WO2018042955A1 - 変速機制御装置 - Google Patents

変速機制御装置 Download PDF

Info

Publication number
WO2018042955A1
WO2018042955A1 PCT/JP2017/026979 JP2017026979W WO2018042955A1 WO 2018042955 A1 WO2018042955 A1 WO 2018042955A1 JP 2017026979 W JP2017026979 W JP 2017026979W WO 2018042955 A1 WO2018042955 A1 WO 2018042955A1
Authority
WO
WIPO (PCT)
Prior art keywords
control device
power transmission
transmission mechanism
state
clutch
Prior art date
Application number
PCT/JP2017/026979
Other languages
English (en)
French (fr)
Inventor
大司 清宮
義幸 吉田
知靖 坂口
松岡 孝
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to US16/089,765 priority Critical patent/US10704678B2/en
Priority to CN201780023698.0A priority patent/CN109072997B/zh
Priority to DE112017001824.2T priority patent/DE112017001824T5/de
Priority to JP2018537030A priority patent/JP6622417B2/ja
Publication of WO2018042955A1 publication Critical patent/WO2018042955A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • F16H61/0202Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric
    • F16H61/0204Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal
    • F16H61/0213Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal characterised by the method for generating shift signals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/11Stepped gearings
    • B60W10/113Stepped gearings with two input flow paths, e.g. double clutch transmission selection of one of the torque flow paths by the corresponding input clutch
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/06Automatic manoeuvring for parking
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D25/00Fluid-actuated clutches
    • F16D25/10Clutch systems with a plurality of fluid-actuated clutches
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D48/00External control of clutches
    • F16D48/02Control by fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/68Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings
    • F16H61/684Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings without interruption of drive
    • F16H61/688Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings without interruption of drive with two inputs, e.g. selection of one of two torque-flow paths by clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2300/00Purposes or special features of road vehicle drive control systems
    • B60Y2300/06Automatic manoeuvring for parking
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/36Inputs being a function of speed
    • F16H2059/366Engine or motor speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2312/00Driving activities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2312/00Driving activities
    • F16H2312/09Switching between forward and reverse
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/36Inputs being a function of speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/68Inputs being a function of gearing status
    • F16H59/72Inputs being a function of gearing status dependent on oil characteristics, e.g. temperature, viscosity

