WO2023017829A1 - 鋼材 - Google Patents
鋼材 Download PDFInfo
- Publication number
- WO2023017829A1 WO2023017829A1 PCT/JP2022/030491 JP2022030491W WO2023017829A1 WO 2023017829 A1 WO2023017829 A1 WO 2023017829A1 JP 2022030491 W JP2022030491 W JP 2022030491W WO 2023017829 A1 WO2023017829 A1 WO 2023017829A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- content
- particles
- less
- steel material
- steel
- Prior art date
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 256
- 239000010959 steel Substances 0.000 title claims abstract description 256
- 239000000463 material Substances 0.000 title claims abstract description 191
- 239000002245 particle Substances 0.000 claims abstract description 162
- 239000000203 mixture Substances 0.000 claims description 39
- 239000000126 substance Substances 0.000 claims description 37
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 21
- 239000012535 impurity Substances 0.000 claims description 13
- 238000005336 cracking Methods 0.000 abstract description 51
- 230000006698 induction Effects 0.000 abstract description 43
- 229910052797 bismuth Inorganic materials 0.000 abstract description 8
- 229910052799 carbon Inorganic materials 0.000 abstract description 8
- 229910052710 silicon Inorganic materials 0.000 abstract description 8
- 229910052804 chromium Inorganic materials 0.000 abstract description 7
- 229910052748 manganese Inorganic materials 0.000 abstract description 7
- 229910052720 vanadium Inorganic materials 0.000 abstract description 6
- 229910052757 nitrogen Inorganic materials 0.000 abstract description 5
- 229910052698 phosphorus Inorganic materials 0.000 abstract description 5
- 229910052717 sulfur Inorganic materials 0.000 abstract description 5
- 238000012360 testing method Methods 0.000 description 70
- 238000000034 method Methods 0.000 description 69
- 238000004519 manufacturing process Methods 0.000 description 46
- 230000000694 effects Effects 0.000 description 42
- 238000007670 refining Methods 0.000 description 34
- 239000013067 intermediate product Substances 0.000 description 27
- 239000011572 manganese Substances 0.000 description 25
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 21
- 239000011651 chromium Substances 0.000 description 20
- 239000010949 copper Substances 0.000 description 20
- 239000011777 magnesium Substances 0.000 description 19
- 239000011575 calcium Substances 0.000 description 18
- 230000004927 fusion Effects 0.000 description 18
- 238000010438 heat treatment Methods 0.000 description 18
- 239000010955 niobium Substances 0.000 description 17
- 238000003756 stirring Methods 0.000 description 17
- 239000010936 titanium Substances 0.000 description 17
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 16
- 238000011156 evaluation Methods 0.000 description 15
- 238000005096 rolling process Methods 0.000 description 15
- 239000011669 selenium Substances 0.000 description 15
- 238000009661 fatigue test Methods 0.000 description 13
- 239000002994 raw material Substances 0.000 description 13
- 238000005452 bending Methods 0.000 description 12
- 238000001816 cooling Methods 0.000 description 12
- 238000005520 cutting process Methods 0.000 description 12
- 238000005242 forging Methods 0.000 description 10
- 239000002244 precipitate Substances 0.000 description 9
- 229910001566 austenite Inorganic materials 0.000 description 8
- 238000005266 casting Methods 0.000 description 8
- 238000002844 melting Methods 0.000 description 7
- 230000008018 melting Effects 0.000 description 7
- 229910052802 copper Inorganic materials 0.000 description 6
- 238000005261 decarburization Methods 0.000 description 6
- 229910052759 nickel Inorganic materials 0.000 description 6
- 230000001629 suppression Effects 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 5
- 238000005098 hot rolling Methods 0.000 description 5
- 229910052749 magnesium Inorganic materials 0.000 description 5
- 229910052750 molybdenum Inorganic materials 0.000 description 5
- 229920006395 saturated elastomer Polymers 0.000 description 5
- 229910052796 boron Inorganic materials 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 238000005553 drilling Methods 0.000 description 4
- 229910052738 indium Inorganic materials 0.000 description 4
- 229910052745 lead Inorganic materials 0.000 description 4
- 150000001247 metal acetylides Chemical class 0.000 description 4
- 229910052758 niobium Inorganic materials 0.000 description 4
- 229910052718 tin Inorganic materials 0.000 description 4
- 229910052719 titanium Inorganic materials 0.000 description 4
- 229910052721 tungsten Inorganic materials 0.000 description 4
- 229910052787 antimony Inorganic materials 0.000 description 3
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 3
- 238000005498 polishing Methods 0.000 description 3
- 238000006722 reduction reaction Methods 0.000 description 3
- 238000005204 segregation Methods 0.000 description 3
- 230000000007 visual effect Effects 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 229910052726 zirconium Inorganic materials 0.000 description 3
- -1 Al: 0.060% or less Substances 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910052765 Lutetium Inorganic materials 0.000 description 2
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 2
- 238000005275 alloying Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 238000009749 continuous casting Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000001739 density measurement Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000010191 image analysis Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 229910052747 lanthanoid Inorganic materials 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 238000010791 quenching Methods 0.000 description 2
- 230000000171 quenching effect Effects 0.000 description 2
- 229910052711 selenium Inorganic materials 0.000 description 2
- 238000009628 steelmaking Methods 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- 229910052714 tellurium Inorganic materials 0.000 description 2
- 238000005496 tempering Methods 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 235000010724 Wisteria floribunda Nutrition 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- FFBHFFJDDLITSX-UHFFFAOYSA-N benzyl N-[2-hydroxy-4-(3-oxomorpholin-4-yl)phenyl]carbamate Chemical compound OC1=C(NC(=O)OCC2=CC=CC=C2)C=CC(=C1)N1CCOCC1=O FFBHFFJDDLITSX-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000010273 cold forging Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 239000010730 cutting oil Substances 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- OHSVLFRHMCKCQY-UHFFFAOYSA-N lutetium atom Chemical compound [Lu] OHSVLFRHMCKCQY-UHFFFAOYSA-N 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- OXNIZHLAWKMVMX-UHFFFAOYSA-N picric acid Chemical compound OC1=C([N+]([O-])=O)C=C([N+]([O-])=O)C=C1[N+]([O-])=O OXNIZHLAWKMVMX-UHFFFAOYSA-N 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- SIXSYDAISGFNSX-UHFFFAOYSA-N scandium atom Chemical compound [Sc] SIXSYDAISGFNSX-UHFFFAOYSA-N 0.000 description 1
- VSZWPYCFIRKVQL-UHFFFAOYSA-N selanylidenegallium;selenium Chemical compound [Se].[Se]=[Ga].[Se]=[Ga] VSZWPYCFIRKVQL-UHFFFAOYSA-N 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 238000005482 strain hardening Methods 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/38—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/24—Ferrous alloys, e.g. steel alloys containing chromium with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/58—Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/60—Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
Definitions
- the present invention relates to steel materials, and more particularly to steel materials that are used as materials for machine structural parts.
- High fatigue strength is required for mechanical structural parts used for underbody parts and axles of automobiles and construction vehicles.
- Patent Document 1 Japanese Patent Application Laid-Open Nos. 57-19366
- Patent Document 2 2004-18879
- 2008-169411 Patent Document 3
- the steel material disclosed in Patent Document 1 contains 0.001 to 0.05% of Ca, 0.02 to 0.15% of Pb and Bi singly or in combination, and S is regulated to 0.005% or less.
- the inclusions are CaS--CaO, Pb, and Bi-based inclusions, and the Al 2 O 3 inclusions are suppressed to less than 0.001%.
- a large amount of Ca is continuously added to molten steel to convert dissolved S into CaS.
- Al 2 O 3 is eliminated or greatly reduced by a reduction reaction with Ca. Therefore, the inclusions are CaS--CaO-based inclusions.
- a small amount of one or both of Pb and Bi is added to the molten steel to form single inclusions of Pb or Bi. Patent Document 1 describes that this improves the machinability of the steel material.
- the steel material disclosed in Patent Document 3 has, in mass%, C: 0.15 to 0.55%, Si: 0.01 to 2.0%, Mn: 0.01 to 2.5%, Cu: 0 .01-2.0%, Ni: 0.01-2.0%, Cr: 0.01-2.5%, Mo: 0.01-3.0%, and from the group consisting of V and W Total amount of at least one selected: 0.01 to 1.0%, the balance being Fe and unavoidable impurities.
- This steel material is soaked at 1010° C. to 1050° C., then cooled to 500° C. to 550° C. at a cooling rate of 200° C./min or more, and then cooled to 150° C. or less at a cooling rate of 100° C./min or more.
- Patent Literature 3 describes that this steel material has an LMX of 17.66 or more, so that the softening resistance is increased and the thermal fatigue strength is increased.
- an example of a manufacturing process of a machine structural part using steel as a raw material is as follows.
- a raw steel material is hot-worked to manufacture an intermediate product having a rough shape for a machine structural part.
- Hot working is, for example, hot forging.
- Machining (cutting) is performed on the manufactured intermediate product so that the intermediate product has a predetermined shape. Quenching and tempering is performed on the intermediate product after cutting.
- the mechanical structural component is manufactured.
- induction hardening may be performed on an intermediate product (steel material) in order to increase the strength of a portion of the mechanical structural part.
- high-frequency induction heating is performed on a portion of the intermediate product (steel material) whose strength is desired to be increased, and then rapid cooling (quenching) is performed.
- the steel material may be locally excessively heated due to the shape of the intermediate product (steel material). Then, the surface layer and part of the inside of the steel material may be melted and cracks may occur. Such cracks are also referred to herein as "fusion cracks.” When induction hardening is performed in the manufacturing process of mechanical structural parts, it is necessary to suppress molten cracks in steel materials.
- Patent Documents 1 to 3 at least suppression of hot working cracks and suppression of fusion cracks are not considered.
- An object of the present invention is to provide a steel material that has excellent machinability, can suppress cracking during hot working, can suppress molten cracking during induction hardening, and can provide excellent fatigue strength when used as a machine structural part. It is to be.
- the steel material according to the present invention is The chemical composition, in mass %, C: 0.20 to 0.50%, Si: 0.01 to 0.80%, Mn: 0.50-2.00%, P: 0.030% or less, S: 0.010 to 0.095%, Cr: 0.01 to 1.30%, V: more than 0.200 to 0.300%, Bi: 0.0051 to 0.1500%, N: 0.0030 to 0.0200%, the balance consists of Fe and impurities, satisfies the formula (1),
- the number density of fine Bi particles with an equivalent circle diameter of 0.1 to 1.0 ⁇ m is 80 to 8000 / mm 2
- the number density of coarse Bi particles having an equivalent circle diameter of 10.0 ⁇ m or more is 10 particles/mm 2 or less.
- the present inventors first studied the chemical composition of steel materials that have excellent machinability and that provide excellent fatigue strength when used as mechanical structural parts. As a result, the present inventors found that the chemical composition is, in mass%, C: 0.20 to 0.50%, Si: 0.01 to 0.80%, Mn: 0.50 to 2.00%, P: 0.030% or less, S: 0.010-0.095%, Cr: 0.01-1.30%, V: more than 0.200-0.300%, N: 0.0030-0.
- the present inventors examined the contents of elements that affect the hardness of steel materials whose contents of each element in the chemical composition are within the above ranges.
- C, Si, Mn, Cr, and V particularly increase the internal hardness of mechanical structural parts manufactured using steel as a raw material, and as a result, the fatigue strength of mechanical structural parts increase
- S lowers the internal hardness. Therefore, the present inventors have found that by adjusting the content of these elements to an appropriate range, it is possible to improve the machinability of steel materials and improve the fatigue strength of machine structural parts manufactured using steel materials as raw materials. I thought it would be compatible.
- the present inventors found that if the content of each element in the chemical composition is within the above range, the steel material satisfies the formula (1), the steel material has excellent machinability, and furthermore, , and found that excellent fatigue strength can be obtained when used as mechanical structural parts. 0.80 ⁇ C+(Si/10)+(Mn/5)-(5S/7)+(5Cr/22)+1.65V ⁇ 1.50 (1)
- the content of the corresponding element is substituted for each element symbol in the formula in terms of % by mass.
- the inventors considered that the C content affects the molten cracking that occurs in the steel material during induction hardening. Specifically, C that segregates at grain boundaries is likely to cause melt cracking. Therefore, the present inventors have investigated means for suppressing the segregation of C at grain boundaries.
- Bi particles suppress coarsening of austenite grains in the steel material during induction hardening due to the pinning effect. If the Bi particles are fine, the pinning effect increases. If the austenite grains are kept fine during induction hardening, the grain boundary area of the austenite grains increases. As the grain boundary area increases, the concentration of C segregating at the austenite grain boundary per unit area decreases. As a result, the occurrence of fusion cracks is suppressed.
- the inclusion of an appropriate amount of Bi suppresses the occurrence of fusion cracks during induction hardening.
- the hot working referred to here is, for example, hot rolling performed during the manufacturing process of steel materials, or hot forging performed during the manufacturing process of mechanical structural parts. Therefore, the cause of cracking during hot working was investigated. As a result, the inventors obtained the following new findings.
- the present inventors have found that the number density of fine Bi particles in the steel material is secured to some extent, and the number density of coarse Bi particles in the steel material is suppressed as much as possible, so that melting during induction hardening It was thought that cracking could be suppressed, and hot working cracking could also be suppressed. Therefore, the number density of fine Bi particles and the number density of coarse Bi particles that sufficiently exhibit these effects were further investigated and examined.
