WO2018056250A1 - オリゴシランの製造方法 - Google Patents

オリゴシランの製造方法 Download PDF

Info

Publication number
WO2018056250A1
WO2018056250A1 PCT/JP2017/033667 JP2017033667W WO2018056250A1 WO 2018056250 A1 WO2018056250 A1 WO 2018056250A1 JP 2017033667 W JP2017033667 W JP 2017033667W WO 2018056250 A1 WO2018056250 A1 WO 2018056250A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
oligosilane
transition element
hydrosilane
catalyst layer
Prior art date
Application number
PCT/JP2017/033667
Other languages
English (en)
French (fr)
Inventor
清志 埜村
内田 博
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to JP2018541064A priority Critical patent/JP6909225B2/ja
Priority to CN201780059057.0A priority patent/CN109803921B/zh
Priority to KR1020197008667A priority patent/KR20190041512A/ko
Priority to US16/335,990 priority patent/US20200062602A1/en
Publication of WO2018056250A1 publication Critical patent/WO2018056250A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0242Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly vertical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/28Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/30Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing iron group metals, noble metals or copper
    • B01J29/44Noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing iron group metals, noble metals or copper
    • B01J29/46Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/48Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing arsenic, antimony, bismuth, vanadium, niobium tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0063Granulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/001Controlling catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/008Details of the reactor or of the particulate material; Processes to increase or to retard the rate of reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0207Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly horizontal
    • B01J8/0221Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly horizontal in a cylindrical shaped bed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0285Heating or cooling the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0292Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds with stationary packing material in the bed, e.g. bricks, wire rings, baffles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/04Hydrides of silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00026Controlling or regulating the heat exchange system
    • B01J2208/00035Controlling or regulating the heat exchange system involving measured parameters
    • B01J2208/00044Temperature measurement
    • B01J2208/00061Temperature measurement of the reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00168Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00168Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles
    • B01J2208/00212Plates; Jackets; Cylinders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/0053Controlling multiple zones along the direction of flow, e.g. pre-heating and after-cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/74Noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/76Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/78Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/78Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J29/7884TON-type, e.g. Theta-1, ISI-1, KZ-2, NU-10 or ZSM-22