Definitions

  • the present invention relates to a control device and a control method for an automatic transmission, and is particularly suitable for controlling an automatic transmission that has a plurality of friction engagement elements and switches forward and backward of a vehicle by switching between the plurality of friction engagement elements.
  • the present invention relates to a control device and a control method.
  • an automated manual transmission has been developed as a system that automates the operation of a clutch, which is a friction mechanism, and the operation of a synchronous meshing mechanism (synchromesh mechanism), which is a meshing mechanism, using a gear transmission used in a manual transmission.
  • automatic MT In automatic MT, when shifting is started, a clutch that transmits and shuts off engine torque as a driving force source is released, the synchromesh mechanism is switched, and then the clutch is engaged again.
  • twin clutch type automatic MT in order to ensure a high vehicle start response to a start select operation when starting from the neutral range to the forward range or reverse range.
  • a method is disclosed in which, during selection of the N range, a pre-shift is performed in which a forward start gear stage and a reverse start gear stage selected at the start are selected prior to range switching.
  • Japanese Patent Laid-Open No. 11-208420 discloses a parking assistance device that automatically guides the host vehicle to a target parking position designated by the driver.
  • the parking assistance device automatically guides the host vehicle to the target parking position regardless of the driver's driving skill by a simple button operation or screen operation of the driver, and makes parking easier for the driver. Provide an interface.
  • both the forward start gear stage and the reverse start gear stage are pre-engaged while the N range is selected, and only the clutch is engaged when switching from the N range to the drive range. By doing so, it is control which ensures the start response of a vehicle to start selection operation.
  • the clutch is generally composed of a driving side connector connected to a driving force source and a driven side connector connected to the wheel shaft side, and the driving side connector and the driven side connector. Since there is a predetermined clearance (dead band), the driving force cannot be transmitted until the clearance disappears due to the movement of one of the driving side connector and the driven side connector, and start response Can get worse.
  • the vehicle is automatically guided to a target parking position designated by the driver, and therefore, forward / reverse driving may be frequently switched regardless of the range. At that time, there is a possibility that the forward / backward switching during the parking assistance is caused by the gear switching or the clutch clearance.
  • An object of the present invention is to propose a transmission control device capable of shortening the forward / reverse switching time of the transmission.
  • the present invention provides a transmission power control mechanism for controlling a transmission comprising a forward power transmission mechanism for moving a vehicle forward and a reverse power transmission mechanism for moving the vehicle backward.
  • the reverse power transmission mechanism includes a drive side connector and a driven side connector, respectively, and the forward power transmission mechanism and the reverse power transmission mechanism press the drive side connector and the driven side connector.
  • the contact state to be brought into contact with each other, a retreat state in which the pressing force is released and retracted, and an intermediate state between the contact state and the retracted state.
  • the forward control is performed with one of the forward power transmission mechanism and the reverse power transmission mechanism in a contact state. While performing one of the fine reverse control is the other power transmission mechanism that is adapted to control the intermediate state.
  • the forward / reverse switching time of the transmission can be shortened.
  • FIG. It is a skeleton figure which shows the structure of the control apparatus of the automatic transmission by one Embodiment of this invention. It is a block diagram which shows a clutch retracted state. It is a block diagram which shows a clutch intermediate state. It is a block diagram which shows a clutch intermediate state. It is a block diagram which shows a clutch contact state. It is a block diagram which shows the input / output signal relationship of the power train control unit 100 used for the control apparatus of the automatic transmission by one Embodiment of this invention, the engine control unit 101, and the parking assistance apparatus 110.
  • FIG. It is a flowchart which shows the outline of the whole control content of the control method by one Embodiment of this invention.
  • FIG. 1 a configuration example of a control apparatus for an automobile equipped with an automatic transmission according to the present invention will be described.
  • FIG. 1 is a skeleton diagram of a system configuration example showing an embodiment of a control apparatus for an automobile equipped with an automatic transmission according to the present invention.
  • Engine 7 as a driving force source, an engine speed sensor (not shown) for measuring the number of revolutions of the engine 7, an electronically controlled throttle (not shown) for adjusting the engine torque, and a fuel amount corresponding to the intake air amount
  • a fuel injection device (not shown) is provided so that the engine control unit 101 can control the torque of the engine 7 with high accuracy by operating the intake air amount, fuel amount, ignition timing, and the like. It has become.
  • the fuel injection device includes an intake port injection method in which fuel is injected into an intake port or an in-cylinder injection method in which fuel is directly injected into a cylinder.
  • an operating range (engine torque, engine speed) required for an engine is known. It is advantageous to use an engine of a system that can reduce fuel consumption and has good exhaust performance.
  • As a driving force source not only a gasoline engine but also a diesel engine, a natural gas engine, an electric motor, or the like may be used.
  • the automatic transmission 50 includes a first clutch 8, a second clutch 9, a first input shaft 41, a second input shaft 42, an output shaft 43, a first drive gear 1, a second drive gear 2, a reverse drive gear 10, Third drive gear 3, fourth drive gear 5, fifth drive gear 5, sixth drive gear 6, first driven gear 11, second driven gear 12, reverse driven gear 20, third driven gear 13, fourth driven Gear 14, fifth driven gear 15, sixth driven gear 16, idler gear 30, first synchronous mesh mechanism 21, second synchronous mesh mechanism 22, third synchronous mesh mechanism 23, fourth synchronous mesh mechanism 24 , A rotation sensor 31, a rotation sensor 32, and a rotation sensor 33 are provided, and the torque of the engine 7 is transmitted to and cut off from the first input shaft 41 by engaging and releasing the first clutch 8. Rukoto is possible.
  • the torque of the engine 7 can be transmitted to and cut off from the second input shaft 42 by engaging and releasing the second clutch 9.
  • a wet multi-plate clutch is used in this embodiment, but a dry single-plate clutch may be used, and all friction transmission mechanisms can be used. . It can also be configured by an electromagnetic powder clutch.
  • the second input shaft 42 is hollow, and the first input shaft 41 passes through the hollow portion of the second input shaft 42 and can be moved relative to the second input shaft 42 in the rotational direction. ing.
  • the first drive gear 1, the third drive gear 3, the fifth drive gear 5, and the reverse drive gear 10 are fixed to the second input shaft 42, and are rotatable with respect to the first input shaft 41.
  • the second drive gear 2, the fourth drive gear 4, and the sixth drive gear 6 are fixed to the first input shaft 41, and relative movement in the rotational direction is caused with respect to the second input shaft 42. It has a possible configuration.
  • a sensor 31 is provided as means for detecting the rotational speed of the first input shaft 41, and a sensor 32 is provided as means for detecting the rotational speed of the second input shaft 42.
  • the output shaft 43 includes a first driven gear 11, a second driven gear 12, a third driven gear 13, a fourth driven gear 14, a fifth driven gear 15, a sixth driven gear 16, and a reverse driven gear (not shown). ) Is provided.
  • the first driven gear 11, the second driven gear 12, the third driven gear 13, the fourth driven gear 14, the fifth driven gear 15, the sixth driven gear 16, and the reverse driven gear 20 are rotatable with respect to the output shaft 43. Is provided.
  • a sensor 33 is provided as means for detecting the rotation speed of the output shaft 43.
  • the first drive gear 1, the first driven gear 11, the second drive gear 2, and the second driven gear 12 are engaged with each other.
  • the third drive gear 3 and the third driven gear 13 are engaged with the fourth drive gear 4 and the fourth driven gear 14, respectively.
  • the fifth drive gear 5 and the fifth driven gear 15 mesh with the sixth drive gear 6 and the sixth driven gear 16, respectively.
  • the reverse drive gear 10, the idler gear 30, and the reverse driven gear 20 are respectively engaged, and the first driven gear 11 is connected to the output shaft 43 between the first driven gear 11 and the reverse driven gear 20.
  • a first synchronous meshing mechanism 21 that engages or engages the reverse driven gear 20 with the output shaft 43 is provided.
  • the third drive gear 12 is engaged with the output shaft 43, or the fourth driven gear 14 is engaged with the output shaft 43.
  • a meshing mechanism 23 is provided.
  • the fifth driven gear 15 is engaged with the output shaft 43, or the third driven gear 13 is engaged with the output shaft 43.
  • a meshing mechanism 22 is provided.
  • the sixth driven gear 16 is provided with a fourth synchronous meshing mechanism 24 for engaging the sixth driven gear 16 with the output shaft 43.
  • the power train control unit 100 controls the currents of the solenoid valve 105c and the solenoid valve 105d provided in the hydraulic mechanism 105, whereby the hydraulic piston (not shown) and the shift fork (not shown) provided in the shift actuator 61 are controlled.
  • the rotational torque of the second input shaft 42 is changed to the first synchronized state. It can be transmitted to the output shaft 43 via the meshing mechanism 21.
  • the first synchronous meshing mechanism 21 is configured so that a load is applied in a direction in which the first synchronous meshing mechanism 21 moves to the reverse driven gear 20 side.
  • the shift actuator 61 is provided with a position sensor 61a (not shown) for measuring the position of the first synchronous meshing mechanism 21.
  • the power train control unit 100 controls the currents of the electromagnetic valve 105e and the electromagnetic valve 105f provided in the hydraulic mechanism 105, whereby the hydraulic piston (not shown) and the shift fork (not shown) provided in the shift actuator 62 are controlled.
  • the position or load of the second synchronous meshing mechanism 22 is controlled via the second driven gear 15 or the third driven gear 13 so that the rotational torque of the second input shaft 42 is It can be transmitted to the output shaft 43 via the second synchronous meshing mechanism 22.
  • the shift actuator 62 is provided with a position sensor 62a (not shown) for measuring the position of the second synchronous meshing mechanism 22.
  • the power train control unit 100 controls the currents of the solenoid valve 105g and the solenoid valve 105h provided in the hydraulic mechanism 105, so that the hydraulic piston (not shown) and the shift fork (not shown) provided in the shift actuator 63 are controlled.
  • the position or load of the third synchronous meshing mechanism 23 is controlled via the second driven gear 12 or the fourth driven gear 14 so that the rotational torque of the first input shaft 41 is reduced. , And can be transmitted to the output shaft 43 via the third synchronous meshing mechanism 23.
  • the shift actuator 63 is provided with a position sensor 63a (not shown) for measuring the position of the third synchronous meshing mechanism 23.
  • the power train control unit 100 controls the currents of the electromagnetic valves 105i and 105j provided in the hydraulic mechanism 105, whereby a hydraulic piston (not shown) and a shift fork (not shown) provided in the shift actuator 64 are controlled.
  • the position or load of the fourth synchronous meshing mechanism 24 is controlled via the second synchronous meshing mechanism 24 and engaged with the sixth driven gear 16, so that the rotational torque of the first input shaft 41 is converted into the fourth synchronous meshing mechanism 24. Can be transmitted to the output shaft 43.
  • the shift actuator 64 is provided with a position sensor 64a (not shown) for measuring the position of the fourth synchronous meshing mechanism 24.
  • the rotational torque of the shaft 41 is transmitted to the axle (not shown) via a differential gear (not shown) connected to the transmission output shaft 43.
  • the power train control unit 100 controls the pressure plate (not shown) provided in the first clutch 8 by controlling the current of the electromagnetic valve 105 a provided in the hydraulic mechanism 105, and the first The transmission torque of the clutch 8 is controlled.
  • the power train control unit 100 controls the current of the electromagnetic valve 105b provided in the hydraulic mechanism 105, thereby controlling the pressure plate (not shown) provided in the second clutch 9, and the second The transmission torque of the clutch 9 is controlled.
  • the parking support control unit 110 is connected to a camera that can image the front, rear, and sides of the vehicle, recognizes the outside by image processing, and detects, for example, obstacles around the vehicle. Furthermore, the parking assistance control unit 110 is connected to a display, and the display displays an image by a camera and notifies the driver of various information, and receives an instruction of a target parking position from the driver by a touch display. It is a multimedia interface.
  • the parking assist control unit 110 is also connected to an electric power steering, and steers the steering by controlling the electric motor in order to automatically guide the host vehicle to the target parking position during the parking assist operation.
