WO2017068935A1 - 熱間鍛造用鋼及び熱間鍛造品 - Google Patents

熱間鍛造用鋼及び熱間鍛造品 Download PDF

Info

Publication number
WO2017068935A1
WO2017068935A1 PCT/JP2016/079052 JP2016079052W WO2017068935A1 WO 2017068935 A1 WO2017068935 A1 WO 2017068935A1 JP 2016079052 W JP2016079052 W JP 2016079052W WO 2017068935 A1 WO2017068935 A1 WO 2017068935A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel
mns
less
hot
content
Prior art date
Application number
PCT/JP2016/079052
Other languages
English (en)
French (fr)
Inventor
聡 志賀
卓 吉田
久保田 学
一 長谷川
水上 英夫
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to KR1020187010176A priority Critical patent/KR102074715B1/ko
Priority to EP16857251.9A priority patent/EP3366799B1/en
Priority to JP2017546476A priority patent/JP6521088B2/ja
Priority to US15/767,042 priority patent/US10844466B2/en
Priority to CN201680060712.XA priority patent/CN108138288B/zh
Publication of WO2017068935A1 publication Critical patent/WO2017068935A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K1/00Making machine elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/001Continuous casting of metals, i.e. casting in indefinite lengths of specific alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/30Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for crankshafts; for camshafts
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys

