WO2018021271A1 - プロピレンオキサイドの製造方法 - Google Patents

プロピレンオキサイドの製造方法 Download PDF

Info

Publication number
WO2018021271A1
WO2018021271A1 PCT/JP2017/026783 JP2017026783W WO2018021271A1 WO 2018021271 A1 WO2018021271 A1 WO 2018021271A1 JP 2017026783 W JP2017026783 W JP 2017026783W WO 2018021271 A1 WO2018021271 A1 WO 2018021271A1
Authority
WO
WIPO (PCT)
Prior art keywords
propylene oxide
reaction mixture
cumene hydroperoxide
weight
epoxidation
Prior art date
Application number
PCT/JP2017/026783
Other languages
English (en)
French (fr)
Inventor
弘文 小池
智則 川端
拓央 竹本
元志 中村
智 竹本
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to JP2018529891A priority Critical patent/JP7018880B2/ja
Priority to CN201780046029.5A priority patent/CN109476621B/zh
Priority to RU2019101635A priority patent/RU2738231C2/ru
Priority to US16/320,329 priority patent/US10807961B2/en
Priority to KR1020197003903A priority patent/KR102407301B1/ko
Priority to EP17834277.0A priority patent/EP3495356B8/en
Priority to MYPI2019000291A priority patent/MY189509A/en
Publication of WO2018021271A1 publication Critical patent/WO2018021271A1/ja
Priority to SA519400978A priority patent/SA519400978B1/ar

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes
    • C07D301/02Synthesis of the oxirane ring
    • C07D301/03Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds
    • C07D301/04Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with air or molecular oxygen
    • C07D301/06Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with air or molecular oxygen in the liquid phase
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/04Compounds containing oxirane rings containing only hydrogen and carbon atoms in addition to the ring oxygen atoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes
    • C07D301/02Synthesis of the oxirane ring
    • C07D301/03Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds
    • C07D301/19Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with organic hydroperoxides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes
    • C07D301/32Separation; Purification
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes
    • C07D301/02Synthesis of the oxirane ring
    • C07D301/03Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds
    • C07D301/04Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with air or molecular oxygen
    • C07D301/08Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with air or molecular oxygen in the gaseous phase