  • the transmission control unit 100, the engine control unit 101, and the parking support control unit 110 are configured to be able to transmit and receive information to and from each other by the communication means 103.
  • the shift actuator 61 is controlled by the electromagnetic valve 105c and the electromagnetic valve 105d, the first synchronous meshing mechanism 21 and the first driven gear 11 are meshed, and the second clutch 9 is engaged, so that the first speed traveling is achieved.
  • the shift actuator 63 is controlled by the solenoid valve 105g and the solenoid valve 105h, the third synchronous meshing mechanism 23 and the second driven gear 12 are meshed, and the first clutch 8 is engaged, so that the second speed travel is achieved.
  • the shift actuator 62 is controlled by the solenoid valve 105e and the solenoid valve 105f, the second synchronous meshing mechanism 22 and the third driven gear 13 are meshed, and the second clutch 9 is engaged, so that the third speed traveling is achieved.
  • the shift actuator 63 is controlled by the solenoid valve 105g and the solenoid valve 105h, the third synchronous meshing mechanism 23 and the fourth driven gear 14 are meshed, and the first clutch 8 is engaged, so that the fourth speed travel is achieved.
  • the shift actuator 62 is controlled by the electromagnetic valve 105e and the electromagnetic valve 105f, the second synchronous meshing mechanism 22 and the fifth driven gear 15 are meshed, and the second clutch 9 is engaged, so that the fifth speed traveling is achieved.
  • the shift actuator 64 is controlled by the solenoid valve 105i and the solenoid valve 105j, the fourth synchronous meshing mechanism 24 and the sixth driven gear 16 are meshed, and the first clutch 8 is engaged, so that the sixth speed traveling is achieved.
  • the shift actuator 61 is controlled by the electromagnetic valve 105c and the electromagnetic valve 105d, the first synchronous meshing mechanism 21 and the reverse driven gear 20 are meshed, and the second clutch 9 is engaged so that the reverse gear travels.
  • a solenoid valve and a hydraulic piston are used as mechanisms for operating the first meshing transmission mechanism 21, the second meshing transmission mechanism 22, the third meshing transmission mechanism 23, and the fourth meshing transmission mechanism 24.
  • the hydraulic mechanism used it may be configured using an electric motor and a reduction gear instead of a solenoid valve and a hydraulic piston, or may be configured using an electric motor and a drum. It is also possible to use other mechanisms for controlling the transmission mechanisms 21, 22, 23, and 24.
  • the motor may be constituted by a so-called DC motor in which the magnet is fixed and the winding is rotated, or so-called permanent magnet synchronization in which the winding is fixed and the magnet is rotated.
  • a motor may be used, and various motors are applicable.
  • the hydraulic mechanism using a solenoid valve is configured.
  • the clutch is operated using an electric motor and a reduction gear. It is also possible to use a configuration in which the pressure plate of the clutch is controlled by an electromagnetic coil, or other mechanisms for controlling the first clutch 8 and the second clutch 9 can be used.
  • 2 to 5 are explanatory views of a retracted state in which torque is completely disconnected from the driving force source, a contact state in which torque can be transmitted from the driving force source, and an intermediate state between the retracted state and the contact state. It is.
  • the drive-side friction surface 2002 compresses the return spring 2004, moves in the direction of the main shaft 2007, and can contact the driven-side friction surface 2003. Yes.
  • the retracted state is a state before time t1 in FIG. 2, and since the hydraulic pressure 2001 is 0 MPa, the clearance 2006 between the driving side friction surface 2002 and the driven side friction surface 2003 is the largest state, and the transmittable torque is 0 Nm. State.
  • the hydraulic pressure 2001 starts increasing at time t1, the retracted state changes to the intermediate state.
  • the intermediate state according to this embodiment is from time t1 when the increase in hydraulic pressure starts until time t3 when the clearance 2006 between the driving side friction surface 2002 and the driven side friction surface 2003 becomes zero.
  • FIG. 6 shows input / output signal relationships among the transmission control unit 100, the engine control unit 101, and the parking assist device 110.
  • the transmission control unit 100 is configured as a control unit including an input unit 100i, an output unit 100o, and a computer 100c.
  • the engine control unit 101 is also configured as a control unit including an input unit 101i, an output unit 101o, and a computer 101c.
  • the parking assistance control unit 110 is also configured as a control unit including an input unit 110i, an output unit 110o, and a computer 110c.
  • An engine torque command value TTe is transmitted from the transmission control unit 100 to the engine control unit 101 using the communication means 103, and the engine control unit 101 realizes the TTe so that the intake air amount, fuel amount, Control ignition timing and the like (not shown).
  • the engine control unit 101 includes engine torque detection means (not shown) that serves as input torque to the transmission.
  • the engine control unit 101 rotates the engine speed Ne and the engine torque generated by the engine 7. Te is detected and transmitted to the transmission control unit 100 using the communication means 103.
  • the engine torque detection means may be a torque sensor, or may be an estimation means based on engine parameters such as the injector injection pulse width, the pressure in the intake pipe and the engine speed.
  • the power train control unit 100 controls the current of the electromagnetic valve 105a and engages the first clutch 8 by adjusting the voltage V_cl applied to the electromagnetic valve 105a in order to realize a desired first clutch transmission torque. ,release.
  • the power train control unit 100 controls the current of the electromagnetic valve 105b by adjusting the voltage V_clb applied to the electromagnetic valve 105b in order to realize the desired second clutch transmission torque, and the second clutch 9 is Engage and release.
  • the power train control unit 100 adjusts the voltages V1_slv1 and V2_slv1 applied to the electromagnetic valves 105c and 105d in order to realize a desired position of the first synchronization meshing mechanism 21, so that the electromagnetic valves 105c and 105d The current is controlled, and the first synchronous meshing mechanism 21 is engaged and released.
  • the power train control unit 100 adjusts the voltages V1_slv2 and V2_slv2 applied to the electromagnetic valves 105e and 105f in order to realize a desired position of the second synchronization meshing mechanism 22, so that the electromagnetic valves 105e and 105f The current is controlled, and the second synchronous meshing mechanism 22 is engaged and released.
  • the power train control unit 100 adjusts the voltages V1_slv3 and V2_slv3 applied to the electromagnetic valves 105g and 105h in order to realize a desired position of the third synchronization meshing mechanism 23, whereby the electromagnetic valves 105g and 105h.
  • the current is controlled, and the third synchronous meshing mechanism 23 is engaged and released.
  • the power train control unit 100 adjusts the voltages V1_slv4 and V2_slv4 applied to the electromagnetic valves 105i and 105j in order to realize a desired position of the fourth synchronization meshing mechanism 24, so that the electromagnetic valves 105i and 105j The current is controlled to engage and release the fourth synchronization engagement mechanism 24.
  • the power train control unit 100 is provided with a current detection circuit (not shown), and controls the current of each solenoid valve by changing the voltage output so that the current of each solenoid valve follows the target current. ing.
  • first input shaft rotation speed NiA, the second input shaft rotation speed NiB, and the output shaft rotation speed No are input to the power train control unit 100 from the rotation sensor 31, the rotation sensor 32, and the rotation sensor 33, respectively.
  • the power train control unit 100 receives an ON / OFF signal Brk for detecting whether or not the brake is depressed from the brake switch 304.
  • the power train control unit 100 includes a first synchronous meshing mechanism 21 and a second synchronous meshing mechanism 22 including a sleeve 1 position sensor 61a, a sleeve 2 position sensor 62a, a sleeve 3 position sensor 63a, and a sleeve 4 position sensor 64a.
  • the sleeve 1 position RPslv1, the sleeve 2 position RPslv2, the sleeve 3 position RPslv3, and the sleeve 4 position RPslv4 indicating the stroke positions of the third synchronization engagement mechanism 23 and the fourth synchronization engagement mechanism 24 are input.
  • the power train control unit 100 receives a clutch A hydraulic sensor 65 that can detect the hydraulic pressure Pcla of the first clutch 8 and a clutch B hydraulic sensor 66 that can detect the hydraulic pressure Pclb of the second clutch 9.
  • the vehicle speed Vsp is transmitted from the power train control unit 100 to the parking support control device 110 using the communication means 103, and the parking support control device 110 receives a signal from the display or the operation switch to activate / deactivate the parking support device. Control the state.
  • the parking assistance control device 110 transmits the operation / non-operation state fPark of the parking assistance device to the power train control unit 100 using the communication unit 103.
  • the parking assist device 110 estimates or detects the current host vehicle position from the vehicle speed, the camera, and the like, and transmits the target gear position based on the detected position to the power train control unit 100 using the communication unit 103.
  • FIG. 7 is a flowchart showing an outline of the entire control contents of the control device for the automatic transmission according to the first embodiment of the present invention.
  • step 7 is programmed in the computer 100c of the power train control unit 100 and repeatedly executed at a predetermined cycle. That is, the following processes in steps 701 to 703 are executed by the power train control unit 100.
  • Step 701 is a process for determining whether or not to execute parking support control. Whether or not parking support is executed is determined using the fPark received from the parking support control apparatus 110 using the communication unit 103. If fPark is “1”, it is determined to be executed and the process proceeds to Step 704. If fPark is “0”, it is determined not to be executed, and the process proceeds to step 703 to execute the existing shift control.
  • Step 704 is a step of determining whether or not to permit execution of parking assist shift control. When permitting the execution of the parking support shift control, the process proceeds to step 702, and the parking support shift control is executed. If not permitted, the process proceeds to step 703 to execute the existing shift control.
  • the drag torque of the lubricating oil is estimated from the engine speed, the clutch speed, the lubricant temperature, the lubrication amount, and the clutch clearance, and is not permitted if the drag torque is larger than a preset value.
  • step 702 in FIG. 7 details of step 702 in FIG. 7 will be described with reference to FIG.
  • Step 801 is a parking information acquisition process, and receives information necessary for the present embodiment from the parking assistance control device 110 using the communication means 103.
  • Step 802 is a target gear position calculation step, in which a target skill position at the time of carrying out parking support control is calculated.
  • Step 803 is a clutch A target position calculation step, in which a clutch that transmits driving force is selected from the calculation result of step 802, and the clutch A target position is calculated.
  • Step 804 is a clutch B target position calculation step, in which a clutch that transmits driving force is selected from the calculation result of step 802, and the clutch B target position is calculated.
  • step 801 in FIG. 8 details of step 801 in FIG. 8 will be described with reference to FIG.
  • FIG. 9 is a parking information acquisition process, which is a process of receiving information necessary for the present embodiment from the parking assistance control device 110 using the communication means 103.
  • Step 901 is a process for obtaining the total number of times of switching TCNTFRCHG.
  • the parking support control device 110 calculates a route from the vehicle position to the target parking position when executing the parking support control, and advances in the route.
  • the number of times of reverse switching is calculated in advance and transmitted using the communication means 103, and the power train control unit 100 acquires the received number of times of switching as the total number of times of switching TCNTFRCHG.
  • the total number of times of switching TCNTFRCHG is the number of times of forward / reverse switching in the route from the vehicle position to the target parking position at the time of parking support control when parking, The number of forward / reverse switching in the path from the vehicle position to the target delivery position.
  • Step 902 is a target gear position TGPDRVSUP acquisition step when the parking assistance control is executed.
  • the parking assist control device 110 calculates the target gear position based on the vehicle speed VSP and the vehicle position detected or estimated from the camera, and transmits the target gear position using the communication means 103.
  • the train control unit 100 acquires the received target gear position as the target gear position TGPDRVSUP.
  • the target gear position is acquired from the parking assistance control device 110 via the communication means 103, but it is only necessary to know the target forward / backward direction, and the target gear position is changed.
  • the forward / backward instruction information may be acquired.
  • Step 802 is a target gear position calculation step, in which the final target gear position is calculated based on the information received from the parking assistance control device 110 using the communication means 103 in step 801.