Definitions

  • the present invention relates to a method for producing oligosilane.
  • Oligosilanes such as hexahydrodisilane (Si 2 H 6 , hereinafter abbreviated as “disilane”) and octahydrotrisilane (Si 3 H 8 , hereafter abbreviated as “trisilane”) are tetrahydro It has a higher reactivity than silane (SiH 4 , hereinafter sometimes abbreviated as “monosilane”), and is a very useful compound as a precursor for forming amorphous silicon or a silicon film.
  • Non-Patent Document 1 acid decomposition method of magnesium silicide (see Non-Patent Document 1), reduction method of hexachlorodisilane (see Non-Patent Document 2), discharge method of tetrahydrosilane (see Patent Document 1), heat of silane A decomposition method (see Patent Documents 2 and 3), a dehydrogenative condensation method of hydrosilane such as tetrahydrosilane using a catalyst (see Patent Documents 4 to 10), and the like have been reported.
  • the oligosilane production method utilizing the hydrosilane dehydrogenation condensation method is an industrially superior method that can produce oligosilane at a relatively low cost using raw materials that are inexpensive and readily available. As a result, there was room for improvement regarding the rate and selectivity of the desired oligosilane.
  • An object of this invention is to provide the manufacturing method of the oligosilane which can manufacture the target oligosilane more efficiently.
  • the inventors of the present invention controlled oligosilane by controlling the reaction process so as to satisfy specific conditions in the hydrosilane dehydrogenation condensation reaction for generating oligosilane from hydrosilane. Has been found to be more efficient and the present invention has been completed.
  • An oligosilane comprising a reaction step of introducing a fluid containing hydrosilane into a continuous reactor having a catalyst layer therein, generating oligosilane from the hydrosilane, and discharging the fluid containing the oligosilane from the reactor
  • a manufacturing method comprising: The method for producing oligosilane, wherein the reaction step is a step satisfying all of the following conditions (i) to (iii): (I) The temperature at the inlet of the catalyst layer of the fluid containing the hydrosilane is higher than the temperature at the outlet of the catalyst layer of the fluid containing the oligosilane.
  • the temperature of the fluid containing the hydrosilane at the inlet of the catalyst layer is 200 to 400 ° C.
  • the temperature of the fluid containing the oligosilane at the outlet of the catalyst layer is 50 to 300 ° C.
  • ⁇ 3> The oligosilane according to ⁇ 1> or ⁇ 2>, wherein the fluid containing hydrosilane is a gas containing hydrogen gas, and the concentration of the hydrogen gas in the fluid containing hydrosilane is 1 to 40 mol%.
  • ⁇ 4> The method for producing an oligosilane according to any one of ⁇ 1> to ⁇ 3>, wherein the concentration of the hydrosilane in the fluid containing the hydrosilane is 20 mol% to 95 mol%.
  • ⁇ 5> The method for producing an oligosilane according to any one of ⁇ 1> to ⁇ 4>, wherein the fluid containing the hydrosilane is a gas, and the pressure at the catalyst layer inlet is 0.1 to 10 MPa.
  • ⁇ 6> The method for producing an oligosilane according to any one of ⁇ 1> to ⁇ 5>, wherein the hydrosilane is tetrahydrosilane, and the oligosilane includes hexahydrodisilane.
  • the catalyst layer has a periodic table group 3 transition element, group 4 transition element, group 5 transition element, group 6 transition element, group 7 transition element, group 8 on the surface and / or inside of the support.
  • ⁇ 1> to ⁇ 6> comprising a catalyst containing at least one transition element selected from the group consisting of Group transition elements, Group 9 transition elements, Group 10 transition elements, and Group 11 transition elements
  • the manufacturing method of the oligosilane in any one.
  • the carrier is at least one selected from the group consisting of silica, alumina, titania, zirconia, zeolite, and activated carbon.
  • the zeolite has pores having a minor axis of 0.41 nm or more and a major axis of 0.74 nm or less.
  • the carrier is a spherical or columnar compact of a powder containing zeolite having a minor axis of 0.41 nm or more and a major axis of 0.74 nm or less, and alumina, and the content of the alumina ( ⁇ 10>).
  • the transition elements are Group 4 transition elements, Group 5 transition elements, Group 6 transition elements, Group 8 transition elements, Group 9 transition elements, Group 10 transition elements, and Group 11 of the periodic table
  • the transition element is at least one transition element selected from the group consisting of Group 5 transition elements, Group 6 transition elements, Group 9 transition elements, and Group 10 transition elements of the periodic table.
  • the catalyst further includes zeolite as a support, and at least one typical element selected from the group consisting of Group 1 typical elements and Group 2 typical elements in the periodic table on the surface and / or inside of the zeolite. The method for producing an oligosilane according to any one of ⁇ 7> to ⁇ 13>.
  • oligosilane can be produced more efficiently.
  • a fluid containing hydrosilane is introduced into a continuous reactor having a catalyst layer therein,
  • This method includes a reaction step (hereinafter, may be abbreviated as “reaction step”) in which oligosilane is produced from hydrosilane and fluid containing oligosilane is discharged from the reactor, and the reaction steps are the following (i) to (iii): It is a process that satisfies all of the conditions (1).
  • the temperature at the inlet of the catalyst layer of the fluid containing the hydrosilane is higher than the temperature at the outlet of the catalyst layer of the fluid containing the oligosilane.
  • the temperature of the fluid containing the hydrosilane at the inlet of the catalyst layer is 200 to 400 ° C.
  • the temperature of the fluid containing the oligosilane at the outlet of the catalyst layer is 50 to 300 ° C.
  • the inventors of the present invention can produce oligosilane more efficiently by controlling so as to satisfy all the above conditions (i) to (iii) in the dehydrogenative condensation reaction of hydrosilane that generates oligosilane from hydrosilane. I found out that I can do it.
  • hydrosilane is a silane compound having at least one silicon-hydrogen (Si—H) bond
  • oligosilane is a silane oligomer in which a plurality (2 to 5) of (mono) silanes are condensed.
  • dehydrogenation condensation of hydrosilane is expressed by the following reaction formula, and by the condensation of hydrosilanes from which hydrogen molecules (H 2 ) are eliminated, silicon-silicon (Si—Si ) It means a reaction in which a bond is formed.
  • the reaction step in the production method of the present invention is a step of generating oligosilane from hydrosilane in a continuous reactor provided with a catalyst layer inside, and can be performed using, for example, the reactor shown in FIG. .
  • the reactor 101 is connected to an introduction pipe 102 and a lead-out pipe 103, and is a continuous reactor capable of simultaneously charging a raw material hydrosilane and discharging a product oligosilane.
  • a catalyst layer 106 is provided inside the reactor 101 so as to be in contact with the fluid, and the fluid that has passed through the catalyst layer 106 can be discharged.
  • the above-mentioned conditions (i) to (iii) relate to “the temperature at the inlet of the catalyst layer of the fluid containing hydrosilane” and “the temperature at the outlet of the catalyst layer of the fluid containing oligosilane”.
  • the temperature at the inlet of the fluid catalyst layer is the temperature of the fluid 104 containing hydrosilane immediately before contacting the catalyst layer 106, and the "temperature at the outlet of the catalyst layer of the fluid containing oligosilane” is immediately after being discharged from the catalyst layer 106. It becomes the temperature of the fluid 105 containing the oligosilane.
  • silane compound having n silicon atoms When a silane compound having n silicon atoms is introduced as a raw material into this continuous reactor and reacted, the silane compound having (n + 1) silicon atoms is discharged as a main product from the outlet. As described above, the appearance is a dehydrogenation reaction.
  • monosilane (tetrahydrosilane) is used as a raw material, monosilane to silylene and hydrogen
  • disilane hexahydrodisilane
  • disilane hexahydrodisilane
  • silane (tetrahydrosilane) the produced silylene reacts with silanes and grows (when monosilane (tetrahydrosilane) is used as a raw material, silylene and monosilane (tetrahydrosilane) react to produce disilane (hexahydrodisilane).
  • silylene and disilane (hexahydrodisilane) react to produce trisilane (octahydrotrisilane).
  • the concentration of tetrahydrosilane as a raw material is high near the inlet of the catalyst layer and low near the outlet of the catalyst layer, while the concentration of hexahydrodisilane as a product is low at the inlet of the catalyst layer (monosilane is the raw material).
  • a concentration gradient occurs in which the concentration of disilane at the inlet is zero if the product is not recycled, and increases near the outlet of the catalyst layer.
  • oligosilane such as hexahydrodisilane has higher reactivity than tetrahydrosilane, it is controlled so as to satisfy all the above conditions (i) to (iii), that is, near the entrance of the catalyst layer having a high tetrahydrosilane concentration.
  • the target oligosilane By controlling the temperature near the outlet of the catalyst layer, where the accumulated concentration of hexahydrodisilane and higher oligosilane is increased, the reactivity of tetrahydrosilane is reduced, but the higher reactivity By suppressing the side reaction derived from the further dehydrogenation (via silylene) reaction of oligosilane such as hexahydrodisilane, the target oligosilane can be produced more efficiently.
  • the “temperature at the inlet of the catalyst layer of the fluid containing hydrosilane” means the temperature of the fluid at the boundary where the catalyst layer appears.
  • a thermocouple or the like is installed at a position that is substantially the same as the boundary of the layer, and the observed temperature can be set as the temperature of the fluid at the inlet of the catalyst layer.
  • the “temperature at the outlet of the catalyst layer of the fluid containing oligosilane” is, for example, a thermocouple or the like installed at a position where the temperature of the fluid is substantially the same as the boundary of the catalyst layer, as in the thermocouple 108 of FIG.
  • the observed temperature can be the temperature of the fluid at the outlet of the catalyst layer.
  • temperature measurement by the thermocouple can be considered as the temperature of the fluid. Needless to say, the temperature can be measured by other methods.
  • hydrosilane “oligosilane”, “reaction process”, and other processes will be described in detail.
  • the hydrosilane is not particularly limited as long as it is a compound having at least one silicon-hydrogen (Si—H) bond, but a substituent (atom) bonded to a silicon atom other than a hydrogen atom may be a carbon atom.
  • hydrocarbon groups of 1 to 6 (including saturated hydrocarbon groups, unsaturated hydrocarbon groups, aromatic hydrocarbon groups, etc.).
  • Examples of the hydrosilane include tetrahydrosilane (SiH 4 ), methyltrihydrosilane, ethyltrihydrosilane, phenyltrihydrosilane, and dimethyldihydrosilane. What is necessary is just to select the hydrosilane which is a raw material according to the oligosilane to manufacture.
  • the target oligosilane is not particularly limited as long as it is a silane oligomer in which a plurality (2 to 5) (mono) silanes are condensed, and has a branched structure, a crosslinked structure, a cyclic structure, and the like. There may be.
  • the number of silicon atoms in the oligosilane is preferably 2 to 4, more preferably 2 to 3, and still more preferably 2 (when monosilane is used as hydrosilane).
  • oligosilanes As oligosilanes, hexahydrodisilane (Si 2 H 6 ), octahydrotrisilane (Si 3 H 8 ), decahydrotetrasilane (Si 4 H 10 ), dimethyltetrahydrodisilane ((CH 3 ) 2 Si 2 H 4 ) , Tetramethyldihydrodisilane (CH 3 ) 4 Si 2 H 2 ) and the like.
  • the reaction step is a step that satisfies all the conditions (i) to (iii) described above, and the specific conditions of the temperature at the inlet of the catalyst layer of the fluid containing hydrosilane and the temperature at the outlet of the catalyst layer of the fluid containing oligosilane are described.
  • the temperature is not particularly limited as long as (i) to (iii) are satisfied, and can be appropriately selected depending on the purpose.
  • Temperature difference at the inlet of the catalyst layer of the fluid containing hydrosilane and the outlet of the catalyst layer of the fluid containing oligosilane Is preferably 10 ° C. or higher, more preferably 30 ° C. or higher, further preferably 50 ° C. or higher, preferably 200 ° C. or lower, more preferably 170 ° C. or lower, and further preferably 150 ° C. or lower.
  • the temperature at the inlet of the catalyst layer of the fluid containing hydrosilane is 200 to 400 ° C., preferably 220 ° C.
  • the temperature at the outlet of the catalyst layer of the fluid containing oligosilane is 50 to 300 ° C., preferably 80 ° C. or higher, more preferably 100 ° C. or higher, preferably 250 ° C or lower, more preferably 200 ° C or lower.
  • oligosilane can be produced more efficiently when the temperature is within the above range.
  • the fluid containing hydrosilane is heated by an external heat source, and the temperature of the catalyst layer is controlled by means of temperature control [cooling] (such as circulating a refrigerant through a jacket or the like) so that the outlet temperature of the fluid catalyst layer becomes lower than the inlet temperature.
  • temperature control such as circulating a refrigerant through a jacket or the like
  • a catalyst layer filled with a catalyst is provided on the downstream side of a reactor in which a fluid is circulated, and a fluid preheating zone filled with a filler (such as glass beads) that is not filled with catalyst or has no catalytic activity is provided on the upstream side.
  • a filler such as glass beads
  • temperature control of the catalyst layer for controlling the inlet / outlet temperature of the fluid catalyst layer will be described in detail with a specific example.
  • the temperature of the fluid can be lowered by temperature control [cooling] means set outside the reactor through the wall surface of the reactor.
  • the reactor 201 in FIG. 2 (A) has a structure in contact with one temperature control [cooling] means 206 as a whole from the inlet to the outlet, and the temperature control [cooling] means 306 in FIG.
  • the temperature control [cooling] means 406 in FIG. 4A can change the temperature outside the reactor stepwise because the temperature control [cooling] means is divided into a plurality of parts in the longitudinal direction of the reactor. It is.
  • temperature control [cooling] means for lowering the temperature of the fluid flowing through the catalyst layer inflow of the refrigerant into the jacket reactor can be mentioned.
  • the refrigerant include water vapor; organic refrigerants such as silicone oil, linear paraffin, biphenyl, biphenyl ether, and dibenzyltoluene; inorganic refrigerants such as a mixture of sodium nitrite, sodium nitrate, and potassium nitrate.
  • the reaction tube is thin and small scale as in this embodiment described later, it can be cooled by air cooling (in this case, air corresponds to a refrigerant) using a commercially available tube furnace or the like.
  • a cooling tube such as a coil
  • the temperature outside the reactor is usually 20 depending on the fluid temperature at the inlet of the catalyst layer and the fluid temperature at the outlet.
  • the temperature control [cooling] means (jacket) If the temperature is constant, the temperature of the fluid gradually decreases, so that the difference ( ⁇ T) between the fluid temperature and the reactor external temperature becomes small, and the efficiency of heat exchange deteriorates. Therefore, as described above, FIG. As shown in FIG.
  • the temperature at the inlet of the catalyst layer of the fluid containing hydrosilane and the temperature outside the reactor is more preferably 20 ° C. or more, and further preferably 50 ° C. That's it. Within the above range, oligosilane can be produced more efficiently.
  • the temperature control [cooling] means such as a jacket can be arranged at a position overlapping with at least a part of the catalyst layer.
  • the upstream side of the reactor 501 is a preheating zone
  • the catalyst layer 507 is installed on the downstream side, and the temperature rises up to the catalyst layer inlet temperature, which becomes the reaction zone, and the reactor in which the catalyst layer is arranged. The temperature is lowered efficiently by dividing the outer jacket.
  • the reaction step is a step including introducing a fluid containing hydrosilane into a continuous reactor having a catalyst layer therein, but the concentration of the hydrosilane in the fluid to be introduced, the state of the fluid, other than hydrosilane contained in the fluid
  • the simple substance (carrier gas and the like described later) or the compound, the pressure of the fluid and the like are not particularly limited and can be appropriately selected according to the purpose.
  • the concentration of hydrosilane at the catalyst layer inlet in the fluid is usually 20 mol% or more, preferably 30 mol% or more, more preferably 40 mol% or more, preferably 95 mol% or less, more preferably 90 mol% or less. is there. Within the above range, oligosilane can be produced more efficiently.
  • the fluid containing the raw material hydrosilane is preferably a gas, and more preferably a gas containing a carrier gas.
  • the carrier gas include nitrogen gas, inert gas such as argon gas, and hydrogen gas, but it is particularly preferable that hydrogen gas is included.
  • Dihydrocondensation of tetrahydrosilane (SiH 4 ) produces disilane (Si 2 H 6 ) as shown in the following reaction formula (a), but a part of the generated disilane is represented by the following reaction formula (b ) Is considered to be decomposed into tetrahydrosilane (SiH 4 ) and dihydrosilylene (SiH 2 ).
  • the produced dihydrosilylene is polymerized as shown in the following reaction formula (c) to form solid polysilane (SiH 2 ) n , and the yield of oligosilane is considered to decrease.
  • reaction formula (d) solid polysilane
  • tetrahydrosilane is produced from dihydrosilylene as shown in the following reaction formula (d), and production of polysilane is suppressed, so that oligosilane can be produced stably for a long time. it is conceivable that.
  • the concentration of the hydrogen gas is preferably 1 mol% or more, more preferably 3 mol% or more, and even more preferably 5 mol% or more at the inlet of the catalyst layer. Yes, preferably 40 mol% or less, more preferably 30 mol% or less, still more preferably 20 mol% or less. Within the above range, oligosilane can be produced more efficiently.
  • the pressure at the catalyst layer inlet in the reactor is preferably 0.1 MPa or more, more preferably 0.15 MPa or more, still more preferably 0.2 MPa or more in absolute pressure, Preferably it is 10 MPa or less, More preferably, it is 5 MPa or less, More preferably, it is 3 MPa or less.
  • the partial pressure of hydrosilane is preferably 0.0001 MPa or more, more preferably 0.0005 MPa or more, further preferably 0.001 MPa or more, preferably 10 MPa or less, more preferably 5 MPa or less, and further preferably 1 MPa or less. is there. When it is within the above range, oligosilane can be produced more efficiently.
  • the partial pressure of hydrogen gas is 0.05 to 5, preferably 0.1 to 4 with respect to the sum of the partial pressure of hydrosilane and the partial pressure of oligosilane. More preferably, it is 0.02 to 2 (hydrogen gas / (hydrosilane + oligosilane)).
  • the contact time with the catalyst is short (the flow rate is fast), the conversion rate is too low, and if it is too long, polysilane is easily generated.
  • the contact time is preferably in the range of 0.01 seconds to 30 minutes. When the contact time is short, heat exchange through the reaction tube wall may not catch up, so it is preferable to install a coil through which a refrigerant passes in the reaction tube to smoothly lower the reaction temperature.
  • the reaction step is a step including discharging a fluid containing oligosilane from the reactor, and examples of the simple substance or compound other than oligosilane contained in the fluid include unreacted hydrosilane and carrier gas.
  • the reaction step is a step including introducing a fluid containing hydrosilane into a continuous reactor having a catalyst layer therein.
  • a fluid containing hydrosilane into a continuous reactor having a catalyst layer therein.
  • the catalyst is not particularly limited as long as it can be used for the dehydrogenative condensation reaction of hydrosilane.
  • the catalyst is a heterogeneous catalyst including a support, and a periodic table is formed on the surface and / or inside of the support.
  • Group 3 transition element, Group 4 transition element, Group 5 transition element, Group 6 transition element, Group 7 transition element, Group 8 transition element, Group 9 transition element, Group 10 transition element, and Group 11 A catalyst containing at least one transition element selected from the group consisting of group transition elements (hereinafter sometimes abbreviated as “transition element”) is particularly preferred. It is considered that such a transition element promotes dehydrogenative condensation of hydrosilane and efficiently produces oligosilane.