Definitions

  • the present invention relates to hot forging steel and hot forged products.
  • This application claims priority based on Japanese Patent Application No. 2015-205630 filed in Japan on October 19, 2015 and Japanese Patent Application No. 2015-254775 filed in Japan on December 25, 2015. The contents are incorporated here.
  • Hot forged products are used as machine parts for industrial machinery, construction machinery, and transportation machinery represented by automobiles.
  • Examples of mechanical parts include engine parts and crankshafts.
  • a hot forged product is manufactured by the following processes. First, hot forging steel is hot forged to produce an intermediate product. A tempering treatment is performed on the manufactured intermediate product as necessary. Machined into a part shape by cutting, drilling, or the like on an unfinished intermediate product that has been hot forged or an intermediate product that has been subjected to a tempering treatment. Surface hardening treatments such as induction hardening, carburizing, and nitriding are performed on the machined intermediate product. After the surface hardening treatment, the intermediate product is finished by grinding or polishing to produce a hot forged product.
  • a tempering treatment is performed on the manufactured intermediate product as necessary. Machined into a part shape by cutting, drilling, or the like on an unfinished intermediate product that has been hot forged or an intermediate product that has been subjected to a tempering treatment. Surface hardening treatments such as induction hardening, carburizing, and nitriding are performed on the machined intermediate product. After the surface hardening treatment, the intermediate product is finished by grinding or polish
  • ⁇ Hot forged products are machined such as cutting and drilling in an intermediate state. Therefore, excellent machinability is required for steel for hot forging. If the steel contains sulfur (S), it is well known that S forms sulfides (eg, MnS) in the steel and the machinability of the steel is improved by the formed MnS.
  • S sulfur
  • MnS sulfides
  • the hot forged product is subjected to surface hardening treatment (induction hardening, carburizing, nitriding, etc.).
  • induction hardening can harden the surface of steel in a shorter time than carburizing or nitriding.
  • hot cracking occurs in a hot forged product that has been induction hardened.
  • grinding cracks may occur by finishing the intermediate product after induction hardening.
  • a hot forged product subjected to induction hardening is generally subjected to a magnetic particle flaw detection test to confirm the presence or absence of surface flaws such as burn cracks and grinding cracks.
  • a magnetic powder pattern is generally formed by magnetizing a hot forged product to generate a magnetic flux leakage at the surface flaw part of the hot forged product and adsorbing the magnetic powder to a location where a large magnetic flux is generated. Let The presence or absence of wrinkles and the location of surface wrinkles can be specified by this magnetic powder pattern.
  • a pseudo pattern due to MnS may occur in the magnetic particle flaw detection test. This is because MnS is formed by increasing the S content, but since MnS is nonmagnetic, leakage magnetic flux is generated by MnS, and a pseudo pattern resulting from MnS is formed.
  • the pseudo pattern is a magnetic powder pattern formed by factors other than surface defects during the magnetic particle flaw detection test. Therefore, the hot forging may be misidentified as having surface defects due to the pseudo pattern resulting from MnS. In order to prevent such misidentification, the presence or absence of surface flaws can be accurately confirmed by performing a penetration flaw detection test on a hot forged product having a magnetic powder pattern. However, the inspection man-hours increase by performing the penetrant flaw detection test in addition to the magnetic particle flaw detection test.
  • Patent Documents 1 and 2 disclose steel for machine structure containing a predetermined number or more of sulfide inclusions mainly composed of MnS in steel.
  • Mn / S needs to be 0.6 to 1.4 in atomic percent ratio. In this case, since the S content increases, there is a concern that the hot ductility is reduced due to the generation of FeS, and cracks are generated.
  • Patent Documents 3 and 4 propose techniques for suppressing the occurrence of pseudo patterns while maintaining machinability.
  • Patent Document 3 it is disclosed that by containing Ti and reducing the N content, a carbon sulfide resulting from TiS is formed in steel instead of MnS. According to Patent Document 3, it is described that the dispersibility of the carbon sulfide suppresses generation of a pseudo pattern while maintaining machinability.
  • Patent Document 4 discloses that Ca and Te are contained in steel and that Ca / Te ⁇ 1.0. According to Patent Document 4, it is described that Ca and Te are dissolved in MnS in steel to produce spheroidized MnS, thereby suppressing generation of a pseudo pattern while maintaining machinability. Yes.
  • the steel for hot forging described in Patent Document 3 needs to have a high Ti content of 0.04% or more. Therefore, depending on the conditions of hot forging, the hardness of the steel becomes too high, and the machinability may be reduced.
  • the steel for hot forging described in Patent Document 4 spheroidizes MnS by adding Ca and Te to spheroidize MnS and making the hot working reduction ratio 6.0 or more. The generation of pseudo patterns is suppressed.
  • the reduction ratio is expressed by the cross-sectional area of the slab or ingot (mm 2 ) / the cross-sectional area of the steel bar (mm 2 ).
  • the reduction ratio cannot be increased, so that coarse MnS may remain. Even when the reduction ratio is small, to make MnS finer, it is necessary to make MnS as fine as possible at the stage of the slab before hot rolling.
  • the present invention has been made in view of the above-described problems, and provides a hot forging steel and a hot forged product that are excellent in machinability after hot forging and are less likely to generate a pseudo pattern during a magnetic particle flaw detection test. Is an issue.
  • the steel for hot forging according to one embodiment of the present invention is in mass%, C: more than 0.30% to less than 0.60%, Si: 0.10 to 0.90%, Mn: 0 50-2.00%, S: 0.010-0.100%, Cr: 0.01-1.00%, Al: more than 0.005-0.100%, N: 0.0030-0. 0200%, Bi: more than 0.0001 to 0.0050%, Ti: 0 to less than 0.040%, V: 0 to 0.30%, Ca: 0 to 0.0040%, and Pb: 0 to 0.00.
  • the steel for hot forging described in (1) above may contain Ti: 0.001 to less than 0.040% in mass%.
  • the hot forging steel described in (1) or (2) above may contain V: 0.03 to 0.30% in mass%.
  • the hot forging steel according to any one of the above (1) to (3) is Ca: 0.0003 to 0.0040% and Pb: 0.05 to 0.40 in mass%. You may contain 1 type or 2 types selected from the group which consists of%.
  • the hot forging steel according to any one of the above (1) to (4) may be in mass% and P: 0.020% or less.
  • the hot forged product according to another aspect of the present invention is, by mass%, C: more than 0.30 to less than 0.60%, Si: 0.10 to 0.90%, Mn: 0.50 ⁇ 2.00%, S: 0.010 ⁇ 0.100%, Cr: 0.01 ⁇ 1.00%, Al: over 0.005 ⁇ 0.100%, N: 0.0030 ⁇ 0.0200% Bi: more than 0.0001 to 0.0050%, Ti: 0 to less than 0.040%, V: 0 to 0.30%, Ca: 0 to 0.0040%, and Pb: 0 to 0.40%
  • the balance is Fe and impurities, and P and O in the impurities are P: 0.050% or less and O: 0.0050% or less, respectively, and satisfy the following formula (b): der rolling direction the density of MnS of a circle equivalent diameter of less than 2.0 ⁇ m in parallel cross section 300 / mm 2 or more steel .
  • d is an average equivalent circle diameter in unit ⁇ m of MnS having an equivalent circle diameter of 1.0 ⁇ m or more
  • is the equivalent circle diameter of MnS having an equivalent circle diameter of 1.0 ⁇ m or more. Is the standard deviation.
  • the hot forged product described in the above (6) may contain Ti: 0.001 to less than 0.040% by mass.
  • the hot forged product described in (6) or (7) above may contain 0.03 to V: 0.30% by mass.
  • the hot forged product according to any one of the above (6) to (8) is Ca: 0.0003 to 0.0040% and Pb: 0.05 to 0.40% by mass. You may contain 1 type or 2 types selected from the group which consists of.
  • the hot forged product according to any one of (6) to (9) above may be in mass% and P: 0.020% or less.
  • MnS in steel is often crystallized before solidification (in molten steel) or during solidification, and the size of MnS is greatly affected by the cooling rate during solidification.
  • the solidification structure of continuous cast slabs usually has a dendritic form, which is formed due to diffusion of solute elements during the solidification process, and the solute elements are concentrated in the dendritic tree. To do. Mn is concentrated in the portion between the trees, and MnS crystallizes between the trees.
  • the primary arm spacing ⁇ of the dendrite depends on the solid-liquid interface energy ⁇ , and if this ⁇ can be reduced, ⁇ decreases.
  • the inventors of the present invention can reduce the solid-liquid interfacial energy by adding a small amount of Bi to the steel, and can further refine the dendrite structure. Further, if ⁇ can be reduced, MnS crystallized between dendrite trees. It was found that the size of can be reduced.
  • a hot forging steel hot forging steel according to this embodiment
  • a hot forged product hot forged product according to this embodiment
  • C more than 0.30 to less than 0.60%
  • Carbon (C) increases the tensile strength and fatigue strength of steel.
  • the C content is more than 0.30%.
  • the C content is less than 0.60%.
  • it is 0.55% or less.
  • Si 0.10-0.90% Silicon (Si) is dissolved in the ferrite in the steel to increase the tensile strength of the steel.
  • the Si content is set to 0.10% or more. Preferably it is 0.17% or more.
  • the Si content is set to 0.90% or less. Preferably it is 0.74% or less.
  • Mn 0.50 to 2.00%
  • Manganese (Mn) dissolves in steel and increases the tensile strength, fatigue strength, and hardenability of the steel. Further, Mn combines with sulfur (S) in the steel to form MnS, thereby improving the machinability of the steel.
  • the Mn content is 0.50% or more.
  • the preferable Mn content is 0.60% or more, and more preferably 0.75% or more.
  • the Mn content is 2.00% or less.
  • the preferable Mn content is 1.90% or less, and the more preferable Mn content is 1.70% or less.
  • S 0.010 to 0.100% Sulfur (S) combines with Mn in the steel to form MnS and enhances the machinability of the steel.
  • the S content is set to 0.010% or more.
  • the minimum of preferable S content is 0.015%, More preferably, it is 0.020%.
  • the fatigue strength of the steel decreases.
  • the S content is 0.100% or less.
  • the upper limit of the preferable S content is 0.090%, more preferably 0.080%.
  • Chromium (Cr) increases the hardenability and tensile strength of steel. Cr also enhances the hardenability of the steel and increases the surface hardness of the steel after carburizing and induction hardening. In order to obtain these effects, the Cr content is set to 0.01% or more. When increasing the hardenability and tensile strength of steel, the preferable Cr content is 0.03% or more, and more preferably 0.10% or more. On the other hand, when there is too much Cr content, the machinability of steel will fall. Therefore, the Cr content is set to 1.00% or less. In order to suppress a decrease in machinability, the Cr content is preferably 0.70% or less, and more preferably 0.50% or less.
  • Al more than 0.005 to 0.100%
  • Aluminum (Al) has an effect of deoxidizing and combines with N to form AlN, which is an effective element for preventing coarsening of austenite grains during carburizing heating.
  • the Al content is more than 0.005%.
  • the Al content is 0.030% or more.
  • the Al content exceeds 0.100%, a coarse oxide is easily formed, and the bending fatigue strength is lowered. Therefore, the Al content is 0.100% or less. Preferably it is 0.060% or less.
  • N 0.0030 to 0.0200%
  • Nitrogen (N) is an element that, when incorporated together with Ti and Nb, produces nitrides and carbonitrides, thereby refining austenite crystal grains and increasing the fatigue strength of steel.
  • the N content is set to 0.0030% or more. Preferably, it is 0.0050% or more.
  • the N content is 0.0200% or less. Preferably it is 0.0180% or less.
  • Bi more than 0.0001 to 0.0050% Bismuth (Bi) is an important element in the hot forging steel according to the present embodiment. Conventionally, it has been considered that even if Bi is contained, a trace amount does not contribute to improvement of machinability. However, in the steel for hot forging according to the present embodiment, by containing a small amount of Bi, the solidification structure of the steel is refined, and accordingly, MnS is finely dispersed, and as a result, the wear amount of the cutting tool is reduced. To do. That is, machinability is improved. In order to obtain the effect of refining MnS, the Bi content needs to exceed 0.0001%.
  • the Bi content is preferably set to 0.0010% or more.
  • the Bi content is set to 0.0050% or less. From the viewpoint of preventing flaws due to a decrease in hot workability, the Bi content is preferably 0.0040% or less.
  • P 0.050% or less Phosphorus (P) is an impurity and is an element that lowers the fatigue strength and hot workability of steel. Therefore, it is preferable that the P content is small. When P exceeds 0.050%, the above-described adverse effects become remarkable, so the P content is set to 0.050% or less.
  • a preferable P content is 0.020% or less, more preferably 0.018% or less, and still more preferably 0.015% or less.
  • Oxygen (O) is an impurity element, and is an element that combines with Al to form hard oxide inclusions to reduce bending fatigue strength. In particular, when the O content exceeds 0.0050%, the fatigue strength is significantly reduced. Therefore, the O content is 0.0050% or less.
  • the O content is preferably 0.0010% or less, and more preferably as low as possible without causing an increase in cost in the steel making process.
  • the remainder of the chemical composition of the hot forging steel according to this embodiment is basically composed of Fe and impurities. However, instead of a part of Fe, a selection element described later may be included.
  • the impurity here refers to an element mixed from ore and scrap used as a raw material of steel or from the environment of the manufacturing process.
  • the steel for hot forging according to the present embodiment may further contain one or more selected from Ti, V, Ca, and Pb instead of part of Fe.
  • the lower limit is 0%.
  • Titanium (Ti) is an element that forms nitrides and carbonitrides. Nitride and carbonitride reduce the austenite grain size and increase the fatigue strength of the steel. When increasing the fatigue strength, the Ti content is preferably 0.001% or more. More preferably, it is 0.005% or more. On the other hand, if Ti is contained excessively, the machinability of the steel is lowered. Further, if the Ti content is 0.040% or more, there is a concern that Ti 4 C 2 S 2 is generated and a sufficient number of MnS is not generated. Therefore, even when it is contained, the Ti content is less than 0.040%. Preferably, it is 0.020% or less.
  • V 0 to 0.30%
  • Vanadium (V) is an element that forms carbides in the steel and increases the fatigue strength of the steel. Vanadium carbide precipitates in ferrite and increases the strength of the steel core (the portion other than the surface layer). If V is contained even a little, the above effect can be obtained. If the V content is 0.03% or more, the above effect is remarkably obtained, which is preferable. More preferably, it is 0.04% or more, More preferably, it is 0.05% or more. On the other hand, if there is too much V content, the machinability and fatigue strength of steel will fall. Therefore, even when contained, the V content is set to 0.30% or less. Preferably it is 0.20% or less, More preferably, it is 0.10% or less.
  • Ca 0 to 0.0040%
  • Calcium (Ca) is an element that makes MnS inclusions finer by dissolving in MnS and spheroidizing MnS inclusions.
  • the Ca content is preferably 0.0003% or more.
  • Ca content shall be 0.0040% or less. Preferably it is 0.0035% or less.
  • Pb 0 to 0.40%
  • Lead (Pb) is an element that enhances the machinability of steel. If Pb is contained even a little, the above-mentioned effect can be obtained. However, when a sufficient effect is obtained, the Pb content is preferably set to 0.05% or more. On the other hand, if Pb is contained excessively, the toughness and hot ductility of the steel will decrease. Therefore, even when contained, the Pb content is set to 0.40% or less. Preferably it is 0.25% or less.
  • the hot forging steel according to the present embodiment includes the above-described basic element and is selected from the chemical composition including the remaining Fe and impurities, or the above-described basic element and the above-described selective element. It has a chemical composition including the remainder and Fe and impurities.
  • the chemical composition is not changed by hot forging or heat treatment performed to obtain a hot forged product from hot forging steel. Therefore, the chemical composition of the hot forging steel according to this embodiment is the same as the chemical composition of the hot forging product according to this embodiment obtained using the hot forging steel according to this embodiment as a raw material.
  • MnS MnS is useful for improving machinability, and it is necessary to secure a certain number density.
  • S content increases, machinability improves, while coarse MnS increases.
