WO2018016604A1 - センサ素子の製造方法 - Google Patents

センサ素子の製造方法 Download PDF

Info

Publication number
WO2018016604A1
WO2018016604A1 PCT/JP2017/026341 JP2017026341W WO2018016604A1 WO 2018016604 A1 WO2018016604 A1 WO 2018016604A1 JP 2017026341 W JP2017026341 W JP 2017026341W WO 2018016604 A1 WO2018016604 A1 WO 2018016604A1
Authority
WO
WIPO (PCT)
Prior art keywords
unfired
electrode
sensor element
lead
adhesive layer
Prior art date
Application number
PCT/JP2017/026341
Other languages
English (en)
French (fr)
Inventor
志帆 岩井
武也 宮下
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to CN201780044642.3A priority Critical patent/CN109477812B/zh
Priority to JP2018528876A priority patent/JP6781258B2/ja
Priority to DE112017003656.9T priority patent/DE112017003656T5/de
Publication of WO2018016604A1 publication Critical patent/WO2018016604A1/ja
Priority to US16/251,148 priority patent/US11067533B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/417Systems using cells, i.e. more than one cell and probes with solid electrolytes
    • G01N27/419Measuring voltages or currents with a combination of oxygen pumping cells and oxygen concentration cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/4071Cells and probes with solid electrolytes for investigating or analysing gases using sensor elements of laminated structure
    • G01N27/4072Cells and probes with solid electrolytes for investigating or analysing gases using sensor elements of laminated structure characterized by the diffusion barrier
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/4077Means for protecting the electrolyte or the electrodes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036General constructional details of gas analysers, e.g. portable test equipment concerning the detector specially adapted to detect a particular component
    • G01N33/0037NOx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Definitions

  • the present invention relates to a method for manufacturing a sensor element.
  • Patent Literature 1 discloses a plurality of oxygen ion conductive solid electrolyte layers, an outer pump electrode disposed on the upper surface of the solid electrolyte layer, a measurement electrode disposed inside the solid electrolyte layer, and these electrodes. And a lead wire connected to the sensor element.
  • the gas to be measured is introduced around the measurement electrode, and the oxygen gas generated by the reduction of NOx in the gas to be measured is pumped out based on the current flowing between the outer pump electrode and the measurement electrode. The NOx concentration in the measurement gas is detected.
  • Patent Document 1 also describes a method for manufacturing such a sensor element. First, a plurality of green sheets are prepared, a predetermined pattern such as an electrode is printed on them, and a drying process after printing is performed. Next, a plurality of dried green sheets are laminated to form a laminate. Then, the laminated body is cut into individual units of the sensor element and then fired to obtain the sensor element.
  • Patent Document 2 In order to insulate the lead inside the sensor element from the solid electrolyte layer, it is known to form an insulating layer on the surface of the solid electrolyte layer and form a lead thereon (for example, Patent Document 2).
  • Patent Document 2 almost the entire surface of the solid electrolyte layer is covered with an insulating layer, and leads are formed thereon.
  • the insulating layer does not have oxygen ion conductivity.
  • an unfired adhesive layer 794 is formed on the green sheet 701 other than the unfired insulating layer 792 (FIG. 10B).
  • another green sheet 702 having an unfired back surface adhesive layer 797 formed on the lower surface is laminated on the green sheet 701 to form a laminate (FIG. 10C).
  • the obtained laminate is fired so that the unfired lead 791 becomes the lead 691, the unfired insulating layer 792 becomes the insulating layer 692, and the unfired adhesive layer 794 and the unfired back surface adhesive layer 797 become the adhesive layer 694.
  • FIG. 10D As shown in FIG.
  • the unsintered portion is not formed on the green sheet 701 without the unsintered insulating layer 792.
  • the adhesive layer 794 for example, a sensor element can be created while aligning the height of the pattern formed on the green sheet 701.
  • a gap 799 is generated between the unsintered insulating layer 792 and the unsintered adhesive layer 794 in the laminate, and as a result, the sensor element after firing is insulated.
  • a gap 799 may be generated between the layer 692 and the adhesive layer 694. If such a gap 799 exists in the sensor element, oxygen in the gap 799 is supplied to the periphery of the electrode when the sensor element is used, and the specific gas concentration may not be detected with high accuracy.
  • the present invention has been made to solve such a problem, and a main object thereof is to suppress a decrease in detection accuracy of a specific gas concentration in a sensor element.
  • the present invention adopts the following means in order to achieve the above-mentioned main object.
  • the manufacturing method of the sensor element of the present invention includes: A sensor element manufacturing method for detecting a specific gas concentration in a gas to be measured, A preparation step of preparing a plurality of green sheets mainly composed of ceramics that are oxygen ion conductive solid electrolytes; (A) forming an unsintered electrode made of a conductive paste on one of the plurality of green sheets; (B) An unfired electrode lead made of a conductive paste and connected to the unfired electrode on the same green sheet as in step (a), and an unfired lead made of an insulating paste surrounding at least a part of the unfired electrode lead An insulating layer; and (C) forming an unsintered adhesive layer made of an adhesive paste so as to fill at least a part of the region without the unsintered lead insulating layer on the green sheet on which the step (b) has been performed; Forming the green adhesive layer to overlap at least a portion of the edge portion of the layer; A forming process including: Laminating the plurality of green sheets including the green sheets
  • step (c) of the forming process the green adhesive layer is formed so as to overlap with at least a part of the edge portion of the green lead insulating layer. Therefore, it is difficult for a gap to be formed between the unfired lead insulating layer and the unfired adhesive layer after the green sheets are laminated, and as a result, a void is not easily formed between the lead insulating layer and the adhesive layer in the sensor element after firing. Therefore, it can suppress that the oxygen in a space
  • the width Womax of the overlapping region between the unfired lead insulating layer and the unfired adhesive layer is not more than 20 ⁇ m and not more than 140 ⁇ m.
  • a fired adhesive layer may be formed.
  • the maximum value Womax is 20 ⁇ m or more, it is possible to more reliably suppress a decrease in the detection accuracy of the specific gas concentration in the sensor element.
  • the maximum value Womax is 140 ⁇ m or less, it is possible to suppress warpage of the sensor element during firing due to the large width of the overlapping region, that is, the amount of paste partially on the green sheet. In this case, the maximum value Womax may be 120 ⁇ m or less. In this way, the warp of the sensor element can be further suppressed.
  • the maximum value Womax [ ⁇ m] of the width of the overlapping region between the unfired lead insulating layer and the unfired adhesive layer, and the unfired lead insulating layer is formed so that the ratio Womax / Wi of the width Wi [ ⁇ m] in the direction perpendicular to the energization direction of the unfired electrode lead is 0.04 or more and 0.29 or less. May be.
  • the ratio Womax / Wi is 0.04 or more, it is possible to more reliably suppress a decrease in the detection accuracy of the specific gas concentration in the sensor element.
  • the ratio Womax / Wi is 0.29 or less, it is possible to suppress the warpage of the sensor element during firing due to the large width of the overlapping region, that is, the amount of paste partially on the green sheet.
  • the ratio Womax / Wi may be a value of 0.24 or less. In this way, the warp of the sensor element can be further suppressed.
  • the unsintered lead insulating layer formed in the step (b) has a linear portion arranged so that the unsintered electrode is not positioned on the extension in the longitudinal direction.
  • the green adhesive layer may be formed so as to overlap with at least the edge portion closer to the green electrode among the edge portions along the longitudinal direction of the linear portion. .
  • an unsintered measurement electrode that becomes a measurement electrode after firing is formed as the unsintered electrode, and in the step (b), as the unsintered electrode lead.
  • An unfired measurement electrode lead that is connected to the unfired measurement electrode and becomes a measurement electrode lead after firing may be formed.
  • the detection accuracy of the specific gas concentration in the sensor element can be improved.
  • the decrease can be further suppressed.
  • a pattern corresponding to one sensor element is formed in a predetermined direction perpendicular to the longitudinal direction of the sensor element with respect to the green sheet.
  • a plurality of patterns of each of the unfired electrode, the unfired electrode lead, the unfired lead insulating layer, and the unfired adhesive layer are formed, and in the cutting step, a plurality of the unfired electrodes, unfired electrode leads, and unfired adhesive layers are formed from the laminate.
  • a fired sensor element may be cut out, and in the firing step, a plurality of unfired sensor elements may be fired to obtain a plurality of sensor elements. In this way, a plurality of sensor elements can be manufactured together.
  • the pattern of the unfired lead insulating layer corresponding to one sensor element is arranged at the first pitch in the predetermined direction.
  • a plurality of unfired lead insulating layer patterns are formed, and in the step (c), the unfired adhesive layer pattern corresponding to one sensor element is smaller than the first pitch in the predetermined direction.
  • a plurality of unfired adhesive layer patterns may be formed so as to be arranged at two pitches.
  • the unfired leads The pitch of the insulating layer pattern is reduced.
  • the pitch at the time of forming a pattern of a plurality of unfired lead insulating layers is the same as the pitch at the time of forming a pattern of a plurality of unfired adhesive layers, a pattern of unfired adhesive layers formed side by side At least a part of the pattern is displaced from the corresponding pattern of the unfired lead insulating layer.
  • the width of the overlapping region between the unfired lead insulating layer and the unfired adhesive layer is different from the target value, so that the effect of suppressing the above-described decrease in detection accuracy of the specific gas concentration cannot be sufficiently obtained.
  • the sensor element is easily manufactured. That is, the yield of sensor elements is reduced.
  • by forming a plurality of unfired adhesive layer patterns at a second pitch smaller than the first pitch when forming the unfired lead insulating layer pattern after shrinking the unfired adhesive layer pattern and the green sheet The positional deviation from the pattern of the unfired lead insulating layer can be reduced. Thereby, the target value and the actual value of the width of the overlapping region are hardly shifted, and the yield of the sensor elements can be improved.
  • FIG. 2 is a schematic cross-sectional view of the gas sensor 100.
  • FIG. Sectional drawing which shows a part of AA cross section of FIG.
  • FIG. 3 is a sectional view taken along line BB in FIG. 2.
  • FIG. The top view which shows a mode that each pattern is formed on the green sheet 204.
  • FIG. Sectional drawing which shows a mode that each pattern is formed on the green sheet 204.
  • FIG. FIG. 4 is an explanatory diagram showing a first pitch P1 when an unfired lead insulating layer 192 is formed and a second pitch P2 when an unfired adhesive layer 194 is formed.
  • the graph which plotted the maximum value Womax and the pump current Ip2 of Experimental examples 1-6.
  • FIG. 1 is a schematic cross-sectional view of a gas sensor 100 including a sensor element 101 according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view around the measurement electrode 44 and the measurement electrode lead 91 in the AA cross section of FIG. 3 is a cross-sectional view taken along the line BB of FIG.
  • the gas sensor 100 includes a sensor element 101 that detects the concentration of a specific gas (NOx in this embodiment) in the gas to be measured.
  • the sensor element 101 has a long rectangular parallelepiped shape.
  • the longitudinal direction (the left-right direction in FIG.
  • the width direction of sensor element 101 (the direction perpendicular to the front-rear direction and the up-down direction) is the left-right direction.
  • the sensor element 101 includes a first substrate layer 1, a second substrate layer 2, a third substrate layer 3, and a first solid electrolyte layer 4 each made of an oxygen ion conductive solid electrolyte layer such as zirconia (ZrO 2 ).
  • the spacer layer 5 and the second solid electrolyte layer 6 are elements having a structure in which the layers are laminated in this order from the bottom in the drawing.
  • the solid electrolyte forming these six layers is dense and airtight.
  • the sensor element 101 is manufactured, for example, by performing predetermined processing and circuit pattern printing on a ceramic green sheet corresponding to each layer, stacking them, and firing and integrating them.
  • the gas introduction port 10, the buffer space 12, the first internal space 20, and the second internal space 40 are provided on the lower surface of the second solid electrolyte layer 6 with the upper portion provided in a state in which the spacer layer 5 is cut out.
  • the space inside the sensor element 101 is defined by the lower part being the upper surface of the first solid electrolyte layer 4 and the side parts being the side surfaces of the spacer layer 5.
  • Each of the first diffusion rate controlling unit 11, the second diffusion rate controlling unit 13, and the third diffusion rate controlling unit 30 is provided as two horizontally long slits (the opening has a longitudinal direction in a direction perpendicular to the drawing). .
  • part from the gas inlet 10 to the 2nd internal space 40 is also called a gas distribution part.
  • the side part is partitioned by the side surface of the first solid electrolyte layer 4 between the upper surface of the third substrate layer 3 and the lower surface of the spacer layer 5.
  • the reference gas introduction space 43 is provided at the position.
  • the atmosphere is introduced into the reference gas introduction space 43 as a reference gas when measuring the NOx concentration.
  • the atmosphere introduction layer 48 is a layer made of porous ceramics, and a reference gas is introduced into the atmosphere introduction layer 48 through a reference gas introduction space 43.
  • the air introduction layer 48 is formed so as to cover the reference electrode 42.
  • the reference electrode 42 is an electrode formed in such a manner that it is sandwiched between the upper surface of the third substrate layer 3 and the first solid electrolyte layer 4. As described above, the reference electrode 42 leads to the reference gas introduction space 43. An air introduction layer 48 is provided. Further, as will be described later, it is possible to measure the oxygen concentration (oxygen partial pressure) in the first internal space 20 and the second internal space 40 using the reference electrode 42.
  • the gas inlet 10 is a part opened to the external space, and the gas to be measured is taken into the sensor element 101 from the external space through the gas inlet 10.
  • the first diffusion control unit 11 is a part that provides a predetermined diffusion resistance to the gas to be measured taken from the gas inlet 10.
  • the buffer space 12 is a space provided to guide the gas to be measured introduced from the first diffusion rate controlling unit 11 to the second diffusion rate controlling unit 13.
  • the second diffusion rate limiting unit 13 is a part that imparts a predetermined diffusion resistance to the gas to be measured introduced from the buffer space 12 into the first internal space 20.
  • the pressure fluctuation of the gas to be measured in the external space exhaust pressure pulsation if the gas to be measured is an automobile exhaust gas
  • the gas to be measured that is suddenly taken into the sensor element 101 from the gas inlet 10 is not directly introduced into the first internal space 20, but the first diffusion control unit 11, the buffer space 12, the second After the concentration variation of the gas to be measured is canceled through the diffusion control unit 13, the gas is introduced into the first internal space 20.
  • the first internal space 20 is provided as a space for adjusting the partial pressure of oxygen in the gas to be measured introduced through the second diffusion rate limiting unit 13. The oxygen partial pressure is adjusted by the operation of the main pump cell 21.
  • the main pump cell 21 includes an inner pump electrode 22 having a ceiling electrode portion 22a provided on substantially the entire lower surface of the second solid electrolyte layer 6 facing the first internal space 20, and an upper surface of the second solid electrolyte layer 6.
  • An electrochemical pump cell comprising an outer pump electrode 23 provided in a manner exposed to the external space in a region corresponding to the ceiling electrode portion 22a, and a second solid electrolyte layer 6 sandwiched between these electrodes. is there.
  • the inner pump electrode 22 is formed across the upper and lower solid electrolyte layers (the second solid electrolyte layer 6 and the first solid electrolyte layer 4) that define the first inner space 20, and the spacer layer 5 that provides side walls. Yes. Specifically, a ceiling electrode portion 22a is formed on the lower surface of the second solid electrolyte layer 6 that provides the ceiling surface of the first internal space 20, and a bottom portion is formed on the upper surface of the first solid electrolyte layer 4 that provides the bottom surface. Spacer layers in which the electrode portions 22b are formed and the side electrode portions (not shown) constitute both side walls of the first internal space 20 so as to connect the ceiling electrode portions 22a and the bottom electrode portions 22b. 5 is formed on the side wall surface (inner surface), and is disposed in a tunnel-shaped structure at the portion where the side electrode portion is disposed.