- the number density of fine Bi particles with an equivalent circle diameter of 0.1 to 1.0 ⁇ m is 80 to 8000 / mm 2
- the number density of coarse Bi particles with an equivalent circle diameter of 10.0 ⁇ m or more is 10 pieces/mm 2 or less, it is possible to suppress fusion cracks during induction hardening and to suppress hot working cracks. , the inventors have found.
- the steel material according to this embodiment completed based on the above knowledge has the following configuration.
- [1] is steel,
- the number density of fine Bi particles with an equivalent circle diameter of 0.1 to 1.0 ⁇ m is 80 to 8000 / mm 2
- the number density of coarse Bi particles having an equivalent circle diameter of 10.0 ⁇ m or more is 10/mm 2 or less, steel.
- the steel material according to [1], The chemical composition further includes, in place of part of Fe, Al: 0.060% or less, Mg: 0.0100% or less, Ti: 0.0200% or less, Nb: 0.0200% or less, W: 0.4000% or less, Zr: 0.2000% or less, Ca: 0.0030% or less, Te: 0.0100% or less, B: 0.0050% or less, Sn: 0.0100% or less, Rare earth element: 0.0070% or less, Co: 0.0100% or less, Se: 0.0100% or less, Sb: 0.0100% or less, In: 0.0100% or less, Mo: 0.20% or less, Cu: 0.20% or less, and Ni: containing one or more selected from the group consisting of 0.20% or less, steel.
- the steel material of this embodiment satisfies the following characteristics 1 to 4.
- the chemical composition is mass%, C: 0.20 to 0.50%, Si: 0.01 to 0.80%, Mn: 0.50 to 2.00%, P: 0.030% or less, S : 0.010-0.095%, Cr: 0.01-1.30%, V: more than 0.200-0.300%, Bi: 0.0051-0.1500%, N: 0.0030- 0.0200%, and the balance consists of Fe and impurities.
- feature 2 Assuming that the content of each element is within the range of feature 1, formula (1) is satisfied.
- C 0.20-0.50% Carbon (C) increases the hardness of mechanical structural parts manufactured using steel as a raw material, and increases the fatigue strength of the mechanical structural parts. If the C content is less than 0.20%, the above effect cannot be sufficiently obtained even if the content of other elements is within the range of the present embodiment. On the other hand, if the C content exceeds 0.50%, C segregates at grain boundaries even if the content of other elements is within the range of the present embodiment. In this case, the C concentration at grain boundaries increases. A higher C concentration lowers the melting point. Therefore, melt cracking is likely to occur during induction hardening. Therefore, the C content is 0.20-0.50%. A preferred lower limit for the C content is 0.21%, more preferably 0.22%, and still more preferably 0.23%. A preferable upper limit of the C content is 0.49%, more preferably 0.48%, and still more preferably 0.47%.
- a preferable lower limit of the Si content is 0.02%, more preferably 0.05%, and still more preferably 0.08%.
- a preferable upper limit of the Si content is 0.75%, more preferably 0.70%, still more preferably 0.65%, still more preferably 0.60%.
- Mn 0.50-2.00%
- Mn Manganese (Mn) deoxidizes steel in the steelmaking process. Mn also has a strong affinity with C. Therefore, during heating, C remains in the grains in which Mn is dissolved. Therefore, the segregation of C to grain boundaries is suppressed, and the occurrence of fusion cracking during induction hardening is suppressed. If the Mn content is less than 0.50%, the above effect cannot be sufficiently obtained even if the content of other elements is within the range of the present embodiment. On the other hand, if the Mn content exceeds 2.00%, the hardness of the steel excessively increases even if the contents of other elements are within the range of the present embodiment. As a result, the machinability of the steel deteriorates.
- the Mn content is 0.50-2.00%.
- a preferable lower limit of the Mn content is 0.52%, more preferably 0.55%, still more preferably 0.57%, still more preferably 0.60%.
- a preferable upper limit of the Mn content is 1.98%, more preferably 1.95%, still more preferably 1.93%, still more preferably 1.90%.
- Phosphorus (P) is an impurity. P segregates at grain boundaries. Therefore, P lowers the melting point of steel. Therefore, melt cracking is likely to occur during induction hardening. Therefore, the P content is 0.030% or less. The lower the P content is, the better. However, excessive reduction of the P content increases manufacturing costs. Therefore, considering normal industrial production, the lower limit of the P content is preferably over 0%, more preferably 0.001%, and still more preferably 0.002%. The upper limit of the P content is preferably 0.028%, more preferably 0.026%, still more preferably 0.023%, still more preferably 0.020%.
- S 0.010-0.095%
- Sulfur (S) forms sulfide inclusions and enhances the machinability of steel materials. If the S content is less than 0.010%, the above effect cannot be sufficiently obtained even if the content of other elements is within the range of the present embodiment. On the other hand, S lowers the melting point of steel. Therefore, if the S content exceeds 0.095%, even if the content of other elements is within the range of the present embodiment, fusion cracking is likely to occur during induction hardening. Therefore, the S content is 0.010-0.095%.
- the lower limit of the S content is preferably 0.012%, more preferably 0.015%, still more preferably 0.018%, still more preferably 0.020%.
- a preferable upper limit of the S content is 0.080%, more preferably 0.075%, and still more preferably 0.070%.
- Chromium (Cr) enhances the hardenability of steel materials. Therefore, the internal hardness of the machine structural part is increased. As a result, the fatigue strength of the mechanical structural component is increased. Cr also has a strong affinity with C. Therefore, during heating, C stays in grains in which Cr is dissolved. Therefore, the segregation of C to grain boundaries is suppressed, and the occurrence of fusion cracking during induction hardening is suppressed. Cr further combines with S to form Cr sulfide. In this case, the formation of coarse FeS is suppressed. As a result, the ductility of the steel material during hot working is improved, and hot working cracks are suppressed.
- Cr Chromium
- the Cr content is 0.01-1.30%.
- the lower limit of the Cr content is preferably 0.02%, more preferably 0.04%, still more preferably 0.06%, still more preferably 0.08%.
- a preferable upper limit of the Cr content is 1.28%, more preferably 1.26%, and still more preferably 1.24%.
- V more than 0.200 to 0.300% Vanadium (V) precipitates in ferrite in steel as V precipitates during the cooling process after hot working in the manufacturing process of mechanical structural parts. V precipitates increase the internal hardness of mechanical structural parts. As a result, the fatigue strength of the mechanical structural component is increased. Furthermore, V binds to C and fixes C within the ⁇ grains. Therefore, V suppresses the occurrence of fusion cracks during induction hardening. If the V content is 0.200% or less, the above effects cannot be sufficiently obtained even if the content of other elements is within the range of the present embodiment. On the other hand, if the V content exceeds 0.300%, the hardness of the steel excessively increases even if the content of other elements is within the range of the present embodiment.
- the V content is more than 0.200 to 0.300%.
- the preferred lower limit of the V content is 0.205%, more preferably 0.210%, still more preferably 0.215%, still more preferably 0.220%, still more preferably 0.225 %, more preferably 0.230%.
- a preferable upper limit of the V content is 0.295%, more preferably 0.290%, and still more preferably 0.285%.
- Bi 0.0051 to 0.1500% Bismuth (Bi) forms inclusions (Bi particles) in the steel. Therefore, melt cracking during induction hardening is suppressed. Bi further enhances the machinability of the steel material. If the Bi content is less than 0.0051%, the above effect cannot be sufficiently obtained even if the content of other elements is within the range of the present embodiment. On the other hand, if the Bi content exceeds 0.1500%, coarse Bi particles are generated even if the content of other elements is within the range of the present embodiment. Coarse Bi particles tend to cause cracks during hot working during the manufacturing process of steel or during hot working during the manufacturing process of mechanical structural parts manufactured using steel as a raw material. Therefore, hot working cracks are likely to occur.
- the Bi content is 0.0051-0.1500%.
- the preferred lower limit of the Bi content is 0.0080%, more preferably 0.0100%, still more preferably 0.0120%, still more preferably 0.0140%, still more preferably 0.0160 %.
- a preferable upper limit of the Bi content is 0.1400%, more preferably 0.1350%, still more preferably 0.1300%.
- N 0.0030 to 0.0200%
- Nitrogen (N) forms nitrides and/or carbonitrides in the cooling process after hot working in the manufacturing process of mechanical structural parts, thereby precipitation strengthening the steel material. As a result, the fatigue strength of the mechanical structural component is increased. If the N content is less than 0.0030%, the above effect cannot be sufficiently obtained even if the other element content is within the range of the present embodiment. On the other hand, if the N content exceeds 0.0200%, the hot workability of the steel deteriorates even if the content of other elements is within the range of the present embodiment. Therefore, the N content is 0.0030-0.0200%.
- a preferable lower limit of the N content is 0.0032%, more preferably 0.0034%, and still more preferably 0.0036%.
- the upper limit of the N content is preferably 0.0190%, more preferably 0.0170%, still more preferably 0.0150%, still more preferably 0.0130%, still more preferably 0.0100 %.
- the rest of the chemical composition of the steel material according to this embodiment consists of Fe and impurities.
- the impurities in the chemical composition are those that are mixed from ore, scrap, or the manufacturing environment as raw materials when industrially manufacturing the steel material, and have an adverse effect on the steel material according to the present embodiment. It means what is permissible within the scope of
- Impurities include all elements other than the above impurities (P, S). Only one kind of impurity may be used, or two or more kinds thereof may be used. Impurities other than those mentioned above are, for example, as follows. O: 0.0050% or less, Ta and Zn: 0 to 0.01% in total, Pb: 0.09% or less.
- the chemical composition of the steel material of the present embodiment may further contain one or more selected from the group consisting of the following first to fifth groups. All of these elements are optional elements.
- First group Al: 0.060% or less Mg: 0.0100% or less
- Second group Ti: 0.0200% or less Nb: 0.0200% or less
- W 0.4000% or less
- Zr 0.2000% or less
- Third group Ca: 0.0030% or less Te: 0.0100% or less
- Sn 0.0100% or less
- Rare earth elements 0.0070% or less
- Group 5] Mo: 0.20% or less Cu: 0.20% or less Ni: 0.20% or less
- the steel material of the present embodiment may further contain one or more selected from the group consisting of Al and Mg instead of part of Fe. These elements are optional elements and all deoxidize the steel.
- Al 0.060% or less
- Aluminum (Al) is an optional element and may not be contained. That is, the Al content may be 0%. When Al is included, Al deoxidizes the steel. If even a small amount of Al is contained, the above effect can be obtained to some extent. However, if the Al content exceeds 0.060%, Al forms coarse oxides even if the content of other elements is within the range of the present embodiment. Coarse oxides reduce the fatigue strength of mechanical structural parts. Therefore, the Al content is 0-0.060%, and if included, the Al content is 0.060% or less.
- a preferable lower limit of the Al content is more than 0%, more preferably 0.001%, more preferably 0.002%, still more preferably 0.003%, still more preferably 0.005% and more preferably 0.010%.
- a preferable upper limit of the Al content is 0.055%, more preferably 0.050%, and still more preferably 0.045%.
- Mg 0.0100% or less
- Magnesium (Mg) is an optional element and may not be contained. That is, the Mg content may be 0%. When Mg is included, it deoxidizes the steel. If even a small amount of Mg is contained, the above effect can be obtained to some extent. However, if the Mg content exceeds 0.0100%, Mg forms coarse oxides even if the content of other elements is within the range of the present embodiment. Coarse oxides reduce the fatigue strength of mechanical structural parts. Therefore, the Mg content is 0-0.0100%, and if included, the Mg content is 0.0100% or less.
- a preferable lower limit of the Mg content is more than 0%, more preferably 0.0001%, still more preferably 0.0003%, still more preferably 0.0005%.
- a preferable upper limit of the Mg content is 0.0050%, more preferably 0.0045%, and still more preferably 0.0040%.
- the chemical composition of the steel material of the present embodiment may further contain one or more selected from the group consisting of Ti, Nb, W and Zr instead of part of Fe. These elements are optional elements, and all form precipitates to increase the toughness of mechanical structural parts.
- Titanium (Ti) is an optional element and may not be contained. That is, the Ti content may be 0%. When Ti is contained, Ti forms carbides and/or carbonitrides and refines crystal grains in the cooling process of the hot working process during the manufacturing process of parts for mechanical structures. This increases the toughness of the mechanical structural component. If even a small amount of Ti is contained, the above effect can be obtained to some extent. However, if the Ti content exceeds 0.0200%, the above effect is saturated even if the content of other elements is within the range of the present embodiment. Furthermore, manufacturing costs are high. Therefore, the Ti content is 0-0.0200%, and if included, the Ti content is 0.0200% or less.
- a preferable lower limit of the Ti content is more than 0%, more preferably 0.0001%, more preferably 0.0010%, still more preferably 0.0050%, still more preferably 0.0080% is.
- the upper limit of the Ti content is preferably 0.0180%, more preferably 0.0170%, still more preferably 0.0150%.
- Niobium (Nb) is an optional element and may not be contained. That is, the Nb content may be 0%. When Nb is contained, Nb forms carbides and/or carbonitrides and refines crystal grains in the cooling process of the hot working process during the manufacturing process of mechanical structural parts. This increases the toughness of the mechanical structural component. If even a small amount of Nb is contained, the above effect can be obtained to some extent. However, if the Nb content exceeds 0.0200%, the above effect is saturated even if the content of other elements is within the range of the present embodiment. Furthermore, manufacturing costs are high. Therefore, the Nb content is 0 to 0.0200%, and if included, the Nb content is 0.0200% or less.
