WO2018020826A1 - 電解質膜およびその製造方法 - Google Patents
電解質膜およびその製造方法 Download PDFInfo
- Publication number
- WO2018020826A1 WO2018020826A1 PCT/JP2017/020368 JP2017020368W WO2018020826A1 WO 2018020826 A1 WO2018020826 A1 WO 2018020826A1 JP 2017020368 W JP2017020368 W JP 2017020368W WO 2018020826 A1 WO2018020826 A1 WO 2018020826A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- membrane
- electrolyte
- polyolefin microporous
- microporous membrane
- solvent
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/20—Manufacture of shaped structures of ion-exchange resins
- C08J5/22—Films, membranes or diaphragms
- C08J5/2206—Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
- C08J5/2218—Synthetic macromolecular compounds
- C08J5/2231—Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds
- C08J5/2243—Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds obtained by introduction of active groups capable of ion-exchange into compounds of the type C08J5/2231
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/102—Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
- H01M8/1023—Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon, e.g. polyarylenes, polystyrenes or polybutadiene-styrenes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/20—Manufacture of shaped structures of ion-exchange resins
- C08J5/22—Films, membranes or diaphragms
- C08J5/2206—Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
- C08J5/2218—Synthetic macromolecular compounds
- C08J5/2256—Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions other than those involving carbon-to-carbon bonds, e.g. obtained by polycondensation
- C08J5/2262—Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions other than those involving carbon-to-carbon bonds, e.g. obtained by polycondensation containing fluorine
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/36—After-treatment
- C08J9/40—Impregnation
- C08J9/42—Impregnation with macromolecular compounds
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
- C25B1/01—Products
- C25B1/02—Hydrogen or oxygen
- C25B1/04—Hydrogen or oxygen by electrolysis of water
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B13/00—Diaphragms; Spacing elements
- C25B13/04—Diaphragms; Spacing elements characterised by the material
- C25B13/08—Diaphragms; Spacing elements characterised by the material based on organic materials
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B9/00—Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
- C25B9/70—Assemblies comprising two or more cells
- C25B9/73—Assemblies comprising two or more cells of the filter-press type
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/06—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/06—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
- H01B1/10—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances sulfides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/06—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
- H01B1/12—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B13/00—Apparatus or processes specially adapted for manufacturing conductors or cables
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/102—Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
- H01M8/1025—Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon and oxygen, e.g. polyethers, sulfonated polyetheretherketones [S-PEEK], sulfonated polysaccharides, sulfonated celluloses or sulfonated polyesters
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/1039—Polymeric electrolyte materials halogenated, e.g. sulfonated polyvinylidene fluorides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/1041—Polymer electrolyte composites, mixtures or blends
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/1058—Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties
- H01M8/106—Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties characterised by the chemical composition of the porous support
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/1058—Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties
- H01M8/1062—Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties characterised by the physical properties of the porous support, e.g. its porosity or thickness
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/1069—Polymeric electrolyte materials characterised by the manufacturing processes
- H01M8/1081—Polymeric electrolyte materials characterised by the manufacturing processes starting from solutions, dispersions or slurries exclusively of polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/1069—Polymeric electrolyte materials characterised by the manufacturing processes
- H01M8/1086—After-treatment of the membrane other than by polymerisation
- H01M8/109—After-treatment of the membrane other than by polymerisation thermal other than drying, e.g. sintering
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M2008/1095—Fuel cells with polymeric electrolytes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
- H01M2300/0082—Organic polymers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention relates to a pore filling membrane type electrolyte membrane suitably used for polymer electrolyte fuel cells, water electrolysis, soda electrolysis and the like, and a method for producing the same.
- electrolyte membranes particularly solid polymer electrolyte membranes.
- hydrogen is generated by electrolyzing water using renewable energy such as sunlight and wind power, the generated hydrogen is stored, and the hydrogen is supplied to the fuel cell when necessary at a place where electricity is required.
- renewable energy such as sunlight and wind power
- a system that generates electricity is attracting attention as a very clean energy system that does not generate carbon dioxide.
- a water electrolysis method is known in which an anode and a cathode are separated by an electrolyte membrane, protons generated at the anode are transferred to the cathode through the electrolyte membrane, and hydrogen is obtained by combining with electrons at the cathode. ing.
- the reaction formula at each electrode is as follows. Anode: H 2 O ⁇ 1 / 2O 2 + 2H + + 2e ⁇ Cathode: 2H + + 2e ⁇ ⁇ H 2 On the other hand, in the fuel cell, protons generated by the hydrogen oxidation reaction at the negative electrode (anode) move to the positive electrode (cathode) through the electrolyte membrane, where electricity is generated by generating water by an oxygen reduction reaction.
- the reaction formula at each electrode is as follows. Negative electrode: H 2 ⁇ 2H + + 2e ⁇ ⁇ Positive electrode: 1 / 2O 2 + 2H + + 2e ⁇ ⁇ H 2 O
- protons must be hydrated in order to move through the electrolyte membrane.
- the fuel cell is provided with a humidifier for replenishing moisture on the negative electrode side that is gradually lost during operation, and the humidity is reduced to 90%. It is necessary to adjust to about%.
- Patent Document 1 As a polymer electrolyte of a fuel cell, there is an example in which the polymer electrolyte is contained in the internal space (void) of the polymer porous membrane, thereby improving the mechanical strength that cannot be achieved by the electrolyte itself (Patent Document) 1). Also, a porous substrate suitable for holding a polymer electrolyte in a polyethylene porous membrane has been proposed (Patent Document 2). Furthermore, there is a conventional technique that provides an electrolyte thin film having excellent mechanical strength by incorporating an ion exchange resin into the network structure of a porous thin film of ultrahigh molecular weight polyolefin (Patent Document 3).
- Patent Document 4 there is a conventional technique that provides a thin film electrolyte having excellent mechanical strength by incorporating an ionic conductor into a solid polymer porous film by utilizing a capillary condensation action.
- Patent Document 4 there is a conventional technique that provides a thin film electrolyte having excellent mechanical strength by incorporating an ionic conductor into a solid polymer porous film by utilizing a capillary condensation action.
- an object of the present invention is to provide an electrolyte membrane with high proton conductivity that can fundamentally overcome the various problems described above.
- the present inventors have fundamentally solved the various problems described above by using a composite thin film in which a specific polyolefin microporous film is filled with a low EW electrolyte polymer. I found that it could be solved. That is, the present invention provides the following configuration.
- An electrolyte membrane A polyolefin microporous membrane having an average pore diameter of 1 to 1000 nm, a porosity of 50 to 90%, and capable of being impregnated with a solvent having a surface free energy of 28 mJ / m 2 or more at 20 ° C .; An electrolyte containing perfluorosulfonic acid polymer of EW 250 to 850, filled in the pores of the polyolefin microporous membrane, and a composite membrane comprising: An electrolyte membrane, wherein the composite membrane has a thickness of 1 to 20 ⁇ m. [2] The electrolyte membrane according to the above [1], wherein the average pore diameter is 5 to 100 nm.
- a polyolefin microporous membrane having an average pore diameter of 1 to 1000 nm, a porosity of 50 to 90%, and capable of being impregnated with a solvent having a surface free energy of 28 mJ / m 2 or more is prepared by adding EW 250 to 850 to the solvent. Impregnating a solution in which an electrolyte containing a perfluorosulfonic acid polymer is dissolved; Drying the polyolefin microporous membrane after the impregnation step to remove the solvent; And a step of annealing the polyolefin microporous membrane after the removing step.
- an electrolyte membrane that exhibits high proton conductivity even under low humidity can be obtained. Further, combined with the thin film thickness, an electrolyte membrane that is particularly advantageous for a polymer electrolyte fuel cell can be obtained.
- the present invention is based on the discovery that a specific polyolefin microporous membrane is easily filled with a low EW electrolyte polymer. It is generally difficult to impregnate and fill a highly hydrophilic low EW electrolyte polymer into the pores of a polyolefin microporous membrane that is originally highly hydrophobic.
- the present inventors paid attention to the surface free energy of the solvent used in the electrolyte polymer solution, and as a result of studying this, even a low EW electrolyte polymer of EW500 units shows a specific surface free energy. It was discovered that by making the solution dissolved in the solution, the polyolefin microporous membrane was easily impregnated and filled, and exhibited high proton conductivity as a whole.
- each numerical range includes an upper limit value and a lower limit value.
- longitudinal direction or “MD” means the longitudinal direction of the polyolefin microporous membrane produced in a long shape
- TD width direction
- the polyolefin microporous membrane used in the present invention has an average pore diameter of 1 to 1000 nm, a porosity of 50 to 90%, and can be impregnated with a solvent having a surface free energy of 28 mJ / m 2 or more at 20 ° C. is there.
- the polyolefin microporous membrane according to the present invention has an average pore size of 1 to 1000 nm.
- the average pore diameter is 1000 nm or less, even if it is a microporous membrane having a high porosity, it is preferable in that the mechanical strength of the polyolefin microporous membrane is good and handling properties are improved.
- the smaller the average pore diameter the higher the frequency of pores present in the microporous membrane, which enables uniform filling of the electrolyte compound throughout the polyolefin microporous membrane.
- the average pore size of the polyolefin microporous membrane is preferably 500 nm or less, more preferably 100 nm or less, further 50 nm or less, particularly 45 nm or less, and even more preferably 40 nm or less.
- the average pore diameter is 1 nm or more, the permeation rate of the solvent having high surface free energy is improved.
- the average pore size of the polyolefin microporous membrane is preferably 5 nm or more, and more preferably 10 nm or more.
- the average pore diameter of the polyolefin microporous membrane can be measured by the measurement method described in the examples described later.
- the polyolefin microporous membrane according to the present invention has a porosity of 50 to 90%.
- the porosity is 50% or more, it is preferable in that the filling rate of the electrolyte compound becomes high and the original performance of the electrolyte compound can be sufficiently expressed.
- the porosity of the polyolefin microporous membrane is preferably 55% or more, and more preferably 60% or more.
- the porosity of the polyolefin microporous membrane is preferably 85% or less, more preferably 78% or less, particularly 75% or less, and particularly preferably 66% or less.
- the porosity ( ⁇ ) of the polyolefin microporous membrane can be measured by the measurement method described in the examples described later, and is calculated by the following formula.
- ⁇ (%) ⁇ 1 ⁇ Ws / (ds ⁇ t) ⁇ ⁇ 100 Ws: basis weight of polyolefin microporous membrane (g / m 2 ) ds: true density of polyolefin (g / cm 3 ) t: Film thickness of microporous polyolefin membrane ( ⁇ m)
- the polyolefin microporous membrane according to the present invention can be impregnated with a solvent having a surface free energy of 28 mJ / m 2 or more.
- the surface free energy of the solvent refers to a value measured at 20 ° C.
- impregnable refers to the property that the solvent can spontaneously permeate into the pores only by contacting the microporous membrane without performing a forced filling process by pressurization or decompression.
- polyolefin microporous membranes have low surface free energy and high water repellency, so they are difficult to wet with hydrophilic liquids with high surface free energy, and pores of microporous membranes can be filled with hydrophilic substances such as electrolyte compounds.
- hydrophilic substances such as electrolyte compounds.
- a method of modifying the surface of a polyolefin microporous membrane to make it hydrophilic is well known.
- chemical surface treatment treatment with a surfactant, etc.
- Residual performance may be impaired by remaining in the porous film.
- the surface free energy of the solvent is preferably low in that the affinity between the solvent for dissolving the hydrophilic electrolyte compound and the polyolefin microporous membrane is increased, and the solution in which the electrolyte compound is dissolved can easily penetrate into the microporous membrane. .
- the electrolyte solution concentration and the impregnation property of the microporous membrane there is a trade-off between the electrolyte solution concentration and the impregnation property of the microporous membrane, and in individual specific applications, preferably 28 mJ / m 2 or more, preferably It is appropriately set within the range of 33 mJ / m 2 or more, more preferably 35 mJ / m 2 or more, and 38 mJ / m 2 or less, preferably 37 mJ / m 2 or less, more preferably 36.5 mJ / m 2 or less.
- Methods for adjusting the surface free energy of the solvent include water, organic solvents such as alcohols (methanol, ethanol, isopropanol, t-butyl alcohol, etc.), ethylene glycol, tetrahydrofuran, acetone, methyl ethyl ketone, dimethylformamide, triethylamine, and the like. Can be mixed.
- organic solvents such as alcohols (methanol, ethanol, isopropanol, t-butyl alcohol, etc.), ethylene glycol, tetrahydrofuran, acetone, methyl ethyl ketone, dimethylformamide, triethylamine, and the like.
- the surface free energy at 20 ° C.
- the polyolefin microporous membrane according to the present invention has a thickness of 1 to 20 ⁇ m as a composite membrane in which pores are filled with an electrolyte to be described later.
- the thickness of the composite membrane is 1 ⁇ m or more, sufficient mechanical strength as an electrolyte membrane can be easily obtained, and handling properties when processing a polyolefin microporous membrane and stable conveyance during processing impregnated with an electrolyte solution are possible. Therefore, it is preferable.
- the film thickness of the composite film is preferably 3 ⁇ m or more, particularly 4 ⁇ m or more, and more preferably 5 ⁇ m or more.
- the film thickness of the composite film is preferably 15 ⁇ m or less, more preferably 12 ⁇ m or less, particularly preferably 10 ⁇ m or less, and further preferably 9 ⁇ m or less.
- Polyolefin microporous membrane generally exhibits white opacity due to light scattering due to the presence of pores, but light scattering is reduced when the pores are substantially filled with an electrolyte compound solution, and the resulting electrolyte membrane is In combination with the thin film thickness, it may become substantially transparent as a whole.
- the polyolefin microporous membrane that can be impregnated with a solvent having a surface free energy of 28 mJ / m 2 or more can also be defined in terms of the contact angle of the solvent on the membrane surface. That is, the polyolefin microporous membrane according to the present invention was placed on a horizontal surface without any hydrophilic treatment, and a mixed solution of ethanol and water (volume ratio 1/2; 33% ethanol aqueous solution) was dropped onto the surface. In this case, it is preferable that the contact angle between the liquid droplet and the surface 1 second after the dropping is 0 to 90 degrees.
- the contact angle after 1 second is 90 degrees or less, there is also a synergistic effect between the porosity and the porous structure having an average pore diameter, and the penetration of the electrolyte solution into the microporous film is facilitated.
- the contact angle after 1 second is more preferably 88 degrees or less, and further preferably 85 degrees or less.
- the polyolefin microporous membrane according to the present invention preferably has a contact angle of 0 to 70 degrees between the droplet and the surface 10 minutes after the dropping. When the contact angle after 10 minutes is 70 degrees or less, the electrolyte solution is more likely to penetrate into the microporous membrane, which is preferable in that the electrolyte compound can be sufficiently filled in the microporous membrane.
- the contact angle after 10 minutes is more preferably 65 degrees or less, and further preferably 60 degrees or less.
- the contact angle can be measured by the measurement method described in Examples described later.
- the polyolefin microporous membrane according to the present invention can also be defined from the viewpoint of the change with time of the contact angle. That is, when the polyolefin microporous membrane according to the present invention is not hydrophilized and a mixed solution of ethanol and water (volume ratio 1/2) is dropped on the surface thereof, The contact angle ⁇ 1 of the surface is 0 to 90 degrees, the contact angle ⁇ 2 of the liquid droplet and the surface 10 minutes after dropping is 0 to 70 degrees, and the contact angle change rate (( ⁇ 1 ⁇ 2) / ( ⁇ 1 ⁇ 100) is preferably 10 to 50%.
- the change rate of the contact angle is 10% or more, it is considered that the penetration rate of the electrolyte solution into the polyolefin microporous membrane is sufficient from the viewpoint of practical production efficiency. From this point of view, the change rate of the contact angle is particularly preferably 15% or more, and more preferably 17% or more. On the other hand, from the viewpoint of sufficiently maintaining the mechanical strength of the polyolefin microporous membrane, the change rate of the contact angle is preferably 45% or less, more preferably 41% or less.