  • the inner pump electrode 22 and the outer pump electrode 23 are formed as a porous cermet electrode (for example, a cermet electrode of Pt and ZrO 2 containing 1% of Au).
  • the inner pump electrode 22 in contact with the gas to be measured is formed using a material that has a reduced reduction ability for the NOx component in the gas to be measured.
  • a desired pump voltage Vp 0 is applied between the inner pump electrode 22 and the outer pump electrode 23, and the pump current is positive or negative between the inner pump electrode 22 and the outer pump electrode 23.
  • Ip0 oxygen in the first internal space 20 can be pumped into the external space, or oxygen in the external space can be pumped into the first internal space 20.
  • the third substrate layer 3 and the reference electrode 42 constitute an electrochemical sensor cell, that is, a main pump control oxygen partial pressure detection sensor cell 80.
  • the oxygen concentration (oxygen partial pressure) in the first internal space 20 can be known by measuring the electromotive force V0 in the oxygen partial pressure detection sensor cell 80 for main pump control. Further, the pump current Ip0 is controlled by feedback controlling the pump voltage Vp0 of the variable power source 24 so that the electromotive force V0 is constant. Thereby, the oxygen concentration in the first internal space 20 can be kept at a predetermined constant value.
  • the third diffusion control unit 30 provides a predetermined diffusion resistance to the gas under measurement whose oxygen concentration (oxygen partial pressure) is controlled by the operation of the main pump cell 21 in the first internal space 20, and the gas under measurement is supplied to the gas under measurement. This is the part that leads to the second internal space 40.
  • the second internal space 40 is provided as a space for performing a process related to the measurement of the nitrogen oxide (NOx) concentration in the gas to be measured introduced through the third diffusion control unit 30.
  • the NOx concentration is measured mainly in the second internal space 40 in which the oxygen concentration is adjusted by the auxiliary pump cell 50, and further by measuring the pump cell 41 for measurement.
  • the auxiliary pump cell 50 is further supplied to the gas to be measured introduced through the third diffusion control unit 30.
  • the oxygen partial pressure is adjusted by the above.
  • the auxiliary pump cell 50 includes an auxiliary pump electrode 51 having a ceiling electrode portion 51a provided on substantially the entire lower surface of the second solid electrolyte layer 6 facing the second internal space 40, and an outer pump electrode 23 (outer pump electrode 23).
  • the auxiliary electrochemical pump cell is configured by the second solid electrolyte layer 6 and a suitable electrode outside the sensor element 101 is sufficient.
  • the auxiliary pump electrode 51 is disposed in the second internal space 40 in the same tunnel structure as the inner pump electrode 22 provided in the first internal space 20. That is, the ceiling electrode portion 51 a is formed on the second solid electrolyte layer 6 that provides the ceiling surface of the second internal space 40, and the first solid electrolyte layer 4 that provides the bottom surface of the second internal space 40 is formed on the first solid electrolyte layer 4.
  • the bottom electrode part 51b is formed, and the side electrode part (not shown) connecting the ceiling electrode part 51a and the bottom electrode part 51b is provided on the spacer layer 5 that provides the side wall of the second internal space 40. It has a tunnel-type structure formed on both wall surfaces. Note that the auxiliary pump electrode 51 is also formed using a material having a reduced reducing ability with respect to the NOx component in the gas to be measured, like the inner pump electrode 22.
  • auxiliary pump cell 50 by applying a desired voltage Vp1 between the auxiliary pump electrode 51 and the outer pump electrode 23, oxygen in the atmosphere in the second internal space 40 is pumped to the external space, or It is possible to pump into the second internal space 40 from the space.
  • the auxiliary pump electrode 51, the reference electrode 42, the second solid electrolyte layer 6, the spacer layer 5, and the first solid electrolyte constitute an electrochemical sensor cell, that is, an auxiliary pump control oxygen partial pressure detection sensor cell 81.
  • the auxiliary pump cell 50 performs pumping by the variable power source 52 that is voltage-controlled based on the electromotive force V1 detected by the auxiliary pump control oxygen partial pressure detection sensor cell 81. Thereby, the oxygen partial pressure in the atmosphere in the second internal space 40 is controlled to a low partial pressure that does not substantially affect the measurement of NOx.
  • the pump current Ip1 is used for controlling the electromotive force of the oxygen partial pressure detection sensor cell 80 for main pump control. Specifically, the pump current Ip1 is input as a control signal to the main pump control oxygen partial pressure detection sensor cell 80, and the electromotive force V0 is controlled, so that the third diffusion rate limiting unit 30 controls the second internal space.
  • the gradient of the oxygen partial pressure in the gas to be measured introduced into the gas 40 is controlled so as to be always constant.
  • the oxygen concentration in the second internal space 40 is maintained at a constant value of about 0.001 ppm by the action of the main pump cell 21 and the auxiliary pump cell 50.
  • the measurement pump cell 41 measures the NOx concentration in the gas under measurement in the second internal space 40.
  • the measurement pump cell 41 includes a measurement electrode 44 provided on a top surface of the first solid electrolyte layer 4 facing the second internal space 40 and spaced from the third diffusion rate-determining portion 30, an outer pump electrode 23,
  • the electrochemical pump cell is constituted by the second solid electrolyte layer 6, the spacer layer 5, and the first solid electrolyte layer 4.
  • the measurement electrode 44 is a porous cermet electrode.
  • the measurement electrode 44 also functions as a NOx reduction catalyst that reduces NOx present in the atmosphere in the second internal space 40. Further, the measurement electrode 44 is covered with a fourth diffusion rate controlling part 45.
  • the fourth diffusion rate controlling part 45 is a film made of a ceramic porous body.
  • the fourth diffusion control unit 45 plays a role of limiting the amount of NOx flowing into the measurement electrode 44 and also functions as a protective film for the measurement electrode 44.
  • oxygen generated by the decomposition of nitrogen oxides in the atmosphere around the measurement electrode 44 can be pumped out, and the generated amount can be detected as the pump current Ip2.
  • an electrochemical sensor cell that is, a first solid electrolyte layer 4, a third substrate layer 3, a measurement electrode 44, and a reference electrode 42, that is, A measurement pump control oxygen partial pressure detection sensor cell 82 is configured.
  • the variable power supply 46 is controlled on the basis of the electromotive force V2 detected by the measurement pump control oxygen partial pressure detection sensor cell 82.
  • the gas to be measured introduced into the second internal space 40 reaches the measurement electrode 44 through the fourth diffusion rate-determining unit 45 under the condition where the oxygen partial pressure is controlled.
  • Nitrogen oxide in the gas to be measured around the measurement electrode 44 is reduced (2NO ⁇ N 2 + O 2 ) to generate oxygen.
  • the generated oxygen is pumped by the measurement pump cell 41.
  • the variable power source is set so that the electromotive force V2 detected by the measurement pump control oxygen partial pressure detection sensor cell 82 is constant. 46 voltage Vp2 is controlled. Since the amount of oxygen generated around the measurement electrode 44 is proportional to the concentration of nitrogen oxide in the gas to be measured, the nitrogen oxide in the gas to be measured using the pump current Ip2 in the measurement pump cell 41. The concentration will be calculated.
  • the measurement electrode 44, the first solid electrolyte layer 4, the third substrate layer 3, and the reference electrode 42 are combined to form an oxygen partial pressure detecting means as an electrochemical sensor cell, the measurement electrode
  • the electromotive force according to the difference between the amount of oxygen generated by the reduction of the NOx component in the atmosphere around 44 and the amount of oxygen contained in the reference atmosphere can be detected, whereby the NOx component in the gas to be measured It is also possible to determine the concentration of.
  • the second solid electrolyte layer 6, the spacer layer 5, the first solid electrolyte layer 4, the third substrate layer 3, the outer pump electrode 23, and the reference electrode 42 constitute an electrochemical sensor cell 83.
  • the oxygen partial pressure in the gas to be measured outside the sensor can be detected by the electromotive force Vref obtained by the sensor cell 83.
  • the oxygen partial pressure is always kept at a constant low value (a value that does not substantially affect the measurement of NOx).
  • a gas to be measured is supplied to the measurement pump cell 41. Therefore, the NOx concentration in the measurement gas is determined based on the pump current Ip2 that flows when oxygen generated by the reduction of NOx is pumped out of the measurement pump cell 41 in proportion to the NOx concentration in the measurement gas. You can know.
  • the sensor element 101 includes a heater unit 70 that plays a role of temperature adjustment for heating and maintaining the sensor element 101 in order to increase the oxygen ion conductivity of the solid electrolyte.
  • the heater unit 70 includes a heater 72, a through hole 73, a heater insulating layer 74, and a pressure dissipation hole 75.
  • the heater 72 is an electrical resistor formed in a manner sandwiched between the second substrate layer 2 and the third substrate layer 3 from above and below.
  • the heater 72 is connected to the lower connector pad 86 through the through-hole 73, and generates heat when power is supplied from the outside through the lower connector pad 86, thereby heating and keeping the solid electrolyte forming the sensor element 101. .
  • the heater 72 is embedded over the entire area from the first internal space 20 to the second internal space 40, and the entire sensor element 101 can be adjusted to a temperature at which the solid electrolyte is activated. ing.
  • the heater insulating layer 74 is an insulating layer formed on the upper and lower surfaces of the heater 72 by an insulator such as alumina.
  • the heater insulating layer 74 is formed for the purpose of obtaining electrical insulation between the second substrate layer 2 and the heater 72 and electrical insulation between the third substrate layer 3 and the heater 72.
  • the pressure dissipating hole 75 is a portion that is provided so as to penetrate the third substrate layer 3 and communicate with the reference gas introduction space 43, and is for the purpose of alleviating the increase in internal pressure accompanying the temperature increase in the heater insulating layer 74. Formed.
  • An upper connector pad 85 is disposed on the rear end side of the upper surface of the second solid electrolyte layer 6 (see FIG. 1). Similarly, a lower connector pad 86 is disposed on the rear end side of the lower surface of the first substrate layer 1.
  • the upper and lower connector pads 85 and 86 function as connector electrodes for electrically conducting the sensor element 101 and the outside.
  • a plurality of upper and lower connector pads 85 and 86 are provided (four in this embodiment), although not shown.
  • One of the upper connector pads 85 is electrically connected to the measurement electrode lead 91 shown in FIGS. 2 and 3, and is electrically connected to the measurement electrode 44 via the measurement electrode lead 91.
  • Each electrode other than the measurement electrode 44 is also electrically connected to either the upper connector pad 85 or the lower connector pad 86 through an electrode lead (not shown).
  • each electrode inner pump electrode 22, outer pump electrode 23, reference electrode 42, measurement electrode 44, auxiliary pump electrode 51
  • each electrode inner pump electrode 22, outer pump electrode 23, reference electrode 42, measurement electrode 44, auxiliary pump electrode 51
  • the measurement electrode lead 91 is a cermet conductor having a noble metal such as platinum or a high melting point metal such as tungsten or molybdenum and the same zirconia as the main component of the first solid electrolyte layer 4.
  • the measurement electrode lead 91 is arranged on the left side of the measurement electrode 44 in the sensor element 101 as shown in FIG.
  • the measurement electrode lead 91 is connected to the left side of the measurement electrode 44 and extends in the left-right direction, the second straight line portion 91b that extends in the front-rear direction with the front end connected to the left end of the first straight line portion 91a, and the second And a third straight portion 91c extending in the left-right direction with the right end connected to the rear end of the straight portion 91b.
  • the end of the third linear portion 91c is exposed on the left side surface of the sensor element 101, and is electrically connected to one of the upper connector pads 85 via a side lead (not shown) disposed on the left side surface.
  • Most of the measurement electrode lead 91 is surrounded by a lead insulating layer 92 disposed on the first solid electrolyte layer 4 in the vertical and horizontal directions.
  • the lead insulating layer 92 is an insulator such as alumina, and insulates at least a part of the measurement electrode lead 91 from the first solid electrolyte layer 4 and the spacer layer 5.
  • the lead insulating layer 92 includes a straight portion 93 as shown in FIG.
  • the straight line portion 93 is disposed such that the longitudinal direction is along the front-rear direction.
  • the straight portion 93 surrounds a part of the first straight portion 91a, the whole second straight portion 91b, and a part of the third straight portion 91c of the measurement electrode lead 91.
  • the straight line portion 93 is disposed along the second straight line portion 91b, and the measurement electrode 44 is not positioned on the extension in the longitudinal direction (front-rear direction).
  • the straight line portion 93 does not cover a part on the right side of the first straight line portion 91a or a part on the left side of the third straight line portion 91c.
  • the lead insulating layer 92 needs to conduct oxygen ions and connect electrically such as the second inner space 40, the measurement electrode 44, and the left end portion of the third straight portion 91c. It prevents the part from being covered.
  • an adhesive layer 94 exists on the first solid electrolyte layer 4 as shown in FIGS.
  • the adhesive layer 94 adheres the spacer layer 5 and the first solid electrolyte layer 4.
  • the adhesive layer 94 covers most of the upper surface of the first solid electrolyte layer 4 other than the gas circulation part such as the buffer space 12, the first internal space 20, and the second internal space 40.
  • the adhesive layer 94 preferably has oxygen ion conductivity like the layers 1 to 6.
  • the adhesive layer 94 is made of ceramics whose main component is the same zirconia as the layers 1 to 6. Note that an adhesive layer (not shown) exists not only between the spacer layer 5 and the first solid electrolyte layer 4 but also between the layers 1 to 6.
  • FIG. 4 is an explanatory diagram of the green sheet 204 and the plurality of element regions 208.
  • FIG. 5 is a top view showing how each pattern is formed on the green sheet 204.
  • FIG. 6 is a cross-sectional view showing how each pattern is formed on the green sheet 204.
  • 6A is a cross-sectional view taken along the line CC of FIG. 5A
  • FIG. 6B is a cross-sectional view taken along the line DD of FIG. 5B
  • FIG. 6D is a cross-sectional view of FIG. It is EE sectional drawing.
  • FIG. 5 shows a part of the pattern formed in one element region 208 in the green sheet 204.
  • the sensor element 101 When the sensor element 101 is manufactured, first, a preparation process for preparing a plurality of green sheets 200 mainly composed of ceramics (zirconia in the present embodiment) that is an oxygen ion conductive solid electrolyte is performed.
  • the sensor element 101 is composed of six layers of first to third substrate layers 1 to 3, a first solid electrolyte layer 4, a spacer layer 5, and a second solid electrolyte layer 6. Therefore, six green sheets 200 corresponding to each layer are prepared as the green sheets 200.
  • FIG. 4 shows a green sheet 204 that becomes the first solid electrolyte layer 4 after firing as one of the six green sheets 200.
  • a green sheet 200 prepared in advance may be prepared, or may be prepared by manufacturing the green sheet 200.
  • the green sheet 200 is manufactured, for example, a stabilized zirconia powder, an organic binder, a plasticizer, and an organic solvent are mixed to form a paste, and the paste is used to prepare the paste.
  • the green sheet 200 is formed in a substantially rectangular shape. Further, the green sheet 200 is punched using, for example, a punch of a press machine, and the four corners are cut into an arc shape or a plurality of sheet holes are formed. These are used for positioning at the time of pattern formation and lamination as will be described later.