- a preferable lower limit of the Nb content is more than 0%, more preferably 0.0001%, more preferably 0.0010%, still more preferably 0.0050%, still more preferably 0.0080% is.
- a preferable upper limit of the Nb content is 0.0180%, more preferably 0.0170%, and still more preferably 0.0150%.
- W 0.4000% or less
- Tungsten (W) is an optional element and may not be contained. That is, the W content may be 0%.
- W forms carbides and/or carbonitrides and refines crystal grains in the cooling process of the hot working process during the manufacturing process of parts for mechanical structures. This increases the toughness of the mechanical structural component. If even a small amount of W is contained, the above effect can be obtained to some extent. However, if the W content exceeds 0.4000%, the above effect is saturated even if the content of other elements is within the range of the present embodiment. Furthermore, manufacturing costs are high. Therefore, the W content is 0 to 0.4000%, and when included, the W content is 0.4000% or less.
- a preferable lower limit of the W content is more than 0%, more preferably 0.0001%, still more preferably 0.0050%, still more preferably 0.0500%.
- a preferable upper limit of the W content is 0.3500%, more preferably 0.3000%, and still more preferably 0.2000%.
- Zr Zirconium
- Zr Zirconium
- the Zr content may be 0%.
- Zr forms carbides and/or carbonitrides and refines crystal grains in the cooling process of the hot working process during the manufacturing process of mechanical structural parts. This increases the toughness of the mechanical structural component. If even a small amount of Zr is contained, the above effect can be obtained to some extent. However, if the Zr content exceeds 0.2000%, the above effect is saturated even if the content of other elements is within the range of the present embodiment. Furthermore, manufacturing costs are high. Therefore, the Zr content is 0-0.2000%, and if included, the Zr content is 0.2000% or less.
- a preferable lower limit of the Zr content is more than 0%, more preferably 0.0001%, more preferably 0.0010%, still more preferably 0.0020%, still more preferably 0.0050% is.
- the upper limit of the Zr content is preferably 0.1500%, more preferably 0.1000%, still more preferably 0.0500%, still more preferably 0.0100%.
- the chemical composition of the steel material of the present embodiment may further contain one or more selected from the group consisting of Ca, Te, B, Sn and rare earth elements (REM) instead of part of Fe. These elements are optional elements, and all improve the machinability of the steel material.
- REM rare earth elements
- Ca 0.0030% or less Calcium (Ca) is an optional element and may not be contained. That is, the Ca content may be 0%. When Ca is contained, Ca enhances the machinability of the steel material. If even a little Ca is contained, the above effect can be obtained to some extent. However, if the Ca content exceeds 0.0030%, coarse oxides are formed even if the content of other elements is within the range of the present embodiment. In this case, the fatigue strength of the mechanical structural component is lowered. Therefore, the Ca content is 0 to 0.0030%, and when included, the Ca content is 0.0030% or less. A preferable lower limit of the Ca content is more than 0%, more preferably 0.0001%, still more preferably 0.0010%, still more preferably 0.0015%. A preferable upper limit of the Ca content is 0.0025%, more preferably 0.0023%, and still more preferably 0.0020%.
- Te 0.0100% or less
- Tellurium (Te) is an optional element and may not be contained. That is, the Te content may be 0%.
- Te enhances the machinability of the steel material. If even a little Te is contained, the above effect can be obtained to some extent.
- the Te content is 0-0.0100%, and if included, the Te content is 0.0100% or less.
- the lower limit of the Te content is preferably over 0%, more preferably 0.0001%, still more preferably 0.0003%, still more preferably 0.0010%.
- a preferred upper limit of the Te content is 0.0090%, more preferably 0.0085%, still more preferably 0.0080%.
- B Boron (B) is an optional element and may not be contained. That is, the B content may be 0%. When B is contained, B enhances the machinability of the steel material. If even a small amount of B is contained, the above effect can be obtained to some extent. However, if the B content exceeds 0.0050%, hot working cracks are likely to occur in the steel material even if the content of other elements is within the range of the present embodiment. Therefore, the B content is 0 to 0.0050%, and when included, the B content is 0.0050% or less.
- the lower limit of the B content is preferably over 0%, more preferably 0.0001%, still more preferably 0.0005%, still more preferably 0.0010%.
- a preferable upper limit of the B content is 0.0040%, more preferably 0.0035%, and still more preferably 0.0030%.
- Tin (Sn) is an optional element and may not be contained. That is, the Sn content may be 0%.
- Sn enhances the machinability of the steel material. If even a small amount of Sn is contained, the above effect can be obtained to some extent. However, if the Sn content exceeds 0.0100%, hot working cracks are likely to occur in the steel material even if the content of other elements is within the range of the present embodiment. Therefore, the Sn content is between 0 and 0.0100%, and if included, the Sn content is 0.0100% or less.
- the lower limit of the Sn content is preferably over 0%, more preferably 0.0001%, still more preferably 0.0005%, still more preferably 0.0010%.
- the preferred upper limit of the Sn content is 0.0095%, more preferably 0.0090%, still more preferably 0.0085%, still more preferably 0.0080%.
- Rare earth elements are optional elements and may not be contained. That is, the REM content may be 0%. When REM is included, REM enhances the machinability of steel. The above effect can be obtained to some extent if REM is contained even in a small amount. However, if the REM content exceeds 0.0070%, hot working cracks are likely to occur in the steel material even if the content of other elements is within the range of the present embodiment. Therefore, the REM content is between 0 and 0.0070%, and if included, the REM content is 0.0070% or less.
- REM Rare earth elements
- a preferable lower limit of the REM content is more than 0%, more preferably 0.0001%, still more preferably 0.0005%, still more preferably 0.0010%.
- a preferred upper limit for the REM content is 0.0065%, more preferably 0.0060%, and even more preferably 0.0055%.
- REM in this specification refers to scandium (Sc) with atomic number 21, yttrium (Y) with atomic number 39, and lanthanide lanthanide (La) with atomic number 57 to lutetium with atomic number 71 ( Lu) is one or more elements selected from the group consisting of Lu). Also, the REM content in this specification is the total content of these elements.
- the chemical composition of the steel material of the present embodiment may further contain one or more selected from the group consisting of Co, Se, Sb and In instead of part of Fe. These elements are arbitrary elements, and all of them suppress decarburization of the steel material.
- Co 0.0100% or less
- Co is an optional element and may not be contained. That is, the Co content may be 0%.
- Co suppresses decarburization of the steel material during hot working. If even a small amount of Co is contained, the above effect can be obtained to some extent.
- the Co content exceeds 0.0100%, hot working cracks are likely to occur in the steel material even if the content of other elements is within the range of the present embodiment. Therefore, the Co content is between 0 and 0.0100%, and when included, the Co content is 0.0100% or less.
- the lower limit of the Co content is preferably over 0%, more preferably 0.0001%, still more preferably 0.0005%, still more preferably 0.0010%.
- a preferable upper limit of the Co content is 0.0090%, more preferably 0.0080%, and still more preferably 0.0070%.
- Se 0.0100% or less
- Selenium (Se) is an optional element and may not be contained. That is, the Se content may be 0%. When Se is contained, Se suppresses decarburization of the steel material during hot working. If even a little Se is contained, the above effect can be obtained to some extent. However, if the Se content exceeds 0.0100%, hot working cracks are likely to occur in the steel material even if the contents of other elements are within the ranges of the present embodiment. Therefore, the Se content is between 0 and 0.0100%, and when included, the Se content is 0.0100% or less.
- the lower limit of the Se content is preferably over 0%, more preferably 0.0001%, still more preferably 0.0005%, still more preferably 0.0010%.
- a preferable upper limit of the Se content is 0.0090%, more preferably 0.0080%, and still more preferably 0.0070%.
- Antimony (Sb) is an optional element and may not be contained. That is, the Sb content may be 0%.
- Sb is contained, that is, when the Sb content exceeds 0%, Sb suppresses decarburization of the steel material during hot working. If even a small amount of Sb is contained, the above effect can be obtained to some extent.
- the Sb content exceeds 0.0100%, hot working cracks are likely to occur in the steel material even if the content of other elements is within the range of the present embodiment. Therefore, the Sb content is 0 to 0.0100%, and when included, the Sb content is 0.0100% or less.
- the lower limit of the Sb content is preferably over 0%, more preferably 0.0001%, still more preferably 0.0005%, still more preferably 0.0010%.
- a preferable upper limit of the Sb content is 0.0090%, more preferably 0.0080%, and still more preferably 0.0070%.
- Indium (In) is an optional element and may not be contained. That is, the In content may be 0%.
- In When In is contained, In suppresses decarburization of the steel material during hot working. If even a small amount of In is contained, the above effect can be obtained to some extent. However, if the In content exceeds 0.0100%, hot working cracks are likely to occur in the steel material even if the content of other elements is within the range of the present embodiment. Therefore, the In content is 0 to 0.0100%, and when included, the In content is 0.0100% or less.
- the lower limit of the In content is preferably over 0%, more preferably 0.0001%, still more preferably 0.0005%, still more preferably 0.0010%.
- a preferable upper limit of the In content is 0.0090%, more preferably 0.0080%, and still more preferably 0.0070%.
- the chemical composition of the steel material of the present embodiment may further contain one or more selected from the group consisting of Mo, Cu and Ni in place of part of Fe. These elements are optional elements, and all of them increase the fatigue strength of the mechanical structural component.
- Cu 0.20% or less Copper (Cu) is an optional element and may not be contained. That is, the Cu content may be 0%. When Cu is contained, Cu enhances the fatigue strength of mechanical structural parts. If even a small amount of Cu is contained, the above effects can be obtained to some extent. However, Cu, like Si, promotes the occurrence of molten cracks during induction hardening. Therefore, if the Cu content exceeds 0.20%, even if the content of other elements is within the range of the present embodiment, fusion cracking is likely to occur during induction hardening. Therefore, the Cu content is 0-0.20%, and if included, the Cu content is 0.20% or less.
- the lower limit of the Cu content is preferably over 0%, more preferably 0.01%, still more preferably 0.02%, still more preferably 0.03%.
- a preferable upper limit of the Cu content is 0.15%, more preferably 0.13%, and still more preferably 0.10%.
- Nickel (Ni) is an optional element and may not be contained. That is, the Ni content may be 0%. When Ni is contained, Ni enhances the fatigue strength of the mechanical structural part. If Ni is contained even in a small amount, the above effect can be obtained to some extent. However, Ni, like Si and Cu, promotes the occurrence of molten cracks during induction hardening. Therefore, if the Ni content exceeds 0.20%, even if the content of other elements is within the range of the present embodiment, fusion cracking is likely to occur during induction hardening. Therefore, the Ni content is 0 to 0.20%, and if included, the Ni content is 0.20% or less.
- the lower limit of the Ni content is preferably over 0%, more preferably 0.01%, still more preferably 0.02%, still more preferably 0.03%.
- a preferable upper limit of the Ni content is 0.15%, more preferably 0.13%, and still more preferably 0.10%.
- the steel material of the present embodiment further satisfies the formula (1) on the premise that the content of each element is within the above range, that is, on the premise that the feature 1 is satisfied. 0.80 ⁇ C+(Si/10)+(Mn/5)-(5S/7)+(5Cr/22)+1.65V ⁇ 1.50 (1)
- the content of the corresponding element is substituted for each element symbol in the formula in terms of % by mass.
- fn1 C+(Si/10)+(Mn/5)-(5S/7)+(5Cr/22)+1.65V.
- fn1 is an index of the hardness of the steel material.
- C, Si, Mn, Cr and V increase the internal hardness of mechanical structural parts manufactured from steel.
- S reduces the internal hardness of mechanical structural parts.
- fn1 is between 0.80 and 1.50.
- a preferable lower limit of fn1 is 0.81, more preferably 0.82, and still more preferably 0.85.
- a preferable upper limit of fn1 is 1.48, more preferably 1.45, and still more preferably 1.43.
- fine Bi particles with an equivalent circle diameter of 0.1 to 1.0 ⁇ m (hereinafter simply The number density of the fine Bi particles) is 80 to 8000/mm 2 .
- the number density of the fine Bi particles is 80 to 8000/mm 2 , the occurrence of fusion cracks during induction hardening is suppressed.
- Bi exists in steel materials in the form of particles of Bi alone or particles containing a high concentration of Bi.
- particles of Bi alone or particles containing a high concentration of Bi are collectively defined as Bi particles.
- fine Bi particles mean Bi particles having an equivalent circle diameter of 0.1 to 1.0 ⁇ m. Since Bi is a heavy element, Bi particles are observed with higher brightness than the surroundings in a backscattered electron image.
- the fine Bi particles may exist alone in the steel material without contacting other particles (precipitates or inclusions). Further, the fine Bi particles may be present in the steel material by adhering to or contacting other particles.
- Bi particles pin the austenite grain boundaries during high-frequency induction heating. If the equivalent circle diameter of the Bi particles is 0.1 to 1.0 ⁇ m, the austenite grain boundary pinning effect is enhanced. If the austenite grains are kept fine during induction hardening, the grain boundary area of the austenite grains increases. As the grain boundary area increases, the concentration of C segregating at the grain boundary decreases. As a result, the occurrence of fusion cracks is suppressed.
