WO2018056463A1 - ポリアミド、ポリアミドフィルム及びフィルムコンデンサ - Google Patents

ポリアミド、ポリアミドフィルム及びフィルムコンデンサ Download PDF

Info

Publication number
WO2018056463A1
WO2018056463A1 PCT/JP2017/034740 JP2017034740W WO2018056463A1 WO 2018056463 A1 WO2018056463 A1 WO 2018056463A1 JP 2017034740 W JP2017034740 W JP 2017034740W WO 2018056463 A1 WO2018056463 A1 WO 2018056463A1
Authority
WO
WIPO (PCT)
Prior art keywords
mol
polyamide
film
compound
amine compound
Prior art date
Application number
PCT/JP2017/034740
Other languages
English (en)
French (fr)
Inventor
裕行 白井
熊木 尚
聖司 春原
渡辺 圭太
淳一 亀井
会津 和郎
諭 藪下
一博 海老沼
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to JP2018540350A priority Critical patent/JP7052725B2/ja
Publication of WO2018056463A1 publication Critical patent/WO2018056463A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • C08G69/28Preparatory processes

Definitions

  • the present invention relates to a polyamide, a polyamide film, and a film capacitor.
  • Heat resistant resins such as polyamide are widely used in the field of electronics as surface protective films for semiconductor elements, interlayer insulating films, and the like. Since a polymer having an alicyclic structure is excellent in transparency in the ultraviolet region, it has been studied to introduce a norbornane skeleton into polyamide and polyamideimide.
  • a method for producing a polyamide or polyamide-imide having a norbornane skeleton for example, a method of reacting a specific norbornane tricarboxylic acid halide derivative or a specific norbornane dicarboxylic acid halide derivative with a diamine compound is known (for example, patents). (Ref. 1 and 2).
  • a polyamide having a norbornane skeleton is preferably excellent in film moldability from the viewpoint of application to various uses. Accordingly, an object of the present invention is to provide a norbornane skeleton-containing polyamide having excellent film moldability. Another object of the present invention is to provide a polyamide film containing the polyamide and a film capacitor including the polyamide film.
  • the present invention relates to a polyamide having a structure based on an amine compound having a norbornane skeleton and a structure based on a carboxylic acid compound having 6 or more carbon atoms.
  • the polyamide may further have at least one of a structure based on an aliphatic amine compound having an ether skeleton and a structure based on an amine compound having a siloxane skeleton.
  • the polyamide may further have a structure based on a hydroxy group-containing carboxylic acid compound.
  • the hydroxy group-containing carboxylic acid compound may contain two or more hydroxy groups.
  • the amine compound having a norbornane skeleton may have a structure represented by the following formula (A).
  • R 10 represents an alkylene group.
  • R 10 may be a methylene group.
  • the carboxylic acid compound having 6 or more carbon atoms may be a dicarboxylic acid having an alkylene group having 4 or more carbon atoms.
  • the melt flow rate (MFR) of the polyamide at 150 ° C. may be 3.0 g / min to 8.0 g / min.
  • the present invention also relates to a polyamide film containing the polyamide.
  • the present invention also relates to a film capacitor comprising the polyamide film.
  • a norbornane skeleton-containing polyamide having excellent film moldability can be provided.
  • a polyamide film containing the polyamide and a film capacitor including the polyamide film can be provided.
  • a or B may include either one of A and B, or may include both.
  • the polyamide of the present embodiment has a structure based on an amine compound having a norbornane skeleton and a structure based on a carboxylic acid compound having 6 or more carbon atoms. Such polyamide is excellent in film moldability. According to the polyamide of the present embodiment, for example, formation of holes and cracks when forming a film by solvent coating can be reduced.
  • the solvent coating is, for example, a method in which a resin solution obtained by dissolving a resin in a solvent is dried after coating. Moreover, according to the polyamide of one embodiment, it is considered that extrusion moldability can be imparted. Moreover, it is thought that the polyamide of this embodiment can exhibit a high dielectric constant.
  • the reason why the polyamide of this embodiment can exhibit a high dielectric constant is not clear, but the present inventors presume one of the reasons as follows.
  • the polyamide of the present embodiment can have an amide structure and a norbornane skeleton. And it is thought that the polyamide which has such a structure can exhibit a high dielectric constant due to molecular conjugation and polarization. Furthermore, it is thought that the polyamide of this embodiment is easy to manufacture.
  • the amine compound having a norbornane skeleton may have a structure represented by the following formula (A) from the viewpoint that the dielectric constant of the polyamide can be further improved.
  • R 10 represents an alkylene group.
  • Examples of the amine compound having a structure represented by the formula (A) include a compound represented by the following formula (A1) and a compound represented by the following formula (A2).
  • R 10 in formula (A1) has the same meaning as described above. Moreover, two R ⁇ 10 > in Formula (A1) may differ.
  • R 10 in formula (A2) has the same meaning as described above. Moreover, two R ⁇ 10 > in Formula (A2) may differ.
  • R 10 in formulas (A), (B), (A1), and (A2) may be a methylene group from the viewpoint that the dielectric constant of the polyamide can be further improved.
  • Examples of the compound represented by the formula (A1) include bis (aminomethyl) norbornane.
  • Examples of the compound represented by the formula (A2) include a compound represented by the following formula (I-1a).
  • Examples of the carboxylic acid compound having 6 or more carbon atoms include compounds represented by the following formula (IV).
  • R 4 in formula (IV) represents an aliphatic group having 4 or more carbon atoms.
  • Examples of the aliphatic group as R 4 include an alkylene group having 4 or more carbon atoms.
  • the alkylene group may be linear or branched.
  • the alkylene group is preferably linear from the viewpoint of easily increasing the weight average molecular weight of the polyamide. From the viewpoint of easily increasing the weight average molecular weight of the polyamide, the number of carbon atoms of the alkylene group may be, for example, 6 or more, or 8 or more.
  • the number of carbon atoms of the alkylene group may be, for example, 20 or less, 15 or less, or 10 or less from the viewpoint of easily increasing the 5% weight loss temperature and the dielectric constant of the polyamide.
  • the carboxylic acid compound having 6 or more carbon atoms is preferably a dicarboxylic acid having an alkylene group having 4 or more carbon atoms from the viewpoint of further improving film moldability.
  • dicarboxylic acids include adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, 1,9-nonanedicarboxylic acid, dodecanedioic acid, tetradecanedioic acid, pentadecanedioic acid and octadecanedioic acid. It is done.
  • the polyamide of the present embodiment has a structure based on an aliphatic amine compound having an ether skeleton and a siloxane, in addition to the above structure based on an amine compound having a norbornane skeleton, from the viewpoint of flexibility and toughness of the film when formed into a film
  • Examples of the aliphatic amine compound having an ether bond include a compound represented by the following formula (Ia) and a compound represented by the following formula (Ib).
  • b represents a number of 1 or more. b may be, for example, 1 to 100. For example, b may be 20 or less, 10 or less, 3 or less, or 1 from the viewpoint of film moldability.
  • c represents a number of 1 or more.
  • c may be, for example, 1 to 100.
  • c may be 20 or less, 10 or less, 3 or less, or 1 from the viewpoint of film moldability.
  • the number of ether bonds in the aliphatic ether amine compound may be, for example, 1 to 20, 1 to 10, 1 to 3, or 1 from the viewpoint of film moldability. It may be. If the number of ether bonds is small, it is considered that the compatibility with other structural units and the solvent used for solvent coating is excellent.
  • the aliphatic ether amine compound may have a branched structure from the viewpoint of heat resistance.
  • Examples of the amine compound having a siloxane skeleton include a compound represented by the following formula (III).
  • n represents a number from 1 to 150.
  • n may be 70 or less, 30 or less, or 20 or less.
  • n may be 3 or more, 5 or more, or 10 or more from the viewpoint of compatibility with other structural units and the solvent used for solvent coating.
  • the polyamide of the present embodiment has the following advantages from the viewpoint of improving the viscosity and tension of the polyamide and from the viewpoint of easily obtaining a tough film when formed as a film. It may further have a structure based on a compound (hydroxy group-containing carboxylic acid compound) having one or more hydroxy groups and one or more carboxy groups.
  • Examples of the hydroxy group-containing carboxylic acid compound include compounds represented by the following formula (VI).
  • R 6 in formula (VI) represents a trivalent organic group, and X represents a hydroxy group or a carboxy group.
  • Examples of the trivalent organic group as R 6 include an aliphatic group and an aromatic group.
  • the aliphatic group may have a cyclic structure.
  • the hydroxy group-containing carboxylic acid compound preferably contains two or more hydroxy groups from the viewpoint of easily imparting extrusion moldability.
  • the reaction proceeds starting from at least three or more functional groups of two or more hydroxy groups and one or more carboxy groups. It is considered that a crosslinked structure is easily formed in the polyamide. And in connection with this, it is thought that it is easy to obtain the polyamide which has the weight average molecular weight and melt flow rate (MFR) which are excellent in extrusion moldability.
  • MFR weight average molecular weight and melt flow rate
  • Examples of the hydroxy group-containing carboxylic acid containing two or more hydroxy groups include 2,2-bis (hydroxymethyl) propionic acid, 2,2-bis (hydroxymethyl) butyric acid, and 3- (2,4-dihydroxy).
  • Examples include 1,4-dihydroxy-2-naphthoic acid and 5,6-dihydroxy-1H-indole-2-carboxylic acid.
  • the polyamide may have a structure based on, for example, an amine compound and a carboxylic acid compound described later.
  • amine compounds include aliphatic amine compounds and aromatic amine compounds.
  • aliphatic amine compound examples include an alicyclic amine compound.
  • aliphatic amine compound examples include compounds represented by the following formula (I).
  • R 1 in the formula (I) represents a non-aromatic divalent or higher group, and a represents a number of 2 or higher.
  • the non-aromatic divalent or higher-valent group include an aliphatic group.
  • the aliphatic group may be linear, for example, or may have a cyclic structure.
  • a may be, for example, 2 to 10, 2 to 5, 2 or 3.
  • aromatic amine compound examples include compounds represented by the following formula (II).
  • R 3 in the formula (II) represents a divalent group containing an aromatic group.
  • amine compound examples include a compound represented by the following formula (I-1).
  • R 2 in the formula (I-1) represents a divalent organic group.
  • R 2 include non-aromatic organic groups and aromatic organic groups.
  • the compound represented by the formula (I-1) can be obtained, for example, by amidating a compound represented by the following formula (VII) (methyl 5-norbornene-2-carboxylate).
  • Examples of the aliphatic amine compound include 1,2-diaminoethane, 1,3-diaminopropane, 1,4-diaminobutane, 1,5-diaminopentane, 1,6-diaminohexane, 1,7-diamino.
  • Heptane 1,8-diaminooctane, 1,9-diaminononane, 1,10-diaminodecane, 1,11-diaminoundecane, 1,12-diaminododecane, dimethylaminopropylamine, 3,9-bis (3- Aminopropyl) -2,4,8,10-tetraoxaspiro [5,5] undecane, 4,4′-methylenebis (2-methylcyclohexylamine), methylpentamethylenediamine, trimethylhexamethylenediamine, 4,9- Dioxadodecane-1,12-diamine, 4,7,10-trioxatridecane-1,13-dia Emissions, diethylenetriamine, triethylene tetraamine and tetraethylene pentamine.
  • Examples of the alicyclic amine compound include 1,2-diaminocyclohexane, 1,3-diaminocyclohexane, 1,4-diaminocyclohexane, 4,4′-diaminodicyclohexylmethane, 3, 3'-dimethyl-4,4'-diaminodicyclohexylmethane and 3,3 ', 5,5'-tetramethyl-4,4'-diaminodicyclohexylmethane.
  • aromatic amine compound examples include 1,2′-phenylenediamine, 1,3′-phenylenediamine, 1,4′-phenylenediamine, aminobenzylamine, 1,3′-xylylenediamine, 1,4 ′.
  • carboxylic acid compound examples include aromatic carboxylic acid compounds and alicyclic carboxylic acid compounds.
  • aromatic carboxylic acid compound examples include a compound represented by the formula (V).
  • R 5 in formula (V) represents a divalent group containing an aromatic group.
  • aromatic carboxylic acids include phthalic acid, terephthalic acid, isophthalic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, acenaphthylene-5,6-dicarboxylic acid.
  • Examples of the alicyclic carboxylic acid compound include 1,2-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, decahydro-1,4-naphthalenedicarboxylic acid. , (1a, 2a, 4a) -1,2,4-cyclohexanetricarboxylic acid, 1,2,4,5-cyclohexanetetracarboxylic acid, cyclopentane-1,3-dicarboxylic acid, camphoric acid and 1 2,3,4-cyclopentanetetracarboxylic acid.
  • the polyamide of the present embodiment can have, for example, a structure represented by the following formula (VIII-1) or a structure represented by the following formula (VIII-2).
  • m represents a number of 1 or more
  • R 7 and R 8 each independently represents a divalent organic group
  • R 9 represents a hydrogen atom or Represents a valent organic group.
  • R 7 is, for example, a structure derived from the above-described amine compound.
  • R 8 is, for example, a structure derived from the carboxylic acid compound described above.
  • the content of the aliphatic amine compound is preferably 50 mol% or more, more preferably 60 mol% or more, based on the total number of moles of the amine compound, More preferably, it is 70 mol% or more.
  • the content of the amine compound having a norbornane skeleton is preferably 50 mol% or more, more preferably 60 mol% or more, based on the total number of moles of the amine compound. Preferably, it is 70 mol% or more.
  • the content of the aromatic amine compound is preferably 50 mol% or less, more preferably 40 mol% or less, based on the total molar amount of the amine compound, More preferably, it is 30 mol% or less.
  • the content of the aliphatic ether amine compound is preferably 50 mol% or less, more preferably 40 mol% or less, based on the total molar amount of the amine compound. More preferably, it is 30 mol% or less.
  • the content of the aliphatic ether amine compound is high, the weight average molecular weight and dielectric constant of the polyamide tend to be increased.
  • the content of the siloxane amine compound is preferably 50 mol% or less, more preferably 40 mol% or less, and more preferably 30 mol based on the total molar amount of the amine compound. % Or less is more preferable.
  • the content of the aliphatic carboxylic acid compound is preferably 40 to 100 mol%, and preferably 50 to 90 mol%, based on the total molar amount of the carboxylic acid compound. More preferred is 60 to 80 mol%.
  • the content of the hydroxy group-containing carboxylic acid compound is preferably 5 to 60 mol%, and preferably 7 to 40 mol%, based on the total molar amount of the carboxylic acid compound. More preferably, it is more preferably 10 to 30 mol%.
  • the above amine compounds and carboxylic acid compounds may be used alone or in combination of two or more.
  • the combination of the amine compound and the carboxylic acid compound can be appropriately selected depending on, for example, the use and properties (processability, coating property, mechanical properties, etc.) of the obtained polyamide.
  • the polyamide is preferably composed only of an aliphatic group.
  • the weight average molecular weight (Mw) of the polyamide of this embodiment may be 1500 or more, for example, or 20000 or more.
  • a weight average molecular weight (Mw) is a value calculated
  • the 5% weight reduction temperature (heat resistant temperature) of the polyamide of the present embodiment may be, for example, 200 ° C. or higher, 220 ° C. or higher, or 250 ° C. or higher.
  • the 5% weight loss temperature can be measured, for example, by changing the temperature of a measurement target resin (for example, a film-like resin) by an arbitrary process and analyzing the change in mass of the resin as a function of temperature. Generally, when the heat resistance temperature of each substance is exceeded, a part of the molecule of the substance is lost, and electrons and particles in the molecule are released from the substance. At this time, the device observes the emitted electrons and particles, whereby the mass change of the substance can be observed.
  • the 5% weight loss temperature does not vary greatly depending on the measurement method, but can be measured, for example, under the following conditions.
  • the resin to be measured is heated from room temperature (for example, 20 ° C.) to 400 ° C. under the condition of 5 to 15 ° C. per minute.
  • the temperature at which the mass of the resin is reduced by 5% is defined as a 5% weight reduction temperature.
  • the melt flow rate (MFR) of the polyamide of the present embodiment may be, for example, 3.0 to 20.0 g / min, or 3.0 to 10.0 g / min in the temperature range of 150 ° C. to 200 ° C. It may be min or 3.0 to 8.0 g / min.
  • the MFR may be in the range of 3.0 to 8.0 g / min at 150 ° C., for example. When the MFR of the polyamide is in such a range, it is considered that extrusion molding such as extrusion coating is easy and production of a film or the like is facilitated.
  • the compound to be extruded has a high melt viscosity and melt tension and exhibits a certain viscosity in the direction of gravity. Moreover, it is thought that extrusion coating can reduce cost compared with the coating using a solvent.
  • Melt flow rate (MFR, MFR viscosity, etc.) is determined by, for example, applying a certain weight to the resin melted in the cylinder, injecting the molten resin from the tip of the cylinder, and measuring the injection amount of the extruded resin Desired.
  • the method for measuring the MFR of the polyamide is not particularly limited, and examples thereof include the following methods. In a cylinder heated to 150 ° C., the pelletized polyamide is charged and heated for 5 minutes. Next, a 1 kg weight is placed at the top of the cylinder, and a load is applied to inject the molten resin from the bottom of the cylinder. The injection amount per minute is defined as MFR.
  • the MFR can be used as a determination index as to whether or not the resin is suitable for extrusion coating.
  • the injection amount (MFR) is 3.0 g / min or more, the resin tends to flow and extrusion coating tends to be performed, and when the injection amount (MFR) is 10 g / min or less, the resin tends to flow. Tends to be easy to extrusion coating without flowing too much.
  • the dielectric constant ( ⁇ ) of the polyamide of the present embodiment may be, for example, 3.5 or more, or 3.8 or more.
  • Examples of the dielectric constant measurement method include a method using a measurement magnetic tool including two electrodes.
  • a measurement magnetic tool including two electrodes is prepared.
  • the resin to be measured is made into a film to produce a resin film.
  • a dielectric film is measured by sandwiching a resin film to be measured between electrodes of a measuring magnetic tool, passing an electric current, and applying an electric field.
  • the measuring magnetic tool is fixed so that the two electrodes are arranged vertically, and a film is placed on the upper part of the electrode located on the lower side.
  • the position of the upper electrode is adjusted so as to maintain a distance of 1.09 to 1.11 times the film thickness.
  • the measurement can be performed in the range of 10 KHz to 100 MHz, for example.
  • the film thickness of the resin film used for the measurement is, for example, preferably 100 ⁇ m or less, and more preferably 50 ⁇ m or less.
  • the film thickness is preferably 10 ⁇ m or more, for example.
  • the polyamide of the present embodiment can be produced, for example, by reacting an amine compound having a norbornane skeleton, a carboxylic acid compound having 6 or more carbon atoms, and other compounds as necessary in the presence of an acid catalyst or a base catalyst.
  • Preferred forms of the amine compound having a norbornane skeleton and the carboxylic acid compound having 6 or more carbon atoms are as defined above.
  • Such a method is less prone to problems such as the generation of a halogen compound derived from an acid halide as a by-product, compared to a method of producing a polyamide using a carboxylic acid halide derivative, and is excellent in productivity. Conceivable. Since the polyamide of this embodiment can be manufactured by the said method, it is thought that it is excellent also in manufacturability.
  • the acid catalyst is not particularly limited, but is preferably a catalyst capable of enhancing the electrophilicity of the acid and promoting the nucleophilic reaction of the diamine compound by coordination with a dicarboxylic acid compound, for example.
  • the acid catalyst include an iron catalyst, a zinc catalyst, a cobalt catalyst, a boronic acid catalyst, a titanium catalyst, an antimony catalyst, a tin catalyst, a manganese catalyst, and a sulfonic acid catalyst.
  • iron-based catalyst examples include iron powder, iron acetate, trichloroiron (III), iron (III) fluoride, and tris (2,4-pentanedionato) iron (III).
  • Examples of the zinc-based catalyst include zinc acetate (such as zinc acetate (II)), zinc nitrate (II), zinc carbonate (II), oxo [hexa (trifluoroacetato)] tetrazinc trifluoroacetic acid, and zinc tetra Nuclear oxygen clusters are mentioned.
  • zinc acetate such as zinc acetate (II)
  • zinc nitrate II
  • zinc carbonate II
  • oxo [hexa (trifluoroacetato)] tetrazinc trifluoroacetic acid zinc tetra Nuclear oxygen clusters are mentioned.
  • cobalt-based catalyst examples include cobalt acetate (such as cobalt acetate (II)), cobalt hydroxide (II), cobalt nitrate (II), cobalt sulfate (II), cobalt chloride (II), cobalt carbonate (II) and A cobalt oxide is mentioned.
  • boronic acid catalyst examples include boric acid, isobutyl boronic acid, phenyl boronic acid, 1-naphthalene boronic acid, thiophene-3,4-boronic acid, and 3-acrylamidophenyl boronic acid.
  • titanium-based catalyst examples include tetra-i-propoxy titanium and tetra-n-butoxy titanium.
  • antimony-based catalyst examples include antimony trioxide, triphenylantimony, triphenylantimony diacetate, triphenylantimony dichloride, and triphenylantimony oxide.
  • tin catalyst examples include dibutyltin, dibutyltin bis (trifluoromethanesulfonate), dibutyltin diacetate, and dibutyltin dichloride.
  • manganese-based catalyst examples include manganese acetate (II) and manganese dioxide (II).
  • sulfonic acid catalyst examples include p-toluenesulfonic acid (paratoluenesulfonic acid) and methanesulfonic acid.
  • the acid catalyst may be used alone or in combination of two or more.
  • the acid catalyst is, for example, at least one selected from the group consisting of iron-based catalysts, zinc-based catalysts, cobalt-based catalysts, boronic acid-based catalysts, titanium-based catalysts, antimony-based catalysts, tin catalysts, manganese-based catalysts, and sulfonic acid-based catalysts. It is preferable to contain.
  • the base catalyst is not particularly limited, but is preferably a catalyst capable of, for example, extracting the proton of the diamine compound and enhancing the nucleophilicity of the diamine compound.
  • Examples of the base catalyst include an alkali metal salt catalyst and a boronate catalyst.
  • alkali metal salt catalyst examples include sodium hydroxide, potassium hydroxide and lithium hydroxide.
  • Examples of the boronate-based catalyst include triol borate salt and pyridinebonate.
  • the base catalyst may be a solid base catalyst such as calcium oxide or a pyridine-containing carbon catalyst. You may use a base catalyst individually by 1 type or in combination of 2 or more types.
  • the catalyst is preferably an acid catalyst.
  • the catalyst is It is preferable that iron is included.