- the average pore diameter and porosity of the above-mentioned polyolefin microporous membrane it is necessary to adjust the average pore diameter and porosity of the above-mentioned polyolefin microporous membrane to an appropriate range together with the contact angle if necessary.
- the method for controlling these physical properties is not particularly limited.
- the average molecular weight of the polyethylene resin when a mixture of a plurality of polyethylene resins is used, the mixing ratio thereof, the concentration of the polyethylene resin in the raw material,
- the production conditions such as the mixing ratio, the draw ratio, the heat treatment (heat setting) temperature after drawing, the immersion time in the extraction solvent, etc. may be mentioned.
- a polyethylene composition comprising a high molecular weight polyethylene in a mass ratio of 20 to 80% by mass in the total polyethylene composition and a high molecular weight polyethylene having a mass average molecular weight of 900,000 or more and 5% by mass or more.
- a mixture of a volatile solvent and a non-volatile solvent as a solvent for the polyolefin solution (the content of the non-volatile solvent in the total solvent is 80 to 98% by mass), and the overall draw ratio is 45 It can be suitably obtained by increasing it to 100 times or setting the heat setting temperature to 120 to 135 ° C.
- the polyolefin microporous membrane according to the present invention preferably has a Gurley value measured according to JIS P8117 of 90 seconds / 100 cc or less, more preferably 85 seconds / 100 cc or less, and even more preferably 75 seconds / 100 cc or less.
- the Gurley value is 90 seconds / 100 cc or less, it is preferable in that the electrolyte compound solution easily penetrates into the microporous membrane and the impregnation rate is increased.
- the polyolefin microporous membrane according to the present invention preferably has a tensile breaking strength (value converted per unit cross-sectional area of polyolefin solids) in at least one direction of the longitudinal direction (MD) and the width direction (TD) of 50 MPa or more. More preferably, it is 60 MPa or more.
- a tensile breaking strength value converted per unit cross-sectional area of polyolefin solids
- MD longitudinal direction
- TD width direction
- the strength of the polyolefin microporous membrane is 50 MPa or more, the mechanical strength as a composite membrane is improved, and the handling property in the step of impregnating the electrolyte compound solution into the polyolefin microporous membrane is preferable.
- the polyolefin microporous membrane according to the present invention is a microporous membrane comprising a polyolefin.
- the microporous membrane has a structure in which a large number of micropores are connected and these micropores are connected, and gas or liquid can pass from one surface to the other.
- the polyolefin microporous membrane the polyolefin is preferably contained in an amount of 90% by mass or more, more preferably 95% by mass or more, and the remainder is an organic or inorganic filler or surfactant within a range that does not affect the effects of the present invention. Such additives may be included.
- polystyrene resin examples include homopolymers or copolymers such as polyethylene, polypropylene, polybutylene, and polymethylpentene, or a mixture of one or more of these.
- polyethylene is preferable.
- polyethylene low molecular weight polyethylene, a mixture of low molecular weight polyethylene and high molecular weight polyethylene, and the like are suitable.
- polyethylene and other components may be used in combination. Examples of components other than polyethylene include polypropylene, polybutylene, polymethylpentene, and a copolymer of polypropylene and polyethylene.
- polyolefin a plurality of polyolefins having poor compatibility and different degree of polymerization and different branching properties, in other words, a plurality of polyolefins having different crystallinity, stretchability and molecular orientation may be used in combination.
- a polyethylene composition containing 5% by mass or more of high molecular weight polyethylene having a mass average molecular weight of 900,000 or more is preferably used, and a composition containing 7% by mass or more of high molecular weight polyethylene. More preferred is a composition containing 15 to 90% by mass of high molecular weight polyethylene.
- the mass average molecular weight after blending two or more types of polyethylene is preferably 500,000 to 4.5 million, and more preferably 500,000 to 4,000,000.
- a polyethylene composition obtained by mixing the above-described high molecular weight polyethylene having a weight average molecular weight of 900,000 or more and a low molecular weight polyethylene having a weight average molecular weight of 200,000 to 800,000 is preferable.
- the proportion in the polyethylene composition is particularly preferably 20 to 80% by mass.
- the density of the low molecular weight polyethylene is preferably 0.92 to 0.96 g / cm 3 .
- the upper limit of the mass average molecular weight of the high molecular weight polyethylene is preferably 6 million or less, and particularly preferably 5 million or less.
- the lower limit of the mass average molecular weight of the high molecular weight polyethylene is preferably 1 million or more, more preferably 2 million or more, and particularly preferably 3 million or more.
- the mass average molecular weight was determined by dissolving a sample of a polyolefin microporous membrane in o-dichlorobenzene by heating and using GPC (Waters Alliance GPC 2000 type, column; GMH6-HT and GMH6-HTL), column temperature of 135 ° C. It can be obtained by measuring under the condition of a flow rate of 1.0 mL / min. Molecular weight monodisperse polystyrene (manufactured by Tosoh Corporation) can be used for the calibration of the mole
- the polyolefin microporous membrane according to the present invention can be preferably produced by the following method. That is, (I) a step of preparing a solution containing a volatile solvent having a boiling point of less than 210 ° C.
- step (I) melt-kneading this solution, extruding the resulting melt-kneaded product from a die, cooling and solidifying to obtain a gel-shaped product, (III) a step of stretching the gel-like molded article in at least one direction; (IV) A step of extracting and washing the solvent from the inside of the stretched intermediate molded product is preferably performed in order.
- step (I) a solution containing a polyolefin composition and a solvent is prepared. At least a solution containing a volatile solvent having a boiling point of less than 210 ° C. at atmospheric pressure is prepared.
- the solution is preferably a thermoreversible sol-gel solution, that is, the polyolefin is dissolved in the solvent by heating to prepare a thermoreversible sol-gel solution.
- the volatile solvent having a boiling point of less than 210 ° C. at atmospheric pressure in step (I) is not particularly limited as long as it can sufficiently swell or dissolve polyolefin, but tetralin, ethylene glycol, decalin, toluene, xylene Liquid solvents such as diethyltriamine, ethylenediamine, dimethylsulfoxide, hexane and the like are preferable, and these may be used alone or in combination of two or more. Of these, decalin and xylene are preferred.
- the preparation of this solution includes a non-volatile solvent having a boiling point of 210 ° C. or higher, such as liquid paraffin, paraffin oil, mineral oil, castor oil. It is preferable that the average pore diameter and the porosity are easily adjusted within the range of the present invention. In that case, the content of the non-volatile solvent in the total solvent is preferably 80 to 98% by mass.
- the concentration of the polyolefin composition is preferably 10 to 35% by mass, more preferably 15 to 30% by mass, from the viewpoint of controlling the filling rate of the electrolyte compound into the polyolefin microporous membrane.
- step (II) the solution prepared in step (I) is melt-kneaded, and the obtained melt-kneaded product is extruded from a die and cooled and solidified to obtain a gel-like molded product.
- an extrudate is obtained by extrusion from a die in a temperature range of the melting point of the polyolefin composition to the melting point + 65 ° C., and then the extrudate is cooled to obtain a gel-like molded product.
- the molded product is preferably shaped into a sheet.
- Cooling may be quenching to an aqueous solution or an organic solvent, or casting to a cooled metal roll, but generally a method by quenching to a volatile solvent used during water or sol-gel solution is used. Is done.
- the cooling temperature is preferably 10 to 40 ° C.
- one or more stages of preheating may be performed after cooling the gel-like molded product to remove a part of the volatile solvent from the sheet.
- Step (III) is a step of stretching the gel-like molded product in at least one direction.
- the stretching in step (III) is preferably biaxial stretching, and sequential biaxial stretching in which longitudinal stretching and transverse stretching are separately performed, and simultaneous biaxial stretching in which longitudinal stretching and transverse stretching are simultaneously performed are suitable.
- a method of stretching in the longitudinal direction and then stretching in the transverse direction a method of stretching in the longitudinal direction and stretching in the transverse direction multiple times, a sequential biaxial stretching and then one or more times in the longitudinal and / or transverse direction A method of stretching is also preferred.
- the area stretch ratio (product of the longitudinal stretch ratio and the lateral stretch ratio) is preferably from the viewpoint of controlling the permeability of the mixed solution of ethanol and water (volume ratio 1/2) to the polyolefin microporous membrane. Is 45 to 100 times, more preferably 50 to 91 times.
- the stretching temperature is preferably 90 to 110 ° C.
- a heat setting treatment may be performed as necessary. In this case, the heat setting temperature is preferably 120 to 135 ° C. from the viewpoint of controlling the filling rate of the resin compound into the polyolefin microporous membrane.
- Step (IV) is a step of extracting and washing the solvent from the inside of the stretched intermediate molded product.
- the step (IV) is preferably washed with a halogenated hydrocarbon such as methylene chloride or a hydrocarbon solvent such as hexane.
- a halogenated hydrocarbon such as methylene chloride or a hydrocarbon solvent such as hexane.
- the tank is divided into several stages, the washing solvent is poured from the downstream side of the polyolefin microporous film conveyance process, and the washing solvent is flowed toward the upstream side of the process conveyance, It is preferable that the purity of the cleaning solvent in the downstream tank is higher than that in the upstream layer.
- heat setting may be performed by annealing.
- the annealing treatment is preferably performed at 60 to 130 ° C., more preferably 70 to 125 ° C. from the viewpoint of transportability in the process.
- the polyolefin microporous membrane of the present invention is produced through the above-described steps and is subjected to chemical treatment (for example, application of a surfactant, graft polymerization using a hydrophilic functional group, wet treatment with a liquid having low surface free energy, etc.) It is characterized in that it can be satisfactorily impregnated with a solution having a high surface free energy without performing a hydrophilization treatment involving physical treatment (for example, plasma treatment or corona treatment).
- chemical treatment for example, application of a surfactant, graft polymerization using a hydrophilic functional group, wet treatment with a liquid having low surface free energy, etc.
- the electrolyte membrane according to the present invention includes a dispersion composition of perfluorosulfonic acid polymer having an EW of 250 to 850.
- a fluorine-containing ion exchange resin having an EW of 250 to 850 composed of repeating units of the following formulas (1) and (2) can be preferably used.
- Z is H, Cl, F or a perfluoroalkyl group having 1 to 3 carbon atoms
- m is an integer of 0 to 12
- n is an integer of 0 to 2.
- a preferred fluorine-containing ion exchange resin is a fluorine-containing ion exchange resin precursor containing a copolymer of a fluorinated olefin monomer represented by the following formula (3) and a vinyl fluoride compound represented by the following formula (4): It can be obtained by hydrolyzing the body.
- Z is H, Cl, F, or a perfluoroalkyl group having 1 to 3 carbon atoms.
- n is an integer of 0 to 2
- W is a functional group that can be converted to SO 3 H by hydrolysis.
- the functional group W that can be converted to SO 3 H by hydrolysis is not particularly limited, and examples thereof include SO 2 F, SO 2 Cl, and SO 2 Br.
- the above-mentioned fluorine-containing ion exchange resin precursor can be synthesized by a known means.
- a polymerization solvent such as fluorine-containing hydrocarbon
- fluorinated olefin represented by the above formula (3)
- fluorinated olefin the fluorinated olefin represented by the above formula (3)
- fluorinated olefin the fluorinated olefin represented by the above formula (3) (hereinafter sometimes simply referred to as “fluorinated olefin”) and the above formula (4)
- a method of polymerizing by reacting by filling and dissolving the expressed vinyl fluoride compound hereinafter sometimes simply referred to as “vinyl fluoride compound”
- a solvent such as fluorine-containing hydrocarbon
- surfactant aqueous solution a medium for filling and reacting with the fluorinated olefin and the vinyl fluoride compound
- Emulsion polymerization a method in which an a
- Microemulsion polymerization a method of polymerization by reacting with filling suspended and the fluorinated olefin and the fluorinated vinyl compound (suspension polymerization), and the like to an aqueous solution of a suspension stabilizer.
- the fluorine-containing ion exchange resin precursor those prepared by any polymerization method can be used.
- fluorine-containing hydrocarbon used as the polymerization solvent for the solution polymerization examples include “chlorofluorocarbons” such as trichlorotrifluoroethane, 1,1,1,2,3,4,4,5,5,5-decafluoropentane, and the like. A group of compounds generally referred to as “can be preferably used.
- As an index of the degree of polymerization of the fluorinated ion exchange resin it is possible to use the melt flow rate measured at a temperature of 270 ° C., an orifice inner diameter of 2.09 mm, an orifice length of 8 mm, and a load of 2.16 kg in the fluorinated ion exchange resin precursor. preferable.
- the melt flow rate of the fluorine-containing ion exchange resin precursor is preferably 0.01 g / 10 min or more, more preferably 0.1 g / 10 min or more, and further preferably 0.3 g / 10 min or more.
- the melt flow rate of the fluorinated ion exchange resin precursor is preferably 100 g / 10 min or less, more preferably 50 g / 10 min or less, and even more preferably 10 g / 10 min or less.
- the viscosity of the obtained dispersion composition becomes low, it tends to be easy to handle at the time of preparing an electrolyte membrane or an electrode.
- the melt flow rate is 100 g / 10 min or less, the strength of the electrolyte membrane produced using the dispersion composition tends to increase.
- the water absorption of the resin can be suppressed, when used as a binder raw material for a gas diffusion electrode, flooding during operation of the fuel cell is suppressed, and a good output tends to be obtained under a wide range of power generation conditions.
- the fluorine-containing ion exchange resin precursor can be extruded using a nozzle, a die or the like using an extruder.
- This molding method and the shape of the molded body are not particularly limited, but in order to speed up the treatment in the hydrolysis treatment and acid treatment described later, the molded body is preferably in the form of pellets of 0.5 cm 3 or less.
- the obtained powder or flaky resin may be used.
- the fluorine-containing ion exchange resin can be produced, for example, by subjecting the fluorine-containing ion exchange resin precursor to a hydrolysis treatment by a method such as immersing in a basic reaction solution.
- the basic reaction solution used for the hydrolysis treatment is not particularly limited, but an aqueous solution of an alkali metal or alkaline earth metal hydroxide such as sodium hydroxide or potassium hydroxide is preferable.
- the content of the alkali metal or alkaline earth metal hydroxide in the aqueous solution is not particularly limited, but is preferably 10 to 30% by mass or less.
- the basic reaction solution includes alcohols such as methyl alcohol and ethyl alcohol, ketones such as acetone, dimethyl sulfoxide (hereinafter referred to as “DMSO”), N, N-dimethylacetamide (hereinafter referred to as “DMAC”). And a swellable organic solvent such as a dipolar solvent such as N, N-dimethylformamide (hereinafter referred to as “DMF”).
- DMSO dimethyl sulfoxide
- DMAC N, N-dimethylacetamide
- DMF dipolar solvent
- the content of the organic solvent is preferably 1 to 30% by mass or less in the mixed solvent of the basic reaction solution.
- the hydrolysis temperature in the hydrolysis treatment varies depending on the solvent type, solvent composition, etc. used in the hydrolysis treatment, but the treatment time can be shortened as the hydrolysis temperature is increased, and the fluorine-containing ion exchange resin precursor In view of ease of handling, it is preferably 20 to 160 ° C.
- the reaction time in the hydrolysis treatment the functional group W in the above-mentioned fluorine-containing ion exchange resin precursor can be reacted for a sufficient time so that all the functional groups W can be converted into SO 3 K or SO 3 Na by hydrolysis.
- the reaction time is preferably 0.5 to 48 hr.
- the fluorinated ion exchange resin can be produced by hydrolyzing the fluorinated ion exchange resin precursor in a basic reaction solution, and then washing with water or the like, if necessary, followed by acid treatment. it can.
- the acid used for the acid treatment is not particularly limited as long as it is a mineral acid such as hydrochloric acid, sulfuric acid or nitric acid, or an organic acid such as oxalic acid, acetic acid, formic acid or trifluoroacetic acid.