  • a space (hole) corresponding to the internal space is also provided in advance in the green sheet 200.
  • each of the green sheets 200 is provided with a plurality of element regions 208 that are regions for forming patterns corresponding to one sensor element 101. Form a pattern.
  • the plurality of element regions 208 are defined so as to be aligned in a predetermined direction (the left-right direction in FIG.
  • 22 element regions 208 are arranged in two rows in a predetermined direction and in two rows in a direction perpendicular to the predetermined direction (longitudinal direction of the sensor element), and a total of 44 element regions 208 are defined. ing.
  • the 44 element regions 208 are distinguished, as shown in FIG. 4, the upper 22 element regions 208 are referred to as element regions p1 to p22 from the left to the right in FIG.
  • the element regions 208 are referred to as element regions p23 to p44 from right to left in FIG.
  • the direction of the pattern to be formed is also determined.
  • the patterns formed in the upper element regions p1 to p22 are formed so that the front of the sensor element 101 faces downward in FIG.
  • the patterns formed in the lower element regions p23 to p44 are formed such that the front of the sensor element 101 faces upward in FIG.
  • an unfired measurement electrode lead 191 and a space 143 which is a space corresponding to the reference gas introduction space 43.
  • the space 143 is a hole formed by punching in the above-described preparation process.
  • Each pattern is formed by applying a pattern forming paste prepared according to the characteristics required for each object to be formed to the green sheet 200 using a known screen printing technique.
  • This forming process includes the following steps (a) to (c).
  • step (a) an unfired measurement electrode 144 made of a conductive paste is formed on a green sheet 204 that is one of the plurality of green sheets 200.
  • step (b) the same green sheet 204 as in step (a) is surrounded by at least part of the unsintered measurement electrode lead 191 and the unsintered measurement electrode lead 191 made of a conductive paste and connected to the unsintered measurement electrode 144.
  • An unfired lead insulating layer 192 made of an insulating paste is formed.
  • the unsintered measurement electrode 144, the unsintered measurement electrode lead 191, and the unsintered lead insulation layer 192 become the measurement electrode 44, the measurement electrode lead 91, and the lead insulation layer 92 after firing, respectively, and are shown in FIGS. Corresponding to the position and shape, it is formed in each of the plurality of element regions 208 of the green sheet 204. Steps (a) and (b) are specifically performed as follows, for example. First, step (a) is performed to form an unfired measurement electrode 144 on the green sheet 204. Subsequently, step (b) is performed.
  • a lower insulating layer 193a which is a part of the unfired lead insulating layer 192 is formed, and an unfired measurement electrode lead 191 is formed on the lower insulating layer 193a (FIG. 5A).
  • FIG. 6 (a) As shown in FIG. 5A, the unsintered measurement electrode lead 191 has first to third straight portions 191a to 191c corresponding to the first to third straight portions 91a to 91c of the measurement electrode lead 91. Yes.
  • the upper insulating layer 193b is formed on the lower insulating layer 193a and the unfired measurement electrode lead 191 on the lower insulating layer 193a (FIGS. 5B and 6B).
  • an unfired lead insulating layer 192 having a linear portion 193 composed of the lower insulating layer 193a and the upper adhesive layer 194b is formed.
  • the green lead insulating layer 192 is formed so as to surround at least a part of the green measurement electrode lead 191.
  • the straight part 193 is formed so as to surround a part of the first straight part 191a, the whole second straight part 191b, and a part of the third straight part 191c.
  • the thickness of the unfired measurement electrode lead 191 is, for example, 7 ⁇ m to 17 ⁇ m.
  • the thickness of the unfired lead insulating layer 192 (the total thickness of the lower insulating layer 193a and the upper insulating layer 193b) is, for example, 20 ⁇ m to 40 ⁇ m.
  • the unsintered measurement electrode 144 when the unsintered measurement electrode 144 is formed in step (a), the unsintered auxiliary pump electrode 151b that becomes the bottom electrode part 51b of the auxiliary pump electrode 51 after firing (see FIG. 5A).
  • an unfired main pump electrode (not shown) that forms the bottom electrode portion 22b of the inner pump electrode 22 after firing is also formed.
  • an unfired fourth diffusion rate-determining part 145 that becomes the fourth diffusion rate-limiting part 45 after firing is formed (see FIG. 5B).
  • an unfired adhesive layer 194 made of an adhesive paste is formed so as to fill at least a part of the region without the unfired lead insulating layer 192 on the green sheet 204 subjected to step (b).
  • An unfired adhesive layer 194 is formed so as to overlap at least part of the edge portion of the fired lead insulating layer 192.
  • the unsintered adhesive layer 194 becomes (a part of) the adhesive layer 94 after firing.
  • the unsintered adhesive layer 194 includes a region where the unsintered adhesive layer 194 is formed (thin hatched and dark hatched portions in FIG. 5C) and a non-formed region 196 where the unsintered adhesive layer 194 is not formed. It is formed into a pattern having.
  • a region serving as a gas flow portion such as the buffer space 12, the first internal space 20, and the second internal space 40 on the upper surface of the green sheet 204, and an unfired lead insulating layer 192 are formed.
  • a part of the region (region other than the overlap region 195) is included.
  • the unfired adhesive layer 194 is formed so as to fill (cover) most of the upper surface of the green sheet 204 other than the non-formation region 196.
  • the unsintered adhesive layer 194 is formed to have an overlapping region 195 that overlaps with the edge portion of the straight portion 193 of the unsintered lead insulating layer 192 (the dark hatched portion in FIG. 5C). As shown in FIG.
  • the green adhesive layer 194 is not formed on the portion of the green sheet 204 where the space 143 is formed. However, since a hole (space 143) is formed in the green sheet 204 and the upper surface of the green sheet 204 does not exist in the first place, it is not necessary that the green adhesive layer 194 has a pattern that avoids the space 143.
  • the unfired adhesive layer 194 is formed by printing the lower adhesive layer 194a and the upper adhesive layer 194b divided into a plurality of times (here, twice). In the first printing, the lower adhesive layer 194a is formed in contact with the edge portion of the unfired lead insulating layer 192 (FIG. 6C).
  • the upper adhesive layer 194b is formed so as to overlap with at least part of the edge portion of the unfired lead insulating layer 192 (FIGS. 5C and 6D).
  • the unsintered adhesive layer 194 is also formed on each of the plurality of element regions 208 of the green sheet 204 in the same manner as the unsintered measurement electrode 144 and the like.
  • the overlapping region 195 is a first overlapping region 195a that is an overlapping region with the right edge portion of the straight line portion 193 and a second overlapping region 195b that is an overlapping region between the left edge portion of the straight line portion 193. And have.
  • the overlapping region 195 is a third overlapping region 195c that is an overlapping region with the front edge portion of the straight line portion 193, and a fourth overlapping region 195d that is an overlapping region with the rear edge portion of the straight line portion 193, have.
  • the overlapping region 195 between the unfired lead insulating layer 192 and the unfired adhesive layer 194 is both when viewed from the direction perpendicular to the formation surface (the upper surface of the green sheet 204) (upward in this embodiment). Is an overlapping part.
  • the pattern shapes of the unfired lead insulating layer 192 and the unfired adhesive layer 194 are determined so that the width Wo1 of the first overlapping region 195a is substantially constant at any position in the front-rear direction. .
  • the pattern shape is determined so that the widths Wo2 to Wo4 of the second to fourth overlapping regions 195b to 195d are also substantially constant.
  • the pattern shapes of the unfired lead insulating layer 192 and the unfired adhesive layer 194 are determined so that the widths Wo1 to Wo4 are substantially equal.
  • the unsintered adhesive layer 194 is not formed in the region that becomes the second internal space 40. Therefore, it is not formed near the left front of the straight portion 93 (around the portion of the first straight portion 191a that is not surrounded by the unfired lead insulating layer 192 and around the unfired measurement electrode 144). Thus, it is not necessary to form the overlapping region 195 in the portion where the edge portion of the unfired adhesive layer 194 and the edge portion of the lead insulating layer 92 are not adjacent to each other.
  • the pattern shapes and the like of the unfired lead insulating layer 192 and the unfired adhesive layer 194 are the same for all of the element regions p1 to p44 of the green sheet 204.
  • the thickness of the unfired adhesive layer 194 (the total thickness of the lower adhesive layer 194a and the upper adhesive layer 194b) is, for example, 25 ⁇ m to 45 ⁇ m.
  • the thickness of the unsintered adhesive layer 194 is preferably a value close to the total thickness of the unsintered measurement electrode lead 191 and the unsintered lead insulating layer 192 (for example, 0.8 times to 1.2 times). .
  • each of the plurality of element regions 208 defined on each of the plurality of green sheets 200 corresponds to each of the plurality of sensor elements 101.
  • a pattern to be formed is formed. Note that it is only necessary to form a necessary pattern at a necessary position, and the order of forming each pattern in the formation process may be changed as appropriate.
  • the order of steps (a) to (c) may be that step (c) is performed after step (b), and step (a) may be performed after step (c). Step (a) may be performed after step (b) and before step (c).
  • drying after pattern formation is also performed as described above.
  • the drying process a known drying technique can be used, and it is generally performed in an air atmosphere at a temperature of 75 to 90 ° C., for example. Further, in the present embodiment, the drying process for each of the green sheets 200 is performed every time the pattern is formed. However, it may be performed every time the pattern formation is performed a plurality of times, or may be performed collectively after the pattern formation is completed.
  • a plurality of green sheets 200 including the green sheets 204 subjected to steps (a) to (c) are stacked to form a stacked body in which the unfired measurement electrode leads 191 are disposed between the green sheets 200.
  • a lamination process is performed.
  • this lamination step first, formation / drying processing of an unfired back surface adhesive layer for bonding a plurality of green sheets 200 including the green sheet 204 is performed.
  • an adhesive layer paste made of the same material as that of the unfired adhesive layer 194 can be used for the unfired back surface adhesive layer and is formed by screen printing or the like.
  • the unfired back surface adhesive layer is a region including a plurality of device regions 208 (device regions p1 to p44) on the back surface of each green sheet 200 (for example, the surface opposite to the surface on which the pattern is formed in the forming step). It is formed by printing on the whole. Although not particularly limited to this, the thickness of the unfired back surface adhesive layer is, for example, 7 ⁇ m to 17 ⁇ m. In addition, you may perform formation and drying of a non-baking back surface adhesive layer in a formation process. When the unbaked back surface adhesive layer is formed and dried, a plurality of green sheets 200 are overlapped in a vertical direction (sheets) using a known stacking jig and positioned using the sheet holes of the green sheets 200.
  • the green measurement electrode lead 191 and the like formed on the green sheet 204 have a green sheet 204 and a green sheet 205 in which an unfired back surface adhesive layer 197 is formed on the back surface. And it will be in the state where it was pinched and pressurized.
  • the green sheet 205 is a sheet that becomes the spacer layer 5 after firing.
  • another green sheet 200 is laminated below the green sheet 204 and above the green sheet 205.
  • a cutting-out process of cutting out a plurality of unsintered sensor elements from the laminated body is performed.
  • the laminated body is cut with reference to a sheet hole of the green sheet 200, a cut mark (not shown), or the like, and a plurality (44 in the present embodiment) of unfired sensor elements are cut out.
  • the cutting is performed so that the portion of the element region 208 shown in FIG. 4 is cut out for each green sheet 200 of the laminate.
  • a plurality of sensor elements 101 are obtained by performing a firing step of firing the cut out plurality of unfired sensor elements under a predetermined condition.
  • the unsintered measurement electrode 144, the unsintered measurement electrode lead 191, and the unsintered lead insulating layer 192 in the unsintered sensor element become the measurement electrode 44, the measurement electrode lead 91, and the lead insulating layer 92.
  • the unsintered adhesive layer 194 and the unsintered back surface adhesive layer 197 become the adhesive layer 94 (FIG. 6F).
  • the overlapping region 195 exists so as to overlap with at least a part of the edge portion of the unfired lead insulating layer 192 in the step (c) of the forming process.
  • An unfired adhesive layer 194 is formed (FIGS. 5C and 6D).
  • the unfired adhesive layer 794 is formed so that the edge portion of the unfired insulating layer 792 and the edge portion of the unfired adhesive layer 794 are in contact with each other (not overlapping).
  • a gap 799 may be generated in the laminated body or the sensor element 101 after firing.
  • oxygen in the gap 799 (for example, oxygen contained in air filling the gap 799) is supplied to the periphery of the electrode when the sensor element 101 is used, and the specific gas concentration is increased. It may not be detected accurately.
  • oxygen other than oxygen resulting from reduction of nitrogen oxides around the measurement electrode 44 that is, oxygen not derived from a specific gas
  • the pump shown in FIG. Current Ip2 and electromotive force V2 will change. Therefore, the detection accuracy decreases when the NOx concentration is detected using at least one of these.
  • the accuracy of detection is recovered if oxygen supplied from the gap 799 is pumped to the outside, but the accuracy of detection is at least during a period when pumping is insufficient, such as at the start of use of the sensor element 101. Is in a lowered state.
  • the detection accuracy of the NOx concentration at the start of use of the sensor element 101 is lowered, that is, the initial stability is lowered.
  • the present embodiment as shown in FIGS.
  • the overlapping region 195 exists, so that the unfired lead insulating layer 192 and the unfired adhesive layer 194 after the stacking process are present. It is hard to produce a space
  • the green adhesive layer 194 is formed so that the maximum width Womax of the overlapping region 195 between the green lead insulating layer 192 and the green adhesive layer 194 is 20 ⁇ m or more and 140 ⁇ m or less. preferable.
  • the maximum value Womax exceeds 0 ⁇ m.
  • the maximum value Womax is 20 ⁇ m or more, a decrease in detection accuracy of the specific gas concentration of the sensor element 101 (here, a decrease in initial stability) can be more reliably suppressed.
  • the maximum value Womax is 140 ⁇ m or less, it is possible to suppress warping of the sensor element 101 at the time of firing due to a large width of the overlapping region 195, that is, a large amount of paste on the green sheet 204.
  • step (c) the maximum value Womax [ ⁇ m] and the width Wi [ ⁇ m] in the direction perpendicular to the energization direction of the unfired measurement electrode lead 191 in the unfired lead insulating layer 192 (see FIG. 5C). It is preferable to form the unsintered adhesive layer 194 so that the ratio Womax / Wi with respect to) becomes 0.04 or more and 0.29 or less.
  • the energization direction of the unsintered measurement electrode lead 191 is the energization direction of the longest straight line part (the second straight line part 191b in the present embodiment) of the unsintered measurement electrode lead 191.
  • the energization direction of the unsintered measurement electrode lead 191 is the longitudinal direction of the sensor element 101, that is, the front-rear direction. Therefore, the width Wi is the width in the left-right direction perpendicular to the front-rear direction of the unfired lead insulating layer 192. Note that when the overlapping region 195 exists, the ratio Womax / Wi exceeds the value 0. When the ratio Womax / Wi is 0.04 or more, it is possible to more reliably suppress a decrease in the detection accuracy of the specific gas concentration in the sensor element 101.
  • the ratio Womax / Wi is 0.29 or less, it is possible to suppress warping of the sensor element 101 during firing due to a large width of the overlapping region 195, that is, a large amount of paste partially on the green sheet 204. Further, since the warpage of the sensor element 101 can be further suppressed, the ratio Womax / Wi is more preferably 0.24 or less.
  • the width Wi is, for example, 500 ⁇ m to 650 ⁇ m.