  • the catalyst preferably contains iron and zinc acetate from the viewpoint of easily increasing the weight average molecular weight of the polyamide.
  • the use amount of the amine compound and the carboxylic acid compound is easy to suppress deterioration of mechanical properties, film coatability, heat resistance, etc. due to unreacted raw materials, low molecular weight materials, etc. from the viewpoint of easily increasing the molecular weight of the obtained polyamide.
  • the total molar amount of the carboxylic acid compound relative to the total molar amount of the amine compound may be, for example, 0.7 to 2.0, 0.8 to 2.0, 0.8 To 1.7, 0.9 to 1.5, 0.95 to 1.3, or 0.95 to 1.2.
  • the total molar amount of the catalyst used in the above reaction may be, for example, 0.5 mol% or less or 1 mol% or less with respect to the total molar amount of the amine compound. Good. From the viewpoint of easily increasing the reaction rate, the total molar amount of the catalyst may be, for example, 0.001 mol% or more, or 0.01 mol% or more with respect to the total molar amount of the amine compound. 0.05 mol% or more. From these viewpoints, the total molar amount of the catalyst used in the above reaction is preferably in the range of 0.001 to 1 mol%, more preferably in the range of 0.01 to 1 mol%, based on the total molar amount of the amine compound. The range of 0.05 to 0.5 mol% is more preferable.
  • the polyamide of this embodiment may be processed, for example, as pellets, or may be mixed with a solvent to form a varnish.
  • the above pellets can be further processed.
  • a resin molded product can be produced by injection molding the above pellets.
  • the said pellet can also be shape
  • the conditions for extrusion coating are not particularly limited, but the extrusion coating temperature may be, for example, 100 to 200 ° C. or 150 to 200 ° C. from the viewpoint of easily obtaining a uniform film.
  • the polyamide of this embodiment is excellent in film formability by solvent coating, when a film is produced by solvent coating, a film with reduced holes and cracks can be produced. Moreover, it is thought that the film formed from the polyamide of this embodiment is excellent also in a flexibility.
  • the polyamide of one embodiment is considered to have excellent heat resistance, mechanical properties, optical properties, and transparency, and high dielectric properties and viscosity. Therefore, development as a film (an adhesive film, a protective film, etc.) in a field requiring such physical properties can be expected.
  • the polyamide of this embodiment is expected to develop into electronic materials (film capacitor film, semiconductor conductive film, etc.) that are required to exhibit heat resistance and high dielectric constant.
  • the polyamide of this embodiment can be expected to develop into optical materials (optical fibers, optical lenses, etc.) or display-related materials that require heat resistance, optical characteristics, and transparency.
  • a film can also be produced by extrusion molding.
  • extrusion molding is a method of shape
  • a film can be produced at a lower cost than the solvent coating method.
  • a polyamide having a 5% weight loss temperature of 300 ° C. or higher (preferably 310 ° C. or higher) and an MFR in a temperature range of 100 ° C. or higher and 200 ° C. or lower is 3.0 g / min to 8.0 g / min. Tends to be excellent in extrusion moldability.
  • the polyamide having a structure based on a carboxylic acid containing two or more hydroxy groups tends to satisfy such conditions.
  • the reason for this is considered to be that a crosslinked structure is formed in the polyamide by two hydroxy groups and a carboxy group, which makes it easier to satisfy the above conditions.
  • an extruded film having a tensile strength of 35 MPa or more can be formed.
  • the extrusion coating machine for example, includes a “pellet inlet” for charging pellet-shaped resin, a “heating cylinder portion” for melting and kneading the charged resin, and a “pushing” for extruding the melt-kneaded resin as a film. “Exit” and “winding roller” for stretching the extruded film.
  • the pellet containing the polyamide and, if necessary, an additive are charged into a pellet inlet of an extrusion coating machine.
  • the volume of the pellet may be, for example, 0.5 cm 3 to 5 cm 3 .
  • the pellet is obtained by, for example, a method of solidifying a polyamide after the polyamide is melted and solidified while filtering with a filter having a predetermined mesh size (preferably, a mesh size of 0.5 cm 2 to 5 cm 2 ). It can be formed by a method of crushing with a crusher.
  • an additive can also be contained in a pellet by adding in advance at the time of the synthesis
  • the charged pellets are melted and kneaded in the heating cylinder.
  • the resin extruded from the extrusion port is extruded as a film from the extrusion port, and then wound up by a winding roller.
  • the resin is extruded from the extrusion port in a molten state, and is formed into a film while falling directly below.
  • the additive does not impair film characteristics such as heat resistance temperature, dielectric constant, film thickness, flexibility, tensile strength, MFR and the like.
  • the additive is preferably a compound that does not form a covalent bond with the polyamide of this embodiment.
  • the method for adding the additive is not particularly limited.
  • the additive may be added after the production of the polyamide by synthesis, or may be added together with the polyamide to the pellet inlet at the time of extrusion molding.
  • the bias of the additive in the system can be reduced, and the effect of the additive can be exhibited sufficiently. From such a viewpoint, it may be added before the polyamide is melted by heating or before the polyamide is dissolved by the solvent.
  • the additive preferably contains a plasticizer from the viewpoint of easily forming a film having high heat resistance and a high dielectric constant.
  • a plasticizer for example, an amide compound or an ester compound is preferable.
  • additives include o-toluenesulfonamide, p-toluenesulfonamide, N-ethyl- (o / p) -toluenesulfonamide, n-butylbenzenesulfonamide, N-cyclohexyl-p-toluene.
  • examples include methyl acid, ethyl paraoxybenzoate, butyl paraoxybenzoate and isobutyl paraoxybenzoate.
  • a mold release agent is included as additives other than a plasticizer.
  • a compound containing an aliphatic chain may be used.
  • Specific examples of the release agent include glycerin aliphatic amide compounds, glycerin aliphatic ester compounds, stearic acid amides, stearic acid esters, stearyl alcohol, pentastearate compounds, sorbitan amide compounds, sorbitan ester compounds, and sorbitol. You may use an additive individually by 1 type or in combination of 2 or more types.
  • a release agent as an additive, the tackiness of the film is reduced, so that it is likely that moderate slipperiness can be imparted to the film. Therefore, it is considered that peeling after winding is easy and the handleability of the film is excellent.
  • a plasticizer and a release agent may be added, or both may be added.
  • the amount of the plasticizer used as an additive may be, for example, 0.1% by mass to 30% by mass, or 0.5% by mass to 20% by mass with respect to the total mass of the polyamide. It may be 1% by mass to 15% by mass. When the amount used is 0.1% by mass or more, the flexibility of the film tends to be improved. When the amount used is 30% by mass or less, the film is difficult to be liquefied, and the viscosity of the film surface is lowered, so that the film after winding tends to be easily peeled off.
  • the amount of release agent used as an additive may be, for example, 0.01% by mass to 10% by mass, or 0.05% by mass to 5% by mass with respect to the total mass of the polyamide. It may be 0.1% by mass to 3% by mass.
  • the amount used is 0.01% by mass or more, it tends to easily impart slipperiness to the film.
  • the amount used is 10% by mass or less, the slipperiness of the film tends not to be too high, and the film tends to be easily adhered and laminated to other materials. Therefore, it is considered that the obtained film can be easily used for applications such as a protective adhesive film, an adhesive film, and a film for a film capacitor.
  • the heating cylinder part may have, for example, a first heating cylinder part, a second heating cylinder part, and a third heating cylinder part from the pellet charging port toward the extrusion port.
  • the temperatures of the first, second and third heating cylinder parts may be 60 ° C. to 180 ° C., 80 ° C. to 180 ° C. and 100 ° C. to 200 ° C., respectively.
  • the extruded film according to this embodiment is considered to be high in dielectric constant, excellent in heat resistance and flexibility, and tough. Therefore, it can be preferably used as a material for electronic materials, optical devices, various displays, and the like.
  • the thickness of the extruded film may be, for example, 3 ⁇ m to 50 ⁇ m, or 3 ⁇ m to 10 ⁇ m.
  • the thickness is about 3 ⁇ m. Is preferred.
  • the said thickness shall be 10 micrometers or less.
  • the film thickness unevenness (difference between the maximum thickness and the minimum thickness) in the extruded film is preferably 1 ⁇ m or less.
  • the polyamide film of this embodiment contains the polyamide of this embodiment.
  • a polyamide film is particularly suitable as a film for a film capacitor because it has a high dielectric constant and is considered to be excellent in heat resistance, flexibility and toughness.
  • the film capacitor of this embodiment includes the polyamide film of this embodiment as a dielectric, for example. Such a film capacitor has a high dielectric constant and is considered to be excellent in heat resistance, flexibility and toughness.
  • the amine compound (I-1a) was synthesized according to the procedures of Synthesis Examples 1 to 3.
  • a reactor equipped with a stirrer, a thermometer, a distillation column, and a cooling pipe was assembled to a separable flask, and the separable flask was heated with a mantle heater.
  • a reaction temperature reached 170 ° C.
  • a distillate distilling from the distillation column was observed.
  • the temperature in the flask was set to 170 ° C., and heating and stirring were continued for 3 hours to produce an amine compound (I-1a).
  • the reactor was cooled to room temperature.
  • the obtained reaction solution was analyzed by high performance liquid chromatography and gas chromatography, the weight average molecular weight (Mw) of the obtained compound was measured, and disappearance of raw materials was confirmed.
  • the obtained compound had a single molecular weight peak. Further, Mw was 274, which was consistent with the molecular weight 274 of the amine compound (I-1a).
  • PNBAD-1A was analyzed by gel permeation chromatography (GPC), and Mw was calculated by standard polystyrene conversion.
  • the obtained PNBAD-1A had an Mw of 9100 and a 5% weight loss temperature (Td5) of 270 ° C.
  • Table 1 shows a summary of the catalyst and Mw in the examples.
  • the separable flask was heated with a mantle heater.
  • the temperature in the flask was set to 200 ° C. and heated and stirred for 3 hours.
  • the inside of the reaction apparatus was depressurized to 20 kPa for 8 hours, and then further depressurized to 10 kPa and heated and stirred for 8 hours.
  • the reduced pressure was released, the inside of the reactor was brought to normal pressure and room temperature, and a norbornane skeleton-containing polyamide (PNBAD-2) was obtained in the flask.
  • PBAD-2 norbornane skeleton-containing polyamide
  • PBAD-8 norbornane skeleton-containing polyamide
  • Example 3 Synthesis of norbornane skeleton-containing polyamide (PNBAD-10) After replacing the inside of a 1000 mL separable flask with nitrogen at room temperature, it was obtained in Synthesis Example 3 in the above separable flask. 1.0 mol of the amine compound (I-1a), 1.0 mol of adipic acid (IV-2), and 0.3 mol% of iron powder based on the total molar amount of the amine compound were charged. Thereafter, synthesis was performed in the same manner as in Comparative Example 2 to obtain PNBAD-10 in the flask. Further, analysis by GPC and gas chromatography was performed in the same manner as in Comparative Example 2. As a result, it was confirmed that the raw material disappeared due to the reaction. As a result of evaluating PNBAD-10, Mw was 10,000, Td5 was 210 ° C., and ⁇ was 3.9.
  • Example 4 Synthesis of norbornane skeleton-containing polyamide (PNBAD-11) The inside of a separable flask having an internal volume of 1000 mL was replaced with nitrogen at room temperature, and then obtained in Synthesis Example 3 in the above separable flask. 1.0 mol of amine compound (I-1a), 0.5 mol of adipic acid (IV-2), 0.5 mol of sebacic acid (IV-3), and 0.1 mol based on the total molar amount of the amine compound. 3 mol% of iron powder was charged. Thereafter, synthesis was performed in the same manner as in Comparative Example 2 to obtain PNBAD-11 in the flask. Further, analysis by GPC and gas chromatography was performed in the same manner as in Comparative Example 2. As a result, it was confirmed that the raw material disappeared due to the reaction.
  • Example 5 Synthesis of norbornane skeleton-containing polyamide (PNBAD-12) The inside of a separable flask having an internal volume of 1000 mL was replaced with nitrogen at room temperature, and then obtained in Synthesis Example 3 in the above separable flask. 1.0 mol of the amine compound (I-1a), 0.25 mol of the adipic acid (IV-2), 0.75 mol of sebacic acid (IV-3), and 0. 3 mol% of iron powder was charged. Thereafter, synthesis was performed in the same manner as in Comparative Example 2 to obtain PNBAD-12 in the flask. Further, analysis by GPC and gas chromatography was performed in the same manner as in Comparative Example 2. As a result, it was confirmed that the raw material disappeared due to the reaction.
  • PBAD-12 norbornane skeleton-containing polyamide
  • Example 6 Synthesis of norbornane skeleton-containing polyamide (PNBAD-14) After replacing the inside of a separable flask having an internal volume of 1000 mL with nitrogen at room temperature, bis (aminomethyl) norbornane (I-2) was changed to 1. 0 mol, 1.0 mol of sebacic acid (IV-3), and 0.3 mol% of iron powder based on the total molar amount of the amine compound were charged. Thereafter, synthesis was performed in the same manner as in Comparative Example 2 to obtain PNBAD-14 in the flask. Further, analysis by GPC and gas chromatography was performed in the same manner as in Comparative Example 2. As a result, it was confirmed that the raw material disappeared due to the reaction. As a result of evaluating PNBAD-14, Mw was 10,000, Td5 was 254 ° C., and ⁇ was 3.5.
  • Example 7 Synthesis of norbornane skeleton-containing polyamide (PNBAD-15) After replacing the inside of a separable flask having an internal volume of 1000 mL with nitrogen at room temperature, bis (aminomethyl) norbornane (I-2) was changed to 0. 9 mol, C36 dimer diamine (trade name, manufactured by CRODA) (I-3) 0.1 mol, sebacic acid (IV-3) 1.0 mol, 0.3 mol% based on the total molar amount of the amine compound Of iron powder. Thereafter, synthesis was performed in the same manner as in Comparative Example 2 to obtain PNBAD-15 in the flask. Further, analysis by GPC and gas chromatography was performed in the same manner as in Comparative Example 2. As a result, it was confirmed that the raw material disappeared due to the reaction.
  • PBAD-15 norbornane skeleton-containing polyamide
  • Example 13 Synthesis of norbornane skeleton-containing polyamide (PNBAD-21) After replacing the inside of a 1000 mL separable flask with nitrogen at room temperature, bis (aminomethyl) norbornane (I-2) 9 mol, 0.2 mol of polyetheramine compound (I-5), 1.0 mol of sebacic acid (IV-3), and 0.3 mol% of iron powder based on the total molar amount of the amine compound were charged. It is. Thereafter, synthesis was performed in the same manner as in Comparative Example 2 to obtain PNBAD-21 in the flask. Further, analysis by GPC and gas chromatography was performed in the same manner as in Comparative Example 2. As a result, it was confirmed that the raw material disappeared due to the reaction.
  • Example 16A Synthesis of norbornane-based polyamide (PNBAD-24A) After replacing the inside of a 1000 mL separable flask with nitrogen at room temperature, bis (aminomethyl) norbornane (I-2) was changed to a concentration of 0.1. 8 mol, polyetheramine compound (I-4) 0.2 mol, sebacic acid (IV-3) 1.0 mol, 2,2-bis (hydroxymethyl) propionic acid (VI-1) 1 mol and 0.3 mol% of iron powder were charged based on the total molar amount of the amine compound. Thereafter, synthesis was performed in the same manner as in Comparative Example 2 to obtain PNBAD-24A in the flask.
  • PNBAD-24A norbornane-based polyamide
  • Example 16B Synthesis of norbornane skeleton-containing polyamide (PNBAD-24B) After replacing the inside of a separable flask having an internal volume of 1000 mL with nitrogen at room temperature, bis (aminomethyl) norbornane (I-2) was changed to 0. 8 mol, polyetheramine compound (I-4) 0.2 mol, sebacic acid (IV-3) 1.0 mol, 2,2-bis (hydroxymethyl) propionic acid (VI-1) 1 mol and 0.3 mol% of iron powder and 0.3 mol% of zinc acetate (II) were charged based on the total molar amount of the amine compound.
  • Example 16D Synthesis of norbornane skeleton-containing polyamide (PNBAD-24D) After replacing the inside of a separable flask having an internal volume of 1000 mL with nitrogen at room temperature, bis (aminomethyl) norbornane (I-2) was changed to 0. 8 mol, polyetheramine compound (I-4) 0.2 mol, sebacic acid (IV-3) 1.0 mol, 2,2-bis (hydroxymethyl) propionic acid (VI-1) 1 mol and 0.3 mol% of iron powder and 0.3 mol% of tetra-n-butoxy titanium were charged based on the total molar amount of the amine compound.
  • Example 16E Synthesis of norbornane skeleton-containing polyamide (PNBAD-24E) At room temperature, the inside of a separable flask having an internal volume of 1000 mL was replaced with nitrogen, and then bis (aminomethyl) norbornane (I-2) was changed to a concentration of 0.1. 8 mol, polyetheramine compound (I-4) 0.2 mol, sebacic acid (IV-3) 1.0 mol, 2,2-bis (hydroxymethyl) propionic acid (VI-1) 1 mol and 0.3 mol% of iron powder and 0.3 mol% of antimony trioxide were charged based on the total molar amount of the amine compound.
  • PBAD-24E bis (aminomethyl) norbornane (I-2) was changed to a concentration of 0.1. 8 mol, polyetheramine compound (I-4) 0.2 mol, sebacic acid (IV-3) 1.0 mol, 2,2-bis (hydroxymethyl) propionic acid (VI-1) 1 mol and 0.3 mol% of iron
  • Example 16F Synthesis of norbornane skeleton-containing polyamide (PNBAD-24F) After replacing the inside of a separable flask having an internal volume of 1000 mL with nitrogen at room temperature, bis (aminomethyl) norbornane (I-2) was changed to a concentration of 0.1. 8 mol, polyetheramine compound (I-4) 0.2 mol, sebacic acid (IV-3) 1.0 mol, 2,2-bis (hydroxymethyl) propionic acid (VI-1) 1 mol and 0.3 mol% of iron powder and 0.3 mol% of dibutyltin were charged based on the total molar amount of the amine compound.
  • Example 17 Synthesis of norbornane-based polyamide (PNBAD-25) After replacing the inside of a 1000 mL separable flask with nitrogen at room temperature, bis (aminomethyl) norbornane (I-2) 8 mol, polyetheramine compound (I-4) 0.2 mol, sebacic acid (IV-3) 1.0 mol, 2,2-bis (hydroxymethyl) propionic acid (VI-1) 2 mol and 0.3 mol% iron powder and 0.3 mol% zinc acetate were charged based on the total molar amount of the amine compound. Thereafter, synthesis was performed in the same manner as in Comparative Example 2 to obtain PNBAD-25 in the flask.
  • a norbornane skeleton-containing polyamide could be produced without using a dicarboxylic acid halide.
  • the obtained norbornane skeleton-containing polyamide (0.03 g to 0.1 g) was heated from room temperature to 400 ° C. at 15 ° C. per minute.
  • the temperature at which the mass of the norbornane skeleton-containing polyamide was reduced by 5% was defined as a 5% weight reduction temperature.
  • the 5% weight loss temperature was measured using a differential scanning calorimeter (DSC, X-DSC Q2000).
  • a measurement magnetic tool provided with two electrodes was prepared. Further, a resin film was prepared by forming a resin to be measured into a film. The dielectric constant was measured by sandwiching the resin film to be measured between the electrodes of the measuring magnetic tool, passing an electric current, and applying an electric field. At this time, the measurement magnetic tool was fixed so that the two electrodes were arranged vertically, and a film was placed on the upper part of the electrode located on the lower side. Subsequently, the position of the upper electrode was adjusted so as to maintain a distance of 1.09 to 1.11 times the film thickness. Thereafter, an electric field was applied to the porcelain tool. The measurement was performed in the region of 10 KHz to 100 MHz. The dielectric constant of the norbornane skeleton-containing polyamide according to the example was almost the same regardless of the frequency range. In addition, the film thickness of the resin film used for the measurement was 10 ⁇ m or more and 50 ⁇ m or less.
  • the moldability of the obtained film was evaluated according to the following criteria.
  • Table 3 shows a summary of catalyst types, (VI-1) addition amounts, and evaluation results in Examples using 2,2-bis (hydroxymethyl) propionic acid (VI-1).
  • the (VI-1) addition amount (mol%) represents the addition amount of 2,2-bis (hydroxymethyl) propionic acid with respect to the total molar amount of sebacic acid (IV-3).
  • Example X1 The polyamide obtained in Example 17 was formed into a film using an extrusion coating machine.
  • the heating conditions of the coating machine three heating parts to the coating machine are prepared.
  • the space between the mouth and the extrusion port was heated to 140 ° C to 150 ° C.
  • the length of the cylinder in the coating machine was 100 cm, the width of the extrusion port was adjusted to 60 cm, and the thickness was adjusted to 0.5 mm.
  • the extruded film was stretched after being wound up by a total of six rollers (diameter 15 cm) arranged alternately.
  • the rotation speed of the rollers is as follows: the speed of the two rollers close to the extrusion port is 50 rotations / min, the speed of the two rollers far from the extrusion port is 70 rotations / min, and the speed of the two intermediate rollers is 60 rotations / min. Respectively.
  • the roller temperature was room temperature. No additive was used.
  • the MFR of the obtained film was 4 g / min. Moreover, in the obtained film, the film thickness was 5 ⁇ m, Td5 was 330 ° C., ⁇ was 3.8, and the tensile strength was 35 Mpa. Further, it was confirmed that the film was bent to 2 ⁇ and did not crack and had excellent flexibility.
  • Example X2 Extrusion coatability was evaluated in the same manner as in Example X1, except that the polyamide was changed to the polyamide obtained in Example 18. Although a slight crack was observed, it could be formed into a film.
  • Example X3 Extrusion coatability was evaluated in the same manner as in Example X1 except that a glycerin aliphatic ester compound was added as an additive. A smooth film could be obtained. In the obtained film, the film thickness was 3 ⁇ m, Td5 was 330 ° C., ⁇ was 3.8, and the tensile strength was 35 Mpa. Further, it was confirmed that the film was bent to 2 ⁇ and did not crack and had excellent flexibility.
  • Example X4 Extrusion coatability was evaluated in the same manner as in Example X1 except that stearic acid ester was added as an additive. Although a small hole was observed, it could be formed into a film.
  • the MFR of the obtained film was 15 g / min. In the obtained film, the film thickness was 7 ⁇ m, Td5 was 300 ° C., ⁇ was 3.8, and the tensile strength was 15 Mpa. Further, it was confirmed that the film was bent to 2 ⁇ and did not crack and had excellent flexibility.
  • the film thickness was measured using a micrometer (156-101 manufactured by Mitutoyo Corporation) with a contact area with the film of 28 cm 2 .
  • the tensile strength indicating the maximum strength that can withstand breaking when the film piece prepared according to JIS-C-2152 was pulled up and down was measured.
  • the film tensile strength was measured using a Tensilon tensile strength measuring machine manufactured by Shimadzu Corporation AGS-X.
  • the polyamides of the examples were excellent in film moldability. Moreover, it confirmed that the polyamide of an Example and the film formed from this were high in dielectric constant, and were excellent also in heat resistance and a mechanical characteristic.