  • the surface and / or the inside of the carrier has periodic group 3 transition elements, group 4 transition elements, group 5 transition elements, group 6 transition elements, group 7 transition elements, group 8 transition elements,
  • a catalyst containing at least one transition element selected from the group consisting of a Group 9 transition element, a Group 10 transition element, and a Group 11 transition element (hereinafter sometimes abbreviated as “transition element-containing catalyst”). Will be described in detail.
  • Examples of Group 3 transition elements in the transition element-containing catalyst include scandium (Sc), yttrium (Y), lanthanoid (La), and samarium (Sm).
  • Examples of Group 4 transition elements include titanium (Ti), zirconium (Zr), and hafnium (Hf).
  • Examples of Group 5 transition elements include vanadium (V), niobium (Nb), and tantalum (Ta).
  • Examples of Group 6 transition elements include chromium (Cr), molybdenum (Mo), and tungsten (W).
  • Examples of the Group 7 transition element include manganese (Mn) and rhenium (Re).
  • Group 8 transition elements include iron (Fe), ruthenium (Ru), and osmium (Os).
  • Examples of the Group 9 transition element include cobalt (Co), rhodium (Rh), and iridium (Ir).
  • Examples of the Group 10 transition element include nickel (Ni), palladium (Pd), and platinum (Pt).
  • transition elements include tungsten (W), vanadium (V), molybdenum (Mo), cobalt (Co), nickel (Ni), palladium (Pd), and platinum (Pt).
  • particularly preferable transition elements are tungsten (W), molybdenum (Mo), cobalt (Co), and platinum (Pt).
  • the state and composition of the transition element in the transition element-containing catalyst are not particularly limited.
  • the state of the metal (single metal, alloy) whose surface may be oxidized, metal oxide (single metal oxide, composite metal oxidation) State are also supported on the surface of the support (outer surface and / or in the pores) in the form of metal or metal oxide, or introduced with a transition element inside the support (support skeleton) by ion exchange or compounding Is mentioned.
  • the metals whose surface may be oxidized include scandium, yttrium, lanthanoid, samarium, titanium, zirconium, hafnium, vanadium, niobium, tantalum, chromium, molybdenum, tungsten, manganese, technetium, rhenium, iron, ruthenium, osmium, Examples include cobalt, rhodium, iridium, nickel, palladium, platinum, copper, silver, and gold.
  • metal oxides include scandium oxide, yttrium oxide, lanthanoid oxide, samarium oxide, titanium oxide, zirconium oxide, hafnium oxide, vanadium oxide, niobium oxide, tantalum oxide, chromium oxide, molybdenum oxide, tungsten oxide, manganese oxide, and technetium oxide. , Rhenium oxide, iron oxide, ruthenium oxide, osmium oxide, cobalt oxide, rhodium oxide, iridium oxide, nickel oxide, palladium oxide, platinum oxide, copper oxide, silver oxide, gold oxide, and complex oxides thereof. .
  • Examples of the method of supporting the transition element on the carrier include an impregnation method using a precursor in a solution state, an ion exchange method, a method of volatilizing the precursor by sublimation or the like and depositing it on the carrier.
  • the impregnation method is a method in which the carrier is brought into contact with a solution in which the transition element-containing compound is dissolved, and the transition element-containing compound is adsorbed on the surface of the carrier.
  • the solvent pure water is usually used, but organic solvents such as methanol, ethanol, acetic acid and dimethylformamide can be used as long as they can dissolve the transition element compound.
  • the ion exchange method is a method in which a carrier having an acid point such as zeolite is brought into contact with a solution in which ions of the transition element are dissolved, and the ion of the transition element is introduced into the acid point of the carrier.
  • a carrier having an acid point such as zeolite
  • organic solvents such as methanol, ethanol, acetic acid and dimethylformamide can also be used as long as they can dissolve the transition element.
  • the vapor deposition method is a method in which the transition element itself or the transition element oxide is heated and volatilized by sublimation or the like and vapor-deposited on the carrier. After the impregnation method, ion exchange method, vapor deposition method, etc., treatment such as drying, firing in a reducing atmosphere or oxidizing atmosphere can be performed to prepare a catalyst in a desired metal or metal oxide state.
  • the precursor of the transition element-containing catalyst in the case of molybdenum, ammonium heptamolybdate, silicomolybdic acid, phosphomolybdic acid, molybdenum chloride, molybdenum oxide and the like can be mentioned.
  • tungsten examples thereof include ammonium paratungstate, phosphotungstic acid, silicotungstic acid, and tungsten chloride.
  • titanium titanium oxysulfate, titanium chloride, tetraethoxy titanium and the like can be mentioned.
  • vanadium examples include vanadium oxysulfate and vanadium chloride.
  • cobalt examples include cobalt nitrate and cobalt chloride.
  • nickel nickel nitrate, nickel chloride and the like can be mentioned.
  • palladium examples include palladium nitrate and palladium chloride.
  • platinum diammine dinitroplatinum (II) nitric acid solution, tetraammineplatinum (II) chloride and the like can be mentioned.
  • the specific type of the support for the transition element-containing catalyst is not particularly limited, and examples thereof include silica, alumina, titania, zirconia, silica-alumina, zeolite, activated carbon, aluminum phosphate, and the like. Silica, alumina, titania, zirconia, zeolite Any of activated carbon is preferable. Among these, zeolite is preferable, zeolite having a minor axis of 0.41 nm or more and a major axis of 0.74 nm or less is preferable, and zeolite having a minor axis of 0.43 nm or more and a major axis of 0.69 nm or less is particularly preferable.
  • the pore space of zeolite is considered to work as a reaction field for dehydrogenative condensation, and the pore size of “minor axis 0.41 nm or more and major axis 0.74 nm or less” suppresses excessive polymerization, and oligosilane It is considered optimal for improving the selectivity.
  • zeolite having pores with a minor axis of 0.41 nm or more and a major axis of 0.74 nm or less actually means only zeolites having “minor pores of 0.41 nm or more and major axis of 0.74 nm or less”.
  • the minor axis of the zeolite is 0.41 nm or more, preferably 0.43 nm or more, more preferably 0.45 nm or more, and particularly preferably 0.47 nm or more.
  • the major axis of the zeolite is 0.74 nm or less, preferably 0.69 nm or less, more preferably 0.65 nm or less, and particularly preferably 0.60 nm or less. If the pore diameter of the zeolite is constant due to the circular cross-sectional structure of the pores, the pore diameter is considered to be “0.41 nm to 0.74 nm”. In the case of a zeolite having plural kinds of pore diameters, the pore diameter of at least one kind of pores may be “0.41 nm or more and 0.74 nm or less”.
  • zeolites are the structural codes compiled in the database of the International Zeolite Association, AFR, AFY, ATO, BEA, BOG, BPH, CAN, CON, DFO, EON, EZT, FAU , FER, GON, IMF, ISV, ITH, IWR, IWV, IWW, LTA, LTL, MEI, MEL, MFI, MOR, MWW, OBW, MOZ, MSE, MTT, MTW, NES, OFF, OSI, PON, SFF Zeolite corresponding to SFG, STI, STF, TER, TON, TUN, USI and VET is preferred.
  • Structural code is ATO, BEA, BOG, CAN, IMF, ITH, IWR, IWW, MEL, MFI, OBW, MSE, MTW, NES, OSI, PON, SFF, SFG, STF, STI, TER, TON, Zeolite corresponding to TUN and VET is more preferable. Zeolite whose structural code corresponds to BEA, MFI, or TON is particularly preferred.
  • Zeolite whose structural code corresponds to MFI includes: * ZSM-5, [As-Si-O] -MFI, [Fe-Si-O] -MFI, [Ga-Si-O] -MFI, AMS- 1B, AZ-1, Bor-C, Boralite C, Encilite, FZ-1, LZ-105, Monoclinic H-ZSM-5, Mutanite, NU-4, NU-5, Siliconelite, TS-1, TSZ, TSZ- III, TZ-01, USC-4, USI-108, ZBH, ZKQ-1B, ZMQ-TB, organic-free ZSM-5, etc.
  • zeolite (* is a polymorphic mixed crystal having three types of structures) It represents.)
  • zeolite whose structural code corresponds to TON include Theta-1, ISI-1, KZ-2, NU-10, ZSM-22 and the like. Particularly preferred zeolites are ZSM-5, beta, ZSM-22.
  • the silica / alumina ratio (mole / mole ratio) is preferably 5 to 10000, more preferably 10 to 2000, and particularly preferably 20 to 1000.
  • the total content of transition elements in the transition element-containing catalyst is preferably 0.01% by mass or more, more preferably 0.1% by mass. % Or more, more preferably 0.5% by mass or more, preferably 50% by mass or less, more preferably 20% by mass or less, and further preferably 10% by mass or less.
  • a good reaction conversion rate can be secured, and side reactions due to excessive use can be suppressed, so that oligosilane can be produced more efficiently.
  • the transition element-containing catalyst is preferably in the form of a molded body in which the powder is formed into a spherical shape, a cylindrical shape (pellet shape), a ring shape, or a honeycomb shape.
  • binders such as an alumina and a clay compound, in order to shape
  • the transition element-containing catalyst contains at least one typical element selected from the group consisting of Group 1 typical elements and Group 2 typical elements (hereinafter sometimes abbreviated as “typical elements”). Is preferred.
  • the state and composition of the typical element in the catalyst are not particularly limited, and examples thereof include a metal oxide (single metal oxide, composite metal oxide) and an ion state.
  • the catalyst is a heterogeneous catalyst including a support, the catalyst is supported in the form of a metal oxide or metal salt on the surface of the support (outer surface and / or inside the pores).
  • a material in which a typical element is introduced into (carrier skeleton) can be mentioned.
  • group 1 typical elements include lithium (Li), sodium (Na), potassium (K), rubidium (Rb), cesium (Cs), and francium (Fr).
  • Group 2 typical elements include beryllium (Be), magnesium (Mg), calcium (Ca), strontium (Sr), barium (Ba), and radium (Ra).
  • the method of blending the typical element into the transition element-containing catalyst include an impregnation method and an ion exchange method.
  • the impregnation method is a method in which a carrier is brought into contact with a solution in which a compound containing a typical element is dissolved, and the typical element is adsorbed on the surface of the carrier.
  • pure water is usually used, but organic solvents such as methanol, ethanol, acetic acid and dimethylformamide can be used as long as they can dissolve a compound containing a typical element.
  • the ion exchange method is a method in which a carrier having acid sites such as zeolite is brought into contact with a solution in which ions of typical elements are dissolved, and ions of typical elements are introduced into the acid sites of the carrier.
  • pure water is usually used, but organic solvents such as methanol, ethanol, acetic acid and dimethylformamide can be used as long as they dissolve typical element ions.
  • Examples of the solution containing lithium (Li) include lithium nitrate (LiNO 3 ) aqueous solution, lithium chloride (LiCl) aqueous solution, lithium sulfate (Li 2 SO 4 ) aqueous solution, lithium acetate (LiOCOCH 3 ) acetic acid solution, lithium acetate Ethanol solution and the like.
  • the solution in the case of incorporating sodium (Na), sodium chloride (NaCl) aqueous solution of sodium sulfate (Na 2 SO 4) aqueous solution of sodium nitrate (NaNO 3) solution, and the like.
  • Examples of the solution containing potassium (K) include potassium nitrate (KNO 3 ) aqueous solution, potassium chloride (KCl) aqueous solution, potassium sulfate (K 2 SO 4 ) aqueous solution, potassium acetate (KOCOCH 3 ) acetic acid solution, potassium acetate An ethanol solution etc. are mentioned.
  • Examples of the solution containing rubidium (Rb) include a rubidium chloride (RbCl) aqueous solution and a rubidium nitrate (KNO 3 ) aqueous solution.
  • Examples of the solution containing cesium (Cs) include a cesium chloride (CsCl) aqueous solution, a cesium nitrate (CsNO 3 ) aqueous solution, a cesium sulfate (Cs 2 SO 4 ) aqueous solution, and the like.
  • Examples of the solution for containing francium (Fr) include a francium chloride (FrCl) aqueous solution.
  • Examples of the solution containing calcium (Ca) include a calcium chloride (CaCl 2 ) aqueous solution and a calcium nitrate (Ca (NO 3 ) 2 ) aqueous solution.
  • Examples of the solution in the case of containing strontium (Sr) include a strontium nitrate (Sr (NO 3 ) 2 ) aqueous solution.
  • Examples of the solution in the case of containing barium (Ba) include an aqueous solution of barium chloride (BaCl 2 ), an aqueous solution of barium nitrate (Ba (NO 3 ) 2 ), and an acetic acid solution of barium acetate (Ba (OCOCH 3 ) 2 ). .
  • the total content of typical elements in the transition element-containing catalyst is preferably 0.01% by mass or more, more preferably 0.05% by mass or more. More preferably, it is 0.1% by mass or more, particularly preferably 0.5% by mass or more, more particularly preferably 1.0% by mass or more, most preferably 2.1% by mass or more, preferably 10% by mass or less. More preferably, it is 5 mass% or less, More preferably, it is 4 mass% or less. When it is within the above range, oligosilane can be produced more efficiently.
  • the transition element-containing catalyst may contain a periodic table Group 13 typical element.
  • the state and composition of the periodic table group 13 typical element in the catalyst are not particularly limited, the state of the metal (single metal, alloy) whose surface may be oxidized, metal oxide (single metal oxide, A state of a composite metal oxide).
  • metal oxide single metal oxide, A state of a composite metal oxide.
  • those supported on the surface of the carrier (outer surface and / or in the pores) in the form of a metal oxide typical elements of Group 13 of the periodic table are introduced into the inside (carrier skeleton) by ion exchange or complexation. Are listed.
  • Group 13 typical element of the periodic table it is possible to suppress the initial hydrosilane (monosilane) conversion to suppress excessive consumption and to increase the initial disilane selectivity. It can also be said that the catalyst life can be further extended by suppressing the initial conversion rate of hydrosilane.
  • Group 13 typical elements include aluminum (Al), gallium (Ga), indium (In), and thallium (Tl).
  • the blending method of the periodic table group 13 typical element into the transition element-containing catalyst is the same as in the case of the periodic table group 1 typical element.
  • Total content of group 13 typical elements of the periodic table in the transition element-containing catalyst (relative to the mass of the carrier containing the above-mentioned transition elements, the above-mentioned typical elements, and the group 13 typical elements of the periodic table) , Preferably 0.01% by mass or more, more preferably 0.05% by mass or more, further preferably 0.1% by mass or more, particularly preferably 0.5% by mass or more, more particularly preferably 1.0% by mass or more. Most preferably, the content is 2.1% by mass or more, preferably 10% by mass or less, more preferably 5% by mass or less, and still more preferably 4% by mass or less. When it is within the above range, oligosilane can be produced more efficiently.
  • zeolite is fixed to a fixed bed in a reaction tube of the reaction apparatus (conceptual diagram) shown in FIG. 6 and a reaction gas containing tetrahydrosilane diluted with helium gas or the like is circulated. went. The generated gas was analyzed with a TCD (thermal conductivity type) detector using a gas chromatograph GC-17A manufactured by Shimadzu Corporation.
  • TCD thermal conductivity type
  • Thermocouples were inserted from above and below the reaction tube, and the fluid temperatures at the catalyst layer inlet and outlet were measured.
  • the filter 10 of FIG. 6 is used for reaction gas sampling, in the examples, the reaction gas was directly introduced into the gas chromatograph for analysis without being particularly cooled and sampled. Since the reactor used for this evaluation is for testing and research purposes, it is equipped with a detoxifying device 13 for discharging the product out of the system in a safe manner.
  • ⁇ Preparation Example 2 100 g of distilled water and 2.38 g of Ba (NO 3 ) 2 (corresponding to 2.4 mass% supported in terms of Ba) were added to 50 g of Mo 1 mass% supported ZSM-5 (silica / alumina ratio 23) prepared in Preparation Example 1. And mixed at room temperature for 1 hour. Then, after drying at 110 ° C. for 4 hours in the air atmosphere, firing at 700 ° C. for 2 hours in the air atmosphere, MoSM-supported ZSM-5 containing 2.4% by mass of Ba (silica / alumina) A ratio 23) was obtained.
  • ⁇ Preparation Example 3> 3 g diameter pellet H-ZSM-5 (silica / alumina ratio 23, manufactured by Tosoh: product name HSZ varieties 822HOD3A, containing 18 to 22% by mass of alumina (SDS stated value)), 50 g of distilled water and Pt ( NH 3 ) 4 (NO 3 ) 2 nitric acid solution (Pt concentration 6.4% by mass: manufactured by N-Chemcat) 7.8 g (corresponding to 1% by mass supported in terms of Pt) was added and mixed at room temperature for 1 hour did. Then, after drying at 110 ° C., calcination was performed at 700 ° C. for 1 hour to obtain ZSM-5 (pellet shape) carrying Pt 1% by mass.
  • ⁇ Preparation Example 4> 3 g diameter pellet H-ZSM-5 (silica / alumina ratio 23, manufactured by Tosoh: product name HSZ variety 822HOD3A, containing 18 to 22% by mass of alumina (SDS value)), 50 g of distilled water, Co ( NO 3) corresponds to 1 wt% supported in a 2 ⁇ 6H 2 O 2.5g (Co equivalent) was added and mixed for 1 hour at room temperature. Then, after drying at 110 ° C., calcination was performed at 700 ° C. for 1 hour to obtain ZSM-5 (pellet shape) carrying Co 1% by mass.
  • Example 1 Tapping using a 10 mL graduated cylinder, weighed 10 cm 3 of ZSM-5 (pellet) carrying Mo 1% by mass prepared in Preparation Example 1 in the reaction tube, and used the vacuum pump to evacuate the air in the reaction tube. After removal, it was replaced with helium gas. Helium gas was circulated at a rate of 5 mL / min, and the two tubular furnaces were set to 300 ° C. for the upper tubular furnace and 100 ° C. for the lower tubular furnace.
  • Table 1 shows the set temperature of the tubular furnace after the elapse of time from when helium gas was stopped, the thermocouple (1) installed near the reaction tube (reaction zone) inlet, and the thermoelectric installed near the reaction tube (reaction zone) outlet. The measured temperature of pair (2) is shown.
  • the composition of the reaction gas is analyzed by gas chromatography, the conversion rate of tetrahydrosilane (monosilane), the yield of hexahydrodisilane (disilane), the selectivity of hexahydrodisilane (disilane), the empty space of hexahydrodisilane (disilane). Time yield (STY) was calculated. The results are also shown in Table 1.
  • contact (residence) time is the residence time of the gas flowing through the reactor, that is, the contact time of hydrosilane and catalyst.
  • Example 2 comparative example 2> In Example 2 and Comparative Example 2, except that the catalyst was changed to 10 cm 3 of ZSM-5 (silica / alumina ratio 23) supported by 1% by mass of Mo containing 2.4% by mass of Ba prepared in Preparation Example 2, respectively. The same operation as in Example 1 and Comparative Example 1 was performed. The results of Example 2 and Comparative Example 2 are shown in Tables 3 and 4, respectively.
  • Example 3 and Comparative Example 3 were carried out in the same manner as Example 1 and Comparative Example 1, respectively, except that the catalyst was changed to 10 cm 3 of PSM 1 mass% supported ZSM-5 (pellet) prepared in Preparation Example 3. The results of Example 3 and Comparative Example 3 are shown in Tables 5 and 6, respectively.
  • Example 4 comparative example 4> Example 4 and Comparative Example 4 were carried out in the same manner as Example 1 and Comparative Example 1, respectively, except that the catalyst was changed to 10 cm 3 of ZSM-5 (pellet-like) supported by Co 1% by mass prepared in Preparation Example 4.
  • the results of Example 4 and Comparative Example 4 are shown in Tables 7 and 8, respectively.
  • Example 5 and Comparative Example 5 were carried out in the same manner as Example 1 and Comparative Example 1, respectively, except that the catalyst was changed to 10 cm 3 of Mo 1% by mass beta (pellet) prepared in Preparation Example 5.
  • the results of Example 5 and Comparative Example 5 are shown in Table 9 (Example 5) and 10 (Comparative Example 5), respectively.
  • Comparative Example 6 was performed in the same manner as Comparative Example 5 except that the temperature of the tubular furnace at the upper part of the reaction tube was changed to 200 ° C. and the temperature of the tubular furnace at the lower part of the reaction tube was changed to 400 ° C. The results are shown in Table 11 (Comparative Example 6).
  • Comparative Examples 1 to 5 have higher initial activity than Examples 1 to 5, but the catalyst deactivation is fast and the reaction results are rapidly decreasing. Comparative Example 6 has low activity from the beginning, and its production efficiency is lower than those of Examples 1 to 5 and Comparative Examples 1 to 5.
  • Oligosilane produced by the production method of the present invention can be expected to be used as a production gas for silicon for semiconductors.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Catalysts (AREA)
  • Silicon Compounds (AREA)