  • the width of the unfired measurement electrode lead 191 is, for example, 200 ⁇ m to 300 ⁇ m, and the width Wi may be, for example, 1.0 to 3.25 times the width of the unfired measurement electrode lead 191.
  • the width Wi may be 1.1 times or more the width of the unfired measurement electrode lead 191.
  • the green adhesive layer 194 is overlapped with at least a part of the edge portion of the green lead insulating layer 192 in the step (c) of the forming process. Therefore, it is possible to suppress a decrease in detection accuracy of NOx concentration of sensor element 101 (decrease in initial stability). Moreover, the fall of the detection precision of the sensor element 101 can be suppressed more reliably by making the maximum value Womax 20 ⁇ m or more. By setting the maximum value Womax to 140 ⁇ m or less, warpage of the sensor element 101 during firing can be suppressed.
  • the ratio Womax / Wi is set to a value of 0.04 or more, a decrease in detection accuracy of the sensor element 101 can be more reliably suppressed.
  • the ratio Womax / Wi is set to a value of 0.29 or less, warpage of the sensor element 101 during firing can be suppressed.
  • the unfired lead insulating layer 192 formed in step (b) is a straight line arranged so that the unfired measurement electrode 144 is not positioned on the extension in the longitudinal direction (front-rear direction). Part 193. And in step (c), it overlaps with at least the edge part on the side (right side) close to the unsintered measurement electrode 144 among the edge parts (the right and left edge parts of the straight part 193) along the longitudinal direction of the straight part 193.
  • the unfired adhesive layer 194 is formed so that the first overlapping region 195a exists.
  • the edge of the lead insulating layer 92 on the side closer to the measurement electrode 44 The generation of voids in the vicinity of the portion can be suppressed, and the effect of suppressing a decrease in detection accuracy of the sensor element 101 is enhanced.
  • an unfired measurement electrode 144 that becomes the measurement electrode 44 after firing is formed as an unfired electrode
  • unfired electrode leads are formed as unfired electrode leads.
  • An unfired measurement electrode lead 191 that is connected to the fired measurement electrode 144 and becomes the measurement electrode lead 91 after firing is formed.
  • the non-fired adhesive layer 194 is formed so as to overlap with at least a part of the edge portion of the unfired lead insulating layer 192 surrounding at least a part of the unfired measurement electrode lead 191, whereby the specific gas concentration in the sensor element 101 is formed. The decrease in detection accuracy can be further suppressed.
  • a pattern corresponding to one of the sensor elements 101 is orthogonal to the longitudinal direction (front-rear direction) of the sensor element 101 with respect to the green sheet 204.
  • a plurality of unfired measurement electrode 144, unfired measurement electrode lead 191, unfired lead insulating layer 192, and unfired adhesive layer 194 are formed so as to be aligned in a predetermined direction (horizontal direction).
  • a plurality of unfired sensor elements are cut out from the laminate, and in the stacking process, the plurality of unfired sensor elements are fired to obtain a plurality of sensor elements 101. Thereby, the several sensor element 101 can be manufactured collectively.
  • FIG. 7 is an explanatory diagram showing the first pitch P1 when the unfired lead insulating layer 192 is formed and the second pitch P2 when the unfired adhesive layer 194 is formed.
  • FIG. 7 shows a part of the element regions p10 to p15 (region on the rear end side of the sensor element 101) of the green sheet 204. Further, the upper part of FIG. 7 shows a state immediately after the formation of the unfired lead insulating layer 192 (upper insulating layer 193b) (before drying after printing). The lower part of FIG.
  • step (b) shows a state immediately after formation of the unfired adhesive layer 194.
  • the predetermined direction of the pattern The pitch of the arrangement may be basically the same value (for example, the first pitch P1 shown in FIG. 7) when any pattern is formed.
  • a plurality of unfired lead insulating layer 192 patterns are formed so that the unfired lead insulating layer 192 patterns corresponding to one of the sensor elements 101 are arranged at the first pitch P1 in a predetermined direction.
  • step (c) the non-fired adhesion is performed so that the pattern of the non-fired adhesive layer 194 corresponding to one of the sensor elements 101 is arranged in the predetermined direction at the second pitch P2 smaller than the first pitch P1.
  • a plurality of patterns of the layer 194 are preferably formed. That is, as in the element regions p10 to p15 shown in FIG. 7, when the pitch of the unfired lead insulating layer 192 between the element regions 208 adjacent in the predetermined direction is the first pitch P1 (upper stage in FIG. 7), It is preferable that the pitch of the unsintered adhesive layer 194 between the element regions 208 adjacent in the predetermined direction is the second pitch P2 ( ⁇ P1) (lower stage in FIG. 7).
  • the green sheet 204 is dried and contracted after the formation. Then, the pattern pitch of the unfired lead insulating layer 192 becomes smaller than the first pitch P1 at the time of formation.
  • the pitch at the time of forming the pattern of the plurality of unfired lead insulating layers 192 and the pitch at the time of forming the pattern of the plurality of unfired adhesive layers 194 are the same first pitch P1, a plurality of them are formed side by side.
  • At least a part of the pattern of the unfired adhesive layer 194 is displaced from the corresponding pattern of the unfired lead insulating layer 192.
  • the unfired adhesive layer 194 is formed on the green sheet 204 by positioning the screen mask for forming the unfired adhesive layer 194 with respect to the center in the longitudinal direction of the green sheet 204, the outer side of the green sheet 204 in the longitudinal direction As a result, the misalignment between the unfired lead insulating layer 192 after shrinkage and the unfired adhesive layer 194 at the time of formation increases.
  • the center of the green sheet 204 in the longitudinal direction is located on the boundary line between the element region p11 and the element region p12.
  • the width of the overlapping region between the unfired lead insulating layer 192 and the unfired adhesive layer 194 differs from the target value.
  • the green adhesive layer 194 is formed at the first pitch P1 with reference to the longitudinal center of the green sheet 204 as shown in FIG. 7, the green sheet 204 contracts to the green lead insulating layer 192 due to shrinkage. Layer 194 is displaced relatively outward. Therefore, the element region 208 closer to the left side of FIG. 7, that is, the element region p22 of FIG.
  • the width Wo1 is smaller than the target value and the width Wo2 is larger than the target value.
  • the width Wo1 tends to be larger than the target value and the width Wo2 tends to be smaller than the target value.
  • region becomes large, and the effect which suppresses the curvature of the sensor element at the time of baking mentioned above cannot fully be acquired. That is, the yield of the sensor element 101 decreases.
  • a plurality of unfired adhesive layer 194 patterns at a second pitch P2 smaller than the first pitch P1 at the time of forming the unfired lead insulating layer 192 pattern Misalignment of the green sheet 204 with the pattern of the unfired lead insulating layer 192 after shrinkage can be reduced. Thereby, the target value and the actual value of the width of the overlapping region are hardly shifted, and the yield of the sensor element 101 can be improved.
  • the unsintered adhesive layer 194 is formed so as to cover most of the element region 208 except for the non-formation region 196, and therefore, a plurality of unbonded adhesive layers 194 are formed in each of the element regions 208.
  • the patterns of the unsintered adhesive layer 194 are continuous (in contact with each other).
  • the pattern of the unfired adhesive layer 194 in each of the element regions 208 has a non-formed region 196 that avoids the unfired lead insulating layer 192 and the like, and the pitch of the non-formed region 196 in a predetermined direction is plural.
  • the pitch of the unfired adhesive layer 194 is arranged in a predetermined direction (second pitch P2).
  • the second pitch P2 is determined by examining the shrinkage after drying of the unfired lead insulating layer 192, and the pitch after drying of the unfired lead insulating layer 192 formed at the first pitch P1 (formation of the unfired adhesive layer 194). It can be determined experimentally as a value that matches the pitch of the hour.
  • the second pitch P2 may have a length [mm] that is 99% or more and less than 100% of the first pitch P1.
  • the second pitch P2 may be 99.5% or more of the first pitch P2, or 99.9% or more.
  • the pitch (here, the upper side) formed at the last of them is formed.
  • the pitch at the time of forming the insulating layer 193b is defined as the first pitch P1.
  • the unfired adhesive layer 194 is formed in multiple times (lower adhesive layer 194a, upper adhesive layer 194b) as in the above-described embodiment, the overlapping region 195 (especially the width direction is along the predetermined direction).
  • the pitch when forming the first overlapping regions 195a and 195b (here, the pitch when forming the upper adhesive layer 194b) is defined as the second pitch P2. However, it is preferable that the pitch is smaller than the first pitch P1 (for example, the same second pitch P2) in any of the plurality of times of forming the unfired adhesive layer 194. Further, when the upper adhesive layer 194b is formed after drying after the formation of the lower adhesive layer 194a, the upper adhesive layer 194b is more than the pitch at the time of forming the lower adhesive layer 194a in consideration of shrinkage due to drying at this time. You may make the pitch at the time of formation of small.
  • the pitch when forming a pattern in the same green sheet 200 not only at the time of forming the unbaked adhesive layer 194, the pitch may be made smaller as the pattern is formed later.
  • the pitch when the lower insulating layer 193a, the unsintered measurement electrode lead 191, and the upper insulating layer 193b are formed in this order, the pitch may be reduced as the pattern is formed later.
  • the width of the lower insulating layer 193a and the upper insulating layer 193b is sufficiently larger than the width of the unfired measurement electrode lead 191, the lower insulating layer 193a, the unfired measurement electrode lead 191, and the upper insulating layer 193b Even if the formation position is displaced by the amount of contraction during drying, the effect on the characteristics of the sensor element 101 is small. Therefore, the effect of improving the yield of the sensor element 101 is higher when the positional deviation between the unsintered lead insulating layer 192 and the unsintered adhesive layer 194 is suppressed than when the positional deviation between other patterns is suppressed. .
  • the green sheet 204 contracts not only in the longitudinal direction (left and right direction in FIGS. 4 and 7) but also in the short direction (up and down direction in FIGS. 4 and 7). . Therefore, when each pattern is formed so that a plurality of patterns (two rows in FIG. 4) corresponding to one sensor element 101 are arranged in a direction orthogonal to the predetermined direction, the pitch of the arrangement of the patterns in the direction orthogonal to the predetermined direction Alternatively, the pitch at which the green adhesive layer 194 is formed may be smaller than the pitch at which the green lead insulating layer 192 is formed.
  • the pitch between the patterns formed in the element regions p1 to p22 and the patterns formed in the element regions p23 to p44 in FIG. 4 is set at the time of forming the unfired lead insulating layer 192.
  • a smaller value may be used when the green adhesive layer 194 is formed.
  • the width of the overlapping region between the unfired lead insulating layer 192 and the unfired adhesive layer 194 is different from the target value. This can be suppressed and the yield of the sensor element 101 can be improved.
  • the contraction amount of the green sheet 204 is larger in the longitudinal direction than in the short direction of the green sheet 204. Therefore, the effect of improving the yield of the sensor elements 101 is higher when the second pitch P2 arranged along the predetermined direction shown in FIG. 7 is made smaller than the first pitch P1.
  • the green adhesive layer 194 is formed so that the overlapping region 195 includes the first to fourth overlapping regions 195a to 195d.
  • the present invention is not limited to this, and at least one of the edge portions of the green lead insulating layer 192 is not limited thereto. It is only necessary that the portion and the unfired adhesive layer 194 overlap. That is, the unfired adhesive layer 194 may be formed so that at least the overlapping region 195 exists. For example, the fourth overlapping region 195d may not exist. Further, at least the first overlapping region 195a and the third overlapping region 195c may be present. As described above, the closer the distance between the electrode and the gap, the easier the oxygen in the gap reaches the periphery of the electrode.
  • the first overlapping region 195a exists among the first to fourth overlapping regions 195a to 195d, and it is preferable that the third overlapping region 195c subsequently exists, and then the second overlapping region 195b Preferably it is present.
  • at least the third overlapping region 195c may exist.
  • the widths Wo1 to Wo4 of the first to fourth overlapping regions 195a to 195d have the same value.
  • the present invention is not limited to this, and any one or more of the widths Wo1 to Wo4 may be a different value.
  • the width Wo1 of the first overlapping region 195a is substantially constant at any position in the front-rear direction, the present invention is not limited to this.
  • the width Wo1 of the first overlap region 195a may be larger on the side closer to the unfired measurement electrode 144 (front), and the width Wo1 may be smaller on the far side (rear).
  • the average value of the width Wo1 (the average value of the values at a plurality of positions in the front-rear direction of the width of the first overlapping region 195a) may be 20 ⁇ m or more and 140 ⁇ m or less. Further, the width Wo1 may be within a range of 20 ⁇ m or more and 140 ⁇ m or less at any position in the front-rear direction of the first overlapping region 195a. The same applies to the second to fourth overlapping areas 195b to 195d.
  • the ratio Womax / Wi is preferably 0.04 or more and 0.29 or less.
  • the value / Wi may be 0.04 or more and 0.29 or less.
  • the maximum value Wo12max is the maximum value of the widths of the first and second overlapping regions 195a and 195b. In other words, the maximum value Wo12max is the width of the overlapping portion between the edge portion along the longitudinal direction of the straight portion 193 of the unfired lead insulating layer 192 and the unfired adhesive layer.
  • the unsintered measurement electrode 144 that becomes the measurement electrode 44 after firing is formed as the unsintered electrode
  • the unsintered measurement electrode 144 is formed as the unsintered electrode lead.
  • the unfired measurement electrode lead 191 that is connected to the electrode and becomes the measurement electrode lead 91 after firing is formed, but the invention is not limited thereto.
  • the unfired electrode lead formed in step (b) may be any unfired electrode lead disposed between the green sheets in the laminate. Even in this case, there is an overlap area between the green lead insulating layer surrounding the green electrode lead and the green adhesive layer, so that there is a gap around the electrode connected to the green electrode lead.
  • the unfired electrode lead connected to the unfired electrode that becomes the inner pump electrode 22 or the auxiliary pump electrode 51 after firing there is an overlapping region between the unbaked lead insulating layer and the unfired adhesive layer surrounding the lead electrode. If it does in this way, the effect which suppresses the fall of the initial stability of the sensor element 101 is acquired similarly to embodiment mentioned above. That is, when oxygen is supplied from the gap around the inner pump electrode 22 or the auxiliary pump electrode 51, the sensor until the pumping of the oxygen by the pump cell (the main pump cell 21 or the auxiliary pump cell 50) including these electrodes is completed.
  • Steps (a) to (c) may be performed for each of a plurality of electrodes (for example, two or more of the measurement electrode 44, the inner pump electrode 22, and the auxiliary pump electrode 51) and electrode leads connected thereto. .
  • a plurality of electrodes for example, two or more of the measurement electrode 44, the inner pump electrode 22, and the auxiliary pump electrode 51
  • electrode leads connected thereto By so doing, oxygen can be prevented from being supplied from the gaps around the plurality of electrodes, so that the effect of suppressing a decrease in detection accuracy of the sensor element 101 is enhanced.
  • one green sheet 204 includes 44 element regions 208 as shown in FIG. 4, but the number and arrangement of the element regions 208 are not particularly limited thereto.
  • one green sheet may include only one element region 208.
  • the sensor element 101 detects the NOx concentration as the specific gas concentration in the gas to be measured, but is not limited thereto.
  • the sensor element 101 may detect the oxygen concentration as the specific gas concentration.
  • Experimental examples 2 to 6 correspond to examples of the present invention, and experimental example 1 corresponds to a comparative example.
  • this invention is not limited to a following example.
  • the green sheet 200 was formed by mixing zirconia particles to which 4 mol% of a stabilizer yttria was added, an organic binder, and an organic solvent, and then forming a tape.
