WO2018019203A1 - Catalyseur d'hydroraffinage modifié par du bore ayant une quantité de charge élevée et son procédé de préparation - Google Patents

Catalyseur d'hydroraffinage modifié par du bore ayant une quantité de charge élevée et son procédé de préparation Download PDF

Info

Publication number
WO2018019203A1
WO2018019203A1 PCT/CN2017/094091 CN2017094091W WO2018019203A1 WO 2018019203 A1 WO2018019203 A1 WO 2018019203A1 CN 2017094091 W CN2017094091 W CN 2017094091W WO 2018019203 A1 WO2018019203 A1 WO 2018019203A1
Authority
WO
WIPO (PCT)
Prior art keywords
boron
modified
metal
hydrotreating catalyst
carrier
Prior art date
Application number
PCT/CN2017/094091
Other languages
English (en)
Chinese (zh)
Inventor
许莉
石友良
张然
冯春峰
王杰华
Original Assignee
武汉凯迪工程技术研究总院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉凯迪工程技术研究总院有限公司 filed Critical 武汉凯迪工程技术研究总院有限公司
Publication of WO2018019203A1 publication Critical patent/WO2018019203A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/883Molybdenum and nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/888Tungsten
    • B01J35/615
    • B01J35/633
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/06Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
    • C10G45/08Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof in combination with chromium, molybdenum, or tungsten metals, or compounds thereof