Abstract

目的とするオリゴシランをより効率良く製造することができるオリゴシランの製造方法を提供することを目的とする。内部に触媒層を備えた連続式反応器にヒドロシランを含む流体を投入し、ヒドロシランからオリゴシランを生成させて、反応器からオリゴシランを含む流体を排出する反応工程を含むオリゴシランの製造方法において、反応工程が下記(i)~(iii)の全ての条件を満たすことにより、目的とするオリゴシランをより効率良く製造することができる。 (i)ヒドロシランを含む流体の触媒層の入口における温度が、オリゴシランを含む流体の触媒層の出口における温度よりも高い温度である。 (ii)ヒドロシランを含む流体の触媒層の入口における温度が、200~400℃である。 (iii)オリゴシランを含む流体の触媒層の出口における温度が、50~300℃である。

Description

オリゴシランの製造方法
 本発明は、オリゴシランの製造方法に関する。
 ヘキサヒドロジシラン(Si,以下、「ジシラン」と略す場合がある。)やオクタヒドロトリシラン(Si,以下、「トリシラン」と略す場合がある。)等のオリゴシランは、テトラヒドロシラン(SiH,以下、「モノシラン」と略す場合がある。)に比べて反応性が高く、アモルファスシリコンやシリコン膜を形成するための前駆体等として非常に有用な化合物である。
 オリゴシランを製造する方法としては、マグネシウムシリサイドの酸分解法(非特許文献1参照)、ヘキサクロロジシランの還元法(非特許文献2参照)、テトラヒドロシランの放電法(特許文献1参照)、シランの熱分解法(特許文献2、3参照)、並びに触媒を用いたテトラヒドロシラン等のヒドロシランの脱水素縮合法(特許文献4~10参照)等が報告されている。
米国特許第5478453号明細書 特許第4855462号明細書 特開平11-260729号公報 特開平03-183613号公報 特開平01-198631号公報 特開平02-184513号公報 特開平05-032785号公報 特表2013-506541号公報 国際公開第2015/060189号 国際公開第2015/090996号
Hydrogen Compounds of Silicon. I. The Preparation of Mono- and Disilane, WARREN C. JOHNSON and SAMPSON ISENBERG, J. Am. Chem. Soc., 1935, 57, 1349. The Preparation and Some Properties of Hydrides of Elements of the Fourth Group of the Periodic System and of their Organic Derivatives, A. E. FINHOLT,A. C. BOND,J R., K. E. WILZBACH and H. I. SCHLESINGER, J. Am. Chem. Soc., 1947, 69, 2692.
 ヒドロシランの脱水素縮合法を利用したオリゴシランの製造方法は、安価で入手しやすい原料を用いて、比較的低コストでオリゴシランを製造することができる工業的に優れた方法であるが、反応の転化率や目的とするオリゴシランの選択率に関して、改善の余地を残すものであった。
 本発明は、目的とするオリゴシランをより効率良く製造することができるオリゴシランの製造方法を提供することを目的とする。
 本発明者らは、上記の課題を解決すべく鋭意検討を重ねた結果、ヒドロシランからオリゴシランを生成させるヒドロシランの脱水素縮合反応において、特定の条件を満たすように反応工程を制御することで、オリゴシランをより効率良く製造することができることを見出し、本発明を完成させた。
 即ち、本発明は以下の通りである。
<1> 内部に触媒層を備えた連続式反応器にヒドロシランを含む流体を投入し、前記ヒドロシランからオリゴシランを生成させて、前記反応器から前記オリゴシランを含む流体を排出する反応工程を含むオリゴシランの製造方法であって、
 前記反応工程が、下記(i)~(iii)の全ての条件を満たす工程であることを特徴とする、オリゴシランの製造方法。
(i)前記ヒドロシランを含む流体の前記触媒層の入口における温度が、前記オリゴシランを含む流体の前記触媒層の出口における温度よりも高い温度である。
(ii)前記ヒドロシランを含む流体の前記触媒層の入口における温度が、200~400℃である。
(iii)前記オリゴシランを含む流体の前記触媒層の出口における温度が、50~300℃である。
<2>前記ヒドロシランを含む流体の前記触媒層の入口における温度が、前記ヒドロシランを含む流体の前記触媒層の出口における温度よりも10~200℃高い温度である、<1>に記載のオリゴシランの製造方法。
<3>前記ヒドロシランを含む流体が、水素ガスを含む気体であり、前記ヒドロシランを含む流体における前記水素ガスの濃度が、1~40モル%である、<1>又は<2>に記載のオリゴシランの製造方法。
<4>前記ヒドロシランを含む流体における前記ヒドロシランの濃度が、20モル%~95モル%である、<1>~<3>の何れかに記載のオリゴシランの製造方法。
<5>前記ヒドロシランを含む流体が気体であり、その触媒層入口における圧力が、0.1~10MPaである、<1>~<4>の何れかに記載のオリゴシランの製造方法。
<6>前記ヒドロシランがテトラヒドロシランであり、前記オリゴシランがヘキサヒドロジシランを含む、<1>~<5>の何れかに記載のオリゴシランの製造方法。
<7>前記触媒層が、担体の表面及び/又は内部に周期表第3族遷移元素、第4族遷移元素、第5族遷移元素、第6族遷移元素、第7族遷移元素、第8族遷移元素、第9族遷移元素、第10族遷移元素、及び第11族遷移元素からなる群より選択される少なくとも1種の遷移元素を含有する触媒を含む、<1>~<6>の何れかに記載のオリゴシランの製造方法。
<8>前記担体が、シリカ、アルミナ、チタニア、ジルコニア、ゼオライト、及び活性炭からなる群より選択される少なくとも1種である、<7>に記載のオリゴシランの製造方法。
<9>前記ゼオライトが、短径0.41nm以上、長径0.74nm以下の細孔を有する、<8>に記載のオリゴシランの製造方法。
<10>前記担体が、短径0.41nm以上、長径0.74nm以下の細孔を有するゼオライト、及びアルミナを含んだ粉体の球状又は円柱状の成形体であり、前記アルミナの含有量(アルミナを含まない前記担体100質量部に対して)が、10質量部以上30質量部以下である、<8>に記載のオリゴシランの製造方法。
<11>前記遷移元素が、周期表第4族遷移元素、第5族遷移元素、第6族遷移元素、第8族遷移元素、第9族遷移元素、第10族遷移元素、及び第11族遷移元素からなる群より選択される少なくとも1種の遷移元素である、<7>~<10>の何れかに記載のオリゴシランの製造方法。
<12>前記遷移元素が、周期表第5族遷移元素、第6族遷移元素、第9族遷移元素、及び第10族遷移元素からなる群より選択される少なくとも1種の遷移元素である、<11>に記載のオリゴシランの製造方法。
<13>前記遷移元素が、タングステン(W)、モリブデン(Mo)、コバルト(Co)、及び白金(Pt)からなる群より選択される少なくとも1種の遷移元素である、<12>に記載のオリゴシランの製造方法。
<14>前記触媒が、担体としてゼオライトを含み、前記ゼオライトの表面及び/又は内部に周期表第1族典型元素及び第2族典型元素からなる群より選択される少なくとも1種の典型元素をさらに含有する、<7>~<13>の何れかに記載のオリゴシランの製造方法。
 本発明によれば、オリゴシランをより効率良く製造することができる。
本発明の一態様であるオリゴシランの製造方法に利用することができる連続式反応器の断面図(概念図)である。 本発明の一態様であるオリゴシランの製造方法に利用することができる他の連続式反応器の断面図(A)および温度プロファイルを表した概念図(B)である。 本発明の一態様であるオリゴシランの製造方法に利用することができるさらに他の連続式反応器の断面図(A)および温度プロファイルを表した概念図(B)である。 本発明の一態様であるオリゴシランの製造方法に利用することができるさらに他の連続式反応器の断面図(A)および温度プロファイルを表した概念図(B)である。 本発明の一態様であるオリゴシランの製造方法に利用することができるさらに他の連続式反応器の断面図(A)および温度プロファイルを表した概念図(B)である。 本発明の実施例及び比較例に使用した反応装置の概念図である。
 本発明の詳細を説明するに当たり、具体例を挙げて説明するが、本発明の趣旨を逸脱しない限り以下の内容に限定されるものではなく、適宜変更して実施することができる。また、本明細書に記載された各態様は、実施可能な範囲内で、他の態様により説明された特徴と組み合わせることができる。
<オリゴシランの製造方法>
 本発明の一態様であるオリゴシランの製造方法(以下、「本発明の製造方法」と略す場合がある。)は、内部に触媒層を備えた連続式反応器にヒドロシランを含む流体を投入し、ヒドロシランからオリゴシランを生成させて、反応器からオリゴシランを含む流体を排出する反応工程(以下、「反応工程」と略す場合がある。)を含む方法であり、反応工程が下記(i)~(iii)の全ての条件を満たす工程であることを特徴とする。
(i)前記ヒドロシランを含む流体の前記触媒層の入口における温度が、前記オリゴシランを含む流体の前記触媒層の出口における温度よりも高い温度である。
(ii)前記ヒドロシランを含む流体の前記触媒層の入口における温度が、200~400℃である。
(iii)前記オリゴシランを含む流体の前記触媒層の出口における温度が、50~300℃である。
 本発明者らは、ヒドロシランからオリゴシランを生成させるヒドロシランの脱水素縮合反応において、前述の(i)~(iii)の全ての条件を満たすように制御することで、オリゴシランをより効率良く製造することができることを見出したのである。
 本明細書において、「ヒドロシラン」は、ケイ素-水素(Si-H)結合を少なくとも1つ有するシラン化合物を、「オリゴシラン」は(モノ)シランが複数個(2~5個)縮合したシランのオリゴマーを意味し、ヒドロシランの「脱水素縮合」は、式の上では下記反応式で表されるように、水素分子(H)が脱離するヒドロシラン同士の縮合によって、ケイ素-ケイ素(Si-Si)結合が形成する反応を意味するものである。
Figure JPOXMLDOC01-appb-C000001
 本発明の製造方法における反応工程は、内部に触媒層を備えた連続式反応器でヒドロシランからオリゴシランを生成させる工程であるが、例えば図1で表される反応器を使用して行うことができる。反応器101は、導入管102と導出管103に接続されており、原料であるヒドロシランの投入と、生成物であるオリゴシランの排出を同時に行うことができる連続式の反応器である。また、反応器101の内部には、流体と接触するように触媒層106が備えられており、触媒層106を通過した流体を排出できるようになっている。
 前述の(i)~(iii)の条件は、「ヒドロシランを含む流体の触媒層の入口における温度」と「オリゴシランを含む流体の触媒層の出口における温度」に関するものであるが、「ヒドロシランを含む流体の触媒層の入口における温度」は、触媒層106に接触する直前のヒドロシランを含む流体104の温度、「オリゴシランを含む流体の触媒層の出口における温度」は、触媒層106から排出された直後のオリゴシランを含む流体105の温度となる。
 この連続式反応器に原料としてケイ素原子数がn個のシラン化合物を投入して反応させると、ケイ素原子数が(n+1)個のシラン化合物が主たる生成物として出口から排出される。前述のように見かけは脱水素反応であるが、モノシラン(テトラヒドロシラン)を原料とする場合はモノシランからシリレンと水素、ジシラン(ヘキサヒドロジシラン)を原料とする場合はジシラン(ヘキサヒドロジシラン)からシリレンとシラン(テトラヒドロシラン)、というように、生成したシリレンがシラン類と反応して生長(モノシラン(テトラヒドロシラン)を原料とする場合はシリレンとモノシラン(テトラヒドロシラン)が反応しジシラン(ヘキサヒドロジシラン)を生成、ジシラン(ヘキサヒドロジシラン)を原料とする場合はシリレンとジシラン(ヘキサヒドロジシラン)が反応しトリシラン(オクタヒドロトリシラン)を生成)するためと考えられる。すなわち、触媒層の入口付近では未反応のケイ素原子数がn個の原料が多く、反応器を通過して行くとともに脱水素縮合反応が進行して、徐々にケイ素原子数がn個の原料が少なくなるにつれてケイ素原子数が(n+1)個の生成物が多くなる。生成物をリサイクルしない場合には、ケイ素原子数が(n+1)個のシラン化合物の触媒層入口濃度はゼロである。
 例えば、下記反応式で表されるようなテトラヒドロシラン(SiH)[ケイ素原子数が1]からヘキサヒドロジシラン(Si)[ケイ素原子数が2]を生成させる反応工程の場合、触媒層の入口付近では未反応のテトラヒドロシランが多く、触媒層を通過して行くとともに脱水素縮合反応が進行して、生成物であるヘキサヒドロジシランが多くなる。
Figure JPOXMLDOC01-appb-C000002
 従って、原料であるテトラヒドロシランの濃度は、触媒層の入口付近で高く、触媒層の出口付近で低くなる一方、生成物であるヘキサヒドロジシランの濃度は、触媒層の入口で低く(モノシランを原料としたジシランの製造において、生成物をリサイクルしない場合には、ジシランの入口濃度はゼロ)、触媒層の出口付近で高くなる、という濃度勾配が生じる。
 ヘキサヒドロジシラン等のオリゴシランは、テトラヒドロシランよりも反応性が高いため、前述の(i)~(iii)の全ての条件を満たすように制御する、即ち、テトラヒドロシラン濃度の高い触媒層の入口付近の温度を高く、ヘキサヒドロジシランや更に高次のオリゴシランの蓄積濃度が高くなる触媒層の出口付近の温度を低く制御することで、テトラヒドロシランの反応性も低くはなるが、より高反応性のヘキサヒドロジシラン等のオリゴシランの更なる脱水素(シリレンを介する)反応に由来する副反応を抑えて、目的とするオリゴシランをより効率良く製造できる。