  • Step 1001 is a step of determining whether or not the current forward / reverse switching number CNFRCHHG has reached the total switching number TCNTFRCHG. If the number of times of switching CNTFRCHG calculated in step 1005 has reached the total number of times of switching TCNTFRCHG, the process proceeds to step 1008, and if not, the process proceeds to step 1002.
  • Step 1002 is a step of determining whether or not the target gear position TGPDRVSUP is the second speed. If it is the second speed, the routine proceeds to step 1003, where the second speed is set as the target gear position TGP, and the reverse gear (R) is set as the preshift gear position TGPPRE. If it is not the second speed, the routine proceeds to step 1007, the reverse gear is set to the target gear position TGP, and the second speed is set to the preshift gear position TGPPRE.
  • step 1002 is determined based on the gear position, but it may be determined whether the vehicle is moving forward or backward. If the vehicle is moving forward, the forward gear is set as the target gear position TGP and the reverse gear is set as the preshift gear position TGPPRE. . In the case of reverse, the reverse gear may be set at the target gear position TGP and the forward gear may be set at the preshift gear position TGPPRE.
  • Step 1004 is a step of determining whether or not the target gear position TGP has been changed. If it has been changed, the process proceeds to step 1005, and the count-up time CNTFRCHG is increased.
  • Step 1008 is a process in the case where the forward / backward switching frequency switching frequency CNTFRCHG has reached the total switching frequency TCNTFRCHG, and forward / backward switching is not necessary, so the target gear position TGP holds the previous value.
  • Step 1009 is a step of determining whether or not the target gear position TGP is a reverse gear. If it is a reverse gear, the routine proceeds to step 1010, where the pre-shift gear position TGPPRE is set to neutral (N). When the forward / backward switching frequency switching frequency CNTFRCHG reaches the total switching frequency TCNTFRCHG, there is no subsequent forward / backward switching, and the next gear stage cannot be predicted. it can.
  • step 1009 is not reverse gear, set forward gear.
  • the forward gear is set one step higher or one step lower than the target gear position TGP.
  • step 803 in FIG. 8 details of step 803 in FIG. 8 will be described with reference to FIG.
  • Step 1101 is a step of determining whether or not the target gear position TGP is the second speed.
  • the routine proceeds to step 1102, the clutch A is set to the intermediate state 1, and at step 1103, it is determined whether or not the start request fLCH is “1”.
  • the start request fLCH is preferably “0” when the brake switch is ON, and preferably “1” when the start is requested when the brake switch is OFF.
  • the process proceeds to step 1105, and the engagement control of the clutch A is executed to bring the clutch into a contact state.
  • the start request fLCH is “0”, the intermediate control executed in step 1102 is continued. If it is determined in step 1101 that the target gear position TGP is not the second speed, the process proceeds to step 1104 where the clutch A is set to the intermediate state 2 and the process is terminated.
  • the intermediate control 1 in step 1102 and the intermediate control 2 in step 1104 can change the clutch position in the intermediate state according to the oil temperature as shown in FIG.
  • the clutch intermediate state be the contact side.
  • the intermediate control 1 in step 1102 and the intermediate control 2 in step 1104 can change the clutch position in the intermediate state in accordance with the torque input to the drive side connector as shown in FIG. As the torque increases, it is desirable to set the clutch intermediate state to the contact side. By configuring in this way, it is possible to suppress the engine speed from rising while improving the response of high torque.
  • the intermediate control 1 in step 1102 and the intermediate control 2 in step 1104 are the clutch position in the intermediate state according to the flow rate of the lubricating oil supplied to the driving side connector and the driven side connector.
  • step 1102 In the intermediate control 1 in step 1102 and the intermediate control 2 in step 1104, it is desirable to set based on FIGS. 23, 24, and 25, but the setting in step 1104 is compared with the setting in step 1102. It is desirable to set to.
  • step 1105 clutch A engagement control will be described.
  • step 1105 is a step of changing the clutch from the intermediate state to the contact state, and increases the clutch pressing torque in accordance with the torque input to the drive side connector, thereby increasing the clutch transmission torque.
  • the clutch transmission torque is changed according to the preset increase amount DTCI and decrease amount DTCD.
  • the increase amount DTCI and the decrease amount DTCD are preferably set by shock and driving force response due to a sudden change in transmission torque, and may be changed by the driver from the outside by a navigation system or the like.
  • the increase amount DTCI and the decrease amount DTCD are increased in order to park quickly, and there is no following vehicle. In order to improve riding comfort, the increase amount DTCI and the decrease amount DTCD may be reduced.
  • the increase amount DTCI and the decrease amount DTCD are increased in order to park quickly.
  • the increase amount DTCI is set to improve the ride comfort.
  • the reduction amount DTCD may be reduced.
  • This configuration makes it possible to achieve both shock and response according to the driving scene.
  • step 804 in FIG. 8 details of step 804 in FIG. 8 will be described with reference to FIG.
  • Step 1201 is a step of determining whether or not the target gear position TGP is at the R speed.
  • the routine proceeds to step 1202, where the clutch B is set to the intermediate state 1, and at step 1203, it is determined whether or not the start request fLCH is “1”.
  • the start request fLCH is preferably “0” when the brake switch is ON, and preferably “1” when the start is requested when the brake switch is OFF.
  • the process proceeds to step 1205, and the engagement control of the clutch B is executed so as to bring the clutch into a contact state.
  • the intermediate control executed in step 1202 is continued. If the target gear position TGP is not the R speed in step 1201, the process proceeds to step 1204, the clutch B is set to the intermediate state 2 and the process is terminated.
  • the intermediate control 1 in step 1202 and the intermediate control 2 in step 1204 can change the clutch position in the intermediate state in accordance with the oil temperature, as shown in FIG.
  • the clutch intermediate state be the contact side.
  • the intermediate control 1 in step 1202 and the intermediate control 2 in step 1204 can change the clutch position in the intermediate state in accordance with the torque input to the drive side connector as shown in FIG. As the torque increases, it is desirable to set the clutch intermediate state to the contact side. By configuring in this way, it is possible to suppress the engine speed from rising while improving the response of high torque.
  • the intermediate control 1 in step 1202 and the intermediate control 2 in step 1204 are the clutch positions in the intermediate state according to the flow rate of the lubricating oil supplied to the driving side connector and the driven side connector.
  • step 1102 In the intermediate control 1 in step 1102 and the intermediate control 2 in step 1104, it is desirable to set based on FIGS. 23, 24, and 25, but the setting in step 1104 is compared with the setting in step 1102. It is desirable to set to.
  • Step 1105 is a step of changing the clutch from the intermediate state to the contact state.
  • the clutch pressing load is increased according to the torque input to the drive side connector, and the clutch transmission torque is increased.
  • FIG. 13 shows the route of the vehicle during automatic parking according to this embodiment.
  • the parking assistance control device automatically operates the accelerator, brake, and steering, and the vehicle moves to the position at time t4.
  • the parking assistance control apparatus detects an obstacle at time t4
  • the vehicle stops the target gear position is set as the reverse gear, and the vehicle is moved backward to the position at time t5.
  • the parking assistance control device detects an obstacle behind the vehicle at time t5
  • the forward gear is set as the target gear
  • the vehicle is moved to the position at time t6.
  • the parking assistance control apparatus detects an obstacle at time t6
  • the vehicle stops sets the reverse gear as the target gear, reverses the vehicle, and stops at the position of time t7.
  • FIG. 14 is a time chart when parking assistance is performed by the control method of the present embodiment.
  • the times t1 to t7 in the figure show the same state as the times t1 to t7 in FIG.
  • the target gear position TGP is 1st speed
  • the preshift gear position TGPPRE is 2nd speed
  • the clutch A and the clutch B are in the retracted state, so the vehicle speed is 0 Yes, the vehicle is stopped.
  • the parking assistance control device sets parking assistance fPark, and the parking assistance control device sets 3 to the total number of switching times TCNTFRCHG, the target gear position TGP becomes the second speed, and the preshift gear position TGPPRE becomes the reverse gear ( R), and the sleeve 1 and the sleeve 3 are engaged with R and the second speed, respectively.
  • the clutch A and the clutch B are controlled to be in an intermediate state.
  • the clutch A is in the contact state at the time t3
  • the vehicle starts moving forward.
  • the vehicle speed increases at a positive value
  • the vehicle stops at time t4 and the clutch A enters an intermediate state.
  • the number of switchings CNTFRCHG is incremented, the clutch B is kept in the intermediate state while the clutch B is maintained in the intermediate state, and the vehicle moves forward.
  • the vehicle speed increases at a positive value, the vehicle stops at time t6, and the clutch A enters an intermediate state.
  • the target gear position is set to R again by the parking support control device at time t6
  • the number of switching times CNTFRCHG is counted up and coincides with the total number of switching times TCNTFRCHG. Therefore, since the target gear position is held at R and the preshift gear position is N, the clutch A is in the retracted state, the clutch B is brought into the contact state, and the vehicle starts moving backward, so that the vehicle speed increases with a negative value.
  • FIG. 15 is a skeleton diagram of this embodiment showing a state before time t1. Prior to time t1, the first synchronous meshing mechanism 21 is engaged with the first speed gear, the third synchronous meshing mechanism 23 is engaged with the second speed gear, and the clutch A (8) and the clutch B (9) are retracted. It is in a state.
  • FIG. 16 is a skeleton diagram of the present embodiment showing the state at time t2.
  • the parking assistance fPark is set at time t2
  • the first synchronization engagement mechanism 21 is fastened to R.
  • FIG. 17 is a skeleton diagram of the present embodiment showing the state at time t3.
  • both the clutch A (8) and the clutch B (9) are brought into an intermediate state.
  • FIG. 18 is a skeleton diagram of this embodiment showing a state in which the vehicle at time t3 to t4 is moving forward. From time t3 to t4, the clutch A (8) is brought into the contact state while the clutch B (9) is kept in the intermediate state.
  • FIG. 19 is a skeleton diagram of this embodiment showing a state in which the vehicle at time t4 to t5 is moving backward. From time t4 to t5, the clutch B (9) is brought into a contact state while the clutch A (8) is kept in an intermediate state.
  • FIG. 20 shows the route of the vehicle when leaving the vehicle according to this embodiment.
  • the parking assistance control device automatically operates the accelerator, brake, and steering, and the vehicle moves to the position at time t4.
  • the parking assistance control apparatus detects an obstacle at time t4
  • the vehicle stops the target gear position is set as the reverse gear, and the vehicle is moved backward to the position at time t5.
  • the parking assistance control device detects that there is no obstacle ahead of the vehicle at time t5
  • the forward gear is set as the target gear and the vehicle is moved to the position at time t6.
  • FIG. 21 is a time chart when parking assistance is performed by the control method of the present embodiment.
  • the times t1 to t7 in the figure show the same state as the times t1 to t7 in FIG.
  • the target gear position TGP is 1st speed
  • the preshift gear position TGPPRE is 2nd speed
  • the clutch A and the clutch B are in the retracted state, so the vehicle speed is 0 Yes, the vehicle is stopped.
  • the parking assistance control device sets parking assistance fPark, and the parking assistance control device sets 2 to the total number of switching times TCNTFRCHG, the target gear position TGP becomes the second speed, and the preshift gear position TGPPRE becomes the reverse gear ( R), and the sleeve 1 and the sleeve 3 are engaged with R and the second speed, respectively.
  • the clutch A and the clutch B are controlled to be in an intermediate state.
  • the clutch A is in the contact state at the time t3
  • the vehicle starts moving forward.
  • the vehicle speed increases at a positive value
  • the vehicle stops at time t4 and the clutch A enters an intermediate state.
  • the switching number CNFRCHG is counted up and coincides with the total switching number TCNTFRCHG. Therefore, since the target gear position is held at the second speed and the preshift gear position is the third speed as the forward gear, the clutch B is in the retracted state, the clutch A is brought into the contact state, and the vehicle starts moving forward. Increase with a positive value.
  • the forward clutch and the reverse clutch are set in a standby state. If it does in this way, in vehicles which have an automatic transmission provided with a parking assistance device, forward / reverse switching time can be shortened.
  • twin clutch type automatic MT is used.
  • any transmission having a clutch for switching between forward and reverse travel may be used, and a continuously variable transmission as shown in FIG. 22 may be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Transmission Device (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)