Definitions

  • the invention relates to a catalyst and a preparation method thereof, in particular to a high-load boron-modified hydrorefining catalyst and a preparation method thereof.
  • a typical hydrofinishing catalyst typically consists of an alumina support and a hydrogenation active metal.
  • the hydrogenation-active metal is a Group VIB and/or Group VIII metal, the commonly used Group VIB metal is Mo and/or W, and the Group VIII metal is Co and/or Ni.
  • alumina As a carrier material, alumina has a wide range of applications in the field of hydrogenation catalysis. However, due to the weak acidity of alumina, it is easy to interact with the active metal component to form inactive species, which affects the activity and stability of the catalyst. In order to improve the acidity of alumina and adjust its interaction with metal components, alumina is often modified by introducing additives such as Si, P, Ti, B, and F.
  • the effect of boron on the hydrotreating catalyst is mainly reflected in the improvement of denitrification activity and the improvement of metal dispersion, thereby improving the hydrogenation activity of the refined catalyst.
  • the literature (Lewandowski M, Fuel, 2000, 79, 487) studied the effect of boron on the hydrodenitrogenation activity of hydrotreating catalysts. It was found that the hydrodenitrogenation activity of the catalyst gradually increased with the increase of boron loading. Increasing, the rate of deactivation of the catalyst is slowed down.
  • the additive boron deepens the degree of hydrogenation reaction, because boron forms B 2 O 3 on the surface of alumina, promotes the vulcanization of the catalyst, reduces the carbon deposition in the hydrogenation process, and improves the dispersion of the active metal component. .
  • Boron as an auxiliary agent for alumina modification the usual addition methods are divided into two types: one is to introduce boron during the formation of the carrier, including the coprecipitation method and the physical mixing method; the other is to pass the preform after the formation of the carrier. Impregnation is introduced. Boron is generally added to the support in the form of H 3 BO 3 , while the solubility of H 3 BO 3 is only 6 g/100 ml of water at room temperature, which limits the loading of boron to some extent.
  • the Chinese invention patent published as CN00122919.2 discloses a hydrodenitrogenation catalyst and a preparation method thereof.
  • the catalyst uses alumina or silica-containing alumina as a carrier, Mo-Ni as an active component, and a boron auxiliary agent.
  • Mo-Ni as an active component
  • a boron auxiliary agent By formulating a stable alkaline Mo-Ni-B solution and using a co-impregnation technique, the hydrodenitrogenation activity of the catalyst is improved.
  • the catalyst is impregnated step by step, introducing ammonia water and polluting the environment.
  • Chinese Patent Publication No. CN00110018.1 discloses a hydrogenation catalyst and a preparation method thereof,
  • the catalyst is a hydrogenation active component of Group VIB and Group VIII metals, supporting boron, silicon and other additives, and is prepared by coprecipitation. Some active metals may enter the bulk phase or be oxidized during coprecipitation and extrusion. Covered with aluminum particles, the utilization rate of the active metal is lowered, and the hydrogenation activity is low.
  • the Chinese invention patent publication CN101491767A discloses a preparation method of a hydrogenation catalyst, wherein the fluorine, silicon, phosphorus and the like in the catalyst carrier are passed through the gelation process of the dry rubber powder and the two stages of the carrier molding process.
  • the addition can effectively improve the dispersion of the active metal on the surface, improve the utilization rate of the active metal, and further improve the performance of the catalyst.
  • the boron content of the promoter in the catalyst is only about 1%.
  • the present invention provides a high-load boron-modified hydrotreating catalyst and a preparation method thereof in view of the deficiencies in the prior art.
  • the method can not only better distribute the boron of the auxiliary agent on the surface of the alumina carrier, improve the dispersion degree of the active component, but also effectively increase the loading of boron in the catalyst and improve the hydrodenitrogenation activity of the catalyst.
  • the hydrofinishing catalyst prepared by the present invention is particularly suitable for hydrotreating of high nitrogen feedstock oil.
  • the present invention provides a high-load boron-modified hydrotreating catalyst composed of an active metal component and a carrier, the active metal component being supported on a carrier, the active metal group It is composed of an oxide containing two metals of Group VIB and Group VIII, wherein the Group VIB metal is Mo and/or W, the Group VIII metal is Ni and/or Co, and the carrier is boron modified alumina. Carrier.
  • the content of the oxide containing the Group VIB metal is 8.9 to 30.1%
  • the content of the oxide containing the Group VIII metal is 1.9 to 10.1%
  • boron in the boron-modified alumina carrier accounts for The mass fraction of the catalyst is from 1.0 to 11.5%.
  • the content of the oxide containing the Group VIB metal is 15.0 to 26.0%
  • the metal of the Group VIII is preferably Ni
  • the content of the oxide containing Ni is 2.2 to 6.5%
  • the mass fraction of boron in the catalyst is 2.0 to 4.0%.
  • the catalyst has a specific surface area of 130 to 320 m 2 /g and a total pore volume of 0.15 to 0.50 cm 3 /g.
  • the catalyst has a specific surface area of from 190 to 250 m 2 /g and a total pore volume of from 0.33 to 0.40 cm 3 /g.
  • the method for preparing the boron-modified alumina carrier comprises the following steps:
  • step 3 Weigh the alumina carrier obtained in step 1) in a hydrothermal treatment furnace, react at a pressure of 0-0.5 mpa and a temperature of 350-700 ° C for 0.5-9 h, and then pass the boric acid aqueous solution prepared in step 2). Into the furnace, a boron-modified alumina carrier is obtained.
  • the alumina precursor is amorphous aluminum hydroxide, pseudo boehmite, boehmite, gibbsite, yttrium aluminum, and boehmite. Any one or several of them, or an aluminum oxide compound which can be converted into ⁇ -Al 2 O 3 after calcination;
  • the squeezing agent is citric acid and/or phthalocyanine powder, and the mass of the squeezing agent accounts for the mass of the alumina carrier 1.0 to 5.0%;
  • the peptizer is an aqueous solution of an organic acid or an inorganic acid, the organic acid is formic acid and/or acetic acid, and the inorganic acid is any one or more of nitric acid, phosphoric acid, and hydrochloric acid; the acid content in the peptizing agent accounts for oxidation
  • the mass of the aluminum carrier is 1.0 to 7.0%.
  • the mass of the extrusion agent accounts for 2.0 to 3.5% of the mass of the alumina carrier; and the content of the acid in the gum solvent accounts for 1.8 to 4.0% of the mass of the alumina carrier.
  • the drying temperature is 60 to 190 ° C
  • the drying time is 0.1 to 22 h
  • the baking temperature is 300 to 650 ° C
  • the baking time is 3 to 6 h.
  • the drying temperature is 90 to 130 ° C
  • the drying time is 1.5 to 8 hours
  • the baking temperature is 420 to 540 ° C
  • the baking time is 3 to 6 hours.
  • the alumina carrier is in the shape of a cylinder, a clover, a four-leaf clover or a gear, wherein the cylindrical strip-shaped alumina carrier has a particle diameter of 1.2 to 1.6 mm and a length of 5 to 10 mm;