  • Coarse MnS is detected as a pseudo pattern during magnetic particle inspection. Therefore, in order to improve machinability, it is necessary to control the number and size of MnS. Specifically, in a cross section parallel to the rolling direction of the steel material, if MnS having an equivalent circle diameter of less than 2.0 ⁇ m is present in the steel at a density of 300 pieces / mm 2 or more (number density), the tool wears. It is suppressed.
  • the upper limit of the number density of MnS having an equivalent circle diameter of less than 2.0 ⁇ m need not be specified, but it is considered that the upper limit of the number density of MnS is not more than 700 / mm 2 in the present component system. It can be confirmed by the energy dispersive X-ray analysis attached to the scanning electron microscope that the inclusion is MnS.
  • the equivalent circle diameter of MnS is the diameter of a circle having the same area as that of MnS, and can be obtained by image analysis. Similarly, the number density of MnS is obtained by image analysis. Specifically, the equivalent circle diameter and number density of MnS are obtained by the following methods.
  • a metal structure having a cross section parallel to the longitudinal direction (axial direction) of the steel for hot forging is observed with an optical microscope, and precipitates are discriminated from the contrast in the structure.
  • an optical microscope By using a scanning electron microscope and an energy dispersive X-ray spectrometer (EDS), it can be confirmed that the precipitate is MnS.
  • EDS energy dispersive X-ray spectrometer
  • the same cross section as the cross section where the deposit of the test piece is identified is photographed at 100 times with an optical microscope, and images of an inspection standard area (region) of 0.9 mm 2 are prepared for 10 visual fields.
  • MnS in the observation field of view (image) are selected in descending order, and the size of each selected MnS is converted to an equivalent circle diameter indicating the diameter of a circle having the same area as the area of the precipitate. Ask. Further, the average equivalent circle diameter and standard deviation of the sulfide are calculated from the detected particle size distribution of MnS.
  • the proportion of fine sulfides crystallized from the dendrite trees can be increased. If the sulfide is made fine and MnS having a maximum equivalent circle diameter of 20 ⁇ m or more is eliminated, generation of a pseudo pattern can be suppressed.
  • the present inventors calculated the variation of the equivalent circle diameter of the sulfide detected per 9 mm 2 of the observation field of view as the standard deviation ⁇ , and the standard deviation 3 ⁇ of the sulfide detected per 9 mm 2 of the observation field of view. The value obtained by adding the average equivalent circle diameter d was defined as F1.
  • d in the formula (c) is an average equivalent circle diameter ( ⁇ m) of MnS having an equivalent circle diameter of 1.0 ⁇ m or more
  • is a standard deviation of an equivalent circle diameter of MnS having an equivalent circle diameter of 1.0 ⁇ m or more.
  • F1 is an optical microscope existing in the steel for hot forging according to the present embodiment, which is predicted from the equivalent circle diameter of a sulfide and the standard deviation of the equivalent circle diameter observed within an observation visual field of 9 mm 2.
  • the maximum equivalent circle diameter is shown for 99.7% of the number of sulfides that can be observed.
  • the equivalent circle diameter of MnS is the diameter of a circle having an area equal to the area of MnS, and can be obtained by image analysis as described above.
  • the reason why the equivalent circle diameter of MnS as an observation target was set to 1.0 ⁇ m or more is that it is practically a general-purpose device, and the particle size and components can be statistically handled, and a sulfide smaller than this can be used. This is because even if controlled, there is little influence on hot forgeability and chip disposal.
  • the solidification structure of the continuous cast slab usually has a dendrite form.
  • MnS in steel is often crystallized before solidification (in molten steel) or during solidification, and is greatly influenced by the dendrite primary arm interval. That is, if the dendrite primary arm interval is small, the MnS crystallized between the trees is small.
  • the dendrite primary arm interval at the slab stage is less than 600 ⁇ m. In order to stably and effectively finely disperse MnS, it is effective to contain a trace amount of Bi and reduce the solid-liquid interface energy in the molten steel.
  • the dendrite structure becomes fine.
  • MnS crystallized from the dendrite primary arm is refined.
  • whether the primary arm interval was less than 600 ⁇ m at the stage of the slab is determined by, for example, the cross section of the sample taken from the slab before hot working. Etching with picric acid can be confirmed by directly observing the dendrite structure at a position 15 mm deep from the slab surface.
  • the hot forged product is, for example, a machine part used for automobiles and construction machines, and is an engine part represented by a crankshaft, for example.
  • the hot forging steel according to the present embodiment continuously casts a slab having the above-described chemical components and having a dendrite primary arm interval of less than 600 ⁇ m within a range of 15 mm from the surface layer. It is manufactured by hot working and further annealing if necessary. Hot working may include hot rolling.
  • a steel slab satisfying the above chemical composition and d + 3 ⁇ ⁇ 20 is produced by a continuous casting method.
  • An ingot (steel ingot) may be formed by an ingot-making method.
  • the casting conditions include a 220 ⁇ 220 mm square mold, a superheat of the molten steel in the tundish at 10 to 50 ° C., and a casting speed of 1.0 to 1.5 m / min.
  • the above-mentioned dendrite primary arm interval less than 600 ⁇ m, when casting the molten steel having the above chemical composition, within the temperature range from the liquidus temperature to the solidus temperature at a depth of 15 mm from the slab surface.
  • the average cooling rate is preferably 100 ° C./min to 500 ° C./min. Preferably they are 120 degreeC / min or more and 500 degrees C / min or less.
  • the average cooling rate is less than 100 ° C./min, it becomes difficult to make the dendrite primary arm interval less than 600 ⁇ m at a depth of 15 mm from the slab surface, and MnS may not be finely dispersed. When MnS is not finely dispersed, the number density of MnS is also reduced.
  • the average cooling rate exceeds 500 ° C./min, the MnS crystallized from between the dendrite trees becomes too fine, and the machinability may be reduced. Further, in order to reduce center segregation, reduction may be applied during the solidification of continuous casting.
  • the temperature range from the liquidus temperature to the solidus temperature is the temperature range from the start of solidification to the end of solidification. Therefore, the average cooling rate in this temperature range means the average solidification rate of the slab.
  • the average cooling rate can be achieved by, for example, controlling the mold cross-section size, casting speed, etc. to appropriate values, or increasing the amount of cooling water used for water cooling immediately after casting. This is applicable to both continuous casting and ingot casting methods.
  • the average cooling rate at the position of 15 mm depth is obtained by etching the cross section of the obtained slab with picric acid, and dendrites 2 at a pitch of 5 mm in the casting direction at each position 15 mm deep from the slab surface.
  • the next arm interval ⁇ 2 ( ⁇ m) was measured at 100 points, and the cooling rate A (° C./second) in the temperature range from the liquidus temperature to the solidus temperature of the slab based on the following equation (3) Can be calculated from the average of arithmetic averages.
  • the optimum casting conditions can be determined from the cooling rate obtained by, for example, manufacturing a plurality of slabs with different casting conditions, obtaining the cooling rate in each slab by the above formula (3).
  • the billet is heated at a heating temperature of 1250 to 1300 ° C. for 1.5 hours or more and then hot rolled at a finishing temperature of 900 to 1100 ° C.
  • finish rolling it may be cooled down to room temperature in the air at a cooling rate of less than or equal to the cooling rate, but in order to increase productivity, when it reaches 600 ° C. It is preferable to cool by appropriate means such as air cooling, mist cooling, and water cooling.
  • the above heating temperature and heating time mean the average temperature in the furnace and the in-furnace time, respectively.
  • the finishing temperature of hot rolling means the surface temperature of the bar wire material at the final stand exit of a rolling mill provided with a plurality of stands.
  • the cooling rate after finish rolling refers to the cooling rate on the surface of a bar wire (bar steel or wire).
  • annealing may be performed by spheroidizing under known conditions. As an example, a condition is described in which a round bar is soaked at 740 ° C. for 8 hours using a heating furnace, and then soaked to 650 ° C. at a cooling rate of 15 ° C./h. According to the manufacturing method including these steps, steel bars and wire rods (hot forging steel) are manufactured.
  • the manufactured bar steel or wire (steel for hot forging) is hot forged to produce a rough intermediate product.
  • a tempering treatment may be performed on the intermediate product.
  • the intermediate product is machined so that the intermediate product has a predetermined shape. Machining is, for example, cutting or drilling.
  • induction hardening is performed on the intermediate product to cure the surface of the intermediate product. Thereby, a surface hardened layer is formed on the surface of the intermediate product.
  • the induction hardening may be performed under known conditions.
  • finishing is performed on the induction-quenched intermediate product.
  • the finishing process is grinding or polishing.
  • the hot forged product according to this embodiment is manufactured through the above steps.
  • the hot forged product according to the present embodiment has the same chemical components as the hot forging steel, and the presence density of MnS having an equivalent circle diameter of less than 2.0 ⁇ m is 300 pieces / mm, as in the hot forging steel. 2 or more, which satisfies d + 3 ⁇ ⁇ 20 ( ⁇ m). However, since a hot forged product is induction hardened, it has a hardened surface layer.
  • Magnetic particle testing is usually performed on hot forged products.
  • the magnetic particle flaw detection test uses magnetic particles to detect surface defects (baking cracks, grinding cracks, etc.) of hot forged products.
  • the hot forging is magnetized.
  • a leakage magnetic flux is generated in the flange portion of the hot forged product.
  • the magnetic powder is attracted to a place where a large leakage magnetic flux is generated, and forms a magnetic powder pattern. Therefore, the presence or absence and generation
  • MnS is refined by reducing the dendrite primary arm interval at the slab stage. If MnS is fine, it is difficult to generate a leakage magnetic flux that forms a pseudo pattern. Therefore, generation
  • the material bar steel
  • MnS in the steel is refined according to the forging ratio.
  • many hot forged products have complex shapes, and the forging ratio is not uniform over the entire material. Therefore, in the hot forged material, a portion that is hardly forged, that is, a portion having a very small forging ratio is generated. Even in such a portion, in order to suppress the generation of the pseudo pattern, the maximum equivalent circle diameter of MnS in the hot forging steel as a raw material needs to be less than 20 ⁇ m. Since the steel for hot forging according to the present embodiment has a maximum equivalent circle diameter of MnS of less than 20 ⁇ m, machinability can be improved and a pseudo pattern can be suppressed regardless of the amount of hot working.
  • the hot forging steel according to the present embodiment becomes a hot forged product
  • the work after hot forging is performed regardless of the reduction ratio of hot working including hot forging. It has excellent properties, and it is difficult for pseudo patterns to occur during magnetic particle testing.
  • the manufactured slab was charged into a heating furnace, heated at a heating temperature of 1250 to 1300 ° C. for 10 hours or more, and then rolled into a billet. Before slab rolling the slab, the slab was once cooled to room temperature, and a test piece for structure observation was collected.
  • the billet was heated at a heating temperature of 1250 to 1300 ° C. for 1.5 hours or more and then hot-rolled at a finishing temperature of 900 to 1100 ° C. to obtain a round bar having a diameter of 90 mm.
  • the round bar after hot rolling was allowed to cool to room temperature in the atmosphere. In this way, hot forging steels having test numbers 1 to 50 were produced.
  • Steels A to X shown in Tables 1 and 2 are steels having a chemical composition defined in the present invention.
  • steels a to y are comparative steels whose chemical compositions deviate from the conditions specified in the present invention. Underlined values in Tables 1 and 2 indicate that they are outside the scope of the present invention.
  • polishing specimens measuring 10 mm in length and 10 mm in width were prepared from the same cross section, and a predetermined position of these polishing test specimens was photographed at a magnification of 100 with an optical microscope to obtain an inspection standard area of 0.9 mm 2 (Field) images were prepared for 10 fields of view.
  • Ten MnS in the observation field of view (image) were selected in descending order, and the equivalent circle diameter of each selected MnS was calculated. These dimensions (diameters) were converted to equivalent circle diameters indicating the diameters of circles having the same area as the precipitates. From the detected particle size distribution of MnS, the average equivalent circle diameter and standard deviation of sulfide were calculated.
  • the asterisks in Tables 3 and 4 mean that the maximum circle equivalent diameter condition of MnS of the present invention is not satisfied.
  • the round bars with test numbers 1 to 50 correspond to the material of the hot forged product. If the round bar, which is a material, has high machinability and does not easily generate a pseudo pattern during a magnetic particle inspection test, a hot forged product formed by hot forging the round bar and allowing it to cool after completion of forging is a matter of course. In addition, it has excellent machinability and hardly generates a pseudo pattern during a magnetic particle flaw detection test. Therefore, the machinability of the round bar corresponding to the material and the presence or absence of a pseudo pattern in the magnetic particle flaw detection test were investigated by the following test method.
  • the center line average roughness (Ra) of the circumferential surface was set within 3.0 ⁇ m and the maximum height (Rmax) was set within 9.0 ⁇ m by finish polishing.
  • Ra center line average roughness
  • Rmax maximum height
  • a plurality of finish-polished round bar specimens were subjected to a penetrant flaw test in accordance with JIS Z2343-1 (2001), and 50 round bar specimens without wrinkles were selected for each test example.
  • a magnetic particle inspection test was performed on the selected 50 round bar test pieces under the following conditions.
  • Magnetic powder Black magnetic powder
  • Magnetic powder concentration 1.8 ml (magnetic powder precipitation volume) / 100 ml (unit volume)
  • Type of detection medium Application time of wet magnetic powder: Continuous method Magnetization method: Axial current method Magnetization time: More than 5 seconds Magnetization current: AC Current value: 2500A
  • test number 25 the chemical composition was within the range of the chemical composition of the hot forging steel of the present invention, but the liquidus temperature to the solidus temperature at a position 15 mm deep from the surface of the slab.
  • the number density of MnS decreased due to the slow average cooling rate in the temperature range and the widening of the dendrite primary arm interval. As a result, the amount of wear on the flank exceeded 0.20 mm.
  • Test numbers 26 and 39 did not contain Bi. Moreover, S content was less than the range of this invention. Therefore, the number density of MnS was less than 300 (pieces / mm 2 ), and the amount of wear on the flank exceeded 0.20 mm.
  • Test numbers 27 to 28 and 40 to 41 did not contain Bi. Therefore, the F1 value became 20 ⁇ m or more, and a pseudo pattern was generated.
  • test numbers 29 and 42 did not contain Bi, the number density of MnS was less than 300 (pieces / mm 2 ), and the wear amount of the flank exceeded 0.20 mm.
  • the number density of MnS was less than 300 (pieces / mm 2 ), and the flank face The amount of wear exceeded 0.20 mm.
  • test numbers 32 and 43 exceeded the upper limit of the S content of the present invention. Therefore, the F1 value was 20 ⁇ m or more, and a pseudo pattern was generated.
  • test numbers 34 and 47 exceeded the upper limit of the C content of the present invention.
  • the Cr content also exceeded the upper limit of the Cr content of the present invention.
  • the Mn contents of Test Nos. 35 and 48 exceeded the upper limit of the Mn content of the present invention.
  • the Cr content of Test Nos. 36 and 49 exceeded the upper limit of the Cr content of the present invention.
  • the Ti contents of test numbers 37 and 50 exceeded the upper limit of the Ti content of the present invention. Therefore, the amount of wear on the flank face of these test numbers exceeded 0.20 mm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Forging (AREA)