- the concentration of the acid used for the acid treatment is not particularly limited.
- the fluorine-containing ion exchange resin precursor is protonated to form an SO 3 H form. Then, it wash
- the EW of the fluorine-containing ion exchange resin is 250 or more, preferably 350 or more, more preferably 450 or more, and even more preferably 500 or more.
- the upper limit is 850, preferably 750 or less, more preferably 650 or less, and even more preferably 600 or less.
- an electrolyte membrane having excellent power generation performance can be obtained.
- an electrolyte membrane having excellent mechanical strength can be obtained.
- the EW of the fluorine-containing ion exchange resin can be measured according to the method described in Examples described later.
- the dispersion composition of a fluorine-containing ion exchange resin contains the above-mentioned fluorine-containing ion exchange resin and a solvent having a surface free energy of 28 mJ / m 2 or more.
- the content of the fluorine-containing ion exchange resin in the dispersion composition is preferably 15 to 45% by mass, more preferably 17 to 43% by mass, and further preferably 20 to 40% by mass.
- the content of the fluorine-containing ion exchange resin is 15% by mass or more, the amount of the solvent to be removed when producing the electrolyte membrane and the electrode using the dispersion composition tends to decrease, which is preferable.
- a dispersion composition of a fluorine-containing ion exchange resin is prepared by mixing the above-mentioned fluorine-containing ion exchange resin in an amount of 1% by mass or more and less than 15% by mass in a solvent having a surface free energy of 28 mJ / m 2 or more. After that, the aqueous composition can be produced by concentrating the fluorine-containing ion exchange resin concentration to be 15% by mass or more and 45% by mass or less.
- the above-mentioned mixed solvent of an organic solvent and water can be used, and among them, a mixed solvent containing water and alcohols is preferably used.
- the alcohol is preferably an alcohol having 1 to 3 carbon atoms because the alcohol has a low boiling point. These alcohols may be used alone or in combination of two or more. Specific examples include methanol, ethanol, 1-propanol, 2-propanol and the like, with methanol and ethanol being preferred.
- the alcohol concentration in the mixed solvent containing water and alcohols is 49.9 mass% or less.
- the mixed solvent includes diol solvents such as ethylene glycol, 1,2-propylene glycol, and 1,3-propylene glycol, bipolar organic solvents such as DMSO, DMAC, and DMF as long as desired effects are not impaired.
- diol solvents such as ethylene glycol, 1,2-propylene glycol, and 1,3-propylene glycol
- bipolar organic solvents such as DMSO, DMAC, and DMF as long as desired effects are not impaired.
- Fluorine-containing alcohols and fluorine-containing ethers may be mixed, and the concentration is preferably 5% by mass or less in the entire mixed solvent.
- the electrolyte membrane according to the present invention is a polyolefin microporous membrane having an average pore diameter of 1 to 1000 nm, a porosity of 50 to 90%, and capable of being impregnated with a solvent having a surface free energy of 28 mJ / m 2 or more. Impregnating a solution in which an electrolyte containing a perfluorosulfonic acid polymer of EW 250 to 850 is dissolved in the solvent; drying the polyolefin microporous membrane after the impregnation step; and removing the solvent; The polyolefin microporous film after the step can be manufactured by a step of annealing.
- the polyolefin microporous membrane according to the present invention can spontaneously permeate into the pores when a solvent having a surface free energy of 28 mJ / m 2 or more is brought into contact with the microporous membrane without subjecting to a forced filling treatment by pressurization or decompression. Therefore, the impregnation step may be performed by, for example, developing an electrolyte solution on a glass substrate in an air atmosphere and placing a polyolefin microporous film on the electrolyte solution and bringing it into contact.
- the solvent removal step after the impregnation step may be performed only by natural drying in which the polyolefin microporous membrane containing the electrolyte solution is left in the atmosphere.
- an additional electrolyte solution is applied on the polyolefin microporous membrane after natural drying, that is, from the side opposite to the glass substrate, and impregnated and dried.
- the process may be repeated.
- an annealing treatment By subjecting the electrolyte membrane after the drying step to an annealing treatment, the entanglement between the electrolyte polymers can be promoted, and the physical strength of the electrolyte membrane can be increased.
- the annealing treatment is preferably performed at around 100 ° C. for about 10 to 20 hours in consideration of approaching the glass transition temperature of the electrolyte polymer while maintaining the porous structure of the polyolefin microporous membrane.
- gas diffusion electrodes including a catalyst layer are provided on both sides of the electrolyte membrane, one as an anode and the other as a cathode.
- the thickness of the catalyst layer as a gas diffusion electrode in the membrane electrode assembly is not particularly limited, but the thickness of the catalyst layer is 20 ⁇ m or less from the viewpoint of facilitating gas diffusion in the catalyst layer and improving battery characteristics. Preferably, it is more uniform.
- the thickness of the catalyst layer is reduced, the amount of catalyst present per unit area may be reduced and the reaction activity may be reduced.
- a supported catalyst in which platinum or a platinum alloy is supported at a high loading rate is used. If it is thin, the reaction activity of the electrode can be kept high without running out of catalyst amount. From the above viewpoint, the thickness of the catalyst layer is more preferably 1 to 15 ⁇ m.
- the gas diffusion electrode can be produced, for example, by applying the above-mentioned fluorine-containing ion exchange resin dispersion composition to the surface of a commercially available gas diffusion electrode, and then drying and fixing at 140 ° C. in an air atmosphere. .
- a coating liquid containing a dispersion composition of a fluorine-containing ion exchange resin and a catalyst powder in which catalytic metal particles are supported on a carbon carrier is prepared, and the coating liquid is coated on a substrate to prepare an anode.
- at least one of the catalyst layers of the cathode can be formed.
- the catalyst layer obtained by this method has few defects such as cracks and is excellent in smoothness.
- the catalyst layer is formed by removing the solvent (dispersion medium) after coating the coating liquid, by improving the strength of the ion exchanger polymer that functions not only as an electrolyte but also as a binder of the catalyst, Cracking of the catalyst layer can be prevented.
- a solvent may be further added to the coating solution.
- alcohols fluorine-containing solvents or water are preferable.
- alcohols are used, and those having 1 to 4 carbon atoms in the main chain are preferable, and examples thereof include methanol, ethanol, n-propanol, isopropanol, tert-butanol and the like.
- solubility of a fluorine-containing ion exchange resin can also be raised when water is mixed with alcohol.
- fluorine-containing solvent examples include 2H-perfluoropropane, 1H, 4H-perfluorobutane, 2H, 3H-perfluoropentane, 3H, 4H-perfluoro (2-methylpentane), 2H, 5H-perfluorohexane.
- Hydrofluorocarbons such as 3H-perfluoro (2-methylpentane), fluorocarbons such as perfluoro (1,2-dimethylcyclobutane), perfluorooctane, perfluoroheptane, perfluorohexane, 1,1-dichloro- 1-fluoroethane, 1,1,1-trifluoro-2,2-dichloroethane, 3,3-dichloro-1,1,1,2,2-pentafluoropropane, 1,3-dichloro-1,1, Hydrochlorofluorocarbons such as 2,2,3-pentafluoropropane, 1H, 4H, Fluorinated ethers such as H-perfluoro (3-oxapentane), 3-methoxy-1,1,1,2,3,3-hexafluoropropane, 2,2,2-trifluoroethanol, 2,2 , 3,3,3-pentafluoro-1-propanol, fluorinated
- the solid content concentration of the coating liquid can be appropriately selected according to the target thickness of the catalyst layer, and is not particularly limited. However, in order to form a uniform coating layer, the mass ratio with respect to the total mass is 1 to 50 masses. %, Preferably 5 to 35% by mass.
- the substrate on which the coating liquid is applied may be an ion exchange membrane or a gas diffusion layer that is disposed outside the catalyst layer and also functions as a current collector. Further, a separately prepared base material that is not a constituent material of the membrane electrode assembly may be used. In this case, the base material may be peeled off after the catalyst layer is joined to the membrane.
- the base material separately prepared is not particularly limited, but a film made of a material selected from polyethylene terephthalate, polyethylene naphthalate, polypropylene, polyethylene, polymethylpentene, polyimide, polyphenylene sulfide, polytetrafluoroethylene, and the like can be used.
- a method for producing a membrane / electrode assembly for example, (1) after directly applying the coating liquid on the electrolyte membrane, the dispersion medium contained in the coating liquid is removed by drying to form a catalyst layer, A method of sandwiching the gas diffusion layer from both sides, (2) after forming the catalyst layer by coating the coating liquid on a base material to be a gas diffusion layer such as carbon paper, carbon cloth, or carbon felt, and drying it. (3) The above coating solution is applied onto a film (base material) that exhibits sufficient stability against the solvent contained in the coating solution. Examples of the method include coating, drying, hot pressing on a solid polymer electrolyte membrane, peeling the base film, and sandwiching it with a gas diffusion layer.
- the coating method is not particularly limited.
- the batch method includes a bar coater method, a spin coater method, a screen printing method, and the like, and the continuous method includes a post-measurement method and a pre-measurement method.
- the post-measuring method is a method in which an excess coating solution is applied and the coating solution is removed so that a predetermined film thickness is obtained later.
- the pre-weighing method is a method of applying a coating liquid in an amount necessary to obtain a predetermined film thickness. Examples of post-measuring methods include air doctor coater method, blade coater method, rod coater method, knife coater method, squeeze coater method, impregnation coater method, and comma coater method.
- Pre-weighing methods include die coater method and reverse roll coater method. Method, transfer roll coater method, gravure coater method, kiss roll coater method, cast coater method, spray coater method, curtain coater method, calendar coater method, extrusion coater method and the like. In order to form a uniform catalyst layer, a screen printing method and a die coater method are preferable, and a continuous die coater method is more preferable in consideration of production efficiency.
- the catalyst contained in the catalyst layer may be the same or different on the anode side and the cathode side, but a catalyst in which a metal catalyst made of platinum or a platinum alloy is supported on carbon is preferable.
- the carbon used as the carrier preferably has a specific surface area of 50 to 1500 m 2 / g because the metal catalyst is supported on the carbon carrier with good dispersibility and is excellent in the activity of a stable electrode reaction over a long period of time.
- the metal catalyst is preferably a metal catalyst made of platinum because it is highly active in the hydrogen oxidation reaction at the anode and the oxygen reduction reaction at the cathode in the polymer electrolyte fuel cell.
- a metal catalyst composed of a platinum catalyst is also preferable.
- the platinum alloy includes platinum group metals other than platinum (ruthenium, rhodium, palladium, osmium, iridium), gold, silver, chromium, iron, titanium, manganese, cobalt, nickel, molybdenum, tungsten, aluminum, silicon, and zinc. And an alloy of platinum and one or more metals selected from the group consisting of tin, and the platinum alloy may contain an intermetallic compound of platinum and a metal alloyed with platinum. Good. When a gas containing carbon monoxide is supplied at the anode, it is preferable to use an alloy containing platinum and ruthenium because the activity of the catalyst is stabilized.
- the fuel cell membrane electrode assembly is supplied with a gas containing oxygen at the cathode and a gas containing hydrogen at the anode. More specifically, for example, a separator in which a groove to be a gas flow path is formed is disposed outside the electrode of the membrane electrode assembly, and a gas serving as fuel is supplied to the membrane electrode assembly by flowing a gas through the gas flow path. To generate electricity. It can also be used as a membrane electrode assembly for a direct methanol fuel cell that supplies methanol as a fuel gas.
- the mass average molecular weight was determined by dissolving a sample of a polyolefin microporous membrane in o-dichlorobenzene with heating and using GPC (Waters Alliance GPC 2000, column; GMH6-HT and GMH6-HTL), column temperature of 135 ° C., flow rate It was obtained by measuring under conditions of 1.0 mL / min. Molecular weight monodisperse polystyrene (manufactured by Tosoh Corporation) was used for the calibration of the molecular weight.
- the film thickness of the sample was obtained by measuring 20 points with a contact-type film thickness meter (Mitutoyo Corporation, Lightmatic VL-50A) and averaging them.
- the contact terminal used was a cylindrical one having a bottom surface of 0.5 cm in diameter. During the measurement, adjustment was made so that a load of 0.01 N was applied.
- the average pore size of the microporous polyolefin membrane is a porous material palm porometer (model: CFP-1500AEX) and the impregnating solution is GALWICK (perfluoropolyether; surface tension 15.9 dyne / cm, manufactured by Porous Material). Based on the half dry method specified in ASTM E1294-89, the average flow pore size (nm) was calculated. The measurement temperature was 25 ° C., and the measurement pressure was 200 kPa to 3500 kPa.
- Gurley value (second / 100 cc) of a polyolefin microporous membrane having an area of 642 mm 2 was measured.
- the rate of change of the contact angle was calculated from the contact angle ⁇ 1 after 1 second of dropping the liquid obtained by the measurement of the contact angle and the contact angle ⁇ 2 after 10 minutes of dropping the liquid by the following formula, and used as an index of the penetration rate. For example, when there are two samples having the same contact angle ⁇ 1 after 1 second, the larger the rate of change of the contact angle ⁇ 2 after 10 minutes, the higher the permeation rate.
- the maximum water concentration means the highest water concentration among the water concentrations of the ethanol aqueous solution into which the droplets permeate (the ethanol concentration is calculated after conversion to 100% purity). Table 1 below also shows the surface free energy of the aqueous ethanol solution at the maximum water concentration.
- EW of fluorinated ion exchange resin Approximately 0.02 to 0.10 g of an acid-type fluorine-containing ion exchange resin is immersed in 50 mL of a 25 ° C. saturated NaCl aqueous solution (0.26 g / mL) and allowed to stand for 10 minutes with stirring, then manufactured by Wako Pure Chemical Industries, Ltd. Neutralization titration was performed using a reagent special grade 0.01N sodium hydroxide aqueous solution manufactured by Wako Pure Chemical Industries, Ltd. using reagent special grade phenolphthalein as an indicator. The Na-type ion exchange membrane obtained after neutralization was rinsed with pure water, then vacuum dried and weighed.
- EW (W / M) ⁇ 22 (Melt flow rate (MFR) of fluorine-containing ion exchange resin precursor) Based on JIS K-7210, the melt flow rate (MFR, g / 10 minutes) of the fluorine-containing ion exchange resin precursor at a temperature of 270 ° C. and a load of 2.16 kg using an apparatus having an inner diameter of 2.09 mm and a length of 8 mm. ) was measured.
- the proton conductivity of the electrolyte membrane was evaluated by measuring the 4-terminal AC impedance in the in-plane direction.
- a platinum plate was used as an electrode, the electrolyte membrane was sandwiched between two slide glasses together with the platinum plate, and both ends of the slide glass were fixed with clips.
- the electrolyte membrane is installed in a thermostatic chamber SH-241 (manufactured by Espec), and the temperature is 80 ° C.
- the relative humidity is changed from 90% RH to 20% RH in 10% RH increments and stabilized at each humidity for at least 4 hours.
- AC impedance measurement was performed.
- an impedance analyzer Solartron 1260 manufactured by Solartron, UK
- AC Amplitude was a value between 10 and 100 mV, and the frequency was scanned from 100,000 Hz to 1 Hz.
- the coating solution is 10.84 g of a dispersion of fluorinated ion exchange resin of EW560 which is the same as that used as the raw material of the electrolyte membrane described later, TKK Pt / C as a catalyst (TEC10E50E platinum supported amount 45.9% by Tanaka Kikinzoku) 2.0 g, RO water 8.67 g, 1-propanol 8.67 g, 2-propanol 8.67 g together with 200 g of zirconia balls ( ⁇ 5) in a zirconia container, and using a planetary ball mill (manufactured by Fritsch, Germany) at a rotation speed of 200 rpm. It was prepared by ball mill mixing for 1 hour.