 触媒層の出口付近の温度を入口付近の温度より低くすることにより、ヘキサヒドロジシランやより高次のオリゴシランが、触媒上で更に高分子量のポリシランとして活性点に付着することによる触媒失活を抑えることが出来、効率的に反応を行うことができる。
 なお、「ヒドロシランを含む流体の触媒層の入口における温度」は、触媒層が現れる境界における流体の温度を意味するものであるが、例えば図1の熱電対107のように、流体の温度が触媒層の境界と略同一となる位置に熱電対等を設置して、その観測温度を触媒層の入口における流体の温度とすることができる。同様に「オリゴシランを含む流体の触媒層の出口における温度」は、例えば図1の熱電対108のように、流体の温度が触媒層の境界と略同一となる位置に熱電対等を設置して、その観測温度を触媒層の出口における流体の温度とすることができる。通常、流体と熱電対とは熱平衡となっているため、熱電対による温度測定を流体の温度として考えることができるのである。また、これ以外の方法により温度を測定できることは言うまでもない。
 以下、「ヒドロシラン」、「オリゴシラン」、「反応工程」、その他の工程等について、詳細に説明する。
 ヒドロシランは、ケイ素-水素(Si-H)結合を少なくとも1つ有する化合物であれば、具体的種類は特に限定されないが、水素原子以外のケイ素原子に結合する置換基(原子)としては、炭素原子数1~6の炭化水素基(飽和炭化水素基、不飽和炭化水素基、芳香族炭化水素基等を含む。)等が挙げられる。
 ヒドロシランとしては、テトラヒドロシラン(SiH)、メチルトリヒドロシラン、エチルトリヒドロシラン、フェニルトリヒドロシラン、ジメチルジヒドロシラン等が挙げられる。製造したいオリゴシランに応じて原料であるヒドロシランを選択すればよい。
 目的とするオリゴシランは、(モノ)シランが複数個(2~5個)縮合したシランのオリゴマーであれば、具体的種類は特に限定されず、分岐構造、架橋構造、環状構造等を有するものであってもよい。
 オリゴシランのケイ素原子数は、好ましくは2~4、より好ましくは2~3、さらに好ましくは2(ヒドロシランとしてモノシランを使用する場合)である。
 オリゴシランとしては、ヘキサヒドロジシラン(Si)、オクタヒドロトリシラン(Si)、デカヒドロテトラシラン(Si10)、ジメチルテトラヒドロジシラン((CHSi)、テトラメチルジヒドロジシラン(CHSi)等が挙げられる。
 反応工程は、前述の(i)~(iii)の全ての条件を満たす工程であるが、ヒドロシランを含む流体の触媒層の入口における温度とオリゴシランを含む流体の触媒層の出口における温度の具体的温度は、(i)~(iii)を満たせば特に限定されず、目的に応じて適宜選択することができる。
 ヒドロシランを含む流体の触媒層の入口における温度とオリゴシランを含む流体の触媒層の出口における温度の差(ヒドロシランを含む流体の触媒層の入口における温度-オリゴシランを含む流体の触媒層の出口における温度)は、好ましくは10℃以上、より好ましくは30℃以上、さらに好ましくは50℃以上であり、好ましくは200℃以下、より好ましくは170℃以下、さらに好ましくは150℃以下である。
 ヒドロシランを含む流体の触媒層の入口における温度は、200~400℃であるが、好ましくは220℃以上、より好ましくは250℃以上であり、好ましくは350℃以下、より好ましくは300℃以下である。200℃以上であれば良好な反応転化率を確保でき、400℃以下であれば副反応をある程度抑えることができる。
 触媒層の入口における温度にもよるが、オリゴシランを含む流体の触媒層の出口における温度は、50~300℃であるが、好ましくは80℃以上、より好ましくは100℃以上であり、好ましくは250℃以下、より好ましくは200℃以下である。50℃以上であれば良好な転化率を確保でき、300℃以下であれば副反応を抑えることができる。
 以上の通り上記温度範囲内であると、オリゴシランをより効率良く製造することができる。
 反応工程において、外部の熱源によってヒドロシランを含む流体を加熱し、触媒層を温度制御[冷却]手段(ジャケット等に冷媒を循環させる等)により流体の触媒層における出口温度を入口温度より低くなるように制御することが好ましい。例えば、流体を流通させる反応器の下流側に触媒を充填した触媒層を、その上流側に触媒未充填または触媒活性がない充填材(ガラスビーズ等)を充填した流体予熱ゾーンをそれぞれ設け、触媒層を温度制御[冷却]手段により温度制御する構成が挙げられる。以下、流体の触媒層の出入口温度を制御するための触媒層の温度制御について、具体例を挙げて詳細に説明する。
 流体の降温は、反応器に壁面を通じて反応器外部にセットした温度制御[冷却]手段により行うことが出来る。図2(A)の反応器201は、入口から出口にかけて全体的に1つの温度制御[冷却]手段206と接触した構造となっており、図3(A)の温度制御[冷却]手段306及び図4(A)の温度制御[冷却]手段406は、温度制御[冷却]手段が反応器の長手方向に複数に分割されているため、反応器外部温度を段階的に変化させることができるものである。
 触媒層を流通する流体を降温させるための温度制御[冷却]手段の一例としては、ジャケット反応装置への冷媒の流入が挙げられる。冷媒としては、水蒸気;シリコーンオイル、直鎖パラフィン、ビフェニルやビフェニルエーテル、ジベンジルトルエンのような有機系冷媒;亜硝酸ソーダ、硝酸ソーダ、硝酸カリの混合物のような無機系冷媒等が挙げられる。また、後述の本実施例のように反応管が細く小スケールの場合には、市販の管状炉等を用いた空冷(この場合空気が冷媒に相当)によって冷却することもできる。また、逆に管径の広い触媒層の場合には、コイル等の冷却管を内部に配し、より効率的に触媒層を温度制御[冷却]出来るようにすることが好ましい。
 触媒層の上流側に予熱ゾーンを設ける構成とする場合には、予熱ゾーンに熱交換効率のよい予熱器を設置することが好ましい。
 触媒層の入口から出口までの反応器外部温度を1つの温度制御[冷却]手段で制御する場合の反応器外部温度は、触媒層の入口における流体温度、出口における流体温度にもよるが通常20℃以上、好ましくは30℃以上、より好ましくは40℃以上であり、通常300℃以下、好ましくは280℃以下、より好ましくは260℃以下である。
 ヒドロシランを含む流体の触媒層の入口における温度は、触媒層の入口の反応器外部温度よりも高いことが必要であるが、図2(B)のように温度制御[冷却]手段(ジャケット)の温度が一定であると、流体が徐々に降温することにより流体温度と反応器外部温度との差(ΔT)が小さくなり、熱交換の効率が悪くなるので、前述した通り図3(A)、図4(A)のように温度制御[冷却]手段を複数設け(ジャケットを数区分に区切り)、下流側の反応器外部温度をさらに低くすることにより、効率的に降温を進めたほうが望ましいが、装置コストの上昇と運転制御方法は複雑になるので費用対効果を考えて反応器の仕様を決めたほうがよい。
 ヒドロシランを含む流体の触媒層の入口における温度と反応器外部温度の差(ヒドロシランを含む流体の触媒層の入口における温度-反応器外部温度)は、より好ましくは20℃以上、さらに好ましくは50℃以上である。
 上記範囲内であると、オリゴシランをより効率良く製造することができる。
 なお、説明を簡略化するため、図2(A)~図4(A)においては触媒層を反応器のほぼ全域に設けた場合を例示しているが、図1に示すように反応器の一部のみに触媒層を設けてもよい。その場合ジャケット等の温度制御[冷却]手段は触媒層の少なくとも一部と重複する位置に配置することができる。
 図5(A)では反応器501の上流側を予熱ゾーンとし、触媒層507が下流側に設置されており、反応ゾーンとなる触媒層入口温度までの昇温と触媒層が配置された反応器内での降温を外部のジャケットを区切ることにより効率的に行っている。
 反応工程は、内部に触媒層を備えた連続式反応器にヒドロシランを含む流体を投入することを含む工程であるが、投入する流体のヒドロシランの濃度、流体の状態、流体に含まれるヒドロシラン以外の単体(後述のキャリアーガス等)又は化合物、流体の圧力等は、特に限定されず、目的に応じて適宜選択することができる。以下、具体例を挙げて詳細に説明する。
 流体における触媒層入口でのヒドロシランの濃度は、通常20モル%以上、好ましくは30モル%以上、より好ましくは40モル%以上であり、好ましくは95モル%以下、より好ましくは90モル%以下である。上記範囲内であると、オリゴシランをより効率良く製造することができる。
 原料のヒドロシランを含む流体は、気体であることが好ましく、キャリアーガスを含む気体であることがより好ましい。
 キャリアーガスとしては、窒素ガス、アルゴンガス等の不活性ガス、水素ガスが挙げられるが、水素ガスを含むことが特に好ましい。
 テトラヒドロシラン(SiH)の脱水素縮合によって、下記反応式(a)に示されるようにジシラン(Si)が生成することになるが、生成したジシランの一部は下記反応式(b)に示されるようにテトラヒドロシラン(SiH)とジヒドロシリレン(SiH)に分解されるものと考えられる。さらに生成したジヒドロシリレンは、下記反応式(c)に示されるように重合して固体状のポリシラン(SiHとなり、オリゴシランの収率等が低下するものと考えられる。
 一方、水素ガスが存在すると、下記反応式(d)に示されるようにジヒドロシリレンからテトラヒドロシランが生成し、ポリシランの生成が抑制されるため、長時間安定的にオリゴシランを製造することができるものと考えられる。
  2SiH → Si + H         (a)
  Si → SiH + SiH        (b)
  nSiH → (SiH            (c)
  SiH +H →SiH             (d)
 ヒドロシランを含む流体が、水素ガスを含む気体である場合、水素ガスの濃度は、触媒層の入口時点において好ましくは1モル%以上、より好ましくは3モル%以上、さらに好ましくは5モル%以上であり、好ましくは40モル%以下、より好ましくは30モル%以下、さらに好ましくは20モル%以下である。上記範囲内であると、オリゴシランをより効率良く製造することができる。
 ヒドロシランを含む流体が、気体である場合の反応器内の触媒層入口における圧力は、絶対圧力で好ましくは0.1MPa以上、より好ましくは0.15MPa以上、さらに好ましくは0.2MPa以上であり、好ましくは10MPa以下、より好ましくは5MPa以下、さらに好ましくは3MPa以下である。なお、ヒドロシランの分圧は、好ましくは0.0001MPa以上、より好ましくは0.0005MPa以上、さらに好ましくは0.001MPa以上であり、好ましくは10MPa以下、より好ましくは5MPa以下、さらに好ましくは1MPa以下である。上記範囲内であると、より効率良くオリゴシランを製造することができる。
 ヒドロシランを含む流体が、水素ガスを含む気体である場合の水素ガスの分圧は、ヒドロシランの分圧とオリゴシランの分圧の合計に対して、0.05~5、好ましくは0.1~4、より好ましくは0.02~2(水素ガス/(ヒドロシラン+オリゴシラン))である。
 ヒドロシランを含む流体を連続管型反応器を用いて流通させる場合は、触媒との接触時間が短い(流通速度が速い)と転化率が低くなりすぎるし、あまりに長いとポリシランが生成しやすくなるので、接触時間を0.01秒から30分の範囲にすることが好ましい。
 接触時間が短い場合には反応管壁を通じての熱交換が追い付かない場合もあるので、反応管内に冷媒を通したコイル等を追加で設置して、反応温度の降温をスムーズに行うことが好ましい。
 反応工程は、反応器からオリゴシランを含む流体を排出することを含む工程であるが、流体に含まれるオリゴシラン以外の単体又は化合物としては、未反応のヒドロシラン、キャリアーガス等が挙げられる。
 反応工程は、内部に触媒層を備えた連続式反応器にヒドロシランを含む流体を投入することを含む工程であるが、以下、触媒について、具体例を挙げて詳細に説明する。
 触媒は、ヒドロシランの脱水素縮合反応に利用することができるものであれば、具体的な種類は特に限定されないが、担体を含む不均一系触媒で、担体の表面及び/又は内部に周期表第3族遷移元素、第4族遷移元素、第5族遷移元素、第6族遷移元素、第7族遷移元素、第8族遷移元素、第9族遷移元素、第10族遷移元素、及び第11族遷移元素からなる群より選択される少なくとも1種の遷移元素(以下、「遷移元素」と略す場合がある。)を含有する触媒が特に好ましい。このような遷移元素によって、ヒドロシランの脱水素縮合を促進して、オリゴシランが効率良く生成するものと考えられる。
 以下、「担体の表面及び/又は内部に周期表第3族遷移元素、第4族遷移元素、第5族遷移元素、第6族遷移元素、第7族遷移元素、第8族遷移元素、第9族遷移元素、第10族遷移元素、及び第11族遷移元素からなる群より選択される少なくとも1種の遷移元素を含有する触媒(以下、「遷移元素含有触媒」と略す場合がる。)」について詳細に説明する。
 遷移元素含有触媒における第3族遷移元素としては、スカンジウム(Sc)、イットリウム(Y)、ランタノイド(La)、サマリウム(Sm)等が挙げられる。
 第4族遷移元素としては、チタン(Ti)、ジルコニウム(Zr)、ハフニウム(Hf)が挙げられる。
 第5族遷移元素としては、バナジウム(V)、ニオブ(Nb)、タンタル(Ta)が挙げられる。
 第6族遷移元素としては、クロム(Cr)、モリブデン(Mo)、タングステン(W)が挙げられる。
 第7族遷移元素としては、マンガン(Mn)、レニウム(Re)が挙げられる。
 第8族遷移元素としては、鉄(Fe)、ルテニウム(Ru)、オスニウム(Os)が挙げられる。