Abstract

ノルボルナン骨格を有するアミン化合物に基づく構造と、炭素数6以上のカルボン酸化合物に基づく構造と、を有するポリアミド。

Description

ポリアミド、ポリアミドフィルム及びフィルムコンデンサ
 本発明は、ポリアミド、ポリアミドフィルム及びフィルムコンデンサに関する。
 ポリアミド等の耐熱性樹脂は、エレクトロニクス分野で半導体素子の表面保護膜、層間絶縁膜等として幅広く使用されている。脂環族構造を有するポリマーは、紫外領域での透明性に優れるため、ポリアミド及びポリアミドイミドにノルボルナン骨格を導入することが検討されている。ノルボルナン骨格を有するポリアミド又はポリアミドイミドの製造方法としては、例えば、特定のノルボルナントリカルボン酸ハライド誘導体又は特定のノルボルナンジカルボン酸ハライド誘導体と、ジアミン化合物と、を反応させる方法が知られている(例えば、特許文献1及び2を参照)。
特開2013-79352号公報 特開2013-49780号公報
 ところで、ノルボルナン骨格を有するポリアミド(ノルボルナン骨格含有ポリアミド)は、多種多様な用途に適用する観点から、フィルム成形性に優れることが好ましい。そこで、本発明は、フィルム成形性に優れるノルボルナン骨格含有ポリアミドを提供することを目的とする。本発明はまた、上記ポリアミドを含むポリアミドフィルム及び当該ポリアミドフィルムを備えるフィルムコンデンサを提供することを目的とする。
 本発明は、ノルボルナン骨格を有するアミン化合物に基づく構造と、炭素数6以上のカルボン酸化合物に基づく構造と、を有するポリアミドに関する。
 上記ポリアミドは、エーテル骨格を有する脂肪族アミン化合物に基づく構造及びシロキサン骨格を有するアミン化合物に基づく構造の少なくとも一方を更に有していてもよい。
 上記ポリアミドは、ヒドロキシ基含有カルボン酸化合物に基づく構造を更に有していてもよい。ヒドロキシ基含有カルボン酸化合物は、2つ以上のヒドロキシ基を含有していてもよい。
 ノルボルナン骨格を有するアミン化合物は、下記式(A)で表される構造を有していてもよい。
Figure JPOXMLDOC01-appb-C000002
 式(A)中、R10はアルキレン基を示す。R10はメチレン基であってもよい。
 炭素数6以上のカルボン酸化合物は、炭素数4以上のアルキレン基を有するジカルボン酸であってもよい。
 上記ポリアミドの150℃でのメルトフローレート(MFR)は、3.0g/min~8.0g/minであってもよい。
 本発明はまた、上記ポリアミドを含む、ポリアミドフィルムに関する。本発明はまた、上記ポリアミドフィルムを備える、フィルムコンデンサに関する。
 本発明によれば、フィルム成形性に優れるノルボルナン骨格含有ポリアミドを提供できる。本発明によればまた、上記ポリアミドを含むポリアミドフィルム及び当該ポリアミドフィルムを備えるフィルムコンデンサを提供できる。
 本発明の実施形態について以下に説明するが、本発明はこれに限定されるものでない。本明細書において「A又はB」とは、A及びBのいずれか一方を含んでいればよく、両方を含んでいてもよい。
 本実施形態のポリアミドは、ノルボルナン骨格を有するアミン化合物に基づく構造と、炭素数6以上のカルボン酸化合物に基づく構造と、を有する。このようなポリアミドは、フィルム成形性に優れる。本実施形態のポリアミドによれば、例えば、溶剤塗工によりフィルムを形成する場合の、ホール及びクラックの形成を低減できる。なお、溶剤塗工は、例えば、樹脂を溶媒に溶解させて得た樹脂溶液を、塗工した後に乾燥させる方法である。また、一実施形態のポリアミドによれば、押出成形性を付与できると考えられる。また、本実施形態のポリアミドは、高い誘電率を発揮できると考えられる。本実施形態のポリアミドが、高い誘電率を発揮できる理由は定かではないが、その理由の1つを本発明者らは以下のように推測している。本実施形態のポリアミドにおいては、アミド構造とノルボルナン骨格とを有し得る。そして、このような構造を有するポリアミドは、分子の共役及び分極に起因して、高い誘電率を発揮できると考えられる。さらに、本実施形態のポリアミドは、製造し易いと考えられる。
 ノルボルナン骨格を有するアミン化合物は、ポリアミドの誘電率が更に向上し易い観点から、下記式(A)で表される構造を有していてもよい。
Figure JPOXMLDOC01-appb-C000003
 式(A)中、R10はアルキレン基を示す。
 ノルボルナン骨格を有するアミン化合物が式(A)で表される構造を有すると、ポリアミド中に、下記式(B)で表される構造を含有させることができると考えられる。式(B)中のR10は、上記と同義である。
Figure JPOXMLDOC01-appb-C000004
 式(A)で表される構造を有する上記アミン化合物としては、例えば、下記式(A1)で表される化合物及び下記式(A2)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000005
 式(A1)中のR10は、上記と同義である。また、式(A1)中の2つのR10は、異なっていてもよい。
Figure JPOXMLDOC01-appb-C000006
 式(A2)中のR10は、上記と同義である。また、式(A2)中の2つのR10は、異なっていてもよい。
 式(A)、(B)(A1)及び(A2)におけるR10は、ポリアミドの誘電率が更に向上し易い観点から、メチレン基であってもよい。
 式(A1)で表される化合物としては、例えば、ビス(アミノメチル)ノルボルナンが挙げられる。
 式(A2)で表される化合物としては、例えば、下記式(I-1a)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000007
 炭素数6以上のカルボン酸化合物としては、例えば、下記式(IV)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000008
 式(IV)中のRは、炭素数4以上の脂肪族基を表す。Rとしての脂肪族基としては、例えば、炭素数4以上のアルキレン基が挙げられる。当該アルキレン基は、直鎖状であってもよく、分岐状であってもよい。アルキレン基は、ポリアミドの重量平均分子量を高め易い観点から、直鎖状であることが好ましい。アルキレン基の炭素数は、ポリアミドの重量平均分子量を高め易い観点から、例えば、6以上であってもよく、8以上であってもよい。上記アルキレン基の炭素数は、ポリアミドの5%重量減少温度及び誘電率を高め易い観点から、例えば、20以下であってもよく、15以下であってもよく、10以下であってもよい。
 炭素数6以上のカルボン酸化合物は、フィルム成形性が更に向上する観点から、炭素数4以上のアルキレン基を有するジカルボン酸が好ましい。このようなジカルボン酸としては、例えば、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、1,9-ノナンジカルボン酸、ドデカン二酸、テトラデカン二酸、ペンタデカン二酸及びオクタデカン二酸が挙げられる。
 本実施形態のポリアミドは、フィルム化した際のフィルムの屈曲性及び強靭性の観点から、ノルボルナン骨格を有するアミン化合物に基づく上記構造とは別に、エーテル骨格を有する脂肪族アミン化合物に基づく構造及びシロキサン骨格を有するアミン化合物に基づく構造の少なくとも一方を更に有していてもよい。
 エーテル結合を有する脂肪族アミン化合物(脂肪族エーテルアミン化合物)としては、例えば、下記式(Ia)で表される化合物及び下記式(Ib)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000009
 式(Ia)中、bは、1以上の数を表す。bは、例えば、1~100であってもよい。bは、フィルム成形性の観点から、例えば、20以下であってもよく、10以下であってもよく、3以下であってもよく、1であってもよい。
Figure JPOXMLDOC01-appb-C000010
 式(Ib)中、cは、1以上の数を表す。cは、例えば、1~100であってもよい。cは、フィルム成形性の観点から、例えば、20以下であってもよく、10以下であってもよく、3以下であってもよく、1であってもよい。
 式(Ia)で表される化合物としては、例えば、BAXXodur EC301(式(Ia)中、b=1の化合物)、ジェファーミンD-400(式(Ia)中、b=2の化合物)、ジェファーミンD-2000(式(Ia)中、b=10の化合物)及びジェファーミンD-4000(式(Ia)中、b=20の化合物)が入手可能である。
 式(Ib)で表される化合物としては、例えば、ジェファーミンT403(式(Ib)中、c=1の化合物)が入手可能である。
 脂肪族エーテルアミン化合物としては、例えば、ジェファーミンED-600(b=9.0、a+c=3.6)、ED-900(b=12.0、a+c=3.6)、ED-2003(b=38.7、a+c=6.0)等のジェファーミンEDシリーズを用いることもできる。
 上記脂肪族エーテルアミン化合物におけるエーテル結合の数は、フィルム成形性の観点から、例えば、1~20であってもよく、1~10であってもよく、1~3であってもよく、1であってもよい。エーテル結合の数が少ないと、他の構造単位及び溶剤塗工に用いる溶媒との相溶性に優れると考えられる。また、脂肪族エーテルアミン化合物は、耐熱性の観点から、分岐構造を有していてもよい。
 シロキサン骨格を有するアミン化合物(シロキサンアミン化合物)としては、例えば、下記式(III)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000011
 式(III)中、nは1~150の数を表す。nは、例えば、70以下であってもよく、30以下であってもよく、20以下であってもよい。nは、他の構造単位及び溶剤塗工に用いる溶媒との相溶性の観点から、例えば、3以上であってもよく、5以上であってもよく、10以上であってもよい。
 本実施形態のポリアミドは、ポリアミドの粘度及び張力が向上する観点、及びフィルムとして成形した場合に強靱なフィルムを得易い観点から、炭素数6以上のカルボン酸化合物に基づく上記構造とは別に、1つ以上のヒドロキシ基と1つ以上のカルボキシ基とを有する化合物(ヒドロキシ基含有カルボン酸化合物)に基づく構造を更に有していてもよい。
 ヒドロキシ基含有カルボン酸化合物としては、例えば、下記式(VI)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000012
 式(VI)中のRは、三価の有機基を表し、Xはヒドロキシ基又はカルボキシ基を示す。
 Rとしての三価の有機基としては、例えば、脂肪族基及び芳香族基が挙げられる。上記脂肪族基は、環状構造を有していてもよい。
 ヒドロキシ基含有カルボン酸化合物は、押出成形性を付与し易い観点から、2つ以上のヒドロキシ基を含有することが好ましい。ヒドロキシ基含有カルボン酸化合物が2つ以上のヒドロキシ基を含有すると、2つ以上のヒドロキシ基と1つ以上のカルボキシ基の少なくとも3つ以上の官能基を起点に反応が進むと考えられることから、ポリアミド中に架橋構造を形成し易いと考えられる。そして、これに伴い、押出成形性に優れる重量平均分子量及びメルトフローレート(MFR)を有するポリアミドを得易いと考えられる。
 2つ以上のヒドロキシ基を含有するヒドロキシ基含有カルボン酸としては、例えば、2,2-ビス(ヒドロキシメチル)プロピオン酸、2,2-ビス(ヒドロキシメチル)酪酸、3-(2,4-ジヒドロキシフェニル)プロピオン酸、3-(3,4-ジヒドロキシフェニル)プロピオン酸、3,4-ジヒドロキシフェニル酢酸、2,3-ジヒドロキシ安息香酸、2,5-ジヒドロキシ安息香酸、2,5-ジヒドロキシテレフタル酸、1,4-ジヒドロキシ-2-ナフトエ酸、及び5,6-ジヒドロキシ-1H-インドール-2-カルボン酸が挙げられる。
 上記ポリアミドは、例えば、後述のアミン化合物及びカルボン酸化合物に基づく構造を有することもできる。
 アミン化合物としては、脂肪族アミン化合物及び芳香族アミン化合物が挙げられる。
 脂肪族アミン化合物の具体例は、脂環式アミン化合物を含む。脂肪族アミン化合物としては、例えば、下記式(I)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000013
 式(I)中のRは、非芳香族系の二価以上の基を表し、aは、2以上の数を示す。非芳香族系の二価以上の基としては、例えば、脂肪族基が挙げられる。前記脂肪族基は、例えば、直鎖状であってもよく、環状構造を有していてもよい。aは、例えば、2~10であってもよく、2~5であってもよく、2又は3であってもよい。
 芳香族アミン化合物としては、例えば、下記式(II)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000014
 式(II)中のRは、芳香族基を含む二価の基を表す。
 アミン化合物の具体例は、下記式(I-1)で表される化合物を含む。
Figure JPOXMLDOC01-appb-C000015
 式(I-1)中のRは、二価の有機基を表す。Rとしては、例えば、非芳香族系の有機基及び芳香族系の有機基が挙げられる。
 式(I-1)で表される化合物は、例えば、下記式(VII)で表される化合物(5-ノルボルネン-2-カルボン酸メチル)をアミド化することにより得ることができる。
Figure JPOXMLDOC01-appb-C000016
 脂肪族アミン化合物としては、例えば、1,2-ジアミノエタン、1,3-ジアミノプロパン、1,4-ジアミノブタン、1,5-ジアミノペンタン、1,6-ジアミノへキサン、1,7-ジアミノへプタン、1,8-ジアミノオクタン、1,9-ジアミノノナン、1,10-ジアミノデカン、1,11-ジアミノウンデカン、1,12-ジアミノドデカン、ジメチルアミノプロピルアミン、3,9-ビス(3-アミノプロピル)-2,4,8,10-テトラオキサスピロ〔5,5〕ウンデカン、4,4’-メチレンビス(2-メチルシクロヘキシルアミン)、メチルペンタメチレンジアミン、トリメチルヘキサメチレンジアミン、4,9-ジオキサドデカン-1,12-ジアミン、4,7,10-トリオキサトリデカン-1,13-ジアミン、ジエチレントリアミン、トリエチレンテトラアミン及びテトラエチレンペンタミンが挙げられる。
 脂環式アミン化合物としては、例えば、1,2-ジアミノシクロへキサン、1,3-ジアミノシクロへキサン、1,4-ジアミノシクロへキサン、4,4’-ジアミノジシクロへキシルメタン、3,3’-ジメチル-4,4’-ジアミノジシクロへキシルメタン及び3,3’,5,5’-テトラメチル-4,4’-ジアミノジシクロへキシルメタンが挙げられる。
 芳香族アミン化合物としては、例えば、1,2’-フェニレンジアミン、1,3’-フェニレンジアミン、1,4’-フェニレンジアミン、アミノベンジルアミン、1,3’-キシリレンジアミン、1,4’-キシリレンジアミン、α-(3-アミノフェニル)メチルアミン、α-(3-アミノフェニル)エチルアミン、α-(3-アミノフェニル)プロピルアミン、4,4’-ジアミノジフェニルプロパン、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルメタン、3,3’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルホン、ジエチルトルエンジアミン、1,3’-ビス(アミノフェノキシ)ベンゼン、2,2’-ビス〔4-(4-アミノフェキシ)フェニル〕プロパン、2,2’-ビス〔4-(4-アミノフェキシ)フェニル〕ヘキサフルオロプロパン、2,2’-ビス〔3-メチル-4-(4-アミノフェキシ)フェニル〕プロパン、2,2’-ビス〔4-(4-アミノフェキシ)フェニル〕ブタン、2,2’-ビス〔3-メチル-4-(4-アミノフェキシ)フェニル〕ブタン、2,2’-ビス〔3,5’-ジブロモ-4-(4-アミノフェキシ)フェニル〕ブタン、1,1,1,3,3,3-ヘキサフルオロ-2,2-ビス〔3-メチル-4-(4-アミノフェキシ)フェニル〕プロパン、1,1’-ビス〔4-(4-アミノフェキシ)フェニル〕シクロへキサン、1,1’-ビス〔4-(4-アミノフェキシ)フェニル〕シクロペンタン、ビス〔4-(4-アミノフェキシ)フェニル〕スルホン、ビス〔4-(4-アミノフェキシ)フェニル〕エーテル及び4,4’-ビス(4-アミノフェキシ)ビフェニルが挙げられる。