  • the two-leaf pitch of clover or four-leaf clover is 1.1 to 1.8 mm and the length is 5 to 10 mm.
  • the mass space velocity of the boric acid aqueous solution is 0.1 to 5.5 h -1 .
  • the mass space velocity of the aqueous boric acid solution is 1.2 to 4.0 h -1 .
  • the invention provides a preparation method of a high-load boron-modified hydrotreating catalyst, which comprises the following steps:
  • step 3 Weigh the alumina carrier obtained in step 1) in a hydrothermal treatment furnace, react at a pressure of 0-0.5 mpa and a temperature of 350-700 ° C for 0.5-9 h, and then pass the boric acid aqueous solution prepared in step 2). Into the furnace, obtaining a boron-modified alumina carrier;
  • the boron-modified alumina carrier obtained in step 3) is weighed into the metal salt solution obtained in step 4) for impregnation; the impregnation method can select equal volume impregnation, excessive impregnation, and The two metal components may be co-impregnated or stepwise impregnated, preferably in an equal volume co-impregnation.
  • step 6) The carrier impregnated in the step 5) is dried and calcined to obtain a hydrotreating catalyst.
  • the metal cobalt is selected from the group consisting of cobalt nitrate, cobalt chloride, cobalt carbonyl and cobalt carbonate;
  • the metal molybdenum is selected from the group consisting of ammonium molybdate, molybdenum oxide and ammonium paramolybdate;
  • the metal tungsten is selected from the group consisting of tungsten Ammonium acid and ammonium paratungstate;
  • metal nickel is selected from the group consisting of nickel nitrate, basic nickel carbonate and nickel carbonate.
  • the drying temperature is 70 to 200 ° C, preferably 95 to 125 ° C
  • the drying time is 1.0 to 24 h, preferably 3 to 6 h
  • the calcination temperature is 250 to 600 ° C, preferably 400.
  • the calcination time is ⁇ 510° C.
  • the calcination time is 1 to 15 h, preferably 3 to 5 h.
  • the drying temperature is 95 to 125 ° C
  • the drying time is 3 to 6 hours
  • the baking temperature is 400 to 510 ° C
  • the baking time is 3 to 5 hours.
  • the boron-modified hydrotreating catalyst prepared by the method of the invention has a uniform distribution of B 2 O 3 and is concentrated on the surface of the alumina carrier, which can prevent the active component from entering the alumina crystal lattice, and is favorable for increasing the dispersion degree of the metal component. , improving the utilization rate of the metal component, thereby increasing the hydrogenation activity of the catalyst;
  • the boron-modified hydrotreating catalyst prepared by the invention can obtain a high-loading boron-containing hydrotreating catalyst, and the catalyst has higher denitrification activity.
  • NiO and WO 3 ⁇ nitrate hexahydrate and ammonium metatungstate as raw materials, according to the target concentration of NiO and WO 3 in the immersion liquid.
  • an appropriate amount of metal salt is weighed in deionized water, stirred and dissolved to a dark green clarified solution, and used.
  • the NiO content in the Ni-W metal salt solution is 10 to 15 g/100 ml, and the WO 3 content is 40 to 44 g/100 ml.
  • NiO and MoO 3 Using basic nickel carbonate, molybdenum trioxide and phosphoric acid as raw materials, according to the target concentration of NiO and MoO 3 in the impregnation solution, an appropriate amount of metal salt and phosphoric acid solution are weighed and heated to reflux to obtain a clear dark green solution, which is ready for use.
  • the NiO content in the Ni-Mo metal salt solution is 6 to 8 g/100 ml
  • the MoO 3 content is 38 to 42 g/100 ml.
  • the metal salt and the oxide are selected according to actual conditions, such as:
  • the metal molybdenum is selected from the group consisting of ammonium molybdate, molybdenum oxide
  • the metal tungsten is selected from the group consisting of ammonium metatungstate and ammonium paratungstate;
  • the metallic nickel is selected from the group consisting of nickel nitrate, basic nickel carbonate and nickel carbonate.
  • pseudo-boehmite which is pseudo-hydrated boehmite (the dry basis of pseudo-boehmite is 80%, the specific surface is 380m 2 /g, and the total pore volume is 0.86cm 3 / g), 5g of Tianjing powder, measuring 120ml of 4% dilute nitric acid aqueous solution, crushed into a squeezable cake in a wheel mill, extruded by a squeezer, the extrudate is 1.5mm in diameter a cylindrical shape; the extrudate is dried at 90 ° C for 16 h, and then calcined at 530 ° C for 6 h to obtain an alumina carrier Z1;
  • the carrier BZ1 was impregnated with an equal volume of a metal salt solution containing Ni-Mo, dried at 100 ° C for 5 h, and calcined at 500 ° C for 3 h to obtain a catalyst C1.
  • the carrier BZ2 was impregnated with an equal volume of a metal salt solution containing Ni-Mo, dried at 110 ° C for 5 h, and calcined at 480 ° C for 4 h to obtain a catalyst C2.
  • the carrier BZ3 was impregnated with an equal volume of a metal salt solution containing Ni-Mo, dried at 110 ° C for 5 h, and calcined at 500 ° C for 4 h to obtain a catalyst C3.
  • the carrier BZ4 was impregnated with an equal volume of a metal salt solution containing Ni-W, dried at 120 ° C for 5 h, and calcined at 520 ° C for 4 h to obtain a catalyst C4.
  • the carrier BZ5 was impregnated with an equal volume of a metal salt solution containing Ni-Mo, dried at 100 ° C for 5 h, and calcined at 500 ° C for 3 h to obtain a catalyst C5.
  • the physicochemical properties of each catalyst are shown in Table 1.
  • the metal dispersion is measured by photoelectron spectroscopy, and the larger the value of the dispersion, the better the metal dispersion.
  • I is the area intensity of the photoelectron peak of an element
  • I Ni /I Al Al represents the dispersion of Ni element on alumina
  • I Mo /I Al represents the dispersion of Mo element on alumina
  • I W /I Al represents W The dispersion of the elements on the alumina.
  • the performance evaluation of the catalyst of the present invention was carried out in a 30 ml fixed bed reactor, and the catalyst was pre-vulcanized before the reaction.
  • the performance evaluation conditions of the catalyst were a reaction pressure of 10.5 mPa, a hydrogen oil volume ratio of 1200, a raw material feed volume space velocity of 1.5 h -1 , and a reaction temperature of 385 °C.
  • the properties of the feedstock oil are shown in Table 2, and the results of the activity evaluation of the catalyst are shown in Table 3.
  • the boron-containing hydrotreating catalyst is prepared by the method of the invention, the dispersion of the active component on the alumina carrier is good, the utilization ratio of the metal component is improved, and the hydrogenation of the catalyst can be remarkably improved. active.
  • the data in Table 3 shows that the boron-containing hydrotreating catalysts C1 to C5 prepared by the method of the present invention have a B content of 2.0 to 4.0% in C1 to C4, have high hydrogenation activity, and aromatic hydrocarbons and sulfur nitrogen in the feedstock oil. The content is greatly reduced, and C4 exhibits excellent hydrogenation activity.
  • the content of B in the catalyst C5 was only 0.98%, and the denitrification activity was slightly inferior. Kneading
  • the prepared boron-containing hydrotreating catalyst C6 has the lowest hydrogenation activity and denitrification activity due to uneven distribution of boron in the carrier.