Definitions

  • the present invention relates to a method for producing propylene oxide.
  • a method for producing propylene oxide a method of reacting an organic peroxide and propylene in the presence of a catalyst is known.
  • the reaction mixture obtained by such a reaction generally contains oxygen-containing compounds such as water, hydrocarbons, methanol, formaldehyde, propionaldehyde, acetone, and methyl formate as impurities in addition to propylene oxide.
  • Methyl formate in propylene oxide degrades the quality of propylene oxide used as a raw material for various chemical products.
  • Patent Document 1 discloses that propylene oxide containing methyl formate as an impurity and extractive distillation using an extractive distillation column using a hydrocarbon having 7 to 10 carbon atoms as an extractant.
  • water is added to the distillate from the top of the extractive distillation tower to separate it into an oil layer and an aqueous layer, the oil layer is recycled to the extractive distillation tower, while the aqueous layer is removed from the system, and extractive distillation is performed.
  • a method for obtaining propylene oxide having a reduced methyl formate concentration as a column bottom liquid is described.
  • Patent Document 2 discloses a method for removing propylene oxide containing methyl formate to remove methyl formate in propylene oxide. A method of contacting the extractant after 7 to 9 is described.
  • methyl formate has a boiling point close to that of propylene oxide and is one of the most difficult impurities to separate from propylene, further improvement in the direction of reducing methyl formate from propylene oxide containing methyl formate is not easy.
  • the object of the present invention is to reduce the methyl formate concentration in the reaction mixture obtained in the epoxidation step in the process for producing propylene oxide and to remove the load of methyl formate in the separation step of propylene oxide (necessary for the removal) Is to reduce the thermal energy).
  • the present inventors have an oxidation process, a distillation process, an epoxidation process, and a propylene oxide separation process.
  • a distillation process In the production of propylene oxide in which cumene hydroperoxide and propylene are reacted, By controlling the distillation conditions of the reaction mixture containing the resulting cumene hydroperoxide and the outlet temperature of the final reactor in the epoxidation process carried out using one or more reactors, the epoxidation process It was found that the methyl formate concentration in the reaction mixture containing propylene oxide and cumyl alcohol obtained in (1) could be controlled, and the present invention was achieved.
  • a method for producing propylene oxide comprising the following steps (1) to (4): (1) Oxidation step: Step of obtaining cumene hydroperoxide-containing reaction mixture by bringing cumene into contact with oxygen-containing gas and reacting cumene with oxygen in the gas (2) Distillation Step: The step of separating the cumene hydroperoxide-containing concentrate obtained by the oxidation step into a concentrated solution containing cumene hydroperoxide and a distillate, The reaction mixture is continuously distilled under the condition that the ratio (D / F) of the distillate flow rate (D) to the distillate flow rate (F) is 0.037 or more and 0.13 or less.
  • the step of obtaining a reaction mixture containing propylene oxide and cumyl alcohol by reacting cumene hydroperoxide The step of setting the outlet temperature of the final reactor among the one or more reactors to 115 ° C. or higher and lower than 140 ° C.
  • Step [2] for separating crude propylene oxide by distilling the mixture
  • the reaction mixture containing propylene oxide and cumyl alcohol contains methyl formate and methyl formate in the reaction mixture
  • the concentration of methyl formate in the reaction mixture containing propylene oxide and cumyl alcohol obtained in the epoxidation step is reduced, and methyl formate in the purification step of propylene oxide is reduced.
  • the load for removing can be further reduced.
  • the method for producing propylene oxide according to the present invention includes (1) an oxidation step, (2) a distillation step, (3) an epoxidation step, and (4) a separation step, which will be described in detail below.
  • the oxidation step is a step of obtaining a reaction mixture containing cumene hydroperoxide by bringing cumene into contact with a gas containing oxygen and reacting cumene with oxygen in the gas. is there.
  • Cumene may be subjected to an oxidation step in the form of a mixture containing cumene and impurities.
  • the cumene content in the mixture containing cumene and impurities is preferably 90% by weight or more per 100% by weight of the mixture.
  • oxygen-containing gas examples include oxygen, air, oxygen-enriched air, and the like.
  • the content of cumene hydroperoxide in the reaction mixture containing cumene hydroperoxide is preferably 5 to 80% by weight, more preferably 5 to 60% by weight per 100% by weight of the reaction mixture, More preferably, it is 5 to 40% by weight.
  • Cumene is oxidized by oxygen to produce cumene hydroperoxide.
  • Cumene oxidation is auto-oxidation with a gas containing oxygen, such as air or oxygen-enriched air.
  • the oxidation may be performed in the presence of an alkaline aqueous solution.
  • the alkaline aqueous solution may be any aqueous solution that exhibits alkalinity, and a fresh alkaline aqueous solution, an aqueous solution recovered from an oxidation step, an aqueous solution prepared by mixing a fresh alkaline aqueous solution with an aqueous solution recovered from an oxidation step, or the like is used.
  • the fresh alkaline aqueous solution examples include alkali metal compounds such as NaOH and KOH, alkaline earth metal compounds such as Mg (OH) 2 and Ca (OH) 2 , and alkali metal carbonates such as Na 2 CO 3 and NaHCO 3.
  • alkali metal compounds such as NaOH and KOH
  • alkaline earth metal compounds such as Mg (OH) 2 and Ca (OH) 2
  • alkali metal carbonates such as Na 2 CO 3 and NaHCO 3.
  • An aqueous solution prepared by dissolving a salt, ammonia, (NH 4 ) 2 CO 3 , an alkali metal ammonium carbonate salt or the like in water is usually used.
  • Recovery of the aqueous solution from the oxidation step can be performed by separating the liquid phase generated in the oxidation step into an oil phase and an aqueous phase, and recovering the aqueous phase.
  • the oxidation reaction temperature is usually 50 to 200 ° C., preferably 60 to 180 ° C., more preferably 70 to 150 ° C.
  • the reaction pressure is usually between atmospheric pressure and 5000 kPa-G, preferably 10 to 2000 kPa-G, more preferably 20 to 1000 kPa-G.
  • components other than cumene hydroperoxide include cumene, cumyl alcohol, acetophenone, ethylbenzene, phenol, formic acid, acetic acid, propionic acid, benzoic acid, oxalic acid, malonic acid. , Organic acids such as lactic acid and water.
  • the reaction mixture containing cumene hydroperoxide is preferably distilled in the following distillation step after removing the aqueous phase by oil-water separation.
  • the oil phase from which the aqueous phase has been removed is preferably washed with an aqueous solution of an alkali compound from the viewpoint of removing the organic acid.
  • the aqueous solution of the alkali compound include alkali metal compounds such as NaOH and KOH, alkaline earth metal compounds such as Mg (OH) 2 and Ca (OH) 2 , alkalis such as Na 2 CO 3 and NaHCO 3.
  • An aqueous solution prepared by dissolving metal carbonate, ammonia, (NH 4 ) 2 CO 3 , alkali metal ammonium carbonate, etc. in water is usually used.
  • the alkali compound used is preferably removed before distillation in the following distillation step, and is usually removed by adding water and washing.
  • the concentration of the alkali compound in the reaction mixture containing cumene hydroperoxide to be subjected to the following distillation step is preferably 1000 ppm by weight or less as an alkali metal per 100% by weight of the reaction mixture containing cumene hydroperoxide. More preferably, it is 500 ppm by weight or less.
  • the distillation step is a step of distilling the reaction mixture containing cumene hydroperoxide obtained in the oxidation step into a concentrated solution containing cumene hydroperoxide and a distillate.
  • the reaction mixture is continuously produced under the condition that the ratio (D / F) of the distillate flow rate (D) to the distillate flow rate (F) is 0.037 or more and 0.13 or less.
  • the flow rate (F) of the reaction mixture is the weight of the reaction mixture distilled per unit time
  • the flow rate (D) of the distillate is the weight of the distillate distilled per unit time. Note that the unit time length and the unit of weight are the same between the flow rate (F) and the flow rate (D).
  • Distillation is performed mainly for the purpose of distilling water from the reaction mixture containing cumene hydroperoxide obtained in the oxidation step, and a concentrated liquid having a higher concentration of cumene hydroperoxide than the reaction mixture is obtained. It is done.
  • Distillation is performed in a distillation tower.
  • the distillation column may be either a packed column or a plate column. Distillation is separated into a concentrate containing cumene hydroperoxide and a distillate by continuously supplying a reaction mixture containing cumene hydroperoxide to a distillation column.
  • the distillation is preferably carried out by adjusting the temperature and pressure at the bottom of the distillation column so that the temperature and pressure are such that cumene hydroperoxide does not evaporate and water evaporates.
  • Heat energy is applied to the bottom of the distillation column and the reaction mixture containing cumene hydroperoxide is heated to evaporate water and the like contained in the reaction mixture and raise it as a gas to the top of the distillation column.
  • the gas rising to the upper part of the distillation column is cooled at the upper part, and a liquid distillate mainly containing cumene and water is continuously discharged from the distillate near the top of the distillation column.
  • the concentrated concentrate is continuously discharged from the lower part of the distillation column.
  • the concentrate is transported to the place where the epoxidation process is performed.
  • the sum of the flow rate (D) of the distillate discharged and the flow rate of the concentrate is approximately equal to the flow rate (F) of the reaction mixture supplied.
  • the ratio of the distillate flow rate (D) to the concentrate flow rate can be adjusted independently of the distillate reaction mixture flow rate (F).
  • the D / F can be adjusted by adjusting the flow rate (D) of the distillate adjusted as described above and the flow rate (F) of the reaction mixture to be distilled.
  • the flow rate (F) is a value measured by the flow meter at the entrance of the distillation column or a value measured by actual measurement
  • the flow rate (D) is determined by the flow meter at the distilling portion of the distillation column or by actual measurement. The value to be measured.
  • the flow rate (F) can be controlled by changing the supply amount of the reaction mixture containing cumene hydroperoxide
  • the flow rate (D) can be controlled by changing the amount of thermal energy applied to the bottom of the distillation column. can do.
  • the concentration of cumene hydroperoxide in the concentrate containing cumene hydroperoxide is higher than the concentration of cumene hydroperoxide in the reaction mixture containing cumene hydroperoxide to be distilled.
  • the concentration is, for example, from 10% to 90% by weight per 100% by weight of the concentrated solution containing.
  • D / F is preferably 0.040 or more, more preferably 0.8. 045 or more.
  • D / F is preferably 0.12 or less, more preferably 0.11 or less.
  • the top temperature of the distillation column is usually in the range of 30 to 150 ° C.
  • the top pressure is usually in the range of ⁇ 100 to 100 kPaG
  • the bottom temperature is usually in the range of 30 to 150 ° C.
  • the pressure is usually in the range of ⁇ 100 to 100 kPaG.
  • the obtained distillate contains, for example, 90% to 99% by weight of cumene per 100% by weight of distillate.
  • the oil phase obtained by removing the aqueous phase from the distillate by a method such as liquid-liquid separation can be recycled to the oxidation step as a raw material for the oxidation step.
  • Epoxidation step In the epoxidation step, in the presence of a catalyst, the concentrated liquid containing cumene hydroperoxide obtained in the distillation step is brought into contact with propylene in one or more reactors, and propylene and the above-mentioned concentration are obtained.
  • the epoxidation reaction is performed using, for example, 1 or more and less than 10 reactors.
  • the adjacent reactors are connected to each other by a connecting portion such as a pipe.
  • equipment such as a heat exchanger and a temperature controller may be provided between the two reactors.
  • the number of reactors in the epoxidation step is preferably 2 or more from the viewpoint of suppressing an excessive increase in the temperature of the reaction mixture and stably performing the epoxidation reaction.
  • Each reactor that performs the epoxidation reaction is filled with a catalyst for the epoxidation reaction.
  • a reactor charged with at least 10% by weight, preferably at least 20% by weight, of the total amount of catalyst used in the epoxidation step is a reactor in which the epoxidation reaction is performed.
  • the first reactor is a reactor in which the concentrated solution containing cumene hydroperoxide obtained in the above distillation step and the catalyst first come into contact.
  • the last one of the one or more reactors is the last reactor in which the epoxidation reaction is performed, and a reaction mixture containing propylene oxide and cumyl alcohol is supplied to the separation step described later. Reactor.
  • all of the two or more reactors are connected in series or in parallel.
  • the left side is the distillation step (2) above
  • the right side is the separation step (4) described later
  • the reactors 1 to 10 are reactors for performing the epoxidation reaction.
  • reactors 1 to 3 are connected in series, and reactor 1 is the first reactor.
  • a reactor 2 is connected to the downstream side of the reactor 1, and a reactor 3 is connected to the downstream side of the reactor 2.
  • the reaction product obtained in the reactor 1 is supplied to the reactor 2, and the reaction product obtained in the reactor 2 is supplied to the reactor 3.
  • Reactor 3 is the final reactor.
  • the reactor 4 is the first reactor.
  • Reactors 5 and 6 are connected in parallel to the downstream side of the reactor 4, and reaction products obtained in the reactor 4 are supplied to the reactors 5 and 6.
  • a reactor 7 is connected to the downstream side of the reactors 5 and 6, and the reaction product obtained in the reactors 5 and 6 is supplied to the reactor 7.
  • Reactor 7 is the final reactor.
  • reactors 8 to 10 are connected in parallel, and each reactor contains a concentrated liquid containing cumene hydroperoxide obtained in the distillation step (2) above. Is supplied. Reactors 8-10 are all first and final reactors.
  • the temperature of the reaction mixture at the inlet of each reactor can be arbitrarily set by a heat exchanger or a temperature controller provided upstream of the reactor inlet. Can be adjusted.
  • the temperature of the reaction mixture at the outlet of the first reactor is preferably 90 ° C. or higher, more preferably 100 ° C. or higher.
  • the temperature of the reaction mixture at the outlet of each reactor is adjusted by adjusting the temperature of the reaction mixture at the inlet of each reactor in consideration of the exotherm due to the epoxidation reaction, and the temperature controller provided in each reactor is used. It can be adjusted by a method or the like.
  • the final reactor outlet temperature is below 140 ° C, preferably below 139 ° C. More preferably, it is 138 degrees C or less. From the viewpoint of improving the speed of the epoxidation reaction, the outlet temperature of the final reactor is 115 ° C. or higher, preferably 117 ° C. or higher, more preferably 120 ° C. or higher.
  • the outlet temperature of the final reactor is the temperature of the reaction mixture containing propylene oxide and cumyl alcohol obtained in the epoxidation step after passing through the catalyst charged in the final reactor, It can be measured by reading the indicated value of a thermometer installed near the final reactor outlet. The temperature of the reaction mixture containing propylene oxide and cumyl alcohol near the outlet of the final reactor is measured in a state where the reaction mixture is not heated or cooled by a heat exchanger or a temperature controller. .
  • the final reactor outlet temperature is controlled by controlling the final reactor inlet temperature. In another embodiment, the final reactor outlet temperature is controlled by controlling the temperature in the reactor.
  • the difference obtained by subtracting the final reactor inlet temperature from the final reactor outlet temperature is more preferably 30 ° C. or less, and further preferably 15 ° C. or less.
  • the catalyst used in the epoxidation step is preferably a catalyst comprising titanium-containing silicon oxide from the viewpoint of obtaining propylene oxide in a high yield.
  • Titanium-containing silicon oxide is a compound containing titanium chemically bonded to silicon oxide.
  • the catalyst comprising titanium-containing silicon oxide include a titanium compound supported on a silica carrier, a coprecipitation method, and the like. And a composite of a titanium compound and a silicon oxide by a sol-gel method, or a zeolite compound containing titanium.
  • zeolite compound means a compound having a structure recorded in “International Zeolite Association”.
  • Preferred catalysts comprising titanium-containing silicon oxide include catalysts described in Japanese Patent No. 3731384, Japanese Patent No.
  • the epoxidation reaction is performed by bringing propylene and cumene hydroperoxide into contact with a catalyst.
  • the epoxidation reaction can be carried out in the liquid phase using a solvent, which is liquid under the temperature and pressure during the epoxidation reaction and is substantially inert to the reaction raw materials and products. It must be something.
  • the solvent may be a substance present in the concentrate containing cumene hydroperoxide obtained in the distillation step. For example, when the concentrate contains cumene, the cumene should be used as a solvent. Can do.
  • solvent other than cumene examples include monocyclic aromatic solvents (for example, benzene, toluene, chlorobenzene, orthodichlorobenzene, etc.), alkane solvents (for example, octane, decane, dodecane, etc.) and the like.