Abstract

本発明は、変速機の前進・後進の切替え時間を短縮することができる変速機制御装置を提案する。本発明は、車両を前進させる前進動力伝達機構と、前記車両を後退させる後退動力伝達機構とを備える変速機を制御する変速機制御装置において、前記前進動力伝達機構及び後退動力伝達機構は、駆動側連結子及び被駆動側連結子をそれぞれ備え、且つ、前記前進動力伝達機構及び後退動力伝達機構は、前記駆動側連結子と前記被駆動側連結子とを押し付けて接触させる接触状態と、押し付け力を解除して退避させる退避状態と、前記接触状態と退避状態との中間状態とする中間状態とに変更可能に構成され、前記車両を前進制御及び後退制御の切換を含む予め生成された制御内容に基づいて制御する場合、前記前進動力伝達機構及び前記後退動力伝達機構の一方の動力伝達機構を接触状態として前記前進制御及び後退制御の一方を行う間に、他方の動力伝達機構を前記中間状態に制御する。

Description

変速機制御装置
 本発明は、自動変速機の制御装置及び制御方法に係り、特に、摩擦係合要素を複数持ち、複数の摩擦係合要素の切換により自動車の前進・後退を切替える自動変速機の制御に好適な制御装置および制御方法に関する。
 最近、手動変速機に用いられる歯車式変速機を用いて、摩擦機構であるクラッチの操作と、噛合い機構である同期噛合い機構(シンクロメッシュ機構)の操作を自動化したシステムとして、自動化マニュアルトランスミッション(以下、「自動MT」と称する)が開発されている。自動MTでは、変速が開始されると、駆動力源であるエンジンのトルクを伝達、遮断するクラッチを解放し、シンクロメッシュ機構を切り替え、しかる後に再度クラッチを締結する。
 また、特開2000-234654号公報や、特開2001-295898号公報により、変速機への入力トルクを伝達するクラッチを2枚設け、2枚のクラッチによって交互に駆動トルクを伝達する、ツインクラッチ式自動MTが知られている。このツインクラッチ式自動MTでは、変速が開始されると、変速前にトルクを伝達していたクラッチを徐々に解放しながら、次変速段のクラッチを徐々に締結することで、駆動トルクを変速前ギア比相当から、変速後ギア比相当へと変化させることにより、駆動トルク中断を回避してスムーズな変速を行えるものである。
 前記のツインクラッチ式自動MTにおいては、特開2007-040439号公報により、ニュートラルレンジから前進レンジまたは後退レンジへ切り替えての発進時、発進セレクト操作に対して高い車両の発進応答性を確保するため、Nレンジの選択中、発進時に選択される前方発進ギア段と後退発進ギア段をレンジ切り替えに先行して選択するプリシフトを実行する方法が開示されている。
 また、特開平11-208420号公報により、運転者の指定した目標駐車位置へ自動的に自車両を誘導する駐車支援装置が知られている。駐車支援装置は、運転者の簡易なボタン操作や画面操作により、運転者の運転技術によらず自車両を自動的に目標駐車位置まで誘導するものであり、運転者に対してより容易な駐車インターフェイスを提供する。
特開2000-234654号公報 特開2001-295898号公報 特開2007-040439号公報 特開平11-208420号公報
 特開2007-040439号公報に記載の制御は、Nレンジの選択中に前方発進ギア段と後退発進ギア段の両方を予め締結し、Nレンジから駆動レンジへの切替え時にはクラッチの締結操作のみとすることで、発進セレクト操作に対して車両の発進応答性を確保する制御である。
 しかし、一般的にクラッチは、駆動力源に接続されている駆動側連結子と車輪軸側に接続されている被駆動側連結子で構成され、前記駆動側連結子と前記被駆動側連結子には所定のクリアランス(不感帯)があるため、前記駆動側連結子と前記被駆動側連結子のいずれかの移動により前記クリアランスが無くなるまでの間、駆動力を伝達することができず発進応答性が悪化する可能性がある。
 特に、駐車支援装置を備える車両においては、運転者の指定した目標駐車位置へ自動的に自車両を誘導するため、レンジとは無関係に前進・後進を頻繁に切替える場合がある。
その際、ギアの切替えやクラッチのクリアランスにより駐車支援実施中の前進・後進切替にもたつきが発生する可能性がある。
 本発明の目的は、変速機の前進・後進の切替え時間を短縮することができる変速機制御装置を提案することにある。
 上記目的を達成するために、本発明は、車両を前進させる前進動力伝達機構と、前記車両を後退させる後退動力伝達機構とを備える変速機を制御する変速機制御装置において、前記前進動力伝達機構及び後退動力伝達機構は、駆動側連結子及び被駆動側連結子をそれぞれ備え、且つ、前記前進動力伝達機構及び後退動力伝達機構は、前記駆動側連結子と前記被駆動側連結子とを押し付けて接触させる接触状態と、押し付け力を解除して退避させる退避状態と、前記接触状態と退避状態との中間状態とする中間状態とに変更可能に構成され、前記車両を前進制御及び後退制御の切換を含む予め生成された制御内容に基づいて制御する場合、前記前進動力伝達機構及び前記後退動力伝達機構の一方の動力伝達機構を接触状態として前記前進制御及び後退制御の一方を行う間に、他方の動力伝達機構を前記中間状態に制御するようにしたものである。
 本発明によれば、変速機の前進・後進の切替え時間を短縮することができる。
本発明の一実施形態による自動変速機の制御装置の構成を示すスケルトン図である。 クラッチ退避状態を示す構成図である。 クラッチ中間状態を示す構成図である。 クラッチ中間状態を示す構成図である。 クラッチ接触状態を示す構成図である。 本発明の一実施形態による自動変速機の制御装置に用いられるパワートレーン制御ユニット100と、エンジン制御ユニット101のと駐車支援装置110の入出力信号関係を示すブロック線図である。 本発明の一実施形態による制御方法の全体の制御内容の概略を示すフローチャートである。 本発明の一実施形態による駐車支援変速制御の概略を示すフローチャートである。 本発明の一実施形態による駐車支援情報取得の概略を示すフローチャートである。 本発明の一実施形態による目標ギア位置演算の概略を示すフローチャートである。 本発明の一実施形態によるクラッチ目標位置演算の概略を示すフローチャートである。 本発明の一実施形態によるクラッチ目標位置演算の概略を示すフローチャートである。 本発明の一実施形態による駐車時の車両経路の概略図である。 本発明の一実施形態による駐車時の動作を示すタイムチャートである。 本発明の一実施形態による駐車時の動作をスケルトン図である。 本発明の一実施形態による駐車時の動作をスケルトン図である。 本発明の一実施形態による駐車時の動作をスケルトン図である。 本発明の一実施形態による駐車時の動作をスケルトン図である。 本発明の一実施形態による駐車時の動作をスケルトン図である。 本発明の一実施形態による出庫時の車両経路の概略図である。 本発明の一実施形態による出庫時の動作を示すタイムチャートである。 本発明の第二実施形態による自動変速機の制御装置の構成を示すスケルトン図である。 中間状態でのクラッチ位置と油温との関係を示す図である。 中間状態でのクラッチ位置と入力トルクとの関係を示す図である。 中間状態でのクラッチ位置と潤滑油の流量との関係を示す図である。
 以下、本発明の実施の形態を図1~図25を用いて詳細に説明する。
 最初に、図1を用いて、本発明に係わる自動変速機を備えた自動車の制御装置の構成例について説明する。
 図1は、本発明に係る自動変速機を備えた自動車の制御装置の一実施の形態を示すシステム構成例のスケルトン図である。
 駆動力源であるエンジン7、エンジン7の回転数を計測するエンジン回転数センサ(図示しない)、エンジントルクを調節する電子制御スロットル(図示しない)、吸入空気量に見合う燃料量を噴射するための燃料噴射装置(図示しない)が設けられており、エンジン制御ユニット101により、吸入空気量、燃料量、点火時期等を操作することで、エンジン7のトルクを高精度に制御することができるようになっている。前記燃料噴射装置には、燃料が吸気ポートに噴射される吸気ポート噴射方式あるいはシリンダ内に直接噴射される筒内噴射方式があるが、エンジンに要求される運転域(エンジントルク、エンジン回転数で決定される領域)を比較して燃費が低減でき、かつ排気性能が良い方式のエンジンを用いるのが有利である。駆動力源としては、ガソリンエンジンのみならず、ディーゼルエンジン、天然ガスエンジンや、電動機などでも良い。
 自動変速機50には、第1クラッチ8、第2クラッチ9、第1入力軸41、第2入力軸42、出力軸43、第1ドライブギア1、第2ドライブギア2、後進ドライブギア10、第3ドライブギア3、第4ドライブギア5、第5ドライブギア5、第6ドライブギア6、第1ドリブンギア11、第2ドリブンギア12、後進ドリブンギア20、第3ドリブンギア13、第4ドリブンギア14、第5ドリブンギア15、第6ドリブンギア16、アイドラーギア30、第1同期噛合い機構21、第2同期噛合い機構22、第3同期噛合い機構23、第4同期噛合い機構24、回転センサ31、回転センサ32、回転センサ33が設けられており、前記第1クラッチ8を係合、解放することで、前記エンジン7のトルクを第1入力軸41に伝達、遮断することが可能である。また、前記第2クラッチ9を係合、解放することで、前記エンジン7のトルクを第2入力軸42に伝達、遮断することが可能である。前記第1クラッチ8、前記第2クラッチ9には、本実施例では湿式多板クラッチを用いているが、乾式単板クラッチを用いても良く、すべての摩擦伝達機構を用いることが可能である。また、電磁パウダークラッチによって構成することも可能である。
 第2入力軸42は中空になっており、第1入力軸41は、第2入力軸42の中空部分を貫通し、第2入力軸42に対し回転方向への相対運動が可能な構成となっている。
 第2入力軸42には、第1ドライブギア1と第3ドライブギア3と第5ドライブギア5と後進ドライブギア10が固定されており、第1入力軸41に対しては、回転自在となっている。また、第1入力軸41には、第2ドライブギア2と第4ドライブギア4と第6ドライブギア6が固定されており、第2入力軸42に対しては、回転方向への相対運動が可能な構成となっている。
 第1入力軸41の回転数を検出する手段として、センサ31が設けられており、第2入力軸42の回転数を検出する手段として、センサ32が設けられている。
 一方、出力軸43には、第1ドリブンギア11、第2ドリブンギア12、第3ドリブンギア13、第4ドリブンギア14、第5ドリブンギア15、第6ドリブンギア16、後進ドリブンギア(図示しない)が設けられている。第1ドリブンギア11、第2ドリブンギア12、第3ドリブンギア13、第4ドリブンギア14、第5ドリブンギア15、第6ドリブンギア16、後進ドリブンギア20が出力軸43に対して回転自在に設けられている。
 また、出力軸43の回転数を検出する手段として、センサ33が設けられている。
 これらのギアの中で、前記第1ドライブギア1と、前記第1ドリブンギア11とが、前記第2ドライブギア2と、前記第2ドリブンギア12とが、それぞれ噛合している。また、前記第3ドライブギア3と、前記第3ドリブンギア13とが、前記第4ドライブギア4と、前記第4ドリブンギア14とが、それぞれ噛合している。さらに、前記第5ドライブギア5と、前記第5ドリブンギア15とが、第6ドライブギア6と第6ドリブンギア16とが、それぞれ噛合している。また、後進ドライブギア10、アイドラーギア30、後進ドリブンギア20がそれぞれ係合しており、 また、第1ドリブンギア11と後進ドリブンギア20の間には、第1ドリブンギア11を出力軸43に係合させたり、後進ドリブンギア20を出力軸43に係合させる、第1同期噛合い機構21が設けられている。
 また、第2ドリブンギア12と第4ドリブンギア14の間には、第2ドライブギア12を出力軸43に係合させたり、第4ドリブンギア14を出力軸43に係合させる、第3同期噛合い機構23が設けられている。
 また、第5ドリブンギア15と第3ドリブンギア13の間には、第5ドリブンギア15を出力軸43に係合させたり、第3ドリブンギア13を出力軸43に係合させる、第2同期噛合い機構22が設けられている。
 また、第6ドリブンギア16には、第6ドリブンギア16を出力軸43に係合させる、第4同期噛合い機構24が設けられている。
 パワートレーン制御ユニット100によって、油圧機構105に設けられた電磁弁105c、電磁弁105dの電流を制御することで、シフトアクチュエータ61内に設けられた油圧ピストン(図示しない)およびシフトフォーク(図示しない)を介して前記第1同期噛合い機構21の位置もしくは荷重を制御し、第1ドリブンギア11、または後進ドリブンギア20と係合させることで、第2入力軸42の回転トルクを、第1同期噛合い機構21を介して出力軸43へと伝達することができる。ここでは、電磁弁105dの電流を増加することで、前記第1同期噛合い機構21が第1ドリブンギア11側へ移動する方向へ荷重が加わり、電磁弁105cの電流を増加することで、前記第1同期噛合い機構21が後進ドリブンギア20側へ移動する方向へ荷重が加わるように構成している。なお、シフトアクチュエータ61には前記第1同期噛合い機構21の位置を計測する位置センサ61a(図示しない)が設けられている。
 また、パワートレーン制御ユニット100によって、油圧機構105に設けられた電磁弁105e、電磁弁105fの電流を制御することで、シフトアクチュエータ62内に設けられた油圧ピストン(図示しない)およびシフトフォーク(図示しない)を介して前記第2同期噛合い機構22の位置もしくは荷重を制御し、第5ドリブンギア15、または第3ドリブンギア13と係合させることで、第2入力軸42の回転トルクを、第2同期噛合い機構22を介して出力軸43へと伝達することができる。なお、シフトアクチュエータ62には前記第2同期噛合い機構22の位置を計測する位置センサ62a(図示しない)が設けられている。
 また、パワートレーン制御ユニット100によって、油圧機構105に設けられた電磁弁105g、電磁弁105hの電流を制御することで、シフトアクチュエータ63内に設けられた油圧ピストン(図示しない)およびシフトフォーク(図示しない)を介して前記第3同期噛合い機構23の位置もしくは荷重を制御し、第2ドリブンギア12、または前記第4ドリブンギア14と係合させることで、第1入力軸41の回転トルクを、第3同期噛合い機構23を介して出力軸43へと伝達することができる。なお、シフトアクチュエータ63には前記第3同期噛合い機構23の位置を計測する位置センサ63a(図示しない)が設けられている。
 また、パワートレーン制御ユニット100によって、油圧機構105に設けられた電磁弁105i、電磁弁105jの電流を制御することで、シフトアクチュエータ64内に設けられた油圧ピストン(図示しない)およびシフトフォーク(図示しない)を介して前記第4同期噛合い機構24の位置もしくは荷重を制御し、第6ドリブンギア16と係合させることで、第1入力軸41の回転トルクを、第4同期噛合い機構24を介して出力軸43へと伝達することができる。なお、シフトアクチュエータ64には前記第4同期噛合い機構24の位置を計測する位置センサ64a(図示しない)が設けられている。
 このように第1ドライブギア1、第2ドライブギア2、第3ドライブギア3、第4ドライブギア4、第5ドライブギア5、第6ドライブギア6、後進ドライブギア10から、第1ドリブンギア11、第2ドリブンギア12、第3ドリブンギア13、第4ドリブンギア14、第5ドリブンギア15、第6ドリブンギア16、後進ドリブンギア20を介して変速機出力軸43に伝達された変速機入力軸41の回転トルクは、変速機出力軸43に連結されたディファレンシャルギア(図示しない)を介して車軸(図示しない)に伝えられる。
 また、パワートレーン制御ユニット100によって、油圧機構105に設けられた電磁弁105aの電流を制御することで、前記第1クラッチ8内に設けられたプレッシャプレート(図示しない)を制御し、前記第1クラッチ8の伝達トルクの制御を行っている。