Abstract

Un catalyseur d'hydroraffinage modifié par du bore ayant une quantité de charge élevée et son procédé de préparation. Le catalyseur est constitué d'un composant métallique actif et d'un support. Le composant métallique actif est porté par le support. Le composant métallique actif est constitué d'oxydes contenant des métaux du groupe VIB et du groupe VIII. Le métal du groupe VIB est Mo et/ou W, et le métal du groupe VIII est Ni et/ou Co. le support est un support d'oxyde d'aluminium modifié par du bore. Le catalyseur d'hydroraffinage modifié par du bore et B2O3 sont uniformément distribués et concentrés sur la surface du support d'oxyde d'aluminium, de manière à empêcher le composant actif d'entrer dans un réseau d'oxyde d'aluminium, à contribuer à améliorer la dispersion et l'utilisation du composant métallique, et à améliorer davantage l'activité d'hydrogénation du catalyseur. De plus, on peut obtenir un catalyseur d'hydroraffinage borique ayant une quantité de charge élevée, et le catalyseur a une activité de dénitrification élevée.
PCT/CN2017/094091 2016-07-29 2017-07-24 Catalyseur d'hydroraffinage modifié par du bore ayant une quantité de charge élevée et son procédé de préparation WO2018019203A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610614764.9A CN106311263B (zh) 2016-07-29 2016-07-29 高负载量硼改性加氢精制催化剂及其制备方法
CN201610614764.9 2016-07-29

Publications (1)

Publication Number Publication Date
WO2018019203A1 true WO2018019203A1 (fr) 2018-02-01

Family

ID=57739665

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/094091 WO2018019203A1 (fr) 2016-07-29 2017-07-24 Catalyseur d'hydroraffinage modifié par du bore ayant une quantité de charge élevée et son procédé de préparation

Country Status (2)