 カルボン酸化合物としては、例えば、芳香族カルボン酸化合物及び脂環式カルボン酸化合物が挙げられる。
 芳香族カルボン酸化合物としては、例えば、式(V)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000017
 式(V)中のRは芳香族基を含む二価の基を表す。
 芳香族カルボン酸としては、例えば、フタル酸、テレフタル酸、イソフタル酸、1,4-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、アセナフチレン-5,6-ジカルボン酸、ピリジン-2,3-ジカルボン酸、ピリジン-2,6-ジカルボン酸、1H-イミダゾール-4,5-ジカルボン酸、1H-ピロール-2,4-ジカルボン酸、フラン2,5-ジカルボン酸及びチオフェン-2,5-ジカルボン酸が挙げられる。
 脂環式カルボン酸化合物としては、例えば、1,2-シクロへキサンジカルボン酸、1,3-シクロへキサンジカルボン酸、1,4-シクロへキサンジカルボン酸、デカヒドロ-1,4-ナフタレンジカルボン酸、(1a、2a、4a)-1,2,4-シクロへキサントリカルボン酸、1,2,4,5-シクロへキサンテトラカルボン酸、シクロペンタン-1,3-ジカルボン酸、カンファー酸及び1,2,3,4-シクロペンタンテトラカルボン酸が挙げられる。
 本実施形態のポリアミドは、例えば、下記式(VIII-1)で表される構造又は下記式(VIII-2)で表される構造を有することができる。
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
 式(VIII-1)及び式(VIII-2)中、mは1以上の数を表し、R及びRは、それぞれ独立に二価の有機基を表し、Rは、水素原子又は一価の有機基を表す。なお、R、R及びRが複数存在する場合、複数のR、R及びRは、それぞれ異なっていてもよい。Rは、例えば、上述したアミン化合物に由来する構造である。Rは、例えば、上述したカルボン酸化合物に由来する構造である。
 本実施形態のポリアミドを構成するアミン化合物において、脂肪族アミン化合物の含有量は、アミン化合物の総モル数を基準として、50mol%以上であることが好ましく、60mol%以上であることがより好ましく、70mol%以上であることが更に好ましい。
 本実施形態のポリアミドを構成するアミン化合物において、ノルボルナン骨格を有するアミン化合物の含有量は、アミン化合物の総モル数を基準として、50mol%以上であることが好ましく、60mol%以上であることがより好ましく、70mol%以上であることが更に好ましい。
 本実施形態のポリアミドを構成するアミン化合物において、芳香族アミン化合物の含有量は、アミン化合物の総モル量を基準として、50mol%以下であることが好ましく、40mol%以下であることがより好ましく、30mol%以下であることが更に好ましい。
 本実施形態のポリアミドを構成するアミン化合物において、脂肪族エーテルアミン化合物の含有量は、アミン化合物の総モル量を基準として、50mol%以下であることが好ましく、40mol%以下であることがより好ましく、30mol%以下であることが更に好ましい。脂肪族エーテルアミン化合物の上記含有量が高いと、ポリアミドの重量平均分子量及び誘電率を高まる傾向がある。
 本実施形態のポリアミドを構成するアミン化合物において、シロキサンアミン化合物の含有量は、アミン化合物の総モル量を基準として、50mol%以下であることが好ましく、40mol%以下であることがより好ましく、30mol%以下であることが更に好ましい。
 本実施形態のポリアミドを構成するカルボン酸化合物において、脂肪族カルボン酸化合物の含有量は、カルボン酸化合物の総モル量を基準として、40~100mol%であることが好ましく、50~90mol%であることがより好ましく、60~80mol%であることが更に好ましい。
 本実施形態のポリアミドを構成するカルボン酸化合物において、ヒドロキシ基含有カルボン酸化合物の含有量は、カルボン酸化合物の総モル量を基準として、5~60mol%であることが好ましく、7~40mol%であることがより好ましく、10~30mol%であることが更に好ましい。
 上記アミン化合物及びカルボン酸化合物は、1種類を単独で又は2種類以上を併用してもよい。アミン化合物及びカルボン酸化合物の組み合わせは、例えば、得られるポリアミドの用途及び特性(加工性、塗工性、機械特性等)に応じて、適宜選択できる。上記ポリアミドは、フィルム成形性が更に向上する観点から、脂肪族のみで構成されることが好ましい。
 本実施形態のポリアミドの重量平均分子量(Mw)は、例えば、1500以上であってもよく、20000以上であってもよい。
 なお、本明細書において、重量平均分子量(Mw)は、ゲル浸透クロマトグラフィー分析(GPC)法によって以下の条件で測定し、標準ポリスチレン換算によって求められる値である。
分析機器:ジーエルサイエンス(株)製、GL-7480(商品名)
カラム:Shodex製 KD-806M(商品名)
溶離液:N-メチル-2-ピロリドン(添加剤:臭化リチウム一水和物3.146g/L、リン酸5.88g/L)
温度:(注入口)25℃、(カラム)25℃
 本実施形態のポリアミドの5%重量減少温度(耐熱温度)は、例えば、200℃以上であってもよく、220℃以上であってもよく、250℃以上であってもよい。
 5%重量減少温度は、例えば、測定対象の樹脂(例えば、フィルム状の樹脂)の温度を、任意の工程によって変化させ、樹脂の質量変化を温度の関数として分析することによって、測定できる。一般的に、物質が個々に持つ耐熱温度を超えると、物質の分子の一部が欠損し、分子中の電子及び粒子が物質から放出される。この際の、放出された電子及び粒子を装置が観測することで、物質の質量変化を観測することができる。5%重量減少温度は、測定方法によって大きく変化するものではないが、例えば、以下の条件により測定できる。測定対象の樹脂を、室温(例えば、20℃)から400℃まで、1分間に5~15℃の条件で昇温させる。そして、樹脂の質量が5%減少した時点の温度を5%重量減少温度とする。
 本実施形態のポリアミドのメルトフローレート(MFR)は、150℃以上200℃以下の温度領域において、例えば、3.0~20.0g/minであってもよく、3.0~10.0g/minであってもよく、3.0~8.0g/minであってもよい。上記MFRは、例えば、150℃で、3.0~8.0g/minの範囲であってもよい。上記ポリアミドのMFRがこのような範囲のものであると、押出塗工等の押出成形がし易く、フィルム等の製造が容易となると考えられる。押出塗工によりフィルムを成形する場合、押出対象の化合物の溶融粘度及び溶融張力が高く、重力方向に対して一定の粘度を発揮することが好ましいと考えられる。また、押出塗工は、溶剤を用いる塗工と比較して、コストを低減できると考えられる。
 メルトフローレート(MFR、MFR粘度等)は、例えば、シリンダー内で溶融させた樹脂に、一定の重りをかけて、シリンダー先端から溶融樹脂を射出し、押し出される樹脂の射出量を測定することにより求められる。上記ポリアミドのMFR測定方法は、特に制限するものではないが、例えば、以下の方法が挙げられる。150℃に加熱したシリンダー内に、ペレット状態としたポリアミドを投入し、5分間加熱する。次いで、シリンダー上部に1kgの重りを配置し、負荷を与えることで、シリンダーの下部から溶融樹脂を射出させる。そして、1分間当たりの射出量をMFRとする。上記MFRは、樹脂が押出塗工に適しているか否かの判断指標とすることができる。一般的に、射出量(MFR)が3.0g/min以上であると、樹脂が流動し易く、押出塗工がし易い傾向にあり、射出量(MFR)が10g/min以下であると樹脂が流動しすぎることなく、押出塗工がし易い傾向にある。
 本実施形態のポリアミドの誘電率(ε)は、例えば、3.5以上であってもよく、3.8以上であってもよい。
 誘電率の測定方法としては、例えば、2枚の電極を備える測定磁具を用いる方法が挙げられる。以下、当該方法の具体例について説明する。まず、2枚の電極を備える測定磁具を準備する。また、測定対象の樹脂をフィルム化して樹脂フィルムを作製する。測定磁具の電極間に測定対象の樹脂フィルムを挟み、電流を流し、電場を与えることで誘電率を測定する。この際、測定磁具は、2枚の電極が縦に配置される向きで固定し、下側に位置する電極の上部にフィルムを置く。続いて、フィルムの膜厚の1.09倍から1.11倍の距離を保つよう、上側の電極の位置を調整する。その後、磁具に電場を与える。なお、測定条件に特に制限はないが、例えば、10KHz~100MHzの領域で行うことができる。また、測定に用いる樹脂フィルムの膜厚は、例えば、100μm以下が好ましく、50μm以下がより好ましい。上記膜厚は、例えば、10μm以上が好ましい。ゼロ点補正の際に、両電極の軸間距離をフィルム膜厚と同じ距離に設定するため、フィルム膜厚が10μm未満であると、電極間距離が近すぎて、正確にゼロ点補正をすることが難しくなる可能性がある。以上、測定対象の樹脂フィルムを測定磁具に接触させる方法について説明したが、接触させずに測定することもできる。
 本実施形態のポリアミドは、例えば、ノルボルナン骨格を有するアミン化合物及び炭素数6以上のカルボン酸化合物並びに必要に応じその他の化合物を、酸触媒又は塩基触媒の存在下で反応させることにより製造できる。ノルボルナン骨格を有するアミン化合物及び炭素数6以上のカルボン酸化合物の好ましい形態は上記と同義である。このような方法は、例えば、カルボン酸ハライド誘導体を用いてポリアミドを製造する方法に比べて、酸ハライド由来のハロゲン化合物が副生成物として生成する等の問題を生じ難く、製造性にも優れると考えられる。本実施形態のポリアミドは、上記方法により製造し得ることから、製造性にも優れると考えられる。
(触媒)
 上記酸触媒及び塩基触媒としては、アミド化の進行を促進し得るものが好ましく、アミド化の効率を更に高めることができるものがより好ましい。
 酸触媒としては、特に制限は無いが、例えば、ジカルボン酸化合物に配位することで酸の求電子性を高め、ジアミン化合物の求核反応を促すことが可能な触媒であることが好ましい。酸触媒としては、例えば、鉄系触媒、亜鉛系触媒、コバルト系触媒、ボロン酸系触媒、チタン系触媒、アンチモン系触媒、スズ触媒、マンガン系触媒及びスルホン酸系触媒が挙げられる。
 鉄系触媒としては、例えば、鉄粉、酢酸鉄、トリクロロ鉄(III)、フッ化鉄(III)及びトリス(2,4-ペンタンジオナト)鉄(III)が挙げられる。
 亜鉛系触媒としては、例えば、酢酸亜鉛(酢酸亜鉛(II)等)、硝酸亜鉛(II)、炭酸亜鉛(II)、オキソ[ヘキサ(トリフルオロアセタト)]テトラ亜鉛トリフルオロ酢酸、及び亜鉛四核酸素クラスターが挙げられる。
 ヒドロキシ基含有カルボン酸化合物に基づく構造を有するポリアミドを製造する際、亜鉛系触媒を用いることで、ヒドロキシ基含有カルボン酸化合物と、その他のモノマとの反応が進行し易くなり、高分子量化し易くなる傾向にある。進行し易くなる反応としては、例えば、ヒドロキシ基とカルボキシ基が反応する、エステル化であってもよい。また、このような触媒としては、酢酸亜鉛を用いることが好ましい。
 コバルト系触媒としては、例えば、酢酸コバルト(酢酸コバルト(II)等)、水酸化コバルト(II)、硝酸コバルト(II)、硫酸コバルト(II)、塩化コバルト(II)、炭酸コバルト(II)及び酸化コバルトが挙げられる。
 ボロン酸系触媒としては、例えば、ホウ酸、イソブチルボロン酸、フェニルボロン酸、1-ナフタレンボロン酸、チオフェン-3,4-ボロン酸、及び3-アクリルアミドフェニルボロン酸が挙げられる。
 チタン系触媒としては、例えば、テトラ-i-プロポキシチタン及びテトラ-n-ブトキシチタンが挙げられる。
 アンチモン系触媒としては、例えば、三酸化アンチモン、トリフェニルアンチモン、トリフェニルアンチモンジアセタート、トリフェニルアンチモンジクロリド及びトリフェニルアンチモンオキシドが挙げられる。
 スズ触媒としては、例えば、ジブチルスズ、ジブチルスズビス(トリフルオロメタンスルホナート)、ジブチルスズジアセタート及びジブチルスズジクロリドが挙げられる。
 マンガン系触媒としては、例えば、酢酸マンガン(II)及び二酸化マンガン(II)が挙げられる。
 スルホン酸系触媒としては、例えば、p-トルエンスルホン酸(パラトルエンスルホン酸)及びメタンスルホン酸が挙げられる。
 酸触媒は、1種類を単独で又は2種類以上を組み合わせて用いてもよい。酸触媒は、例えば、鉄系触媒、亜鉛系触媒、コバルト系触媒、ボロン酸系触媒、チタン系触媒、アンチモン系触媒、スズ触媒、マンガン系触媒及びスルホン酸系触媒からなる群より選ばれる少なくとも一種を含むことが好ましい。
 塩基触媒としては、特に制限は無いが、例えば、ジアミン化合物のプロトンを引き抜き、ジアミン化合物の求核性を高めることが可能な触媒であることが好ましい。塩基触媒としては、例えば、アルカリ金属塩系触媒、及びボロン酸塩系触媒が挙げられる。
 アルカリ金属塩系触媒としては、例えば、水酸化ナトリウム、水酸化カリウム及び水酸化リチウムが挙げられる。
 ボロン酸塩系触媒としては、例えば、トリオールボレート塩、及びピリジンボン酸塩が挙げられる。
 塩基触媒は、例えば、酸化カルシウム、ピリジン含有カーボン触媒等の固体塩基触媒であることもできる。塩基触媒は、1種類を単独で又は2種類以上を組み合わせて用いてもよい。
 触媒は、酸触媒であることが好ましい。
 炭素数6以上のカルボン酸化合物が、式(IV)で表され、かつ、Rが炭素数4以上のアルキレン基である化合物である場合、ポリアミドの重量平均分子量を高め易い観点から、触媒は、鉄を含むことが好ましい。また、ポリアミドに、ヒドロキシ基含有カルボン酸化合物に基づく構造を含有させる場合、ポリアミドの重量平均分子量を高め易い観点から、触媒は、鉄及び酢酸亜鉛を含むことが好ましい。
 アミン化合物及びカルボン酸化合物の使用量は、得られるポリアミドの分子量を大きくし易い観点、未反応の原料、低分子量体等による機械特性、フィルム塗工性、耐熱性等の低下などを抑制し易い観点から、アミン化合物の合計モル量に対するカルボン酸化合物の合計モル量で、例えば、0.7~2.0であってもよく、0.8~2.0であってもよく、0.8~1.7であってもよく、0.9~1.5であってもよく、0.95~1.3であってもよく、0.95~1.2であってもよい。
 上記反応において使用する触媒の合計モル量は、製造コストを低減する観点から、アミン化合物の総モル量に対して、例えば、0.5mol%以下であってもよく、1mol%以下であってもよい。上記触媒の合計モル量は、反応の速度を高め易い観点から、アミン化合物の総モル量に対して、例えば、0.001mol%以上であってもよく、0.01mol%以上であってもよく、0.05mol%以上であってもよい。これらの観点から、上記反応において使用する触媒の合計モル量は、アミン化合物の総モル量に対して、0.001~1mol%の範囲が好ましく、0.01~1mol%の範囲がより好ましく、0.05~0.5mol%の範囲が更に好ましい。
 本実施形態のポリアミドは、例えば、ペレットとして加工してもよく、溶媒と混合してワニスとしてもよい。