Abstract

この熱間鍛造用鋼は、質量%で、C:0.30超~0.60%未満、Si:0.10~0.90%、Mn:0.50~2.00%、S:0.010~0.100%、Cr:0.01~1.00%、Al:0.005超~0.100%、N:0.0030~0.0200%、Bi:0.0001超~0.0050%、Ti:0~0.040%未満、V:0~0.30%、Ca:0~0.0040%、およびPb:0~0.40%、を含有し、残部がFeおよび不純物からなり、前記不純物中の、PおよびOがそれぞれ、P:0.050%以下、およびO:0.0050%以下であり、d+3σ<20を満たし、鋼材の圧延方向と平行な断面において円相当径が2.0μm未満のMnSの存在密度が300個/mm以上である。

Description

熱間鍛造用鋼及び熱間鍛造品
 本発明は、熱間鍛造用鋼及び熱間鍛造品に関する。本願は、2015年10月19日に日本に出願された特願2015-205630号、及び2015年12月25日に日本に出願された特願2015-254775号、に基づき優先権を主張し、その内容をここに援用する。
 熱間鍛造品は、産業用機械、建設用機械、及び、自動車に代表される輸送用機械の機械部品として利用される。機械部品はエンジン部品や、クランクシャフトなどが例示される。
 熱間鍛造品は、以下の工程により製造される。
 まず、熱間鍛造用鋼を熱間鍛造して中間品を製造する。製造された中間品に対して、必要に応じて、調質処理を実施する。熱間鍛造ままの非調質の中間品又は調質処理後の中間品に対して、切削や穿孔等を行うことにより部品形状に機械加工する。機械加工された中間品に対して、高周波焼入れ、浸炭、窒化等の表面硬化処理を実施する。表面硬化処理後、中間品に対して研削や研磨により仕上げ加工を実施し、熱間鍛造品を製造する。
 熱間鍛造品は中間品の状態で切削や穿孔等の機械加工が実施される。そのため、熱間鍛造用鋼には、優れた被削性が要求される。鋼に硫黄(S)を含有すれば、Sが鋼中に硫化物(例えばMnS)を形成し、形成されたMnSによって鋼の被削性が向上することはよく知られている。
 ところで、上述のとおり、熱間鍛造品は、表面硬化処理(高周波焼入れ、浸炭、窒化等)を実施される。表面硬化処理のうち、高周波焼入れは、浸炭や窒化と比較して短時間で鋼の表面を硬化することができる。しかしながら、高周波焼入れが実施された熱間鍛造品には、焼き割れが発生する場合がある。また、高周波焼入れ後の中間品に仕上げ加工を実施することで研削割れが発生する場合もある。そのため、高周波焼入れが実施された熱間鍛造品は一般的に、磁粉探傷試験が実施され、焼き割れや研削割れといった表面疵の有無の確認が行われる。
 磁粉探傷試験では一般に、熱間鍛造品を磁化させることで熱間鍛造品の表面疵部分において漏洩磁束を発生させ、大きな漏洩磁束が発生している場所に磁粉を吸着させることで磁粉模様を形成させる。この磁粉模様により、疵の発生の有無及び表面疵の発生箇所を特定することができる。しかしながら、被削性の改善のためにS含有量を増加させると、磁粉探傷試験において、MnSに起因した擬似模様が発生する場合がある。この原因は、S含有量を増加させることでMnSが形成されるが、MnSは非磁性であるため、MnSによって漏洩磁束が発生し、MnSに起因した擬似模様が形成されるからである。
 以上のように、擬似模様は、磁粉探傷試験の際に表面疵以外の要因により形成される磁粉模様である。したがって、MnSに起因した擬似模様により、熱間鍛造品が表面疵を有すると誤認される場合がある。このような誤認を防止するためには、磁粉模様が発生した熱間鍛造品に対して浸透探傷試験を実施すれば、表面疵の有無を正確に確認できる。しかしながら、磁粉探傷試験に加えて浸透探傷試験を実施することで検査工数が増えてしまう。
 被削性の向上に関し、例えば特許文献1および2には、鋼中に、MnSを主成分とする硫化物系介在物を所定の個数以上含有した機械構造用鋼が開示されている。しかしながら、特許文献1および2では、擬似模様の抑制については何ら考慮されていない。さらに、特許文献1および2の技術では、Mn/Sを原子%比で0.6~1.4とする必要がある。この場合、S含有量が多くなるので、FeSの生成によって熱間延性が低下し、割れが発生することが懸念される。
 上述の課題に関し、例えば特許文献3及び4には、被削性を維持しつつ擬似模様の発生を抑制する技術が提案されている。
 特許文献3では、Tiを含有し、かつ、N含有量を低くすることで、鋼中にMnSに代えてTiSに起因した炭硫化物を形成させることが開示されている。特許文献3によれば、この炭硫化物が分散することにより、被削性を維持しつつ、擬似模様の発生が抑制されると記載されている。
 特許文献4では、鋼中にCaおよびTeを含有させ、かつ、Ca/Te<1.0とすることが開示されている。特許文献4によれば、CaおよびTeが、鋼中のMnSに固溶し、球状化したMnSを生成することで、被削性を維持しつつ擬似模様の発生が抑制されると記載されている。
 しかしながら、特許文献3に記載された熱間鍛造用鋼は、Ti含有量を0.04%以上と高くする必要がある。そのため、熱間鍛造の条件によっては、鋼の硬度が高くなり過ぎ、被削性が低下する場合がある。
 特許文献4に記載された熱間鍛造用鋼は、CaおよびTeを含有させることによりMnSを球状化させ、かつ、熱間加工の圧下比を6.0以上とすることによりMnSを分断・微細化させて、擬似模様の発生を抑制させている。圧下比は鋳片又はインゴットの横断面積(mm)/棒鋼の横断面積(mm)で示される。
 しかしながら、鋳片サイズが小さく、かつ棒鋼のサイズが大きくなるような大物熱間鍛造品では、圧下比を大きくできないので、粗大なMnSが残存する恐れがある。圧下比が小さい場合でも、MnSを微細化するには、熱間圧延前の鋳片の段階で出来るだけMnSを微細にする必要がある。
日本国特開2003-293081号公報 日本国特開2003-301238号公報 日本国特許第3893756号公報 日本国特許第5545273号公報
 本発明は、上述の課題に鑑みてなされたものであり、熱間鍛造後の被削性に優れ、磁粉探傷試験時に擬似模様が発生しにくい、熱間鍛造用鋼及び熱間鍛造品の提供を課題とする。
 (1)本発明の一実施形態に係る熱間鍛造用鋼は、質量%で、C:0.30%超~0.60%未満、Si:0.10~0.90%、Mn:0.50~2.00%、S:0.010~0.100%、Cr:0.01~1.00%、Al:0.005超~0.100%、N:0.0030~0.0200%、Bi:0.0001超~0.0050%、Ti:0~0.040%未満、V:0~0.30%、Ca:0~0.0040%、およびPb:0~0.40%、を含有し、残部がFeおよび不純物からなり、前記不純物中のPおよびOがそれぞれ、P:0.050%以下、およびO:0.0050%以下であり、下記式(a)を満たし、鋼材の圧延方向と平行な断面において円相当径が2.0μm未満のMnSの存在密度が300個/mm以上である。
 d+3σ<20 ・・・(a)
 式(a)中の、dは前記円相当径が1.0μm以上のMnSの単位μmでの平均円相当径であり、σは前記円相当径が1.0μm以上のMnSの前記円相当径の標準偏差である。
 (2)上記(1)に記載の熱間鍛造用鋼は、質量%で、Ti:0.001~0.040%未満を含有してもよい。
 (3)上記(1)または(2)に記載の熱間鍛造用鋼は、質量%で、V:0.03~0.30%を含有してもよい。
 (4)上記(1)~(3)のいずれか一項に記載の熱間鍛造用鋼は、質量%で、Ca:0.0003~0.0040%およびPb:0.05~0.40%からなる群から選択される1種または2種を含有してもよい。
 (5)上記(1)~(4)のいずれか一項に記載の熱間鍛造用鋼は、質量%で、P:0.020%以下であってもよい。
 (6)本発明の別の態様に係る熱間鍛造品は、質量%で、C:0.30超~0.60%未満、Si:0.10~0.90%、Mn:0.50~2.00%、S:0.010~0.100%、Cr:0.01~1.00%、Al:0.005超~0.100%、N:0.0030~0.0200%、Bi:0.0001超~0.0050%、Ti:0~0.040%未満、V:0~0.30%、Ca:0~0.0040%、およびPb:0~0.40%、を含有し、残部がFeおよび不純物からなり、前記不純物中のPおよびOがそれぞれ、P:0.050%以下、およびO:0.0050%以下であり、下記式(b)を満たし、鋼材の圧延方向と平行な断面において円相当径が2.0μm未満のMnSの存在密度が300個/mm以上である。
 d+3σ<20 ・・・(b)
 式(b)中の、dは前記円相当径が1.0μm以上のMnSの単位μmでの平均円相当径であり、σは前記円相当径が1.0μm以上のMnSの前記円相当径の標準偏差である。
 (7)上記(6)に記載の熱間鍛造品は、質量%で、Ti:0.001~0.040%未満を含有してもよい。
 (8)上記(6)または(7)に記載の熱間鍛造品は、質量%で、0.03~V:0.30%を含有してもよい。
 (9)上記(6)~(8)のいずれか一項に記載の熱間鍛造品は、質量%で、Ca:0.0003~0.0040%およびPb:0.05~0.40%からなる群から選択される1種または2種を含有してもよい。
 (10)上記(6)~(9)のいずれか一項に記載の熱間鍛造品は、質量%で、P:0.020%以下であってもよい。
 本発明の上記態様によれば、熱間鍛造後の被削性に優れ、磁粉探傷試験時に擬似模様が発生しにくい熱間鍛造用鋼及び熱間鍛造品を提供できる。
 本発明者らは、熱間鍛造用鋼に関する研究及び検討の結果、以下の知見を得た。
 (a)鋼中のS含有量を少なくすれば、MnSが少なくなり、磁粉探傷試験時における擬似模様の発生が抑制される。しかしながら、MnSが少なくなると鋼の被削性が低下してしまう。すなわち、擬似模様の発生抑制と被削性の向上とは相互に相反する関係にある。
 (b)S含有量を増量することなく被削性を向上するには、MnSのサイズおよび分布の制御が重要である。
 (c)硫化物の円相当径と工具摩耗量との関係について種々実験を行った結果、鋼材の圧延方向と平行な断面において、円相当径で2.0μm未満のMnSが300個/mm以上の存在密度で鋼中に存在すると、工具の摩耗が抑制される。