Country Link
CN (1) CN106311263B (fr)
WO (1) WO2018019203A1 (fr)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108970628A (zh) * 2018-08-08 2018-12-11 北京众智创新科技开发有限公司 一种沸腾床加氢处理催化剂的制备方法
CN111068665A (zh) * 2018-10-22 2020-04-28 中国石油化工股份有限公司 一种选择加氢催化剂及制备方法
CN111097537A (zh) * 2018-10-25 2020-05-05 中国石油化工股份有限公司 一种加氢精制催化剂的制备方法及加氢精制催化剂
CN112237908A (zh) * 2020-09-30 2021-01-19 山东公泉化工股份有限公司 催化剂载体、加氢处理催化剂、制备方法及应用
CN112337468A (zh) * 2019-08-09 2021-02-09 中国石油天然气股份有限公司 一种烯烃异构化催化剂及其制备方法与应用
CN112717959A (zh) * 2019-10-28 2021-04-30 中国石油化工股份有限公司 一种加氢处理催化剂及其制备方法和应用
CN112717963A (zh) * 2019-10-28 2021-04-30 中国石油化工股份有限公司 一种加氢预处理催化剂及其制备方法和应用
CN112717947A (zh) * 2019-10-28 2021-04-30 中国石油化工股份有限公司 一种含硼催化剂及其制备方法和应用
CN112973711A (zh) * 2019-12-16 2021-06-18 北京中能炜业科技发展有限公司 馏分油加氢精制催化剂及其制备方法
CN112973765A (zh) * 2019-12-13 2021-06-18 中国石油化工股份有限公司 一种c5石油树脂加氢催化剂及其制备方法
CN112973713A (zh) * 2019-12-16 2021-06-18 北京中能炜业科技发展有限公司 加氢精制催化剂及其制备方法
CN113000055A (zh) * 2019-12-19 2021-06-22 中国石油天然气股份有限公司 一种壳层型加氢催化剂及其制备方法
CN113019379A (zh) * 2021-03-18 2021-06-25 中国海洋石油集团有限公司 一种用于烯醛液相加氢的催化剂及其制备方法和用途
CN113522352A (zh) * 2020-04-15 2021-10-22 中国石油化工股份有限公司 一种加氢脱硫脱芳催化剂的制备方法
CN113562751A (zh) * 2020-04-28 2021-10-29 中国石油化工股份有限公司 改性拟薄水铝石及其制备方法和改性氧化铝及加氢催化剂
CN114425350A (zh) * 2020-10-29 2022-05-03 中国石油化工股份有限公司 一种重质油加氢处理催化剂及其制备方法
CN114433177A (zh) * 2020-10-30 2022-05-06 中国石油化工股份有限公司 催化剂载体、加氢催化剂和生产低bmci值尾油和多产航煤的方法
CN114433245A (zh) * 2020-10-30 2022-05-06 中国石油化工股份有限公司 催化剂载体、加氢催化剂和重质馏分油的加氢改质方法
CN114453006A (zh) * 2020-10-21 2022-05-10 中国石油化工股份有限公司 一种加氢精制催化剂的制备方法及加氢精制催化剂和应用
CN114453016A (zh) * 2020-10-21 2022-05-10 中国石油化工股份有限公司 加氢处理催化剂的制备方法及加氢处理催化剂和应用
CN114453014A (zh) * 2020-10-21 2022-05-10 中国石油化工股份有限公司 一种加氢脱芳烃催化剂及其制备方法和应用
CN114453012A (zh) * 2020-10-21 2022-05-10 中国石油化工股份有限公司 加氢裂化催化剂的制备方法及加氢裂化催化剂和应用
CN114452963A (zh) * 2020-10-21 2022-05-10 中国石油化工股份有限公司 加氢处理催化剂及其制备方法和应用
CN114522693A (zh) * 2020-10-30 2022-05-24 中国石油化工股份有限公司 一种含硼重油加氢处理催化剂和重油加氢处理方法
CN114618511A (zh) * 2020-12-11 2022-06-14 中国石油化工股份有限公司 重油加氢脱硫催化剂和重油加氢处理方法
CN115518663A (zh) * 2021-06-25 2022-12-27 中国石油化工股份有限公司 一种渣油加氢裂化催化剂的制备方法
CN115634701A (zh) * 2022-12-06 2023-01-24 山东公泉化工股份有限公司 加氢精制催化剂及其制备方法、应用
CN115672347A (zh) * 2021-07-29 2023-02-03 中国石油化工股份有限公司 一种加氢精制催化剂及其制备方法和应用
CN116037136A (zh) * 2021-10-28 2023-05-02 中国石油化工股份有限公司 一种含硼加氢脱氮催化剂及其制备方法
CN116060022A (zh) * 2021-10-29 2023-05-05 中国石油化工股份有限公司 一种加氢催化剂及其生产方法
CN115672347B (zh) * 2021-07-29 2024-05-10 中国石油化工股份有限公司 一种加氢精制催化剂及其制备方法和应用

