方法
JP5556778B2 (ja) 冷間鍛造用快削鋼
JP5472063B2 (ja) 冷間鍛造用快削鋼
JP6668741B2 (ja) 熱間圧延棒線材
JP6683074B2 (ja) 浸炭用鋼、浸炭鋼部品及び浸炭鋼部品の製造方法
JP6465206B2 (ja) 熱間圧延棒線材、部品および熱間圧延棒線材の製造方法
JP6801717B2 (ja) 冷間鍛造用鋼及びその製造方法
KR20180056748A (ko) 기계 구조용 강 및 고주파 ??칭 강 부품
JP6683073B2 (ja) 浸炭用鋼、浸炭鋼部品及び浸炭鋼部品の製造方法
JP6766531B2 (ja) 冷間鍛造用鋼およびその製造方法
US20240352566A1 (en) Steel material
JP6683072B2 (ja) 浸炭用鋼、浸炭鋼部品及び浸炭鋼部品の製造方法
KR20240075857A (ko) 강재

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16917741

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018541842

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197008428

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016917741

Country of ref document: EP

Effective date: 20190430