 上記ペレットは、更に加工処理を施すこともできる。例えば、上記ペレットを射出成形することにより樹脂成形品を作製することもできる。上記ペレットは、例えば、押出塗工機を用いて押出塗工することにより、フィルム状に成形することもできる。押出塗工の条件は特に制限はないが、押出塗工温度は、均一なフィルムを得易い観点から、例えば、100~200℃であってもよく、150~200℃であってもよい。
 本実施形態のポリアミドは、溶剤塗工によるフィルム成形性に優れることから、溶剤塗工によりフィルムを作製した場合、ホール及びクラックが低減されたフィルムを製造できる。また、本実施形態のポリアミドから形成されたフィルムは、屈曲性にも優れると考えられる。また、一実施形態のポリアミドは、耐熱性、機械特性、光学特性、透明性に優れると共に、誘電性及び粘度が高いと考えられる。したがって、このような物性を要求される分野へのフィルム(接着フィルム、保護フィルム等)としての展開が期待できる。本実施形態のポリアミドは、例えば、耐熱性及び高誘電率を発揮することが要求される電子材料(フィルムコンデンサ用フィルム、半導体用導電フィルム等)への展開が期待される。本実施形態のポリアミドは、耐熱性、光学特性及び透明性が要求される光学材料(光ファイバー、光学レンズ等)又はディスプレイ関連材料等への展開が期待できる。
 一実施形態のポリアミドによれば、押出成形によってフィルムを作製することもできる。なお、押出成形は、例えば、不揮発分を含まない状態の樹脂組成物を、溶融押出することにより所望の形状に成形する方法である。押出成形法によれば、溶剤塗工法に比較して安価にフィルムを製造できると考えられる。ここで、5%重量減少温度が300℃以上(好ましくは310℃以上)であり、100℃以上200℃以下の温度領域でのMFRが、3.0g/min~8.0g/minであるポリアミドは、押出成形性に優れる傾向がある。本実施形態のポリアミドのうち、2つ以上のヒドロキシ基を含有するカルボン酸に基づく構造を有するポリアミドは、このような条件を満たし易い傾向にある。この理由は、2つのヒドロキシ基及びカルボキシ基により、ポリアミド中に架橋構造が形成され、これにより上記条件を満たし易くなることにあると考えられる。一実施形態のポリアミドによれば、引張強度が35MPa以上である押出成形フィルムを形成し得ると考えられる。
 以下、押出塗工機を用いて押出成形フィルムを製造する方法の一例について説明する。
 押出塗工機は、例えば、ペレット状の樹脂を投入する「ペレット投入口」と、投入された樹脂を溶融混錬する「加熱シリンダー部」と、溶融混錬された樹脂をフィルムとして押し出す「押出口」と、押し出されたフィルムを延伸する「巻き取りローラー」とを備える。
 まず、上記ポリアミドを含むペレットと必要に応じ添加剤とを、押出塗工機のペレット投入口に投入する。ペレットの体積は、例えば、0.5cm~5cmであってもよい。上記ペレットは、例えば、ポリアミドを溶融した後、所定の網目サイズ(好ましくは、0.5cm~5cmの網目サイズ)を有するろ過機でろ過しつつ固形化する方法又は固形化したポリアミドを固形粉砕機で粉砕する方法により形成できる。添加剤を用いる場合、添加剤は、ポリアミドの合成時又はポリアミドを含むペレットを形成する際に予め添加することにより、ペレット中に含有させることもできる。投入されたペレット等は、加熱シリンダー部において溶融混練される。押出口から押し出された樹脂は、例えば、押出口からフィルムとして押し出された後、巻き取りローラーで巻き取られる。樹脂は、例えば、溶融状態のまま押出口から押し出され、真下に落下しつつフィルム状に形成される。
 添加剤は、耐熱温度、誘電率、膜厚、屈曲性、引張強度、MFR等のフィルム特性を損なわないものが好ましい。添加剤は、押出成形のし易さの観点から、本実施形態のポリアミドと共有結合を形成しない化合物が好ましい。添加剤を加える方法については特に制限されないが、例えば、合成によりポリアミドを製造した後に加えてもよく、押出成形する際に、ペレット投入口にポリアミドと一緒に加えてもよい。添加剤とポリアミドを充分に相溶、又は添加剤をポリアミドに充分含浸させることで、系内における添加剤の偏りを小さくすることができ、添加剤の効果を充分に発揮させることができる。このような観点から、加熱によるポリアミドの溶融より前又は溶剤によるポリアミドの溶解より前に加えてもよい。
 添加剤としては、高耐熱性及び高誘電率のフィルムを形成し易い観点から、可塑剤を含むことが好ましい。可塑剤としては、例えば、アミド化合物又はエステル化合物が好ましい。このような添加剤としては、例えば、o-トルエンスルホンアミド、p-トルエンスルホンアミド、N-エチル-(o/p)-トルエンスルホンアミド、n-ブチルベンゼンスルホンアミド、N-シクロヘキシル-p-トルエンスルホンアミド、アルキル-p-トルエンスルホン酸エステル、N-メチル-N-ニトロソ-p-トルエンスルホンアミド、N,O-ビス(トリメチルシリル)アセトアミド、N,O-ビス(トリメチルシリル)トリフルオロアセトアミド、パラオキシ安息香酸メチル、パラオキシ安息香酸エチル、パラオキシ安息香酸ブチル及びパラオキシ安息香酸イソブチルが挙げられる。
 添加剤として可塑剤を含むことで、フィルムが軟化し耐屈性が向上する傾向にあり、フィルムを折り曲げた場合のクラックが低減され易いと考えられる。
 また、可塑剤以外の添加剤としては、離型剤を含むことが好ましい。離型剤としては、例えば、脂肪族鎖を含有する化合物であってもよい。離型剤の具体例は、グリセリン脂肪族アミド化合物、グリセリン脂肪族エステル化合物、ステアリン酸アミド、ステアリン酸エステル、ステアリルアルコール、ペンタステアレート化合物、ソルビタンアミド化合物、ソルビタンエステル化合物、ソルビトールを含む。添加剤は、1種類を単独で又は2種類以上を組み合わせて用いてもよい。
 添加剤として離型剤を含むことで、フィルムのタック性が低減されることにより、フィルムに適度な滑り性を付与できる傾向にある。したがって、巻き取り後の剥離が容易であると共に、フィルムの取り扱い性に優れると考えられる。
 添加剤としては、可塑剤と離型剤の一方のみを加えてもよく、両方を加えてもよい。
 添加剤としての可塑剤の使用量は、ポリアミドの総質量に対して、例えば、0.1質量%~30質量%であってもよく、0.5質量%~20質量%であってもよく、1質量%~15質量%であってもよい。使用量が0.1質量%以上であると、フィルムの屈曲性が向上し易い傾向にある。使用量が30質量%以下であると、フィルムが液状化し難くなり、フィルム表面の粘性が低くなることにより、巻き取り後のフィルムの剥離がし易くなる傾向にある。
 添加剤としての離型剤の使用量は、ポリアミドの総質量に対して、例えば、0.01質量%~10質量%であってもよく、0.05質量%~5質量%であってもよく、0.1質量%~3質量%であってもよい。使用量が0.01質量%以上であると、フィルムに滑り性を付与し易い傾向にある。使用量が10質量%以下であると、フィルムの滑り性が高くなりすぎない傾向にあり、フィルムを他の材料に接着及びラミネートし易くなる傾向にある。したがって、得られたフィルムを、保護粘着フィルム、接着フィルム、フィルムコンデンサ用フィルム等の用途に使用し易くなると考えられる。
 加熱シリンダー部での加熱条件に、特に制限はないが、ペレット投入口付近の温度を最も低く、押出口付近の温度を最も高く設定することが好ましい。加熱シリンダー部は、例えば、ペレット投入口から押出口に向けて、第一の加熱シリンダー部と、第二の加熱シリンダー部と、第三の加熱シリンダー部とを有していてもよい。第一、第二及び第三の加熱シリンダー部の温度は、それぞれ、60℃~180℃、80℃~180℃及び100℃~200℃であってもよい。
 本実施形態に係る押出成形フィルムは、誘電率高く、耐熱性及び屈曲性に優れると共に、強靭なものであり得ると考えられる。したがって、電子材料、光学機器、各種ディスプレイ等の材料として、好ましく使用できると考えられる。
 押出成形フィルムの厚みは、例えば、3μmから50μmであってもよく、3μm~10μmであってもよい。押出成形フィルムを、例えば、テレビ、スマートフォン等のディスプレイの一部に利用される屈折率調整フィルムとして用いる場合及びフィルムコンデンサ用誘電フィルム等の電子材料用途に用いる場合には、上記厚みは、3μm程度が好ましい。また、感光性フィルムとして用いる場合には、上記厚みは、10μm以下とすることが好ましい。押出成形フィルムにおける膜厚ムラ(最大厚みと最小厚みの差)は、1μm以下であることが好ましい。
 以下、本実施形態のポリアミドフィルム及びフィルムコンデンサについて説明する。本実施形態のポリアミドフィルムは、本実施形態のポリアミドを含む。このようなポリアミドフィルムは、誘電率が高く、耐熱性、屈曲性及び強靭性に優れると考えられることから、フィルムコンデンサ用のフィルムとして、特に好適である。本実施形態のフィルムコンデンサは、例えば、誘電体として、本実施形態のポリアミドフィルムを備える。このようなフィルムコンデンサは、誘電率が高く、耐熱性、屈曲性及び強靭性に優れると考えられる。
 以下、実施例により本発明を詳しく説明するが、本発明はこれらの実施例に限定されるものではない。
 合成例1~3の手順に従い、アミン化合物(I-1a)を合成した。
(合成例1)シクロペンタジエンの合成
 ジシクロペンタジエンを出発原料として、以下の手順によりシクロペンタジエンを合成した。
 撹拌機、温度計並びに塔頂に分溜塔、温度計及び冷却管を備えたスニーダー型分溜管(7段)を備えた1Lフラスコに、ジシクロペンタジエンを700g仕込み、オイルバスで加熱した。フラスコ内の温度が158℃に達したところで、分溜塔頂からシクロペンタジエンが留出してきたので、受器を氷冷しながら約6時間かけて回収した。この際の留出温度は41~48℃で、回収量は609gだった(回収率(質量基準):87%)。
 得られたシクロペンタジエンをガスクロマトグラフィーで分析したところ、純度は100%であった。
(合成例2)式(VII)で表される化合物の合成
 合成例1で得られたシクロペンタジエンと、アクリル酸メチルとを反応させることで、式(VII)で表される化合物を合成した。具体的な手順を以下に示す。
 撹拌機、温度計、滴下ロート及び冷却管を備えた1Lフラスコに、アクリル酸メチル344g(4.0mol)を仕込んだ後、フラスコを水冷して撹拌しながら、合成例1で得られたシクロペンタジエン265g(4.0mol)を、フラスコ内の温度を30~40℃に保ちつつ滴下した。滴下終了後、反応温度を維持しながら6時間反応させ、ガスクロマトグラフィーで分析したところ、アクリル酸メチル及びシクロペンタジエンは完全に消失し、式(VII)で表される化合物の選択率(モル量基準)が99.6%の反応液を得た(ジシクロペンタジエンが0.4%生成)。
(合成例3)アミン化合物(I-1a)の合成
 室温下で、内容量1000mLのセパラブルフラスコ内を窒素で置換した後、合成例2で得られた式(VII)に表される化合物を1molと、上記式(VII)で表される化合物に対して1.0当量のビス(アミノメチル)ノルボルナン(ジアミン化合物)と、式(VII)で表される化合物の全モル量を基準として0.3mol%の鉄粉とを仕込んだ。
 セパラブルフラスコに撹拌機、温度計、分溜塔、冷却管を設置した反応装置を組み立て、セパラブルフラスコをマントルヒーターで加熱した。反応温度が170℃に達すると、分溜塔より留出する留出液が観測された。フラスコ内の温度を170℃に設定し、3時間加熱及び撹拌を継続し、アミン化合物(I-1a)を生成させた。
 その後、反応装置を室温まで冷却した。得られた反応液を、高速液体クロマトグラフィー及びガスクロマトグラフィーにより分析し、得られた化合物の重量平均分子量(Mw)を測定すると共に、原材料の消失を確認した。
 高速液体クロマトグラフィー(HPLC)による分析結果によれば、得られた化合物の分子量ピークは単一であった。また、Mwは、274であり、アミン化合物(I-1a)の分子量274と一致した。
 アミン化合物(I-1a)の構造式を下記に示す。
Figure JPOXMLDOC01-appb-C000020
 なお、高速液体クロマトグラフィー分析は、(株)日立ハイテクノロジーズ HITACHI Chromaster 5450を使用して下記条件で行った。
カラム:HITACHI L-2350
溶離液:テトラヒドロフラン
温度:(注入口)25℃、(カラム)25℃
 ガスクロマトグラフィーによる分析結果によれば、反応液中には、原材料のピークは確認されなかった。したがって、反応における転化率は100%であったと推察した。
 なお、ガスクロマトグラフィー分析は、ジーエルサイエンス(株)製GC-353B型GCを使用して下記条件で行った。
検出器:水素炎イオン検出器
カラム:ジーエルサイエンス(株)製 TC-1(60m)
キャリアガス:ヘリウム(300kPa)
温度:(注入口)200℃、(検出器)200℃、(カラム)40℃~240℃
昇温速度:5℃/min
(比較例1A)ノルボルナン系骨格含有ポリアミド(PNBAD-1A)の合成
 室温下で、内容量1000mLのセパラブルフラスコ内を窒素で置換した後、上記セパラブルフラスコ内に、合成例3で得られたアミン化合物(I-1a)を1molと、コハク酸(IV-1)を1molと、アミン化合物の全モル量を基準として0.3mol%の鉄粉とを仕込んだ。セパラブルフラスコに撹拌機、温度計、分溜塔、冷却管を設置して反応装置とした後、セパラブルフラスコをマントルヒーターで加熱した。フラスコ内の温度を200℃に設定し、3時間加熱及び撹拌した。その後、反応装置内を20kPaに減圧して8時間、その後さらに、10kPaに減圧して8時間、加熱及び撹拌した。その後、減圧を解除し、反応装置内を常圧、室温にし、フラスコ内にノルボルナン系骨格含有ポリアミド(PNBAD-1A)を得た。分溜塔と接続する受けフラスコには、留出液が観測された。
 次いで、得られたPNBAD-1Aを、ゲル浸透クロマトグラフィー(GPC)により分析し、標準ポリスチレン換算によって、Mwを算出した。
 ゲル浸透クロマトグラフィー(GPC)による分析結果によれば、得られたPNBAD-1Aの分子量ピークは単一であり、Mwは9100であった。
 なお、ゲル浸透クロマトグラフィー分析は、ジーエルサイエンス(株)製、GL-7480を使用して下記条件で行った。
カラム:Shodex製 KD-806M
溶離液:N-メチル-2-ピロリドン(添加剤:臭化リチウム一水和物3.146g/L、リン酸5.88g/L)
温度:(注入口)25℃、(カラム)25℃
 次いで、得られたPNBAD-1Aの誘電率(ε)を測定したところ、εは10KHz~100MHzの領域で4.1であった。得られたPNBAD-1Aは、Mwが9100であり、5%重量減少温度(Td5)が270℃であった。
(比較例1B)ノルボルナン系骨格含有ポリアミド(PNBAD-1B)の合成
 室温下で、内容量1000mLのセパラブルフラスコ内を窒素で置換した後、上記セパラブルフラスコ内に、合成例3で得られたアミン化合物(I-1a)を1molと、コハク酸(IV-1)を1molと、アミン化合物の全モル量を基準として0.3mol%の酢酸亜鉛とを仕込んだ。その後、比較例1Aと同様の方法でPNBAD-1Bの合成及び分析を行った。その結果、反応により原材料が消失したことを確認した。比較例1Aと同様に、Mw及びεを測定したところ、Mwは3100であり、εは4.1であった。
(比較例1C)ノルボルナン系骨格含有ポリアミド(PNBAD-1C)の合成
 室温下で、内容量1000mLのセパラブルフラスコ内を窒素で置換した後、上記セパラブルフラスコ内に、合成例3で得られたアミン化合物(I-1a)を1molと、コハク酸(IV-1)を1molと、アミン化合物の全モル量を基準として0.3mol%の酢酸コバルト及び0.3mol%の酢酸マンガンとを仕込んだ。その後、比較例1Aと同様の方法でPNBAD-1Cの合成及び分析を行った。その結果、反応により原材料が消失したことを確認した。比較例1Aと同様に、Mw及びεを測定したところ、Mwは1800であり、εは4.1であった。
(比較例1D)ノルボルナン系骨格含有ポリアミド(PNBAD-1D)の合成