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106000476B (zh) * 2016-05-19 2018-07-24 武汉凯迪工程技术研究总院有限公司 硼改性氧化铝的制备方法
CN106311263B (zh) * 2016-07-29 2018-10-23 武汉凯迪工程技术研究总院有限公司 高负载量硼改性加氢精制催化剂及其制备方法
CN111420675B (zh) * 2018-12-20 2023-07-28 上海华谊能源化工有限公司 一种用于一氧化碳催化偶联合成碳酸二甲酯的催化剂及其制备方法与应用
CN112547069B (zh) * 2019-09-10 2023-05-30 中国石油化工股份有限公司 镍铜催化剂及其制备方法以及制备甲基异丁基醇的方法
CN112717925A (zh) * 2019-10-28 2021-04-30 中国石油化工股份有限公司 一种蒽醌加氢催化剂及其制备方法和应用
CN112717948B (zh) * 2019-10-28 2023-05-05 中国石油化工股份有限公司 一种硼改性加氢精制催化剂及其制备方法和应用
CN113941351B (zh) * 2020-07-17 2023-10-24 中国石油化工股份有限公司 航煤加氢催化剂及其制备方法
CN115404102A (zh) * 2022-09-23 2022-11-29 中国海洋石油集团有限公司 一种变压器油基础油及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4629716A (en) * 1985-04-15 1986-12-16 Shell Oil Company Process for producing narrow-pore catalyst supports
CN1339562A (zh) * 2000-08-22 2002-03-13 中国石油化工股份有限公司 一种加氢脱氮催化剂及其制备方法
CN101491767A (zh) * 2008-01-23 2009-07-29 中国石油化工股份有限公司 一种加氢催化剂的制备方法
CN102652919A (zh) * 2011-03-03 2012-09-05 中国石油化工股份有限公司 以含硼氧化铝为载体的加氢脱金属催化剂、制备及其应用
WO2014162967A1 (fr) * 2013-04-03 2014-10-09 日揮触媒化成株式会社 Support pour catalyseurs d'hydrogénation, son procédé de production, catalyseur d'hydrogénation et son procédé de production
CN106311263A (zh) * 2016-07-29 2017-01-11 武汉凯迪工程技术研究总院有限公司 高负载量硼改性加氢精制催化剂及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1098917C (zh) * 2000-01-04 2003-01-15 中国石油化工集团公司 一种中油型加氢裂化催化剂及其制备方法
CN101590417A (zh) * 2008-05-29 2009-12-02 北京三聚环保新材料股份有限公司 加氢精制催化剂及其制备方法
CN102039203B (zh) * 2009-10-16 2013-04-10 中国石油化工股份有限公司 一种加氢处理催化剂及其制备方法
CN102451699B (zh) * 2010-10-15 2013-06-05 中国石油化工股份有限公司 加氢处理催化剂的制备方法
CN104549345B (zh) * 2013-10-23 2017-01-25 中国石油化工股份有限公司 一种加氢裂化活性支撑剂及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4629716A (en) * 1985-04-15 1986-12-16 Shell Oil Company Process for producing narrow-pore catalyst supports
CN1339562A (zh) * 2000-08-22 2002-03-13 中国石油化工股份有限公司 一种加氢脱氮催化剂及其制备方法
CN101491767A (zh) * 2008-01-23 2009-07-29 中国石油化工股份有限公司 一种加氢催化剂的制备方法
CN102652919A (zh) * 2011-03-03 2012-09-05 中国石油化工股份有限公司 以含硼氧化铝为载体的加氢脱金属催化剂、制备及其应用
WO2014162967A1 (fr) * 2013-04-03 2014-10-09 日揮触媒化成株式会社 Support pour catalyseurs d'hydrogénation, son procédé de production, catalyseur d'hydrogénation et son procédé de production
CN106311263A (zh) * 2016-07-29 2017-01-11 武汉凯迪工程技术研究总院有限公司 高负载量硼改性加氢精制催化剂及其制备方法