 また、パワートレーン制御ユニット100によって、油圧機構105に設けられた電磁弁105bの電流を制御することで、前記第2クラッチ9内に設けられたプレッシャプレート(図示しない)を制御し、前記第2クラッチ9の伝達トルクの制御を行っている。
 駐車支援制御ユニット110は、車両の前方,後方,側方を撮像可能なカメラと接続され、画像処理により外界認識を行い、例えば、車両周辺の障害物を検出する。さらに、駐車支援制御ユニット110は、ディスプレイと接続され、ディスプレイは、カメラによる映像の表示や、各種情報の運転者への報知を行うとともに、タッチディスプレイにより運転者からの目標駐車位置の指示を受付けるマルチメディアインターフェイスである。また、駐車支援制御ユニット110は、電動パワステとも接続され、駐車支援動作中は、自車両を目標駐車位置に自動的に誘導するために、電動モータを制御することによりステアリングを操舵する。
 前記変速機制御ユニット100,エンジン制御ユニット101,駐車支援制御ユニット110は、通信手段103によって相互に情報を送受信可能なように構成する。
 電磁弁105c、電磁弁105dによってシフトアクチュエータ61を制御し、第1同期噛合い機構21と第1ドリブンギア11を噛合し、第2クラッチ9を係合することによって第1速段走行となる。
 電磁弁105g、電磁弁105hによってシフトアクチュエータ63を制御し、第3同期噛合い機構23と第2ドリブンギア12を噛合し、第1クラッチ8を係合することによって第2速段走行となる。
 電磁弁105e、電磁弁105fによってシフトアクチュエータ62を制御し、第2同期噛合い機構22と第3ドリブンギア13を噛合し、第2クラッチ9を係合することによって第3速段走行となる。
 電磁弁105g、電磁弁105hによってシフトアクチュエータ63を制御し、第3同期噛合い機構23と第4ドリブンギア14を噛合し、第1クラッチ8を係合することによって第4速段走行となる。
 電磁弁105e、電磁弁105fによってシフトアクチュエータ62を制御し、第2同期噛合い機構22と第5ドリブンギア15を噛合し、第2クラッチ9を係合することによって第5速段走行となる。
 電磁弁105i、電磁弁105jによってシフトアクチュエータ64を制御し、第4同期噛合い機構24と第6ドリブンギア16を噛合し、第1クラッチ8を係合することによって第6速段走行となる。
 電磁弁105c、電磁弁105dによってシフトアクチュエータ61を制御し、第1同期噛合い機構21と後進ドリブンギア20を噛合し、第2クラッチ9を係合することによって後進段走行となる。
 なお、第1噛合い伝達機構21、第2噛合い伝達機構22、第3噛合い伝達機構23、第4噛合い伝達機構24を動作させる機構として、本実施例においては電磁弁、油圧ピストンを用いた油圧機構として構成しているが、電磁弁、油圧ピストンの替わりに、電動モータおよび減速ギアを用いて構成しても良いし、電動モータ、ドラムを用いて構成しても良く、噛合い伝達機構21、22、23、24を制御するための他の機構を用いても構成可能である。また、電動モータを用いる場合は、モータは磁石が固定されて巻線が回転される、いわゆる直流モータによって構成してもよいし、巻線が固定して磁石が回転される、いわゆる永久磁石同期モータでも良く、種々のモータが適用可能である。
 また、第1クラッチ8、第2クラッチ9を動作させるために、本実施例においては電磁弁を用いた油圧機構として構成しているが、電動モータ、減速ギアを用いてクラッチを動作させるように構成しても良いし、電磁コイルによってクラッチのプレッシャプレートを制御する構成としても良く、第1クラッチ8、第2クラッチ9を制御するための他の機構を用いても構成可能である。
 次に図2~図5を用いて図1のクラッチ8、クラッチ9の詳細を説明する。なお、図2~図5は、乾式単板クラッチとして記載しているが,湿式多板クラッチにも適用可能である。
 図2~図5は、駆動力源からトルクを完全に断絶していている退避状態と、駆動力源からトルク伝達可能な接触状態と、退避状態と接触状態の間である中間状態の説明図である。油圧2001によって駆動側摩擦面2002に圧力が加わると、駆動側摩擦面2002はリターンスプリング2004を圧縮し、メインシャフト2007方向に移動して、被駆動側摩擦面2003に接触可能な構成となっている。
 まず、退避状態について図2を用いて説明する。
 退避状態は図2の時刻t1以前の状態であり、油圧2001は0MPaのため駆動側摩擦面2002と被駆動側摩擦面2003のクリアランス2006は最も大きな状態となっており、伝達可能トルクは0Nmの状態である。時刻t1にて油圧2001が増加を開始すると退避状態から中間状態となる。
 次に、中間状態について図3、図4を用いて説明する。
 時刻t1から時刻t2は油圧2001が増加しても、リターンスプリングのセット荷重PSPG以下であり、駆動側摩擦面2002が動かないため、クリアランス2006および伝達可能トルクは変化しない状態である。
 時刻t2にて油圧2001がリターンスプリングのセット荷重PSPG以上となると、図4に示すように駆動側摩擦面2002がメインシャフト2007方向に移動を開始し、駆動側摩擦面2002と被駆動側摩擦面2003のクリアランス2006が減少を開始する。一方で、駆動側摩擦面2002と被駆動側摩擦面2003の間にはクリアランスが存在するため、伝達可能トルクは0Nmのままとなる。油圧2001が増加するにつれてクリアランス2006は減少し、クリアランスが0となった時点で図5の時刻t3の状態となる。
 油圧の増加を開始する時刻t1から駆動側摩擦面2002と被駆動側摩擦面2003のクリアランス2006が0となる時刻t3までが本実施例による中間状態となる。
 さらに、図5の時刻t3以後は接触状態となり、油圧2001が増加するにしたがって、駆動側摩擦面2002と被駆動側摩擦面2003の押し付け圧が増加し、伝達トルクが増加する。
 図6に、変速機制御ユニット100と、エンジン制御ユニット101と、駐車支援装置110との間の入出力信号関係を示す。変速機制御ユニット100は、入力部100i,出力部100o,コンピュータ100cを備えたコントロールユニットとして構成される。同様に、エンジン制御ユニット101も、入力部101i,出力部101o,コンピュータ101cを備えたコントロールユニットとして構成される。同様に、駐車支援制御ユニット110も、入力部110i,出力部110o,コンピュータ110cを備えたコントロールユニットとして構成される。変速機制御ユニット100からエンジン制御ユニット101に、通信手段103を用いてエンジントルク指令値TTeが送信され、エンジン制御ユニット101はTTeを実現するように、前記エンジン7の吸入空気量,燃料量,点火時期等(図示しない)を制御する。また、エンジン制御ユニット101内には、変速機への入力トルクとなるエンジントルクの検出手段(図示しない)が備えられ、エンジン制御ユニット101によってエンジン7の回転数Ne、エンジン7が発生したエンジントルクTeを検出し、通信手段103を用いて変速機制御ユニット100に送信する。エンジントルク検出手段には、トルクセンサを用いるか、またはインジェクタの噴射パルス幅や吸気管内の圧力とエンジン回転数等など、エンジンのパラメータによる推定手段としても良い。
 パワートレーン制御ユニット100は、所望の第1クラッチ伝達トルクを実現するために、電磁弁105aへ印加する電圧V_claを調整することで、電磁弁105aの電流を制御し、第1クラッチ8を係合、解放する。
 また、パワートレーン制御ユニット100は、所望の第2クラッチ伝達トルクを実現するために、電磁弁105bへ印加する電圧V_clbを調整することで、電磁弁105bの電流を制御し、第2クラッチ9を係合、解放する。
 また、パワートレーン制御ユニット100は、所望の第1同期噛合い機構21の位置を実現するために、電磁弁105c、105dへ印加する電圧V1_slv1、V2_slv1を調整することで、電磁弁105c、105dの電流を制御し、第1同期噛合い機構21の噛合、解放を行う。
 また、パワートレーン制御ユニット100は、所望の第2同期噛合い機構22の位置を実現するために、電磁弁105e、105fへ印加する電圧V1_slv2、V2_slv2を調整することで、電磁弁105e、105fの電流を制御し、第2同期噛合い機構22の噛合、解放を行う。
 また、パワートレーン制御ユニット100は、所望の第3同期噛合い機構23の位置を実現するために、電磁弁105g、105hへ印加する電圧V1_slv3、V2_slv3を調整することで、電磁弁105g、105hの電流を制御し、第3同期噛合い機構23の噛合、解放を行う。
 また、パワートレーン制御ユニット100は、所望の第4同期噛合い機構24の位置を実現するために、電磁弁105i、105jへ印加する電圧V1_slv4、V2_slv4を調整することで、電磁弁105i、105jの電流を制御し、第4同期噛合い機構24の噛合、解放を行う。
 なお、パワートレーン制御ユニット100には、電流検出回路(図示しない)が設けられており、各電磁弁の電流が目標電流に追従するよう電圧出力を変更して、各電磁弁の電流を制御している。
 また、パワートレーン制御ユニット100には回転センサ31、回転センサ32、回転センサ33から、第1入力軸回転数NiA、第2入力軸回転数NiB、出力軸回転数Noがそれぞれ入力される。
 また、パワートレーン制御ユニット100にはブレーキスイッチ304からブレーキが踏まれているか否かを検出するON/OFF信号Brkが入力される。
 また、パワートレーン制御ユニット100には、スリーブ1位置センサ61a、スリーブ2位置センサ62a、スリーブ3位置センサ63a、スリーブ4位置センサ64aから、第1同期噛合い機構21、第2同期噛合い機構22、第3同期噛合い機構23、第4同期噛合い機構24のそれぞれのストローク位置を示す、スリーブ1位置RPslv1、スリーブ2位置RPslv2、スリーブ3位置RPslv3、スリーブ4位置RPslv4が入力される。
 また、パワートレーン制御ユニット100には、第1クラッチ8の油圧Pclaを検出可能なクラッチA油圧センサ65と、第2クラッチ9の油圧Pclbを検出可能なクラッチB油圧センサ66が入力される。
 パワートレーン制御ユニット100から駐車支援制御装置110に、通信手段103を用いて車速Vspが送信され、駐車支援制御装置110はディスプレイや操作スイッチからの信号を受けて、駐車支援装置の作動/非作動状態を制御する。また、駐車支援制御装置110は、駐車支援装置の作動/非作動状態fParkを、通信手段103を用いてパワートレーン制御ユニット100に送信する。また、駐車支援装置110は、車速やカメラ等から現在の自車位置を推定または検出し、検出した位置に基づく目標ギア位置を通信手段103を用いてパワートレーン制御ユニット100に送信する。
 次に、図7~図12を用いて、本実施形態による自動変速機の制御装置による制御方法について説明する。
 図7は、本発明の第一の実施形態による自動変速機の制御装置の全体の制御内容の概略を示すフローチャートである。
 図7の内容は、パワートレーン制御ユニット100のコンピュータ100cにプログラミングされ、あらかじめ定められた周期で繰り返し実行される。すなわち、以下のステップ701~703の処理は、パワートレーン制御ユニット100によって実行される。
 ステップ701は、駐車支援制御を実行するか否かの判断工程である。駐車支援制御装置110から通信手段103を用いて受信するfParkを用いて駐車支援の実行有無を判定し、fParkが「1」の場合は実行と判定してステップ704へ進む。fParkが「0」の場合は、非実行と判断してステップ703へ進み、既存の変速制御を実行する。
 ステップ704は、駐車支援変速制御の実行を許可するか否かの判断工程である。駐車支援変速制御の実行を許可する場合は、ステップ702へ進み、駐車支援変速制御を実行する。許可しない場合は、ステップ703へ進み、既存の変速制御を実行する。
 駐車支援変速制御の実行の許可は変速機の状態で判断することが望ましく、変速機の潤滑油温が予め設定した所定油温より低い場合は、変速機の制御性が悪く、湿式クラッチの引き摺りも大きいため、許可しないことが望ましい。
 また、エンジン水温が低い場合や、エアコンなどによりエンジンの負荷が大きい場合などで、エンジン回転数が予め設定した回転数より高い場合は、湿式クラッチの引き摺りも大きいため、許可しないことが望ましい。
 また、エンジン回転数、クラッチ回転数、潤滑油温、潤滑量、クラッチのクリアランスから潤滑油の引き摺りトルクを推定し、引き摺りトルクが予め設定した値より大きい場合は、許可しないことが望ましい。
 次に図8を用いて図7ステップ702の詳細を説明する。
 ステップ801は駐車情報取得工程であり、駐車支援制御装置110から通信手段103を用いて本実施例で必要な情報を受信する。
 ステップ802は目標ギア位置演算工程であり、駐車支援制御を実施する際の目標技愛位置を演算する。
 ステップ803は、クラッチA目標位置演算工程であり、ステップ802の演算結果から駆動力を伝達するクラッチを選定し、クラッチA目標位置を演算する。
 ステップ804は、クラッチB目標位置演算工程であり、ステップ802の演算結果から駆動力を伝達するクラッチを選定し、クラッチB目標位置を演算する。
 次に図9を用いて図8ステップ801の詳細を説明する。
 図9は、駐車情報取得工程であり、駐車支援制御装置110から通信手段103を用いて本実施例で必要な情報を受信する工程である。
 ステップ901は、全切換回数TCNTFRCHGの取得工程であり、駐車支援制御装置110にて、駐車支援制御実行時の自車位置から目標とする駐車位置への経路を演算し、前記経路の中の前進と後進の切換の回数を予め演算して、通信手段103を用いて送信し、パワートレーン制御ユニット100では受信した切換回数を全切換回数TCNTFRCHGとして取得する。
 ここで、全切換回数TCNTFRCHGは、駐車する際は、駐車支援制御実行時の自車位置から目標とする駐車位置への経路の中にある前進と後進の切換回数であるが、出庫する場合は、自車位置から目標とする出庫位置への経路の中にある前進と後進の切換回数となる。
 ステップ902は、駐車支援制御実行時の目標ギア位置TGPDRVSUP取得工程である。駐車支援制御装置110にて、駐車支援制御実行中の目標ギア位置を車速VSPやカメラから検出または推定した自車位置に基づいて目標ギア位置を演算し、通信手段103を用いて送信し、パワートレーン制御ユニット100では受信した目標ギア位置を目標ギア位置TGPDRVSUPとして取得する。
 ここで、本実施例では、駐車支援制御装置110から通信手段103を介して目標ギア位置を取得する構成としているが、目標とする前進・後退の方向がわかれば良く、目標ギア位置の変わりに前進・後退指示情報を取得しても良い。
 次に図10を用いて図8ステップ802の詳細を説明する。ステップ802は目標ギア位置演算工程であり、ステップ801で駐車支援制御装置110から通信手段103を用いて受信した情報に基づき最終的な目標ギア位置を演算する。
 ステップ1001は、現在の前進と後進の切換回数CNTFRCHGが全切換回数TCNTFRCHGに達しているか否かの判断工程である。ステップ1005で演算する切換回数CNTFRCHGが全切換回数TCNTFRCHGに達している場合は、ステップ1008へ進み、達していない場合は、ステップ1002へ進む。
 ステップ1002は、目標ギア位置TGPDRVSUPが2速か否かの判断工程である。2速である場合は、ステップ1003へ進み、目標ギア位置TGPに2速を設定し、プリシフトギア位置TGPPREに後進ギア(R)を設定する。2速で無い場合は、ステップ1007へ進み、標ギア位置TGPに後進ギアを設定し、プリシフトギア位置TGPPREに2速を設定する。