- each element in the chemical composition of the steel material is within the range of the present embodiment, the formula (1) is satisfied, and the number of coarse Bi particles having an equivalent circle diameter of 10.0 ⁇ m or more is 10/mm 2 Even if it is below, if the number of fine Bi particles is less than 80/mm 2 , the above effects cannot be sufficiently obtained.
- the content of each element in the chemical composition of the steel material is within the range of the present embodiment, the formula (1) is satisfied, and the coarse Bi particles having an equivalent circle diameter of 10.0 ⁇ m or more are 10 pieces/ Even if it is mm 2 or less, if the number density of fine Bi particles exceeds 8000/mm 2 , the above effects will saturate and the manufacturing cost will increase.
- the number density of fine Bi particles having an equivalent circle diameter of 0.1 to 1.0 ⁇ m is 80 to 8000/mm 2 .
- a preferable lower limit of the number density of fine Bi particles is 90/mm 2 , a more preferable lower limit is 95/mm 2 , and a further preferable lower limit is 100/mm 2 .
- a preferable upper limit of the number density of fine Bi particles is 7900/ mm2 , more preferably 6000/ mm2 , still more preferably 3000/ mm2 , and still more preferably 1000/ mm2 . , more preferably 900/mm 2 , more preferably 800/mm 2 .
- the number density of coarse Bi particles (hereinafter simply referred to as coarse Bi particles), which are Bi particles having an equivalent circle diameter of 10.0 ⁇ m or more, is 10 particles/mm 2 or less. If the number density of coarse Bi particles is 10/mm 2 or less, cracking occurs during hot working during the manufacturing process of steel materials, or during hot working during the manufacturing process of mechanical structural parts made of steel materials. (hot work cracking) can be suppressed. Hot working includes, for example, hot rolling and hot forging.
- coarse Bi particles mean Bi particles having an equivalent circle diameter of 10.0 ⁇ m or more.
- the particle is determined to be a coarse Bi particle.
- Coarse Bi particles may exist alone in the steel material without contacting other particles (precipitates or inclusions).
- coarse Bi particles may be present in the steel material by adhering to or contacting other particles.
- the upper limit of the equivalent circle diameter of the coarse Bi particles is not particularly limited, in the case of the chemical composition of the present embodiment, the upper limit of the equivalent circle diameter of the coarse Bi particles is 50.0 ⁇ m.
- the fine Bi particles in the steel suppress molten cracking during induction hardening.
- Bi in the steel may form coarse Bi particles instead of fine Bi particles.
- Coarse Bi particles can serve as starting points for hot working cracks in steel materials.
- the number of fine Bi particles is 80 to 8000 / mm 2 , coarse Bi If the number of particles exceeds 10/mm 2 , hot working cracks may occur in the steel material. Therefore, in the steel material of the present embodiment, the number density of coarse Bi particles having an equivalent circle diameter of 10.0 ⁇ m or more is 10 particles/mm 2 or less.
- the preferred upper limit of the number density of coarse Bi particles is 8/mm 2 , more preferably 7/mm 2 , still more preferably 6/mm 2 , and still more preferably 5/mm 2 .
- the number density of coarse Bi particles is preferably as low as possible. That is, the number density of coarse Bi particles is preferably 0/mm 2 . However, an excessive reduction in the number density of coarse Bi particles raises production costs. Therefore, considering normal industrial productivity, the preferable lower limit of the number density of coarse Bi particles is 1/mm 2 , more preferably 2/mm 2 .
- intermediate Bi particles of more than 1.0 ⁇ m to less than 10.0 ⁇ m (hereinafter simply referred to as intermediate Bi particles) are also present.
- the intermediate Bi particles are less likely to affect hot work cracking and melt cracking during induction hardening. Therefore, the intermediate Bi particles need not be taken into account in the suppression of hot work cracking and the suppression of melt cracking.
- the number density of fine Bi particles and coarse Bi particles can be measured by the following method.
- a test piece including the R/2 portion is taken from a cross section perpendicular to the axial direction (rolling direction) of the steel material (steel bar).
- the R/2 part means the central part of the radius R in the cross section perpendicular to the axial direction of the steel material.
- the observation surface polish the viewing surface to a mirror finish. Using a scanning electron microscope (SEM), 20 fields of view of the R/2 part of the observation surface after mirror polishing are observed at a magnification of 1000 times. The area of each field of view is assumed to be 100 ⁇ m ⁇ 120 ⁇ m.
- the number density of coarse Bi particles and fine Bi particles is examined using a well-known particle analysis method of image analysis. Specifically, the particles in the steel material are identified based on the interface between the matrix phase of the steel material and the particles. The particles here are inclusions or precipitates. Image analysis is performed to determine the equivalent circle diameter of the specified particles. Specifically, the area of each identified particle is obtained. The diameter of a circle having the same area as the obtained area is defined as the equivalent circle diameter ( ⁇ m) of the particle.
- Bi is a heavy element, it is observed with high brightness in backscattered electron images. Therefore, among the particles observed in the backscattered electron image obtained by the SEM observation, particles having an equivalent circle diameter of 0.1 to 1.0 ⁇ m and observed with higher brightness than the surroundings. are identified as fine Bi particles. In addition, among the particles observed in the backscattered electron image obtained by SEM observation, particles having an equivalent circle diameter of 10.0 ⁇ m or more and having a higher brightness than the surroundings are defined as coarse Bi particles. and specify.
- Fine Bi particles and coarse Bi particles are identified by the above method. Based on the total number of fine Bi particles specified in each field of view and the total area (0.24 mm 2 ) of the 20 fields of view, the number of fine Bi particles per unit area (pieces/mm 2 ) is obtained. Also, based on the total number of coarse Bi particles specified in each field of view and the total area (0.24 mm 2 ) of the 20 fields of view, the number of coarse Bi particles per unit area (pieces/mm 2 ) is obtained.
- the steel material of this embodiment satisfies the features 1 to 4. Therefore, the steel material of the present embodiment has excellent machinability, can suppress cracking during hot working and fusion cracking during induction hardening, and has excellent fatigue strength when used as a machine structural part.
- the steel material of the present embodiment can be widely applied as a material for machine structural parts, for example.
- the steel material of the present embodiment is particularly suitable for performing induction hardening in the manufacturing process of machine structural parts. However, even if induction hardening is not performed, the steel material of the present embodiment can be applied as a material for mechanical structural parts.
- the steel manufacturing method of the present embodiment includes a refining process, a casting process, and a hot working process.
- the hot working step is an optional step and need not be performed. Each step will be described below.
- step 3 is an optional step and may not be performed.
- Process 1 Refining process Process 2
- Process 3 Casting process Process 3
- Hot working process Each process will be described below.
- the number density of fine Bi particles is 80/mm 2 or more, and the number density of coarse Bi particles is 10/mm 2 or less.
- the preferred upper limit of the time from the addition of Bi to the molten steel to the end of stirring in the secondary refining process is 50 minutes, more preferably 40 minutes.
- a preferred lower limit of the time from the addition of Bi to the end of stirring in the secondary refining step is 20 minutes, more preferably 30 minutes.
- the temperature of the molten steel is 1510-1560°C until the end of stirring in the secondary refining process.
- Step 2 Casting step In the casting process, molten steel is used to produce slabs (slabs or blooms) or steel ingots (ingots) by a known casting method.
- the casting method is, for example, a continuous casting method or an ingot casting method.
- a horizontal stand having a pair of horizontal rolls and a vertical stand having a pair of vertical rolls are alternately arranged in a row.
- the heating temperature in the rough rolling step and finish rolling step is, for example, 1000 to 1300°C.
- the steel material of the present embodiment is manufactured through the manufacturing process described above. As noted above, the manufacturing method may omit the hot working step. That is, the steel material of this embodiment may be a cast product (slab or ingot). Moreover, the steel material of this embodiment may be manufactured by carrying out a hot working process.
- the steel material of this embodiment serves as a material for mechanical structural parts.
- Mechanical structural parts are, for example, parts for automobiles.
- Mechanical structural parts are, for example, underbody parts, axles, crankshafts, and the like.
- the steel material of this embodiment is hot-worked to produce a rough-shaped intermediate product for machine structural parts.
- Hot working is, for example, hot forging.
- the manufactured intermediate product is cut into a predetermined shape by machining. Induction hardening and tempering are performed on the intermediate product after cutting.
- a machine structural part is manufactured by the above steps.
- the content of each element in the chemical composition is within the range of this embodiment and satisfies the formula (1).
- the number density of fine Bi particles with an equivalent circle diameter of 0.1 to 1.0 ⁇ m is 80 to 8000 / mm 2
- the number density of coarse Bi particles with an equivalent circle diameter of 10.0 ⁇ m or more is 10 / mm2 or less.
- the steel material of this embodiment satisfies the characteristics 1 to 4. Therefore, the steel material of the present embodiment provides excellent machinability.
- excellent fatigue strength can be obtained in mechanical structural parts manufactured using the steel material of the present embodiment as a raw material.
- hot working cracks are suppressed during the manufacturing process of steel materials or during the manufacturing process of mechanical structural parts.
- when manufacturing machine structural parts using the steel material of the present embodiment as a raw material even if induction hardening is performed, fusion cracking is suppressed.
- the effect of the steel material of this embodiment will be explained more specifically by way of examples.
- the conditions in the following examples are examples of conditions adopted for confirming the feasibility and effect of the steel material of this embodiment. Therefore, the steel material of this embodiment is not limited to this one condition example.
- the "-" portion in Tables 1 to 4 means that the content of the corresponding element is 0% in significant figures (values up to the least significant digit) specified in the embodiment. In other words, it means that the corresponding element content is 0% when rounded off to the specified significant digits (values up to the least significant digit) in the above embodiment.
- the Mo content specified in the present embodiment is specified by a numerical value up to the second decimal place. Therefore, for test number 1 in Table 2, it means that the measured Mo content was 0% when rounded to the third decimal place.
- the Mg content specified in the present embodiment is specified by a numerical value up to the fourth decimal place.
- test number 1 in Table 1 it means that the measured Mg content was 0% when rounded to the nearest five decimal places.
- Rounding off means rounding down if the digit (fraction) below the defined minimum digit is less than 5, and rounding up if it is 5 or more.
- the refining process (primary refining process and secondary refining process) was performed using a 70-ton converter.
- molten iron produced by a well-known method was refined in a converter.
- alloying elements were added to produce molten steel having the chemical composition of the steel material of the present embodiment.
- secondary refining was performed by a well-known method, and components of the molten steel other than Bi were adjusted while stirring the molten steel. Thereafter, while stirring the molten steel, Bi was added with a wire to adjust the composition of Bi.
- the time T (minutes) from the addition of Bi in the secondary refining process to the end of stirring in the secondary refining process was as shown in Tables 5 and 6.
- the molten steel temperature was 1510 to 1560° C. until the end of stirring.
- a slab (bloom) having a cross section of 300 mm ⁇ 400 mm was produced by a continuous casting method.
- the slab After heating the produced slab, the slab was bloomed to produce a billet with a cross section of 180 mm x 180 mm. After heating the billet to 1250° C., it was hot forged to produce a steel material (steel bar) having a chemical composition shown in Table 1 and having a diameter of 80 mm.
- Tests 1 to 5 The following evaluation tests were performed on the steel material of each test number and the intermediate product of the simulated mechanical structural part of each test number.
- Tests 1 to 5 will be described below.
- Hot working crack evaluation test The surface of the manufactured steel material was visually observed. As a result of visual observation, when 3 or more clear cracks per 1 m in the axial direction (rolling direction) of the steel material were not observed on the surface of the steel material, it was judged that hot working cracks were sufficiently suppressed ( Indicated by "E” (excellent) in the "hot working crack” column in Tables 5 and 6). On the other hand, as a result of visual observation, if three or more clear cracks are observed per 1 m in the axial direction (rolling direction) of the steel material on the surface of the steel material, it is judged that hot working cracks could not be sufficiently suppressed.
- the intermediate product of the simulated mechanical structural part is a steel material with a diameter of 80 mm that is subjected to heat treatment that simulates hot forging.
- the number density of fine Bi particles and coarse Bi particles in the steel material is not affected only by heat treatment at 1100° C. that simulates hot forging. Therefore, the number density of fine Bi particles and coarse Bi particles in the intermediate product of the simulated mechanical structural part is substantially the same as the number density of fine Bi particles and coarse Bi particles in the steel material having a diameter of 80 mm.
- the number density of fine Bi particles (pieces/ mm 2 ) the number density of fine Bi particles (pieces/ mm 2 ), and the number density of coarse Bi particles (pieces/mm 2 ).
- the number density of fine Bi particles (pieces/mm 2 ) and the number density of coarse Bi particles (pieces/mm 2 ) of the intermediate product of the simulated mechanical structural part of each test number are the same as those of the corresponding test number.
- the number density of fine Bi particles (pieces/mm 2 ) and the number density of coarse Bi particles (pieces/mm 2 ) of the steel were substantially the same.
- Test 3 Melt crack evaluation test
- a test piece with a width of 10 mm, a thickness of 3 mm, and a length of 10 mm was taken, including the R/2 part of the cross section perpendicular to the axial direction (rolling direction) of the intermediate product of the simulated mechanical structural part of each test number.