- the electrode catalyst layer was prepared by applying the coating solution prepared as described above onto a polytetrafluoroethylene (PTFE) sheet with an applicator PI-1210 (Tester Sangyo) and drying in an air atmosphere. The amount of platinum supported was adjusted to around 0.3 mg / cm2.
- the MEA was prepared by sandwiching the electrolyte membrane between the two electrode catalyst layers cut out to 5 cm 2 , hot pressing at 135 ° C and 2.0 kN for 1 minute, and then peeling off the PTFE sheet (decal method) .
- One is a current interrupt method, in which hydrogen gas is circulated at the anode side and oxygen gas is circulated at a flow rate of 100 mL / min and 500 mL / min, respectively, and the relative humidity of both electrodes is simultaneously 60% RH, 30% RH, 20 percent RH, is changed from 10% RH, blocked using an electrochemical measurement system HZ-3000 (Hokuto Denko Corporation), electric current is passed through one minute cell initial state as 1 a / cm 2, the current instantaneously The ohmic resistance was calculated by measuring the voltage change at the time. The second is an IV characteristic test.
- Hydrogen gas is supplied to the anode side as fuel and oxygen gas or air is supplied to the cathode side as oxidant at flow rates of 100 mL / min and 500 mL / min, respectively.
- the cell voltage was measured when the current was run from 0 to 10 A with a battery charging / discharging device HJ1010SM8A (Hokuto Denko Co., Ltd.) while changing to RH, 20% RH, and 10% RH.
- This polyethylene solution was extruded into a sheet form from a die at a temperature of 160 ° C., and then the extrudate was cooled in a water bath at 25 ° C., and a water flow was provided on the surface layer of the water bath, which was discharged from the sheet gelled in the water bath. Then, a gel-like sheet (base tape) was prepared while preventing the mixed solvent floating on the water surface from adhering to the sheet again. The base tape was dried at 55 ° C. for 10 minutes and further at 95 ° C. for 10 minutes to remove decalin from the base tape. Thereafter, the base tape is stretched in the longitudinal direction at a temperature of 100 ° C.
- polyethylene chloride was removed by drying at 45 ° C., and a polyolefin microporous film was obtained by annealing treatment while being conveyed on a roller heated to 120 ° C.
- Table 1 below shows physical property values and evaluation results of the polyethylene microporous membrane.
- Production Example 2 a polyethylene composition obtained by mixing 6 parts by mass of high molecular weight polyethylene (PE1) having a mass average molecular weight of 4.6 million and 24 parts by mass of low molecular weight polyethylene (PE2) having a mass average molecular weight of 560,000 was used.
- a polyethylene solution was prepared by mixing 6 parts by mass of decalin (decahydronaphthalene) and 64 parts by mass of paraffin prepared in advance so that the concentration of the total amount of polyethylene resin was 30% by mass.
- This polyethylene solution was extruded into a sheet form from a die at a temperature of 160 ° C., and then the extrudate was cooled in a water bath at 25 ° C. to prepare a gel sheet.
- the base tape was dried at 55 ° C. for 10 minutes and further at 95 ° C. for 10 minutes to remove decalin from the base tape. Thereafter, the base tape was stretched in the longitudinal direction at a temperature of 100 ° C. at a magnification of 5.5 times, subsequently stretched in the width direction at a temperature of 110 ° C. at a magnification of 13 times, and then immediately heat treated at 125 ° C. (heat setting).
- Production Example 3 In Production Example 1, a polyethylene composition obtained by mixing 16 parts by mass of high molecular weight polyethylene (PE1) having a mass average molecular weight of 4.6 million and 4 parts by mass of low molecular weight polyethylene (PE2) having a mass average molecular weight of 560,000 was used. A polyethylene solution was prepared by mixing 2 parts by mass of decalin (decahydronaphthalene) and 78 parts by mass of paraffin prepared in advance so that the concentration of the total amount of the polyethylene resin was 20% by mass. This polyethylene solution was extruded into a sheet form from a die at a temperature of 160 ° C., and then the extrudate was cooled in a water bath at 25 ° C. to prepare a gel sheet.
- PE1 high molecular weight polyethylene
- PE2 low molecular weight polyethylene
- the base tape was dried at 55 ° C. for 10 minutes and further at 95 ° C. for 10 minutes to remove decalin from the base tape. Thereafter, the base tape was stretched in the longitudinal direction at a temperature of 100 ° C. at a magnification of 3.9 times, subsequently stretched in the width direction at a temperature of 100 ° C. at a magnification of 13 times, and then immediately heat treated at 135 ° C. (heat setting).
- Production Example 4 In Production Example 1, a polyethylene composition obtained by mixing 16 parts by mass of high molecular weight polyethylene (PE1) having a mass average molecular weight of 4.6 million and 4 parts by mass of low molecular weight polyethylene (PE2) having a mass average molecular weight of 560,000 was used. A polyethylene solution was prepared by mixing 2 parts by mass of decalin (decahydronaphthalene) and 78 parts by mass of paraffin prepared in advance so that the concentration of the total amount of the polyethylene resin was 20% by mass. This polyethylene solution was extruded into a sheet form from a die at a temperature of 160 ° C., and then the extrudate was cooled in a water bath at 25 ° C. to prepare a gel sheet.
- PE1 high molecular weight polyethylene
- PE2 low molecular weight polyethylene
- Production Example 6 a polyethylene composition obtained by mixing 6 parts by mass of high molecular weight polyethylene (PE1) having a mass average molecular weight of 4.6 million and 6 parts by mass of low molecular weight polyethylene (PE2) having a mass average molecular weight of 560,000 was used.
- PE1 high molecular weight polyethylene
- PE2 low molecular weight polyethylene
- a polyethylene solution was prepared by mixing with a previously prepared mixed solvent of 30 parts by mass of decalin (decahydronaphthalene) and 58 parts by mass of paraffin so that the total concentration of the polyethylene resin was 12% by mass.
- This polyethylene solution was extruded into a sheet form from a die at a temperature of 160 ° C., and then the extrudate was cooled in a water bath at 25 ° C. to prepare a gel sheet.
- the base tape was dried at 55 ° C. for 10 minutes and further at 95 ° C. for 10 minutes to remove decalin from the base tape. Thereafter, the base tape was stretched in the longitudinal direction at a temperature of 110 ° C.
- the fluorine-containing ion exchange resin precursor pellets 510 g were immersed for 6 hours in 3160 g of a KOH aqueous solution prepared beforehand by adding KOH and DMSO so that the KOH concentration was 15% by mass and the DMSO concentration was 30% by mass.
- the SO 2 F group in the exchange resin precursor was defined as an SO 3 K group.
- the treated pellets were immersed in 1N HCl (2500 mL) at 60 ° C. for 6 hours, then washed with ion-exchanged water (conductivity: 0.06 S / cm or less) at 60 ° C. and dried, and the SO 3 K group was removed.
- 120 g of the above fluorine-containing ion exchange resin (water content 28.7 mass%), 485 g of ethanol, and 949 g of ion-exchanged water are charged into a glass inner cylinder in a 5 L autoclave made of SUS304 having an inner cylinder of glass, 70 g of ethanol and 140 g of ion exchange water were charged between the inner cylinder and the inner wall of the autoclave. While stirring the liquid in the glass inner cylinder, a dispersion treatment was performed at 162 ° C. for 4 hours.
- the autoclave internal pressure increased with heating, and the maximum pressure was 1.2 MPa.
- a uniform and transparent dispersion composition of a fluorine-containing ion exchange resin was obtained.
- the composition of this dispersion composition was 5.0% by mass of a fluorine-containing ion exchange resin, 30.0% by mass of ethanol, and 65.0% by mass of water.
- 350 g of the dispersion composition was charged into a 500 mL eggplant flask, and fluorinated ions were azeotropically distilled at a reduced pressure of 0.04 MPa while rotating at 40 rpm at 80 ° C. using a rotary evaporator R-200 manufactured by BUCHI.
- the composition of this dispersion composition was 9.8% by mass of a fluorine-containing ion exchange resin, 8.3% by mass of ethanol, and 81.9% by mass of water.
- Example 1 (Production of electrolyte membrane for polymer electrolyte fuel cell)
- the polyethylene microporous membrane obtained in Production Example 1 was immersed in ethanol, subjected to ultrasonic cleaning for 1 hour, and then dried overnight in an air atmosphere. About 0.3 ml of the polymer solution is thinly spread on a glass petri dish, and the polyethylene microporous film (thickness 6 ⁇ m, porosity 66%, size about 10 mm ⁇ 30 mm) is gently placed on the glass petri dish. And dried overnight.
- Example 2 By using the same polyolefin microporous membrane as in Example 1 and EW560 perfluorosulfonic acid polymer, the amount of polymer solution dripped with respect to the area of the microporous membrane is controlled to make a thinner electrolyte membrane (film thickness around 7 ⁇ m) ) Was produced. Specifically, about 0.3 ml of a polymer solution is thinly spread on a glass petri dish, and a polyethylene microporous film (thickness 6 ⁇ m, porosity 66%, size about 35 mm ⁇ 35 mm) is gently placed thereon, After drying overnight in the surrounding environment, about 0.3 ml of the polymer solution was further thinly spread on the polyethylene microporous membrane.
- a catalyst layer was prepared by the above-mentioned decal method using the above-mentioned perfluorosulfonic acid polymer (EW560) as an ionomer, and hot press treatment (conditions: 135 ° C., 2.0 kN, 1 minute), and a membrane electrode assembly (MEA) of a polymer electrolyte fuel cell was produced.
- EW560 perfluorosulfonic acid polymer
- hot press treatment conditions: 135 ° C., 2.0 kN, 1 minute
- MEA membrane electrode assembly
- FIG. 2 shows the results of calculating the proton conductivity of MEA by calculating the ohmic resistance from the current interrupt for the MEA obtained as described above.
- Nafion® NR211 film thickness: 25 ⁇ m
- the low EW perfluorosulfonic acid polymer with high proton conductivity was filled, and the effect of thinning the film thickness to about 1/4 was reduced.
- the MEA produced using the polyolefin microporous membrane of the invention showed higher performance than when NR211 was used.
- 3 to 5 show the current density dependence of the cell voltage at humidity of 30%, 20%, and 10% (oxidant: oxygen or air), respectively, for the MEA obtained as described above.
- Nafion NR211 thinness 25 ⁇ m
- the conventional NR211 could hardly generate power.
- the MEA produced using the polyolefin microporous membrane of the present invention It can be seen that when oxygen is used as the oxidizing agent), power can be generated up to 2 A / cm 2 and a new electrolyte membrane is obtained.
- the electrolyte membrane was produced by filling the polyolefin microporous membrane with the electrolyte of EW560, and It can be considered that the thinning of the electrolyte membrane allows water generated at the cathode to sufficiently permeate the anode side of the electrolyte membrane and maintain the humidity in the electrolyte membrane.
- FIG. 6 shows the measurement results of the hydrogen crossover test for the MEA (Example 2, Reference Example 1) obtained as described above.
- the hydrogen crossover test was performed by obtaining the MEA as described above, and then measuring the oxidation current of hydrogen that passed through the membrane under the conditions of a temperature of 80 ° C. and a humidity of 20 to 100%.
- the supply amount of hydrogen on the anode side was 100 ml / min, and the supply amount of nitrogen on the cathode side was 500 ml / min.
- the pore filling membrane of Example 2 was used, the polyolefin microporous film was thinned even though the film thickness was reduced to about 1/4 compared with the conventional NR211. It was confirmed that hydrogen crossover was significantly suppressed by suppressing the swelling of the electrolyte by the membrane substrate.
- FIG. 7 shows the current density dependence of the cell voltage at the cell temperatures of 80 ° C., 90 ° C., and 100 ° C. for the MEAs (Example 2 and Reference Example 1) obtained as described above.
- the current density was measured under a humidity of 30%.
- the supply amount of hydrogen on the anode side was 100 ml / min, and the supply amount of oxygen on the cathode side was 500 ml / min.
- the cell voltage rapidly decreases. This is thought to be because water is discharged as steam and the film is difficult to self-humidify.
- Example 3 An electrolyte membrane (thickness: 11.4 ⁇ m) made of a composite membrane was produced in the same manner as in Example 1 except that EW600 perfluorosulfonic acid polymer was used.
- the electrolyte membrane according to the present invention is industrially applicable as an electrolyte membrane that is advantageously used for polymer electrolyte fuel cells, water electrolysis, soda electrolysis, etc., as a thin electrolyte membrane exhibiting high proton conductivity. .