 (d)一方、磁粉探傷試験において、磁粉は、大きな漏洩磁束が発生している場所に吸着され、磁粉模様を形成する。MnSは非磁性であることから。鋼の表層のMnSのサイズが大きくなると、MnSに起因した漏洩磁束は磁粉模様を形成できる程度に大きくなる。一方、MnSのサイズが小さければ、MnSに起因した漏洩磁束が小さくなり、磁粉模様を形成しにくくなる。したがって、MnSを微細化すれば擬似模様の発生は抑制される。
 (e)鋼材中のMnSは、凝固前(溶鋼中)または凝固時に晶出することが多く、MnSの大きさは、凝固時の冷却速度に大きく影響を受ける。また、連続鋳造鋳片の凝固組織は、通常はデンドライト形態を呈しており、このデンドライトは、凝固過程における溶質元素の拡散に起因して形成され、溶質元素は、デンドライトの樹間部において濃化する。Mnは、樹間部において濃化し、MnSが樹間に晶出する。
 (f)MnSを微細に分散させるには、デンドライトの樹間の間隔を短くする必要がある。
 デンドライトの1次アーム間隔に関する研究は従来から行われており、下記(A)式で表すことができる(下記参考文献参照)。
  λ∝(D×σ×ΔT)0.25 …(A)
 ここで、λ:デンドライトの1次アーム間隔(μm)、D:拡散係数(m/s)、σ:固液界面エネルギー(J/m)、ΔT:凝固温度範囲(℃)である。
 参考文献:W.Kurz and D.J.Fisher著、「Fundamentals of Solidification」、Trans Tech Publications Ltd., (Switzerland)、1998年、p.256
 この(A)式から、デンドライトの1次アーム間隔λは、固液界面エネルギーσに依存しており、このσを低減できればλが減少することがわかる。
 本発明者らは、鋼にBiを微量含有させることにより、固液界面エネルギーを低下させ、デンドライト組織を微細化できること、さらには、λを減少させることができれば、デンドライト樹間に晶出するMnSのサイズを微細化できることを見出した。
 以下、本発明の一実施形態に係る熱間鍛造用鋼(本実施形態に係る熱間鍛造用鋼)及び熱間鍛造品(本実施形態に係る熱間鍛造品)について詳細に説明する。
 まず、各成分元素の含有量について説明する。ここで、成分についての「%」は質量%である。
 C:0.30超~0.60%未満
 炭素(C)は、鋼の引張強度及び疲労強度を高める。この効果を得るため、C含有量を0.30%超とする。好ましくは0.32%以上である。一方、C含有量が多すぎれば、鋼の被削性が低下する。したがって、C含有量を0.60%未満とする。好ましく0.55%以下である。
 Si:0.10~0.90%
 シリコン(Si)は、鋼中のフェライトに固溶して、鋼の引張強度を高める。この効果を得るため、Si含有量を0.10%以上とする。好ましくは0.17%以上である。一方、Si含有量が多すぎれば、熱間鍛造品の表面にスケールが残りやすくなり、熱間鍛造品の外観が損なわれる。したがって、Si含有量を0.90%以下とする。好ましくは0.74%以下である。
 Mn:0.50~2.00%
 マンガン(Mn)は、鋼に固溶して鋼の引張強度、疲労強度及び焼入れ性を高める。Mnはさらに、鋼中の硫黄(S)と結合してMnSを形成し、鋼の被削性を高める。これらの効果を得るため、Mn含有量を0.50%以上とする。鋼の引張強度、疲労強度及び焼入れ性を高める場合、好ましいMn含有量は0.60%以上であり、さらに好ましくは0.75%以上である。一方、Mn含有量が高すぎれば、鋼の被削性が低下する。したがって、Mn含有量を2.00%以下とする。鋼の被削性をさらに高める場合、好ましいMn含有量は1.90%以下であり、さらに好ましいMn含有量は1.70%以下である。
 S:0.010~0.100%
 硫黄(S)は、鋼中のMnと結合してMnSを形成し、鋼の被削性を高める。この効果を得るため、S含有量を0.010%以上とする。鋼の被削性を高める場合、好ましいS含有量の下限は0.015%であり、さらに好ましくは、0.020%である。一方、Sを過剰に含有すれば、鋼の疲労強度が低下する。さらに、高周波焼入れ後の熱間鍛造品に対して磁粉探傷試験を実施する場合、熱間鍛造品の表面に擬似模様が発生しやすくなる。したがって、S含有量を0.100%以下とする。好ましいS含有量の上限は、0.090%であり、さらに好ましくは0.080%である。
 Cr:0.01~1.00%
 クロム(Cr)は、鋼の焼入れ性及び引張強度を高める。また、Crは、鋼の焼入れ性を高め、浸炭処理や高周波焼入れ後の鋼の表面硬度を高める。これらの効果を得るため、Cr含有量を0.01%以上とする。鋼の焼入れ性及び引張強度を高める場合、好ましいCr含有量は、0.03%以上であり、より好ましくは0.10%以上である。一方、Cr含有量が多すぎると、鋼の被削性が低下する。したがって、Cr含有量を1.00%以下とする。被削性の低下を抑制するためには、Cr含有量は好ましくは0.70%以下であり、より好ましくは0.50%以下である。
 Al:0.005超~0.100%
 アルミニウム(Al)は脱酸作用を有すると同時に、Nと結合してAlNを形成し、浸炭加熱時のオーステナイト粒の粗大化防止に有効な元素である。しかしながら、Alの含有量が0.005%以下では、安定してオーステナイト粒の粗大化を防止できない。オーステナイト粒が粗大化した場合、曲げ疲労強度が低下する。そのため、Al含有量を0.005%超とする。好ましくは0.030%以上である。一方、Alの含有量が0.100%を超えると、粗大な酸化物が形成されやすくなり、曲げ疲労強度が低下する。したがって、Alの含有量を0.100%以下とする。好ましくは0.060%以下である。
 N:0.0030~0.0200%
 窒素(N)は、TiやNbとともに含有させると、窒化物や炭窒化物を生成することにより、オーステナイト結晶粒を微細化し、鋼の疲労強度を高める元素である。この効果を得るため、N含有量を0.0030%以上とする。好ましくは、0.0050%以上である。一方、N含有量が過剰になると、鋼中の窒化物が粗大化し、鋼の被削性が低下する。したがって、N含有量を0.0200%以下とする。好ましくは0.0180%以下である。
 Bi:0.0001超~0.0050%
 ビスマス(Bi)は、本実施形態に係る熱間鍛造用鋼において重要な元素である。従来、Biを含有させても、微量では被削性の向上に寄与しないと考えられていた。しかしながら、本実施形態に係る熱間鍛造用鋼では、微量のBiを含有することによって、鋼の凝固組織が微細化し、それに伴い、MnSが微細分散し、その結果、切削工具の摩耗量が減少する。すなわち、被削性が向上する。MnSの微細化効果を得るには、Bi含有量を0.0001%超とする必要がある。さらにMnS微細分散化効果を高めて被削性向上させるには、Bi含有量を0.0010%以上とすることが好ましい。一方、Biの含有量が0.0050%を超えると、デンドライト組織の微細化効果が飽和する上、鋼の熱間加工性が劣化するので、熱間圧延が困難となる。そのため、Bi含有量を0.0050%以下とする。熱間加工性の低下によるきずを防止する観点からは、Bi含有量を0.0040%以下とすることが好ましい。
 P:0.050%以下
 燐(P)は不純物であり、鋼の疲労強度や熱間加工性を低下させる元素である。したがって、P含有量は少ない方が好ましい。Pが0.050%を超えると上記の悪影響が顕著になるので、P含有量を0.050%以下とする。好ましいP含有量は0.020%以下であり、より好ましくは0.018%以下であり、さらに好ましくは、0.015%以下である。
 O:0.0050%以下
 酸素(O)は、不純物元素であり、Alと結合して硬質な酸化物系介在物を形成して、曲げ疲労強度を低下させる元素である。特に、O含有量が0.0050%を超えると、疲労強度の低下が著しくなる。したがって、O含有量を0.0050%以下とする。Oの含有量は0.0010%以下にすることが好ましく、製鋼工程でのコスト上昇をきたさない範囲で、できる限り少なくすることがより好ましい。
 本実施形態に係る熱間鍛造用鋼の化学組成の残部は、Fe及び不純物からなることを基本とする。しかしながら、Feの一部に代えて、後述する選択元素を含んでもよい。
 ここでいう不純物は、鋼の原料として利用される鉱石やスクラップから、あるいは製造過程の環境等から混入する元素をいう。
 [選択元素について]
 本実施形態に係る熱間鍛造用鋼はさらに、Feの一部に代えて、Ti、V、Ca、Pbから選択される1種または2種以上を含有してもよい。ただし、これらの選択元素は必ずしも含有されなくてもよいので、その下限は0%である。
 Ti:0~0.040%未満
 チタン(Ti)は窒化物や炭窒化物を形成する元素である。窒化物や炭窒化物は、オーステナイト結晶粒を微細化し、鋼の疲労強度を高める。疲労強度を高める場合、Ti含有量を0.001%以上とすることが好ましい。より好ましくは0.005%以上である。一方、Tiが過剰に含有されれば、鋼の被削性が低下する。また、Ti含有量が0.040%以上であると、Tiが生成し、十分な数のMnSが生成しないことが懸念される。したがって、含有させる場合でもTi含有量は0.040%未満とする。好ましくは、0.020%以下である。
 V:0~0.30%
 バナジウム(V)は、鋼中で炭化物を形成し、鋼の疲労強度を高める元素である。バナジウム炭化物は、フェライト中に析出して鋼の芯部(表層以外の部分)の強度を高める。Vを少しでも含有すれば、上記効果が得られる。V含有量が0.03%以上であれば、上記効果が顕著に得られるので好ましい。より好ましくは0.04%以上、さらに好ましくは0.05%以上である。一方、V含有量が多すぎれば、鋼の被削性及び疲労強度が低下する。したがって、含有させる場合でもV含有量を0.30%以下とする。好ましく0.20%以下であり、さらに好ましくは0.10%以下である。
 Ca:0~0.0040%
 カルシウム(Ca)は、MnSに固溶してMnS系介在物を球状化することにより、MnS系介在物を微細化する元素である。MnS系介在物が微細化すると、磁粉探傷試験における擬似模様の発生が抑制される。この効果を得る場合、Ca含有量を0.0003%以上とすることが好ましい。一方、Caが過剰に含有されれば、粗大な酸化物が形成される。粗大な酸化物は、鋼の被削性を低下させる。したがって、含有させる場合でもCa含有量を0.0040%以下とする。好ましくは0.0035%以下である。