- the longitudinal direction of the test piece was parallel to the axial direction (rolling direction) of the intermediate product of the simulated mechanical structural part.
- the central axis parallel to the longitudinal direction of the test piece coincided with the R/2 part.
- test piece was heated to 1370° C. at a heating rate of 100° C./sec using a high-frequency coil. The specimen was then held at 1370° C. for 15 seconds. After that, the specimen was water-cooled.
- the cross section (observation surface) perpendicular to the longitudinal direction of the test piece after water cooling was mechanically polished.
- the observation surface after mechanical polishing was corroded with a picral reagent.
- a field of view corresponding to the R/2 portion of the corroded observation surface was observed with a 400-fold optical microscope.
- the presence or absence of fusion cracks was visually confirmed in the observed field of view.
- the area of the field of view was 250 ⁇ m ⁇ 400 ⁇ m.
- the corroded region with a width of 5 ⁇ m or more at the grain boundary means, for example, a region with a maximum width of 5 ⁇ m or more, such as the corroded region 10 at the grain boundary GB in the field of view, as shown in FIG.
- FIG. 2 when no corrosion region was observed in the grain boundary GB, it was judged that the melt cracking was sufficiently suppressed (indicated by "NA” in the "melt crack” column in Tables 5 and 6).
- Test 4 Machinability Evaluation Test (Drill Life Test) A test piece for machinability evaluation was taken from an intermediate product of simulated mechanical structural parts of each test number. Specifically, a drill hole was drilled at a position at a depth of 21 mm from the outer surface of the steel material in the cross section perpendicular to the longitudinal direction of the intermediate product of the simulated mechanical structural part with a diameter of 80 mm. A drill of model number SD3.0 manufactured by Nachi-Fujikoshi Co., Ltd. was used, and the feed rate per rotation was set to 0.25 mm/rev. Moreover, the drilling depth of one hole was set to 9 mm. During the drilling, water-soluble cutting oil was continuously supplied as a lubricant to the drilled locations.
- a maximum cutting speed VL1000 (m/min) was used as an evaluation index.
- the maximum cutting speed VL1000 means the fastest cutting speed of a drill capable of drilling a hole of 1000 mm length. It was judged that excellent machinability was obtained when the maximum cutting speed VL1000 was 15 m/min or more (indicated by "E” in the "Machinability” column in Tables 5 and 6). On the other hand, when the maximum cutting speed VL1000 was less than 15 m/min, it was determined that excellent machinability was not obtained (indicated by "NA” in the "Machinability” column in Tables 5 and 6).
- FIG. 3 is a side view of a rotating bending fatigue test piece taken from an intermediate product of each simulated mechanical structural part.
- the numerical value of “ ⁇ ” in FIG. 3 means the diameter (mm) at that site.
- the rotating bending fatigue test piece had a parallel portion diameter of 8 mm and a grip portion diameter of 12 mm. Specifically, by lathe processing, a parallel portion was created by cutting from the surface of the intermediate product of the simulated mechanical structural part to a depth of 3.5 mm. Therefore, the surface of the parallel portion corresponded at least within a range of 5 mm in depth from the surface of the steel bar.
- the longitudinal direction of the parallel portion of the rotating bending fatigue test piece was parallel to the longitudinal direction of the simulated mechanical structural part.
- the rotating bending fatigue test piece described above is assumed to be an intermediate product obtained by cutting an intermediate product after hot working in the manufacturing process of a mechanical structural component using steel.
- test number 47 the Mn content was too high. Therefore, the machinability of the steel material was low.
- test number 50 the S content was too high. Therefore, melt cracking occurred.
- test number 51 the S content was too low. Therefore, the machinability of the steel material was low.
- test number 52 the Cr content was too high. Therefore, the machinability of the steel material was low.
- test number 53 the V content was too high. Therefore, the machinability of the steel material was low.
- test number 54 the Bi content was too high. Therefore, the number density of coarse Bi particles exceeded 10/mm 2 . Therefore, hot working cracks occurred.
- test number 56 the N content was too high. Therefore, hot working cracks occurred.
- test numbers 58 and 59 the value of fn1 was too high. That is, fn1 did not satisfy the formula (1). Therefore, the machinability of the steel material was low.
- test numbers 62 to 64 the time T (minutes) from the addition of Bi to the end of stirring was too short in the refining process. Therefore, the number density of coarse Bi particles exceeded 10/mm 2 . Therefore, hot working cracks occurred.
- test numbers 65 and 66 the time T (minutes) from the addition of Bi to the end of stirring was too long in the refining process. Therefore, the number density of fine Bi particles was less than 80/mm 2 , and melt cracks occurred.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
Description
上述の製造工程中の焼入れでは、機械構造用部品の一部の部位の強度を高めるために、中間品(鋼材)に対して高周波焼入れを実施する場合がある。この場合、中間品(鋼材)のうち、強度を高めたい部位に対して、高周波誘導加熱を実施し、その後、急冷(焼入れ)する。
化学組成が、質量%で、
C:0.20~0.50%、
Si:0.01~0.80%、
Mn:0.50~2.00%、
P:0.030%以下、
S:0.010~0.095%、
Cr:0.01~1.30%、
V:0.200超~0.300%、
Bi:0.0051~0.1500%、
N:0.0030~0.0200%、を含有し、
残部はFe及び不純物からなり、
式(1)を満たし、
前記鋼材中において、
円相当径が0.1~1.0μmの微細Bi粒子の個数密度が80~8000個/mm2であり、
円相当径が10.0μm以上の粗大Bi粒子の個数密度が10個/mm2以下である。
0.80≦C+(Si/10)+(Mn/5)-(5S/7)+(5Cr/22)+1.65V≦1.50 (1)
ここで、式中の各元素記号には、対応する元素の含有量が質量%で代入される。
0.80≦C+(Si/10)+(Mn/5)-(5S/7)+(5Cr/22)+1.65V≦1.50 (1)
ここで、式中の各元素記号には、対応する元素の含有量が質量%で代入される。
鋼材であって、
化学組成が、質量%で、
C:0.20~0.50%、
Si:0.01~0.80%、
Mn:0.50~2.00%、
P:0.030%以下、
S:0.010~0.095%、
Cr:0.01~1.30%、
V:0.200超~0.300%、
Bi:0.0051~0.1500%、
N:0.0030~0.0200%、を含有し、
残部はFe及び不純物からなり、
式(1)を満たし、
前記鋼材中において、
円相当径が0.1~1.0μmの微細Bi粒子の個数密度が80~8000個/mm2であり、
円相当径が10.0μm以上の粗大Bi粒子の個数密度が10個/mm2以下である、
鋼材。
0.80≦C+(Si/10)+(Mn/5)-(5S/7)+(5Cr/22)+1.65V≦1.50 (1)
ここで、式中の各元素記号には、対応する元素の含有量が質量%で代入される。
[1]に記載の鋼材であって、
前記化学組成はさらに、Feの一部に代えて、
Al:0.060%以下、
Mg:0.0100%以下、
Ti:0.0200%以下、
Nb:0.0200%以下、
W:0.4000%以下、
Zr:0.2000%以下、
Ca:0.0030%以下、
Te:0.0100%以下、
B:0.0050%以下、
Sn:0.0100%以下、
希土類元素:0.0070%以下、
Co:0.0100%以下、
Se:0.0100%以下、
Sb:0.0100%以下、
In:0.0100%以下、
Mo:0.20%以下、
Cu:0.20%以下、及び、
Ni:0.20%以下からなる群から選択される1種以上を含有する、
鋼材。
本実施形態の鋼材は、次の特徴1~特徴4を満たす。
(特徴1)
化学組成が、質量%で、C:0.20~0.50%、Si:0.01~0.80%、Mn:0.50~2.00%、P:0.030%以下、S:0.010~0.095%、Cr:0.01~1.30%、V:0.200超~0.300%、Bi:0.0051~0.1500%、N:0.0030~0.0200%、を含有し、残部はFe及び不純物、からなる。
(特徴2)
各元素含有量が特徴1の範囲内であることを前提として、式(1)を満たす。
0.80≦C+(Si/10)+(Mn/5)-(5S/7)+(5Cr/22)+1.65V≦1.50 (1)
(特徴3)
鋼材中において、円相当径が0.1~1.0μmの微細Bi粒子の個数密度が80~8000個/mm2である。
(特徴4)
鋼材中において、円相当径が10.0μm以上の粗大Bi粒子の個数密度が10個/mm2以下である。
以下、各特徴1~特徴4について説明する。
本実施形態の鋼材の化学組成は、次の元素を含有する。
炭素(C)は、鋼材を素材として製造された機械構造用部品の硬さを高め、機械構造用部品の疲労強度を高める。C含有量が0.20%未満であれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が十分に得られない。