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Manufacturing & Machinery (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Energy (AREA)
- Sustainable Development (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Health & Medical Sciences (AREA)
- Inorganic Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Composite Materials (AREA)
- Fuel Cell (AREA)
- Conductive Materials (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
Abstract
Description
・陽極:H2O→1/2O2+2H++2e-
・陰極:2H++2e-→H2
一方、燃料電池においては、負極(アノード)における水素酸化反応で生成したプロトンが電解質膜を介して正極(カソード)に移動し、そこで酸素還元反応により水を発生させることで発電を行う。各極での反応式は下記のとおり。
・負極:H2→2H++2e-
・正極:1/2O2+2H++2e-→H2O
[1]電解質膜であって、
平均孔径が1~1000nmであり、空孔率が50~90%であり、かつ、20℃において表面自由エネルギー28mJ/m2以上の溶媒が含浸可能であるポリオレフィン微多孔膜と、
該ポリオレフィン微多孔膜の空孔内に充填された、EW250~850のパーフルオロスルホン酸ポリマーを含む電解質と、を備えた複合膜からなり、
該複合膜の膜厚が1~20μmである、電解質膜。
[2]前記平均孔径が5~100nmである、上記[1]に記載の電解質膜。
[3]前記空孔率が50~78%である、上記[1]または[2]に記載の電解質膜。
[4]20℃において表面自由エネルギー33~37mJ/m2の溶媒が含浸可能であるポリオレフィン微多孔膜を備えた、上記[1]~[3]のいずれか1項に記載の電解質膜。
[5]前記電解質が、EW450~650のパーフルオロスルホン酸ポリマーを含む、上記[1]~[4]のいずれか1項に記載の電解質膜。
[6]前記複合膜の膜厚が5~12μmである、上記[1]~[5]のいずれか1項に記載の電解質膜。
[7]前記電解質膜は、固体高分子形燃料電池、水の電気分解またはソーダ電解の電解質膜として用いられる、上記[1]~[6]のいずれか1項に記載の電解質膜。
[8]上記[1]~[7]のいずれか1項に記載の電解質膜の製造方法であって、
平均孔径が1~1000nmであり、空孔率が50~90%であり、かつ、表面自由エネルギー28mJ/m2以上の溶媒が含浸可能であるポリオレフィン微多孔膜に、該溶媒にEW250~850のパーフルオロスルホン酸ポリマーを含む電解質を溶解させた溶液を含浸させる工程と、
該含浸工程後の該ポリオレフィン微多孔膜を乾燥して該溶媒を除去する工程と、
該除去工程後の該ポリオレフィン微多孔膜にアニーリング処理を施す工程と
を含んでなる電解質膜の製造方法。
本発明に用いられるポリオレフィン微多孔膜は、平均孔径が1~1000nmであり、空孔率が50~90%であり、かつ、20℃において表面自由エネルギー28mJ/m2以上の溶媒が含浸可能である。
本発明によるポリオレフィン微多孔膜は平均孔径が1~1000nmである。この平均孔径が1000nm以下である場合、高空孔率の微多孔膜であったとしても、ポリオレフィン微多孔膜の力学強度が良好なものとなりハンドリング性も向上する点で好ましい。また、一定の空孔率において、平均孔径が小さいほど、微多孔膜中に存在する空孔の頻度が高まるため、該ポリオレフィン微多孔膜全体への電解質化合物の均一な充填が可能になる、さらには微多孔膜の表面に存在する空孔の頻度が高まるため、より表面自由エネルギーの高い溶媒を用いた電解質化合物溶液の浸透が良好なものになる。このような観点では、ポリオレフィン微多孔膜の平均孔径は500nm以下が好ましく、また100nm以下、さらには50nm以下、特に45nm以下、さらには40nm以下がより好ましい。一方、平均孔径が1nm以上である場合、上記、表面自由エネルギーの高い溶媒の浸透速度が向上する。このような観点では、ポリオレフィン微多孔膜の平均孔径は5nm以上が好ましく、さらには10nm以上が好ましい。
ここで、ポリオレフィン微多孔膜の平均孔径は、後述する実施例に記した測定方法により測定することができる。
本発明によるポリオレフィン微多孔膜は空孔率が50~90%である。この空孔率が50%以上である場合、電解質化合物の充填率が高くなり、電解質化合物本来の性能を充分に発現できるものとなる点で好ましい。また、電解質化合物を溶解した溶液が微多孔膜に浸透し易くなり、含浸速度が速くなる点で好ましい。このような観点では、ポリオレフィン微多孔膜の空孔率は55%以上が好ましく、さらには60%以上が好ましい。一方、空孔率が90%以下である場合、ポリオレフィン微多孔膜の力学強度が良好なものとなりハンドリング性も向上する点で好ましい。このような観点では、ポリオレフィン微多孔膜の空孔率は85%以下が好ましく、さらには78%以下が好ましく、特に75%以下、さらには66%以下が特に好ましい。
ここで、ポリオレフィン微多孔膜の空孔率(ε)は、後述する実施例に記した測定方法により測定することができ、下記式により算出する。
ε(%)={1-Ws/(ds・t)}×100
Ws:ポリオレフィン微多孔膜の目付け(g/m2)
ds:ポリオレフィンの真密度(g/cm3)
t:ポリオレフィン微多孔膜の膜厚(μm)
本発明によるポリオレフィン微多孔膜は、表面自由エネルギーが28mJ/m2以上の溶媒が含浸可能である。本願明細書中、溶媒の表面自由エネルギーは20℃での測定値をさす。また、「含浸可能」とは、加圧または減圧による強制充填処理を施すことなく、溶媒が微多孔膜に接触しただけで自発的に孔内に浸透し得る性質をさす。
一般に、ポリオレフィン微多孔膜は表面自由エネルギーが低く撥水性が高いため、表面自由エネルギーが高い親水性の液体に濡れにくく、微多孔膜の孔内に電解質化合物などの親水性物質を充填することが困難である。ポリオレフィン微多孔膜の表面を改質して親水性にする方法(親水化処理)はよく知られているが、例えば、化学的表面処理(界面活性剤による処理、等)は、不純成分が微多孔膜に残存することで所期の性能を損なう場合がある。また、物理的表面処理(プラズマ処理、コロナ処理、等)は、微多孔膜にダメージを与えてその物理的強度を低下させる欠点があり、特に薄膜化が要求される電解質膜には採用できない。
一方、溶媒の表面自由エネルギーが28mJ/m2以上である場合、該溶媒に対する電解質化合物の溶解濃度を高めることができ、ひいては該微多孔膜中への電解質化合物の充填効率を高められる点で好ましい。しかし、従来は、特に親水化処理を施していないポリオレフィン微多孔膜に、加圧または減圧による強制充填処理を施すことなく、表面自由エネルギー28mJ/m2以上の溶媒(液体)を含浸させることは不可能であった。
溶媒の表面自由エネルギーの上限は、上記平均孔径および空孔率を満たすポリオレフィン微多孔膜に含浸可能でなくなる数値であり、概ね38mJ/m2である。親水性の電解質化合物を溶解する溶媒とポリオレフィン微多孔膜との親和性を高め、電解質化合物を溶解した溶液を該微多孔膜に浸透し易くする点で、溶媒の表面自由エネルギーは低い方が好ましい。このように、本発明における溶媒の表面自由エネルギーについては、電解質溶液濃度と微多孔膜への含浸性との間にトレードオフが存在し、個別具体的な用途において、28mJ/m2以上、好ましく33mJ/m2以上、より好ましく35mJ/m2以上、かつ、38mJ/m2以下、好ましくは37mJ/m2以下、より好ましく36.5mJ/m2以下、の範囲内で適宜設定することになる。
溶媒の表面自由エネルギーを調整する方法としては、水に、アルコール類(メタノール、エタノール、イソプロパノール、t-ブチルアルコール、等)、エチレングリコール、テトラヒドロフラン、アセトン、メチルエチルケトン、ジメチルホルムアミド、トリエチルアミン、等の有機溶媒を混合すればよい。参考として、20℃における表面自由エネルギーは、水が72.8mJ/m2、エタノールが22.39mJ/m2、1-プロパノールが23.71mJ/m2、1-ブタノールが25.28mJ/m2、ヘキサンが18.40mJ/m2、パーフルオロヘキサンが11.91mJ/m2である。
本発明によるポリオレフィン微多孔膜は、後述する電解質を孔内に充填した複合膜としての厚さが1~20μmである。該複合膜の膜厚が1μm以上である場合、電解質膜として十分な力学強度が得られやすく、また、ポリオレフィン微多孔膜の加工時におけるハンドリング性や電解質溶液を含浸する加工時に安定した搬送が可能になるため好ましい。このような観点では、複合膜の膜厚は、3μm以上が好ましく、特に4μm以上、さらには5μm以上が好ましい。一方、厚さが20μm以下である場合、ポリオレフィン微多孔膜への電解質溶液の含浸に要する時間を短縮でき、微多孔膜全体に斑無く均一に電解質化合物を充填することができる。また、電解質化合物を含浸した電解質膜のプロトン伝導性が向上するため好ましい。このような観点では、複合膜の膜厚は15μm以下が好ましく、さらには12μm以下、特に10μm以下、さらには9μm以下が好ましい。
ポリオレフィン微多孔膜は、一般に空孔の存在による光散乱のため白色不透明を呈するが、該空孔が電解質化合物溶液で実質的に充填されることにより光散乱が減少し、得られた電解質膜は、その薄い膜厚と相俟って、全体として実質透明になることがある。
表面自由エネルギー28mJ/m2以上の溶媒が含浸可能であるポリオレフィン微多孔膜は、膜表面における溶媒の接触角の観点で規定することもできる。すなわち、本発明によるポリオレフィン微多孔膜は、親水化処理を一切施していない状態で水平面に設置し、その表面にエタノールと水の混合液(体積比1/2;33%エタノール水溶液)を滴下した場合に、滴下後1秒後の当該液滴と該表面の接触角が0~90度であることが好ましい。該1秒後の接触角が90度以下である場合、上記の空孔率と平均孔径を有する多孔質構造との相乗効果もあり、電解質溶液の微多孔膜中へのしみ込みが容易になる。このような観点では、当該1秒後の接触角は88度以下がより好ましく、さらには85度以下が好ましい。
また、本発明によるポリオレフィン微多孔膜は、上記滴下後10分後の当該液滴と該表面の接触角が0~70度であることが好ましい。該10分後の接触角が70度以下である場合、電解質溶液が微多孔膜中にさらにしみ込み易くなり、電解質化合物を微多孔膜中に充分に充填できるようになる点で好ましい。このような観点では、当該10分後の接触角は65度以下がより好ましく、さらには60度以下が好ましい。ここで、接触角は後述する実施例に記した測定方法により、測定することができる。
なお、本発明のポリオレフィン微多孔膜上に上記エタノール水溶液を滴下した場合、液滴が径方向外側に広がらず、同径ないし径方向内側に縮小するように液滴が微多孔膜中に浸透していく挙動を示す。
本発明によるポリオレフィン微多孔膜は、上記接触角の経時変化の観点で規定することもできる。すなわち、本発明によるポリオレフィン微多孔膜は、親水化処理しない状態で、その表面にエタノールと水の混合液(体積比1/2)を滴下した場合に、滴下後1秒後の当該液滴と該表面の接触角θ1が0~90度であり、滴下後10分後の当該液滴と該表面の接触角θ2が0~70度であり、接触角の変化率((θ1-θ2)/θ1×100)が10~50%であることが好ましい。接触角の変化率が10%以上である場合、電解質溶液のポリオレフィン微多孔膜中への浸透速度が実用的生産効率の観点から十分であると考えられる。このような観点では、接触角の変化率は15%以上、さらには17%以上であることが特に好ましい。一方、ポリオレフィン微多孔膜の力学強度を十分保持する観点では、接触角の変化率は45%以下、さらには41%以下であることが好ましい。
本発明によるポリオレフィン微多孔膜は、JIS P8117に従って測定したガーレ値が90秒/100cc以下であることが好ましく、より好ましくは85秒/100cc以下、さらに好ましくは75秒/100cc以下である。このガーレ値が90秒/100cc以下である場合、電解質化合物溶液が微多孔膜に浸透し易くなり、含浸速度が速くなる点で好ましい。
本発明によるポリオレフィン微多孔膜は、長手方向(MD)と幅方向(TD)の少なくとも一方向の引張破断強度(ポリオレフィン固形分の単位断面積当りに換算した値)が50MPa以上であることが好ましく、60MPa以上であることがさらに好ましい。ポリオレフィン微多孔膜の強度が50MPa以上である場合、複合膜としての力学強度が良好になり、また、電解質化合物溶液をポリオレフィン微多孔膜中に含浸させる工程でのハンドリング性が向上する点で好ましい。
本発明によるポリオレフィン微多孔膜は、ポリオレフィンを含んで構成された微多孔膜である。ここで、微多孔膜とは、内部に多数の微細孔を有し、これら微細孔が連結された構造となっており、一方の面から他方の面へと気体あるいは液体が通過可能となった膜を意味する。ポリオレフィン微多孔膜において、ポリオレフィンは90質量%以上、より好ましくは95質量%以上含まれていることが好ましく、残部として本発明の効果に影響を与えない範囲で有機または無機のフィラーや界面活性剤等の添加剤を含ませてもよい。
ポリオレフィンとしては、例えばポリエチレンやポリプロピレン、ポリブチレン、ポリメチルペンテン等の単独重合体あるいは共重合体、またはこれらの1種以上の混合体が挙げられる。この中でも、ポリエチレンが好ましい。ポリエチレンとしては、低分子量ポリエチレンや、低分子量ポリエチレンと高分子量ポリエチレンの混合物等が好適である。また、ポリエチレンとそれ以外の成分を組み合わせて用いてもよい。ポリエチレン以外の成分としては、例えばポリプロピレン、ポリブチレン、ポリメチルペンテン、ポリプロピレンとポリエチレンとの共重合体などが挙げられる。また、ポリオレフィンとして、相互に相溶性の乏しい重合度や分岐性の異なる複数のポリオレフィン、換言すれば結晶性や延伸性・分子配向性を異にする複数のポリオレフィンを組み合わせて用いてもよい。
本発明に用いるポリオレフィンとしては、質量平均分子量が90万以上である高分子量ポリエチレンを5質量%以上含むポリエチレン組成物を用いることが好ましく、高分子量ポリエチレンを7質量%以上含む組成物であることがさらに好ましく、特に高分子量ポリエチレンを15~90質量%含む組成物であることが好ましい。また、2種以上のポリエチレンを適量配合することによって、延伸時のフィブリル化に伴うネットワーク網状構造を形成させ、空孔発生率を増加させる効用がある。2種以上のポリエチレンを配合した後の質量平均分子量は50万~450万であることが好ましく、50万~400万であることがより好ましい。特に、上述した質量平均分子量が90万以上である高分子量ポリエチレンと、質量平均分子量が20万~80万である低分子量ポリエチレンとを混合させたポリエチレン組成物が好ましく、その場合、該高分子量ポリエチレンのポリエチレン組成物中の割合は20~80質量%が特に好ましい。低分子量ポリエチレンの密度は0.92~0.96g/cm3が好ましい。高分子量ポリエチレンの質量平均分子量の上限値としては600万以下が好ましく、500万以下が特に好ましい。高分子量ポリエチレンの質量平均分子量の下限値としては100万以上が好ましく、200万以上がさらに好ましく、300万以上が特に好ましい。
なお、質量平均分子量は、ポリオレフィン微多孔膜の試料をo-ジクロロベンゼン中に加熱溶解し、GPC(Waters社製 Alliance GPC 2000型、カラム;GMH6-HTおよびGMH6-HTL)により、カラム温度135℃、流速1.0mL/分の条件にて測定を行うことで得られる。分子量の校正には分子量単分散ポリスチレン(東ソー社製)を用いることができる。
本発明によるポリオレフィン微多孔膜は、下記に示す方法で好ましく製造することができる。即ち、
(I)ポリオレフィン組成物と溶剤とを含む溶液において、少なくとも大気圧における沸点が210℃未満の揮発性の溶剤を含む溶液を調製する工程、
(II)この溶液を溶融混練し、得られた溶融混練物をダイより押出し、冷却固化してゲル状成形物を得る工程、
(III)ゲル状成形物を少なくとも一方向に延伸する工程、
(IV)延伸した中間成形物の内部から溶剤を抽出洗浄する工程、を順次実施することにより、好ましく製造することができる。
工程(I)ではポリオレフィン組成物と溶剤とを含む溶液を調製するが、少なくとも大気圧における沸点が210℃未満の揮発性の溶剤を含む溶液を調製する。ここで溶液は好ましくは熱可逆的ゾル・ゲル溶液であり、すなわち該ポリオレフィンを該溶剤に加熱溶解させることによりゾル化させ、熱可逆的ゾル・ゲル溶液を調製する。工程(I)における大気圧における沸点が210℃未満の揮発性の溶剤としてはポリオレフィンを十分に膨潤できるもの、もしくは溶解できるものであれば特に限定されないが、テトラリン、エチレングリコール、デカリン、トルエン、キシレン、ジエチルトリアミン、エチレンジアミン、ジメチルスルホキシド、ヘキサン等の液体溶剤が好ましく挙げられ、これらは単独でも2種以上を組み合わせて用いても良い。なかでもデカリン、キシレンが好ましい。
また、本溶液の調製においては、上記の大気圧における沸点が210℃未満の揮発性の溶剤以外に、流動パラフィン、パラフィン油、鉱油、ひまし油などの沸点が210℃以上の不揮発性の溶剤を含ませることが、平均孔径および空孔率を本発明の範囲に調整しやすい点で好ましい。その場合、全溶媒中の不揮発性溶剤の含有量は80~98質量%が好ましい。