  • monocyclic aromatic solvents for example, benzene, toluene, chlorobenzene, orthodichlorobenzene, etc.
  • alkane solvents for example, octane, decane, dodecane, etc.
  • the pressure of the epoxidation reaction is adjusted so as to keep the reaction mixture in a liquid state, and is usually 100 to 10,000 kPa-G.
  • the epoxidation reaction can be advantageously carried out in the form of a fixed bed for large-scale industrial operations.
  • the content of propylene oxide per 100% by weight of the reaction mixture in the reaction mixture containing propylene oxide and cumyl alcohol obtained in the epoxidation step is preferably 1 to 31% by weight. More preferred is 1 to 16% by weight.
  • the content of cumyl alcohol per 100% by weight of the reaction mixture is preferably 5 to 80% by weight, more preferably 5 to 60% by weight, and even more preferably 5 to 40% by weight.
  • the molar ratio of propylene to cumene hydroperoxide is usually 2/1 to 50/1.
  • unreacted propylene may be collected and further recycled to the epoxidation step as a recovered raw material for the propylene epoxidation step.
  • the methyl formate concentration in the reaction mixture is 10 ppm by weight with respect to the weight of propylene oxide in the reaction mixture. It is preferably less than 30 ppm by weight.
  • the methyl formate concentration can be measured by direct gas chromatography analysis of the reaction mixture.
  • the concentration of methyl formate relative to the weight of propylene oxide in the mixture containing propylene oxide obtained in the separation step is considered to be substantially the same as the concentration of methyl formate relative to the weight of propylene oxide in the reaction mixture obtained in the epoxidation step. It's okay.
  • the separation step is a step of separating crude propylene oxide by distilling the reaction mixture containing propylene oxide and cumyl alcohol obtained in the epoxidation step.
  • the reaction mixture containing propylene oxide and cumyl alcohol distilled in the separation step also includes a reaction mixture obtained by removing unreacted propylene after the epoxidation step.
  • the distillation pressure is usually 100 to 5000 kPa-G, preferably 100 to 3000 kPa-G, and the column top temperature is usually -50 to 150 ° C.
  • Examples of the distillation method include a method using a distillation column, and distillation may be performed using a plurality of distillation columns.
  • the content of propylene oxide in the separated crude propylene oxide is generally 99% by weight or more per 100% by weight of the crude propylene oxide.
  • Crude propylene oxide separated by distillation usually contains water, hydrocarbons, and oxygen-containing compounds as impurities.
  • hydrocarbon examples include hydrocarbons having 3 to 7 carbon atoms.
  • oxygen-containing compound examples include compounds such as methanol, acetaldehyde, acetone, propionaldehyde, and methyl formate.
  • the crude propylene oxide may be further purified by appropriately combining known distillation techniques. From the viewpoint of efficiently removing water, hydrocarbons, and oxygen-containing compounds, the number of carbon atoms is 6-10. It is preferable to purify by combining extractive distillation using other hydrocarbons as the extractant and other distillations.
  • hydrocarbon having 6 to 10 carbon atoms as the extractant examples include linear saturated hydrocarbons such as n-hexane, n-heptane, n-octane, n-nonane, n-decane, 2-methylpentane, 3- Branched saturated carbonization such as methylpentane, 2,3-dimethylbutane, 2,2-dimethylbutane, 2,2-dimethylpentane, 2,3-dimethylpentane, 2,2-dimethylhexane, 2,3-dimethylhexane Hydrogen can be exemplified. These extractants can be used either alone or as a mixture of these compounds.
  • the type and operating conditions of the extractive distillation column and other distillation columns, the amount of the extractant used, and the like can be determined as appropriate according to the required product propylene oxide quality.
  • a residue mixture containing cumyl alcohol is obtained as a residue after separating the crude propylene oxide by distillation.
  • This residual mixture may be used for the cumene conversion process etc. which are mentioned later as needed.
  • the cumene conversion step is a step of (4) converting cumyl alcohol in the above-mentioned residual mixture containing cumyl alcohol obtained in the separation step into cumene to obtain a reaction mixture containing cumene. It is.
  • the cumene conversion step is a step of dehydrating cumyl alcohol in the residual mixture containing cumyl alcohol obtained in the separation step in the presence of a catalyst to obtain a mixture containing ⁇ -methylstyrene ( Hereinafter referred to as “dehydration step”), in the presence of a catalyst, the mixture containing ⁇ -methylstyrene obtained in the dehydration step is brought into contact with hydrogen to react ⁇ -methylstyrene and hydrogen in the mixture. And a step of obtaining a reaction mixture containing cumene (hereinafter referred to as “hydrogenation step”).
  • the residual mixture containing the cumyl alcohol obtained in the separation step is contacted with hydrogen, and cumyl alcohol in the residual mixture is contacted.
  • hydrocracking step a step of obtaining a reaction mixture containing cumene by reacting hydrogen with hydrogen
  • the cumene conversion step includes a dehydration step and a hydrogenation step.
  • Catalysts used in the dehydration process include acids such as sulfuric acid, phosphoric acid and p-toluenesulfonic acid, and metal oxides such as activated alumina, titania, zirconia, silica alumina and zeolite. Can be mentioned. From the viewpoint of improving the reaction efficiency, a solid catalyst is preferable, and activated alumina is more preferable.
  • the dehydration reaction in the dehydration step is usually performed by contacting cumyl alcohol with a dehydration catalyst.
  • cumyl alcohol and the dehydration catalyst may be contacted in the presence of hydrogen.
  • the dehydration reaction can be carried out in the liquid phase in the presence of a solvent.
  • the solvent must be substantially inert to the reaction raw materials and products.
  • the solvent may be a substance present in the residual mixture containing the cumyl alcohol used. For example, when the residual mixture containing cumyl alcohol contains cumene, this cumene can be used as a solvent, and other solvents need not be used.
  • the dehydration reaction temperature is usually 50 to 450 ° C., preferably 150 to 300 ° C.
  • the dehydration reaction pressure is usually 10 to 10000 kPa-G, preferably 500 to 4000 kPa-G, more preferably 1000 to 2000 kPa-G.
  • Examples of the catalyst used in the hydrogenation step include a catalyst containing a metal of Group 10 or 11 of the periodic table. Specifically, a catalyst containing nickel, palladium is used. A catalyst containing platinum, a catalyst containing platinum, and a catalyst containing copper. From the viewpoint of suppression of the nuclear hydrogenation reaction of the aromatic ring and high yield, a catalyst containing nickel, a catalyst containing palladium or a catalyst containing copper is preferable. As a catalyst containing nickel, nickel, nickel-alumina, nickel-silica, nickel-carbon are preferable.
  • catalysts containing palladium, palladium-alumina, palladium-silica, palladium-carbon are preferable, and as a catalyst containing copper, Copper, Raney copper, copper / chromium, copper / zinc, copper / chromium / zinc, copper / silica, copper / alumina are preferred. These catalysts can be used alone or in combination of two or more.
  • the hydrogenation reaction in the hydrogenation step is carried out by bringing ⁇ -methylstyrene and hydrogen into contact with the hydrogenation catalyst.
  • a hydrogenation reaction is performed following the dehydration reaction.
  • a part of the water generated in the dehydration reaction may be separated by oil-water separation or the like, or ⁇ -methyl without separation. You may make it contact with a hydrogenation catalyst with styrene.
  • the amount of hydrogen required for the hydrogenation reaction may be equimolar with ⁇ -methylstyrene, but usually the raw material contains components other than ⁇ -methylstyrene that consume hydrogen, so excess hydrogen Is used.
  • the molar ratio of hydrogen / ⁇ -methylstyrene is usually adjusted to 1/1 to 20/1, preferably 1/1 to 10/1. More preferably, it is 1/1 to 3/1.
  • the excess hydrogen remaining after the hydrogenation reaction can be recycled after being separated from the reaction solution.
  • the hydrogenation reaction can be carried out in the liquid phase in the presence of a solvent or in the gas phase.
  • the solvent must be substantially inert to the reaction raw materials and products.
  • the solvent may be a substance present in the mixture containing ⁇ -methylstyrene.
  • the hydrogenation reaction temperature is usually 0 to 500 ° C, preferably 30 to 400 ° C, more preferably 50 to 300 ° C.
  • the hydrogenation reaction pressure is usually 100 to 10,000 kPa-G, preferably 500 to 4000 kPa-G, more preferably 1000 to 2000 kPa-G.
  • the dehydration reaction and hydrogenation reaction can be advantageously performed in the form of a slurry or a fixed bed. For large scale industrial operations, it is preferred to use a fixed bed. Further, the dehydration reaction and the hydrogenation reaction can be carried out by a reaction mode such as a batch method, a semi-continuous method, or a continuous method. Separate reactors may be used for the dehydration reaction and the hydrogenation reaction, or a single reactor may be used.
  • the continuous reactor includes an adiabatic reactor and an isothermal reactor.
  • the isothermal reactor is preferably an adiabatic reactor because equipment for removing heat is required.
  • hydrocracking catalyst examples include a catalyst containing a metal of Group 10 or Group 11 or Group 12 of the periodic table. Specifically, cobalt A catalyst containing nickel, a catalyst containing nickel, a catalyst containing palladium, a catalyst containing copper, and a catalyst containing zinc. From the viewpoint of suppressing the formation of by-products, a catalyst containing nickel, a catalyst containing palladium, or a catalyst containing copper is preferable.
  • Examples of the catalyst containing nickel include nickel, nickel / alumina, nickel / silica, nickel / carbon, and examples of the catalyst containing palladium include palladium / alumina, palladium / silica, palladium / carbon, and copper.
  • Examples of the catalyst include copper, Raney copper, copper / chromium, copper / zinc, copper / chromium / zinc, copper / silica, copper / alumina, and the like.
  • the hydrogenolysis reaction can be carried out in the liquid phase in the presence of a solvent or in the gas phase.
  • the solvent must be substantially inert to the reaction raw materials and products.
  • the solvent may be a substance present in the residual mixture containing the cumyl alcohol used.
  • the residual mixture containing cumyl alcohol contains cumene
  • this cumene can be used as a solvent, and other solvents need not be used.
  • the amount of hydrogen required for the hydrocracking reaction may be equimolar with that of cumyl alcohol.
  • the raw materials usually contain components other than cumyl alcohol that consume hydrogen, excess hydrogen is present. Used.
  • the hydrogen / cumyl alcohol molar ratio is usually adjusted to 1/1 to 20/1, preferably 1/1 to 10/1. More preferably, it is 1/1 to 3/1.
  • the excess hydrogen remaining after the hydrocracking reaction can be recycled after being separated from the reaction solution.
  • the hydrocracking reaction temperature is usually 0 to 500 ° C, preferably 50 to 450 ° C, more preferably 150 to 300 ° C.
  • the hydrocracking reaction pressure is usually 100 to 10,000 kPa-G, preferably 500 to 4000 kPa-G, more preferably 1000 to 2000 kPa-G.
  • the hydrocracking reaction can be advantageously carried out in the form of a slurry or fixed bed. For large scale industrial operations, it is preferred to use a fixed bed.
  • the hydrocracking reaction can be carried out by a reaction mode such as a batch method, a semi-continuous method, or a continuous method.
  • the content of cumene in the reaction mixture containing cumene is usually 90% by weight or more per 100% by weight of the reaction mixture containing cumene.
  • the cumene recovery step is a step of obtaining a recovery mixture containing cumene having a purity higher than that before distillation by distilling the reaction mixture containing cumene obtained in the hydrogenation step.
  • the recovered mixture containing cumene obtained here can be recycled to the oxidation step as a raw material for the above-described oxidation step.
  • the conditions for distilling the reaction mixture containing cumene obtained in the hydrogenation step are usually 10 to 100 theoretical plates, pressure -100 kPa-G to 10000 kPa-G, temperature 0 to 500 ° C., preferably The number of theoretical plates is 10 to 95, the pressure is ⁇ 100 kPa-G to 5000 kPa-G, and the temperature is in the range of 0 to 400 ° C. More preferably, the number of theoretical plates is 10 to 90, the pressure is ⁇ 100 kPa-G to 3000 kPa-G, The range is 300 ° C.
  • Example 1 According to the method described in this specification, an oxidation process, a distillation process, an epoxidation process, and a propylene oxide separation process were performed to produce propylene oxide.
  • a reaction mixture containing cumene hydroperoxide was obtained.
  • the reaction mixture containing cumene hydroperoxide obtained in the oxidation step is subjected to a ratio of the distillate flow rate (D) to the flow rate (F) of the reaction mixture containing cumene hydroperoxide ( D / F) was distilled under the condition of 0.037 to separate into a concentrate containing cumene hydroperoxide and a distillate.
  • the flow rate (F) of the reaction mixture is the weight of the reaction mixture distilled per unit time
  • the flow rate (D) of the distillate is the weight of the distillate distilled per unit time.
  • the unit time length and the unit of weight are the same between the flow rate (F) and the flow rate (D).
  • a catalyst comprising a titanium-containing silicon oxide produced by the method described in Example 1 of Japanese Patent No. 3797107.
  • the concentrated solution and propylene were contacted in the reactor under the condition that the inlet temperature of the final reactor was 130 ° C. to obtain a reaction mixture containing propylene oxide and cumyl alcohol.
  • the final reactor inlet temperature was regulated by a heat exchanger connected upstream of the final reactor inlet. At this time, the outlet temperature of the final reactor was 130 ° C.
  • the crude propylene oxide was separated by distilling the reaction mixture containing propylene oxide and cumyl alcohol obtained in the epoxidation step.
  • the methyl formate concentration in the separated crude propylene oxide was 25 ppm based on 100% by weight of propylene oxide by gas chromatography analysis.
  • Example 2 In the distillation step, the reaction mixture containing cumene hydroperoxide obtained in the oxidation step was distilled under the condition that D / F was 0.062, and in the epoxidation step, cumene hydroperoxide obtained in the distillation step was Propylene oxide was produced in the same manner as in Example 1 except that the concentrated solution and propylene were brought into contact with each other in the reactor under the condition that the inlet temperature of the final reactor was 130 ° C. At this time, the outlet temperature of the final reactor was 131 ° C. In the separation step, the methyl formate concentration in the separated crude propylene oxide was 26 ppm by weight with respect to 100% by weight of propylene oxide by gas chromatography analysis.
  • Example 3 In the distillation step, the reaction mixture containing cumene hydroperoxide obtained in the oxidation step is distilled under the condition that D / F is 0.084, and in the epoxidation step, cumene hydroperoxide obtained in the distillation step is Propylene oxide was produced in the same manner as in Example 1 except that the concentrated solution and propylene were contacted in the reactor under the condition that the final reactor inlet temperature was 135 ° C. At this time, the outlet temperature of the final reactor was 136 ° C. In the separation step, the methyl formate concentration in the separated crude propylene oxide was 27 ppm by weight with respect to 100% by weight of propylene oxide by gas chromatography analysis.
  • Example 4 In the distillation step, the reaction mixture containing cumene hydroperoxide obtained in the oxidation step is distilled under the condition that D / F is 0.099, and the cumene hydroperoxide obtained in the distillation step in the epoxidation step is contained.
  • Propylene oxide was produced in the same manner as in Example 1 except that the concentrated solution to be contacted with propylene in the reactor under the condition that the inlet temperature of the final reactor was 132 ° C. At this time, the outlet temperature of the final reactor was 133 ° C.
  • the methyl formate concentration in the separated crude propylene oxide was 19 ppm by weight with respect to 100% by weight of propylene oxide by gas chromatography analysis.
  • Example 5 In the distillation step, the reaction mixture containing cumene hydroperoxide obtained in the oxidation step is distilled under the condition that D / F is 0.11, and the cumene hydroperoxide obtained in the distillation step in the epoxidation step is contained.
  • Propylene oxide was produced in the same manner as in Example 1 except that the concentrated solution and propylene were brought into contact in the reactor under the condition that the inlet temperature of the final reactor was 104 ° C. At this time, the outlet temperature of the final reactor was 119 ° C.
  • the separation step the methyl formate concentration in the separated crude propylene oxide was 13 ppm by weight with respect to 100% by weight of propylene oxide by gas chromatography analysis.
  • Example 6 In the distillation step, the reaction mixture containing cumene hydroperoxide obtained in the oxidation step is distilled under the condition that D / F is 0.13, and the cumene hydroperoxide obtained in the distillation step in the epoxidation step is contained.
  • Propylene oxide was produced in the same manner as in Example 1 except that the concentrated solution to be brought into contact with propylene in the reactor under the condition that the inlet temperature of the final reactor was 109 ° C. At this time, the outlet temperature of the final reactor was 120 ° C.
  • the methyl formate concentration in the separated crude propylene oxide was 24 ppm by weight with respect to 100% by weight of propylene oxide by gas chromatography analysis.
  • the present invention can be used for the production of propylene oxide.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Epoxy Compounds (AREA)