  • a paste prepared by mixing 11.2% by mass of zirconia particles to which 4 mol% of a stabilizer yttria was added, 60% by mass of platinum, an organic binder, and an organic solvent was used.
  • the insulating paste for the lead insulating layer 92 was prepared by mixing alumina powder and a binder solution at a weight ratio of 1: 2 so that the viscosity at normal temperature was 40 [Pa ⁇ s].
  • the adhesive layer 94 was prepared by mixing zirconia particles added with 4 mol% of a stabilizer yttria, an organic binder, and an organic solvent so that the viscosity at normal temperature was 20 [Pa ⁇ s].
  • the thickness of the unsintered measurement electrode lead 191 was 7 to 17 ⁇ m, and the thickness of the second linear portion 191b therein was 9 to 15 ⁇ m.
  • the width Wi of the unfired lead insulating layer 192 was 490 ⁇ m, and the total thickness of the lower insulating layer 193a and the upper insulating layer 193b was 30 ⁇ m.
  • the total thickness of the lower adhesive layer 194a and the upper adhesive layer 194b was 35 ⁇ m.
  • the thickness of the unbaked back surface adhesive layer 197 was 10 ⁇ m.
  • the second pitch P2 of the unfired adhesive layer 194 is made smaller than the first pitch P1 of the unfired lead insulating layer 192, and the target value and actual value of the width Wo1 to the width Wo4 are set. And matched as much as possible.
  • the unfired lead insulating layer 192 (lower insulating layer 193a and upper insulating layer 193b) and the unfired measurement electrode lead 191 were both formed with a first pitch P1 of 5.27 mm.
  • the unfired adhesive layer 194 (lower adhesive layer 194a, upper adhesive layer 194b) was formed with the second pitch P2 set to 5.267 mm.
  • the lower insulating layer 193a, the unfired measurement electrode lead 191, the upper insulating layer 193b, the lower adhesive layer 194a, and the second overlapping region 195b are formed in this order. Drying was performed.
  • the overlapping region 195 does not have the fourth overlapping region 195d.
  • the first pitch P1 and the second pitch P2 in Experimental Examples 2 to 6 were set to the same values as in Experimental Example 1.
  • the initial stability is determined to be good (A), and when it exceeds 0.065 ⁇ A, it is determined to be defective (C). Since the gas flowing into the gas circulation part is a gas (nitrogen) that does not contain oxygen, the pump current Ip2 is ideally 0 ⁇ A, and oxygen is supplied from the gap inside the sensor element 101. The value of the current Ip2 becomes a large value.
  • FIG. 8 is a graph plotting the target value of the maximum value Womax of Experimental Examples 1 to 6 and the pump current Ip2.
  • FIG. 9 is a graph in which the target value of the maximum value Womax and the amount of warpage of Experimental Examples 1 to 6 are plotted.
  • diamond-shaped points indicate average values
  • upper and lower horizontal bars indicate average values ⁇ ⁇ .
  • the target value of the maximum value Womax is 100 ⁇ m or less
  • the amount of warpage was smaller than that in Experimental Example 5.
  • the maximum value Womax is preferably 20 ⁇ m or more and more preferably 30 ⁇ m or more from the viewpoint of suppressing the decrease in detection accuracy of the sensor element 101.
  • the ratio Womax / Wi is preferably 0.04 or more, and more preferably 0.06 or more.
  • the maximum value Womax is preferably 140 ⁇ m or less, more preferably 130 ⁇ m or less, further preferably 120 ⁇ m or less, particularly preferably 100 ⁇ m or less, still more preferably 90 ⁇ m or less, and more preferably 70 ⁇ m or less. More preferably, 60 ⁇ m or less is considered to be even more preferable.
  • the ratio Womax / Wi is preferably 0.29 or less, more preferably 0.27 or less, further preferably 0.24 or less, and value 0.20 or less. Is particularly preferable, a value of 0.18 or less is more preferable, a value of 0.14 or less is more preferable, and a value of 0.12 ⁇ m or less is considered to be even more preferable.
  • Example 3 the half value of the sum of the widths was defined as the width of the gap of the sensor element 101.
  • the average value of the width of the gap was derived to be 3.8 ⁇ m, and in Experimental Example 3, the gap between the lead insulating layer 92 and the adhesive layer 94 is less likely to occur than in Experimental Example 1.
  • the present invention can be used in the manufacturing industry of sensor elements that detect the concentration of a specific gas such as NOx in a gas to be measured such as automobile exhaust gas.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

センサ素子の製造方法は、形成工程を含む。形成工程は、(a)複数のグリーンシートの1つに、導電ペーストからなる未焼成電極を形成するステップと、(b)前記ステップ(a)と同じグリーンシートに、導電ペーストからなり前記未焼成電極に接続される未焼成電極リードと、該未焼成電極リードの少なくとも一部を囲み絶縁ペーストからなる未焼成リード絶縁層と、を形成するステップと、(c)前記ステップ(b)を行ったグリーンシート上の前記未焼成リード絶縁層がない領域の少なくとも一部を埋めるように接着ペーストからなる未焼成接着層を形成し、且つ該未焼成リード絶縁層の縁部分の少なくとも一部と重複するように該未焼成接着層を形成するステップと、を含む。

Description

センサ素子の製造方法
 本発明は、センサ素子の製造方法に関する。
 従来、自動車の排気ガスなどの被測定ガスにおけるNOxなどの特定ガス濃度を検出するセンサ素子を備えたガスセンサが知られている。例えば、特許文献1には、複数の酸素イオン伝導性の固体電解質層と、固体電解質層の上面に配置された外側ポンプ電極と、固体電解質層の内部に配置された測定電極と、これらの電極に接続されたリード線と、を備えたセンサ素子が記載されている。このセンサ素子では、測定電極周辺に被測定ガスを導入し、被測定ガス中のNOxの還元によって発生する酸素を汲み出す際に外側ポンプ電極と測定電極との間に流れる電流に基づいて、被測定ガス中のNOx濃度を検出する。また、特許文献1には、このようなセンサ素子の製造方法も記載されている。まず、複数のグリーンシートを用意し、これらに電極などの所定のパターンを印刷し、印刷後の乾燥処理を行う。次に、乾燥後の複数のグリーンシートを積層して積層体とする。そして、積層体をセンサ素子個々の単位にカットした後に焼成して、センサ素子を得る。
 また、センサ素子内部のリードを固体電解質層から絶縁するために、固体電解質層の表面に絶縁層を形成し、その上にリードを形成することが知られている(例えば特許文献2)。
特開2015-180867号公報 特開2015-227896号公報
 ところで、特許文献2では固体電解質層の表面のほぼ全体を絶縁層で覆ってその上にリードを形成している。しかし、例えば絶縁層が酸素イオン伝導性を有さないなどの理由から、絶縁層の配置をリードの周囲に限定したい場合がある。そのようなセンサ素子を製造する場合、例えばリード及び絶縁層を図10のように製造することが考えられる。まず、固体電解質層となるグリーンシート701上に未焼成リード791とそれを囲む未焼成絶縁層792とを形成する(図10(a))。続いて、グリーンシート701上の未焼成絶縁層792以外の部分に未焼成接着層794を形成する(図10(b))。次に、下面に未焼成裏面接着層797が形成された他のグリーンシート702を、グリーンシート701上に積層して積層体とする(図10(c))。そして、得られた積層体を焼成して、未焼成リード791がリード691になり、未焼成絶縁層792が絶縁層692になり、未焼成接着層794及び未焼成裏面接着層797が接着層694となったセンサ素子を得る(図10(d))。図10(b)に示すように、未焼成絶縁層792をグリーンシート701上の未焼成リード791の周囲にのみ形成する代わりに、グリーンシート701上の未焼成絶縁層792がない部分に未焼成接着層794を形成することで、例えばグリーンシート701上に形成されたパターンの高さを揃えつつセンサ素子を作成することができる。
 しかし、この製造方法では、図10(c)に示すように、積層体において未焼成絶縁層792と未焼成接着層794との間に空隙799が生じてしまい、ひいては焼成後のセンサ素子において絶縁層692と接着層694との間に空隙799が生じてしまう場合がある。センサ素子にこのような空隙799が存在すると、センサ素子の使用時に空隙799内の酸素が電極周辺に供給されてしまい、特定ガス濃度が精度良く検出できない場合があった。
 本発明はこのような課題を解決するためになされたものであり、センサ素子における特定ガス濃度の検出精度の低下を抑制することを主目的とする。
 本発明は、上述した主目的を達成するために以下の手段を採った。
 本発明のセンサ素子の製造方法は、
 被測定ガス中の特定ガス濃度を検出するセンサ素子の製造方法であって、
 酸素イオン伝導性の固体電解質であるセラミックスを主成分とするグリーンシートを複数用意する準備工程と、
(a)前記複数のグリーンシートの1つに、導電ペーストからなる未焼成電極を形成するステップと、
(b)前記ステップ(a)と同じグリーンシートに、導電ペーストからなり前記未焼成電極に接続される未焼成電極リードと、該未焼成電極リードの少なくとも一部を囲み絶縁ペーストからなる未焼成リード絶縁層と、を形成するステップと、
(c)前記ステップ(b)を行ったグリーンシート上の前記未焼成リード絶縁層がない領域の少なくとも一部を埋めるように接着ペーストからなる未焼成接着層を形成し、且つ該未焼成リード絶縁層の縁部分の少なくとも一部と重複するように該未焼成接着層を形成するステップと、
 を含む形成工程と、
 前記ステップ(a)~(c)が行われたグリーンシートを含む前記複数のグリーンシートを積層して、前記未焼成電極リードがグリーンシートの間に配置された積層体とする積層工程と、
 前記積層体から未焼成センサ素子を切り出す切り出し工程と、
 前記未焼成センサ素子を焼成して、前記未焼成電極が電極となり、前記未焼成電極リードが電極リードとなり、前記未焼成リード絶縁層がリード絶縁層となり、前記未焼成接着層が接着層となったセンサ素子を得る焼成工程と、
 を含むものである。
 この製造方法では、形成工程のステップ(c)において、未焼成リード絶縁層の縁部分の少なくとも一部と重複するように未焼成接着層を形成する。そのため、グリーンシートの積層後における未焼成リード絶縁層と未焼成接着層との間に空隙が生じにくく、ひいては焼成後のセンサ素子におけるリード絶縁層と接着層との間に空隙が生じにくい。したがって、センサ素子の使用時に空隙内の酸素が電極周辺に供給されてしまうことを抑制でき、センサ素子における特定ガス濃度の検出精度の低下を抑制することができる。
 本発明のセンサ素子の製造方法において、前記ステップ(c)では、前記未焼成リード絶縁層と前記未焼成接着層との重複領域の幅の最大値Womaxが20μm以上140μm以下となるように該未焼成接着層を形成してもよい。最大値Womaxが20μm以上では、センサ素子における特定ガス濃度の検出精度の低下をより確実に抑制できる。最大値Womaxが140μm以下では、重複領域の幅が大きいことすなわちグリーンシート上で部分的にペーストの量が多いことによる、焼成時のセンサ素子の反りを抑制できる。この場合において、最大値Womaxは120μm以下としてもよい。こうすれば、センサ素子の反りをより抑制できる。