 室温下で、内容量1000mLのセパラブルフラスコ内を窒素で置換した後、上記セパラブルフラスコ内に、合成例3で得られたアミン化合物(I-1a)を1molと、コハク酸(IV-1)を1molと、アミン化合物の全モル量を基準として0.3mol%のメタンスルホン酸とを仕込んだ。その後、比較例1Aと同様の方法でPNBAD-1Dの合成及び分析を行った。その結果、反応により原材料が消失したことを確認した。比較例1Aと同様に、Mw及びεを測定したところ、Mwは4200であり、εは4.1であった。
(比較例1E)ノルボルナン系骨格含有ポリアミド(PNBAD-1E)の合成
 室温下で、内容量1000mLのセパラブルフラスコ内を窒素で置換した後、上記セパラブルフラスコ内に、合成例3で得られたアミン化合物(I-1a)を1molと、コハク酸(IV-1)を1molと、アミン化合物の全モル量を基準として0.3mol%のパラトルエンスルホン酸とを仕込んだ。その後、比較例1Aと同様の方法でPNBAD-1Eの合成及び分析を行った。その結果、反応により原材料が消失したことを確認した。
 実施例における触媒及びMwのまとめを表1に示す。
Figure JPOXMLDOC01-appb-T000021
(比較例2)ノルボルナン系骨格含有ポリアミド(PNBAD-2)の合成
 室温下で、内容量1000mLのセパラブルフラスコ内を窒素で置換した後、上記セパラブルフラスコ内に、合成例3で得られたアミン化合物(I-1a)を0.5molと、シロキサンアミン化合物(III-1:式(III)中、n=1の化合物)を0.5molと、コハク酸(IV-1)を1molと、アミン化合物の全モル量を基準として0.3mol%の鉄粉とを仕込んだ。セパラブルフラスコに撹拌機、温度計、分溜塔、冷却管を設置して反応装置とした後、セパラブルフラスコをマントルヒーターで加熱した。フラスコ内の温度を200℃に設定し、3時間加熱及び撹拌した。その後、反応装置内を20kPaに減圧して8時間、その後さらに、10kPaに減圧して8時間、加熱及び撹拌した。その後、減圧を解除し、反応装置内を常圧、室温にし、フラスコ内にノルボルナン系骨格含有ポリアミド(PNBAD-2)を得た。分溜塔と接続する受けフラスコには、留出液が観測された。得られた反応物を、ガスクロマトグラフィーにより分析し、反応により原材料が消失したことを確認した。ガスクロマトグラフィーの条件は上記と同様とした。PNBAD-2を評価した結果、Mwは2300、Td5は259℃であった。
(比較例3)ノルボルナン系骨格含有ポリアミド(PNBAD-3)の合成
 室温下で、内容量1000mLのセパラブルフラスコ内を窒素で置換した後、上記セパラブルフラスコ内に、合成例3で得られたアミン化合物(I-1a)を0.97molと、シロキサンアミン化合物(III-2:式(III)中、n=10の化合物)を0.03molと、コハク酸(IV-1)を1molと、アミン化合物の全モル量を基準として0.3mol%の鉄粉とを仕込んだ。その後、比較例2と同様の方法で合成を行い、フラスコ内にPNBAD-3を得た。また、比較例2と同様にして、GPC及びガスクロマトグラフィーによる分析を行った。その結果、反応により原材料が消失したことを確認した。
(比較例4)ノルボルナン系骨格含有ポリアミド(PNBAD-4)の合成
 室温下で、内容量1000mLのセパラブルフラスコ内を窒素で置換した後、上記セパラブルフラスコ内に、合成例3で得られたアミン化合物(I-1a)を0.95molと、シロキサンアミン化合物(III-3:式(III)中、n=17の化合物)を0.05molと、コハク酸(IV-1)を1molと、アミン化合物の全モル量を基準として0.3mol%の鉄粉とを仕込んだ。その後、比較例2と同様の方法で合成を行い、フラスコ内にPNBAD-4を得た。また、比較例2と同様にして、GPC及びガスクロマトグラフィーによる分析を行った。その結果、反応により原材料が消失したことを確認した。PNBAD-4を評価した結果、Mwは1900、Td5は258℃であった。
(比較例5)ノルボルナン系骨格含有ポリアミド(PNBAD-5)の合成
 室温下で、内容量1000mLのセパラブルフラスコ内を窒素で置換した後、上記セパラブルフラスコ内に、合成例3で得られたアミン化合物(I-1a)を0.972molと、シロキサンアミン化合物(III-4:式(III)中、n=30の化合物)を0.028molと、コハク酸(IV-1)を1molと、アミン化合物の全モル量を基準として0.3mol%の鉄粉とを仕込んだ。その後、比較例2と同様の方法で合成を行い、フラスコ内にPNBAD-5を得た。また、比較例2と同様にして、GPC及びガスクロマトグラフィーによる分析を行った。その結果、反応により原材料が消失したことを確認した。
(比較例6)ノルボルナン系骨格含有ポリアミド(PNBAD-6)の合成
 室温下で、内容量1000mLのセパラブルフラスコ内を窒素で置換した後、上記セパラブルフラスコ内に、合成例3で得られたアミン化合物(I-1a)を0.986molと、シロキサンアミン化合物(III-5:式(III)中、n=64の化合物)を0.014molと、コハク酸(IV-1)を1molと、アミン化合物の全モル量を基準として0.3mol%の鉄粉とを仕込んだ。その後、比較例2と同様の方法で合成を行い、フラスコ内にPNBAD-6を得た。また、比較例2と同様にして、GPC及びガスクロマトグラフィーによる分析を行った。その結果、反応により原材料が消失したことを確認した。
(比較例7)ノルボルナン系骨格含有ポリアミド(PNBAD-7)の合成
 室温下で、内容量1000mLのセパラブルフラスコ内を窒素で置換した後、上記セパラブルフラスコ内に、合成例3で得られたアミン化合物(I-1a)を0.9933molと、シロキサンアミン化合物(III-6:式(III)中、n=132の化合物)を0.0067molと、コハク酸(IV-1)を1mol、と、アミン化合物の全モル量を基準として0.3mol%の鉄粉とを仕込んだ。その後、比較例2と同様の方法で合成を行い、フラスコ内にPNBAD-7を得た。また、比較例2と同様にして、GPC及びガスクロマトグラフィーによる分析を行った。その結果、反応により原材料が消失したことを確認した。
(実施例1)ノルボルナン系骨格含有ポリアミド(PNBAD-8)の合成
 室温下で、内容量1000mLのセパラブルフラスコ内を窒素で置換した後、上記セパラブルフラスコ内に、合成例3で得られたアミン化合物(I-1a)を0.95molと、シロキサンアミン化合物(III-3:式(III)中、n=17の化合物)を0.05molと、アジピン酸(IV-2)を1molと、アミン化合物の全モル量を基準として0.3mol%の鉄粉とを仕込んだ。その後、比較例2と同様の方法で合成を行い、フラスコ内にPNBAD-8を得た。また、比較例2と同様にして、GPC及びガスクロマトグラフィーによる分析を行った。その結果、反応により原材料が消失したことを確認した。
(実施例2)ノルボルナン系骨格含有ポリアミド(PNBAD-9)の合成
 室温下で、内容量1000mLのセパラブルフラスコ内を窒素で置換した後、上記セパラブルフラスコ内に、合成例3で得られたアミン化合物(I-1a)を0.95molと、シロキサンアミン化合物(III-3:式(III)中、n=17の化合物)を0.05molと、セバシン酸(IV-3)を1molと、アミン化合物の全モル量を基準として0.3mol%の鉄粉とを仕込んだ。その後、比較例2と同様の方法で合成を行い、フラスコ内にPNBAD-9を得た。また、比較例2と同様にして、GPC及びガスクロマトグラフィーによる分析を行った。その結果、反応により原材料が消失したことを確認した。
(実施例3)ノルボルナン系骨格含有ポリアミド(PNBAD-10)の合成
 室温下で、内容量1000mLのセパラブルフラスコ内を窒素で置換した後、上記セパラブルフラスコ内に、合成例3で得られたアミン化合物(I-1a)を1.0molと、アジピン酸(IV-2)を1.0molと、アミン化合物の全モル量を基準として0.3mol%の鉄粉とを仕込んだ。その後、比較例2と同様の方法で合成を行い、フラスコ内にPNBAD-10を得た。また、比較例2と同様にして、GPC及びガスクロマトグラフィーによる分析を行った。その結果、反応により原材料が消失したことを確認した。PNBAD-10を評価した結果、Mwは10000、Td5は210℃、εは3.9であった。
(実施例4)ノルボルナン系骨格含有ポリアミド(PNBAD-11)の合成
 室温下で、内容量1000mLのセパラブルフラスコ内を窒素で置換した後、上記セパラブルフラスコ内に、合成例3で得られたアミン化合物(I-1a)を1.0molと、アジピン酸(IV-2)を0.5molと、セバシン酸(IV-3)を0.5molと、アミン化合物の全モル量を基準として0.3mol%の鉄粉とを仕込んだ。その後、比較例2と同様の方法で合成を行い、フラスコ内にPNBAD-11を得た。また、比較例2と同様にして、GPC及びガスクロマトグラフィーによる分析を行った。その結果、反応により原材料が消失したことを確認した。
(実施例5)ノルボルナン系骨格含有ポリアミド(PNBAD-12)の合成
 室温下で、内容量1000mLのセパラブルフラスコ内を窒素で置換した後、上記セパラブルフラスコ内に、合成例3で得られたアミン化合物(I-1a)を1.0molと、アジピン酸(IV-2)を0.25molと、セバシン酸(IV-3)を0.75molと、アミン化合物の全モル量を基準として0.3mol%の鉄粉とを仕込んだ。その後、比較例2と同様の方法で合成を行い、フラスコ内にPNBAD-12を得た。また、比較例2と同様にして、GPC及びガスクロマトグラフィーによる分析を行った。その結果、反応により原材料が消失したことを確認した。
(比較例8)ノルボルナン系骨格含有ポリアミド(PNBAD-13)の合成
 室温下で、内容量1000mLのセパラブルフラスコ内を窒素で置換した後、ビス(アミノメチル)ノルボルナン(I-2)を1.0molと、コハク酸(IV-1)を1.0molと、アミン化合物の全モル量を基準として0.3mol%の鉄粉とを仕込んだ。その後、比較例2と同様の方法で合成を行い、フラスコ内にPNBAD-13を得た。また、比較例2と同様にして、GPC及びガスクロマトグラフィーによる分析を行った。その結果、反応により原材料が消失したことを確認した。PNBAD-13を評価した結果、Mwは4000、Td5は264℃、εは4.0であった。
(実施例6)ノルボルナン系骨格含有ポリアミド(PNBAD-14)の合成
 室温下で、内容量1000mLのセパラブルフラスコ内を窒素で置換した後、ビス(アミノメチル)ノルボルナン(I-2)を1.0molと、セバシン酸(IV-3)を1.0molと、アミン化合物の全モル量を基準として0.3mol%の鉄粉とを仕込んだ。その後、比較例2と同様の方法で合成を行い、フラスコ内にPNBAD-14を得た。また、比較例2と同様にして、GPC及びガスクロマトグラフィーによる分析を行った。その結果、反応により原材料が消失したことを確認した。PNBAD-14を評価した結果、Mwは10000、Td5は254℃、εは3.5であった。
(実施例7)ノルボルナン系骨格含有ポリアミド(PNBAD-15)の合成
 室温下で、内容量1000mLのセパラブルフラスコ内を窒素で置換した後、ビス(アミノメチル)ノルボルナン(I-2)を0.9molと、C36ダイマージアミン(CRODA製、商品名)(I-3)を0.1molと、セバシン酸(IV-3)を1.0molと、アミン化合物の全モル量を基準として0.3mol%の鉄粉とを仕込んだ。その後、比較例2と同様の方法で合成を行い、フラスコ内にPNBAD-15を得た。また、比較例2と同様にして、GPC及びガスクロマトグラフィーによる分析を行った。その結果、反応により原材料が消失したことを確認した。
(実施例8)ノルボルナン系骨格含有ポリアミド(PNBAD-16)の合成
 室温下で、内容量1000mLのセパラブルフラスコ内を窒素で置換した後、ビス(アミノメチル)ノルボルナン(I-2)を0.9molと、ポリエーテルアミン化合物(三井化学ファイン株式会社製、BAXXodur EC301(式(Ia)中、b=1の化合物)(以下、「ポリエーテルアミン化合物(I-4)」という))を0.1molと、セバシン酸(IV-3)を1.0molと、アミン化合物の全モル量を基準として0.3mol%の鉄粉とを仕込んだ。その後、比較例2と同様の方法で合成を行い、フラスコ内にPNBAD-16を得た。また、比較例2と同様にして、GPC及びガスクロマトグラフィーによる分析を行った。その結果、反応により原材料が消失したことを確認した。PNBAD-16を評価した結果、Mwは8500、Td5は273℃、εは3.5であった。
(実施例9)ノルボルナン系骨格含有ポリアミド(PNBAD-17)の合成
 室温下で、内容量1000mLのセパラブルフラスコ内を窒素で置換した後、ビス(アミノメチル)ノルボルナン(I-2)を0.9molと、ポリエーテルアミン化合物(三井化学ファイン株式会社製、D400(式(Ia)中、b=2の化合物)(以下、「ポリエーテルアミン化合物(I-5)」という))を0.1molと、セバシン酸(IV-3)を1.0molと、アミン化合物の全モル量を基準として0.3mol%の鉄粉とを仕込んだ。その後、比較例2と同様の方法で合成を行い、フラスコ内にPNBAD-17を得た。また、比較例2と同様にして、GPC及びガスクロマトグラフィーによる分析を行った。その結果、反応により原材料が消失したことを確認した。PNBAD-17を評価した結果、Mwは9000、Td5は224℃であった。
(実施例10)ノルボルナン系骨格含有ポリアミド(PNBAD-18)の合成
 室温下で、内容量1000mLのセパラブルフラスコ内を窒素で置換した後、ビス(アミノメチル)ノルボルナン(I-2)を0.9molと、ポリエーテルアミン化合物(三井化学ファイン株式会社製、D2000(式(Ia)中、b=10の化合物)(以下、「ポリエーテルアミン化合物(I-6)」という))を0.1molと、セバシン酸(IV-3)を1.0molと、アミン化合物の全モル量を基準として0.3mol%の鉄粉とを仕込んだ。その後、比較例2と同様の方法で合成を行い、フラスコ内にPNBAD-18を得た。また、比較例2と同様にして、GPC及びガスクロマトグラフィーによる分析を行った。その結果、反応により原材料が消失したことを確認した。
(実施例11)ノルボルナン系骨格含有ポリアミド(PNBAD-19)の合成
 室温下で、内容量1000mLのセパラブルフラスコ内を窒素で置換した後、ビス(アミノメチル)ノルボルナン(I-2)を0.9molと、ポリエーテルアミン化合物(三井化学ファイン株式会社製、T403(式(Ib)中、c=1の化合物)(以下、「ポリエーテルアミン化合物(I-7)」という))を0.1molと、セバシン酸(IV-3)を1.0molと、アミン化合物の全モル量を基準として0.3mol%の鉄粉とを仕込んだ。その後、比較例2と同様の方法で合成を行い、フラスコ内にPNBAD-19を得た。また、比較例2と同様にして、GPC及びガスクロマトグラフィーによる分析を行った。その結果、反応により原材料が消失したことを確認した。PNBAD-19を評価した結果、Mwは13000、Td5は226℃であった。
(実施例12)ノルボルナン系骨格含有ポリアミド(PNBAD-20)の合成
 室温下で、内容量1000mLのセパラブルフラスコ内を窒素で置換した後、ビス(アミノメチル)ノルボルナン(I-2)を0.8molと、上記ポリエーテルアミン化合物(I-4)を0.2molと、セバシン酸(IV-3)を1.0molと、アミン化合物の全モル量を基準として0.3mol%の鉄粉とを仕込んだ。その後、比較例2と同様の方法で合成を行い、フラスコ内にPNBAD-20を得た。また、比較例2と同様にして、GPC及びガスクロマトグラフィーによる分析を行った。その結果、反応により原材料が消失したことを確認した。PNBAD-20を評価した結果、Mwは20000、Td5は273℃、εは3.8であった。