 ここで、ステップ1002はギア位置による判定としているが、前進か後進の判定でも良く、前進である場合は、目標ギア位置TGPに前進ギア段を設定し、プリシフトギア位置TGPPREに後進ギアを設定する。後進である場合は、目標ギア位置TGPに後進ギア段を設定し、プリシフトギア位置TGPPREに前進ギアを設定しても良い。
 ステップ1004は、目標ギア位置TGPが変更となったか否かの判断工程である。変更となった場合は、ステップ1005へ進み、前後切換回数切換回数CNTFRCHGのカウントアップを実施する。
 ステップ1008は、前後切換回数切換回数CNTFRCHGが全切換回数TCNTFRCHGに達している場合の工程であり、前後切換が必要ないため、目標ギア位置TGPは前回値を保持する。
 ステップ1009は、目標ギア位置TGPが後進ギアか否かの判断工程である。後進ギアである場合はステップ1010へ進み、プリシフトギア位置TGPPREに中立(N)を設定する。前後切換回数切換回数CNTFRCHGが全切換回数TCNTFRCHGに達している場合は、その後の前進と後進の切換は無く、次のギア段が予測できないため、中立とすることで如何なる状況にも対応することができる。
 ステップ1009が後進ギアで無い場合は、前進ギアを設定する。ここで、前進ギアは、目標ギア位置TGPに対して1段上または1段下の設定とすることが望ましい。
 次に図11を用いて図8ステップ803の詳細を説明する。
 ステップ1101は目標ギア位置TGPが2速か否かの判断工程である。目標ギア位置TGPが2速の場合は、ステップ1102へ進み、クラッチAを中間状態1とし、ステップ1103にて、発進要求fLCHが「1」か否かを判定する。発進要求fLCHはブレーキスイッチがONのとき「0」であることが望ましく、ブレーキスイッチがOFFのとき、発進要求ありとして「1」となることが望ましい。発進要求fLCHが「1」のときは、ステップ1105へ進み、クラッチを接触状態とするべくクラッチAの締結制御を実行する。発進要求fLCHが「0」のときは、ステップ1102で実行した中間制御を継続する。ステップ1101で目標ギア位置TGPが2速で無い場合は、ステップ1104へ進み、クラッチAを中間状態2として処理を終了する。
 ここで、ステップ1102の中間制御1およびステップ1104の中間制御2は、図23に示すように油温に応じて中間状態でのクラッチ位置を変更できることが望ましく、特に、駆動側連結子及び被駆動側連結子に供給される潤滑油の油温が高くなるにつれて、クラッチ中間状態を接触側とすることが望ましい。このように構成することで低油温時の引き摺りトルクの影響を低減することができる。
 また、ステップ1102の中間制御1およびステップ1104の中間制御2は、図24に示すように駆動側連結子に入力されるトルクに応じて中間状態でのクラッチ位置を変更できることが望ましく、特に、入力トルクが大きくなるにつれて、クラッチ中間状態を接触側とすることが望ましい。このように構成することで高トルクのレスポンスを向上しつつ、エンジン回転数の吹け上がりを抑制することができる。
 また、ステップ1102の中間制御1およびステップ1104の中間制御2は、図25に示すように駆動側連結子及び被駆動側連結子に供給される潤滑油の流量に応じて中間状態でのクラッチ位置を変更できることが望ましく、特に、潤滑流量が大きくなるにつれて、クラッチ中間状態を退避側とすることが望ましい。このように構成することで低油温時の引き摺りトルクの影響を低減することができる。
 また、ステップ1102の中間制御1とステップ1104の中間制御2では、図23、図24、図25に基づいて設定することが望ましいが、ステップ1102の設定と比較してステップ1104の設定を退避側に設定することが望ましい。
 次にステップ1105クラッチA締結制御の詳細を説明する。
 次にステップ1105はクラッチを中間状態から接触状態とする工程であり、駆動側連結子に入力されるトルクに応じてクラッチの押し付け荷重を増加させ、クラッチ伝達トルクを増加する。
 クラッチ伝達トルクは、予め設定した増加量DTCIと減少量DTCDにしたがい変更する。
 増加量DTCIと減少量DTCDは、伝達トルクが急変によるショックと駆動力レスポンスで設定することが望ましく,ナビゲーションシステム等により運転者が外部から変更できるようにしても良い。
 また、カメラ等の外界認識センサを用いて、後続車の有無を確認し、後続車が居る場合は、素早く駐車するため,増加量DTCIと減少量DTCDを大きくし、後続車が居ない場合は、乗り心地を良くするため増加量DTCIと減少量DTCDを小さくしても良い。
 また、運転者が自動車に搭乗しない場合は、素早く駐車するため,増加量DTCIと減少量DTCDを大きくし、運転者が自動車に搭乗している場合は、乗り心地を良くするため増加量DTCIと減少量DTCDを小さくしても良い。
 このような構成とすることで、運転シーンに応じてショックとレスポンスを両立することができる。
 次に図12を用いて図8ステップ804の詳細を説明する。
 ステップ1201は目標ギア位置TGPがR速か否かの判断工程である。目標ギア位置TGPがR速の場合は、ステップ1202へ進み、クラッチBを中間状態1とし、ステップ1203にて、発進要求fLCHが「1」か否かを判定する。発進要求fLCHはブレーキスイッチがONのとき「0」であることが望ましく、ブレーキスイッチがOFFのとき、発進要求ありとして「1」となることが望ましい。発進要求fLCHが「1」のときは、ステップ1205へ進み、クラッチを接触状態とするべくクラッチBの締結制御を実行する。発進要求fLCHが「0」のときは、ステップ1202で実行した中間制御を継続する。ステップ1201で目標ギア位置TGPがR速で無い場合は、ステップ1204へ進み、クラッチBを中間状態2として処理を終了する。
 ここで、ステップ1202の中間制御1およびステップ1204の中間制御2は、図23に示すように油温に応じて中間状態でのクラッチ位置を変更できることが望ましく、特に、駆動側連結子及び被駆動側連結子に供給される潤滑油の油温が高くなるにつれて、クラッチ中間状態を接触側とすることが望ましい。このように構成することで低油温時の引き摺りトルクの影響を低減することができる。
 また、ステップ1202の中間制御1およびステップ1204の中間制御2は、図24に示すように駆動側連結子に入力されるトルクに応じて中間状態でのクラッチ位置を変更できることが望ましく、特に、入力トルクが大きくなるにつれて、クラッチ中間状態を接触側とすることが望ましい。このように構成することで高トルクのレスポンスを向上しつつ、エンジン回転数の吹け上がりを抑制することができる。
 また、ステップ1202の中間制御1およびステップ1204の中間制御2は、図25に示すように駆動側連結子及び被駆動側連結子に供給される潤滑油の流量に応じて中間状態でのクラッチ位置を変更できることが望ましく、特に、潤滑流量が大きくなるにつれて、クラッチ中間状態を退避側とすることが望ましい。このように構成することで低油温時の引き摺りトルクの影響を低減することができる。
 また、ステップ1102の中間制御1とステップ1104の中間制御2では、図23、図24、図25に基づいて設定することが望ましいが、ステップ1102の設定と比較してステップ1104の設定を退避側に設定することが望ましい。
 次にステップ1105クラッチA締結制御の詳細を説明する。ステップ1105はクラッチを中間状態から接触状態とする工程であり、駆動側連結子に入力されるトルクに応じてクラッチの押し付け荷重を増加させ、クラッチ伝達トルクを増加する。
 次に、図13から図19を用いて、本実施例の制御方法による自動変速機の制御装置における駐車支援実施時の動作について説明する。
 図13は、本実施例による自動駐車時の車両の経路を示したものである。時刻t1において、駐車支援が実施されると、駐車支援制御装置よってアクセル、ブレーキ、ステアリングが自動で操作され、車両が時刻t4の位置へ移動する。時刻t4にて駐車支援制御装置が障害物を検知すると車両が停止し、目標ギア位置を後進ギアにして、時刻t5の位置に車両を後進させる。時刻t5で駐車支援制御装置が車両後方の障害物を検知すると、目標ギアに前進ギアを設定し、車両を時刻t6の位置へ移動させる。時刻t6にて駐車支援制御装置が障害物を検知すると車両が停止し、目標ギアに後進ギアを設定して、車両を後進させ、時刻t7の位置で車両が停止する。
 次に図14を用いて図13の動作の詳細を説明する。図14は、本実施例の制御方法による駐車支援実施時のタイムチャートである。図の時刻t1~t7は図13の時刻t1~t7と同一の状態を示している。
 時刻t1以前は駐車支援実施前であり、目標ギア位置TGPは1速、プリシフトギア位置TGPPREは2速となっており、クラッチAおよびクラッチBはそれぞれ退避状態となっているため、車速は0であり、車両は停車している。
 時刻t1にて駐車支援制御装置より駐車支援fParkが設定されるとともに、駐車支援制御装置より全切換回数TCNTFRCHGに3が設定され、目標ギア位置TGPが2速となり、プリシフトギア位置TGPPREが後進ギア(R)となり、スリーブ1とスリーブ3がそれぞれRと2速に係合される。
 時刻t2にてスリーブ1とスリーブ3の係合が完了すると、クラッチAとクラッチBがそれぞれ中間状態に制御され、時刻t3にて、クラッチAが接触状態となると、車両が前進を開始するため、車速が正の値で増加し、時刻t4で車両が停止するとともに、クラッチAは中間状態となる。
 時刻t4において、駐車支援制御装置より目標ギア位置がRに設定されると、切換回数CNTFRCHGがカウントアップし、クラッチAは中間状態を保持したまま、クラッチBを接触状態とし、車両が後進を開始するため、車速が負の値で増加し、時刻t5で車両が停止するとともに、クラッチBは中間状態となる。
 時刻t5で再び駐車支援制御装置より目標ギア位置が2速に設定されると、切換回数CNTFRCHGがカウントアップし、クラッチBは中間状態を保持したまま、クラッチAを接触状態とし、車両が前進を開始するため、車速が正の値で増加し、時刻t6で車両が停止するとともに、クラッチAは中間状態となる。
 時刻t6で再び駐車支援制御装置より目標ギア位置がRに設定されると、切換回数CNTFRCHGがカウントアップし、全切換回数TCNTFRCHGと一致する。よって、目標ギア位置がRに保持され、プリシフトギア位置はNとなるため、クラッチAは退避状態となり、クラッチBを接触状態とし、車両が後進を開始するため、車速が負の値で増加し、時刻t7で車両が停止する。
 図15は、時刻t1以前の状態を表した本実施例のスケルトン図である。時刻t1以前は、第1同期噛合い機構21が1速ギアに締結し、第3同期噛合い機構23が2速ギアに締結しており、クラッチA(8)とクラッチB(9)は退避状態となっている。
 図16は、時刻t2の状態を表した本実施例のスケルトン図である。時刻t2で駐車支援fParkが設定されると、第1同期噛合い機構21がRに締結する。
 図17は、時刻t3の状態を表した本実施例のスケルトン図である。時刻t3で第1同期噛合い機構21のRへの締結が完了すると、クラッチA(8)とクラッチB(9)をともに中間状態とする。
 図18は、時刻t3~t4の車両が前進している状態を表した本実施例のスケルトン図である。時刻t3~t4では、クラッチB(9)を中間状態としたまま、クラッチA(8)を接触状態とする。
 図19は、時刻t4~t5の車両が後進している状態を表した本実施例のスケルトン図である。時刻t4~t5では、クラッチA(8)を中間状態としたまま、クラッチB(9)を接触状態とする。
 次に、図20、図21を用いて、本実施例の制御方法による自動変速機の制御装置における出庫時の動作について説明する。図20は、本実施例による出庫時の車両の経路を示したものである。時刻t1において、駐車支援が実施されると、駐車支援制御装置よってアクセル、ブレーキ、ステアリングが自動で操作され、車両が時刻t4の位置へ移動する。時刻t4にて駐車支援制御装置が障害物を検知すると車両が停止し、目標ギア位置を後進ギアにして、時刻t5の位置に車両を後進させる。時刻t5で駐車支援制御装置が車両前方に障害物が無いことを検知すると、目標ギアに前進ギアを設定し、車両を時刻t6の位置へ移動させる。
 次に図21を用いて図20の動作の詳細を説明する。図21は、本実施例の制御方法による駐車支援実施時のタイムチャートである。図の時刻t1~t7は図20の時刻t1~t7と同一の状態を示している。
 時刻t1以前は駐車支援実施前であり、目標ギア位置TGPは1速、プリシフトギア位置TGPPREは2速となっており、クラッチAおよびクラッチBはそれぞれ退避状態となっているため、車速は0であり、車両は停車している。
 時刻t1にて駐車支援制御装置より駐車支援fParkが設定されるとともに、駐車支援制御装置より全切換回数TCNTFRCHGに2が設定され、目標ギア位置TGPが2速となり、プリシフトギア位置TGPPREが後進ギア(R)となり、スリーブ1とスリーブ3がそれぞれRと2速に係合される。
 時刻t2にてスリーブ1とスリーブ3の係合が完了すると、クラッチAとクラッチBがそれぞれ中間状態に制御され、時刻t3にて、クラッチAが接触状態となると、車両が前進を開始するため、車速が正の値で増加し、時刻t4で車両が停止するとともに、クラッチAは中間状態となる。
 時刻t5で再び駐車支援制御装置より目標ギア位置が2速に設定されると、切換回数CNTFRCHGがカウントアップし、全切換回数TCNTFRCHGと一致する。よって、目標ギア位置が2速に保持され、プリシフトギア位置は前進ギアである3速となるため、クラッチBは退避状態となり、クラッチAを接触状態とし、車両が前進を開始するため、車速が正の値で増加する。
 従来、自動変速機において,Dレンジでは,前進ギアを締結し,前進クラッチを待機状態とすることで,前進発進レスポンスを向上させ、一方,Rレンジでは,Rギアを締結し,後進クラッチを待機状態とすることで,後進発進レスポンスを向上させるものが存在した。しかし、DレンジとRレンジでは使用するギアとクラッチが異なるため,頻繁にD/Rを切替える駐車時は,切替動作によりレスポンスが悪化し,自動駐車時にモタツキ感を与える可能性があった。
 これに対し、本実施形態では、自動駐車時のモタツキ感を低減するため、自動駐車の要求を判定した際は,前進クラッチと後進クラッチを待機状態とする。このようにすれば、駐車支援装置を備える自動変速機を有する車両において、前進・後進切替え時間を短縮することができる。
 なお、本実施例においては、ツインクラッチ式自動MTとしたが、前進・更後進の切替えにクラッチを有する変速機であれば良く、図22に示すような無段変速機でも良く、複数のクラッチと複数の遊星歯車によってギア段を達成する自動変速機でも良い。
 1、11・・・ギア(1速)
 2、12・・・ギア(2速)
 3、13・・・ギア(3速)
 4、14・・・ギア(4速)
 5、15・・・ギア(5速)
 6、16・・・ギア(6速)
 7・・・エンジン
 8・・・第1クラッチ
 9・・・第2クラッチ
 21・・・第1同期噛合い機構(1速-3速)
 22・・・第2同期噛合い機構(5速)
 23・・・第3同期噛合い機構(2速-4速)
 24・・・第4同期噛合い機構(6速)
 31・・・入力軸回転数センサ
 32・・・出力軸回転数センサ
 41・・・第1入力軸
 42・・・第2入力軸
 43・・・出力軸
 50・・・変速機
 61・・・シフトアクチュエータ(1速-3速)
 62・・・シフトアクチュエータ(5速)
 63・・・シフトアクチュエータ(2速-4速)
 64・・・シフトアクチュエータ(5速)
 105・・・油圧機構
 100・・・パワートレーン制御ユニット
 101・・・エンジン制御ユニット
 110・・・駐車支援制御装置
 103・・・通信手段