Abstract

(1)酸化工程、(2)蒸留工程、(3)エポキシ化工程、および(4)分離工程を含むプロピレンオキサイドの製造方法であり、(2)蒸留工程は、酸化工程で得たクメンハイドロパーオキサイドを含有する反応混合物を蒸留することにより、クメンハイドロパーオキサイドを含有する濃縮液と、留出物とに分離する工程であって、蒸留される上記反応混合物の流量(F)に対する留出物の流量(D)の比(D/F)が0.037以上0.13以下となる条件で連続的に蒸留する工程であり、(3)エポキシ化工程は、触媒の存在下、上記蒸留工程で得たクメンハイドロパーオキサイドを含有する濃縮液と、プロピレンとを1以上の反応器内で接触させ、プロピレンと、上記濃縮液中のクメンハイドロパーオキサイドとを反応させることにより、プロピレンオキサイドとクミルアルコールとを含有する反応混合物を得る工程であって、上記1以上の反応器のうち最終反応器の出口温度を115℃以上140℃未満とする工程である。

Description

プロピレンオキサイドの製造方法
 本発明はプロピレンオキサイドの製造方法に関する。
 プロピレンオキサイドを製造する方法として、触媒の存在下、有機過酸化物とプロピレンとを反応させる方法が知られている。かかる反応で得られる反応混合物中には、一般的に、プロピレンオキサイドの他に、不純物として水、炭化水素、メタノール、ホルムアルデヒド、プロピオンアルデヒド、アセトン、ギ酸メチル等の含酸素化合物が含まれている。プロピレンオキサイド中のギ酸メチルは、各種化学製品の原料として使用されるプロピレンオキサイドの品質を低下させる。
 プロピレンオキサイド中のギ酸メチルを低減させる方法として、特許文献1には、不純物としてギ酸メチルを含有するプロピレンオキサイドを、炭素数7~10の炭化水素を抽剤とする、抽出蒸留塔による抽出蒸留に付し、抽出蒸留塔の塔頂からの留出液に水を添加して油層と水層とに分離し、油層を抽出蒸留塔にリサイクルし、一方水層を系外に除去し、抽出蒸留塔の塔底液としてギ酸メチルの濃度が低減されたプロピレンオキサイドを得る方法が記載されている。
 また、プロピレンオキサイド中のギ酸メチルを低減させる方法として、特許文献2には、ギ酸メチルを含むプロピレンオキサイドを水洗してプロピレンオキサイド中のギ酸メチルを除去する方法において、水洗後の水層のpHを7~9とした後に抽剤と接触させる方法が記載されている。
特開2006-8544号公報 特開2006-124332号公報
 ギ酸メチルはプロピレンオキサイドと沸点が近く、プロピレンとの分離が最も難しい不純物の一つであるため、ギ酸メチルを含むプロピレンオキサイドからギ酸メチルを低減するという方向性でのさらなる改良は容易ではない。
 さらに、上記従来の方法では、精製に供されるプロピレンオキサイド中のギ酸メチル濃度が高い場合に、精製に必要なエネルギーが増加してしまう。
 本発明の目的は、プロピレンオキサイドの製造方法において、エポキシ化工程で得られる反応混合物中のギ酸メチル濃度を低減し、プロピレンオキサイドの分離工程でのギ酸メチルを除去するための負荷(前記除去に必要な熱エネルギー等)を軽減することにある。
 かかる現状において、本発明者らは、酸化工程、蒸留工程、エポキシ化工程およびプロピレンオキサイド分離工程を有し、クメンハイドロパーオキサイドとプロピレンを反応させるプロピレンオキサイドの製造において、蒸留工程における、酸化工程で得られたクメンハイドロパーオキサイドを含有する反応混合物の蒸留の条件、および1つ以上の反応器を用いて実施されるエポキシ化工程における最終の反応器の出口温度を制御することにより、エポキシ化工程で得られたプロピレンオキサイドとクミルアルコールとを含有する反応混合物中のギ酸メチル濃度が制御できることを見出し、本発明に達した。
 すなわち、本発明は以下の何れかを提供する。
[1]下記の(1)~(4)の工程を含むプロピレンオキサイドの製造方法。
 (1)酸化工程: クメンと、酸素を含有するガスとを接触させ、クメンと、上記ガス中の酸素とを反応させることにより、クメンハイドロパーオキサイドを含有する反応混合物を得る工程
 (2)蒸留工程: 上記酸化工程で得たクメンハイドロパーオキサイドを含有する反応混合物を蒸留することにより、クメンハイドロパーオキサイドを含有する濃縮液と、留出物とに分離する工程であって、
  蒸留される上記反応混合物の流量(F)に対する留出物の流量(D)の比(D/F)が0.037以上0.13以下となる条件で、上記反応混合物を連続的に蒸留する工程
(ただし、上記反応混合物の流量は、単位時間あたりに蒸留される反応混合物の重量であり、上記留出物の流量は、単位時間あたりに留出する留出物の重量である。)
 (3)エポキシ化工程: 触媒の存在下、上記蒸留工程で得たクメンハイドロパーオキサイドを含有する濃縮液と、プロピレンとを1以上の反応器内で接触させ、プロピレンと、上記濃縮液中のクメンハイドロパーオキサイドとを反応させることにより、プロピレンオキサイドとクミルアルコールとを含有する反応混合物を得る工程であって、
  上記1以上の反応器のうちの最終の反応器の出口温度を115℃以上140℃未満とする工程
 (4)分離工程: 上記エポキシ化工程で得たプロピレンオキサイドとクミルアルコールとを含有する反応混合物を蒸留することにより、粗プロピレンオキサイドを分離する工程
[2]上記エポキシ化工程において、プロピレンオキサイドとクミルアルコールとを含有する反応混合物がギ酸メチルを含有し、かつ該反応混合物中のギ酸メチルの濃度が、当該反応混合物中のプロピレンオキサイドの重量に対して10重量ppm以上30重量ppm未満である[1]に記載のプロピレンオキサイドの製造方法。
[3]上記エポキシ化工程において、触媒がチタン含有ケイ素酸化物からなる[1]または[2]に記載のプロピレンオキサイドの製造方法。
 本発明の方法によれば、プロピレンオキサイドの製造において、エポキシ化工程で得られるプロピレンオキサイドとクミルアルコールとを含有する反応混合物中のギ酸メチル濃度を低減し、プロピレンオキサイドの精製工程でのギ酸メチルを除去するための負荷をより軽減することができる。
本発明の一実施形態に係る、エポキシ化工程においてエポキシ化反応を行う反応器の構成を示す図である。
 〔プロピレンオキサイドの製造方法〕
 本発明に係るプロピレンオキサイドの製造方法は、以下に詳細を示す、(1)酸化工程、(2)蒸留工程、(3)エポキシ化工程、および、(4)分離工程を含む。
 (1)酸化工程
 酸化工程は、クメンと、酸素を含有するガスとを接触させ、クメンと、前記ガス中の酸素とを反応させることにより、クメンハイドロパーオキサイドを含有する反応混合物を得る工程である。
 クメンは、クメンと不純物とを含有する混合物の状態で、酸化工程に供されてもよい。クメンと不純物とを含有する混合物中のクメンの含量は、該混合物100重量%あたり、好ましくは90重量%以上である。
 酸素を含有するガスとしては、酸素、空気、酸素濃縮空気等が挙げられる。
 クメンハイドロパーオキサイドを含有する反応混合物中のクメンハイドロパーオキサイドの含量は、前記反応混合物100重量%あたり、5~80重量%であることが好ましく、5~60重量%であることがより好ましく、5~40重量%であることがさらに好ましい。
 クメンは酸素によって酸化され、クメンハイドロパーオキサイドが生成する。クメンの酸化は、空気や酸素濃縮空気等の酸素を含有するガスによる自動酸化である。該酸化はアルカリ水溶液の存在下で行ってもよい。アルカリ水溶液は、アルカリ性を示す水溶液ならばいかなるものでもよく、フレッシュアルカリ水溶液、酸化工程から回収された水溶液または酸化工程から回収された水溶液にフレッシュアルカリ水溶液を混合して調製した水溶液等が用いられる。フレッシュアルカリ水溶液としては、NaOH、KOHのようなアルカリ金属化合物や、Mg(OH)、Ca(OH)のようなアルカリ土類金属化合物、NaCO、NaHCOのようなアルカリ金属炭酸塩、アンモニア、(NHCO、アルカリ金属炭酸アンモニウム塩等を水に溶解させて調製した水溶液が通常用いられる。
酸化工程からの水溶液の回収は、酸化工程で生じた液相を油相と水相とに分離し、該水相を回収することにより行うことができる。酸化反応温度は、通常50~200℃であり、好ましくは60~180℃であり、より好ましくは70~150℃である。反応圧力は、通常大気圧から5000kPa-Gの間であり、好ましくは10~2000kPa-Gであり、より好ましくは20~1000kPa-Gである。
 クメンハイドロパーオキサイドを含有する反応混合物中には、クメンハイドロパーオキサイド以外の含有成分として、クメン、クミルアルコール、アセトフェノン、エチルベンゼン、フェノール、ギ酸、酢酸、プロピオン酸、安息香酸、シュウ酸、マロン酸、乳酸等の有機酸および水等が含まれる。
 クメンハイドロパーオキサイドを含有する反応混合物は、油水分離により水相を除去してから下記蒸留工程で蒸留されることが好ましい。また、水相を除去した油相は、上記有機酸を除去する観点からアルカリ化合物の水溶液で洗浄することも好ましい。
上記アルカリ化合物の水溶液としては、NaOH、KOHのようなアルカリ金属化合物や、Mg(OH)、Ca(OH)のようなアルカリ土類金属化合物、NaCO、NaHCOのようなアルカリ金属炭酸塩、アンモニア、(NHCO、アルカリ金属炭酸アンモニウム塩等を水に溶解させて調製した水溶液が通常用いられる。使用したアルカリ化合物は、下記蒸留工程の蒸留前に除去することが好ましく、通常水を添加して洗浄することにより除去される。下記蒸留工程に供されるクメンハイドロパーオキサイドを含有する反応混合物中のアルカリ化合物の濃度は、クメンハイドロパーオキサイドを含有する反応混合物100重量%あたり、アルカリ金属として1000重量ppm以下であることが好ましく、より好ましくは500重量ppm以下である。
 (2)蒸留工程
 蒸留工程は、酸化工程で得たクメンハイドロパーオキサイドを含有する反応混合物を蒸留することにより、クメンハイドロパーオキサイドを含有する濃縮液と、留出物とに分離する工程であって、上記蒸留される上記反応混合物の流量(F)に対する留出物の流量(D)の比(D/F)が0.037以上0.13以下となる条件にて連続的に上記反応混合物を蒸留する工程である。ただし、反応混合物の流量(F)は、単位時間あたりに蒸留される反応混合物の重量であり、留出物の流量(D)は、単位時間あたりに留出する留出物の重量である。なお、流量(F)と流量(D)との間で、単位時間の長さと、重量の単位とは同じである。
 蒸留は、酸化工程で得たクメンハイドロパーオキサイドを含有する反応混合物から、主に水を留出させることを目的として行われ、前記反応混合物よりもクメンハイドロパーオキサイドの濃度が高い濃縮液が得られる。
 蒸留は、蒸留塔にて行われる。蒸留塔としては、充填塔または段塔のいずれの形式のものであってもよい。蒸留は、蒸留塔にクメンハイドロパーオキサイドを含有する反応混合物を連続的に供給することにより、クメンハイドロパーオキサイドを含有する濃縮液と、留出物とに分離される。
 蒸留は、クメンハイドロパーオキサイドが蒸発せず、水が蒸発するような温度および圧力となるように蒸留塔の底部の温度および圧力を調整して行うことが好ましい。蒸留塔底部に熱エネルギーを加えて、クメンハイドロパーオキサイドを含有する反応混合物を加熱することにより、該反応混合物に含まれる水等を蒸発させ、気体として蒸留塔の上部に上昇させる。蒸留塔の上部に上昇した気体を、該上部で冷却して、主にクメンと水を含む液状の留出物を蒸留塔頂部付近にある留出部から連続的に排出する。一方、蒸留塔の下部からは、濃縮された濃縮液を連続的に排出する。該濃縮液は、エポキシ化工程の実施場所へ輸送される。排出される留出物の流量(D)と濃縮液の流量との和は、供給される上記反応混合物の流量(F)とほぼ等しい。蒸留塔底部に加える熱エネルギーの量を変えることにより、蒸発する水等の量を調整することができ、その結果、排出される留出物の流量(D)と濃縮液の流量の比を変えることができる。留出物の流量(D)と濃縮液の流量との比は、蒸留される反応混合物の流量(F)とは独立に調整することができる。
 上記のようにして調整した留出物の流量(D)と、蒸留される反応混合物の流量(F)とを調整することにより、D/Fを調整することができる。
 ここで、流量(F)は蒸留塔の入り口部における流量計の指示値または実測によって測定される値であり、流量(D)は、蒸留塔の留出部における流量計の指示値または実測によって測定される値である。流量(F)は、クメンハイドロパーオキサイドを含有する反応混合物の供給量を変化させる方法により制御することができ、流量(D)は、蒸留塔底部に加える熱エネルギーの量を変化させる方法により制御することができる。
 クメンハイドロパーオキサイドを含有する濃縮液中のクメンハイドロパーオキサイドの濃度は、蒸留されるクメンハイドロパーオキサイドを含有する反応混合物中のクメンハイドロパーオキサイドの濃度よりも高くなっており、クメンハイドロパーオキサイドを含有する濃縮液100重量%あたり、例えば10重量%~90重量%である。
 後述するエポキシ化工程で得られるプロピレンオキサイドとクミルアルコールとを含有する反応混合物中のギ酸メチル濃度を低減させるために、D/Fは、好ましくは0.040以上であり、より好ましくは0.045以上である。蒸留工程において、蒸留に要するエネルギー量が過大とならないために、D/Fは、好ましくは0.12以下であり、より好ましくは0.11以下である。
 蒸留工程における蒸留塔の塔頂温度は、通常30~150℃の範囲内、塔頂圧力は、通常-100~100kPaGの範囲内、塔底温度は、通常30~150℃の範囲内、塔底圧力は、通常-100~100kPaGの範囲内である。
 得られる留出物は、留出物100重量%あたりクメンを、例えば90重量%~99重量%含む。該留出物から液液分離などの方法で水相を除いた油相を酸化工程の原料として酸化工程へリサイクルすることができる。
 (3)エポキシ化工程
 エポキシ化工程は、触媒の存在下、蒸留工程で得たクメンハイドロパーオキサイドを含有する濃縮液と、プロピレンとを1以上の反応器内で接触させ、プロピレンと、上記濃縮液中のクメンハイドロパーオキサイドとを反応させることにより、プロピレンオキサイドとクミルアルコールとを含有する反応混合物を得る工程であって、上記1以上の反応器のうちの最終の反応器の出口温度を115℃以上140℃未満とする工程である。