一方、C含有量が0.50%を超えれば、他の元素含有量が本実施形態の範囲内であっても、粒界にCが偏析する。この場合、粒界でのC濃度が高くなる。C濃度が高まれば、融点が低下する。そのため、高周波焼入れ時に溶融割れが発生しやすくなる。
したがって、C含有量は0.20~0.50%である。
C含有量の好ましい下限は0.21%であり、さらに好ましくは0.22%であり、さらに好ましくは0.23%である。
C含有量の好ましい上限は0.49%であり、さらに好ましくは0.48%であり、さらに好ましくは0.47%である。
シリコン(Si)は、製鋼工程において鋼を脱酸する。Siはさらに、機械構造用部品の硬さを高め、機械構造用部品の疲労強度を高める。Si含有量が0.01%未満であれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が十分に得られない。
一方、SiはCとの親和力が弱い。そのため、Si含有量が0.80%を超えれば、他の元素含有量が本実施形態の範囲内であっても、加熱時において、Cは、Siが固溶している粒内よりも、粒界に偏析しやすくなる。その結果、高周波焼入れ時に溶融割れが発生しやすくなる。
したがって、Si含有量は0.01~0.80%である。Si含有量の好ましい下限は0.02%であり、さらに好ましくは0.05%であり、さらに好ましくは0.08%である。
Si含有量の好ましい上限は0.75%であり、さらに好ましくは0.70%であり、さらに好ましくは0.65%であり、さらに好ましくは0.60%である。
マンガン(Mn)は、製鋼工程において鋼を脱酸する。Mnはさらに、Cとの親和力が強い。そのため、加熱時において、CはMnが固溶している粒内に留まる。そのため、Cの粒界への偏析が抑制され、高周波焼入れ時の溶融割れの発生が抑制される。Mn含有量が0.50%未満であれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が十分に得られない。
一方、Mn含有量が2.00%を超えれば、他の元素含有量が本実施形態の範囲内であっても、鋼材の硬さが過剰に高まる。その結果、鋼材の被削性が低下する。
したがって、Mn含有量は0.50~2.00%である。
Mn含有量の好ましい下限は0.52%であり、さらに好ましくは0.55%であり、さらに好ましくは0.57%であり、さらに好ましくは0.60%である。
Mn含有量の好ましい上限は1.98%であり、さらに好ましくは1.95%であり、さらに好ましくは1.93%であり、さらに好ましくは1.90%である。
燐(P)は不純物である。Pは粒界に偏析する。そのため、Pは鋼材の融点を低下させる。そのため、高周波焼入れ時に溶融割れが発生しやすくなる。
したがって、P含有量は0.030%以下である。
P含有量はなるべく低い方が好ましい。しかしながら、P含有量の過剰な低減は製造コストを高める。したがって、通常の工業生産を考慮すれば、P含有量の好ましい下限は0%超であり、さらに好ましくは0.001%であり、さらに好ましくは0.002%である。
P含有量の好ましい上限は0.028%であり、さらに好ましくは0.026%であり、さらに好ましくは0.023%であり、さらに好ましくは0.020%である。
硫黄(S)は硫化物系介在物を形成し、鋼材の被削性を高める。S含有量が0.010%未満であれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が十分に得られない。
一方、Sは鋼材の融点を低下させる。そのため、S含有量が0.095%を超えれば、他の元素含有量が本実施形態の範囲内であっても、高周波焼入れ時に溶融割れが発生しやすくなる。
したがって、S含有量は0.010~0.095%である。
S含有量の好ましい下限は0.012%であり、さらに好ましくは0.015%であり、さらに好ましくは0.018%であり、さらに好ましくは0.020%である。S含有量の好ましい上限は0.080%であり、さらに好ましくは0.075%であり、さらに好ましくは0.070%である。
クロム(Cr)は、鋼材の焼入れ性を高める。そのため、機械構造用部品の内部硬さが高まる。その結果、機械構造用部品の疲労強度が高まる。Crはさらに、Cとの親和力が強い。そのため、加熱時において、CはCrが固溶している粒内に留まる。そのため、Cの粒界への偏析が抑制され、高周波焼入れ時の溶融割れの発生が抑制される。Crはさらに、Sと結合してCr硫化物を形成する。この場合、粗大なFeSの形成が抑制される。その結果、熱間加工時の鋼材の延性が向上し、熱間加工割れが抑制される。Cr含有量が0.01%未満であれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が十分に得られない。
一方、Cr含有量が1.30%を超えれば、他の元素含有量が本実施形態の範囲内であっても、鋼材の硬さが過剰に高まる。その結果、鋼材の被削性が低下する。
したがって、Cr含有量は0.01~1.30%である。
Cr含有量の好ましい下限は0.02%であり、さらに好ましくは0.04%であり、さらに好ましくは0.06%であり、さらに好ましくは0.08%である。
Cr含有量の好ましい上限は1.28%であり、さらに好ましくは1.26%であり、さらに好ましくは1.24%である。
バナジウム(V)は、機械構造用部品の製造工程中の熱間加工後の冷却過程で、V析出物として鋼材中のフェライト中に析出する。V析出物により、機械構造用部品の内部硬さが高まる。その結果、機械構造用部品の疲労強度が高まる。さらに、VはCと結合してγ粒内にCを固定する。そのため、Vは、高周波焼入れ時において、溶融割れの発生を抑制する。V含有量が0.200%以下であれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が十分に得られない。
一方、V含有量が0.300%を超えれば、他の元素含有量が本実施形態の範囲内であっても、鋼材の硬さが過剰に高まる。その結果、鋼材の被削性が低下する。V含有量が0.300%を超えればさらに、上記効果が飽和し、製造コストが高くなる。
したがって、V含有量は、0.200超~0.300%である。
V含有量の好ましい下限は0.205%であり、さらに好ましくは0.210%であり、さらに好ましくは0.215%であり、さら好ましくは0.220%であり、さらに好ましくは0.225%であり、さらに好ましくは0.230%である。
V含有量の好ましい上限は0.295%であり、さらに好ましくは0.290%であり、さらに好ましくは0.285%である。
ビスマス(Bi)は、鋼材中で介在物(Bi粒子)を形成する。そのため、高周波焼入れ時の溶融割れが抑制される。Biはさらに、鋼材の被削性を高める。Bi含有量が0.0051%未満であれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が十分に得られない。
一方、Bi含有量が0.1500%を超えれば、他の元素含有量が本実施形態の範囲内であっても、粗大なBi粒子が生成する。粗大なBi粒子は、鋼材の製造工程中の熱間加工時、又は、鋼材を素材として製造された機械構造用部品の製造工程中の熱間加工時において、割れの起点となりやすい。そのため、熱間加工割れが発生しやすくなる。
したがって、Bi含有量は0.0051~0.1500%である。
Bi含有量の好ましい下限は0.0080%であり、さらに好ましくは0.0100%であり、さらに好ましくは0.0120%であり、さらに好ましくは0.0140%であり、さらに好ましくは0.0160%である。
Bi含有量の好ましい上限は0.1400%であり、さらに好ましくは0.1350%であり、さらに好ましくは0.1300%である。
窒素(N)は、機械構造用部品の製造工程中の熱間加工後の冷却過程で、窒化物及び/又は炭窒化物を形成して鋼材を析出強化する。その結果、機械構造用部品の疲労強度が高まる。N含有量が0.0030%未満であれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が十分に得られない。
一方、N含有量が0.0200%を超えれば、他の元素含有量が本実施形態の範囲内であっても、鋼材の熱間加工性が低下する。
したがって、N含有量は0.0030~0.0200%である。
N含有量の好ましい下限は0.0032%であり、さらに好ましくは0.0034%であり、さらに好ましくは0.0036%である。
N含有量の好ましい上限は0.0190%であり、さらに好ましくは0.0170%であり、さらに好ましくは0.0150%であり、さらに好ましくは0.0130%であり、さらに好ましくは0.0100%である。
本実施形態の鋼材の化学組成はさらに、以下の第1群~第5群からなる群から選択される1種以上を含有してもよい。これらの元素はいずれも任意元素である。
[第1群]
Al:0.060%以下
Mg:0.0100%以下
[第2群]
Ti:0.0200%以下
Nb:0.0200%以下
W:0.4000%以下
Zr:0.2000%以下
[第3群]
Ca:0.0030%以下
Te:0.0100%以下
B:0.0050%以下
Sn:0.0100%以下
希土類元素:0.0070%以下
[第4群]
Co:0.0100%以下
Se:0.0100%以下
Sb:0.0100%以下
In:0.0100%以下
[第5群]
Mo:0.20%以下
Cu:0.20%以下
Ni:0.20%以下
以下、これらの任意元素について説明する。
本実施形態の鋼材はさらに、Feの一部に代えて、Al及びMgからなる群から選択される1種以上を含有してもよい。これらの元素は任意元素であり、いずれも、鋼を脱酸する。
アルミニウム(Al)は任意元素であり、含有されなくてもよい。つまり、Al含有量は0%であってもよい。
Alが含有される場合、Alは鋼を脱酸する。Alが少しでも含有されれば、上記効果がある程度得られる。
しかしながら、Al含有量が0.060%を超えれば、他の元素含有量が本実施形態の範囲内であっても、Alは粗大な酸化物を形成する。粗大な酸化物は、機械構造用部品の疲労強度を低下する。
したがって、Al含有量は0~0.060%であり、含有される場合、Al含有量は0.060%以下である。
Al含有量の好ましい下限は0%超であり、さらに好ましくは0.001%であり、さらに好ましくは0.002%であり、さらに好ましくは0.003%であり、さらに好ましくは0.005%であり、さらに好ましくは0.010%である。
Al含有量の好ましい上限は0.055%であり、さらに好ましくは0.050%であり、さらに好ましくは0.045%である。
マグネシウム(Mg)は任意元素であり、含有されなくてもよい。つまり、Mg含有量は0%であってもよい。
Mgが含有される場合、Mgは鋼を脱酸する。Mgが少しでも含有されれば、上記効果がある程度得られる。
しかしながら、Mg含有量が0.0100%を超えれば、他の元素含有量が本実施形態の範囲内であっても、Mgは粗大な酸化物を形成する。粗大な酸化物は、機械構造用部品の疲労強度を低下する。
したがって、Mg含有量は0~0.0100%であり、含有される場合、Mg含有量は0.0100%以下である。
Mg含有量の好ましい下限は0%超であり、さらに好ましくは0.0001%であり、さらに好ましくは0.0003%であり、さらに好ましくは0.0005%である。
Mg含有量の好ましい上限は0.0050%であり、さらに好ましくは0.0045%であり、さらに好ましくは0.0040%である。
本実施形態の鋼材の化学組成はさらに、Feの一部に代えて、Ti、Nb、W及びZrからなる群から選択される1種以上を含有してもよい。これらの元素は任意元素であり、いずれも、析出物を形成して、機械構造用部品の靱性を高める。
チタン(Ti)は任意元素であり、含有されなくてもよい。つまり、Ti含有量は0%であってもよい。
Tiが含有される場合、Tiは、機械構造用部品の製造工程中の熱間加工工程の冷却過程において、炭化物及び/又は炭窒化物を形成して、結晶粒を微細化する。これにより、機械構造用部品の靱性が高まる。Tiが少しでも含有されれば、上記効果がある程度得られる。
しかしながら、Ti含有量が0.0200%を超えれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が飽和する。さらに、製造コストが高くなる。
したがって、Ti含有量は0~0.0200%であり、含有される場合、Ti含有量は0.0200%以下である。
Ti含有量の好ましい下限は0%超であり、さらに好ましくは0.0001%であり、さらに好ましくは0.0010%であり、さらに好ましくは0.0050%であり、さらに好ましくは0.0080%である。
Ti含有量の好ましい上限は0.0180%であり、さらに好ましくは0.0170%であり、さらに好ましくは0.0150%である。
ニオブ(Nb)は任意元素であり、含有されなくてもよい。つまり、Nb含有量は0%であってもよい。
Nbが含有される場合、Nbは、機械構造用部品の製造工程中の熱間加工工程の冷却過程において、炭化物及び/又は炭窒化物を形成して、結晶粒を微細化する。これにより、機械構造用部品の靱性が高まる。Nbが少しでも含有されれば、上記効果がある程度得られる。
しかしながら、Nb含有量が0.0200%を超えれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が飽和する。さらに、製造コストが高くなる。
したがって、Nb含有量は0~0.0200%であり、含有される場合、Nb含有量は0.0200%以下である。
Nb含有量の好ましい下限は0%超であり、さらに好ましくは0.0001%であり、さらに好ましくは0.0010%であり、さらに好ましくは0.0050%であり、さらに好ましくは0.0080%である。
Nb含有量の好ましい上限は0.0180%であり、さらに好ましくは0.0170%であり、さらに好ましくは0.0150%である。
タングステン(W)は任意元素であり、含有されなくてもよい。つまり、W含有量は0%であってもよい。
Wが含有される場合、Wは、機械構造用部品の製造工程中の熱間加工工程の冷却過程において、炭化物及び/又は炭窒化物を形成して、結晶粒を微細化する。これにより、機械構造用部品の靱性が高まる。Wが少しでも含有されれば、上記効果がある程度得られる。
しかしながら、W含有量が0.4000%を超えれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が飽和する。さらに、製造コストが高くなる。
したがって、W含有量は0~0.4000%であり、含有される場合、W含有量は0.4000%以下である。
W含有量の好ましい下限は0%超であり、さらに好ましくは0.0001%であり、さらに好ましくは0.0050%であり、さらに好ましくは0.0500%である。
W含有量の好ましい上限は0.3500%であり、さらに好ましくは0.3000%であり、さらに好ましくは0.2000%である。
ジルコニウム(Zr)は任意元素であり、含有されなくてもよい。つまり、Zr含有量は0%であってもよい。
Zrが含有される場合、Zrは、機械構造用部品の製造工程中の熱間加工工程の冷却過程において、炭化物及び/又は炭窒化物を形成して、結晶粒を微細化する。これにより、機械構造用部品の靱性が高まる。Zrが少しでも含有されれば、上記効果がある程度得られる。
しかしながら、Zr含有量が0.2000%を超えれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が飽和する。さらに、製造コストが高くなる。
したがって、Zr含有量は0~0.2000%であり、含有される場合、Zr含有量は0.2000%以下である。
Zr含有量の好ましい下限は0%超であり、さらに好ましくは0.0001%であり、さらに好ましくは0.0010%であり、さらに好ましくは0.0020%であり、さらに好ましくは0.0050%である。
Zr含有量の好ましい上限は0.1500%であり、さらに好ましくは0.1000%であり、さらに好ましくは0.0500%であり、さらに好ましくは0.0100%である。
本実施形態の鋼材の化学組成はさらに、Feの一部に代えて、Ca、Te、B、Sn及び希土類元素(REM)からなる群から選択される1種以上を含有してもよい。これらの元素は任意元素であり、いずれも、鋼材の被削性を高める。