Cited By (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108970628A (zh) * 2018-08-08 2018-12-11 北京众智创新科技开发有限公司 一种沸腾床加氢处理催化剂的制备方法
CN108970628B (zh) * 2018-08-08 2023-08-29 北京众智创新科技开发有限公司 一种沸腾床加氢处理催化剂的制备方法
CN111068665A (zh) * 2018-10-22 2020-04-28 中国石油化工股份有限公司 一种选择加氢催化剂及制备方法
CN111068665B (zh) * 2018-10-22 2023-08-11 中国石油化工股份有限公司 一种选择加氢催化剂及制备方法
CN111097537A (zh) * 2018-10-25 2020-05-05 中国石油化工股份有限公司 一种加氢精制催化剂的制备方法及加氢精制催化剂
CN112337468B (zh) * 2019-08-09 2023-12-22 中国石油天然气股份有限公司 一种烯烃异构化催化剂及其制备方法与应用
CN112337468A (zh) * 2019-08-09 2021-02-09 中国石油天然气股份有限公司 一种烯烃异构化催化剂及其制备方法与应用
CN112717963B (zh) * 2019-10-28 2022-03-04 中国石油化工股份有限公司 一种加氢预处理催化剂及其制备方法和应用
CN112717947A (zh) * 2019-10-28 2021-04-30 中国石油化工股份有限公司 一种含硼催化剂及其制备方法和应用
CN112717963A (zh) * 2019-10-28 2021-04-30 中国石油化工股份有限公司 一种加氢预处理催化剂及其制备方法和应用
CN112717959A (zh) * 2019-10-28 2021-04-30 中国石油化工股份有限公司 一种加氢处理催化剂及其制备方法和应用
CN112973765A (zh) * 2019-12-13 2021-06-18 中国石油化工股份有限公司 一种c5石油树脂加氢催化剂及其制备方法
CN112973765B (zh) * 2019-12-13 2022-06-07 中国石油化工股份有限公司 一种c5石油树脂加氢催化剂及其制备方法
CN112973711A (zh) * 2019-12-16 2021-06-18 北京中能炜业科技发展有限公司 馏分油加氢精制催化剂及其制备方法
CN112973713A (zh) * 2019-12-16 2021-06-18 北京中能炜业科技发展有限公司 加氢精制催化剂及其制备方法
CN112973713B (zh) * 2019-12-16 2023-11-03 山西腾茂科技股份有限公司 加氢精制催化剂及其制备方法
CN113000055A (zh) * 2019-12-19 2021-06-22 中国石油天然气股份有限公司 一种壳层型加氢催化剂及其制备方法
CN113000055B (zh) * 2019-12-19 2023-08-22 中国石油天然气股份有限公司 一种壳层型加氢催化剂及其制备方法
CN113522352A (zh) * 2020-04-15 2021-10-22 中国石油化工股份有限公司 一种加氢脱硫脱芳催化剂的制备方法
CN113522352B (zh) * 2020-04-15 2023-05-05 中国石油化工股份有限公司 一种加氢脱硫脱芳催化剂的制备方法
CN113562751A (zh) * 2020-04-28 2021-10-29 中国石油化工股份有限公司 改性拟薄水铝石及其制备方法和改性氧化铝及加氢催化剂
CN113562751B (zh) * 2020-04-28 2023-05-09 中国石油化工股份有限公司 改性拟薄水铝石及其制备方法和改性氧化铝及加氢催化剂
CN112237908A (zh) * 2020-09-30 2021-01-19 山东公泉化工股份有限公司 催化剂载体、加氢处理催化剂、制备方法及应用
CN114453012B (zh) * 2020-10-21 2023-07-28 中国石油化工股份有限公司 加氢裂化催化剂的制备方法及加氢裂化催化剂和应用
CN114453012A (zh) * 2020-10-21 2022-05-10 中国石油化工股份有限公司 加氢裂化催化剂的制备方法及加氢裂化催化剂和应用
CN114453016A (zh) * 2020-10-21 2022-05-10 中国石油化工股份有限公司 加氢处理催化剂的制备方法及加氢处理催化剂和应用
CN114453016B (zh) * 2020-10-21 2023-08-01 中国石油化工股份有限公司 加氢处理催化剂的制备方法及加氢处理催化剂和应用
CN114452963A (zh) * 2020-10-21 2022-05-10 中国石油化工股份有限公司 加氢处理催化剂及其制备方法和应用
CN114453014B (zh) * 2020-10-21 2023-07-28 中国石油化工股份有限公司 一种加氢脱芳烃催化剂及其制备方法和应用
CN114453014A (zh) * 2020-10-21 2022-05-10 中国石油化工股份有限公司 一种加氢脱芳烃催化剂及其制备方法和应用
CN114452963B (zh) * 2020-10-21 2023-09-01 中国石油化工股份有限公司 加氢处理催化剂及其制备方法和应用
CN114453006B (zh) * 2020-10-21 2023-09-01 中国石油化工股份有限公司 一种加氢精制催化剂的制备方法及加氢精制催化剂和应用
CN114453006A (zh) * 2020-10-21 2022-05-10 中国石油化工股份有限公司 一种加氢精制催化剂的制备方法及加氢精制催化剂和应用
CN114425350A (zh) * 2020-10-29 2022-05-03 中国石油化工股份有限公司 一种重质油加氢处理催化剂及其制备方法
CN114425350B (zh) * 2020-10-29 2024-03-08 中国石油化工股份有限公司 一种重质油加氢处理催化剂及其制备方法
CN114522693B (zh) * 2020-10-30 2023-07-14 中国石油化工股份有限公司 一种含硼重油加氢处理催化剂和重油加氢处理方法
CN114433177B (zh) * 2020-10-30 2023-12-12 中国石油化工股份有限公司 催化剂载体、加氢催化剂和生产低bmci值尾油和多产航煤的方法
CN114522693A (zh) * 2020-10-30 2022-05-24 中国石油化工股份有限公司 一种含硼重油加氢处理催化剂和重油加氢处理方法
CN114433245B (zh) * 2020-10-30 2023-12-12 中国石油化工股份有限公司 催化剂载体、加氢催化剂和重质馏分油的加氢改质方法
CN114433245A (zh) * 2020-10-30 2022-05-06 中国石油化工股份有限公司 催化剂载体、加氢催化剂和重质馏分油的加氢改质方法
CN114433177A (zh) * 2020-10-30 2022-05-06 中国石油化工股份有限公司 催化剂载体、加氢催化剂和生产低bmci值尾油和多产航煤的方法
CN114618511B (zh) * 2020-12-11 2023-07-14 中国石油化工股份有限公司 重油加氢脱硫催化剂和重油加氢处理方法
CN114618511A (zh) * 2020-12-11 2022-06-14 中国石油化工股份有限公司 重油加氢脱硫催化剂和重油加氢处理方法
CN113019379A (zh) * 2021-03-18 2021-06-25 中国海洋石油集团有限公司 一种用于烯醛液相加氢的催化剂及其制备方法和用途
CN115518663A (zh) * 2021-06-25 2022-12-27 中国石油化工股份有限公司 一种渣油加氢裂化催化剂的制备方法
CN115518663B (zh) * 2021-06-25 2024-01-09 中国石油化工股份有限公司 一种渣油加氢裂化催化剂的制备方法
CN115672347A (zh) * 2021-07-29 2023-02-03 中国石油化工股份有限公司 一种加氢精制催化剂及其制备方法和应用
CN115672347B (zh) * 2021-07-29 2024-05-10 中国石油化工股份有限公司 一种加氢精制催化剂及其制备方法和应用
CN116037136A (zh) * 2021-10-28 2023-05-02 中国石油化工股份有限公司 一种含硼加氢脱氮催化剂及其制备方法
CN116060022A (zh) * 2021-10-29 2023-05-05 中国石油化工股份有限公司 一种加氢催化剂及其生产方法
CN115634701A (zh) * 2022-12-06 2023-01-24 山东公泉化工股份有限公司 加氢精制催化剂及其制备方法、应用
CN115634701B (zh) * 2022-12-06 2024-03-26 山东公泉化工股份有限公司 加氢精制催化剂及其制备方法、应用