 エポキシ化工程において、エポキシ化反応は、例えば、1以上10未満の反応器を使用して実施される。また、2以上の反応器を使用する場合、通常、隣り合う反応器は互いにパイプ等の接続部で連結されている。各反応器に供給される反応混合物の温度を制御するため、2つの反応器の間に熱交換器や温度調節器などの設備を設けてもよい。
 エポキシ化工程において、反応混合物の温度の過度の上昇を抑制し、安定的にエポキシ化反応を実施する観点から、エポキシ化工程の反応器の数は2以上が好ましい。
 エポキシ化反応を行う各反応器中には、エポキシ化反応用の触媒が充填される。本明細書では、エポキシ化工程で使用される全触媒量の少なくとも10重量%、好ましくは少なくとも20重量%の触媒が充填された反応器が、エポキシ化反応を行う反応器である。最初の反応器は、上記蒸留工程で得られたクメンハイドロパーオキサイドを含有する濃縮液と触媒とが、最初に接触する反応器である。1以上の反応器のうちの最終の反応器は、エポキシ化反応が行われる最後の反応器であって、且つ、後述する分離工程に、プロピレンオキサイドとクミルアルコールとを含有する反応混合物を供給する反応器である。なお、2以上の反応器を使用する場合、一実施形態では2以上の反応器全ての反応器が直列または並列に接続されている。
 以下、エポキシ化工程において、2以上の反応器を使用する一実施形態について、図1を参照しながら説明する。図中の左側が上記(2)の蒸留工程であり、右側が後述する(4)の分離工程であり、反応器1~10が、エポキシ化反応を行う反応器である。
 図中の(A)に示す形態では、反応器1~3が直列に連結されており、反応器1が最初の反応器である。反応器1の下流側には反応器2が連結されており、反応器2の下流側には反応器3が連結されている。反応器2に反応器1で得られた反応生成物が、反応器3に反応器2で得られた反応生成物がそれぞれ供給される。反応器3が最終の反応器である。
 図中の(B)に示す形態では、反応器4が最初の反応器である。反応器4の下流側に反応器5および6が並列に連結されており、これら反応器5および6に反応器4で得られた反応生成物が供給される。反応器5および6の下流側には反応器7が連結されており、反応器7に反応器5および6で得られた反応生成物が供給される。反応器7が最終の反応器である。
 図中の(C)に示す形態では、反応器8~10が並列に連結されており、それぞれの反応器に、上記(2)の蒸留工程で得られたクメンハイドロパーオキサイドを含有する濃縮液が供給される。反応器8~10は何れも、最初の反応器でありかつ最終の反応器である。
 エポキシ化工程において、使用される反応器が2以上の場合、各反応器の入口における反応混合物の温度は、該反応器の入口の上流側に設けられた熱交換器や温度調節器により任意に調整できる。
 エポキシ化工程において、使用される反応器が2以上の場合、最初の反応器の出口における反応混合物の温度は90℃以上が好ましく、100℃以上がより好ましい。各反応器の出口における反応混合物の温度は、エポキシ化反応による発熱を考慮して、各反応器の入口における反応混合物の温度を調整する方法、各反応器に設けられた温度調節器を使用する方法等により調整することができる。
 エポキシ化工程で得られるプロピレンオキサイドとクミルアルコールとを含有する反応混合物中のギ酸メチル濃度を低減させるために、最終の反応器の出口温度は140℃未満であり、好ましくは139℃以下であり、より好ましくは138℃以下である。エポキシ化反応の速度を向上させる観点から、最終の反応器の出口温度は115℃以上であり、好ましくは117℃以上であり、より好ましくは120℃以上である。ここで、最終の反応器の出口温度は、最終の反応器に充填される触媒を通過した後の、エポキシ化工程で得られるプロピレンオキサイドとクミルアルコールとを含有する反応混合物の温度であり、最終の反応器出口付近に設置される温度計の指示値を読み取ることにより測定することができる。
なお、最終の反応器の出口付近における、プロピレンオキサイドとクミルアルコールとを含有する反応混合物の温度は、熱交換器や温度調節器による当該反応混合物の加熱または冷却を行わない状態で測定される。
 一実施形態では、最終の反応器の出口温度は、最終の反応器の入口温度を制御することによって制御される。別の実施形態では、最終の反応器の出口温度は、該反応器内の温度を制御することによって制御される。なお、最終の反応器の出口温度から最終の反応器の入口温度を引いた差は30℃以下がより好ましく、15℃以下がさらに好ましい。
 エポキシ化工程で用いられる触媒は、プロピレンオキサイドを高収率に得る観点から、チタン含有ケイ素酸化物からなる触媒が好ましい。チタン含有ケイ素酸化物は、ケイ素酸化物と化学的に結合したチタンを含有する化合物であり、チタン含有ケイ素酸化物からなる触媒としては、例えば、チタン化合物をシリカ担体に担持したもの、共沈法やゾルゲル法でチタン化合物とケイ素酸化物とを複合したもの、あるいはチタンを含むゼオライト化合物などを挙げることができる。ここで、”ゼオライト化合物”は、「International Zeolite Association」に収録されている構造を備えた化合物を意味する。好ましいチタン含有ケイ素酸化物からなる触媒としては、日本国特許第3731384号公報や日本国特許第3797107号公報等に記載の触媒;US2005/014960A1やUS2007/260074A1等に記載の触媒;US5783167号公報等に記載のTi-MCM-41;日本国特開平7-300312号公報等に記載のTi-MCM-48;Nature 368(1994)p321、CN101348472B、CN101307039B、CN101279960B、CN102311363B、CN102872847B、CN103030611B等に記載されたTi-HMS;Chemistry of Material 14 2002 p1657等に記載されたTi-SBA-15、TS-1およびTS-2;Chemistry Letters 2000 p774等に記載されたTi-MWWおよびその前駆体;が挙げられる。
 エポキシ化反応は、プロピレンとクメンハイドロパーオキサイドとを触媒に接触させることにより行われる。エポキシ化反応は、溶媒を用いて液相中で実施でき、該溶媒は、エポキシ化反応時の温度および圧力のもとで液体であり、かつ反応原料および生成物に対して実質的に不活性なものでなければならない。該溶媒は、蒸留工程で得たクメンハイドロパーオキサイドを含有する濃縮液中に存在する物質であってもよく、例えば、該濃縮液がクメンを含有する場合には、そのクメンを溶媒とすることができる。クメン以外の溶媒としては、単環式芳香族溶媒(例えばベンゼン、トルエン、クロロベンゼン、オルトジクロロベンゼンなど)、アルカン溶媒(例えばオクタン、デカン、ドデカンなど)などが挙げられる。
 エポキシ化反応の圧力は、反応混合物を液体の状態に保つことができるように調整され、通常は100~10000kPa-Gである。
 エポキシ化反応は、大規模な工業的操作の場合には、固定床の形式で有利に実施できる。
 エポキシ化工程で得られるプロピレンオキサイドとクミルアルコールとを含有する反応混合物中の反応混合物100重量%あたりのプロピレンオキサイドの含量は1~31重量%であることが好ましく、1~23重量%であることがより好ましく、1~16重量%であることがさらに好ましい。該反応混合物100重量%あたりのクミルアルコールの含量は、5~80重量%であることが好ましく、5~60重量%であることがより好ましく、5~40重量%であることがさらに好ましい。
 エポキシ化工程におけるクメンハイドロパーオキサイドに対するプロピレンのモル比(プロピレン/クメンハイドロパーオキサイド)は、通常2/1~50/1である。
 エポキシ化工程の後、未反応のプロピレンを回収し、回収したプロピレンエポキシ化工程の原料としてエポキシ化工程へリサイクルする工程をさらに行ってもよい。
 エポキシ化工程において、プロピレンオキサイドとクミルアルコールとを含有する反応混合物がギ酸メチルを含有する場合、該反応混合物中のギ酸メチル濃度は、当該反応混合物中のプロピレンオキサイドの重量に対して10重量ppm以上30重量ppm未満であることが好ましい。該ギ酸メチル濃度は、当該反応混合物を直接ガスクロマトグラフィー分析で測定することができる。
 なお、ギ酸メチルとプロピレンオキサイドの沸点が近いため、エポキシ化工程で得た反応混合物に含まれるギ酸メチルのほぼ全てが、後述する分離工程で得られるプロピレンオキサイドを含有する混合物に含まれると考えられる。そのため、エポキシ化工程で得た反応混合物に含まれるプロピレンオキサイドとギ酸メチルの比と、分離工程で得られるプロピレンオキサイドを含有する混合物に含まれるプロピレンオキサイドとギ酸メチルの比とはほぼ等しいと考えられる。つまり、分離工程で得たプロピレンオキサイドを含有する混合物中のプロピレンオキサイドの重量に対するギ酸メチルの濃度は、エポキシ化工程で得た反応混合物中のプロピレンオキサイドの重量に対するギ酸メチルの濃度とほぼ同じとみなしてよい。
 (4)分離工程
 分離工程は、上記エポキシ化工程で得たプロピレンオキサイドとクミルアルコールとを含有する反応混合物を蒸留することにより、粗プロピレンオキサイドを分離する工程である。
 分離工程において蒸留するプロピレンオキサイドとクミルアルコールとを含有する反応混合物は、エポキシ化工程の後、未反応のプロピレンの除去を行って得られた反応混合物も含む。
 該蒸留の圧力は、通常100~5000kPa-G、好ましくは100~3000kPa-Gであり、塔頂温度は、通常-50~150℃である。蒸留方法としては、蒸留塔を用いる方法が挙げられ、複数の蒸留塔を用いて蒸留してもよい。
 分離された粗プロピレンオキサイド中のプロピレンオキサイドの含量は、一般に粗プロピレンオキサイド100重量%あたり、99重量%以上である。
 蒸留により分離された粗プロピレンオキサイドは、通常不純物として、水、炭化水素、酸素含有化合物を含んでいる。炭化水素としては炭素数3~7の炭化水素を例示することができる。酸素含有化合物としてはメタノール、アセトアルデヒド、アセトン、プロピオンアルデヒド、ギ酸メチル等の化合物を例示することができる。
 これらの不純物を除去するため、公知の蒸留技術を適宜組み合わせて、粗プロピレンオキサイドをさらに精製してもよく、水、炭化水素、酸素含有化合物を効率的に除去する観点から、炭素数6~10の炭化水素を抽剤とする抽出蒸留とその他の蒸留を組み合わせて精製することが好ましい。
 抽剤である炭素数6~10の炭化水素としては、n-ヘキサン、n-ヘプタン、n-オクタン、n-ノナン、n-デカン等の直鎖状飽和炭化水素、2-メチルペンタン、3-メチルペンタン、2,3-ジメチルブタン、2,2-ジメチルブタン、2,2-ジメチルペンタン、2,3-ジメチルペンタン、2,2-ジメチルヘキサン、2,3-ジメチルヘキサン等の枝分かれ状飽和炭化水素を例示することができる。なお、これらの抽剤は、単一でもこれら化合物の混合物でもどちらでも使用できる。
 抽出蒸留塔およびその他の蒸留塔の型式と運転条件、抽剤の使用量等は要求される製品プロピレンオキサイドの品質により適宜決定することができる。
 分離工程において、蒸留により粗プロピレンオキサイドを分離した後の残留物として、クミルアルコールを含有する残留混合物が得られる。この残留混合物は、必要に応じて、後述するクメン変換工程等に供されてもよい。
 (5)その他の工程
 本発明のプロピレンオキサイドの製造方法の一形態では、必要に応じて、以下に記すクメン変換工程やクメン回収工程をさらに備えていてもよい。
 (5-1)クメン変換工程
 クメン変換工程は、(4)分離工程で得たクミルアルコールを含有する上記残留混合物中のクミルアルコールをクメンに変換し、クメンを含有する反応混合物を得る工程である。
 一つの態様において、クメン変換工程は、触媒の存在下、分離工程で得たクミルアルコールを含有する上記残留混合物中のクミルアルコールを脱水してα-メチルスチレンを含有する混合物を得る工程(以下、”脱水工程”という)と、触媒の存在下、脱水工程で得たα-メチルスチレンを含有する上記混合物と水素とを接触させて、上記混合物中のα-メチルスチレンと水素とを反応させることにより、クメンを含有する反応混合物を得る工程(以下、”水添工程”という)とを含む。
 また、別の一つの態様において、クメン変換工程は、触媒の存在下、上記分離工程で得たクミルアルコールを含有する上記残留混合物と、水素とを接触させ、上記残留混合物中のクミルアルコールと水素とを反応させることにより、クメンを含有する反応混合物を得る工程(以下、”水素化分解工程”という)である。
 クメン変換工程が脱水工程と水添工程とを含む場合について以下に説明する。
 脱水工程において使用される触媒(以下、”脱水触媒”という)としては、硫酸、リン酸、p-トルエンスルホン酸等の酸や、活性アルミナ、チタニア、ジルコニア、シリカアルミナ、ゼオライト等の金属酸化物を挙げることができる。反応効率を向上させる観点から、固体触媒が好ましく、活性アルミナがより好ましい。
 脱水工程における脱水反応は、通常、クミルアルコールと脱水触媒とを接触させることにより行われる。一実施形態においては、脱水反応に引き続いて水添工程における水添反応を行なうため、水素の存在下に、クミルアルコールと脱水触媒とを接触させてもよい。脱水反応は、溶媒の存在下、液相中で実施できる。溶媒は、反応原料および生成物に対して実質的に不活性なものでなければならない。溶媒は、使用されるクミルアルコールを含有する残留混合物中に存在する物質であってもよい。例えば、クミルアルコールを含有する残留混合物が、クメンを含有する場合には、このクメンを溶媒とすることができ、他の溶媒を用いなくてもよい。脱水反応温度は、通常50~450℃であり、150~300℃が好ましい。脱水反応圧力は、通常10~10000kPa-Gであり、好ましくは500~4000kPa-Gであり、より好ましくは1000~2000kPa-Gである。