 本発明のセンサ素子の製造方法において、前記ステップ(c)では、前記未焼成リード絶縁層と前記未焼成接着層との重複領域の幅の最大値Womax[μm]と、前記未焼成リード絶縁層のうち前記未焼成電極リードの通電方向に垂直な方向の幅Wi[μm]と、の比Womax/Wiが、値0.04以上値0.29以下となるように前記未焼成接着層を形成してもよい。比Womax/Wiが値0.04以上では、センサ素子における特定ガス濃度の検出精度の低下をより確実に抑制できる。比Womax/Wiが値0.29以下では、重複領域の幅が大きいことすなわちグリーンシート上で部分的にペーストの量が多いことによる、焼成時のセンサ素子の反りを抑制できる。この場合において、比Womax/Wiは値0.24以下としてもよい。こうすれば、センサ素子の反りをより抑制できる。
 本発明のセンサ素子の製造方法において、前記ステップ(b)で形成される前記未焼成リード絶縁層は、長手方向の延長上に前記未焼成電極が位置しないように配置された直線部を有しており、前記ステップ(c)では、前記直線部の長手方向に沿った縁部分のうち少なくとも前記未焼成電極に近い側の縁部分と重複するように前記未焼成接着層を形成してもよい。こうすることで、リード絶縁層のうち電極に近い側の縁部分付近での空隙の発生を抑制できるため、センサ素子における特定ガス濃度の検出精度の低下をより抑制できる。
 本発明のセンサ素子の製造方法において、前記ステップ(a)では、前記未焼成電極として、焼成後に測定電極となる未焼成測定電極を形成し、前記ステップ(b)では、前記未焼成電極リードとして、前記未焼成測定電極に接続され焼成後に測定電極リードとなる未焼成測定電極リードを形成してもよい。こうすれば、センサ素子の使用時に空隙内の酸素が測定電極周辺に供給されてしまうことを抑制できる。ここで、測定電極の周辺に空隙内の酸素が供給されると、他の電極の周辺に空隙内の酸素が供給される場合と比べて、特定ガス濃度の検出精度が低下しやすい。そのため、未焼成測定電極リードの少なくとも一部を囲む未焼成リード絶縁層の縁部分の少なくとも一部と重複するように未焼成接着層を形成することで、センサ素子における特定ガス濃度の検出精度の低下をより抑制できる。
 本発明のセンサ素子の製造方法において、前記ステップ(a)~(c)では、前記グリーンシートに対して、前記センサ素子1個に対応するパターンが該センサ素子の長手方向と直交する所定方向に並ぶように、前記未焼成電極,前記未焼成電極リード,前記未焼成リード絶縁層,及び前記未焼成接着層の各々のパターンを複数形成し、前記切り出し工程では、前記積層体から複数の前記未焼成センサ素子を切り出し、前記焼成工程では、複数の前記未焼成センサ素子を焼成して複数のセンサ素子を得てもよい。こうすれば、複数のセンサ素子をまとめて製造できる。
 この場合において、本発明のセンサ素子の製造方法は、前記ステップ(b)では、前記センサ素子1個に対応する前記未焼成リード絶縁層のパターンが、前記所定方向に第1ピッチで並ぶように、該未焼成リード絶縁層のパターンを複数形成し、前記ステップ(c)では、前記センサ素子1個に対応する前記未焼成接着層のパターンが、前記所定方向に前記第1ピッチよりも小さい第2ピッチで並ぶように、該未焼成接着層のパターンを複数形成してもよい。ここで、センサ素子1個に対応するパターンが所定方向に複数並ぶようにグリーンシート上に未焼成リード絶縁層のパターンを複数形成する場合、形成後にグリーンシートが乾燥して収縮すると、未焼成リード絶縁層のパターンのピッチが小さくなる。この場合、例えば複数の未焼成リード絶縁層のパターンの形成時のピッチと複数の未焼成接着層のパターンの形成時のピッチとを同じとすると、複数並んで形成される未焼成接着層のパターンのうち少なくとも一部について、対応する未焼成リード絶縁層のパターンとの位置ずれが生じる。位置ずれが生じると、未焼成リード絶縁層と未焼成接着層との重複領域の幅が目標値と異なってしまうため、上述した特定ガス濃度の検出精度の低下を抑制する効果が十分得られないセンサ素子が製造されやすくなる。すなわちセンサ素子の歩留まりが低下する。これに対し、未焼成リード絶縁層のパターンの形成時の第1ピッチよりも小さい第2ピッチで未焼成接着層のパターンを複数形成することで、未焼成接着層のパターンとグリーンシートの収縮後の未焼成リード絶縁層のパターンとの位置ずれを低減できる。これにより、重複領域の幅の目標値と実際の値とがずれにくくなり、センサ素子の歩留まりを向上させることができる。
ガスセンサ100の断面模式図。 図1のA-A断面の一部を示す断面図。 図2のB-B断面図。 グリーンシート204及び複数の素子用領域208の説明図。 グリーンシート204上に各パターンを形成する様子を示す上面図。 グリーンシート204上に各パターンを形成する様子を示す断面図。 未焼成リード絶縁層192形成時の第1ピッチP1と未焼成接着層194形成時の第2ピッチP2とを示す説明図。 実験例1~6の最大値Womaxとポンプ電流Ip2とをプロットしたグラフ。 実験例1~6の最大値Womaxと反り量とをプロットしたグラフ。 互いの縁部分が接するように未焼成絶縁層792及び未焼成接着層794を形成する場合のセンサ素子の製造の様子を示す説明図。
 次に、本発明の実施形態について、図面を用いて説明する。図1は、本発明の一実施形態であるセンサ素子101を備えたガスセンサ100の断面模式図である。図2は、図1のA-A断面のうち測定電極44及び測定電極リード91周辺の断面図である。図3は、図2のB-B断面図である。ガスセンサ100は、被測定ガス中の特定ガス(本実施形態ではNOx)の濃度を検出するセンサ素子101を備えている。センサ素子101は長尺な直方体形状をしており、このセンサ素子101の長手方向(図1の左右方向)を前後方向とし、センサ素子101の厚み方向(図1の上下方向)を上下方向とする。また、センサ素子101の幅方向(前後方向及び上下方向に垂直な方向)を左右方向とする。
 センサ素子101は、それぞれがジルコニア(ZrO2)等の酸素イオン伝導性固体電解質層からなる第1基板層1と、第2基板層2と、第3基板層3と、第1固体電解質層4と、スペーサ層5と、第2固体電解質層6との6つの層が、図面視で下側からこの順に積層された構造を有する素子である。また、これら6つの層を形成する固体電解質は緻密な気密のものである。係るセンサ素子101は、例えば、各層に対応するセラミックスグリーンシートに所定の加工および回路パターンの印刷などを行った後にそれらを積層し、さらに、焼成して一体化させることによって製造される。
 センサ素子101の一先端部であって、第2固体電解質層6の下面と第1固体電解質層4の上面との間には、ガス導入口10と、第1拡散律速部11と、緩衝空間12と、第2拡散律速部13と、第1内部空所20と、第3拡散律速部30と、第2内部空所40とが、この順に連通する態様にて隣接形成されてなる。
 ガス導入口10と、緩衝空間12と、第1内部空所20と、第2内部空所40とは、スペーサ層5をくり抜いた態様にて設けられた上部を第2固体電解質層6の下面で、下部を第1固体電解質層4の上面で、側部をスペーサ層5の側面で区画されたセンサ素子101内部の空間である。
 第1拡散律速部11と、第2拡散律速部13と、第3拡散律速部30とはいずれも、2本の横長の(図面に垂直な方向に開口が長手方向を有する)スリットとして設けられる。なお、ガス導入口10から第2内部空所40に至る部位をガス流通部とも称する。
 また、ガス流通部よりも先端側から遠い位置には、第3基板層3の上面と、スペーサ層5の下面との間であって、側部を第1固体電解質層4の側面で区画される位置に基準ガス導入空間43が設けられている。基準ガス導入空間43には、NOx濃度の測定を行う際の基準ガスとして、例えば大気が導入される。
 大気導入層48は、多孔質セラミックスからなる層であって、大気導入層48には基準ガス導入空間43を通じて基準ガスが導入されるようになっている。また、大気導入層48は、基準電極42を被覆するように形成されている。
 基準電極42は、第3基板層3の上面と第1固体電解質層4とに挟まれる態様にて形成される電極であり、上述のように、その周囲には、基準ガス導入空間43につながる大気導入層48が設けられている。また、後述するように、基準電極42を用いて第1内部空所20内や第2内部空所40内の酸素濃度(酸素分圧)を測定することが可能となっている。
 ガス流通部において、ガス導入口10は、外部空間に対して開口してなる部位であり、該ガス導入口10を通じて外部空間からセンサ素子101内に被測定ガスが取り込まれるようになっている。第1拡散律速部11は、ガス導入口10から取り込まれた被測定ガスに対して、所定の拡散抵抗を付与する部位である。緩衝空間12は、第1拡散律速部11より導入された被測定ガスを第2拡散律速部13へと導くために設けられた空間である。第2拡散律速部13は、緩衝空間12から第1内部空所20に導入される被測定ガスに対して、所定の拡散抵抗を付与する部位である。被測定ガスが、センサ素子101外部から第1内部空所20内まで導入されるにあたって、外部空間における被測定ガスの圧力変動(被測定ガスが自動車の排気ガスの場合であれば排気圧の脈動)によってガス導入口10からセンサ素子101内部に急激に取り込まれた被測定ガスは、直接第1内部空所20へ導入されるのではなく、第1拡散律速部11、緩衝空間12、第2拡散律速部13を通じて被測定ガスの濃度変動が打ち消された後、第1内部空所20へ導入されるようになっている。これによって、第1内部空所20へ導入される被測定ガスの濃度変動はほとんど無視できる程度のものとなる。第1内部空所20は、第2拡散律速部13を通じて導入された被測定ガス中の酸素分圧を調整するための空間として設けられている。係る酸素分圧は、主ポンプセル21が作動することによって調整される。
 主ポンプセル21は、第1内部空所20に面する第2固体電解質層6の下面のほぼ全面に設けられた天井電極部22aを有する内側ポンプ電極22と、第2固体電解質層6の上面の天井電極部22aと対応する領域に外部空間に露出する態様にて設けられた外側ポンプ電極23と、これらの電極に挟まれた第2固体電解質層6とによって構成されてなる電気化学的ポンプセルである。
 内側ポンプ電極22は、第1内部空所20を区画する上下の固体電解質層(第2固体電解質層6および第1固体電解質層4)、および、側壁を与えるスペーサ層5にまたがって形成されている。具体的には、第1内部空所20の天井面を与える第2固体電解質層6の下面には天井電極部22aが形成され、また、底面を与える第1固体電解質層4の上面には底部電極部22bが形成され、そして、それら天井電極部22aと底部電極部22bとを接続するように、側部電極部(図示省略)が第1内部空所20の両側壁部を構成するスペーサ層5の側壁面(内面)に形成されて、該側部電極部の配設部位においてトンネル形態とされた構造において配設されている。
 内側ポンプ電極22と外側ポンプ電極23とは、多孔質サーメット電極(例えば、Auを1%含むPtとZrO2とのサーメット電極)として形成される。なお、被測定ガスに接触する内側ポンプ電極22は、被測定ガス中のNOx成分に対する還元能力を弱めた材料を用いて形成される。
 主ポンプセル21においては、内側ポンプ電極22と外側ポンプ電極23との間に所望のポンプ電圧Vp0を印加して、内側ポンプ電極22と外側ポンプ電極23との間に正方向あるいは負方向にポンプ電流Ip0を流すことにより、第1内部空所20内の酸素を外部空間に汲み出し、あるいは、外部空間の酸素を第1内部空所20に汲み入れることが可能となっている。
 また、第1内部空所20における雰囲気中の酸素濃度(酸素分圧)を検出するために、内側ポンプ電極22と、第2固体電解質層6と、スペーサ層5と、第1固体電解質層4と、第3基板層3と、基準電極42によって、電気化学的なセンサセル、すなわち、主ポンプ制御用酸素分圧検出センサセル80が構成されている。
 主ポンプ制御用酸素分圧検出センサセル80における起電力V0を測定することで第1内部空所20内の酸素濃度(酸素分圧)がわかるようになっている。さらに、起電力V0が一定となるように可変電源24のポンプ電圧Vp0をフィードバック制御することでポンプ電流Ip0が制御されている。これによって、第1内部空所内20内の酸素濃度は所定の一定値に保つことができる。
 第3拡散律速部30は、第1内部空所20で主ポンプセル21の動作により酸素濃度(酸素分圧)が制御された被測定ガスに所定の拡散抵抗を付与して、該被測定ガスを第2内部空所40に導く部位である。
 第2内部空所40は、第3拡散律速部30を通じて導入された被測定ガス中の窒素酸化物(NOx)濃度の測定に係る処理を行うための空間として設けられている。NOx濃度の測定は、主として、補助ポンプセル50により酸素濃度が調整された第2内部空所40において、さらに、測定用ポンプセル41の動作によりNOx濃度が測定される。
 第2内部空所40では、あらかじめ第1内部空所20において酸素濃度(酸素分圧)が調整された後、第3拡散律速部30を通じて導入された被測定ガスに対して、さらに補助ポンプセル50による酸素分圧の調整が行われるようになっている。これにより、第2内部空所40内の酸素濃度を高精度に一定に保つことができるため、係るガスセンサ100においては精度の高いNOx濃度測定が可能となる。
 補助ポンプセル50は、第2内部空所40に面する第2固体電解質層6の下面の略全体に設けられた天井電極部51aを有する補助ポンプ電極51と、外側ポンプ電極23(外側ポンプ電極23に限られるものではなく、センサ素子101の外側の適当な電極であれば足りる)と、第2固体電解質層6とによって構成される、補助的な電気化学的ポンプセルである。
 係る補助ポンプ電極51は、先の第1内部空所20内に設けられた内側ポンプ電極22と同様なトンネル形態とされた構造において、第2内部空所40内に配設されている。つまり、第2内部空所40の天井面を与える第2固体電解質層6に対して天井電極部51aが形成され、また、第2内部空所40の底面を与える第1固体電解質層4には、底部電極部51bが形成され、そして、それらの天井電極部51aと底部電極部51bとを連結する側部電極部(図示省略)が、第2内部空所40の側壁を与えるスペーサ層5の両壁面にそれぞれ形成されたトンネル形態の構造となっている。なお、補助ポンプ電極51についても、内側ポンプ電極22と同様に、被測定ガス中のNOx成分に対する還元能力を弱めた材料を用いて形成される。
 補助ポンプセル50においては、補助ポンプ電極51と外側ポンプ電極23との間に所望の電圧Vp1を印加することにより、第2内部空所40内の雰囲気中の酸素を外部空間に汲み出し、あるいは、外部空間から第2内部空所40内に汲み入れることが可能となっている。
 また、第2内部空所40内における雰囲気中の酸素分圧を制御するために、補助ポンプ電極51と、基準電極42と、第2固体電解質層6と、スペーサ層5と、第1固体電解質層4と、第3基板層3とによって電気化学的なセンサセル、すなわち、補助ポンプ制御用酸素分圧検出センサセル81が構成されている。
 なお、この補助ポンプ制御用酸素分圧検出センサセル81にて検出される起電力V1に基づいて電圧制御される可変電源52にて、補助ポンプセル50がポンピングを行う。これにより第2内部空所40内の雰囲気中の酸素分圧は、NOxの測定に実質的に影響がない低い分圧にまで制御されるようになっている。
 また、これとともに、そのポンプ電流Ip1が、主ポンプ制御用酸素分圧検出センサセル80の起電力の制御に用いられるようになっている。具体的には、ポンプ電流Ip1は、制御信号として主ポンプ制御用酸素分圧検出センサセル80に入力され、その起電力V0が制御されることにより、第3拡散律速部30から第2内部空所40内に導入される被測定ガス中の酸素分圧の勾配が常に一定となるように制御されている。NOxセンサとして使用する際は、主ポンプセル21と補助ポンプセル50との働きによって、第2内部空所40内での酸素濃度は約0.001ppm程度の一定の値に保たれる。
 測定用ポンプセル41は、第2内部空所40内において、被測定ガス中のNOx濃度の測定を行う。測定用ポンプセル41は、第2内部空所40に面する第1固体電解質層4の上面であって第3拡散律速部30から離間した位置に設けられた測定電極44と、外側ポンプ電極23と、第2固体電解質層6と、スペーサ層5と、第1固体電解質層4とによって構成された電気化学的ポンプセルである。
 測定電極44は、多孔質サーメット電極である。測定電極44は、第2内部空所40内の雰囲気中に存在するNOxを還元するNOx還元触媒としても機能する。さらに、測定電極44は、第4拡散律速部45によって被覆されてなる。
 第4拡散律速部45は、セラミックス多孔体にて構成される膜である。第4拡散律速部45は、測定電極44に流入するNOxの量を制限する役割を担うとともに、測定電極44の保護膜としても機能する。測定用ポンプセル41においては、測定電極44の周囲の雰囲気中における窒素酸化物の分解によって生じた酸素を汲み出して、その発生量をポンプ電流Ip2として検出することができる。
 また、測定電極44の周囲の酸素分圧を検出するために、第1固体電解質層4と、第3基板層3と、測定電極44と、基準電極42とによって電気化学的なセンサセル、すなわち、測定用ポンプ制御用酸素分圧検出センサセル82が構成されている。測定用ポンプ制御用酸素分圧検出センサセル82にて検出された起電力V2に基づいて可変電源46が制御される。