 Pb:0~0.40%
 鉛(Pb)は、鋼の被削性を高める元素である。Pbを少しでも含有すれば、上記効果が得られるが、十分な効果を得る場合には、Pb含有量を、0.05%以上とすることが好ましい。一方、Pbが過剰に含有されれば、鋼の靭性及び熱間延性が低下する。したがって、含有させる場合でもPb含有量を0.40%以下とする。好ましくは0.25%以下である。
 以上のように、本実施形態に係る熱間鍛造用鋼は、上述の基本元素を含み、残部Fe及び不純物からなる化学組成、または、上述の基本元素と、上述の選択元素から選択される1種以上とを含み、残部Fe及び不純物からなる化学組成を有する。
 熱間鍛造用鋼から熱間鍛造品を得るために行う熱間鍛造や熱処理によっては、化学組成は変化しない。そのため、本実施形態に係る熱間鍛造用鋼の化学組成と本実施形態に係る熱間鍛造用鋼を素材として得られた本実施形態に係る熱間鍛造品の化学組成とは同じである。
 次に、本実施形態に係る熱間鍛造用鋼及び熱間鍛造品の金属組織に含まれるMnSについて説明する。
[MnS]
 MnSは、被削性の向上に有用であり、その個数密度を一定以上確保することが必要である。ただし、S含有量が増加すると被削性は向上する一方で、粗大なMnSが増加する。粗大なMnSは、磁粉探傷時に擬似模様として検出される。そのため、被削性の向上には、MnSの個数とサイズとを制御することが必要である。具体的には、鋼材の圧延方向と平行な断面において、円相当径で2.0μm未満のMnSが300個/mm以上の存在密度(個数密度)で鋼中に存在すると、工具の摩耗が抑制される。円相当径で2.0μm未満のMnSの個数密度の上限は規定する必要はないが、本成分系では、700個/mmより多くならないと考えられる。
 介在物がMnSであることは、走査型電子顕微鏡に付属するエネルギー分散型X線解析によって確認すればよい。また、MnSの円相当径はMnSの面積と等しい面積を有する円の直径であり、画像解析によって求めることができる。同様に、MnSの個数密度は、画像解析によって求められる。
 MnSの円相当径および個数密度は、具体的には、以下の方法で求められる。すなわち、光学顕微鏡によって鋼の熱間鍛造用鋼の長手方向(軸方向)と平行な断面の金属組織を観察し、組織中のコントラストから析出物を判別する。走査型電子顕微鏡とエネルギー分散型X線分光分析装置(EDS)とを用いることで、析出物がMnSであることが確認できる。また、試験片の析出物を判別した断面と同じ断面を光学顕微鏡にて100倍で写真撮影して、0.9mmの検査基準面積(領域)の画像を10視野分準備する。その観察視野(画像)中のMnSの中から大きい順に10個選定し、選定された各MnSの寸法を、析出物の面積と同一の面積を有する円の直径を示す円相当径に換算して求める。また、検出したMnSの粒径分布から、硫化物の平均円相当径および標準偏差を算出する。
 連続鋳造鋳片の凝固組織においてデンドライト1次アーム間隔を低減すれば、デンドライト樹間から晶出する微細な硫化物の割合を増やすことができる。硫化物を微細にして最大円相当径で20μm以上のMnSを無くせば、擬似模様発生を抑制できる。本発明者らは、観察視野9mm当りに検出される硫化物の円相当径のばらつきを標準偏差σとして算出し、この標準偏差の3σに、観察視野9mm当りに検出される硫化物の平均円相当径dを加えた値をF1と定義した。
 F1=d+3σ (c)
 ここで、式(c)中のdは円相当径で1.0μm以上のMnSの平均円相当径(μm)であり、σは円相当径1.0μm以上のMnSの円相当径の標準偏差である。
 F1の値は、観察視野9mmの範囲内で観察される硫化物の円相当径及び円相当径の標準偏差から予測される、本実施形態に係る熱間鍛造用鋼に存在する光学顕微鏡で観察可能な硫化物の個数のうちの99.7%の個数の硫化物における最大円相当径を示している。すなわち、F1値が20(μm)未満であれば、熱間鍛造用鋼中に最大円相当径で20μm以上の硫化物はほとんど存在しないことを示している。このような鋼は擬似模様発生を抑制できる。MnSの円相当径はMnSの面積と等しい面積を有する円の直径であり、上述したように画像解析によって求めることができる。観察対象としたMnSの円相当径を1.0μm以上としたのは、現実的に汎用の機器で、粒子のサイズと成分とを統計的に扱うことが可能でかつ、これより小さな硫化物を制御しても熱間鍛造性および切りくず処理性に与える影響が少ないためである。
 [鋳片のデンドライト組織]
 上述したように、連続鋳造鋳片の凝固組織は、通常はデンドライト形態を呈している。鋼材中のMnSは、凝固前(溶鋼中)、または凝固時に晶出することが多く、デンドライト1次アーム間隔に大きく影響を受ける。すなわち、デンドライト1次アーム間隔が小さければ、その樹間に晶出するMnSは小さくなる。本実施形態に係る熱間鍛造用鋼は、鋳片の段階におけるデンドライト1次アーム間隔が600μm未満であることが望ましい。
 MnSを安定的にかつ効果的に微細分散させるには、微量のBiを含有させ、溶鋼中の固液界面エネルギーを低減させることが有効である。固液界面エネルギーが低減することにより、デンドライト組織が微細となる。デンドライト組織が微細化することで、デンドライト一次アームから晶出するMnSが微細化される。
 鋳片のデンドライト組織は、熱間鍛造用鋼では観察されないが、鋳片の段階で1次アーム間隔が600μm未満であったかどうかは、例えば、熱間加工前の鋳片から採取したサンプルの断面をピクリン酸にてエッチングし、鋳片表面から15mmの深さの位置について、直接デンドライト組織を観察することにより確認することができる。
 [製造方法]
 次に、本実施形態に係る熱間鍛造用鋼の製造方法を説明する。本実施形態では、一例として、熱間鍛造用鋼、及びこの熱間鍛造用鋼からなる熱間鍛造品(熱間鍛造用鋼を素材として得られる熱間鍛造品)を製造するのに好ましい工程を説明する。熱間鍛造品はたとえば、自動車及び建設用機械等に利用される機械部品であり、たとえば、クランクシャフトに代表されるエンジン部品である。
 本実施形態に係る熱間鍛造用鋼は、上記の化学成分を有し、かつ表層から15mmの範囲内におけるデンドライト1次アーム間隔が600μm未満である鋳片を連続鋳造し、この鋳片を熱間加工し、更に必要に応じて焼鈍することによって製造される。熱間加工は、熱間圧延を含んでもよい。
[鋳造工程]
 上記化学組成及びd+3σ<20を満たす鋼の鋳片を連続鋳造法により製造する。造塊法によりインゴット(鋼塊)にしてもよい。鋳造条件は例えば、220×220mm角の鋳型を用いて、タンディッシュ内の溶鋼のスーパーヒートを10~50℃とし、鋳込み速度を1.0~1.5m/minとする条件を例示できる。
 さらに、上述したデンドライト一次アーム間隔を600μm未満にするために、上記化学組成を有する溶鋼を鋳造する際に、鋳片表面から15mmの深さにおける液相線温度から固相線温度までの温度域内の平均冷却速度を100℃/min以上500℃/min以下とすることが望ましい。好ましくは120℃/min以上500℃/min以下である。平均冷却速度が100℃/min未満では、鋳片表面から15mmの深さ位置におけるデンドライト一次アーム間隔を600μm未満とすることが困難となり、MnSを微細分散できないおそれがある。MnSが微細に分散しない場合、MnSの個数密度も少なくなる。一方、平均冷却速度が500℃/min超では、デンドライト樹間から晶出するMnSが微細になり過ぎ、被削性が低下してしまう恐れがある。
 また、中心偏析低減のため、連続鋳造の凝固途中の段階で圧下を加えてもよい。
 液相線温度から固相線温度までの温度域とは、凝固開始から凝固終了までの温度域のことである。したがって、この温度域での平均冷却速度とは、鋳片の平均凝固速度を意味する。上記の平均冷却速度は、例えば、鋳型断面の大きさ、鋳込み速度等を適正な値に制御する、または鋳込み直後において、水冷に用いる冷却水量を増大させる、などの手段により達成できる。これは、連続鋳造法および造塊法共に適用可能である。
 上記の15mm深さの位置での平均冷却速度は、得られた鋳片の断面をピクリン酸にてエッチングし、鋳片表面から15mmの深さの位置のそれぞれについて鋳込み方向に5mmピッチでデンドライト2次アーム間隔λ(μm)を100点測定し、次式(3)に基づいて、その値からスラブの液相線温度から固相線温度までの温度域内の冷却速度A(℃/秒)を算出し、算術平均した平均から求めることができる。
  λ=710×A-0.39  (3)
 従って、最適な鋳造条件は、例えば、鋳造条件を変更した複数の鋳片を製造し、各鋳片における冷却速度を上記式(3)により求め、得られた冷却速度から決定することができる。
[熱間加工工程及び焼鈍工程]
 次いで、鋳造工程で得られた鋳片又はインゴットに分塊圧延等の熱間加工を行い、ビレット(鋼片)を製造する。更に、ビレットを熱間圧延し、必要に応じて焼鈍することにより、本実施形態に係る熱間鍛造用鋼である棒鋼や線材とする。熱間加工における圧下比に特に制限はない。
 熱間圧延は、例えば、ビレットを1250~1300℃の加熱温度で1.5時間以上加熱した後、仕上げ温度を900~1100℃として熱間圧延する。仕上げ圧延を行った後は、大気中で、冷却速度が放冷以下となる条件で、室温に至るまで冷却しても構わないが、生産性を高めるためには、600℃に至った時点で、空冷、ミスト冷却及び水冷など、適宜の手段で冷却することが好ましい。上記の加熱温度及び加熱時間はそれぞれ、炉内の平均温度及び在炉時間を意味する。また、熱間圧延の仕上げ温度は、複数のスタンドを備える圧延機の最終スタンド出口での棒線材の表面温度を意味する。仕上げ圧延を行った後の冷却速度は、棒線材(棒鋼や線材)の表面での冷却速度を指す。
 熱間鍛造性を高めるためには、さらに、焼鈍を実施することが好ましい。焼鈍は、公知の条件で球状化焼鈍を実施すればよい。一例としては、丸棒を、加熱炉を用いて740℃で8時間均熱し、均熱後、15℃/hの冷却速度で650℃まで冷却する条件が例示される。
 これらの工程を含む製造方法によれば、棒鋼や線材(熱間鍛造用鋼)が製造される。
 更に、製造された棒鋼や線材(熱間鍛造用鋼)を熱間鍛造して、粗形状の中間品を製造する。中間品に対して調質処理を実施してもよい。さらに、中間品を機械加工し、中間品を所定の形状にする。機械加工はたとえば、切削や穿孔である。