 水添工程において使用される触媒(以下、”水添触媒”という)としては、周期律表10族または11族の金属を含む触媒が挙げられ、具体的には、ニッケルを含む触媒、パラジウムを含む触媒、白金を含む触媒、銅を含む触媒が挙げられる。芳香環の核水添反応の抑制、高収率の観点から、ニッケルを含む触媒、パラジウムを含む触媒または銅を含む触媒が好ましい。ニッケルを含む触媒としては、ニッケル、ニッケル・アルミナ、ニッケル・シリカ、ニッケル・カーボンが好ましく、パラジウムを含む触媒としては、パラジウム・アルミナ、パラジウム・シリカ、パラジウム・カーボンが好ましく、銅を含む触媒としては、銅、ラネー銅、銅・クロム、銅・亜鉛、銅・クロム・亜鉛、銅・シリカ、銅・アルミナが好ましい。これらの触媒は単一でも用いることができるし、複数のものを組み合わせて用いることもできる。
 水添工程における水添反応は、α-メチルスチレンと水素とを水添触媒に接触させることにより行われる。一実施形態においては、脱水反応に引き続いて水添反応を行なうが、この態様では、脱水反応において発生した水の一部を油水分離等によって分離してもよいし、分離せずにα-メチルスチレンとともに水添触媒に接触させてもよい。水添反応に必要な水素の量はα-メチルスチレンと等モルであればよいが、通常、原料中には水素を消費するα-メチルスチレン以外の成分も含まれているため、過剰の水素が用いられる。また水素の分圧を上げるほど反応はより速やかに進むことから、通常、水素/α-メチルスチレンのモル比は1/1~20/1に調整され、好ましくは1/1~10/1であり、より好ましくは1/1~3/1である。水添反応後に残存した過剰分の水素は反応液と分離した後にリサイクルして使用することもできる。水添反応は、溶媒の存在下液相中で、または気相中で実施できる。溶媒は、反応原料および生成物に対して実質的に不活性なものでなければならない。溶媒は、α-メチルスチレンを含有する混合物中に存在する物質であってもよい。例えば、α-メチルスチレンを含有する混合物がクメンを含有する場合には、このクメンを溶媒とすることができ、他の溶媒を用いなくてもよい。水添反応温度は通常0~500℃であり、30~400℃が好ましく、50~300℃がより好ましい。水添反応圧力は、通常100~10000kPa-Gであり、好ましくは500~4000kPa-Gであり、より好ましくは1000~2000kPa-Gである。
 脱水反応および水添反応は、スラリーまたは固定床の形式で有利に実施できる。大規模な工業的操作の場合には、固定床を用いるのが好ましい。また、脱水反応および水添反応は、回分法、半連続法、連続法等の反応形態によって実施できる。脱水反応と水添反応には別々の反応器を用いてもよいし、単一の反応器を用いてもよい。連続法の反応器には、断熱反応器と等温反応器とがあるが、等温反応器は除熱をするための設備が必要となるため、断熱反応器が好ましい。
 水素化分解工程において使用される触媒(以下、”水素化分解触媒”という)としては周期律表10族または11族または12族の金属を含む触媒を挙げることができ、具体的には、コバルトを含む触媒、ニッケルを含む触媒、パラジウムを含む触媒、銅を含む触媒、亜鉛を含む触媒が挙げられる。副生成物の生成を抑制する観点から、ニッケルを含む触媒、パラジウムを含む触媒または銅を含む触媒が好ましい。ニッケルを含む触媒としては、ニッケル、ニッケル・アルミナ、ニッケル・シリカ、ニッケル・カーボンが挙げられ、パラジウムを含む触媒としては、パラジウム・アルミナ、パラジウム・シリカ、パラジウム・カーボン等が挙げられ、銅を含む触媒としては、銅、ラネー銅、銅・クロム、銅・亜鉛、銅・クロム・亜鉛、銅・シリカ、銅・アルミナ等が挙げられる。水素化分解反応は、溶媒の存在下液相中で、または気相中で実施できる。溶媒は、反応原料および生成物に対して実質的に不活性なものでなければならない。溶媒は、使用されるクミルアルコールを含有する残留混合物中に存在する物質であってもよい。例えばクミルアルコールを含有する残留混合物がクメンを含有する場合には、このクメンを溶媒とすることができ、他の溶媒を用いなくてもよい。水素化分解反応に必要な水素の量はクミルアルコールと等モルであればよいが、通常、原料中には水素を消費するクミルアルコール以外の成分も含まれているため、過剰の水素が用いられる。また水素の分圧を上げるほど反応はより速やかに進むことから、通常、水素/クミルアルコールモル比は1/1~20/1に調整され、好ましくは1/1~10/1であり、より好ましくは1/1~3/1である。水素化分解反応後に残存した過剰分の水素は反応液と分離した後にリサイクルして使用することもできる。水素化分解反応温度は、通常0~500℃であり、50~450℃が好ましく、150~300℃がより好ましい。水素化分解反応圧力は、通常100~10000kPa-Gであり、好ましくは500~4000kPa-Gであり、より好ましくは1000~2000kPa-Gである。水素化分解反応は、スラリーまたは固定床の形式で有利に実施できる。大規模な工業的操作の場合には、固定床を用いるのが好ましい。また、水素化分解反応は、回分法、半連続法、連続法等の反応形態によって実施できる。
 クメンを含有する反応混合物中のクメンの含量は、クメンを含有する該反応混合物100重量%あたり、通常90重量%以上である。
 (5-2)クメン回収工程:
 クメン回収工程は、水素化工程で得たクメンを含有する反応混合物を蒸留することにより、蒸留する前よりも高純度のクメンを含有する回収混合物を得る工程である。ここで得られたクメンを含有する回収混合物は、上記した酸化工程の原料として酸化工程へリサイクルすることができる。
 水素化工程で得たクメンを含有する反応混合物を蒸留する条件としては、通常、理論段数10~100段、圧力-100kPa-G~10000kPa-G、温度0~500℃の範囲であり、好ましくは理論段数10~95段、圧力-100kPa-G~5000kPa-G、温度0~400℃の範囲であり、より好ましくは理論段数10~90段、圧力-100kPa-G~3000kPa-G、温度0~300℃の範囲である。
 以下、実施例により本発明をさらに詳細に説明する。
 〔実施例1〕
 本明細書記載の方法に従って、酸化工程、蒸留工程、エポキシ化工程およびプロピレンオキサイド分離工程を実施し、プロピレンオキサイドの製造を行った。
 酸化工程においてクメンと空気とを接触させることにより、クメンハイドロパーオキサイドを含有する反応混合物を得た。次に、蒸留工程において、酸化工程で得たクメンハイドロパーオキサイドを含有する反応混合物を、該クメンハイドロパーオキサイドを含有する反応混合物の流量(F)に対する留出物の流量(D)の比(D/F)が0.037である条件で蒸留し、クメンハイドロパーオキサイドを含有する濃縮液と、留出物とに分離した。なお、反応混合物の流量(F)は、単位時間あたりに蒸留する反応混合物の重量であり、留出物の流量(D)は、単位時間あたりに留出する留出物の重量である。また、流量(F)と流量(D)との間で、単位時間の長さと、重量の単位とは同じである。
次に、エポキシ化工程において、日本国特許第3797107号公報の実施例1に記載の方法で製造したチタン含有ケイ素酸化物からなる触媒の存在下、蒸留工程で得たクメンハイドロパーオキサイドを含有する濃縮液と、プロピレンとを、最終の反応器の入口温度を130℃とする条件で反応器内で接触させることにより、プロピレンオキサイドとクミルアルコールとを含有する反応混合物を得た。最終の反応器の入口温度は、最終の反応器の入口の上流側に接続された熱交換器により調整した。このときの最終の反応器の出口温度は130℃であった。次に、分離工程において、エポキシ化工程で得たプロピレンオキサイドとクミルアルコールとを含有する反応混合物を蒸留することにより、粗プロピレンオキサイドを分離した。分離した粗プロピレンオキサイド中のギ酸メチル濃度は、ガスクロマトグラフィー分析によりプロピレンオキサイド100重量%に対して25ppmであった。
 〔実施例2〕
 蒸留工程において、酸化工程で得たクメンハイドロパーオキサイドを含有する反応混合物を、D/Fが0.062である条件で蒸留し、かつエポキシ化工程において、蒸留工程で得たクメンハイドロパーオキサイドを含有する濃縮液と、プロピレンとを、最終の反応器の入口温度を130℃とする条件で反応器内で接触させる以外は実施例1と同様にプロピレンオキサイドの製造を実施した。このときの最終の反応器の出口温度は131℃であった。分離工程において、分離した粗プロピレンオキサイド中のギ酸メチル濃度は、ガスクロマトグラフィー分析によりプロピレンオキサイド100重量%に対して26重量ppmであった。
 〔実施例3〕
 蒸留工程において、酸化工程で得たクメンハイドロパーオキサイドを含有する反応混合物を、D/Fが0.084である条件で蒸留し、かつエポキシ化工程において、蒸留工程で得たクメンハイドロパーオキサイドを含有する濃縮液と、プロピレンとを、最終の反応器の入口温度を135℃とする条件で反応器内で接触させる以外は実施例1と同様にプロピレンオキサイドの製造を実施した。このときの最終の反応器の出口温度は136℃であった。分離工程において、分離した粗プロピレンオキサイド中のギ酸メチル濃度は、ガスクロマトグラフィー分析によりプロピレンオキサイド100重量%に対して27重量ppmであった。
 〔実施例4〕
 蒸留工程において、酸化工程で得たクメンハイドロパーオキサイドを含有する反応混合物を、D/Fが0.099である条件で蒸留し、かつエポキシ化工程において蒸留工程で得たクメンハイドロパーオキサイドを含有する濃縮液と、プロピレンとを、最終の反応器の入口温度を132℃とする条件で反応器内で接触させる以外は実施例1と同様にプロピレンオキサイドの製造を実施した。このときの最終の反応器の出口温度は133℃であった。分離工程において、分離した粗プロピレンオキサイド中のギ酸メチル濃度は、ガスクロマトグラフィー分析によりプロピレンオキサイド100重量%に対して19重量ppmであった。
 〔実施例5〕
 蒸留工程において、酸化工程で得たクメンハイドロパーオキサイドを含有する反応混合物を、D/Fが0.11である条件で蒸留し、かつエポキシ化工程において蒸留工程で得たクメンハイドロパーオキサイドを含有する濃縮液と、プロピレンとを、最終の反応器の入口温度を104℃とする条件で反応器内で接触させる以外は実施例1と同様にプロピレンオキサイドの製造を実施した。このときの最終の反応器の出口温度は119℃であった。分離工程において、分離した粗プロピレンオキサイド中のギ酸メチル濃度は、ガスクロマトグラフィー分析によりプロピレンオキサイド100重量%に対して13重量ppmであった。
〔実施例6〕
 蒸留工程において、酸化工程で得たクメンハイドロパーオキサイドを含有する反応混合物を、D/Fが0.13である条件で蒸留し、かつエポキシ化工程において蒸留工程で得たクメンハイドロパーオキサイドを含有する濃縮液と、プロピレンとを、最終の反応器の入口温度を109℃とする条件で反応器内で接触させる以外は実施例1と同様にプロピレンオキサイドの製造を実施した。このときの最終の反応器の出口温度は120℃であった。分離工程において、分離した粗プロピレンオキサイド中のギ酸メチル濃度は、ガスクロマトグラフィー分析によりプロピレンオキサイド100重量%に対して24重量ppmであった。
〔比較例1〕
 蒸留工程において、酸化工程で得たクメンハイドロパーオキサイドを含有する反応混合物を、D/Fが0.033である条件で蒸留し、かつエポキシ化工程において蒸留工程で得たクメンハイドロパーオキサイドを含有する濃縮液と、プロピレンとを、最終の反応器の入口温度を121℃とする条件で反応器内で接触させる以外は実施例1と同様にプロピレンオキサイドの製造を実施した。このときの最終の反応器の出口温度は136℃であった。分離工程において、分離した粗プロピレンオキサイド中のギ酸メチル濃度は、ガスクロマトグラフィー分析によりプロピレンオキサイド100重量%に対して147重量ppmであった。
 〔比較例2〕
 蒸留工程において、酸化工程で得たクメンハイドロパーオキサイドを含有する反応混合物を、D/Fが0.035である条件で蒸留し、かつエポキシ化工程において蒸留工程で得たクメンハイドロパーオキサイドを含有する濃縮液と、プロピレンとを、最終の反応器の入口温度を114℃とする条件で反応器内で接触させる以外は実施例1と同様にプロピレンオキサイドの製造を実施した。このときの最終の反応器の出口温度は132℃であった。分離工程において、分離した粗プロピレンオキサイド中のギ酸メチル濃度は、ガスクロマトグラフィー分析によりプロピレンオキサイド100重量%に対して140重量ppmであった。
 〔比較例3〕
 蒸留工程において、酸化工程で得たクメンハイドロパーオキサイドを含有する反応混合物を、D/Fが0.063である条件で蒸留し、かつエポキシ化工程において蒸留工程で得たクメンハイドロパーオキサイドを含有する濃縮液と、プロピレンとを、最終の反応器の入口温度を129℃とする条件で反応器内で接触させる以外は実施例1と同様にプロピレンオキサイドの製造を実施した。このときの最終の反応器の出口温度は141℃であった。分離工程において、分離した粗プロピレンオキサイド中のギ酸メチル濃度は、ガスクロマトグラフィー分析によりプロピレンオキサイド100重量%に対して123重量ppmであった。
 〔比較例4〕
 蒸留工程において、酸化工程で得たクメンハイドロパーオキサイドを含有する反応混合物を、D/Fが0.073である条件で蒸留し、かつエポキシ化工程において蒸留工程で得たクメンハイドロパーオキサイドを含有する濃縮液と、プロピレンとを、最終の反応器の入口温度を135℃とする条件で反応器内で接触させる以外は実施例1と同様にプロピレンオキサイドの製造を実施した。このときの最終の反応器の出口温度は142℃であった。分離工程において、分離した粗プロピレンオキサイド中のギ酸メチル濃度は、ガスクロマトグラフィー分析によりプロピレンオキサイド100重量%に対して127重量ppmであった。
 以上説明したとおり、酸化工程、蒸留工程、エポキシ化工程および分離工程を包含するプロピレンオキサイドの製造において、蒸留工程における酸化工程で得たクメンハイドロパーオキサイドを含有する反応混合物の蒸留の条件、およびエポキシ化工程における最終の反応器の出口温度を制御することにより、エポキシ化工程で得られたプロピレンオキサイドとクミルアルコールとを含有する反応混合物中のギ酸メチル濃度を制御できるという優れた特徴を有するプロピレンオキサイドの製造方法が提供される。
 本発明は、プロピレンオキサイドの製造に利用することができる。