 第9族遷移元素としては、コバルト(Co)、ロジウム(Rh)、イリジウム(Ir)が挙げられる。
 第10族遷移元素としては、ニッケル(Ni)、パラジウム(Pd)、白金(Pt)が挙げられる。
 第11族遷移元素としては、銅(Cu)、銀(Ag)、金(Au)が挙げられる。
 本発明で使用されるより好ましい遷移元素は、第4族遷移元素、第5族遷移元素、第6族遷移元素、第8族遷移元素、第9族遷移元素、第10族遷移元素、第11族遷移元素である。
 さらに好ましい遷移元素は、第5族遷移元素、第6族遷移元素、第9族遷移元素、第10族遷移元素である。
 さらに好ましい具体的な遷移元素としては、タングステン(W)、バナジウム(V)、モリブデン(Mo)、コバルト(Co)、ニッケル(Ni)、パラジウム(Pd)、白金(Pt)が挙げられる。
 中でも特に好ましい遷移元素は、タングステン(W)、モリブデン(Mo)、コバルト(Co)、白金(Pt)である。
 遷移元素含有触媒における遷移元素の状態や組成も特に限定されないが、例えば表面が酸化されていてもよい金属(単体金属、合金)の状態、金属酸化物(単一の金属酸化物、複合金属酸化物)の状態が挙げられる。また、担体の表面(外表面及び/又は細孔内)に金属や金属酸化物の状態で担持されているもの、イオン交換や複合化で担体内部(担体骨格)に遷移元素が導入されたものが挙げられる。
 表面が酸化されていてもよい金属としては、スカンジウム、イットリウム、ランタノイド、サマリウム、チタン、ジルコニウム、ハフニウム、バナジウム、ニオブ、タンタル、クロム、モリブデン、タングステン、マンガン、テクネチウム、レニウム、鉄、ルテニウム、オスニウム、コバルト、ロジウム、イリジウム、ニッケル、パラジウム、白金、銅、銀、金等が挙げられる。
 金属酸化物としては、酸化スカンジウム、酸化イットリウム、酸化ランタノイド、酸化サマリウム、酸化チタン、酸化ジルコニム、酸化ハフニウム、酸化バナジウム、酸化ニオブ、酸化タンタル、酸化クロム、酸化モリブデン、酸化タングステン、酸化マンガン、酸化テクネチウム、酸化レニウム、酸化鉄、酸化ルテニウム、酸化オスニウム、酸化コバルト、酸化ロジウム、酸化イリジウム、酸化ニッケル、酸化パラジウム、酸化白金、酸化銅、酸化銀、酸化金および、これらの複合酸化物等が挙げられる。
 担体に遷移元素を担持させる方法としては、溶液状態の前駆体を用いた含浸法、イオン交換法、前駆体を昇華等により揮発させて担体に蒸着させる方法等が挙げられる。なお、含浸法は、遷移元素含有化合物が溶解した溶液に担体を接触させて、遷移元素含有化合物を担体表面に吸着させる方法である。溶媒については通常は純水が用いられるが、遷移元素化合物を溶解するものであればメタノール、エタノール、酢酸やジメチルホルムアミドのような有機溶媒でも用いることができる。また、イオン交換法は、遷移元素のイオンが溶解した溶液にゼオライト等酸点を持った担体を接触させて、担体の酸点に遷移元素のイオンを導入する方法である。この場合も溶媒は純水が通常は用いられるが、遷移元素を溶解するものであればメタノール、エタノール、酢酸やジメチルホルムアミドのような有機溶媒を用いることもできる。蒸着方法は遷移元素そのもの又は遷移元素酸化物を加熱して、昇華等により揮発させて担体に蒸着させる方法である。なお、含浸法、イオン交換法、蒸着法等の後に、乾燥、還元雰囲気または酸化雰囲気での焼成等の処理を行い、触媒として所望の金属または金属酸化物の状態に調製することができる。
 遷移元素含有触媒の前駆体としては、モリブデンの場合には七モリブデン酸アンモニウム、ケイモリブデン酸、リンモリブデン酸、塩化モリブデン、酸化モリブデン等があげられる。タングステンの場合には、パラタングステン酸アンモニウム、リンタングステン酸、ケイタングステン酸、塩化タングステン等があげられる。チタンの場合にはオキシ硫酸チタン、塩化チタン、テトラエトキシチタン等が挙げられる。バナジウムの場合にはオキシ硫酸バナジウム、塩化バナジウム等が挙げられる。コバルトの場合には硝酸コバルト、塩化コバルト等が挙げられる。ニッケルの場合には硝酸ニッケル、塩化ニッケル等が挙げられる。パラジウムの場合には硝酸パラジウム、塩化パラジウム等が挙げられる。白金の場合にはジアンミンジニトロ白金(II)硝酸溶液、テトラアンミン白金(II)クロライド等が挙げられる。
 遷移元素含有触媒の担体の具体的種類は、特に限定されないが、シリカ、アルミナ、チタニア、ジルコニア、シリカ-アルミナ、ゼオライト、活性炭、リン酸アルミニウム等が挙げられ、シリカ、アルミナ、チタニア、ジルコニア、ゼオライト、活性炭のいずれかであることが好ましい。これらの中でもゼオライトが好ましく、短径0.41nm以上、長径0.74nm以下の細孔を有するゼオライトが好ましく、短径0.43nm以上、長径0.69nm以下の細孔を有するゼオライトが特に好ましい。ゼオライトの細孔空間は、脱水素縮合の反応場として働くものと考えられ、「短径0.41nm以上、長径0.74nm以下」という細孔サイズが、過度な重合を抑制して、オリゴシランの選択率を向上させるために最適であると考えられる。
 なお、「短径0.41nm以上、長径0.74nm以下の細孔を有するゼオライト」は、実際に「短径0.41nm以上、長径0.74nm以下の細孔」を有するゼオライトのみを意味するものではなく、結晶構造から理論的に計算された細孔の「短径」と「長径」がそれぞれ前述の条件を満たすゼオライトも含まれるものとする。ちなみに細孔の「短径」と「長径」については、「ATLAS OF ZEOLITE FRAMEWORK TYPES, Ch. Baerlocher, L.B.McCusker and D.H. Olson, Sixth Revised Edition 2007,published on behalf of the structure Commission of the international Zeolite Association」を参考にすることができる。
 ゼオライトの短径は、0.41nm以上、好ましくは0.43nm以上、より好ましくは0.45nm以上、特に好ましくは0.47nm以上である。
 ゼオライトの長径は、0.74nm以下、好ましくは0.69nm以下、より好ましくは0.65nm以下、特に好ましくは0.60nm以下である。
 なお、細孔の断面構造が円形であること等によってゼオライトの細孔径が一定である場合には、細孔径が「0.41nm以上0.74nm以下」であるものと考える。
 複数種類の細孔径を有するゼオライトの場合は、少なくとも1種類の細孔の細孔径が「0.41nm以上0.74nm以下」であればよい。
 具体的なゼオライトとしては、国際ゼオライト学会(International Zeolite Association)でデータベース化されている構造コ-ドで、AFR、AFY、ATO、BEA、BOG、BPH、CAN、CON、DFO、EON、EZT、FAU、FER、GON、IMF、ISV、ITH、IWR、IWV、IWW、LTA、LTL、MEI、MEL、MFI、MOR、MWW、OBW、MOZ、MSE、MTT、MTW、NES、OFF、OSI、PON、SFF、SFG、STI、STF、TER、TON、TUN、USI、VETに該当するゼオライトが好ましい。
 構造コ-ドが、ATO、BEA、BOG、CAN、IMF、ITH、IWR、IWW、MEL、MFI、OBW、MSE、MTW、NES、OSI、PON、SFF、SFG、STF、STI、TER、TON、TUN、VETに該当するゼオライトがより好ましい。
 構造コ-ドが、BEA、MFI、TON、に該当するゼオライトが特に好ましい。
 構造コ-ドがBEAに該当するゼオライトとしては、*Beta(ベータ)、[B-Si-O]-*BEA、[Ga-Si-O]-*BEA、[Ti-Si-O]-*BEA、Al-rich beta、CIT-6、Tschernichite、pure silica beta等を挙げられる(*は3種類の構造の類似した多型の混晶であることを表す。)。
 構造コ-ドがMFIに該当するゼオライトとしては、*ZSM-5、[As-Si-O]-MFI、[Fe-Si-O]-MFI、[Ga-Si-O]-MFI、AMS-1B、AZ-1、Bor-C、Boralite C、Encilite、FZ-1、LZ-105、Monoclinic H-ZSM-5、Mutinaite、NU-4、NU-5、Silicalite、TS-1、TSZ、TSZ-III、TZ-01、USC-4、USI-108、ZBH、ZKQ-1B、ZMQ-TB、organic-free ZSM-5等が挙げられる(*は3種類の構造の類似した多型の混晶であることを表す。)。
 構造コ-ドがTONに該当するゼオライトとしては、Theta-1、ISI-1、KZ-2、NU-10、ZSM-22等が挙げられる。
 特に好ましいゼオライトは、ZSM-5、ベータ、ZSM-22である。
 シリカ/アルミナ比(モル/モル比)としては、5~10000が好ましく、10~2000がより好ましく、20~1000が特に好ましい。
 遷移元素含有触媒における遷移元素の総含有量(遷移元素及び後述する典型元素等を含有した状態の担体の質量に対して)は、好ましくは0.01質量%以上、より好ましくは0.1質量%以上、さらに好ましくは0.5質量%以上であり、好ましくは50質量%以下、より好ましくは20質量%以下、さらに好ましくは10質量%以下である。上記範囲内であると、良好な反応転化率を確保でき、過剰使用による副反応も抑えることができるので、より効率良くオリゴシランを製造することができる。
 遷移元素含有触媒は、粉体を球状、円柱状(ペレット状)、リング状、ハニカム状に成形した成形体の形態であることが好ましい。なお、粉体を成形するためにアルミナや粘土化合物等のバインダーを使用してもよい。バインダーの使用量があまりに少ないと成形体の強度を保つことができないし、バインダーの使用量があまりに多いと触媒活性への悪影響を与えるので、バインダーとしてアルミナを使用する場合のアルミナの含有量(アルミナを含まない担体(粉体)100質量部に対して)は、通常2質量部以上、好ましくは5質量部以上、より好ましくは10質量部以上であり、通常50質量部以下、好ましくは40質量部以下、より好ましくは30質量部以下である。上記範囲内であると、担体強度を保ちながら触媒活性への悪影響を抑えることができる。
 遷移元素含有触媒は、周期表第1族典型元素及び第2族典型元素からなる群より選択される少なくとも1種の典型元素(以下、「典型元素」と略す場合がある。)を含有することが好ましい。なお、触媒における典型元素の状態や組成は特に限定されないが、金属酸化物(単一の金属酸化物、複合金属酸化物)やイオンの状態が挙げられる。また、触媒が担体を含む不均一系触媒の場合、担体の表面(外表面及び/又は細孔内)に金属酸化物、金属塩の状態で担持されているもの、イオン交換や複合化で内部(担体骨格)に典型元素が導入されたものが挙げられる。このような典型元素を含有することによって、初期のヒドロシラン(モノシラン)の転化率を抑えて過剰な消費を抑制するとともに、初期のジシランの選択率を高くすることができる。また、初期のヒドロシランの転化率を抑えることで、触媒寿命をより長くすることもできるものと言える。
 第1族典型元素としては、リチウム(Li)、ナトリウム(Na)、カリウム(K)、ルビジウム(Rb)、セシウム(Cs)、フランシウム(Fr)が挙げられる。
 第2族典型元素としては、ベリリウム(Be)、マグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)、バリウム(Ba)、ラジウム(Ra)が挙げられる。
 この中でも、ナトリウム(Na)、カリウム(K)、ルビジウム(Rb)、セシウム(Cs)、フランシウム(Fr)、カルシウム(Ca)、ストロンチウム(Sr)、バリウム(Ba)を含有することが好ましい。
 遷移元素含有触媒への典型元素の配合方法としては、含浸法、イオン交換法等が挙げられる。なお、含浸法は、典型元素を含む化合物が溶解した溶液に担体を接触させて、典型元素を担体表面に吸着させる方法である。溶媒については通常は純水が用いられるが、典型元素を含む化合物を溶解するものであればメタノール、エタノール、酢酸やジメチルホルムアミドのような有機溶媒を用いることもできる。また、イオン交換法は、典型元素のイオンが溶解した溶液にゼオライト等酸点を持った担体を接触させて、担体の酸点に典型元素のイオンを導入する方法である。この場合も溶媒は純水が通常は用いられるが、典型元素イオンを溶解するものであればメタノール、エタノール、酢酸やジメチルホルムアミドのような有機溶媒を用いることもできる。また、含浸法、イオン交換法の後に、乾燥、焼成等の処理を行ってもよい。
 リチウム(Li)を含有させる場合の溶液としては、硝酸リチウム(LiNO)水溶液、塩化リチウム(LiCl)水溶液、硫酸リチウム(LiSO)水溶液、酢酸リチウム(LiOCOCH)の酢酸溶液、酢酸リチウムのエタノール溶液等が挙げられる。
 ナトリウム(Na)を含有させる場合の溶液としては、塩化ナトリウム(NaCl)水溶液、硫酸ナトリウム(NaSO)水溶液、硝酸ナトリウム(NaNO)水溶液等が挙げられる。
 カリウム(K)を含有させる場合の溶液としては、硝酸カリウム(KNO)水溶液、塩化カリウム(KCl)水溶液、硫酸カリウム(KSO)水溶液、酢酸カリウム(KOCOCH)の酢酸溶液、酢酸カリウムのエタノール溶液等が挙げられる。
 ルビジウム(Rb)を含有させる場合の溶液としては、塩化ルビジウム(RbCl)水溶液、硝酸ルビジウム(KNO)水溶液等が挙げられる。
 セシウム(Cs)を含有させる場合の溶液としては、塩化セシウム(CsCl)水溶液、硝酸セシウム(CsNO)水溶液、硫酸セシウム(CsSO)水溶液等が挙げられる。
 フランシウム(Fr)を含有させる場合の溶液としては、塩化フランシウム(FrCl)水溶液等が挙げられる。