 次に、中間品に対して高周波焼入れを実施し、中間品の表面を硬化する。これにより、中間品の表面に表面硬化層が形成される。高周波焼入れは、公知の条件で行えばよい。そして、高周波焼入れされた中間品に対して仕上げ加工を実施する。仕上げ加工は、研削や研磨である。以上の工程により本実施形態に係る熱間鍛造品が製造される。
 本実施形態に係る熱間鍛造品は、熱間鍛造用鋼と同じ化学成分を有し、熱間鍛造用鋼と同様に円相当径が2.0μm未満のMnSの存在密度が300個/mm以上であり、d+3σ<20(μm)を満足するものとなる。ただし、熱間鍛造品では高周波焼入れが行わるので、表面硬化層を有するものとなる。
 熱間鍛造品に対しては、通常、磁粉探傷試験が実施される。磁粉探傷試験は、磁粉を利用して、熱間鍛造品の表面疵(焼き割れ、研削割れ等)を検出する。磁粉探傷試験では、熱間鍛造品を磁化する。このとき、熱間鍛造品の疵部分では漏洩磁束が発生する。磁粉は、大きな漏洩磁束が発生している場所に吸着され、磁粉模様を形成する。したがって、磁粉模様により、疵の発生の有無及び発生箇所を特定できる。
 熱間鍛造用鋼や熱間鍛造品の表層に粗大なMnSが存在すれば、MnSに起因した大きな漏洩磁束が発生し、擬似模様が形成される。しかしながら、本実施形態に係る熱間鍛造用鋼や熱間鍛造品は、鋳片段階でデンドライト1次アーム間隔が低減されることにより、MnSが微細化される。MnSが微細であれば、擬似模様を形成するほどの漏洩磁束が発生しにくい。したがって、擬似模様の発生が抑制される。
 素材(棒鋼)を熱間鍛造すれば、鍛錬成形比に応じて鋼中のMnSが微細化される。しかしながら、熱間鍛造品は複雑な形状を有するものが多く、鍛錬成形比が素材全体に対して一様にならない。したがって、熱間鍛造された素材内において、ほとんど鍛錬されない部分、つまり、鍛錬成形比が非常に小さい部分が生じる。このような部分においても、擬似模様の発生を抑制するためには、素材となる熱間鍛造用鋼中のMnSの最大円相当径が20μm未満である必要がある。本実施形態に係る熱間鍛造用鋼は、MnSの最大円相当径が20μm未満なので、熱間加工の加工量によらず、被削性向上と擬似模様の抑制とが可能になる。
 以上説明したように、本実施形態に係る熱間鍛造用鋼は、熱間鍛造品となった場合に、熱間鍛造を含む熱間加工の圧下比によらず、熱間鍛造後の被削性に優れ、磁粉探傷試験時に擬似模様が発生しにくくなる。
 表1、表2に示す化学組成を有する鋼A~X、a~yを270ton転炉で溶製し、連続鋳造機を用いて連続鋳造を実施して、220×220mm角の鋳片を製造した。なお、連続鋳造の凝固途中の段階で圧下を加えた。また、鋳片の連続鋳造において、鋳片の表面から15mmの深さの位置における液相線温度から固相線温度までの温度域内の平均冷却速度を、鋳型の冷却水量を変更することによって表3、表4の“鋳片平均冷却速度”の通りに種々変更させた。
 次いで、製造した鋳片を加熱炉に装入し、1250~1300℃の加熱温度で10時間以上加熱した後、分塊圧延してビレットとした。鋳片を分塊圧延する前に鋳片を一旦室温まで冷却して、組織観察用の試験片を採取した。
 次いで、ビレットを1250~1300℃の加熱温度で1.5時間以上加熱した後、仕上げ温度を900~1100℃として熱間圧延して、直径90mmの丸棒とした。熱間圧延後の丸棒は大気中で室温まで放冷した。このようにして、試験番号1~50の熱間鍛造用鋼を製造した。
 表1、表2に示す鋼A~Xは、本発明で規定する化学組成を有する鋼である。一方、鋼a~yは、化学組成が本発明で規定する条件から外れた比較例の鋼である。表1、表2中の数値の下線は、本発明の範囲外であることを示す。
 そして、製造された鋼の被削性および磁粉探傷試験における擬似模様の有無を調査した。しかしながら、試験番号38は、熱間圧延において疵が多発したため、評価を行わなかった。
[凝固組織観察]
 凝固組織として、上記の鋳片の断面をピクリン酸にてエッチングし、鋳片表面から深さ方向に15mm位置を鋳込み方向に5mmピッチでデンドライト1次アーム間隔を100点測定し、その平均値を求めた。
 [ミクロ組織試験]
 各試験番号の丸棒(熱間鍛造用鋼)のミクロ組織を観察した。丸棒のD/4(D:直径)を軸方向(長手方向)に対して平行に切断し、ミクロ組織観察用の試験片を採取した。試験片の切断面を研磨し、光学顕微鏡によって鋼の金属組織を観察し、組織中のコントラストから析出物を判別した。被検面は、熱間鍛造用鋼の長手方向と平行な断面である。一部の析出物については、走査型電子顕微鏡とエネルギー分散型X線分光分析装置(EDS)とを用いてMnSであることを確認した。また、同じ断面から、縦10mm×横10mmの研磨試験片を10個作製し、これらの研磨試験片の所定位置を光学顕微鏡にて100倍で写真撮影して、0.9mmの検査基準面積(領域)の画像を10視野分準備した。その観察視野(画像)中のMnSの中から大きい順に10個選定し、選定された各MnSの円相当径を算出した。これらの寸法(直径)は、析出物の面積と同一の面積を有する円の直径を示す円相当径に換算した。検出したMnSの粒径分布から、硫化物の平均円相当径および標準偏差を算出した。
 表3、表4に、MnSの最大円相当径の指標であるF1値(=d+3σ)を示す。ここで、表3、表4中の*印は、本発明のMnSの最大円相当径の条件を満足しないことを意味する。
 次に、試験番号1~50の丸棒(熱間鍛造用鋼、38を除く)を用いて、被削性、及び、磁粉探傷試験時の擬似模様の発生有無を調査した。試験番号1~50の丸棒は、熱間鍛造品の素材に相当する。素材である丸棒の被削性が高く、かつ、磁粉探傷試験時に擬似模様が発生しにくければ、丸棒を熱間鍛造して成形され、鍛造終了後放冷された熱間鍛造品も当然に、優れた被削性を有し、かつ、磁粉探傷試験時に擬似模様が発生しにくい。そこで、素材に相当する丸棒の被削性及び磁粉探傷試験の擬似模様の発生有無を、以下の試験方法により調査した。
 [旋削試験]
 試験例1~50の棒鋼(直径90mm)を直径が85mmになるまでピーリングして旋削試験片とした。
 製造された試験片を用いて、旋削加工を実施した。旋削加工では、JIS規格に準拠したP種の超硬工具を使用した。超硬工具はコーティング処理されていなかった。切削速度を250m/min、送り速度を0.30mm/rev、切り込みを1.5mmとし、潤滑油を使用せずに旋削加工を実施した。旋削加工を開始してから10分経過後、超硬工具の逃げ面の摩耗量(mm)を測定した。
 超硬工具の逃げ面の摩耗量が0.20mm以下であれば、被削性に優れると判断した。
 [擬似模様評価試験]
 試験例1~50の丸棒の中心部から、直径50mm、長さ100mmの丸棒試験片を採取した。丸棒試験片の軸方向は、各丸棒の軸方向と同じであった。丸棒試験片の円周面に対して、周波数40kHz、電圧6kV、加熱時間3.0秒の条件で高周波焼入れを実施した。高周波焼入れ後、疲労試験片に対して焼戻しを実施した。具体的には、丸棒試験片を150℃で1時間加熱し、その後、大気中で放冷した。焼戻し後、丸棒試験片の円周面を仕上げ研磨し、表面粗さを調整した。具体的には、仕上げ研磨により、円周面の中心線平均粗さ(Ra)を3.0μm以内とし、最大高さ(Rmax)を9.0μm以内にした。仕上げ研磨された複数の丸棒試験片に対して、JIS Z2343-1(2001)に準拠した浸透探傷試験を実施し、疵のない丸棒試験片を各試験例につき50本選択した。
 選択された50本の丸棒試験片に対して、下記に示す条件で磁粉探傷試験を実施した。
<試験条件>
磁粉:黒色磁粉
磁粉濃度:1.8ml(磁粉の沈殿容積)/100ml(単位容積)
検出媒体の種類:湿式
磁粉の適用時期:連続法
磁化方法:軸通電法
磁化時間:5秒以上
磁化電流:AC
電流値:2500A
 表1~表4を参照して、試験番号1~24の鋼は、鋼A~Xに示すその化学組成が、本発明の熱間鍛造用鋼の化学組成の範囲内であり、かつ、MnSの個数密度が300(個/mm)以上であった。さらに、F1値(=d+3σ)が20μm未満であることを満たした。その結果、試験番号1~24は、優れた被削性を有し、かつ、擬似模様が発生しなかった。
 試験番号25は、化学組成は本発明の熱間鍛造用鋼の化学組成の範囲内であったが、鋳片の表面から15mmの深さの位置における液相線温度から固相線温度までの温度域内の平均冷却速度が遅く、デンドライト一次アーム間隔が広くなったことに起因して、MnSの個数密度が少なくなった。その結果、逃げ面の摩耗量は0.20mmを超えた。
 試験番号26および39は、Biを含有しなかった。また、S含有量が本発明範囲未満であった。そのため、MnSの個数密度は300(個/mm)未満となり、逃げ面の摩耗量は0.20mmを超えた。
 試験番号27~28および40~41は、Biを含有しなかった。そのため、F1値が20μm以上になり、擬似模様が発生した。
 試験番号29、42は、Biを含有しなかったため、MnSの個数密度が300(個/mm)未満となり、逃げ面の摩耗量は0.20mmを超えた。
 試験番号30、31、33、および44~46のS含有量は、本発明のS含有量の下限未満であったので、MnSの個数密度は300(個/mm)未満となり、逃げ面の摩耗量は0.20mmを超えた。
 試験番号32および43のS含有量は、本発明のS含有量の上限を超えた。そのため、F1値が20μm以上であり、擬似模様が発生した。
 試験番号34および47のC含有量は、本発明のC含有量の上限を超えた。また、試験番号34はCr含有量も、本発明のCr含有量の上限を超えた。試験番号35および48のMn含有量は、本発明のMn含有量の上限を超えた。試験番号36および49のCr含有量は、本発明のCr含有量の上限を超えた。試験番号37および50のTi含有量は、本発明のTi含有量の上限を超えた。そのため、これらの試験番号の逃げ面の摩耗量は0.20mmを超えた。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 以上、本発明の実施の形態を説明したが、上述した実施の形態は本発明を実施するための例示に過ぎない。よって、本発明は上述した実施の形態に限定されることなく、その趣旨を逸脱しない範囲内で上述した実施の形態を適宜変形して実施することが可能である。
 本発明の上記態様によれば、熱間鍛造後の被削性に優れ、磁粉探傷試験時に擬似模様が発生しにくい熱間鍛造用鋼及び熱間鍛造品を提供できる。