Claims (12)

  1.  車両を前進させる前進動力伝達機構と、
     前記車両を後退させる後退動力伝達機構とを備える変速機を制御する変速機制御装置において、
     前記前進動力伝達機構及び後退動力伝達機構は、駆動側連結子及び被駆動側連結子をそれぞれ備え、且つ、
     前記前進動力伝達機構及び後退動力伝達機構は、前記駆動側連結子と前記被駆動側連結子とを押し付けて接触させる接触状態と、押し付け力を解除して退避させる退避状態と、前記接触状態と退避状態との中間状態とする中間状態とに変更可能に構成され、
     前記車両を前進制御及び後退制御の切換を含む予め生成された制御内容に基づいて制御する場合、前記前進動力伝達機構及び前記後退動力伝達機構の一方の動力伝達機構を接触状態として前記前進制御及び後退制御の一方を行う間に、他方の動力伝達機構を前記中間状態に制御する、変速機制御装置。
  2.  請求項1に記載の変速機制御装置において、
     車両の現在の位置から目標位置への経路に前記前進制御及び後退制御の切換が複数回ある場合、最後の1回の切換後に前記中間状態を解除することを特徴とする変速機制御装置。
  3.  請求項1に記載の変速機制御装置において、
     前記予め生成された制御内容は、車両を目標とする駐車位置に自動的に誘導することを特徴とする変速機制御装置。
  4.  請求項1に記載の変速機制御装置において、
     前記予め生成された制御内容は、車両を駐車位置から目標とする非駐車位置へ自動的に誘導することを特徴とする変速機制御装置。
  5.  請求項1に記載の変速機制御装置において、
     前記中間状態は、油温にしたがって変更することを特徴とする変速機制御装置。
  6.  請求項1に記載の変速機制御装置において、
     前記中間状態は、駆動側連結子に入力される駆動力にしたがって変更することを特徴とする変速機制御装置。
  7.  請求項1に記載の変速機制御装置において、
     前記中間状態は、駆動側連結子及び被駆動側連結子に供給される潤滑油流量にしたがって変更することを特徴とする変速機制御装置。
  8.  請求項1に記載の変速機制御装置において、
     前記中間状態では中間状態を保持している動力伝達機構の中間状態に比較して、接触状態以降前の動力伝達機構の中間状態の方を接触状態側とすることを特徴とする変速機制御装置。
  9.  請求項1に記載の変速機制御装置において、
     油温が低い場合は前記中間状態の制御を解除することを特徴とする変速機制御装置。
  10.  請求項1に記載の変速機制御装置において、
     駆動力源の回転数が高い場合は前記中間状態の制御を解除することを特徴とする変速機制御装置。
  11.  請求項1に記載の変速機制御装置において、
     前記接触状態では前記駆動側連結子と前記被駆動側連結子との押付け力を運転者の搭乗有無で切替えることを特徴とする変速機制御装置。
  12.  車両を前進させる前進動力伝達機構と、
     前記車両を後退させる後退動力伝達機構とを備える変速機を制御する変速機制御装置において、
     前記前進動力伝達機構及び後退動力伝達機構は、駆動源側連結子及び被駆動側連結子をそれぞれ備え、且つ、
     前記前進動力伝達機構及び後退動力伝達機構は、前記駆動側連結子と前記被駆動側連結子とを押し付けて接触させる接触状態と、押し付け力を解除して退避させる退避状態と、前記接触状態と退避状態との中間状態とする中間状態とに変更可能に構成され、
     前記車両を前進制御及び後退制御の切換を含む予め生成された制御内容に関する制御指令が入力されると、前記前進動力伝達機構及び前記後退動力伝達機構の両方を前記中間状態に制御することを特徴とする変速機制御装置。
PCT/JP2017/026979 2016-09-05 2017-07-26 変速機制御装置 WO2018042955A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/089,765 US10704678B2 (en) 2016-09-05 2017-07-26 Transmission control device
CN201780023698.0A CN109072997B (zh) 2016-09-05 2017-07-26 变速器控制装置
DE112017001824.2T DE112017001824T5 (de) 2016-09-05 2017-07-26 Getriebesteuervorrichtung
JP2018537030A JP6622417B2 (ja) 2016-09-05 2017-07-26 変速機制御装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-172383 2016-09-05
JP2016172383 2016-09-05

Publications (1)

Publication Number Publication Date
WO2018042955A1 true WO2018042955A1 (ja) 2018-03-08

Family

ID=61300555

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/026979 WO2018042955A1 (ja) 2016-09-05 2017-07-26 変速機制御装置

Country Status (5)

Country Link
US (1) US10704678B2 (ja)
JP (1) JP6622417B2 (ja)
CN (1) CN109072997B (ja)
DE (1) DE112017001824T5 (ja)
WO (1) WO2018042955A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102575729B1 (ko) * 2018-12-07 2023-09-08 현대자동차주식회사 차량의 변속 제어 장치 및 방법, 그리고 차량 시스템

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004347066A (ja) * 2003-05-23 2004-12-09 Toyota Motor Corp 車両の制御装置および制御方法
JP2008213699A (ja) * 2007-03-06 2008-09-18 Toyota Motor Corp 車両の運転制御装置および運転制御方法
JP2009192021A (ja) * 2008-02-15 2009-08-27 Toyota Motor Corp 車両用自動変速機の制御装置
JP2016142305A (ja) * 2015-01-30 2016-08-08 ダイハツ工業株式会社 自動変速機の制御装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10212035A (ja) * 1997-01-28 1998-08-11 Komatsu Ltd 積込運搬車両の作業制御装置
JPH11208420A (ja) 1998-01-27 1999-08-03 Nissan Motor Co Ltd 駐車誘導装置および自動駐車装置
JP4195747B2 (ja) 1999-02-17 2008-12-10 アイシン・エーアイ株式会社 変速装置
JP3741355B2 (ja) 2000-04-17 2006-02-01 愛知機械工業株式会社 自動車用多段変速機
JP2004125055A (ja) * 2002-10-02 2004-04-22 Jatco Ltd 車両用変速機の油圧制御装置
JP2004125063A (ja) * 2002-10-02 2004-04-22 Jatco Ltd ベルト式無段変速機の制御装置
JP4550612B2 (ja) * 2005-02-18 2010-09-22 日立オートモティブシステムズ株式会社 車両用歯車式変速機の制御装置,制御方法及び制御システム
JP4837329B2 (ja) 2005-08-03 2011-12-14 日産自動車株式会社 自動マニュアルトランスミッションの発進制御装置
US20080154464A1 (en) * 2006-12-26 2008-06-26 Honda Motor Co., Ltd. Automatic Parking control apparatus for vehicle
JP5260227B2 (ja) * 2008-10-10 2013-08-14 日立オートモティブシステムズ株式会社 車両用自動変速機の変速制御方法
JP2010144779A (ja) * 2008-12-17 2010-07-01 Mazda Motor Corp 車両の制御装置及び制御方法
JP2010180892A (ja) * 2009-02-03 2010-08-19 Jatco Ltd 車両用ベルト式無段変速機の制御装置
ITBO20090159A1 (it) * 2009-03-18 2010-09-19 Ferrari Spa Metodo di controllo per l'esecuzione di un cambio marcia ascendente in una trasmissione manuale automatica provvista di un cambio a doppia frizione
JP5775113B2 (ja) * 2013-06-11 2015-09-09 本田技研工業株式会社 自動変速機の制御装置
JP5943039B2 (ja) * 2014-06-25 2016-06-29 トヨタ自動車株式会社 駐車支援装置
JP5943040B2 (ja) * 2014-07-14 2016-06-29 トヨタ自動車株式会社 車両制御装置及び車両制御方法
CA2976324A1 (en) * 2015-02-17 2016-08-25 Honda Motor Co.,Ltd. Hydraulic control device for power distribution device
US10325502B2 (en) * 2016-02-10 2019-06-18 Ford Global Technologies, Llc Parallel parking assistant

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004347066A (ja) * 2003-05-23 2004-12-09 Toyota Motor Corp 車両の制御装置および制御方法
JP2008213699A (ja) * 2007-03-06 2008-09-18 Toyota Motor Corp 車両の運転制御装置および運転制御方法
JP2009192021A (ja) * 2008-02-15 2009-08-27 Toyota Motor Corp 車両用自動変速機の制御装置
JP2016142305A (ja) * 2015-01-30 2016-08-08 ダイハツ工業株式会社 自動変速機の制御装置

Also Published As

Publication number Publication date
CN109072997A (zh) 2018-12-21
JP6622417B2 (ja) 2019-12-18
US10704678B2 (en) 2020-07-07
JPWO2018042955A1 (ja) 2019-03-07
DE112017001824T5 (de) 2018-12-13
CN109072997B (zh) 2020-01-14
US20190107193A1 (en) 2019-04-11

Similar Documents

Publication Publication Date Title
JP4828929B2 (ja) 自動変速機の制御装置,制御方法及び自動変速装置
US9260109B2 (en) Control device for hybrid vehicle
EP2272729B1 (en) Hybrid power apparatus
US9464715B2 (en) Idle stop control device for vehicle equipped with automated manual transmission
CN105757142B (zh) 一种用于车辆自动变速器的离合器接合的控制方法及装置
JP2011002007A (ja) 自動変速機の変速制御装置および変速制御方法
JP2010230139A (ja) 自動車の制御方法
JP5131126B2 (ja) ツインクラッチ式変速機の制御装置
CN110966396B (zh) 用于电动车辆的驱动系统及其控制方法
US8038574B2 (en) Apparatus and method for controlling automatic transmission
JP6622417B2 (ja) 変速機制御装置
JP5275262B2 (ja) 自動変速機の制御装置および制御方法
JP5260227B2 (ja) 車両用自動変速機の変速制御方法
JP2008180320A (ja) 自動変速機の制御装置および制御方法
CN110402344B (zh) 变速控制装置
JP2009144843A (ja) 歯車変速機の制御方法
JP5202351B2 (ja) 車両用自動変速機の変速制御装置
JP2012236508A (ja) ハイブリッド車両の駆動装置及びハイブリッド車両
JP2009204132A (ja) 自動変速機の変速制御装置および変速制御方法
JP2010105512A (ja) 自動車の制御方法及び装置
JP2015148294A (ja) 変速制御装置
JP2018119563A (ja) 変速制御装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018537030

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17845964

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17845964

Country of ref document: EP

Kind code of ref document: A1