(実施例13)ノルボルナン系骨格含有ポリアミド(PNBAD-21)の合成
 室温下で、内容量1000mLのセパラブルフラスコ内を窒素で置換した後、ビス(アミノメチル)ノルボルナン(I-2)を0.9molと、ポリエーテルアミン化合物(I-5)を0.2molと、セバシン酸(IV-3)を1.0molと、アミン化合物の全モル量を基準として0.3mol%の鉄粉とを仕込んだ。その後、比較例2と同様の方法で合成を行い、フラスコ内にPNBAD-21を得た。また、比較例2と同様にして、GPC及びガスクロマトグラフィーによる分析を行った。その結果、反応により原材料が消失したことを確認した。
(実施例14)ノルボルナン系骨格含有ポリアミド(PNBAD-22)の合成
 室温下で、内容量1000mLのセパラブルフラスコ内を窒素で置換した後、ビス(アミノメチル)ノルボルナン(I-2)を0.9molと、ポリエーテルアミン化合物(I-7)0.2molと、セバシン酸(IV-3)を1.0molと、アミン化合物の全モル量を基準として0.3mol%の鉄粉とを仕込んだ。その後、比較例2と同様の方法で合成を行い、フラスコ内にPNBAD-22を得た。また、比較例2と同様にして、GPC及びガスクロマトグラフィーによる分析を行った。その結果、反応により原材料が消失したことを確認した。
(実施例15)ノルボルナン系骨格含有ポリアミド(PNBAD-23)の合成
 室温下で、内容量1000mLのセパラブルフラスコ内を窒素で置換した後、ビス(アミノメチル)ノルボルナン(I-2)を0.7molと、ポリエーテルアミン化合物(I-4)を0.3molと、セバシン酸(IV-3)を1.0molと、アミン化合物の全モル量を基準として0.3mol%の鉄粉とを仕込んだ。その後、比較例2と同様の方法で合成を行い、フラスコ内にPNBAD-23を得た。また、比較例2と同様にして、GPC及びガスクロマトグラフィーによる分析を行った。その結果、反応により原材料が消失したことを確認した。
(実施例16A)ノルボルナン系骨格含有ポリアミド(PNBAD-24A)の合成
 室温下で、内容量1000mLのセパラブルフラスコ内を窒素で置換した後、ビス(アミノメチル)ノルボルナン(I-2)を0.8molと、ポリエーテルアミン化合物(I-4)を0.2molと、セバシン酸(IV-3)を1.0molと、2,2-ビス(ヒドロキシメチル)プロピオン酸(VI-1)を0.1molと、アミン化合物の全モル量を基準として0.3mol%の鉄粉とを仕込んだ。その後、比較例2と同様の方法で合成を行い、フラスコ内にPNBAD-24Aを得た。また、比較例2と同様にして、GPC及びガスクロマトグラフィーによる分析を行った。その結果、反応により原材料が消失したことを確認した。PNBAD-24Aを評価した結果、Mwは30000、Td5は267℃、εは4.0であった。
(実施例16B)ノルボルナン系骨格含有ポリアミド(PNBAD-24B)の合成
 室温下で、内容量1000mLのセパラブルフラスコ内を窒素で置換した後、ビス(アミノメチル)ノルボルナン(I-2)を0.8molと、ポリエーテルアミン化合物(I-4)を0.2molと、セバシン酸(IV-3)を1.0molと、2,2-ビス(ヒドロキシメチル)プロピオン酸(VI-1)を0.1molと、アミン化合物の全モル量を基準として0.3mol%の鉄粉及び0.3mol%の酢酸亜鉛(II)とを仕込んだ。その後、比較例2と同様の方法で合成を行い、フラスコ内にPNBAD-24Bを得た。また、比較例2と同様にして、GPC及びガスクロマトグラフィーによる分析を行った。その結果、反応により原材料が消失したことを確認した。PNBAD-24Bを評価した結果、Mwは46000、Td5は296℃、εは4.0であった。
(実施例16C)ノルボルナン系骨格含有ポリアミド(PNBAD-24C)の合成
 室温下で、内容量1000mLのセパラブルフラスコ内を窒素で置換した後、ビス(アミノメチル)ノルボルナン(I-2)を0.8molと、ポリエーテルアミン化合物(I-4)を0.2molと、セバシン酸(IV-3)を1.0molと、2,2-ビス(ヒドロキシメチル)プロピオン酸(VI-1)を0.1molと、アミン化合物の全モル量を基準として0.3mol%の酢酸亜鉛(II)を仕込んだ。その後、比較例2と同様の方法で合成を行い、フラスコ内にPNBAD-24Cを得た。また、比較例2と同様にして、GPC及びガスクロマトグラフィーによる分析を行った。その結果、反応により原材料が消失したことを確認した。
(実施例16D)ノルボルナン系骨格含有ポリアミド(PNBAD-24D)の合成
 室温下で、内容量1000mLのセパラブルフラスコ内を窒素で置換した後、ビス(アミノメチル)ノルボルナン(I-2)を0.8molと、ポリエーテルアミン化合物(I-4)を0.2molと、セバシン酸(IV-3)を1.0molと、2,2-ビス(ヒドロキシメチル)プロピオン酸(VI-1)を0.1molと、アミン化合物の全モル量を基準として0.3mol%の鉄粉及び0.3mol%のテトラ-n-ブトキシチタンとを仕込んだ。その後、比較例2と同様の方法で合成を行い、フラスコ内にPNBAD-24Dを得た。また、比較例2と同様にして、GPC及びガスクロマトグラフィーによる分析を行った。その結果、反応により原材料が消失したことを確認した。
(実施例16E)ノルボルナン系骨格含有ポリアミド(PNBAD-24E)の合成
 室温下で、内容量1000mLのセパラブルフラスコ内を窒素で置換した後、ビス(アミノメチル)ノルボルナン(I-2)を0.8molと、ポリエーテルアミン化合物(I-4)を0.2molと、セバシン酸(IV-3)を1.0molと、2,2-ビス(ヒドロキシメチル)プロピオン酸(VI-1)を0.1molと、アミン化合物の全モル量を基準として0.3mol%の鉄粉及び0.3mol%の三酸化アンチモンとを仕込んだ。その後、比較例2と同様の方法で合成を行い、フラスコ内にPNBAD-24Eを得た。また、比較例2と同様にして、GPC及びガスクロマトグラフィーによる分析を行った。その結果、反応により原材料が消失したことを確認した。
(実施例16F)ノルボルナン系骨格含有ポリアミド(PNBAD-24F)の合成
 室温下で、内容量1000mLのセパラブルフラスコ内を窒素で置換した後、ビス(アミノメチル)ノルボルナン(I-2)を0.8molと、ポリエーテルアミン化合物(I-4)を0.2molと、セバシン酸(IV-3)を1.0molと、2,2-ビス(ヒドロキシメチル)プロピオン酸(VI-1)を0.1molと、アミン化合物の全モル量を基準として0.3mol%の鉄粉及び0.3mol%のジブチルスズとを仕込んだ。その後、比較例2と同様の方法で合成を行い、フラスコ内にPNBAD-24Fを得た。また、比較例2と同様にして、GPC及びガスクロマトグラフィーによる分析を行った。その結果、反応により原材料が消失したことを確認した。
(実施例17)ノルボルナン系骨格含有ポリアミド(PNBAD-25)の合成
 室温下で、内容量1000mLのセパラブルフラスコ内を窒素で置換した後、ビス(アミノメチル)ノルボルナン(I-2)を0.8molと、ポリエーテルアミン化合物(I-4)を0.2molと、セバシン酸(IV-3)を1.0molと、2,2-ビス(ヒドロキシメチル)プロピオン酸(VI-1)を0.2molと、アミン化合物の全モル量を基準として0.3mol%の鉄粉及び0.3mol%の酢酸亜鉛とを仕込んだ。その後、比較例2と同様の方法で合成を行い、フラスコ内にPNBAD-25を得た。また、比較例2と同様にして、GPC及びガスクロマトグラフィーによる分析を行った。その結果、反応により原材料が消失したことを確認した。PNBAD-25を評価した結果、Mwは67000、Td5は310℃、εは4.0であった。
(実施例18)ノルボルナン系骨格含有ポリアミド(PNBAD-26)の合成
 室温下で、内容量1000mLのセパラブルフラスコ内を窒素で置換した後、ビス(アミノメチル)ノルボルナン(I-2)を0.8molと、ポリエーテルアミン化合物(I-4)を0.2molと、セバシン酸(IV-3)を1.0molと、2,2-ビス(ヒドロキシメチル)プロピオン酸(VI-1)を0.3molと、アミン化合物の全モル量を基準として0.3mol%の鉄粉及び0.3mol%の酢酸亜鉛とを仕込んだ。その後、比較例2と同様の方法で合成を行い、フラスコ内にPNBAD-26を得た。また、比較例2と同様にして、GPC及びガスクロマトグラフィーによる分析を行った。その結果、反応により原材料が消失したことを確認した。PNBAD-26を評価した結果、Mwは52000、Td5は309℃、εは4.0であった。
(実施例19)ノルボルナン系骨格含有ポリアミド(PNBAD-27)の合成
 室温下で、内容量1000mLのセパラブルフラスコ内を窒素で置換した後、ビス(アミノメチル)ノルボルナン(I-2)を0.8molと、ポリエーテルアミン化合物(I-4)を0.2molと、セバシン酸(IV-3)を1.0molと、2,2-ビス(ヒドロキシメチル)プロピオン酸(VI-1)を0.4molと、アミン化合物の全モル量を基準として0.3mol%の鉄粉及び0.3mol%の酢酸亜鉛とを仕込んだ。その後、比較例2と同様の方法で合成を行い、フラスコ内にPNBAD-27を得た。また、比較例2と同様にして、GPC及びガスクロマトグラフィーによる分析を行った。その結果、反応により原材料が消失したことを確認した。
 以上のとおり、いずれの実施例においても、ジカルボン酸ハライドを用いずに、ノルボルナン系骨格含有ポリアミドを製造できることができた。
[物性評価]
 以下の条件で、5%重量減少温度(Td5:耐熱性)、誘電率(ε)、150℃でのメルトフローレート(MFR)及びフィルム成形性を評価した。
(5%重量減少温度)
 得られたノルボルナン系骨格含有ポリアミド0.03g~0.1gを、室温から400℃まで、1分間に15℃の条件で昇温させた。ノルボルナン系骨格含有ポリアミドの質量が5%減少した時点の温度を5%重量減少温度とした。5%重量減少温度は、示差走査熱量計(DSC、X―DSC Q2000)を用いて測定した。
(誘電率)
 2枚の電極を備える測定磁具を準備した。また、測定対象の樹脂をフィルム化して樹脂フィルムを作製した。測定磁具の電極間に測定対象の樹脂フィルムを挟み、電流を流し、電場を与えることで誘電率を測定した。この際、測定磁具は、2枚の電極が縦に配置される向きで固定し、下側に位置する電極の上部にフィルムを置いた。続いて、フィルムの膜厚の1.09倍から1.11倍の距離を保つよう、上側の電極の位置を調整した。その後、磁具に電場を与えた。測定は、10KHz~100MHzの領域で行った。実施例に係るノルボルナン系骨格含有ポリアミドの誘電率は、周波数の範囲によらず、同程度であった。なお、測定に用いた樹脂フィルムの膜厚は、10μm以上、50μm以下とした。
(150℃でのメルトフローレート)
 150℃に加熱したシリンダー内に、ペレット状態としたノルボルナン系骨格含有ポリアミドを投入し、5分間加熱した。次いで、シリンダー上部に1kgの重りを配置し、負荷を与えることで、シリンダーの下部から溶融樹脂を射出させた。1分間当たりの射出量をMFRとした。
(フィルム成形性)
 得られたノルボルナン系骨格含有ポリアミドを、溶媒としてのN-メチル-2-ピロリドンに、不揮発分濃度が40質量%となるように溶解して樹脂溶液を得た。得られた樹脂溶液を基板(PETフィルム又は銅箔)に塗工した後、溶媒の沸点以上の温度で乾燥させ溶媒を揮発させることでフィルムを形成した。
 得られたフィルムの成形性を以下の基準で評価した。
 A:クラック及びホールが生じず、かつ、<2Φの屈曲を達成できるもの
 B:微細なクラック又はホールが生じたもののフィルム化できたもの
 C:クラック又はホールが生じフィルム化できなかったもの
 評価結果のまとめを表2及び表3に示す。
Figure JPOXMLDOC01-appb-T000022
 表2中、括弧内の数値は、各原料のモル量を表す。また、上述のとおり、「III-1」及び「III-3」は、シロキサンアミン化合物であり、「I-4」、「I-5」及び「I-7」は、ポリエーテルアミン化合物である。「IV-1」はコハク酸を、「IV-2」はアジピン酸を、「IV-3」はセバシン酸を、「VI-1」は2,2-ビス(ヒドロキシメチル)プロピオン酸を、それぞれ示す。
 2,2-ビス(ヒドロキシメチル)プロピオン酸(VI-1)を使用した実施例における触媒の種類及び(VI-1)添加量並びに評価結果のまとめを表3に示す。なお、(VI-1)添加量(mol%)は、セバシン酸(IV-3)の全モル量に対する2,2-ビス(ヒドロキシメチル)プロピオン酸の添加量を示す。
Figure JPOXMLDOC01-appb-T000023
 以上のとおり、実施例のポリアミドは、溶剤塗工によるフィルム成形性に優れることを確認した。以下、実施例17及び18で得られたポリアミドついて、押出塗工性を更に評価した。
(実施例X1)
 実施例17で得られたポリアミドを押出塗工機を用いてフィルム状に成形した。塗工機の加熱条件は、塗工機への加熱部位を3箇所用意し、ペレット投入口に最も近い部位を100℃~140℃、押出口に最も近い部位を150℃~180℃、ペレット投入口と押出口の間を140℃~150℃に加熱した。塗工機内のシリンダーの長さを100cmとし、押出口の幅を60cm、厚みを0.5mmに調整した。また、押し出されたフィルムは、互い違いに計6個配置されたローラー(直径15cm)で巻き取った後、延伸した。ローラーの回転速度は、押出口に近い2つのローラーの速度を50回転/minに、押出口から遠い2つのローラーの速度を70回転/minに、中間の2つのローラーの速度を60回転/minに、それぞれ設定した。ローラーの温度は室温とした。なお、添加剤は用いなかった。
 微少のクラックを観測するものの、フィルム状に成形できた。得られたフィルムのMFRは4g/minであった。また、得られたフィルムにおいて、膜厚は5μm、Td5は330℃、εは3.8、引張強度は35Mpaであった。また、フィルムは2Φに曲げてクラックが生じないレベルであり優れた屈曲性を有することが確認できた。
(実施例X2)
 ポリアミドを実施例18で得られたポリアミドに変更したこと以外は、実施例X1と同様にして、押出塗工性を評価した。微少のクラックを観測するものの、フィルム状に成形できた。
(実施例X3)
 添加剤としてグリセリン脂肪族エステル化合物を添加したこと以外は、実施例X1と同様にして、押出塗工性を評価した。平滑なフィルムを得ることができた。得られたフィルムにおいて、膜厚は3μm、Td5は330℃、εは3.8、引張強度は35Mpaであった。また、フィルムは2Φに曲げてクラックが生じないレベルであり優れた屈曲性を有することが確認できた。
(実施例X4)
 添加剤としてステアリン酸エステルを添加したこと以外は、実施例X1と同様にして、押出塗工性を評価した。微少のホールを観測するものの、フィルム状に成形できた。得られたフィルムのMFRは15g/minであった。得られたフィルムにおいて、膜厚は7μm、Td5は300℃、εは3.8、引張強度は15Mpaであった。また、フィルムは2Φに曲げてクラックが生じないレベルであり優れた屈曲性を有することが確認できた。
 ここで、フィルムの膜厚は、マイクロメーター((株)ミツトヨ製156-101)を用いて、フィルムとの接触面積を28cmとして測定した。
 フィルムの強度としては、JIS-C-2152に従って作製したフィルム片を、フィルムを上下方向に引っ張った時に破断に耐える最大の強度を示す引張強度を測定した。なお、フィルム引張強度は、(株)島津製作所AGS‐Xのテンシロン引張強度測定機を使用して測定した。
 以上のとおり、実施例のポリアミドは、フィルム成形性に優れることを確認した。また、実施例のポリアミド及びこれから形成されるフィルムは、誘電率が高く、耐熱性及び機械特性にも優れることを確認した。