 カルシウム(Ca)を含有させる場合の溶液としては、塩化カルシウム(CaCl)水溶液、硝酸カルシウム(Ca(NO)水溶液等が挙げられる。
 ストロンチウム(Sr)を含有させる場合の溶液としては、硝酸ストロンチウム(Sr(NO)水溶液等が挙げられる。
 バリウム(Ba)を含有させる場合の溶液としては、塩化バリウム(BaCl)水溶液、硝酸バリウム(Ba(NO)水溶液、酢酸バリウム(Ba(OCOCH)の酢酸溶液等が挙げられる。
 遷移元素含有触媒における典型元素の総含有量(遷移元素及び典型元素等を含有した状態の担体の質量に対して)は、好ましくは0.01質量%以上、より好ましくは0.05質量%以上、さらに好ましくは0.1質量%以上、特に好ましくは0.5質量%以上、より特に好ましくは1.0質量%以上、最も好ましくは2.1質量%以上であり、好ましくは10質量%以下、より好ましくは5質量%以下、さらに好ましくは4質量%以下である。上記範囲内であると、より効率良くオリゴシランを製造することができる。
 遷移元素含有触媒は、周期表第13族典型元素を含有してもよい。なお、触媒における周期表第13族典型元素の状態や組成は特に限定されないが、表面が酸化されていてもよい金属(単体金属、合金)の状態、金属酸化物(単一の金属酸化物、複合金属酸化物)の状態が挙げられる。また、担体の表面(外表面及び/又は細孔内)に金属酸化物の状態で担持されているもの、イオン交換や複合化で内部(担体骨格)に周期表第13族典型元素が導入されているものが挙げられる。周期表第13族典型元素を含有することによっても、初期のヒドロシラン(モノシラン)の転化率を抑えて過剰な消費を抑制するとともに、初期のジシランの選択率を高くすることができる。また、初期のヒドロシランの転化率を抑えることで、触媒寿命をより長くすることもできるものと言える。
 第13族典型元素としては、アルミニウム(Al)、ガリウム(Ga)、インジウム(In)、タリウム(Tl)が挙げられる。
 遷移元素含有触媒への周期表第13族典型元素の配合方法としては、周期表第1族典型元素等の場合と同様である。
 遷移元素含有触媒における周期表第13族典型元素の含有量総含有量(前述の遷移元素、前述の典型元素、及び周期表第13族典型元素を含有した状態の担体の質量に対して)は、好ましくは0.01質量%以上、より好ましくは0.05質量%以上、さらに好ましくは0.1質量%以上、特に好ましくは0.5質量%以上、より特に好ましくは1.0質量%以上、最も好ましくは2.1質量%以上であり、好ましくは10質量%以下、より好ましくは5質量%以下、さらに好ましくは4質量%以下である。上記範囲内であると、より効率良くオリゴシランを製造することができる。
 以下に実施例及び比較例を挙げて本発明をさらに具体的に説明するが、本発明の趣旨を逸脱しない限り適宜変更することができる。従って、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。なお、実施例及び比較例は、図6に示される反応装置(概念図)の反応管内の固定床にゼオライトを固定して、ヘリウムガス等で希釈したテトラヒドロシランを含む反応ガスを流通させることにより行った。生成したガスは、株式会社島津製作所社製ガスクロマトグラフGC-17Aを用いて、TCD(熱伝導度型)検出器で分析を行った。また、GCで検出できなかった場合(検出限界以下)は、収率は0%と表記した。ジシラン等の定性分析は、MASS(質量分析計)で行った。さらに使用したゼオライトの細孔は、以下の通りである。
 ・ZSM-5(構造コ-ド:MFI H-ZSM-5を含む。):
  <100>短径0.51nm、長径0.55nm
  <010>短径0.53nm、長径0.56nm
 ・Beta(ベータ)(構造コ-ド:BEA):
  <100>短径0.66nm、長径0.67nm
  <001>短径0.56nm、長径0.56nm
 なお、細孔の短径、長径の数値は、「http://www.jaz-online.org/introduction/qanda.html」、及び「ATLAS OF ZEOLITE FRAMEWORK TYPES, Ch. Baerlocher,L.B. McCusker and D.H. Olson, Sixth Revised Edition 2007,published on behalf of the structure Commission of the international Zeolite Association」に記載されているものである。
 図6の反応ゾーンは、反応管9に1/2インチのSUS管(呼び径12.7mm、肉厚1mm、長さ500mm)を加工して用い、触媒を充填した(充填高さ約10cm)。反応管の触媒を充填していない上部(予熱ゾーン)と触媒を充填してある下部(反応ゾーン)にそれぞれ市販の管状炉(株式会社ヒートテック製 管状炉 ARF-16KC 長さ14cm)を設置し、実施例、比較例に示した温度で加熱、冷却を行った。
 また、熱電対(熱電対(1)、(2))を反応管の上下より挿入し触媒層入口及び出口での流体温度を測定した。なお、図6のフィルター10は、反応ガスサンプルリング用ではあるが、実施例では特に冷却等を行いサンプリングするような操作はせず、直接反応ガスをガスクロマトグラフに導入して分析した。本評価に使用した反応装置は試験、研究用であるため、生成物を安全な形で系外に排出するための除害装置13を装備している。
<調製例1:モリブデン(Mo)担持ペレット状ゼオライトの調製>
 3mm径のペレット状のH-ZSM-5(シリカ/アルミナ比=23、東ソー製:製品名HSZ 品種822HOD3A、アルミナ18~22質量%含有(SDS記載値))200gに、蒸留水200g、(NHMo24・4HO 3.70g(Mo換算で1質量%担持に相当)を加えて、室温で1時間混合した。その後、110℃で4時間大気雰囲気下で乾燥させた後、400℃で2時間、更に900℃で2時間大気雰囲気下で焼成して、Mo1質量%担持ZSM-5(ペレット状)を得た。
<調製例2>
 調製例1で調製したMo1質量%担持ZSM-5(シリカ/アルミナ比23) 50gに蒸留水100g、Ba(NO 2.38g(Ba換算で2.4質量%担持に相当)を加えて、室温で1時間混合した。その後、110℃で4時間大気雰囲気下で乾燥させた後、700℃で2時間大気雰囲気下で焼成して、Baが2.4質量%含有されたMo1質量%担持ZSM-5(シリカ/アルミナ比23)を得た。
<調製例3>
 3mm径のペレット状のH-ZSM-5(シリカ/アルミナ比=23、東ソー製:製品名HSZ 品種822HOD3A、アルミナ18~22質量%含有(SDS記載値))50gに、蒸留水50g、Pt(NH4(NO硝酸溶液(Pt濃度6.4質量%:エヌ・イ-ケムキャット製) 7.8g(Pt換算で1質量%担持に相当)を加えて、室温で1時間混合した。その後、110℃で乾燥させた後、700℃で1時間焼成して、Pt1質量%担持ZSM-5(ペレット状)を得た。
<調製例4>
 3mm径のペレット状のH-ZSM-5(シリカ/アルミナ比=23、東ソー製:製品名HSZ 品種822HOD3A、アルミナ18~22質量%含有(SDS記載値))50gに、蒸留水50g、Co(NO・6HO 2.5g(Co換算で1質量%担持に相当)を加えて、室温で1時間混合した。その後、110℃で乾燥させた後、700℃で1時間焼成して、Co1質量%担持ZSM-5(ペレット状)を得た。
<調製例5:モリブデン(Mo)担持ペレット状ゼオライトの調製>
 1.5mm径のペレット状のH-ベータ(シリカ/アルミナ比=17.1、東ソー製:製品名HSZ 品種920HOD1A、アルミナ18~22質量%含有(SDS記載値))20gに、蒸留水20g、(NHMo24・4HO 0.37g(Mo換算で1質量%担持に相当)を加えて、室温で1時間混合した。その後、大気雰囲気下110℃で4時間大気雰囲気下で乾燥させた後、大気雰囲気下600℃で6時間焼成して、Mo1質量%担持ベータ(ペレット状)を得た。
<実施例1>
 10mLのメスシリンダーを用いてタッピングしながら測量して、調製例1で調製したMo1質量%担持ZSM-5(ペレット状)10cmを反応管に設置し、減圧ポンプを使って反応管内の空気を除去した後、ヘリウムガスで置換した。ヘリウムガスを5mL/分の速度で流通させ、二つの管状炉を用いて反応管上部の管状炉は300℃で下部の管状炉は100℃に設定、昇温後、1時間流通させた。その後、アルゴンとテトラヒドロシラン(モノシラン)の混合ガス(Ar:20%、SiH:80%(モル比))2mL/分と水素ガス2mL/分とヘリウムガス1mL/分をガスミキサーで混合して流通させた。5分後にアルゴンとテトラヒドロシラン(モノシラン)の混合ガスを4mL/分に、水素ガスを1mL/分に変更し、ヘリウムガスは止めた。表1にヘリウムガス停止時からのそれぞれの時間経過後の管状炉の設定温度、反応管(反応ゾーン)入口付近に設置した熱電対(1)、反応管(反応ゾーン)出口付近に設置した熱電対(2)の測定温度を示す。また、反応ガスの組成をガスクロマトグラフで分析し、テトラヒドロシラン(モノシラン)の転化率、ヘキサヒドロジシラン(ジシラン)の収率、ヘキサヒドロジシラン(ジシラン)の選択率、ヘキサヒドロジシラン(ジシラン)の空時収率(STY)を算出した。結果を併せて表1に示す。表中、「接触(滞留)時間」は、反応器内を流通するガスの反応器内滞留時間、すなわち、ヒドロシランと触媒の接触時間である。ヘキサヒドロジシラン(ジシラン)の空時収率(STY)は以下の式により算出した。
 STY=1時間当たりのヘキサヒドロジシラン(ジシラン)の生成質量/  触媒の体積
Figure JPOXMLDOC01-appb-T000003
<比較例1>
 比較例1は、管状炉の設定温度を表2に示すように変えた他は、実施例1と同様に反応を行った。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000004
<実施例2、比較例2>
 実施例2、比較例2は、触媒を調製例2で調製したBaが2.4質量%含有されたMo1質量%担持ZSM-5(シリカ/アルミナ比23)10cmに変えた他は、それぞれ実施例1、比較例1と同様に行った。実施例2及び比較例2の結果をそれぞれ表3、4に示す。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
<実施例3、比較例3>
 実施例3、比較例3は、触媒を調製例3で調製したPt1質量%担持ZSM-5(ペレット状)10cmに変えた他は、それぞれ実施例1、比較例1と同様に行った。実施例3及び比較例3の結果をそれぞれ表5、6に示す。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
<実施例4、比較例4>
 実施例4、比較例4は、触媒を調製例4で調製したCo1質量%担持ZSM-5(ペレット状)10cmに変えた他は、それぞれ実施例1、比較例1と同様に行った。実施例4及び比較例4の結果をそれぞれ表7、8に示す。
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
<実施例5、比較例5、6>
 実施例5、比較例5は、触媒を調製例5で調製したMo1質量%ベータ(ペレット状)10cmに変えた他は、それぞれ実施例1、比較例1と同様に行った。実施例5及び比較例5の結果をそれぞれ表9(実施例5)、10(比較例5)に示す。また、比較例6は、反応管上部の管状炉の温度を200℃、反応管下部の管状炉の温度を400℃に変更した以外は比較例5と同様に行った。その結果を表11(比較例6)に示す。
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
 比較例1~5は、実施例1~5に比べて初期活性は高いものの、触媒失活が早く、反応成績が急速に落ちていることがわかる。また、比較例6は初期から活性が低く、実施例1~5、比較例1~5よりも製造効率が低い。
 本発明の製造方法によって製造されたオリゴシランは、半導体用シリコンの製造ガスとして利用されることが期待できる。
 101           反応器
 102           導入管
 103           導出管
 104           ヒドロシランを含む流体(原料)
 105           オリゴシランを含む流体(生成物)
 106           触媒層
 107、108       熱電対
 201、301、401   反応器
 202、302、402   導入管
 203、303、403   導出管
 204、304、404   ヒドロシランを含む流体(原料)
 205、305、405   オリゴシランを含む流体(生成物)
 206、306、406   温度制御手段
 207、307、407   触媒層
 501           反応器
 502           導入管
 503           導出管
 504           ヒドロシランを含む流体(原料)
 505           オリゴシランを含む流体(生成物)
 506           温度制御手段
 507           触媒層
   1           テトラヒドロシランガスボンベ
               (Ar20モル%入り)
   2           水素ガスボンベ
   3           ヘリウムボンベ
   4           緊急遮断弁(ガス検連動遮断弁)
   5           減圧弁
   6           マスフローコントローラー
   7           圧力計
   8           ガスミキサー
   9           反応管
  10           フィルター
  11           ロータリーポンプ
  12           ガスクロマトグラフ
  13           除害装置