 第2内部空所40内に導かれた被測定ガスは、酸素分圧が制御された状況下で第4拡散律速部45を通じて測定電極44に到達することとなる。測定電極44の周囲の被測定ガス中の窒素酸化物は還元されて(2NO→N2+O2)酸素を発生する。そして、この発生した酸素は測定用ポンプセル41によってポンピングされることとなるが、その際、測定用ポンプ制御用酸素分圧検出センサセル82にて検出された起電力V2が一定となるように可変電源46の電圧Vp2が制御される。測定電極44の周囲において発生する酸素の量は、被測定ガス中の窒素酸化物の濃度に比例するものであるから、測定用ポンプセル41におけるポンプ電流Ip2を用いて被測定ガス中の窒素酸化物濃度が算出されることとなる。
 また、測定電極44と、第1固体電解質層4と、第3基板層3と、基準電極42とを組み合わせて、電気化学的センサセルとして酸素分圧検出手段を構成するようにすれば、測定電極44の周りの雰囲気中のNOx成分の還元によって発生した酸素の量と基準大気に含まれる酸素の量との差に応じた起電力を検出することができ、これによって被測定ガス中のNOx成分の濃度を求めることも可能である。
 また、第2固体電解質層6と、スペーサ層5と、第1固体電解質層4と、第3基板層3と、外側ポンプ電極23と、基準電極42とから電気化学的なセンサセル83が構成されており、このセンサセル83によって得られる起電力Vrefによりセンサ外部の被測定ガス中の酸素分圧を検出可能となっている。
 このような構成を有するガスセンサ100においては、主ポンプセル21と補助ポンプセル50とを作動させることによって酸素分圧が常に一定の低い値(NOxの測定に実質的に影響がない値)に保たれた被測定ガスが測定用ポンプセル41に与えられる。したがって、被測定ガス中のNOxの濃度に略比例して、NOxの還元によって発生する酸素が測定用ポンプセル41より汲み出されることによって流れるポンプ電流Ip2に基づいて、被測定ガス中のNOx濃度を知ることができるようになっている。
 さらに、センサ素子101は、固体電解質の酸素イオン伝導性を高めるために、センサ素子101を加熱して保温する温度調整の役割を担うヒータ部70を備えている。ヒータ部70は、ヒータ72と、スルーホール73と、ヒータ絶縁層74、圧力放散孔75とを備えている。
 ヒータ72は、第2基板層2と第3基板層3とに上下から挟まれた態様にて形成される電気抵抗体である。ヒータ72は、スルーホール73を介して下部コネクタパッド86と接続されており、該下部コネクタパッド86を通して外部より給電されることにより発熱し、センサ素子101を形成する固体電解質の加熱と保温を行う。
 また、ヒータ72は、第1内部空所20から第2内部空所40の全域に渡って埋設されており、センサ素子101全体を上記固体電解質が活性化する温度に調整することが可能となっている。
 ヒータ絶縁層74は、ヒータ72の上下面に、アルミナ等の絶縁体によって形成されてなる絶縁層である。ヒータ絶縁層74は、第2基板層2とヒータ72との間の電気的絶縁性、および、第3基板層3とヒータ72との間の電気的絶縁性を得る目的で形成されている。
 圧力放散孔75は、第3基板層3を貫通し、基準ガス導入空間43に連通するように設けられてなる部位であり、ヒータ絶縁層74内の温度上昇に伴う内圧上昇を緩和する目的で形成されてなる。
 第2固体電解質層6の上面の後端側には、上部コネクタパッド85が配設されている(図1参照)。同様に、第1基板層1の下面の後端側には、下部コネクタパッド86が配設されている。上部,下部コネクタパッド85,86は、センサ素子101と外部とを電気的に導通するためのコネクタ電極として機能する。上部,下部コネクタパッド85,86は、図示は省略するがそれぞれ複数(本実施形態では4個ずつ)配設されている。上部コネクタパッド85の1つは、図2,3に示す測定電極リード91と導通しており、測定電極リード91を介して測定電極44と導通している。測定電極44以外の他の各電極についても、図示しない電極リードを介して上部コネクタパッド85又は下部コネクタパッド86のいずれかと導通している。これらの上部,下部コネクタパッド85,86を介して、外部からセンサ素子101の各電極(内側ポンプ電極22,外側ポンプ電極23,基準電極42,測定電極44,補助ポンプ電極51)に電圧又は電流を印加したり各電極の電圧や電流を測定したりすることができるようになっている。上述した可変電源24,可変電源46,可変電源52による電圧の印加や、ポンプ電流Ip0,Ip1,Ip2,起電力V0,V1,V2,Vrefの検出なども、実際はこの上部,下部コネクタパッド85,86を介して行われる。
 測定電極リード91は、例えば白金等の貴金属又はタングステン,モリブデン等の高融点金属と、第1固体電解質層4の主成分と同じジルコニアと、を有するサーメットの導電体である。測定電極リード91は、図2に示すようにセンサ素子101中で測定電極44よりも左側に配置されている。測定電極リード91は、測定電極44の左側に接続され左右方向に延びる第1直線部91aと、第1直線部91aの左端に前端が接続され前後方向に延びる第2直線部91bと、第2直線部91bの後端に右端が接続され左右方向に延びる第3直線部91cと、を有している。第3直線部91cは、端部がセンサ素子101の左側面に露出しており、この左側面に配設された図示しない側面リードを介して、上部コネクタパッド85の1つと導通している。測定電極リード91のほとんどの部分は、第1固体電解質層4上に配設されたリード絶縁層92に上下左右を囲まれている。
 リード絶縁層92は、アルミナ等の絶縁体であり、測定電極リード91の少なくとも一部を第1固体電解質層4及びスペーサ層5から絶縁している。リード絶縁層92は、図2に示すように直線部93を備えている。直線部93は、長手方向が前後方向に沿うように配設されている。直線部93は、測定電極リード91の第1直線部91aの一部と、第2直線部91bの全部と、第3直線部91cの一部と、を囲んでいる。直線部93は、第2直線部91bに沿って配置されており、長手方向(前後方向)の延長上には測定電極44が位置していない。なお、直線部93は、第1直線部91aの右側の一部や第3直線部91cの左側の一部は覆っていない。これにより、センサ素子101の製造時に、リード絶縁層92が、第2内部空所40,測定電極44,及び第3直線部91cの左端部等の、酸素イオンの伝導や電気的接続が必要な部分を覆ってしまうことを防止している。
 また、図1では図示を省略しているが、図2,3に示すように、第1固体電解質層4上には接着層94が存在する。接着層94は、スペーサ層5と第1固体電解質層4とを接着している。接着層94は、第1固体電解質層4の上面のうち、緩衝空間12,第1内部空所20,第2内部空所40などのガス流通部以外のほとんどを覆っている。接着層94は、各層1~6と同様に酸素イオン伝導性を有することが好ましい。本実施形態では、接着層94は各層1~6と同じジルコニアを主成分とするセラミックスとした。なお、スペーサ層5と第1固体電解質層4との間に限らず、各層1~6の間には図示しない接着層が存在する。
 次に、こうしたガスセンサ100のセンサ素子101の製造方法について説明する。図4は、グリーンシート204及び複数の素子用領域208の説明図である。図5は、グリーンシート204上に各パターンを形成する様子を示す上面図である。図6は、グリーンシート204上に各パターンを形成する様子を示す断面図である。なお、図6(a)は図5(a)のC-C断面図、図6(b)は図5(b)のD-D断面図、図6(d)は図5(c)のE-E断面図である。また、図5は、グリーンシート204中の1つの素子用領域208に形成されるパターンの一部を示している。
[準備工程]
 センサ素子101を作製する場合、まず、酸素イオン伝導性の固体電解質であるセラミックス(本実施形態ではジルコニア)を主成分とするグリーンシート200を複数用意する準備工程を行う。本実施形態では、センサ素子101は第1~第3基板層1~3,第1固体電解質層4,スペーサ層5,第2固体電解質層6の6つの層から構成されている。そのため、グリーンシート200として、各層に対応させた6枚のグリーンシート200を用意する。図4には、6枚のグリーンシート200のうちの1つとして、焼成後に第1固体電解質層4となるグリーンシート204を示した。準備工程では、予め作製されたグリーンシート200を用意してもよいし、グリーンシート200を作製することで用意してもよい。グリーンシート200を作製する場合、例えば、安定化したジルコニアの粉末と、有機バインダーと、可塑剤と、有機溶剤とを混合してペーストとし、このペーストを用いてドクターブレード法などにより作製する。グリーンシート200は、図4に示すように、略長方形に形成されている。また、グリーンシート200には、例えばプレス機のパンチを用いた打ち抜き加工を行って、四隅を円弧状に切り落としたり、複数のシート孔を形成したりしておく。これらは、後述するパターンの形成時や積層時の位置決めに用いられる。また、対応する層が内部空間を有している場合には、そのグリーンシート200にもその内部空間に相当する空間(孔)を予め設けておく。
[形成工程]
 続いて、複数のグリーンシート200の1以上に対して複数のセンサ素子101の各々に対応するパターンを形成して乾燥させる形成工程を行う。パターンとは、具体的には、図1~3に示した、測定電極44などの各電極のパターンや、測定電極リード91,リード絶縁層92,接着層94,ヒーター部70などを形成するためのパターンである。図4に示すように、グリーンシート200の各々には、1つのセンサ素子101に対応するパターンを形成する領域である素子用領域208が複数定められており、この素子用領域208の各々に各パターンを形成する。複数の素子用領域208は、センサ素子101の長手方向(前後方向)と直交する所定方向(図4の左右方向であり、グリーンシート204の長手方向)に並ぶように定められている。本実施形態では、素子用領域208は所定方向に22個並び、且つ所定方向と垂直な方向(センサ素子の長手方向)に2列に並んでおり、合計44個の素子用領域208が定められている。44個の素子用領域208を区別する場合は、図4に示すように上段の22個の素子用領域208を図4の左から右に向かって素子用領域p1~p22と称し、下段の22個の素子用領域208を図4の右から左に向かって素子用領域p23~p44と称する。複数の素子用領域208は、形成されるパターンの向きも定められている。図4の拡大部分に示すように、上段の素子用領域p1~p22に形成されるパターンは、センサ素子101の前方が図4の下方を向く向きに形成される。下段の素子用領域p23~p44に形成されるパターンは、センサ素子101の前方が図4の上方を向く向きに形成される。なお、図4の拡大部分では、パターンの向きを示すために、センサ素子101の前後左右の方向を示す矢印と、測定電極44のパターンである未焼成測定電極144と,測定電極リード91のパターンである未焼成測定電極リード191と、基準ガス導入空間43に相当する空間である空間143と、を示している。なお、空間143は、上述した準備工程における打ち抜き加工で形成された孔である。また、各々のパターンの形成は、それぞれの形成対象に要求される特性に応じて用意したパターン形成用ペーストを、公知のスクリーン印刷技術を利用してグリーンシート200に塗布することにより行う。
 この形成工程は、以下のステップ(a)~(c)を含む。ステップ(a)では、複数のグリーンシート200の1つであるグリーンシート204に、導電ペーストからなる未焼成測定電極144を形成する。ステップ(b)では、ステップ(a)と同じグリーンシート204に、導電ペーストからなり未焼成測定電極144に接続される未焼成測定電極リード191と、未焼成測定電極リード191の少なくとも一部を囲み絶縁ペーストからなる未焼成リード絶縁層192と、を形成する。未焼成測定電極144,未焼成測定電極リード191,未焼成リード絶縁層192は、それぞれ焼成後に測定電極44,測定電極リード91,リード絶縁層92となるものであり、図1~3で示した位置及び形状に対応して、グリーンシート204の複数の素子用領域208の各々に形成される。ステップ(a),(b)は、具体的には例えば以下のように行う。まず、ステップ(a)を行ってグリーンシート204上に未焼成測定電極144を形成する。続いて、ステップ(b)を行う。具体的には、まず、未焼成リード絶縁層192の一部である下側絶縁層193aを形成し、下側絶縁層193aの上に未焼成測定電極リード191を形成する(図5(a),図6(a))。図5(a)に示すように、未焼成測定電極リード191は、測定電極リード91の第1~第3直線部91a~91cに対応する第1~第3直線部191a~191cを有している。次に、下側絶縁層193a及びその上の未焼成測定電極リード191上に上側絶縁層193bを形成する(図5(b),図6(b))。これにより、下側絶縁層193a及び上側接着層194bからなる直線部193を有する未焼成リード絶縁層192が形成される。未焼成リード絶縁層192は未焼成測定電極リード191の少なくとも一部を囲むように形成される。本実施形態では、直線部193が第1直線部191aの一部と第2直線部191bの全部と第3直線部191cの一部とを囲むように形成される。なお、特にこれに限定するものではないが、未焼成測定電極リード191の厚さは例えば7μm~17μmである。未焼成リード絶縁層192の厚さ(下側絶縁層193a及び上側絶縁層193bの合計厚さ)は例えば20μm~40μmである。
 なお、本実施形態では、ステップ(a)で未焼成測定電極144を形成する際に、焼成後に補助ポンプ電極51の底部電極部51bとなる未焼成補助ポンプ電極151b(図5(a)参照)や、焼成後に内側ポンプ電極22の底部電極部22bとなる未焼成主ポンプ電極(図示省略)も形成するものとした。また、ステップ(b)で上側絶縁層193bを形成した後に、焼成後に第4拡散律速部45となる未焼成第4拡散律速部145を形成するものとした(図5(b)参照)。
 ステップ(c)では、ステップ(b)を行ったグリーンシート204上の未焼成リード絶縁層192がない領域の少なくとも一部を埋めるように接着ペーストからなる未焼成接着層194を形成し、且つ未焼成リード絶縁層192の縁部分の少なくとも一部と重複するように未焼成接着層194を形成する。未焼成接着層194は、焼成後に接着層94(の一部)となるものである。例えば、未焼成接着層194は、未焼成接着層194が形成される領域(図5(c)の薄いハッチング及び濃いハッチング部分)と、未焼成接着層194が形成されない非形成領域196と、を有するパターンに形成される。非形成領域196には、グリーンシート204の上面のうち、緩衝空間12,第1内部空所20,第2内部空所40などのガス流通部となる領域、及び未焼成リード絶縁層192が形成された領域の一部(重複領域195以外の領域)が含まれる。未焼成接着層194は、グリーンシート204の上面のうち非形成領域196以外のほとんどを埋めるように(覆うように)形成される。また、未焼成接着層194は、未焼成リード絶縁層192の直線部193の縁部分と重複する部分である重複領域195を有するように形成される(図5(c)の濃いハッチング部分)。なお、図5(c)に示すように、グリーンシート204のうち空間143が形成されている部分には、未焼成接着層194は形成しない。ただし、グリーンシート204に孔(空間143)が空いておりそもそもグリーンシート204の上面が存在しないため、未焼成接着層194が空間143を避けるようなパターンにする必要はない。なお、本実施形態では、未焼成接着層194を、下側接着層194a,上側接着層194bの複数回(ここでは2回)に分けた印刷で形成するものとした。1回目の印刷では、未焼成リード絶縁層192の縁部分と接するように下側接着層194aを形成する(図6(c))。2回目の印刷では、未焼成リード絶縁層192の縁部分の少なくとも一部と重複するように上側接着層194bを形成する(図5(c),図6(d))。なお、未焼成接着層194も、未焼成測定電極144等と同様に、グリーンシート204の複数の素子用領域208の各々に形成される。
 重複領域195は、具体的には、直線部193の右側の縁部分との重複領域である第1重複領域195aと、直線部193の左側の縁部分との重複領域である第2重複領域195bと、を有している。また、重複領域195は、直線部193の前側の縁部分との重複領域である第3重複領域195cと、直線部193の後側の縁部分との重複領域である第4重複領域195dと、を有している。なお、未焼成リード絶縁層192と未焼成接着層194との重複領域195とは、両者の形成面(グリーンシート204の上面)に垂直な方向(本実施形態では上方)から見たときに両者が重複している部分である。また、本実施形態では、第1重複領域195aの幅Wo1が前後方向のいずれの位置でも略一定になるように、未焼成リード絶縁層192及び未焼成接着層194のパターン形状が定められている。同様に、第2~第4重複領域195b~195dの幅Wo2~Wo4も略一定になるようにパターン形状が定められている。また、幅Wo1~Wo4が略等しくなるように未焼成リード絶縁層192及び未焼成接着層194のパターン形状が定められているものとした。なお、上述したように未焼成接着層194は第2内部空所40となる領域には形成されない。そのため、直線部93の左前方付近(第1直線部191aのうち未焼成リード絶縁層192に囲まれていない部分の周辺、及び未焼成測定電極144の周辺)には形成されない。このように、そもそも未焼成接着層194の縁部分とリード絶縁層92の縁部分とを隣接させない部分には、重複領域195を形成する必要はない。また、本実施形態では、未焼成リード絶縁層192及び未焼成接着層194のパターン形状等は、グリーンシート204の素子用領域p1~p44のいずれについても同じとした。特にこれに限定されるものではないが、未焼成接着層194の厚さ(下側接着層194aと上側接着層194bとの合計厚さ)は例えば25μm~45μmである。なお、未焼成接着層194の厚さは、未焼成測定電極リード191と未焼成リード絶縁層192との合計厚さに近い値(例えば0.8倍~1.2倍)であることが好ましい。