Claims (10)

  1.  ノルボルナン骨格を有するアミン化合物に基づく構造と、炭素数6以上のカルボン酸化合物に基づく構造と、を有するポリアミド。
  2.  エーテル骨格を有する脂肪族アミン化合物に基づく構造及びシロキサン骨格を有するアミン化合物に基づく構造の少なくとも一方を更に有する、請求項1に記載のポリアミド。
  3.  ヒドロキシ基含有カルボン酸化合物に基づく構造を更に有する、請求項1又は2に記載のポリアミド。
  4.  前記ヒドロキシ基含有カルボン酸化合物が、2つ以上のヒドロキシ基を含有する、請求項3に記載のポリアミド。
  5.  前記ノルボルナン骨格を有するアミン化合物が、下記式(A)で表される構造を有する、請求項1~4のいずれか一項に記載のポリアミド。
    Figure JPOXMLDOC01-appb-C000001
    [式(A)中、R10はアルキレン基を示す。]
  6.  R10がメチレン基である、請求項5に記載のポリアミド。
  7.  前記炭素数6以上のカルボン酸化合物が、炭素数4以上のアルキレン基を有するジカルボン酸である、請求項1~6のいずれか一項に記載のポリアミド。
  8.  150℃でのメルトフローレートが、3.0g/min~8.0g/minである、請求項1~7のいずれか一項に記載のポリアミド。
  9.  請求項1~8に記載のいずれか一項に記載のポリアミドを含む、ポリアミドフィルム。
  10.  請求項9に記載のポリアミドフィルムを備える、フィルムコンデンサ。
PCT/JP2017/034740 2016-09-26 2017-09-26 ポリアミド、ポリアミドフィルム及びフィルムコンデンサ WO2018056463A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018540350A JP7052725B2 (ja) 2016-09-26 2017-09-26 ポリアミド、ポリアミドフィルム及びフィルムコンデンサ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-187108 2016-09-26
JP2016187108 2016-09-26

Publications (1)

Publication Number Publication Date
WO2018056463A1 true WO2018056463A1 (ja) 2018-03-29

Family

ID=61689638

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2017/034740 WO2018056463A1 (ja) 2016-09-26 2017-09-26 ポリアミド、ポリアミドフィルム及びフィルムコンデンサ
PCT/JP2017/034670 WO2018056459A1 (ja) 2016-09-26 2017-09-26 ポリアミドの製造方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/034670 WO2018056459A1 (ja) 2016-09-26 2017-09-26 ポリアミドの製造方法

Country Status (3)

Country Link
JP (2) JPWO2018056459A1 (ja)
TW (2) TW201817771A (ja)
WO (2) WO2018056463A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220363828A1 (en) * 2021-01-26 2022-11-17 Anhui Agricultural University Preparation method of reprocessable thermosetting polyesteramide (pea), and thermosetting pea prepared thereby

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108878162B (zh) * 2018-06-19 2020-02-07 暨南大学 光纤超级电容器装置及其充放电状态自监测系统、方法
US20220033584A1 (en) * 2018-10-25 2022-02-03 Unitika Ltd. Flexible polyamide
CN114729119A (zh) * 2019-11-27 2022-07-08 尤尼吉可株式会社 柔软性聚酰胺膜

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3787371A (en) * 1970-12-10 1974-01-22 Hoechst Ag Crystal-clear polyamides prepared by condensing bis(aminomethyl)-tricyclo-decane with aromatic dicarboxylic acids
JPH04100996A (ja) * 1990-08-08 1992-04-02 Dic Hercules Chem Inc 紙塗工用樹脂および紙塗工用組成物
JPH0543682A (ja) * 1991-08-09 1993-02-23 Mitsui Toatsu Chem Inc 透明なポリアミドの製造方法
WO2007145324A1 (ja) * 2006-06-16 2007-12-21 Ube Industries, Ltd. ポリエーテルポリアミドエラストマー
WO2008123450A1 (ja) * 2007-03-30 2008-10-16 Ube Industries, Ltd. 樹脂組成物および成形物
JP2014122326A (ja) * 2012-11-22 2014-07-03 Toyo Ink Sc Holdings Co Ltd フェノール性水酸基含有ポリアミド、及びその熱硬化性樹脂組成物
JP2014208767A (ja) * 2013-03-28 2014-11-06 大阪ガスケミカル株式会社 フルオレン骨格を有するポリアミド樹脂及びその用途
WO2016001949A1 (ja) * 2014-07-02 2016-01-07 東洋インキScホールディングス株式会社 熱硬化性樹脂組成物、ポリアミド、接着性シート、硬化物およびプリント配線板

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009300688A (ja) 2008-06-12 2009-12-24 Hitachi Chem Co Ltd クラッド層形成用樹脂組成物およびこれを用いたクラッド層形成用樹脂フィルム、これらを用いた光導波路ならびに光モジュール
JP5556301B2 (ja) 2010-03-29 2014-07-23 日立化成株式会社 ノルボルナン骨格を有するポリアミド及びその製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3787371A (en) * 1970-12-10 1974-01-22 Hoechst Ag Crystal-clear polyamides prepared by condensing bis(aminomethyl)-tricyclo-decane with aromatic dicarboxylic acids
JPH04100996A (ja) * 1990-08-08 1992-04-02 Dic Hercules Chem Inc 紙塗工用樹脂および紙塗工用組成物
JPH0543682A (ja) * 1991-08-09 1993-02-23 Mitsui Toatsu Chem Inc 透明なポリアミドの製造方法
WO2007145324A1 (ja) * 2006-06-16 2007-12-21 Ube Industries, Ltd. ポリエーテルポリアミドエラストマー
WO2008123450A1 (ja) * 2007-03-30 2008-10-16 Ube Industries, Ltd. 樹脂組成物および成形物
JP2014122326A (ja) * 2012-11-22 2014-07-03 Toyo Ink Sc Holdings Co Ltd フェノール性水酸基含有ポリアミド、及びその熱硬化性樹脂組成物
JP2014208767A (ja) * 2013-03-28 2014-11-06 大阪ガスケミカル株式会社 フルオレン骨格を有するポリアミド樹脂及びその用途
WO2016001949A1 (ja) * 2014-07-02 2016-01-07 東洋インキScホールディングス株式会社 熱硬化性樹脂組成物、ポリアミド、接着性シート、硬化物およびプリント配線板

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220363828A1 (en) * 2021-01-26 2022-11-17 Anhui Agricultural University Preparation method of reprocessable thermosetting polyesteramide (pea), and thermosetting pea prepared thereby

Also Published As

Publication number Publication date
WO2018056459A1 (ja) 2018-03-29
TW201817770A (zh) 2018-05-16
TW201817771A (zh) 2018-05-16
JPWO2018056463A1 (ja) 2019-07-04
JPWO2018056459A1 (ja) 2019-07-04
JP7052725B2 (ja) 2022-04-12

Similar Documents

Publication Publication Date Title
JP7052725B2 (ja) ポリアミド、ポリアミドフィルム及びフィルムコンデンサ
US7629434B2 (en) Fluorine-containing polymerizable monomer and polymer compound using same
TWI508999B (zh) 二胺、聚醯亞胺、以及聚醯亞胺膜及其應用
TWI375095B (ja)
JP7323522B2 (ja) ポリイミド樹脂およびその製造方法、ならびにポリイミドフィルムおよびその製造方法
US20140148548A1 (en) Fluorine-Containing Polymerizable Monomer And Polymer Compound Using Same
JP2007091701A (ja) フルオレニル基およびエステル基を含有するテトラカルボン酸類、フルオレニル基含有ポリエステルイミド前駆体、およびフルオレニル基含有ポリエステルイミド、ならびにこれらの製造方法
JP2008231327A (ja) 高透明性を有するポリイミドおよびその製造方法
US20080221298A1 (en) Fluorinated Diamine and Polymer Made from the Same
EP3505510A1 (en) Diamine compound and method for producing same
WO2006043501A1 (ja) 含フッ素重合性単量体及びそれを用いた高分子化合物
TWI776960B (zh) 聚醯亞胺樹脂、聚醯亞胺清漆及聚醯亞胺薄膜
JP2017137443A (ja) ポリイミド、ポリイミド溶液、ポリイミドフィルムおよびポリイミドフィルムを含有するプラスチック基板材料
JP2023164496A (ja) ポリイミド及びポリイミドフィルム
JP6768234B2 (ja) ポリイミド及びポリイミドフィルム
JP4679357B2 (ja) 含フッ素ジアミンおよびそれを用いた重合体
JP2018193343A (ja) ジアミンおよびポリイミド、並びにそれらの利用
TWI654183B (zh) Acid dianhydride and its utilization
JP3956034B2 (ja) オリゴアニリンユニットを有するジアミン及びポリイミド
JP2021042324A (ja) ポリアミドの製造方法及びポリアミドフィルムの製造方法
JP2023094615A (ja) ジアミン化合物およびその作製方法、ジアミン化合物で形成される高分子およびその用途
JP2011074287A (ja) ポリイミド、その製造方法及びポリアミド酸
TW202342642A (zh) 順丁烯二醯亞胺化合物、順丁烯醯胺酸化合物、固化性組成物、固化物、電子設備、順丁烯二醯亞胺化合物的製造方法及順丁烯醯胺酸化合物的製造方法
JP2010111783A (ja) ポリイミド、その製造方法及びポリアミド酸
JP2019059701A (ja) 新規な含フッ素ジアミンおよび含フッ素ジニトロ化合物、それを用いた含フッ素ポリアミック酸および含フッ素ポリイミド

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17853230

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018540350

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17853230

Country of ref document: EP

Kind code of ref document: A1