工程(I)の溶液においては、ポリオレフィン微多孔膜への電解質化合物の充填率を制御する観点から、ポリオレフィン組成物の濃度を10~35質量%とすることが好ましく、さらには15~30質量%とすることが好ましい。
工程(II)は、工程(I)で調製した溶液を溶融混練し、得られた溶融混練物をダイより押出し、冷却固化してゲル状成形物を得る。好ましくはポリオレフィン組成物の融点乃至融点+65℃の温度範囲においてダイより押出して押出物を得、ついで前記押出物を冷却してゲル状成形物を得る。
成形物としてはシート状に賦形することが好ましい。冷却は水溶液または有機溶媒へのクエンチでもよいし、冷却された金属ロールへのキャスティングでもどちらでもよいが、一般的には水またはゾル・ゲル溶液時に使用した揮発性溶媒へのクエンチによる方法が使用される。冷却温度は10~40℃が好ましい。なお、水浴の表層に水流を設け、水浴中でゲル化したシートの中から放出されて水面に浮遊する混合溶剤がシートに再び付着しないようにしながらゲル状シートを作製することが好ましい。
工程(II)では、必要に応じて、ゲル状成形物の冷却後に一段または複数段の予備加熱を行い、一部の揮発性溶媒をシート内から除去してもよい。その場合、予備加熱温度は50~100℃が好ましい。
工程(III)は、ゲル状成形物を少なくとも一方向に延伸する工程である。ここで工程(III)の延伸は、二軸延伸が好ましく、縦延伸、横延伸を別々に実施する逐次二軸延伸、縦延伸、横延伸を同時に実施する同時二軸延伸、いずれの方法も好適に用いることが可能である。また縦方向に複数回延伸した後に横方向に延伸する方法、縦方向に延伸し横方向に複数回延伸する方法、逐次二軸延伸した後にさらに縦方向および/または横方向に1回もしくは複数回延伸する方法も好ましい。
工程(III)における面積延伸倍率(縦延伸倍率と横延伸倍率の積)は、ポリオレフィン微多孔膜へのエタノールと水の混合液(体積比1/2)の浸透性を制御する観点から、好ましくは45~100倍であり、より好ましくは50~91倍である。延伸温度は90~110℃が好ましい。
また(III)の延伸工程に次いで、必要に応じて熱固定処理を行っても良い。その場合の熱固定温度は、ポリオレフィン微多孔膜への樹脂化合物の充填率を制御する観点から、120~135℃であることが好ましい。
工程(IV)は延伸した中間成形物の内部から溶媒を抽出洗浄する工程である。ここで、工程(IV)は、延伸した中間成形物(延伸フィルム)の内部から溶媒を抽出するために、塩化メチレン等のハロゲン化炭化水素やヘキサン等の炭化水素の溶媒で洗浄することが好ましい。溶媒を溜めた槽内に浸漬して洗浄する場合は、20~180秒の時間を掛けることが、残留溶媒の溶出分が少ないポリオレフィン微多孔膜を得るために好ましい。さらに、より洗浄の効果を高めるためには、槽を数段に分け、ポリオレフィン微多孔膜の搬送工程の下流側から、洗浄溶媒を注ぎ入れ、工程搬送の上流側に向けて洗浄溶媒を流し、下流槽における洗浄溶媒の純度を上流層のものよりも高くすることが好ましい。また、ポリオレフィン微多孔膜への要求性能によっては、アニール処理により熱セットを行っても良い。なお、アニール処理は、工程での搬送性等の観点から60~130℃で実施することが好ましく、70~125℃がさらに好ましい。
上記の化学的処理を施さないことにより、不要な物質の混入を防ぐことができ、製造コストの低減にも繋がる。また、物理的処理を施さないことにより、樹脂の劣化および力学強度の低下を防止できる。
本発明による電解質膜は、EW250~850のパーフルオロスルホン酸ポリマーの分散組成物を含む。このようなパーフルオロスルホン酸ポリマーとして、下記式(1)及び式(2)の繰り返し単位からなるEW250~850の含フッ素イオン交換樹脂を好適に用いることができる。
好適な含フッ素イオン交換樹脂は、下記式(3)で表されるフッ化オレフィンのモノマーと下記式(4)で表されるフッ化ビニル化合物との共重合体を含む含フッ素イオン交換樹脂前駆体を加水分解することにより得ることができる。
上記式(3)及び式(4)において、W=SO2F、Z=Fである共重合体を含む含フッ素イオン交換樹脂前駆体を用いることが好ましい。
含フッ素イオン交換樹脂の重合度の指標として、含フッ素イオン交換樹脂前駆体において温度270℃、オリフィス内径2.09mm、オリフィス長さ8mm、荷重2.16kgで測定したメルトフローレートを使用することが好ましい。含フッ素イオン交換樹脂前駆体のメルトフローレートは0.01g/10分以上が好ましく、0.1g/10分以上がより好ましく、0.3g/10分以上がさらに好ましい。また、含フッ素イオン交換樹脂前駆体のメルトフローレートは100g/10分以下が好ましく、50g/10分以下がより好ましく、10g/10分以下がさらに好ましい。含フッ素イオン交換樹脂前駆体のメルトフローレートが0.01g/10分以上であることにより、含フッ素イオン交換樹脂の分散組成物を容易に得ることができる。また、得られた分散組成物の粘度が低くなるため電解質膜作製時又は電極作製時の取扱いが容易になる傾向にある。一方、メルトフローレートが100g/10分以下であることにより、該分散組成物を用いて製造する電解質膜の強度が高くなる傾向にある。また、樹脂の吸水性が抑制できるため、ガス拡散電極用バインダー原料として利用した際に燃料電池運転時のフラッディングを抑制し広範な発電条件にて良好な出力を得られる傾向にある。
加水分解処理に使用する塩基性反応液は、特に限定されないが、水酸化ナトリウム、水酸化カリウム等のアルカリ金属又はアルカリ土類金属の水酸化物の水溶液が好ましい。水溶液中のアルカリ金属又はアルカリ土類金属の水酸化物の含有量は、特に限定されないが、10~30質量%以下であることが好ましい。
上記塩基性反応液は、メチルアルコール、エチルアルコール等のアルコール類、アセトン等のケトン類、ジメチルスルホキシド(以下、「DMSO」と記載する。)、N、N-ジメチルアセトアミド(以下、「DMAC」と記載する。)、N,N-ジメチルホルムアミド(以下、「DMF」と記載する。)等の双極性溶媒等の膨潤性有機溶媒を含有することが好ましい。上記有機溶媒の含有率は、塩基性反応溶液の混合溶媒中の1~30質量%以下であることが好ましい。
加水分解処理における反応時間としては、上記含フッ素イオン交換樹脂前駆体中の、官能基Wが、加水分解により全てSO3K又はSO3Naに転換するのに十分な時間反応させることができれば特に限定されないが、反応時間が0.5~48hrであることが好ましい。
酸処理に使用する酸は、塩酸、硫酸、硝酸等の鉱酸類やシュウ酸、酢酸、ギ酸、トリフルオロ酢酸等の有機酸類であれば特に限定されない。また、酸処理に用いる酸の濃度も特に限定されない。この酸処理によって含フッ素イオン交換樹脂前駆体はプロトン化され、SO3H体となる。その後、必要に応じて水等で洗浄を行う。
含フッ素イオン交換樹脂の分散組成物は、上述した含フッ素イオン交換樹脂と、表面自由エネルギー28mJ/m2以上の溶媒とを含むものである。ここで、分散組成物中の含フッ素イオン交換樹脂の含有量は、好ましくは15~45質量%であり、より好ましくは17~43質量%であり、さらに好ましくは20~40質量%である。含フッ素イオン交換樹脂の含有量が15質量%以上であると、分散組成物を用いて電解質膜及び電極を作製する際に除去すべき溶媒量が少なくなる傾向にあるため好ましい。一方、45質量%以下であると、得られる分散組成物の粘度が経時的に安定であり、運搬、保管時に生じる異常な粘度増大や部分的なゲル化を防ぐことができる傾向にあるため好ましい。
含フッ素イオン交換樹脂の分散組成物は、表面自由エネルギー28mJ/m2以上の溶媒に、上記含フッ素イオン交換樹脂を1質量%以上15質量%未満混合し、得られた水性組成物を分散処理した後、その水性組成物を含フッ素イオン交換樹脂濃度が15質量%以上45質量%以下となるように濃縮することにより製造することができる。
表面自由エネルギー28mJ/m2以上の溶媒としては、上述した有機溶媒と水との混合溶媒を用いることができ、中でも水及びアルコール類を含む混合溶媒を用いることが好ましい。アルコール類としては、アルコール類の沸点が低沸点であることから炭素数1~3のアルコールであることが好ましい。これらのアルコールは1種類で用いられてもよいし、2種類以上を混合して用いてもよい。具体的にはメタノール、エタノール、1-プロパノール、2-プロパノール等が挙げられ、メタノール、エタノールが好ましい。また、水とアルコール類を含む混合溶媒におけるアルコール濃度は49.9質量%以下であることが好ましい。アルコール類の濃度が49.9質量%以下であることにより分散組成物の粘度を低くすることができるため、含フッ素イオン交換樹脂を15質量%~45質量%の高い濃度で含有することができる。
上記混合溶媒には、所期の効果を損なわない範囲で、エチレングリコール、1,2-プロピレングリコール、1,3-プロピレングリコール等のジオール系溶剤、DMSO、DMAC、DMF等の双極性有機溶剤、含フッ素アルコール類、含フッ素エーテル類を混合してもよく、その濃度は混合溶媒全体において5質量%以下であることが好ましい。
本発明による電解質膜は、平均孔径が1~1000nmであり、空孔率が50~90%であり、かつ、表面自由エネルギー28mJ/m2以上の溶媒が含浸可能であるポリオレフィン微多孔膜に、該溶媒にEW250~850のパーフルオロスルホン酸ポリマーを含む電解質を溶解させた溶液を含浸させる工程と、該含浸工程後の該ポリオレフィン微多孔膜を乾燥して該溶媒を除去する工程と、該除去工程後の該ポリオレフィン微多孔膜にアニーリング処理を施す工程とにより製造することができる。本発明によるポリオレフィン微多孔膜は、加圧または減圧による強制充填処理を施すことなく、表面自由エネルギー28mJ/m2以上の溶媒が微多孔膜に接触しただけで自発的に孔内に浸透し得るため、含浸工程は、例えば、大気雰囲気中、ガラス基板上に電解質溶液を展開し、その電解質溶液の上にポリオレフィン微多孔膜を載せて接触させるだけでよい。含浸工程後の溶媒除去工程は、電解質溶液を含むポリオレフィン微多孔膜を大気雰囲気中に放置しておくだけの自然乾燥によるだけでよい。また、電解質膜内部の電解質ポリマー分布の均展化を図るため、上記自然乾燥後のポリオレフィン微多孔膜の上に、すなわちガラス基板とは反対側から、追加の電解質溶液を適用し、含浸・乾燥工程を繰り返してもよい。乾燥工程後の電解質膜にアニーリング処理を施すことにより、電解質ポリマー同士の絡み合いを促進させ、電解質膜の物理的強度を高めることができる。アニーリング処理の条件としては、ポリオレフィン微多孔膜の多孔構造を保持しながら電解質ポリマーのガラス転移温度に近づけることを考慮し、100℃前後で10~20時間程度にすることが好ましい。
本発明による電解質膜を固体高分子形燃料電池に応用する場合、電解質膜の両面に、一方はアノードとして、他方はカソードとして、触媒層を含むガス拡散電極を設ける。膜電極接合体におけるガス拡散電極としての触媒層の厚さは特に限定されないが、触媒層の厚さは、触媒層中のガス拡散を容易にし、電池特性を向上させる観点から、20μm以下であることが好ましく、さらに均一であることが好ましい。上述した含フッ素イオン交換樹脂の分散組成物を用いることにより、厚さ20μm以下の触媒層でも均一な厚さで形成することができる。触媒層の厚さを薄くすると単位面積あたりに存在する触媒量が少なくなり反応活性が低くなるおそれがあるが、この場合は触媒として白金又は白金合金が高担持率で担持された担持触媒を用いれば、薄くても触媒量が不足することなく電極の反応活性を高く保てる。上記観点から、触媒層の厚さは1~15μmであることがより好ましい。
金属触媒としては、固体高分子形燃料電池におけるアノードでの水素酸化反応及びカソードでの酸素還元反応に対して高活性であるため白金からなる金属触媒であることが好ましい。電極触媒としての安定性や活性をさらに付与できる場合もあることから白金触媒からなる金属触媒であることも好ましい。上記白金合金としては、白金以外の白金族の金属(ルテニウム、ロジウム、パラジウム、オスミウム、イリジウム)、金、銀、クロム、鉄、チタン、マンガン、コバルト、ニッケル、モリブデン、タングステン、アルミニウム、ケイ素、亜鉛、及びスズからなる群から選ばれる1種以上の金属と白金との合金であることが好ましく、該白金合金には白金と合金化される金属と白金との金属間化合物が含有されていてもよい。アノードで一酸化炭素を含むガスが供給される場合は、白金とルテニウムとを含む合金を使用すると、触媒の活性が安定するため好ましい。
質量平均分子量は、ポリオレフィン微多孔膜の試料をo-ジクロロベンゼン中に加熱溶解し、GPC(Waters社製 Alliance GPC 2000型、カラム;GMH6-HTおよびGMH6-HTL)により、カラム温度135℃、流速1.0mL/分の条件にて測定することで得た。分子量の校正には分子量単分散ポリスチレン(東ソー社製)を用いた。
サンプルの膜厚は、接触式の膜厚計(ミツトヨ社製、ライトマチックVL-50A)にて20点測定し、これを平均することで求めた。ここで接触端子は底面が直径0.5cmの円柱状のものを用いた。測定中には0.01Nの荷重が印加されるように調整した。
ポリオレフィン微多孔膜の平均細孔径は、ポーラスマテリアル社のパームポロメーター(型式:CFP-1500AEX)を用い含浸液にGALWICK(パーフルオロポリエーテル;ポーラスマテリアル社製 表面張力15.9dyne/cm)を用いて、ASTM E1294-89に規定するハーフドライ法に基づき、平均流量孔径(nm)を計算した。測定温度は25℃、測定圧力は200kPa~3500kPaとした。
ポリオレフィン微多孔膜の空孔率(ε)は、下記式により算出した。
ε(%)={1-Ws/(ds・t)}×100
Ws:ポリオレフィン微多孔膜の目付け(g/m2)
ds:ポリオレフィンの真密度(g/cm3)
t:ポリオレフィン微多孔膜の膜厚(μm)
なお、ポリオレフィン微多孔膜の目付けは、サンプルを10cm×10cmに切り出し、その質量を測定し、質量を面積で割ることで目付を求めた。
測定装置として、協和界面科学株式会社製 全自動接触角計 DMo-701FEおよびInterface Measurement and Analysis System FAMASを使い、静的接触角を測定した。親水化処理していない状態のポリオレフィン微多孔膜に対して、4μLのエタノール水溶液(工業用エタノール(純度95%)/純水 混合体積比1/2)を試料上に滴下し、大気中常圧下、24℃、相対湿度60%における滴下1秒後の接触角θ1および10分後の接触角θ2を測定した。
JIS P8117に従って、面積642mm2のポリオレフィン微多孔膜のガーレ値(秒/100cc)を測定した。
引張試験機(オリエンテック社製 RTE-1210)にて、短冊状の試験片(幅15mm、長さ50mm)を200mm/分の速度で引っ張り、試験片が破断した時の引張強度を求めた。
上記、接触角の測定により得られた液体滴下1秒後の接触角θ1と液体滴下10分後の接触角θ2から接触角の変化率を下式により算出し、浸透速度の指標とした。例えば、1秒後の接触角θ1が同等の2つのサンプルがあった場合、10分後の接触角θ2の変化率が大きいほど浸透速度が高いことを意味する。
接触角の変化率=(θ1-θ2)/θ1×100(%)
(エタノール水溶液の浸透性)
純水に対して工業用エタノール(純度95%)の体積比を変えて混合したエタノール水溶液を各種準備して、水の吸湿の視認性が良好な紙片の上に試料を密着して設置し、該試料上に準備したエタノール水溶液を10uL滴下し、大気中常圧下、24℃、相対湿度60%における滴下後の液体の浸透の有無を観察した。滴下1分後での紙片の濡れの有無を目視で確認し、浸透の有無を判定した。なお、裏面の紙片が変色した場合は完全に浸透した(○)と判断し、変色していない場合は裏面まで液滴が抜けていないために浸透していない(×)と判断した。最高水濃度は、液滴が浸透するエタノール水溶液の水濃度のうち、最も水濃度の高いものを意味する(なお、エタノール濃度は純度100%に換算した上で水濃度を算出している)。また、以下の表1では最高水濃度におけるエタノール水溶液の表面自由エネルギーも合わせて示している。
酸型の含フッ素イオン交換樹脂およそ0.02~0.10gを50mLの25℃飽和NaCl水溶液(0.26g/mL)に浸漬し、攪拌しながら10分間放置した後、和光純薬工業社製試薬特級フェノールフタレインを指示薬として和光純薬工業社製試薬特級0.01N水酸化ナトリウム水溶液を用いて中和滴定した。中和後得られたNa型イオン交換膜を純水ですすいだ後、真空乾燥して秤量した。中和に要した水酸化ナトリウムの当量をM(mmol)、Na型イオン交換膜の質量をW(mg)とし、下記式より当量質量EW(g/eq)を求めた。
EW=(W/M)-22
(含フッ素イオン交換樹脂前駆体のメルトフローレート(MFR))
JIS K-7210に基づき、オリフィスの内径2.09mm、長さ8mmの装置を用いて温度270℃、荷重2.16kgで、含フッ素イオン交換樹脂前駆体のメルトフローレート(MFR、g/10分)を測定した。
乾燥した室温の秤量瓶の質量を精秤し、これをW0とした。測定した秤量瓶に測定物を10g入れ、精秤しW1とした。測定物を入れた秤量瓶を、エスペック株式会社製LV-120型真空乾燥機を用いて温度110℃、絶対圧0.01MPa以下で3hr以上乾燥した後、シリカゲル入りのデシケーター中で冷却し、室温になった後に精秤しW2とした。(W2-W0)/(W1-W0)を百分率で表し、5回測定し、その平均値を含フッ素イオン交換樹脂濃度とした。