Claims (14)

  1.  内部に触媒層を備えた連続式反応器にヒドロシランを含む流体を投入し、前記ヒドロシランからオリゴシランを生成させて、前記反応器から前記オリゴシランを含む流体を排出する反応工程を含むオリゴシランの製造方法であって、
     前記反応工程が、下記(i)~(iii)の全ての条件を満たす工程であることを特徴とする、オリゴシランの製造方法。
    (i)前記ヒドロシランを含む流体の前記触媒層の入口における温度が、前記オリゴシランを含む流体の前記触媒層の出口における温度よりも高い温度である。
    (ii)前記ヒドロシランを含む流体の前記触媒層の入口における温度が、200~400℃である。
    (iii)前記オリゴシランを含む流体の前記触媒層の出口における温度が、50~300℃である。
  2.  前記ヒドロシランを含む流体の前記触媒層の入口における温度が、前記ヒドロシランを含む流体の前記触媒層の出口における温度よりも10~200℃高い温度である、請求項1に記載のオリゴシランの製造方法。
  3.  前記ヒドロシランを含む流体が、水素ガスを含む気体であり、前記ヒドロシランを含む流体における前記水素ガスの濃度が、1~40モル%である、請求項1又は2に記載のオリゴシランの製造方法。
  4.  前記ヒドロシランを含む流体における前記ヒドロシランの濃度が、20モル%~95モル%である、請求項1~3の何れか1項に記載のオリゴシランの製造方法。
  5.  前記ヒドロシランを含む流体が気体であり、その触媒層入口における圧力が、0.1~10MPaである、請求項1~4の何れか1項に記載のオリゴシランの製造方法。
  6.  前記ヒドロシランがテトラヒドロシランであり、前記オリゴシランがヘキサヒドロジシランを含む、請求項1~5の何れか1項に記載のオリゴシランの製造方法。
  7.  前記触媒層が、担体の表面及び/又は内部に周期表第3族遷移元素、第4族遷移元素、第5族遷移元素、第6族遷移元素、第7族遷移元素、第8族遷移元素、第9族遷移元素、第10族遷移元素、及び第11族遷移元素からなる群より選択される少なくとも1種の遷移元素を含有する触媒を含む、請求項1~6の何れか1項に記載のオリゴシランの製造方法。
  8.  前記担体が、シリカ、アルミナ、チタニア、ジルコニア、ゼオライト、及び活性炭からなる群より選択される少なくとも1種である、請求項7に記載のオリゴシランの製造方法。
  9.  前記ゼオライトが、短径0.41nm以上、長径0.74nm以下の細孔を有する、請求項8に記載のオリゴシランの製造方法。
  10.  前記担体が、短径0.41nm以上、長径0.74nm以下の細孔を有するゼオライト、及びアルミナを含んだ粉体の球状又は円柱状の成形体であり、前記アルミナの含有量(アルミナを含まない前記担体100質量部に対して)が、10質量部以上30質量部以下である、請求項8に記載のオリゴシランの製造方法。
  11.  前記遷移元素が、周期表第4族遷移元素、第5族遷移元素、第6族遷移元素、第8族遷移元素、第9族遷移元素、第10族遷移元素、及び第11族遷移元素からなる群より選択される少なくとも1種の遷移元素である、請求項7~10の何れか1項に記載のオリゴシランの製造方法。
  12.  前記遷移元素が、周期表第5族遷移元素、第6族遷移元素、第9族遷移元素、及び第10族遷移元素からなる群より選択される少なくとも1種の遷移元素である、請求項11に記載のオリゴシランの製造方法。
  13.  前記遷移元素が、タングステン(W)、モリブデン(Mo)、コバルト(Co)、及び白金(Pt)からなる群より選択される少なくとも1種の遷移元素である、請求項12に記載のオリゴシランの製造方法。
  14.  前記触媒が、担体としてゼオライトを含み、前記ゼオライトの表面及び/又は内部に周期表第1族典型元素及び第2族典型元素からなる群より選択される少なくとも1種の典型元素をさらに含有する、請求項7~13の何れか1項に記載のオリゴシランの製造方法。
PCT/JP2017/033667 2016-09-23 2017-09-19 オリゴシランの製造方法 WO2018056250A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018541064A JP6909225B2 (ja) 2016-09-23 2017-09-19 オリゴシランの製造方法
CN201780059057.0A CN109803921B (zh) 2016-09-23 2017-09-19 低聚硅烷的制造方法
KR1020197008667A KR20190041512A (ko) 2016-09-23 2017-09-19 올리고실란의 제조 방법
US16/335,990 US20200062602A1 (en) 2016-09-23 2017-09-19 Method for producing oligosilane

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-186184 2016-09-23
JP2016186184 2016-09-23

Publications (1)

Publication Number Publication Date
WO2018056250A1 true WO2018056250A1 (ja) 2018-03-29

Family

ID=61691023

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/033667 WO2018056250A1 (ja) 2016-09-23 2017-09-19 オリゴシランの製造方法

Country Status (6)

Country Link
US (1) US20200062602A1 (ja)
JP (1) JP6909225B2 (ja)
KR (1) KR20190041512A (ja)
CN (1) CN109803921B (ja)
TW (1) TW201819298A (ja)
WO (1) WO2018056250A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102313140B1 (ko) * 2019-10-01 2021-10-15 (주)원익머트리얼즈 실란합성을 위한 촉매 재생 방법 및 이 방법으로 제조된 촉매
KR102313138B1 (ko) * 2019-10-01 2021-10-15 (주)원익머트리얼즈 실란합성을 위한 촉매 및 이의 제조방법
KR102388956B1 (ko) * 2020-11-30 2022-04-21 (주)원익머트리얼즈 올리고실란의 제조방법 및 이를 위한 장치
KR102388957B1 (ko) 2020-11-30 2022-04-21 (주)원익머트리얼즈 올리고실란의 제조방법
KR102391319B1 (ko) 2020-12-28 2022-04-27 (주)원익머트리얼즈 디실란의 제조방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02184691A (ja) * 1989-01-11 1990-07-19 Tonen Sekiyukagaku Kk シランオリゴマーの製造方法
JP2012530178A (ja) * 2009-06-19 2012-11-29 ブルースター・シリコーンズ・フランス 金属触媒の存在下での脱水素縮合による架橋に適したシリコーン組成物
WO2015060189A1 (ja) * 2013-10-21 2015-04-30 三井化学株式会社 高級シランの製造触媒および高級シランの製造方法
WO2016027743A1 (ja) * 2014-08-20 2016-02-25 国立研究開発法人産業技術総合研究所 オリゴシランの製造方法
JP2016508119A (ja) * 2012-11-27 2016-03-17 エボニック デグサ ゲーエムベーハーEvonik Degussa GmbH 炭素含有ヒドリドシランの製造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4855462A (ja) 1971-11-13 1973-08-03
JP2574012B2 (ja) 1987-10-09 1997-01-22 三井石油化学工業株式会社 ポリシラン化合物の製造方法
JPH02184513A (ja) 1989-01-11 1990-07-19 Tonen Sekiyukagaku Kk ジシランおよびトリシランの製造方法
JPH03183613A (ja) 1989-12-08 1991-08-09 Showa Denko Kk ジシランの製造法
JPH0717753B2 (ja) 1990-09-14 1995-03-01 工業技術院長 ポリシラン類の製造方法
FR2702467B1 (fr) 1993-03-11 1995-04-28 Air Liquide Procédé de préparation du disilane à partir du monosilane par décharge électrique et piégeage cryogénique et nouveau réacteur pour sa mise en Óoeuvre.
JPH11260729A (ja) 1998-01-08 1999-09-24 Showa Denko Kk 高次シランの製造法
DE10126558C1 (de) * 2001-05-31 2002-06-13 Wacker Chemie Gmbh Verfahren zur Herstellung von Silanen
DE102009048087A1 (de) 2009-10-02 2011-04-07 Evonik Degussa Gmbh Verfahren zur Herstellung höherer Hydridosilane
GB2482915B (en) * 2010-08-20 2013-03-06 Univ Montfort A low temperture method for the production of polycrystalline silicon, aligned silicon columns and silicon nanowires
DE102010041842A1 (de) * 2010-10-01 2012-04-05 Evonik Degussa Gmbh Verfahren zur Herstellung höherer Hydridosilanverbindungen
CN102515169A (zh) * 2011-12-16 2012-06-27 天津市泰亨气体有限公司 采用硅化镁与氯化铵反应来生产乙硅烷的方法
KR101231370B1 (ko) * 2012-06-13 2013-02-07 오씨아이머티리얼즈 주식회사 모노실란의 열분해에 의한 디실란의 제조방법 및 제조장치
DE102013226033A1 (de) 2013-12-16 2015-06-18 Evonik Industries Ag Verfahren zur Herstellung von hochreinen Halbmetallverbindungen

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02184691A (ja) * 1989-01-11 1990-07-19 Tonen Sekiyukagaku Kk シランオリゴマーの製造方法
JP2012530178A (ja) * 2009-06-19 2012-11-29 ブルースター・シリコーンズ・フランス 金属触媒の存在下での脱水素縮合による架橋に適したシリコーン組成物
JP2016508119A (ja) * 2012-11-27 2016-03-17 エボニック デグサ ゲーエムベーハーEvonik Degussa GmbH 炭素含有ヒドリドシランの製造方法
WO2015060189A1 (ja) * 2013-10-21 2015-04-30 三井化学株式会社 高級シランの製造触媒および高級シランの製造方法
WO2016027743A1 (ja) * 2014-08-20 2016-02-25 国立研究開発法人産業技術総合研究所 オリゴシランの製造方法

Also Published As

Publication number Publication date
US20200062602A1 (en) 2020-02-27
JP6909225B2 (ja) 2021-07-28
JPWO2018056250A1 (ja) 2019-07-04
KR20190041512A (ko) 2019-04-22
TW201819298A (zh) 2018-06-01
CN109803921A (zh) 2019-05-24
CN109803921B (zh) 2022-03-11

Similar Documents

Publication Publication Date Title
WO2018056250A1 (ja) オリゴシランの製造方法
RU2658005C2 (ru) Способ карбонилирования
CN109890782A (zh) 生产丁二烯的单阶段方法
JP6091310B2 (ja) ブタジエンの製造方法
JP6563019B2 (ja) オリゴシランの製造方法
JP4950986B2 (ja) メタクロレイン及び/又はメタクリル酸の製造法
JP5468324B2 (ja) N−アルキル−tert−ブチルアミンの製造方法
JP5309750B2 (ja) 1,2−ジクロロエタンの製造法
JP2015120133A (ja) アクリル酸製造用の触媒および該触媒を用いたアクリル酸の製造方法
JP7029346B2 (ja) インデンの製造方法
WO2012063771A1 (ja) メタクロレインおよびメタクリル酸製造用触媒、ならびにその製造方法
JP6462498B2 (ja) 不飽和アルコールの製造方法及び触媒
EP3315194B1 (en) Catalyst for glycerin dehydration reaction, preparation method therefor, and method for preparing acrolein by using catalyst
WO2021132239A1 (ja) インデンの製造方法
JP2022101113A (ja) ゼオライト触媒及びその製造方法、並びにオリゴシランの製造方法
JP6633440B2 (ja) アルカン脱水素用触媒及びこれを用いたアルケンの製造方法
JP2024033630A (ja) スチルベン化合物の製造方法
JP6534328B2 (ja) アクリル酸製造用触媒の製造方法とその触媒、ならびに該触媒を用いたアクリル酸の製造方法
JP2022137173A (ja) 触媒及びそれを用いた不飽和カルボン酸の製造方法
JP6290580B2 (ja) 還元反応用触媒組成物、1,6−ヘキサンジオールの製造方法、アミノベンゼン化合物の製造方法
WO2014013706A1 (ja) 2-(イソプロピルアミノ)エタノールの製造方法
JP2019199389A (ja) ポリシリコン膜製造システム
JP2015034154A (ja) プロピオン酸を選択的に低減させる触媒の充填方法
EP3885332A1 (en) Indene composition
JP2017081916A (ja) フェノールの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17853022

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018541064

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197008667

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17853022

Country of ref document: EP

Kind code of ref document: A1