Also Published As

Publication number Publication date
CN106311263B (zh) 2018-10-23
CN106311263A (zh) 2017-01-11

Similar Documents

Publication Publication Date Title
WO2018019203A1 (fr) Catalyseur d'hydroraffinage modifié par du bore ayant une quantité de charge élevée et son procédé de préparation
WO2018161952A1 (fr) Procédé de préparation de catalyseur d'hydrotraitement par procédé d'imprégnation
JP2010504188A (ja) 選択的水素化のためのニッケル触媒
CN101491768B (zh) 一种含硅和锆加氢催化剂的制备方法
TWI611836B (zh) 觸媒支撐物及其製備方法
CN102441437A (zh) 大孔氧化铝载体及加氢脱金属催化剂的制备方法
TWI802675B (zh) 氫化精製催化劑及氫化精製催化劑系統、其等之製備方法及其等之用途、及分餾油的氫化精製方法
JPWO2003006156A1 (ja) 水素化精製触媒、それに用いる担体および製造方法
EP1153107A1 (fr) Catalyseur d'hydrocraquage et utilisation de ce dernier
CN105983417A (zh) 渣油加氢脱金属催化剂及其制备方法
CN103480390B (zh) 具有加氢催化作用的催化剂及其制备方法和应用以及烃油加氢处理方法
CN105754638B (zh) 一种重油加氢处理方法
WO2018188532A1 (fr) Catalyseur d'hydroraffinage de pétrole brut à teneur élevée en azote et son procédé de préparation, et son procédé de préparation
WO2021218982A1 (fr) Catalyseur d'hydrogénation et son procédé de préparation et son utilisation
CN103480409B (zh) 具有加氢催化作用的催化剂及其制备方法和应用以及烃油加氢处理方法
CN104549330B (zh) 一种加氢精制活性支撑剂及其制备方法
JP4519379B2 (ja) 重質炭化水素油の水素化処理触媒
CN114433186B (zh) 含大孔加氢裂化催化剂及其分步制备方法和应用
JP2794320B2 (ja) 炭化水素油用水素化処理触媒組成物の製造方法
CN103480386B (zh) 具有加氢催化作用的催化剂及其制备方法和应用和烃油加氢处理方法
CN115608371B (zh) 一种蛋壳型渣油加氢催化剂及其制备方法
CN114425351B (zh) 一种重油加氢催化剂及其制备方法和重油加氢处理方法
CN103418398B (zh) 具有加氢催化作用的催化剂及其制备方法和应用以及加氢处理方法
CN107812530B (zh) 一种加氢催化剂及其制备方法和应用
CN114425378B (zh) 一种加氢保护催化剂及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17833506

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17833506

Country of ref document: EP

Kind code of ref document: A1