電解質膜のプロトン伝導性は、膜面方向(In-plane)における4端子交流インピーダンス測定により評価した。電極に白金板を使用し、電解質膜を白金板ごと2枚のスライドグラスに挟み込み、スライドグラスの両端をクリップで固定した。電解質膜は恒温槽SH-241 (Espec社製) 内に設置し、温度80 °C、相対湿度を90%RHから20%RHまで10%RH刻みに変化させ、各湿度で少なくとも4 時間安定化させてから交流インピーダンス測定を行った。交流インピーダンス測定にはインピーダンスアナライザー Solartron 1260 (英国 Solartron社製) を使用し、AC Amplitudeは10~100 mVの間の値で、周波数は100,000 Hzから1 Hzまで走査した。
塗工液は、後述する電解質膜の原料として用いたものと同じEW560の含フッ素イオン交換樹脂の分散組成物10.84 g、触媒としてTKK Pt/C (田中貴金属社製 TEC10E50E 白金担持量45.9%) 2.0 g、RO水8.67 g、1-プロパノール8.67 g、2-プロパノール8.67 gをジルコニアボール (φ5) 200 gと共にジルコニア容器に入れ、遊星型ボールミル (独国フリッチュ社製) を用いて回転速度200 rpmで1時間ボールミル混合することで作製した。
電極触媒層は、上記により作製した塗工液をポリテトラフルオロエチレン(PTFE)シート上にアプリケーターPI-1210(テスター産業)で塗布し、大気雰囲気中で乾燥することで作製した。白金担持量は0.3 mg/cm2前後に調整した。
MEAは、5cm2に切り出した2枚の上記電極触媒層の間に電解質膜を挟み込み、135 °C、圧力2.0 kNで1分間ホットプレスした後、PTFEシートをはがすことで作製した(デカール法)。
上記MEAの両側をガス拡散層 (SGL GROUP社製のSIGRACET GDL 24BC) で挟み込み、ガスケットと共にElectroChem社製単セル(触媒層面積:5cm2)に組み込み、セル温度を80 °Cにし、水バブリング方式を用いることで両極に流通するガスの相対湿度を制御して2種類の電気化学特性測定を行った。1つはカレントインタラプト法であり、アノード側に水素ガス、カソード側に酸素ガスをそれぞれ流量100mL/min及び500mL/minで流通させ、両極の相対湿度をそれぞれ同時に60%RH, 30%RH, 20%RH, 10%RHと変化させて、電気化学測定システムHZ-3000 (北斗電工株式会社)を用いて、初期状態を1 A/cm2として電流を1分セルに流し、瞬時に電流を遮断した際の電圧変化を測定することでオーム抵抗を算出した。2つめはI-V 特性試験であり、燃料としてアノード側に水素ガス、酸化剤としてカソード側に酸素ガスまたは空気をそれぞれ流量100mL/min及び500mL/minで流通させ、両極の相対湿度をそれぞれ同時に30%RH, 20%RH, 10%RHと変化させて、電池充放電装置HJ1010SM8A (北斗電工株式会社)で電流を0~10 Aまで走引した際のセル電圧を測定した。
(製造例1)
質量平均分子量が460万の高分子量ポリエチレン(PE1)12質量部と、質量平均分子量が56万の低分子量ポリエチレン(PE2)3質量部とを混合したポリエチレン組成物を用いた。ポリエチレン樹脂総量の濃度が15質量%となるようにして、予め準備しておいた流動パラフィン72質量部とデカリン(デカヒドロナフタレン)13質量部の混合溶剤と混ぜ、ポリエチレン溶液を調製した。
このポリエチレン溶液を温度160℃でダイよりシート状に押出し、ついで前記押出物を水浴中、25℃で冷却するとともに、水浴の表層に水流を設け、水浴中でゲル化したシートの中から放出されて水面に浮遊する混合溶剤がシートに再び付着しないようにしながら、ゲル状シート(ベーステープ)を作製した。該ベーステープを55℃で10分、さらに、95℃で10分乾燥してデカリンをベーステープ内から除去した。その後、該ベーステープを長手方向に温度100℃にて倍率5.5倍で延伸し、引き続いて幅方向に温度110℃にて倍率13倍で延伸し、その後直ちに135℃で熱処理(熱固定)を行った。
次にこれを2槽に分かれた塩化メチレン浴にそれぞれ30秒間ずつ連続してポリエチレン微多孔膜を浸漬させながら、流動パラフィンを抽出した。なお、浸漬を開始する側を第1槽とし、浸漬を終了する側を第2槽とした場合の洗浄溶媒の純度は(低)第1槽<第2槽(高)である。その後、45℃で塩化メチレンを乾燥除去し、120℃に加熱したローラー上を搬送させながらアニール処理をすることでポリオレフィン微多孔膜を得た。
得られたポリオレフィン微多孔膜は、エタノール/水=1/2(容積比)溶液の浸透性に優れ、複合膜用基材として好適であった。なお、以下の表1にポリエチレン微多孔膜の物性値および評価結果を示した。
製造例1において、質量平均分子量が460万の高分子量ポリエチレン(PE1)6質量部と、質量平均分子量が56万の低分子量ポリエチレン(PE2)24質量部とを混合したポリエチレン組成物を用いた。ポリエチレン樹脂総量の濃度が30質量%となるようにして、予め準備しておいたデカリン(デカヒドロナフタレン)6質量部とパラフィン64質量部との混合溶剤と混ぜ、ポリエチレン溶液を調製した。
このポリエチレン溶液を温度160℃でダイよりシート状に押出し、ついで前記押出物を水浴中25℃で冷却し、ゲル状シートを作製した。
該ベーステープを55℃で10分、さらに、95℃で10分乾燥してデカリンをベーステープ内から除去した。その後、該ベーステープを長手方向に温度100℃にて倍率5.5倍で延伸し、引き続いて幅方向に温度110℃にて倍率13倍で延伸し、その後直ちに125℃で熱処理(熱固定)を行った以外は、製造例1と同様にポリオレフィン微多孔膜を得た。
下記表1に示したように、得られたポリオレフィン微多孔膜は、エタノール/水=1/2溶液の浸透性に優れ、複合膜用基材として好適であった。
製造例1において、質量平均分子量が460万の高分子量ポリエチレン(PE1)16質量部と、質量平均分子量が56万の低分子量ポリエチレン(PE2)4質量部とを混合したポリエチレン組成物を用いた。ポリエチレン樹脂総量の濃度が20質量%となるようにして、予め準備しておいたデカリン(デカヒドロナフタレン)2質量部とパラフィン78質量部との混合溶剤と混ぜ、ポリエチレン溶液を調製した。
このポリエチレン溶液を温度160℃でダイよりシート状に押出し、ついで前記押出物を水浴中25℃で冷却し、ゲル状シートを作製した。
該ベーステープを55℃で10分、さらに、95℃で10分乾燥してデカリンをベーステープ内から除去した。その後、該ベーステープを長手方向に温度100℃にて倍率3.9倍で延伸し、引き続いて幅方向に温度100℃にて倍率13倍で延伸し、その後直ちに135℃で熱処理(熱固定)を行った以外は、製造例1と同様にポリオレフィン微多孔膜を得た。
下記表1に示したように、得られたポリオレフィン微多孔膜は、エタノール/水=1/2溶液の浸透性に優れ、複合膜用基材として好適であった。
製造例1において、質量平均分子量が460万の高分子量ポリエチレン(PE1)16質量部と、質量平均分子量が56万の低分子量ポリエチレン(PE2)4質量部とを混合したポリエチレン組成物を用いた。ポリエチレン樹脂総量の濃度が20質量%となるようにして、予め準備しておいたデカリン(デカヒドロナフタレン)2質量部とパラフィン78質量部との混合溶剤と混ぜ、ポリエチレン溶液を調製した。
このポリエチレン溶液を温度160℃でダイよりシート状に押出し、ついで前記押出物を水浴中25℃で冷却し、ゲル状シートを作製した。
該ベーステープを55℃で10分、さらに、95℃で10分乾燥してデカリンをベーステープ内から除去した。その後、該ベーステープを長手方向に温度100℃にて倍率5倍で延伸し、引き続いて幅方向に温度105℃にて倍率9倍で延伸し、その後直ちに135℃で熱処理(熱固定)を行った以外は、製造例1と同様にポリオレフィン微多孔膜を得た。
下記表1に示したように、得られたポリオレフィン微多孔膜は、エタノール/水=1/2溶液の浸透性に優れ、複合膜用基材として好適であった。
製造例1と同様にポリエチレン溶液を調製した。
このポリエチレン溶液を温度160℃でダイよりシート状に押出し、ついで前記押出物を水浴中25℃で冷却し、ゲル状シートを作製した。
該ベーステープを55℃で10分、さらに、95℃で10分乾燥してデカリンをベーステープ内から除去した。その後、該ベーステープを長手方向に温度100℃にて倍率7倍で延伸し、引き続いて幅方向に温度100℃にて倍率13倍で延伸し、その後直ちに135℃で熱処理(熱固定)を行った以外は、製造例1と同様にポリオレフィン微多孔膜を得た。
下記表1に示したように、得られたポリオレフィン微多孔膜は、エタノール/水=1/2溶液の浸透性に優れ、複合膜用基材として好適であった。
(製造例6)
製造例1において、質量平均分子量が460万の高分子量ポリエチレン(PE1)6質量部と、質量平均分子量が56万の低分子量ポリエチレン(PE2)6質量部とを混合したポリエチレン組成物を用いた。ポリエチレン樹脂総量の濃度が12質量%となるようにして、予め準備しておいたデカリン(デカヒドロナフタレン)30質量部とパラフィン58質量部との混合溶剤と混ぜ、ポリエチレン溶液を調製した。
このポリエチレン溶液を温度160℃でダイよりシート状に押出し、ついで前記押出物を水浴中25℃で冷却し、ゲル状シートを作製した。
該ベーステープを55℃で10分、さらに、95℃で10分乾燥してデカリンをベーステープ内から除去した。その後、該ベーステープを長手方向に温度110℃にて倍率6.5倍で延伸し、引き続いて幅方向に温度115℃にて倍率15倍で延伸し、その後直ちに138℃で熱処理(熱固定)を行った以外は、製造例1と同様にポリオレフィン微多孔膜を得た。
下記表1に示したように、得られたポリオレフィン微多孔膜は、エタノール/水=1/2溶液の浸透性に優れ、複合膜用基材として好適であった。
前記式(3)においてZ=Fであるフッ化オレフィン(CF2=CF2)と前記式(4)においてm=2、n=0、W=SO2Fであるフッ化ビニル化合物(CF2=CF-O-(CF2)2-SO2F)との共重合体(MFR=3.0)からなる含フッ素イオン交換樹脂前駆体を押し出し機を用いて、丸口金から270℃で押し出した後に切断し、直径2~3mm、長さ4~5mmの円柱状のペレットとした。この含フッ素イオン交換樹脂前駆体ペレット510gを、KOH濃度15質量%及びDMSO濃度30質量%となるようにKOHとDMSOを添加して事前に調整したKOH水溶液3160gに6時間浸漬し、含フッ素イオン交換樹脂前駆体におけるSO2F基をSO3K基とした。
上記の処理ペレットを60℃の1N-HCl(2500mL)に6時間浸漬した後、60℃のイオン交換水(伝導度0.06S/cm以下)で水洗、乾燥して、前記SO3K基がSO3H基となったプロトン交換基を有する含フッ素イオン交換樹脂(EW=560g/eq)を得た。
次に、ガラスの内筒を有するSUS304製の容量5Lのオートクレーブに、上記含フッ素イオン交換樹脂(含水率28.7質量%)120g、エタノール485g、イオン交換水949gをガラス内筒内に仕込み、内筒とオートクレーブ内壁の間にエタノール70g、イオン交換水140gを仕込んだ。ガラス内筒内の液を攪拌しながら、162℃で4hrの分散処理を実施した。加温とともにオートクレーブ内圧が上昇し最大圧力は1.2MPaであった。冷却後にオートクレーブから取り出したところ、均一で透明な含フッ素イオン交換樹脂の分散組成物を得た。この分散組成物の組成は含フッ素イオン交換樹脂5.0質量%、エタノール30.0質量%、水65.0質量%であった。
続いて、上記分散組成物を500mLのナスフラスコに350g仕込み、BUCHI社製ロータリーエバポレーターR-200を用いて80℃にて40rpmで回転させながら0.04MPaの減圧度において共沸蒸留によって含フッ素イオン交換樹脂濃度が15質量%となるまで濃縮を行い、分散組成物を得た。この分散組成物の組成は含フッ素イオン交換樹脂9.8質量%、エタノール8.3質量%、水81.9質量%であった。
上記のポリエチレン微多孔膜に、パーフルオロスルホン酸ポリマー(EW560)を空孔内に含浸担持させた固体高分子形燃料電池の電解質膜を作製した。
(1)溶媒比率の検討
含浸に先立ち、ガラス板上に上記のポリエチレン微多孔膜(白色不透明の膜)を置き、上から静かに水/エタノール混合溶液を滴下し、微多孔膜の色の変化を確認した。用いた混合溶液は、A:水/エタノール=4/1(質量比)、B:水/エタノール=3/1(質量比)、C:水/エタノール=2/1(質量比)の3種類とした。その結果、Cの混合溶液(水/エタノール=2/1(質量比))だけが微多孔膜の色を透明に変化させたため、微多孔膜の空孔内が混合溶液で充填されたことが確認された。なお、A,Bの混合溶液については微多孔膜の色は白色不透明のまま変化がなく、微多孔膜の空孔内に混合溶液は浸透されなかった。以下の実施例では、Cの混合溶液(水/エタノール=2/1(質量比))を用いて、電解質膜を作製した。
(固体高分子形燃料電池の電解質膜の作製)
上記のパーフルオロスルホン酸ポリマーを水/エタノール=2/1(質量比)の混合溶液にポリマー濃度3.3質量%で溶解させてポリマー溶液を作製した。製造例1で得られたポリエチレン微多孔膜をエタノールに浸漬し、1時間超音波洗浄を施した後、大気雰囲気中で一晩乾燥させた。ガラスシャーレ上に上記ポリマー溶液約0.3mlを薄く塗り広げ、その上に上記ポリエチレン微多孔膜(厚さ6μm、空孔率66%、大きさ約10mm×30mm)を静かに載せ、大気雰囲気中で一晩乾燥させた。その後さらにポリエチレン微多孔膜の上に上記ポリマー溶液約0.3mlを薄く塗り広げ、同様に一晩乾燥させ、溶媒を除去した。次いで、パーフルオロスルホン酸ポリマーを含浸したポリオレフィン微多孔膜を100℃で13.5時間アニーリングした後、ガラスシャーレから電解質膜を取り出し、90 °Cの1 Mの硝酸水溶液中で1時間撹拌することでプロトン置換を行い、続いて90 °CのRO水中で1時間撹拌することで洗浄を行った。これにより、複合膜からなる電解質膜(膜厚11.8μm)を得た。
[比較例1]
EW900のパーフルオロスルホン酸ポリマーを用いたことを除き、上記と同様にして複合膜からなる電解質膜(膜厚16.6μm)を作製した。
[参考例1]
参考例として、デュポン社の電解質膜であるNafion NR211(膜厚25μm)を用いた。
(プロトン伝導性の評価)
EW560およびEW900のパーフルオロスルホン酸ポリマーを充填した電解質膜のプロトン伝導性を交流インピーダンス(In-plane)測定により評価した。参考例として、デュポン社の電解質膜であるNafion NR211(膜厚25μm)のプロトン伝導性の測定結果も示す。図1に示したように、EW560の電解質はEW900の電解質よりプロトン伝導性が有意に高くなった。これは、高いプロトン伝導性を示す低EWのパーフルオロスルホン酸ポリマーを充填したためである。また、EW900の電解質を充填した複合膜は、EW値がおよそ1000のNR211膜と比較して低い伝導性を示す。従って、EW900の電解質を充填した場合、プロトン伝導性の優れた複合膜を作製することができないといえる。
実施例1と同様のポリオレフィン微多孔膜、及びEW560のパーフルオロスルホン酸ポリマーを用いて、微多孔膜の面積に対して滴下するポリマー溶液量を制御することでより薄い電解質膜(膜厚7μm前後)を作製した。具体的には、ガラスシャーレ上にポリマー溶液約0.3mlを薄く塗り広げ、その上にポリエチレン微多孔膜(厚さ6μm、空孔率66%、大きさ約35mm×35mm)を静かに載せ、周囲環境下で一晩乾燥させた後さらにポリエチレン微多孔膜の上に上記ポリマー溶液約0.3mlを薄く塗り広げた。アイオノマーとして上記パーフルオロスルホン酸ポリマー(EW560)を用いた上述のデカール法で触媒層を作製し、触媒層と上記電解質膜を積層させた状態でホットプレス処理(条件:135℃、2.0kN、1分)を行い、固体高分子形燃料電池の膜電極接合体(MEA)を作製した。
[実施例3]
EW600のパーフルオロスルホン酸ポリマーを用いたことを除き、実施例1と同様にして複合膜からなる電解質膜(膜厚11.4μm)を作製した。
(プロトン伝導性の評価)
実施例2、3、比較例1および参考例1の電解質膜について、上記と同様にしてプロトン伝導性を交流インピーダンス(In-plane)測定により評価し、その結果を図8に示す。図8に示したように、EW560とEW600の電解質はEW900の電解質よりプロトン伝導性が有意に高くなった。
Claims (8)
- 電解質膜であって、
平均孔径が1~1000nmであり、空孔率が50~90%であり、かつ、20℃において表面自由エネルギー28mJ/m2以上の溶媒が含浸可能であるポリオレフィン微多孔膜と、
該ポリオレフィン微多孔膜の空孔内に充填された、EW250~850のパーフルオロスルホン酸ポリマーを含む電解質と、を備えた複合膜からなり、
該複合膜の膜厚が1~20μmである、電解質膜。 - 前記平均孔径が5~100nmである、請求項1に記載の電解質膜。
- 前記空孔率が50~78%である、請求項1または2に記載の電解質膜。
- 20℃において表面自由エネルギー33~37mJ/m2の溶媒が含浸可能であるポリオレフィン微多孔膜を備えた、請求項1~3のいずれか1項に記載の電解質膜。
- 前記電解質が、EW450~650のパーフルオロスルホン酸ポリマーを含む、請求項1~4のいずれか1項に記載の電解質膜。
- 前記複合膜の膜厚が5~12μmである、請求項1~5のいずれか1項に記載の電解質膜。
- 前記電解質膜は、固体高分子形燃料電池、水の電気分解またはソーダ電解の電解質膜として用いられる、請求項1~6のいずれか1項に記載の電解質膜。
- 請求項1~7のいずれか1項に記載の電解質膜の製造方法であって、
平均孔径が1~1000nmであり、空孔率が50~90%であり、かつ、20℃において表面自由エネルギー28mJ/m2以上の溶媒が含浸可能であるポリオレフィン微多孔膜に、該溶媒にEW250~850のパーフルオロスルホン酸ポリマーを含む電解質を溶解させた溶液を含浸させる工程と、
該含浸工程後の該ポリオレフィン微多孔膜を乾燥して該溶媒を除去する工程と、