Claims (3)

  1.  下記の(1)~(4)の工程を含むプロピレンオキサイドの製造方法。
     (1)酸化工程: クメンと、酸素を含有するガスとを接触させ、クメンと、上記ガス中の酸素とを反応させることにより、クメンハイドロパーオキサイドを含有する反応混合物を得る工程
     (2)蒸留工程: 上記酸化工程で得たクメンハイドロパーオキサイドを含有する反応混合物を蒸留することにより、クメンハイドロパーオキサイドを含有する濃縮液と、留出物とに分離する工程であって、
      蒸留される上記反応混合物の流量(F)に対する留出物の流量(D)の比(D/F)が0.037以上0.13以下となる条件で、上記反応混合物を連続的に蒸留する工程
    (ただし、上記反応混合物の流量は、単位時間あたりに蒸留される反応混合物の重量であり、上記留出物の流量は、単位時間あたりに留出する留出物の重量である。)
     (3)エポキシ化工程: 触媒の存在下、上記蒸留工程で得たクメンハイドロパーオキサイドを含有する濃縮液と、プロピレンとを1以上の反応器内で接触させ、プロピレンと、上記濃縮液中のクメンハイドロパーオキサイドとを反応させることにより、プロピレンオキサイドとクミルアルコールとを含有する反応混合物を得る工程であって、
      上記1以上の反応器のうちの最終の反応器の出口温度を115℃以上140℃未満とする工程
     (4)分離工程: 上記エポキシ化工程で得たプロピレンオキサイドとクミルアルコールとを含有する反応混合物を蒸留することにより、粗プロピレンオキサイドを分離する工程
  2.  上記エポキシ化工程において、プロピレンオキサイドとクミルアルコールとを含有する反応混合物がギ酸メチルを含有し、かつ該反応混合物中のギ酸メチルの濃度が、当該反応混合物中のプロピレンオキサイドの重量に対して10重量ppm以上30重量ppm未満である請求項1に記載のプロピレンオキサイドの製造方法。
  3.  上記エポキシ化工程において、触媒がチタン含有ケイ素酸化物からなる請求項1または2に記載のプロピレンオキサイドの製造方法。
PCT/JP2017/026783 2016-07-29 2017-07-25 プロピレンオキサイドの製造方法 WO2018021271A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2018529891A JP7018880B2 (ja) 2016-07-29 2017-07-25 プロピレンオキサイドの製造方法
CN201780046029.5A CN109476621B (zh) 2016-07-29 2017-07-25 环氧丙烷的制造方法
RU2019101635A RU2738231C2 (ru) 2016-07-29 2017-07-25 Способ для производства пропиленоксида
US16/320,329 US10807961B2 (en) 2016-07-29 2017-07-25 Method for producing propylene oxide
KR1020197003903A KR102407301B1 (ko) 2016-07-29 2017-07-25 프로필렌옥사이드의 제조 방법
EP17834277.0A EP3495356B8 (en) 2016-07-29 2017-07-25 Method for producing propylene oxide
MYPI2019000291A MY189509A (en) 2016-07-29 2017-07-25 Method for producing propylene oxide
SA519400978A SA519400978B1 (ar) 2016-07-29 2019-01-27 طريقة لإنتاج أكسيد بروبيلين

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-150489 2016-07-29
JP2016150489 2016-07-29

Publications (1)

Publication Number Publication Date
WO2018021271A1 true WO2018021271A1 (ja) 2018-02-01

Family

ID=61017612

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/026783 WO2018021271A1 (ja) 2016-07-29 2017-07-25 プロピレンオキサイドの製造方法

Country Status (9)

Country Link
US (1) US10807961B2 (ja)
EP (1) EP3495356B8 (ja)
JP (1) JP7018880B2 (ja)
KR (1) KR102407301B1 (ja)
CN (1) CN109476621B (ja)
MY (1) MY189509A (ja)
RU (1) RU2738231C2 (ja)
SA (1) SA519400978B1 (ja)
WO (1) WO2018021271A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115385768A (zh) * 2021-05-19 2022-11-25 中国石油化工股份有限公司 异丙苯的制备方法、环氧丙烷的制备方法及得到的异丙苯和环氧丙烷
CN117986206A (zh) * 2022-10-27 2024-05-07 中国石油化工股份有限公司 一种环氧化反应的方法与系统

Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07300312A (ja) 1994-03-09 1995-11-14 Nippon Shokubai Co Ltd メソポアチタノシリケートおよびその合成方法
US5783167A (en) 1993-06-15 1998-07-21 Consejo Superior Investigaciones Cientificas Structure material of the zeolite type with ultralarge pores and a lattice comprised of silicone and titanium oxides: its synthesis and utilization for the selective oxidation of organic products
JP2003261482A (ja) * 2002-03-06 2003-09-16 Sumitomo Chem Co Ltd クメンハイドロパーオキサイドを含む溶液の加熱方法
JP2003261552A (ja) * 2002-03-07 2003-09-19 Sumitomo Chem Co Ltd プロピレンオキサイドの製造方法
JP2003327576A (ja) * 2002-03-06 2003-11-19 Sumitomo Chem Co Ltd クメンハイドロパーオキサイドを含む溶液の加熱システム
US20050014960A1 (en) 2003-06-30 2005-01-20 Buijink Jan Karel Frederik Catalyst preparation
JP3731384B2 (ja) 1998-08-04 2006-01-05 住友化学株式会社 チタン含有珪素酸化物触媒、該触媒の製造方法及びプロピレンオキサイドの製造方法
JP2006008544A (ja) 2004-06-23 2006-01-12 Sumitomo Chemical Co Ltd プロピレンオキサイドの精製方法
JP2006124332A (ja) 2004-10-29 2006-05-18 Sumitomo Chemical Co Ltd プロピレンオキサイドの精製方法
JP3797107B2 (ja) 2000-02-02 2006-07-12 住友化学株式会社 触媒成型体、該触媒成型体の製造方法及びオキシラン化合物の製造方法
JP2007063256A (ja) * 2005-08-02 2007-03-15 Sumitomo Chemical Co Ltd プロピレンオキサイドの製造方法
US20070260074A1 (en) 2006-05-02 2007-11-08 Buijink Jan Karel Frederik Titanium catalyst, its preparation and its use in epoxidation reactions
JP2008142584A (ja) * 2006-12-06 2008-06-26 Sumitomo Chemical Co Ltd 減圧システム
CN101279960A (zh) 2007-04-04 2008-10-08 中国石油化工股份有限公司 制备环氧化物的方法
JP2008266304A (ja) * 2007-03-22 2008-11-06 Sumitomo Chemical Co Ltd プロピレンオキサイドの製造方法
CN101307039A (zh) 2007-05-16 2008-11-19 中国石油化工股份有限公司 生产环氧化物的方法
CN101348472A (zh) 2007-07-18 2009-01-21 中国石油化工股份有限公司 用于制备环氧化物的方法
JP2009215229A (ja) * 2008-03-11 2009-09-24 Sumitomo Chemical Co Ltd 有機過酸化物の製造方法
JP2009215228A (ja) * 2008-03-11 2009-09-24 Sumitomo Chemical Co Ltd 有機過酸化物の製造方法
CN102311363A (zh) 2010-07-07 2012-01-11 中国石油化工股份有限公司 一种环己酮氨氧化的方法
CN102872847A (zh) 2011-07-12 2013-01-16 中国石油化工股份有限公司 钛氧化硅材料的改性方法
CN103030611A (zh) 2011-09-30 2013-04-10 中国石油化工股份有限公司 生产环氧丙烷的方法
EP2612849A1 (en) * 2012-01-05 2013-07-10 Borealis AG Improved cumene hydroperoxide concentration process
JP2014009183A (ja) * 2012-06-28 2014-01-20 Sumitomo Chemical Co Ltd プロピレンオキサイドの製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU1638995C (ru) * 1989-03-30 1995-02-27 Нижнекамское производственное объединение "Нижнекамскшина" Способ получения оксида пропилена
JP2001031662A (ja) 1999-07-14 2001-02-06 Sumitomo Chem Co Ltd プロピレンオキサイドの製造方法
BR0212664A (pt) * 2001-09-21 2004-08-24 Sumitomo Chemical Co Processo para produção de óxido de propileno
DE10320635A1 (de) * 2003-05-08 2004-11-18 Basf Ag Verfahren zur Herstellung von Propylenoxid
JP2005097182A (ja) * 2003-09-25 2005-04-14 Sumitomo Chemical Co Ltd プロピレンオキサイドの製造方法
JP2005097206A (ja) * 2003-09-26 2005-04-14 Sumitomo Chemical Co Ltd プロピレンオキサイドの製造方法
KR101108422B1 (ko) 2004-06-23 2012-01-30 스미또모 가가꾸 가부시키가이샤 프로필렌옥시드의 정제 방법
US7994348B2 (en) 2005-08-02 2011-08-09 Sumitomo Chemical Company, Limited Process for producing propylene oxide
US7863493B2 (en) * 2006-04-12 2011-01-04 Shell Oil Company Process for preparing an organic hydroperoxide, industrial set-up therefore and process wherein such organic hydroperoxide is used in the preparation of an alkylene oxide
US8466302B1 (en) 2011-12-21 2013-06-18 Cpc Corporation, Taiwan Process for producing propylene oxide
CN104557784B (zh) * 2013-10-29 2017-09-29 中国石油化工股份有限公司 一种生产环氧丙烷的方法

Patent Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5783167A (en) 1993-06-15 1998-07-21 Consejo Superior Investigaciones Cientificas Structure material of the zeolite type with ultralarge pores and a lattice comprised of silicone and titanium oxides: its synthesis and utilization for the selective oxidation of organic products
JPH07300312A (ja) 1994-03-09 1995-11-14 Nippon Shokubai Co Ltd メソポアチタノシリケートおよびその合成方法
JP3731384B2 (ja) 1998-08-04 2006-01-05 住友化学株式会社 チタン含有珪素酸化物触媒、該触媒の製造方法及びプロピレンオキサイドの製造方法
JP3797107B2 (ja) 2000-02-02 2006-07-12 住友化学株式会社 触媒成型体、該触媒成型体の製造方法及びオキシラン化合物の製造方法
JP2003261482A (ja) * 2002-03-06 2003-09-16 Sumitomo Chem Co Ltd クメンハイドロパーオキサイドを含む溶液の加熱方法
JP2003327576A (ja) * 2002-03-06 2003-11-19 Sumitomo Chem Co Ltd クメンハイドロパーオキサイドを含む溶液の加熱システム
JP2003261552A (ja) * 2002-03-07 2003-09-19 Sumitomo Chem Co Ltd プロピレンオキサイドの製造方法
US20050014960A1 (en) 2003-06-30 2005-01-20 Buijink Jan Karel Frederik Catalyst preparation
JP2006008544A (ja) 2004-06-23 2006-01-12 Sumitomo Chemical Co Ltd プロピレンオキサイドの精製方法
JP2006124332A (ja) 2004-10-29 2006-05-18 Sumitomo Chemical Co Ltd プロピレンオキサイドの精製方法
JP2007063256A (ja) * 2005-08-02 2007-03-15 Sumitomo Chemical Co Ltd プロピレンオキサイドの製造方法
US20070260074A1 (en) 2006-05-02 2007-11-08 Buijink Jan Karel Frederik Titanium catalyst, its preparation and its use in epoxidation reactions
JP2008142584A (ja) * 2006-12-06 2008-06-26 Sumitomo Chemical Co Ltd 減圧システム
JP2008266304A (ja) * 2007-03-22 2008-11-06 Sumitomo Chemical Co Ltd プロピレンオキサイドの製造方法
CN101279960A (zh) 2007-04-04 2008-10-08 中国石油化工股份有限公司 制备环氧化物的方法
CN101307039A (zh) 2007-05-16 2008-11-19 中国石油化工股份有限公司 生产环氧化物的方法
CN101348472A (zh) 2007-07-18 2009-01-21 中国石油化工股份有限公司 用于制备环氧化物的方法
JP2009215229A (ja) * 2008-03-11 2009-09-24 Sumitomo Chemical Co Ltd 有機過酸化物の製造方法
JP2009215228A (ja) * 2008-03-11 2009-09-24 Sumitomo Chemical Co Ltd 有機過酸化物の製造方法
CN102311363A (zh) 2010-07-07 2012-01-11 中国石油化工股份有限公司 一种环己酮氨氧化的方法
CN102872847A (zh) 2011-07-12 2013-01-16 中国石油化工股份有限公司 钛氧化硅材料的改性方法
CN103030611A (zh) 2011-09-30 2013-04-10 中国石油化工股份有限公司 生产环氧丙烷的方法
EP2612849A1 (en) * 2012-01-05 2013-07-10 Borealis AG Improved cumene hydroperoxide concentration process
JP2014009183A (ja) * 2012-06-28 2014-01-20 Sumitomo Chemical Co Ltd プロピレンオキサイドの製造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHEMISTRY LETTERS, 2000, pages 774
CHEMISTRY OF MATERIAL, vol. 14, 2002, pages 1657
NATURE, vol. 368, 1994, pages 321

Also Published As

Publication number Publication date
JP7018880B2 (ja) 2022-02-14
MY189509A (en) 2022-02-16
US10807961B2 (en) 2020-10-20
KR20190034559A (ko) 2019-04-02
KR102407301B1 (ko) 2022-06-10
JPWO2018021271A1 (ja) 2019-05-09
EP3495356B8 (en) 2023-10-25
RU2019101635A3 (ja) 2020-10-28
CN109476621B (zh) 2022-09-27
EP3495356A4 (en) 2020-01-15
CN109476621A (zh) 2019-03-15
SA519400978B1 (ar) 2022-04-13
US20200140403A1 (en) 2020-05-07
EP3495356B1 (en) 2023-09-20
RU2738231C2 (ru) 2020-12-09
EP3495356A1 (en) 2019-06-12
RU2019101635A (ru) 2020-08-28

Similar Documents

Publication Publication Date Title
US9102641B2 (en) Method for producing propylene oxide
JP2013079259A (ja) 過酸化物化合物を用いたオキシランの製造方法
JP2011219471A (ja) プロピレンオキサイドの製造方法
WO2018021271A1 (ja) プロピレンオキサイドの製造方法
JP4400120B2 (ja) クメンの製造方法
JP6748205B2 (ja) プロピレンオキサイドの製造方法
WO2022202128A1 (ja) クメンハイドロパーオキサイドの製造設備及び製造方法
CN115108881A (zh) 用于制备苯乙烯和环氧丙烷的集成方法和装置
JP2009007294A (ja) プロピレンオキサイドの製造方法
JP2009167130A (ja) プロピレンオキサイドの製造方法
WO2005030742A1 (ja) プロピレンオキサイドの製造方法
WO2005030745A1 (ja) プロピレンオキサイドの製造方法
JP2011201821A (ja) プロピレンオキサイドの製造方法
JP2005097175A (ja) プロピレンオキサイドの製造方法
JP2005097183A (ja) プロピレンオキサイドの製造方法
JP2005089411A (ja) プロピレンオキサイドの製造方法
TW202411181A (zh) 異丙苯之製造方法、異丙苯之製造裝置、及環氧丙烷之製造方法
JP2005097174A (ja) プロピレンオキサイドの製造方法
JP2005097182A (ja) プロピレンオキサイドの製造方法
JP2005097212A (ja) プロピレンオキサイドの製造方法
JP2004292336A (ja) クメンの製造方法
JP2005097186A (ja) プロピレンオキサイドの製造方法
JP2005097211A (ja) プロピレンオキサイドの製造方法
JP2005097180A (ja) プロピレンオキサイドの製造方法
JP2005089412A (ja) プロピレンオキサイドの精製方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17834277

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018529891

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197003903

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017834277

Country of ref document: EP

Effective date: 20190228