Claims (10)

  1.  質量%で、
    C:0.30超~0.60%未満、
    Si:0.10~0.90%、
    Mn:0.50~2.00%、
    S:0.010~0.100%、
    Cr:0.01~1.00%、
    Al:0.005超~0.100%、
    N:0.0030~0.0200%、
    Bi:0.0001超~0.0050%、
    Ti:0~0.040%未満、
    V:0~0.30%、
    Ca:0~0.0040%、および
    Pb:0~0.40%、
    を含有し、残部がFeおよび不純物からなり、
     前記不純物中のPおよびOがそれぞれ、
    P:0.050%以下、および
    O:0.0050%以下であり、
     下記式(1)を満たし、
     鋼材の圧延方向と平行な断面において円相当径が2.0μm未満のMnSの存在密度が300個/mm以上である
    ことを特徴とする熱間鍛造用鋼。
     d+3σ<20 ・・・(1)
     式(1)中の、dは前記円相当径が1.0μm以上のMnSの単位μmでの平均円相当径であり、σは前記円相当径が1.0μm以上のMnSの前記円相当径の標準偏差である。
  2.  質量%で、Ti:0.001~0.040%未満を含有することを特徴とする請求項1に記載の熱間鍛造用鋼。
  3.  質量%で、V:0.03~0.30%を含有することを特徴とする請求項1または2に記載の熱間鍛造用鋼。
  4.  質量%で、Ca:0.0003~0.0040%およびPb:0.05~0.40%からなる群から選択される1種または2種を含有することを特徴とする請求項1~3のいずれか一項に記載の熱間鍛造用鋼。
  5.  質量%で、P:0.020%以下であることを特徴とする請求項1~4のいずれか一項に記載の熱間鍛造用鋼。
  6.  質量%で、
    C:0.30超~0.60%未満、
    Si:0.10~0.90%、
    Mn:0.50~2.00%、
    S:0.010~0.100%、
    Cr:0.01~1.00%、
    Al:0.005超~0.100%、
    N:0.0030~0.0200%、
    Bi:0.0001超~0.0050%、
    Ti:0~0.040%未満、
    V:0~0.30%、
    Ca:0~0.0040%、および
    Pb:0~0.40%、
    を含有し、残部がFeおよび不純物からなり、
     前記不純物中のPおよびOがそれぞれ、
    P:0.050%以下、および
    O:0.0050%以下であり、
     下記式(2)を満たし、
     鋼材の圧延方向と平行な断面において円相当径が2.0μm未満のMnSの存在密度が300個/mm以上であることを特徴とする熱間鍛造品。
     d+3σ<20 ・・・(2)
     式(2)中の、dは前記円相当径が1.0μm以上のMnSの単位μmでの平均円相当径であり、σは前記円相当径が1.0μm以上のMnSの前記円相当径の標準偏差である。
  7.  質量%で、Ti:0.001~0.040%未満を含有することを特徴とする請求項6に記載の熱間鍛造品。
  8.  質量%で、0.03~V:0.30%を含有することを特徴とする請求項6または7に記載の熱間鍛造品。
  9.  質量%で、Ca:0.0003~0.0040%およびPb:0.05~0.40%からなる群から選択される1種または2種を含有することを特徴とする請求項6~8のいずれか一項に記載の熱間鍛造品。
  10.  質量%で、P:0.020%以下であることを特徴とする請求項6~9のいずれか一項に記載の熱間鍛造品。
PCT/JP2016/079052 2015-10-19 2016-09-30 熱間鍛造用鋼及び熱間鍛造品 WO2017068935A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020187010176A KR102074715B1 (ko) 2015-10-19 2016-09-30 열간 단조용 강 및 열간 단조품
EP16857251.9A EP3366799B1 (en) 2015-10-19 2016-09-30 Steel for hot forging and hot forged product
JP2017546476A JP6521088B2 (ja) 2015-10-19 2016-09-30 熱間鍛造用鋼及び熱間鍛造品
US15/767,042 US10844466B2 (en) 2015-10-19 2016-09-30 Hot forging steel and hot forged product
CN201680060712.XA CN108138288B (zh) 2015-10-19 2016-09-30 热锻造用钢及热锻造品

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015205630 2015-10-19
JP2015-205630 2015-10-19
JP2015254775 2015-12-25
JP2015-254775 2015-12-25

Publications (1)

Publication Number Publication Date
WO2017068935A1 true WO2017068935A1 (ja) 2017-04-27

Family

ID=58557372

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/079052 WO2017068935A1 (ja) 2015-10-19 2016-09-30 熱間鍛造用鋼及び熱間鍛造品

Country Status (6)

Country Link
US (1) US10844466B2 (ja)
EP (1) EP3366799B1 (ja)
JP (1) JP6521088B2 (ja)
KR (1) KR102074715B1 (ja)
CN (1) CN108138288B (ja)
WO (1) WO2017068935A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022249349A1 (ja) * 2021-05-26 2022-12-01 日本製鉄株式会社 鋼材、及び、その鋼材を素材とするクランクシャフト

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11111568B2 (en) * 2016-09-30 2021-09-07 Nippon Steel Corporation Steel for cold forging and manufacturing method thereof
CN109234627B (zh) * 2018-10-17 2020-12-18 南京钢铁股份有限公司 一种高强高韧性非调质圆钢及制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02228447A (ja) * 1989-02-28 1990-09-11 Nippon Steel Corp 高靭性熱間鍛造用非調質棒鋼
JP2012035286A (ja) * 2010-08-05 2012-02-23 Sumitomo Metal Ind Ltd 鍛鋼ロールの製造方法
CN104120371A (zh) * 2014-07-16 2014-10-29 滁州市艾德模具设备有限公司 一种注塑模具用易切削钢材
JP2015007278A (ja) * 2013-06-26 2015-01-15 新日鐵住金株式会社 プラスチック成型用金型鋼の製造方法およびプラスチック成型用金型

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4019983A (en) 1974-10-10 1977-04-26 Houdaille Industries, Inc. Disinfection system and method
JP3399780B2 (ja) * 1997-04-22 2003-04-21 新日本製鐵株式会社 熱間鍛造用棒鋼の製造方法
JP3893756B2 (ja) 1998-07-08 2007-03-14 住友金属工業株式会社 熱間鍛造用鋼
EP1069198A4 (en) * 1999-01-28 2002-02-06 Sumitomo Metal Ind STEEL PRODUCT FOR STRUCTURAL PARTS OF MACHINERY
JP2000319751A (ja) * 1999-03-09 2000-11-21 Nippon Steel Corp 鍛造性と被削性に優れる鋼
EP1069191B1 (de) 1999-07-07 2005-09-28 Von Roll Umwelttechnik AG Abstichvorrichtung sowie Abstichverfahren
JP2003293081A (ja) * 2002-04-08 2003-10-15 Sanyo Special Steel Co Ltd 被削性および転動疲労特性に優れた機械構造用鋼
JP4115737B2 (ja) 2002-04-12 2008-07-09 山陽特殊製鋼株式会社 微細硫化物を利用した被削性と破断分割性に優れる機械構造用鋼
JP2009173961A (ja) 2008-01-22 2009-08-06 Kobe Steel Ltd 鍛造用鋼およびこれを用いて得られる鍛造品
US9156117B2 (en) * 2010-11-02 2015-10-13 Nippon Steel & Sumitomo Metal Corporation Method of cutting steel for machine structural use
JP5545273B2 (ja) 2011-06-24 2014-07-09 新日鐵住金株式会社 熱間鍛造用鋼
JP5778055B2 (ja) * 2012-02-15 2015-09-16 新日鐵住金株式会社 熱間鍛造用圧延棒鋼および熱間鍛造素形材ならびにコモンレールおよびその製造方法
WO2015125915A1 (ja) * 2014-02-24 2015-08-27 新日鐵住金株式会社 高周波焼入れ用鋼材

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02228447A (ja) * 1989-02-28 1990-09-11 Nippon Steel Corp 高靭性熱間鍛造用非調質棒鋼
JP2012035286A (ja) * 2010-08-05 2012-02-23 Sumitomo Metal Ind Ltd 鍛鋼ロールの製造方法
JP2015007278A (ja) * 2013-06-26 2015-01-15 新日鐵住金株式会社 プラスチック成型用金型鋼の製造方法およびプラスチック成型用金型
CN104120371A (zh) * 2014-07-16 2014-10-29 滁州市艾德模具设备有限公司 一种注塑模具用易切削钢材

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KOICHI ISOBE ET AL.: "Analysis about behavior of formation of MnS during solidification of resulphurized free cutting steel", JOURNAL OF THE IRON & STEEL INSTITUTE OF JAPAN, vol. 72, no. 12, September 1986 (1986-09-01), pages 61 - 68, XP009509728 *
XIAOJING SHAO ET AL.: "Morphology Evolution of MnS inclusions in Hot Forging Steel by Heat Treatment", CURRENT ADVANCES IN MATERIALS AND PROCESSES, vol. 24, no. 1, pages 521 - 524, XP 009509731 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022249349A1 (ja) * 2021-05-26 2022-12-01 日本製鉄株式会社 鋼材、及び、その鋼材を素材とするクランクシャフト

Also Published As

Publication number Publication date
KR20180053696A (ko) 2018-05-23
EP3366799A1 (en) 2018-08-29
US20180291486A1 (en) 2018-10-11
JP6521088B2 (ja) 2019-05-29
EP3366799A4 (en) 2019-06-12
EP3366799B1 (en) 2021-03-24
CN108138288B (zh) 2020-07-31
JPWO2017068935A1 (ja) 2018-08-09
CN108138288A (zh) 2018-06-08
US10844466B2 (en) 2020-11-24
KR102074715B1 (ko) 2020-02-10

Similar Documents

Publication Publication Date Title
JP6468365B2 (ja) 鋼、浸炭鋼部品、及び浸炭鋼部品の製造方法
JP6468366B2 (ja) 鋼、浸炭鋼部品、及び浸炭鋼部品の製造方法
JP7417091B2 (ja) 鋼材
WO2018008621A1 (ja) 機械構造用鋼
KR20190028781A (ko) 고주파 담금질용 강
WO2018021452A1 (ja) 機械構造用鋼
JP6521088B2 (ja) 熱間鍛造用鋼及び熱間鍛造品
JP6642237B2 (ja) 冷間鍛造用鋼およびその製造方法
JP6683075B2 (ja) 浸炭用鋼、浸炭鋼部品及び浸炭鋼部品の製造方法
JP6652021B2 (ja) 熱間鍛造用鋼及び熱間鍛造品
JP6683074B2 (ja) 浸炭用鋼、浸炭鋼部品及び浸炭鋼部品の製造方法
JP6668741B2 (ja) 熱間圧延棒線材
JP6465206B2 (ja) 熱間圧延棒線材、部品および熱間圧延棒線材の製造方法
JP6642236B2 (ja) 冷間鍛造用鋼
JPWO2017069064A1 (ja) 機械構造用鋼及び高周波焼入鋼部品
JP6683073B2 (ja) 浸炭用鋼、浸炭鋼部品及び浸炭鋼部品の製造方法
US11111568B2 (en) Steel for cold forging and manufacturing method thereof
WO2023017829A1 (ja) 鋼材
JP6683072B2 (ja) 浸炭用鋼、浸炭鋼部品及び浸炭鋼部品の製造方法
JP2018035411A (ja) 冷間鍛造用鋼およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16857251

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017546476

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15767042

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20187010176

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016857251

Country of ref document: EP