カルシウム(Ca)は、任意元素であり、含有されなくてもよい。つまり、Ca含有量は0%であってもよい。
Caが含有される場合、Caは鋼材の被削性を高める。Caが少しでも含有されれば、上記効果がある程度得られる。
しかしながら、Ca含有量が0.0030%を超えれば、他の元素含有量が本実施形態の範囲内であっても、粗大酸化物を形成する。この場合、機械構造用部品の疲労強度が低下する。
したがって、Ca含有量は0~0.0030%であり、含有される場合、Ca含有量は0.0030%以下である。
Ca含有量の好ましい下限は0%超であり、さらに好ましくは0.0001%であり、さらに好ましくは0.0010%であり、さらに好ましくは0.0015%である。
Ca含有量の好ましい上限は0.0025%であり、さらに好ましくは0.0023%であり、さらに好ましくは0.0020%である。
テルル(Te)は、任意元素であり、含有されなくてもよい。つまり、Te含有量は0%であってもよい。
Teが含有される場合、Teは鋼材の被削性を高める。Teが少しでも含有されれば、上記効果がある程度得られる。
しかしながら、Te含有量が0.0100%を超えれば、他の元素含有量が本実施形態の範囲内であっても、鋼材に熱間加工割れが発生しやすくなる。
したがって、Te含有量は0~0.0100%であり、含有される場合、Te含有量は0.0100%以下である。
Te含有量の好ましい下限は0%超であり、さらに好ましくは0.0001%であり、さらに好ましくは0.0003%であり、さらに好ましくは0.0010%である。
Te含有量の好ましい上限は0.0090%であり、さらに好ましくは0.0085%であり、さらに好ましくは0.0080%である。
ボロン(B)は、任意元素であり、含有されなくてもよい。つまり、B含有量は0%であってもよい。
Bが含有される場合、Bは鋼材の被削性を高める。Bが少しでも含有されれば、上記効果がある程度得られる。
しかしながら、B含有量が0.0050%を超えれば、他の元素含有量が本実施形態の範囲内であっても、鋼材に熱間加工割れが発生しやすくなる。
したがって、B含有量は0~0.0050%であり、含有される場合、B含有量は0.0050%以下である。
B含有量の好ましい下限は0%超であり、さらに好ましくは0.0001%であり、さらに好ましくは0.0005%であり、さらに好ましくは0.0010%である。
B含有量の好ましい上限は0.0040%であり、さらに好ましくは0.0035%であり、さらに好ましくは0.0030%である。
スズ(Sn)は、任意元素であり、含有されなくてもよい。つまり、Sn含有量は0%であってもよい。
Snが含有される場合、Snは鋼材の被削性を高める。Snが少しでも含有されれば、上記効果がある程度得られる。
しかしながら、Sn含有量が0.0100%を超えれば、他の元素含有量が本実施形態の範囲内であっても、鋼材に熱間加工割れが発生しやすくなる。
したがって、Sn含有量は0~0.0100%であり、含有される場合、Sn含有量は0.0100%以下である。
Sn含有量の好ましい下限は0%超であり、さらに好ましくは0.0001%であり、さらに好ましくは0.0005%であり、さらに好ましくは0.0010%である。
Sn含有量の好ましい上限は0.0095%であり、さらに好ましくは0.0090%であり、さらに好ましくは0.0085%であり、さらに好ましくは0.0080%である。
希土類元素(REM)は、任意元素であり、含有されなくてもよい。つまり、REM含有量は0%であってもよい。
REMが含有される場合、REMは鋼材の被削性を高める。REMが少しでも含有されれば、上記効果がある程度得られる。
しかしながら、REM含有量が0.0070%を超えれば、他の元素含有量が本実施形態の範囲内であっても、鋼材に熱間加工割れが発生しやすくなる。
したがって、REM含有量は0~0.0070%であり、含有される場合、REM含有量は0.0070%以下である。
REM含有量の好ましい下限は0%超であり、さらに好ましくは0.0001%であり、さらに好ましくは0.0005%であり、さらに好ましくは0.0010%である。
REM含有量の好ましい上限は0.0065%であり、さらに好ましくは0.0060%であり、さらに好ましくは0.0055%である。
本実施形態の鋼材の化学組成はさらに、Feの一部に代えて、Co、Se、Sb及びInからなる群から選択される1種以上を含有してもよい。これらの元素は任意元素であり、いずれも、鋼材の脱炭を抑制する。
コバルト(Co)は、任意元素であり、含有されなくてもよい。つまり、Co含有量は0%であってもよい。
Coが含有される場合、Coは、熱間加工時に鋼材の脱炭を抑制する。Coが少しでも含有されれば、上記効果がある程度得られる。
しかしながら、Co含有量が0.0100%を超えれば、他の元素含有量が本実施形態の範囲内であっても、鋼材に熱間加工割れが発生しやすくなる。
したがって、Co含有量は0~0.0100%であり、含有される場合、Co含有量は0.0100%以下である。
Co含有量の好ましい下限は0%超であり、さらに好ましくは0.0001%であり、さらに好ましくは0.0005%であり、さらに好ましくは0.0010%である。
Co含有量の好ましい上限は0.0090%であり、さらに好ましくは0.0080%であり、さらに好ましくは0.0070%である。
セレン(Se)は、任意元素であり、含有されなくてもよい。つまり、Se含有量は0%であってもよい。
Seが含有される場合、Seは、熱間加工時に鋼材の脱炭を抑制する。Seが少しでも含有されれば、上記効果がある程度得られる。
しかしながら、Se含有量が0.0100%を超えれば、他の元素含有量が本実施形態の範囲内であっても、鋼材に熱間加工割れが発生しやすくなる。
したがって、Se含有量は0~0.0100%であり、含有される場合、Se含有量は0.0100%以下である。
Se含有量の好ましい下限は0%超であり、さらに好ましくは0.0001%であり、さらに好ましくは0.0005%であり、さらに好ましくは0.0010%である。
Se含有量の好ましい上限は0.0090%であり、さらに好ましくは0.0080%であり、さらに好ましくは0.0070%である。
アンチモン(Sb)は、任意元素であり、含有されなくてもよい。つまり、Sb含有量は0%であってもよい。
Sbが含有される場合、つまり、Sb含有量が0%超である場合、Sbは、熱間加工時に鋼材の脱炭を抑制する。Sbが少しでも含有されれば、上記効果がある程度得られる。
しかしながら、Sb含有量が0.0100%を超えれば、他の元素含有量が本実施形態の範囲内であっても、鋼材に熱間加工割れが発生しやすくなる。
したがって、Sb含有量は0~0.0100%であり、含有される場合、Sb含有量は0.0100%以下である。
Sb含有量の好ましい下限は0%超であり、さらに好ましくは0.0001%であり、さらに好ましくは0.0005%であり、さらに好ましくは0.0010%である。
Sb含有量の好ましい上限は0.0090%であり、さらに好ましくは0.0080%であり、さらに好ましくは0.0070%である。
インジウム(In)は、任意元素であり、含有されなくてもよい。つまり、In含有量は0%であってもよい。
Inが含有される場合、Inは、熱間加工時に鋼材の脱炭を抑制する。Inが少しでも含有されれば、上記効果がある程度得られる。
しかしながら、In含有量が0.0100%を超えれば、他の元素含有量が本実施形態の範囲内であっても、鋼材に熱間加工割れが発生しやすくなる。
したがって、In含有量は0~0.0100%であり、含有される場合、In含有量は0.0100%以下である。
In含有量の好ましい下限は0%超であり、さらに好ましくは0.0001%であり、さらに好ましくは0.0005%であり、さらに好ましくは0.0010%である。
In含有量の好ましい上限は0.0090%であり、さらに好ましくは0.0080%であり、さらに好ましくは0.0070%である。
本実施形態の鋼材の化学組成はさらに、Feの一部に代えて、Mo、Cu及びNiからなる群から選択される1種以上を含有してもよい。これらの元素は任意元素であり、いずれも、機械構造用部品の疲労強度を高める。
モリブデン(Mo)は任意元素であり、含有されなくてもよい。つまり、Mo含有量は0%であってもよい。
Moが含有される場合、Moは機械構造用部品の疲労強度を高める。Moが少しでも含有されれば、上記効果がある程度得られる。
しかしながら、Mo含有量が0.20%を超えれば、他の元素含有量が本実施形態の範囲内であっても、鋼材の硬さが過剰に高まる。その結果、熱間加工性が低下する。
したがって、Mo含有量は0~0.20%であり、含有される場合、Mo含有量は0.20%以下である。
Mo含有量の好ましい下限は0%超であり、さらに好ましくは0.01%であり、さらに好ましくは0.05%であり、さらに好ましくは0.10%である。
Mo含有量の好ましい上限は0.19%であり、さらに好ましくは0.17%であり、さらに好ましくは0.15%である。
銅(Cu)は任意元素であり、含有されなくてもよい。つまり、Cu含有量は0%であってもよい。
Cuが含有される場合、Cuは機械構造用部品の疲労強度を高める。Cuが少しでも含有されれば、上記効果がある程度得られる。
しかしながら、Cuは、Siと同様に、高周波焼入れ時における溶融割れの発生を促進する。そのため、Cu含有量が0.20%を超えれば、他の元素含有量が本実施形態の範囲内であっても、高周波焼入れ時に溶融割れが発生しやすくなる。
したがって、Cu含有量は0~0.20%であり、含有される場合、Cu含有量は0.20%以下である。
Cu含有量の好ましい下限は0%超であり、さらに好ましくは0.01%であり、さらに好ましくは0.02%であり、さらに好ましくは0.03%である。
Cu含有量の好ましい上限は0.15%であり、さらに好ましくは0.13%であり、さらに好ましくは0.10%である。
ニッケル(Ni)は任意元素であり、含有されなくてもよい。つまり、Ni含有量は0%であってもよい。
Niが含有される場合、Niは機械構造用部品の疲労強度を高める。Niが少しでも含有されれば、上記効果がある程度得られる。
しかしながら、Niは、Si及びCuと同様に、高周波焼入れ時における溶融割れの発生を促進する。そのため、Ni含有量が0.20%を超えれば、他の元素含有量が本実施形態の範囲内であっても、高周波焼入れ時に溶融割れが発生しやすくなる。
したがって、Ni含有量は0~0.20%であり、含有される場合、Ni含有量は0.20%以下である。
Ni含有量の好ましい下限は0%超であり、さらに好ましくは0.01%であり、さらに好ましくは0.02%であり、さらに好ましくは0.03%である。
Ni含有量の好ましい上限は0.15%であり、さらに好ましくは0.13%であり、さらに好ましくは0.10%である。
本実施形態の鋼材はさらに、各元素含有量が上記範囲内であることを前提として、つまり、特徴1を満たすことを前提として、式(1)を満たす。
0.80≦C+(Si/10)+(Mn/5)-(5S/7)+(5Cr/22)+1.65V≦1.50 (1)
ここで、式中の各元素記号には、対応する元素の含有量が質量%で代入される。
したがって、fn1は0.80~1.50である。
fn1の好ましい下限は0.81であり、さらに好ましくは0.82であり、さらに好ましくは0.85である。
fn1の好ましい上限は1.48であり、さらに好ましくは1.45であり、さらに好ましくは1.43である。
本実施形態の鋼材では、各元素含有量が上記範囲内であり、かつ、式(1)を満たすことを前提として、円相当径が0.1~1.0μmの微細Bi粒子(以下、単に微細Bi粒子ともいう)の個数密度は80~8000個/mm2である。微細Bi粒子の個数密度が80~8000個/mm2であれば、高周波焼入れ時の溶融割れの発生が抑制される。
微細Bi粒子の個数密度の好ましい上限は7900個/mm2であり、さらに好ましくは6000個/mm2であり、さらに好ましくは3000個/mm2であり、さらに好ましくは1000個/mm2であり、さらに好ましくは900個/mm2であり、さらに好ましくは800個/mm2である。
本実施形態の鋼材において、円相当径が10.0μm以上のBi粒子である粗大Bi粒子(以下、単に粗大Bi粒子ともいう)の個数密度は10個/mm2以下である。粗大Bi粒子の個数密度が10個/mm2以下であれば、鋼材の製造工程中の熱間加工時、又は、鋼材を素材とした機械構造用部品の製造工程中の熱間加工時の割れ(熱間加工割れ)を抑制することができる。熱間加工は例えば、熱間圧延、熱間鍛造等である。
したがって、本実施形態の鋼材では、円相当径が10.0μm以上の粗大Bi粒子の個数密度は10個/mm2以下である。
微細Bi粒子及び粗大Bi粒子の個数密度は、次の方法で測定できる。
鋼材(棒鋼)の軸方向(圧延方向)に対して垂直な断面のうち、R/2部を含む試験片を採取する。ここで、R/2部とは、鋼材の軸方向に垂直な断面における、半径Rの中央部を意味する。採取した試験片の表面のうち、上記鋼材の軸方向に対して垂直な断面に相当する表面を観察面とする。
観察面を鏡面研磨する。走査型電子顕微鏡(Scanning Electron Microscope:SEM)を用いて、1000倍の倍率で、鏡面研磨後の観察面のR/2部を20視野観察する。各視野の面積を100μm×120μmとする。
以上のとおり、本実施形態の鋼材は特徴1~特徴4を満たす。そのため、本実施形態の鋼材では、被削性に優れ、熱間加工時の割れ及び高周波焼入れ時の溶融割れを抑制でき、機械構造用部品とした場合に優れた疲労強度を有する。以下、これらの効果について説明する。
本実施形態の鋼材は、例えば、機械構造用部品の素材として広く適用可能である。本実施形態の鋼材は特に、機械構造用部品の製造工程において、高周波焼入れを実施する場合に、好適である。ただし、高周波焼入れを実施しない場合であっても、本実施形態の鋼材は、機械構造用部品の素材として適用可能である。
本実施形態の鋼材の製造方法の一例は次のとおりである。本実施形態の鋼材の製造方法は、精錬工程と、鋳造工程と、熱間加工工程とを備える。熱間加工工程は任意の工程であり、実施しなくてもよい。以下、各工程について説明する。
(工程1)精錬工程
(工程2)鋳造工程
(工程3)熱間加工工程
以下、各工程について説明する。
精錬工程では、上述の特徴1及び特徴2を満たす化学組成を有する溶鋼を製造する。精錬工程は、一次精錬工程と二次精錬工程とを含む。
一次精錬工程では、周知の方法で製造された溶銑に対して、転炉での精錬を実施する。二次精錬工程では、溶鋼に対して合金元素を添加して、溶鋼の化学組成が、特徴1及び特徴2を満たすようにする。具体的には、二次精錬工程では、周知の精錬方法で溶鋼を攪拌しながら、Bi以外の溶鋼の成分調整を実施する。その後、溶鋼を攪拌しながら、ワイヤーにより溶鋼にBiを添加し、Biの成分調整を行う。
(条件)
溶鋼にBiを添加した後、二次精錬工程での攪拌終了までの時間Tを15分超~60分未満とする。
Biを添加した後、二次精錬工程での攪拌終了までの時間が15分以下の場合、溶鋼中でBiが十分に拡散しない。この場合、鋼材中に粗大Bi粒子が過剰に多く生成する。
Biを添加した後、二次精錬工程での攪拌終了までの時間が60分以上の場合、微細Bi粒子同士が凝集しやすくなる。そのため、微細Bi粒子の個数密度が減少する。
二次精錬工程で、Biを添加した後、二次精錬工程での攪拌終了までの時間が15分超であれば、溶鋼中でBiが十分に拡散する。そのため、鋼材中に微細Bi粒子が十分に生成する。さらに、二次精錬工程で、Biを添加した後、二次精錬工程での攪拌終了までの時間が60分未満であれば、微細Bi粒子同士の凝集を十分に抑制できる。そのため、微細Bi粒子の個数密度が80個/mm2以上となり、粗大Bi粒子の個数密度が10個/mm2以下になる。
鋳造工程では、溶鋼を用いて、周知の鋳造方法により鋳片(スラブ又はブルーム)又は鋼塊(インゴット)を製造する。鋳造方法は例えば、連続鋳造法や造塊法である。
熱間加工工程は、任意の工程である。つまり、熱間加工工程は実施してもよいし、実施しなくてもよい。
熱間加工工程を実施する場合、熱間加工工程では、上記鋳造工程で製造された鋳片又は鋼塊に対して、熱間加工を実施して、本実施形態の鋼材を製造する。本実施形態の鋼材は例えば、棒鋼である。熱間加工工程は例えば、熱間圧延であってもよく、熱間鍛造であってもよい。