該除去工程後の該ポリオレフィン微多孔膜にアニーリング処理を施す工程と
を含んでなる電解質膜の製造方法。
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DK17833836.4T DK3490044T3 (da) | 2016-07-25 | 2017-05-31 | Elektrolytmembran og fremgangsmåde til fremstilling deraf |
EP23201180.9A EP4279638A3 (en) | 2016-07-25 | 2017-05-31 | Electrolyte membrane and method for producing same |
CA3031591A CA3031591A1 (en) | 2016-07-25 | 2017-05-31 | Electrolyte membrane and method for producing same |
KR1020197001748A KR102262297B1 (ko) | 2016-07-25 | 2017-05-31 | 전해질막 및 그의 제조 방법 |
EP17833836.4A EP3490044B1 (en) | 2016-07-25 | 2017-05-31 | Electrolyte membrane and method for producing same |
JP2017561003A JP6328355B1 (ja) | 2016-07-25 | 2017-05-31 | 電解質膜およびその製造方法 |
CN201780045290.3A CN109476871A (zh) | 2016-07-25 | 2017-05-31 | 电解质膜及其制造方法 |
US16/320,354 US11276871B2 (en) | 2016-07-25 | 2017-05-31 | Electrolyte membrane and method for producing same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016145735 | 2016-07-25 | ||
JP2016-145735 | 2016-07-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018020826A1 true WO2018020826A1 (ja) | 2018-02-01 |
Family
ID=61015925
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/020368 WO2018020826A1 (ja) | 2016-07-25 | 2017-05-31 | 電解質膜およびその製造方法 |
Country Status (9)
Country | Link |
---|---|
US (1) | US11276871B2 (ja) |
EP (2) | EP4279638A3 (ja) |
JP (1) | JP6328355B1 (ja) |
KR (1) | KR102262297B1 (ja) |
CN (1) | CN109476871A (ja) |
CA (1) | CA3031591A1 (ja) |
DK (1) | DK3490044T3 (ja) |
TW (1) | TWI731092B (ja) |
WO (1) | WO2018020826A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020175675A1 (ja) * | 2019-02-28 | 2020-09-03 | Agc株式会社 | 固体高分子電解質膜、膜電極接合体および固体高分子形燃料電池 |
JP2020161343A (ja) * | 2019-03-27 | 2020-10-01 | 地方独立行政法人神奈川県立産業技術総合研究所 | 電解質膜及びその製造方法 |
WO2023085400A1 (ja) * | 2021-11-12 | 2023-05-19 | 国立大学法人東京工業大学 | 膜、複合膜、膜電極接合体、及び水電解装置 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102107903B1 (ko) * | 2017-08-17 | 2020-05-07 | 주식회사 엘지화학 | 고분자 전해질막의 후처리 방법 |
CN108619923A (zh) * | 2018-05-04 | 2018-10-09 | 上海恩捷新材料科技股份有限公司 | 水处理多孔膜及其制备方法 |
JP7247340B2 (ja) * | 2019-05-03 | 2023-03-28 | エルジー エナジー ソリューション リミテッド | 固体電解質膜、その製造方法及びそれを含む全固体電池 |
CN114464855B (zh) * | 2022-01-14 | 2024-05-24 | 深圳圣安技术有限公司 | 聚四氟乙烯-全氟磺酸树脂复合膜及其制备方法 |
KR20240097003A (ko) * | 2022-12-19 | 2024-06-27 | 더블유스코프코리아 주식회사 | 고분자 전해질막 및 그 제조방법 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009242688A (ja) * | 2008-03-31 | 2009-10-22 | Asahi Kasei E-Materials Corp | 高分子電解質膜 |
WO2010101195A1 (ja) * | 2009-03-04 | 2010-09-10 | 旭化成イーマテリアルズ株式会社 | フッ素系高分子電解質膜 |
JP2014110232A (ja) * | 2012-12-04 | 2014-06-12 | Asahi Kasei E-Materials Corp | フッ素系高分子電解質膜 |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4849311A (en) | 1986-09-24 | 1989-07-18 | Toa Nenryo Kogyo Kabushiki Kaisha | Immobilized electrolyte membrane |
JPH0768377B2 (ja) | 1987-07-20 | 1995-07-26 | 東燃株式会社 | 電解質薄膜 |
NL1006322C2 (nl) | 1996-11-06 | 1998-05-11 | Dsm Nv | Electrolytisch membraan, werkwijze voor het vervaardigen daarvan en toepassing. |
US7601448B2 (en) | 2001-07-03 | 2009-10-13 | Sumitomo Chemical Company, Limited | Polymer electrolyte membrane and fuel cell |
JP4724976B2 (ja) | 2001-08-02 | 2011-07-13 | 住友化学株式会社 | 高分子電解質複合膜の製造方法および燃料電池 |
JP2005166557A (ja) | 2003-12-04 | 2005-06-23 | Jsr Corp | 高分子電解質複合膜およびその製造法、ならびにそれを用いた固体高分子型燃料電池 |
JP2006114277A (ja) * | 2004-10-13 | 2006-04-27 | Toyota Motor Corp | プロトン伝導材料、固体高分子電解質膜、及び燃料電池 |
KR100660572B1 (ko) * | 2005-01-14 | 2006-12-22 | 한국과학기술연구원 | 연료전지용 불균일 고분자 전해질 복합막 및 그 제조 방법 |
JP4979236B2 (ja) * | 2006-01-18 | 2012-07-18 | 旭化成イーマテリアルズ株式会社 | 架橋電解質膜及びその製造方法 |
KR101600107B1 (ko) * | 2008-05-26 | 2016-03-04 | 테이진 카세이 가부시키가이샤 | 난연성 폴리카보네이트 수지 조성물 |
EP2479212B1 (en) * | 2009-09-18 | 2023-06-07 | Asahi Kasei Kabushiki Kaisha | Electrolyte emulsion and process for producing same |
JP2011241361A (ja) | 2010-05-21 | 2011-12-01 | Teijin Ltd | ポリエチレン微多孔膜 |
JP5994476B2 (ja) | 2011-08-22 | 2016-09-21 | 東レ株式会社 | 複合化高分子電解質膜の製造方法 |
WO2013100087A1 (ja) * | 2011-12-28 | 2013-07-04 | 旭化成イーマテリアルズ株式会社 | レドックスフロー二次電池及びレドックスフロー二次電池用電解質膜 |
CN102544558A (zh) * | 2012-01-17 | 2012-07-04 | 武汉理工新能源有限公司 | 一种燃料电池三层核心组件的连续化制造方法 |
WO2015090571A1 (de) * | 2013-12-19 | 2015-06-25 | Treofan Germany Gmbh & Co. Kg | IONENAUSTAUSCHER-MEMBRAN AUS BIAXIAL VERSTRECKTER β-PORÖSER FOLIE |
-
2017
- 2017-05-31 EP EP23201180.9A patent/EP4279638A3/en active Pending
- 2017-05-31 WO PCT/JP2017/020368 patent/WO2018020826A1/ja unknown
- 2017-05-31 US US16/320,354 patent/US11276871B2/en active Active
- 2017-05-31 DK DK17833836.4T patent/DK3490044T3/da active
- 2017-05-31 EP EP17833836.4A patent/EP3490044B1/en active Active
- 2017-05-31 KR KR1020197001748A patent/KR102262297B1/ko active IP Right Grant
- 2017-05-31 CA CA3031591A patent/CA3031591A1/en active Pending
- 2017-05-31 CN CN201780045290.3A patent/CN109476871A/zh active Pending
- 2017-05-31 TW TW106117946A patent/TWI731092B/zh active
- 2017-05-31 JP JP2017561003A patent/JP6328355B1/ja active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009242688A (ja) * | 2008-03-31 | 2009-10-22 | Asahi Kasei E-Materials Corp | 高分子電解質膜 |
WO2010101195A1 (ja) * | 2009-03-04 | 2010-09-10 | 旭化成イーマテリアルズ株式会社 | フッ素系高分子電解質膜 |
JP2014110232A (ja) * | 2012-12-04 | 2014-06-12 | Asahi Kasei E-Materials Corp | フッ素系高分子電解質膜 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020175675A1 (ja) * | 2019-02-28 | 2020-09-03 | Agc株式会社 | 固体高分子電解質膜、膜電極接合体および固体高分子形燃料電池 |
CN113491024A (zh) * | 2019-02-28 | 2021-10-08 | Agc株式会社 | 固体高分子电解质膜、膜电极接合体和固体高分子型燃料电池 |
JPWO2020175675A1 (ja) * | 2019-02-28 | 2021-12-23 | Agc株式会社 | 固体高分子電解質膜、膜電極接合体および固体高分子形燃料電池 |
JP7416046B2 (ja) | 2019-02-28 | 2024-01-17 | Agc株式会社 | 固体高分子電解質膜、膜電極接合体および固体高分子形燃料電池 |
US11996595B2 (en) | 2019-02-28 | 2024-05-28 | AGC Inc. | Polymer electrolyte membrane, membrane electrode assembly and polymer electrolyte fuel cell |
JP2020161343A (ja) * | 2019-03-27 | 2020-10-01 | 地方独立行政法人神奈川県立産業技術総合研究所 | 電解質膜及びその製造方法 |
WO2023085400A1 (ja) * | 2021-11-12 | 2023-05-19 | 国立大学法人東京工業大学 | 膜、複合膜、膜電極接合体、及び水電解装置 |
Also Published As
Publication number | Publication date |
---|---|
EP4279638A3 (en) | 2024-03-27 |
US20190267655A1 (en) | 2019-08-29 |
EP3490044B1 (en) | 2024-04-17 |
JP6328355B1 (ja) | 2018-05-23 |
KR20190022657A (ko) | 2019-03-06 |
KR102262297B1 (ko) | 2021-06-07 |
CN109476871A (zh) | 2019-03-15 |
EP3490044A1 (en) | 2019-05-29 |
EP4279638A2 (en) | 2023-11-22 |
US11276871B2 (en) | 2022-03-15 |
DK3490044T3 (da) | 2024-04-29 |
JPWO2018020826A1 (ja) | 2018-08-02 |
TWI731092B (zh) | 2021-06-21 |
EP3490044A4 (en) | 2019-12-25 |
CA3031591A1 (en) | 2018-02-01 |
TW201821498A (zh) | 2018-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6328355B1 (ja) | 電解質膜およびその製造方法 | |
JP6305665B1 (ja) | 複合膜用基材 | |
EP3076465B1 (en) | Polymer electrolyte membrane | |
JP5334273B2 (ja) | フッ素系高分子電解質膜 | |
EP2613390B1 (en) | Fluorine-containing polymer electrolyte membrane | |
US8802314B2 (en) | Reinforced electrolyte membrane for fuel cell, membrane-electrode assembly for fuel cell, and polymer electrolyte fuel cell comprising the same | |
JP5829668B2 (ja) | 含フッ素イオン交換樹脂の分散組成物 | |
JP2015076201A (ja) | 高分子電解質膜の製造方法及び高分子電解質膜の製造装置 | |
JP2012084278A (ja) | フッ素系高分子電解質膜 | |
JP5189394B2 (ja) | 高分子電解質膜 | |
JP2014110232A (ja) | フッ素系高分子電解質膜 | |
JP2020161343A (ja) | 電解質膜及びその製造方法 | |
JP2013045502A (ja) | 複合化高分子電解質膜 | |
JP2006160902A (ja) | 高分子電解質膜及びその製造方法 | |
WO2014112497A1 (ja) | 複合高分子電解質膜およびその製造方法ならびに膜電極接合体、燃料電池 | |
JP2006054076A (ja) | 高分子フィルムおよび高分子電解質膜、並びに、それらの製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2017561003 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17833836 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20197001748 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 3031591 Country of ref document: CA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2017833836 Country of ref document: EP Effective date: 20190225 |