熱間加工工程において熱間圧延を実施する場合、例えば、粗圧延工程のみであってもよいし、粗圧延工程と、仕上げ圧延工程とを実施してもよい。粗圧延工程は例えば、分塊圧延である。仕上げ圧延工程は例えば、連続圧延機を用いた仕上げ圧延である。連続圧延機では例えば、一対の水平ロールを有する水平スタンドと、一対の垂直ロールを有する垂直スタンドとが交互に一列に配列される。粗圧延工程及び仕上げ圧延工程での加熱温度は例えば、1000~1300℃である。
上述のとおり、本実施形態の鋼材は、機械構造用部品の素材となる。機械構造用部品は例えば、自動車用途の部品である。機械構造用部品は例えば、足回り部品、車軸、クランクシャフト等である。
例えば、本実施形態で規定されたMo含有量は小数第二位までの数値で規定されている。したがって、表2中の試験番号1では、測定されたMo含有量が、小数第三位で四捨五入した場合に、0%であったことを意味する。
また、本実施形態で規定されたMg含有量は小数第四位までの数値で規定されている。したがって、表1中の試験番号1では、測定されたMg含有量が、小数第五位で四捨五入した場合に、0%であったことを意味する。
なお、四捨五入とは、規定された最小桁の下の桁(端数)が5未満であれば切り捨て、5以上であれば切り上げることを意味する。
鋼材を素材とした機械構造用部品の製造工程における熱間鍛造を模擬する熱処理を実施した。具体的には、鋼材を1100℃に加熱して30分保持した。その後、鋼材を大気中で放冷し、模擬機械構造用部品の中間品を製造した。各試験番号の模擬機械構造用部品の中間品は、直径80mmの鋼材(棒鋼)であった。
各試験番号の鋼材及び各試験番号の模擬機械構造用部品の中間品に対して、次の評価試験を実施した。
(試験1)熱間加工割れ評価試験
(試験2)微細Bi粒子及び粗大Bi粒子の個数密度測定
(試験3)溶融割れ評価試験
(試験4)被削性試験(ドリル寿命試験)
(試験5)疲労強度評価試験(回転曲げ疲労試験)
以下、試験1~試験5について説明する。
製造された鋼材の表面を目視で観察した。目視での観察の結果、鋼材の表面において鋼材の軸方向(圧延方向)に1m当たりで3箇所以上の明確な割れが観察されなかった場合、熱間加工割れが十分に抑制されたと判断した(表5及び表6中の「熱間加工割れ」欄で「E」(Excellent)で表記)。
一方、目視での観察の結果、鋼材の表面において鋼材の軸方向(圧延方向)に1m当たりで3箇所以上の明確な割れが観察された場合、熱間加工割れが十分に抑制できなかったと判断した(表5及び表6中の「熱間加工割れ」欄で「NA」(Not Accepted)で表記)。
なお、熱間加工割れ評価試験で熱間加工割れが十分に抑制できなかった場合、試験3~試験5を実施しなかった(表5及び表6の「溶融割れ」欄、「被削性」欄、及び、「疲労強度」欄で「-」で表記)。
上述の[微細Bi粒子及び粗大Bi粒子の個数密度の測定方法]に記載の方法に基づいて、各試験番号の鋼材の微細Bi粒子の個数密度(個/mm2)、及び、粗大Bi粒子の個数密度(個/mm2)を求めた。なお、熱間鍛造を模擬した熱処理を実施する前の鋼材(棒鋼)から試験片を採取した。得られた微細Bi粒子の個数密度の結果を表5及び表6の「微細Bi粒子個数密度(個/mm2)」欄に示す。得られた粗大Bi粒子の個数密度の結果を表5及び表6の「粗大Bi粒子個数密度(個/mm2)」欄に示す。
各試験番号の模擬機械構造用部品の中間品の軸方向(圧延方向)に対して垂直な断面のR/2部を含む、幅10mm、厚さ3mm、長さ10mmの試験片を採取した。試験片の長手方向は、模擬機械構造用部品の中間品の軸方向(圧延方向)と平行であった。また、試験片の長手方向に平行な中心軸が、R/2部と一致した。
各試験番号の模擬機械構造用部品の中間品から被削性評価用試験片を採取した。具体的には、直径80mmの模擬機械構造用部品の中間品の長手方向に対して垂直な断面のうち、鋼材の外表面から21mmの深さ位置の箇所に対して、ドリル穿孔を実施した。株式会社不二越製 型番SD3.0のドリルを使用し、1回転当たりの送り量を0.25mm/revとした。また、1穴の穿孔深さを9mmとした。穿孔中、穿孔箇所に対して、潤滑剤として水溶性の切削油を継続して供給した。
上記条件でドリル穿孔を行い、鋼材の被削性を評価した。評価指標として、最大切削速度VL1000(m/分)を用いた。最大切削速度VL1000とは、1000mm長の穴開けが可能なドリルの最速の切削速度を意味する。
最大切削速度VL1000が15m/分以上の場合、優れた被削性が得られたと判断した(表5及び表6中の「被削性」欄で「E」で表記)。一方、最大切削速度VL1000が15m/分未満の場合、優れた被削性が得られなかったと判断した(表5及び表6中の「被削性」欄で「NA」で表記)。
製造された模擬機械構造用部品の中間品から、回転曲げ疲労試験片を採取した。図3は各模擬機械構造用部品の中間品から採取した回転曲げ疲労試験片の側面図である。図3中の「φ」の数値は、その部位での直径(mm)を意味する。
表1~表6を参照して、試験番号1~43の鋼材は、特徴1~特徴4を満たした。そのため、熱間加工割れが十分に抑制され、溶融割れが十分に抑制された。さらに、被削性評価試験において、最大切削速度VL1000が15m/分以上であり、優れた被削性が得られた。さらに、疲労強度評価試験において、疲労強度は550MPa以上であり、優れた疲労強度が得られた。
Claims (2)
- 鋼材であって、
化学組成が、質量%で、
C:0.20~0.50%、
Si:0.01~0.80%、
Mn:0.50~2.00%、
P:0.030%以下、
S:0.010~0.095%、
Cr:0.01~1.30%、
V:0.200超~0.300%、
Bi:0.0051~0.1500%、
N:0.0030~0.0200%、を含有し、
残部はFe及び不純物からなり、
式(1)を満たし、
前記鋼材中において、
円相当径が0.1~1.0μmの微細Bi粒子の個数密度が80~8000個/mm2であり、
円相当径が10.0μm以上の粗大Bi粒子の個数密度が10個/mm2以下である、
鋼材。
0.80≦C+(Si/10)+(Mn/5)-(5S/7)+(5Cr/22)+1.65V≦1.50 (1)
ここで、式中の各元素記号には、対応する元素の含有量が質量%で代入される。 - 請求項1に記載の鋼材であって、
前記化学組成はさらに、Feの一部に代えて、
Al:0.060%以下、
Mg:0.0100%以下、
Ti:0.0200%以下、
Nb:0.0200%以下、
W:0.4000%以下、
Zr:0.2000%以下、
Ca:0.0030%以下、
Te:0.0100%以下、
B:0.0050%以下、
Sn:0.0100%以下、
希土類元素:0.0070%以下、
Co:0.0100%以下、
Se:0.0100%以下、
Sb:0.0100%以下、
In:0.0100%以下、
Mo:0.20%以下、
Cu:0.20%以下、及び、
Ni:0.20%以下からなる群から選択される1種以上を含有する、
鋼材。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202280053180.2A CN117751207A (zh) | 2021-08-10 | 2022-08-09 | 钢材 |
KR1020247003210A KR20240027759A (ko) | 2021-08-10 | 2022-08-09 | 강재 |
JP2023541453A JPWO2023017829A1 (ja) | 2021-08-10 | 2022-08-09 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021130573 | 2021-08-10 | ||
JP2021-130573 | 2021-08-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023017829A1 true WO2023017829A1 (ja) | 2023-02-16 |
Family
ID=85200604
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/030491 WO2023017829A1 (ja) | 2021-08-10 | 2022-08-09 | 鋼材 |
Country Status (4)
Country | Link |
---|---|
JP (1) | JPWO2023017829A1 (ja) |
KR (1) | KR20240027759A (ja) |
CN (1) | CN117751207A (ja) |
WO (1) | WO2023017829A1 (ja) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01129952A (ja) * | 1987-11-13 | 1989-05-23 | Sanyo Special Steel Co Ltd | 切屑処理性のよい長寿命転動部品用鋼 |
JP2000265243A (ja) * | 1999-03-12 | 2000-09-26 | Kobe Steel Ltd | Bi快削鋼 |
JP2009013465A (ja) * | 2007-07-04 | 2009-01-22 | Daido Steel Co Ltd | 工具鋼及びこれを用いた成型用部材、工具鋼の品質検証方法 |
JP2019026874A (ja) * | 2017-07-26 | 2019-02-21 | 大同特殊鋼株式会社 | 高周波焼入れ部品用素材 |
CN110527896A (zh) * | 2019-09-23 | 2019-12-03 | 江苏方圆型钢有限公司 | 一种热轧型钢及其生产工艺 |
JP2021155808A (ja) * | 2020-03-27 | 2021-10-07 | 日本製鉄株式会社 | 鋼材 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5719366A (en) | 1980-07-09 | 1982-02-01 | Kobe Steel Ltd | Machine structural steel with superior cold forgeability and machinability |
JP4146167B2 (ja) | 2002-06-12 | 2008-09-03 | 株式会社神戸製鋼所 | 切屑処理性に優れた冷間鍛造用鋼 |
JP2008169411A (ja) | 2007-01-10 | 2008-07-24 | Daido Steel Co Ltd | 型材用鋼 |
-
2022
- 2022-08-09 JP JP2023541453A patent/JPWO2023017829A1/ja active Pending
- 2022-08-09 CN CN202280053180.2A patent/CN117751207A/zh active Pending
- 2022-08-09 KR KR1020247003210A patent/KR20240027759A/ko unknown
- 2022-08-09 WO PCT/JP2022/030491 patent/WO2023017829A1/ja active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01129952A (ja) * | 1987-11-13 | 1989-05-23 | Sanyo Special Steel Co Ltd | 切屑処理性のよい長寿命転動部品用鋼 |
JP2000265243A (ja) * | 1999-03-12 | 2000-09-26 | Kobe Steel Ltd | Bi快削鋼 |
JP2009013465A (ja) * | 2007-07-04 | 2009-01-22 | Daido Steel Co Ltd | 工具鋼及びこれを用いた成型用部材、工具鋼の品質検証方法 |
JP2019026874A (ja) * | 2017-07-26 | 2019-02-21 | 大同特殊鋼株式会社 | 高周波焼入れ部品用素材 |
CN110527896A (zh) * | 2019-09-23 | 2019-12-03 | 江苏方圆型钢有限公司 | 一种热轧型钢及其生产工艺 |
JP2021155808A (ja) * | 2020-03-27 | 2021-10-07 | 日本製鉄株式会社 | 鋼材 |
Also Published As
Publication number | Publication date |
---|---|
KR20240027759A (ko) | 2024-03-04 |
CN117751207A (zh) | 2024-03-22 |
JPWO2023017829A1 (ja) | 2023-02-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7417091B2 (ja) | 鋼材 | |
JP4424503B2 (ja) | 棒鋼・線材 | |
KR20130125816A (ko) | 기소강 및 그의 제조 방법, 및 기소강을 이용한 기계 구조 부품 | |
CN111684094B (zh) | 进行渗碳处理的部件用钢材 | |
JP7168003B2 (ja) | 鋼材 | |
JP6760378B2 (ja) | 機械構造用鋼 | |
JP6760375B2 (ja) | 機械構造用鋼 | |
JP6614393B2 (ja) | 非調質棒鋼 | |
JP6760379B2 (ja) | 機械構造用鋼 | |
JP6729686B2 (ja) | 高周波焼入れ用非調質鋼 | |
JP6642237B2 (ja) | 冷間鍛造用鋼およびその製造方法 | |
JP6521088B2 (ja) | 熱間鍛造用鋼及び熱間鍛造品 | |
JP6642236B2 (ja) | 冷間鍛造用鋼 | |
JP6652021B2 (ja) | 熱間鍛造用鋼及び熱間鍛造品 | |
WO2023017829A1 (ja) | 鋼材 | |
WO2023048248A1 (ja) | 鋼材 | |
JP7270420B2 (ja) | 熱間鍛造非調質部品とその製造方法、および熱間鍛造非調質部品用鋼材 | |
US20240352566A1 (en) | Steel material | |
JP4243852B2 (ja) | 浸炭部品又は浸炭窒化部品用の鋼材、浸炭部品又は浸炭窒化部品の製造方法 | |
WO2020194653A1 (ja) | 高周波焼入れが実施される鋼 | |
JP2017115190A (ja) | 熱間圧延棒線材 | |
WO2024019013A1 (ja) | 鋼材 | |
TWI857829B (zh) | 鋼材 | |
JP7205066B2 (ja) | 高周波焼入れ用非調質鋼 | |
JP7205067B2 (ja) | 高周波焼入れ用非調質鋼 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22855891 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023541453 Country of ref document: JP |
|
ENP | Entry into the national phase |
Ref document number: 20247003210 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020247003210 Country of ref document: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280053180.2 Country of ref document: CN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22855891 Country of ref document: EP Kind code of ref document: A1 |