 上記ステップ(a)~(c)を含む形成工程を行うことで、複数のグリーンシート200の各々に定められた複数の素子用領域208の各々に対して、複数のセンサ素子101の各々に対応するパターンが形成される。なお、必要なパターンを必要な位置に形成できればよく、形成工程における各パターンの形成の順序は、適宜変更してもよい。例えば、ステップ(a)~(c)の順序は、ステップ(b)の後にステップ(c)を行うものとすればよく、ステップ(a)をステップ(c)の後に行ってもよい。また、ステップ(a)をステップ(b)の後且つステップ(c)の前に行ってもよい。なお、形成工程では、上記のようにパターン形成後の乾燥も行う。乾燥処理については、公知の乾燥技術を利用可能であり、例えば75~90℃の温度で大気雰囲気にて行うのが一般的である。また、グリーンシート200の各々に対する乾燥処理は、本実施形態ではパターンの形成を1回行う毎に行うものとした。ただし、パターンの形成を複数回行う毎に行ってもよいし、パターンの形成が全て完了したあとでまとめて行ってもよい。
[積層工程]
 次に、ステップ(a)~(c)が行われたグリーンシート204を含む複数のグリーンシート200を積層して、未焼成測定電極リード191がグリーンシート200の間に配置された積層体とする積層工程を行う。この積層工程では、まず、グリーンシート204を含む複数のグリーンシート200同士を接着するための未焼成裏面接着層の形成・乾燥処理を行う。未焼成裏面接着層は、例えば未焼成接着層194と同じ材質の接着層ペーストを用いることができ、スクリーン印刷などにより形成する。未焼成裏面接着層は、各グリーンシート200の裏面(例えば形成工程においてパターンを形成した面とは反対側の面)において、例えば複数の素子用領域208(素子用領域p1~p44)を含む領域全体に印刷を行うことで形成する。特にこれに限定されるものではないが、未焼成裏面接着層の厚さは例えば7μm~17μmである。なお、未焼成裏面接着層の形成及び乾燥は、形成工程の中で行ってもよい。未焼成裏面接着層の形成・乾燥処理を行うと、公知の積層用治具を用いて、グリーンシート200のシート孔などを用いて位置決めしつつ複数のグリーンシート200を重ね合わせて上下方向(シートの厚さ方向)から加圧し、積層体とする。これにより、図6(e)に示すように、グリーンシート204上に形成された未焼成測定電極リード191等は、グリーンシート204と、裏面に未焼成裏面接着層197が形成されたグリーンシート205と、に挟まれて加圧された状態になる。なお、グリーンシート205は、焼成後にスペーサ層5となるシートである。また、図6(e)では図示を省略しているが、グリーンシート204の下方やグリーンシート205の上方にも他のグリーンシート200が積層されている。
[切り出し工程]
 積層工程を行って積層体が得られると、積層体から複数の未焼成センサ素子を切り出す切り出し工程を行う。切り出し工程では、例えば、グリーンシート200のシート孔や図示しないカットマークなどを参考にして積層体を切断し、複数(本実施形態では44個)の未焼成センサ素子を切り出す。なお、切断は、積層体の各グリーンシート200について図4に示した素子用領域208の部分が切り出されるように行う。
[焼成工程]
 そして、切り出した複数の未焼成センサ素子を所定の条件で焼成する焼成工程を行って、複数のセンサ素子101を得る。なお、焼成工程により、未焼成センサ素子中の未焼成測定電極144,未焼成測定電極リード191,及び未焼成リード絶縁層192は、測定電極44,測定電極リード91,及びリード絶縁層92となる。また、未焼成接着層194及び未焼成裏面接着層197は接着層94となる(図6(f))。
 このように、本実施形態のセンサ素子101の製造方法では、形成工程のステップ(c)において、未焼成リード絶縁層192の縁部分の少なくとも一部と重複して重複領域195が存在するように未焼成接着層194を形成する(図5(c),図6(d))。これに対し、例えば図10(b)に示したように、未焼成絶縁層792の縁部分と未焼成接着層794の縁部分とが接する(重複はしない)ように未焼成接着層794を形成する場合を考える。この場合、図10(c),(d)に示したように積層体や焼成後のセンサ素子101において空隙799が生じてしまう場合がある。センサ素子101にこのような空隙799が存在すると、センサ素子101の使用時に空隙799内の酸素(例えば空隙799内を満たす空気に含まれる酸素)が電極周辺に供給されてしまい、特定ガス濃度が精度良く検出できない場合がある。例えば、測定電極44周辺に窒素酸化物が還元されたことによる酸素以外の酸素(すなわち特定ガスに由来しない酸素)が空隙799内から供給されると、供給された酸素に応じて図1のポンプ電流Ip2や起電力V2が変化してしまう。そのため、これらの少なくともいずれかを用いてNOx濃度を検出する場合に検出の精度が低下する。補助ポンプセル50がポンピングを行うことで、空隙799から供給される酸素を外部に汲み出せば検出の精度は回復するが、少なくともセンサ素子101の使用開始時など汲み出しが不十分な期間は検出の精度が低下した状態となる。このように、空隙799が存在して測定電極44周辺に酸素が供給されると、センサ素子101の使用開始時のNOx濃度の検出精度が低下する、すなわち初期安定性が低下する。これに対し、本実施形態では、図5(c),図6(d)に示したように重複領域195が存在することで、積層工程後における未焼成リード絶縁層192と未焼成接着層194との間(境界付近)に空隙が生じにくい(図6(e))。そのため、焼成後のセンサ素子101におけるリード絶縁層92と接着層94との間に空隙が生じにくい(図6(f))。したがって、センサ素子101の使用時に空隙内の酸素が測定電極44周辺に供給されてしまうことを抑制でき、センサ素子101の初期安定性の低下を抑制することができる。
 なお、ステップ(c)では、未焼成リード絶縁層192と未焼成接着層194との重複領域195の幅の最大値Womaxが20μm以上140μm以下となるように未焼成接着層194を形成することが好ましい。なお、重複領域195が存在する場合、最大値Womaxは0μm超過となる。最大値Womaxが20μm以上では、センサ素子101の特定ガス濃度の検出精度の低下(ここでは初期安定性の低下)をより確実に抑制できる。最大値Womaxが140μm以下では、重複領域195の幅が大きいことすなわちグリーンシート204上で部分的にペーストの量が多いことによる、焼成時のセンサ素子101の反りを抑制できる。例えば、本実施形態ではセンサ素子101の左右方向で左側に重複領域195が存在するため、重複領域195の幅が大きい場合には焼成後のセンサ素子101が左側に膨らむように反る場合があるが、そのようなことを抑制できる。また、センサ素子101の反りをより抑制できるため、最大値Womaxは120μm以下であることがより好ましい。なお、最大値Womaxは、重複領域195のうち最も重複の幅が大きい部分の幅である。本実施形態では、幅Wo1~Wo4の各々が一定であり且つこれらの値が等しいため、幅Wo1~Wo4=Womaxである。
 また、ステップ(c)では、最大値Womax[μm]と、未焼成リード絶縁層192のうち未焼成測定電極リード191の通電方向に垂直な方向の幅Wi[μm](図5(c)参照)との比Womax/Wiが値0.04以上値0.29以下となるように未焼成接着層194を形成することが好ましい。なお、未焼成測定電極リード191の通電方向は、未焼成測定電極リード191のうち最も長い直線部(本実施形態では第2直線部191b)の通電方向とする。そのため、本実施形態では、未焼成測定電極リード191の通電方向は、センサ素子101の長手方向すなわち前後方向である。したがって、幅Wiは、未焼成リード絶縁層192のうち前後方向に垂直な左右方向の幅となる。なお、重複領域195が存在する場合、比Womax/Wiは値0超過となる。比Womax/Wiが値0.04以上では、センサ素子101における特定ガス濃度の検出精度の低下をより確実に抑制できる。比Womax/Wiが値0.29以下では、重複領域195の幅が大きいことすなわちグリーンシート204上で部分的にペーストの量が多いことによる、焼成時のセンサ素子101の反りを抑制できる。また、センサ素子101の反りをより抑制できるため、比Womax/Wiは値0.24以下であることがより好ましい。特にこれに限定するものではないが、幅Wiは例えば500μm~650μmである。また、未焼成測定電極リード191の幅は例えば200μm~300μmであり、幅Wiは例えば未焼成測定電極リード191の幅の1.0倍~3.25倍としてもよい。幅Wiは未焼成測定電極リード191の幅の1.1倍以上としてもよい。
 以上詳述した本実施形態のセンサ素子101の製造方法によれば、形成工程のステップ(c)において、未焼成リード絶縁層192の縁部分の少なくとも一部と重複するように未焼成接着層194を形成するため、センサ素子101のNOx濃度の検出精度の低下(初期安定性の低下)を抑制することができる。また、最大値Womaxを20μm以上とすることで、センサ素子101の検出精度の低下をより確実に抑制できる。最大値Womaxを140μm以下とすることで、焼成時のセンサ素子101の反りを抑制できる。さらに、比Womax/Wiを値0.04以上とすることで、センサ素子101の検出精度の低下をより確実に抑制できる。比Womax/Wiを値0.29以下とすることで、焼成時のセンサ素子101の反りを抑制できる。
 また、センサ素子101の製造方法において、ステップ(b)で形成される未焼成リード絶縁層192は、長手方向(前後方向)の延長上に未焼成測定電極144が位置しないように配置された直線部193を有している。そして、ステップ(c)では、直線部193の長手方向に沿った縁部分(直線部193の右側及び左側の縁部分)のうち少なくとも未焼成測定電極144に近い側(右側)の縁部分と重複するように、すなわち第1重複領域195aが存在するように、未焼成接着層194を形成する。ここで、電極と空隙との距離が近いほど、空隙内の酸素が電極周辺に到達しやすいため、センサ素子101の検出精度が低下しやすい。第2重複領域195bと比べて未焼成測定電極144に近い第1重複領域195aが存在するように未焼成接着層194を形成することで、リード絶縁層92のうち測定電極44に近い側の縁部分付近での空隙の発生を抑制でき、センサ素子101の検出精度の低下を抑制する効果が高まる。
 また、センサ素子101の製造方法において、ステップ(a)では、未焼成電極として、焼成後に測定電極44となる未焼成測定電極144を形成し、ステップ(b)では、未焼成電極リードとして、未焼成測定電極144に接続され焼成後に測定電極リード91となる未焼成測定電極リード191を形成する。これにより、測定電極44に接続される測定電極リード91を囲むリード絶縁層92と接着層94との間に空隙が生じにくくなるため、センサ素子101の使用時に空隙内の酸素が測定電極44周辺に供給されてしまうことを抑制できる。ここで、測定電極44の周辺に空隙内の酸素が供給されると、他の電極の周辺に空隙内の酸素が供給される場合と比べて、特定ガス濃度の検出精度が低下しやすい。そのため、未焼成測定電極リード191の少なくとも一部を囲む未焼成リード絶縁層192の縁部分の少なくとも一部と重複するように未焼成接着層194を形成することで、センサ素子101における特定ガス濃度の検出精度の低下をより抑制できる。
 さらに、センサ素子101の製造方法において、ステップ(a)~(c)では、グリーンシート204に対して、センサ素子101の1個に対応するパターンがセンサ素子101の長手方向(前後方向)と直交する所定方向(左右方向)に並ぶように、未焼成測定電極144,未焼成測定電極リード191,未焼成リード絶縁層192,及び未焼成接着層194の各々のパターンを複数形成する。そして、切り出し工程では、積層体から複数の未焼成センサ素子を切り出し、積層工程では、複数の未焼成センサ素子を焼成して複数のセンサ素子101を得ている。これにより、複数のセンサ素子101をまとめて製造できる。
 なお、本発明は上述した実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。
 上述した実施形態では、センサ素子101の1個に対応するパターンを素子用領域208の各々に形成する場合の複数のパターンのピッチについて詳述しなかったが、これについて説明する。図7は、未焼成リード絶縁層192形成時の第1ピッチP1と未焼成接着層194形成時の第2ピッチP2とを示す説明図である。なお、図7は、グリーンシート204のうち素子用領域p10~p15の一部(センサ素子101の後端側の領域)を示している。また、図7上段は、未焼成リード絶縁層192(上側絶縁層193b)の形成直後(印刷後の乾燥前)の状態を示している。図7下段は、未焼成接着層194の形成直後の状態を示している。センサ素子101の長手方向に直交する所定方向(図4の左右方向)に並んだ素子用領域208の各々に、センサ素子101の1個に対応する種々のパターンを形成する場合、パターンの所定方向の並びのピッチは、いずれのパターンを形成する場合も基本的には同じ値(例えば図7に示す第1ピッチP1)とすればよい。ただし、ステップ(b)において、センサ素子101の1個に対応する未焼成リード絶縁層192のパターンが、所定方向に第1ピッチP1で並ぶように、未焼成リード絶縁層192のパターンを複数形成した場合に、ステップ(c)では、センサ素子101の1個に対応する未焼成接着層194のパターンが、所定方向に第1ピッチP1よりも小さい第2ピッチP2で並ぶように、未焼成接着層194のパターンを複数形成することが好ましい。すなわち、図7に示す素子用領域p10~p15のように、所定方向に隣り合う素子用領域208間の未焼成リード絶縁層192のピッチが第1ピッチP1である場合に(図7上段)、所定方向に隣り合う素子用領域208間の未焼成接着層194のピッチが第2ピッチP2(<P1)となるようにする(図7下段)ことが好ましい。ここで、センサ素子101の1個に対応するパターンが所定方向に複数並ぶようにグリーンシート204上に未焼成リード絶縁層192のパターンを複数形成する場合、形成後にグリーンシート204が乾燥して収縮すると、未焼成リード絶縁層192のパターンのピッチが形成時の第1ピッチP1よりも小さくなる。この場合、例えば複数の未焼成リード絶縁層192のパターンの形成時のピッチと複数の未焼成接着層194のパターンの形成時のピッチとを同じ第1ピッチP1とすると、複数並んで形成される未焼成接着層194のパターンのうち少なくとも一部について、対応する未焼成リード絶縁層192のパターンとの位置ずれが生じる。例えば、グリーンシート204の長手方向の中央を基準として未焼成接着層194の形成用のスクリーンマスクの位置決めを行ってグリーンシート204に未焼成接着層194を形成すると、グリーンシート204の長手方向の外側ほど、収縮後の未焼成リード絶縁層192と形成時の未焼成接着層194との位置ずれが大きくなる。なお、図7では、グリーンシート204の長手方向の中央は、素子用領域p11と素子用領域p12との境界線上に位置するものとした。そして、位置ずれが生じると、未焼成リード絶縁層192と未焼成接着層194との重複領域の幅(特に、所定方向に沿った重複の幅である幅Wo1,Wo2)が目標値と異なってしまう(第1重複領域195a,第2重複領域195bの少なくともいずれかが存在しなくなる場合も含む)。例えば、図7のようにグリーンシート204の長手方向の中央を基準として未焼成接着層194を第1ピッチP1で形成すると、グリーンシート204の収縮により未焼成リード絶縁層192に対して未焼成接着層194が相対的に外側にずれる。そのため、図7の左側すなわち図4の素子用領域p22に近い素子用領域208ほど、幅Wo1は目標値より小さくなり幅Wo2は目標値より大きくなる傾向にある。同様に、図7の右側すなわち図4の素子用領域p1に近い素子用領域208ほど、幅Wo1は目標値より大きくなり幅Wo2は目標値より小さくなる傾向にある。このように重複領域の幅が目標値と異なると、例えば重複領域の幅が小さくなることで、上述した特定ガス濃度の検出精度の低下を抑制する効果が十分得られないセンサ素子101が製造されやすくなる。あるいは、重複領域の幅が大きくなることで、上述した焼成時のセンサ素子の反りを抑制する効果が十分得られなくなる。すなわちセンサ素子101の歩留まりが低下する。これに対し、未焼成リード絶縁層192のパターンの形成時の第1ピッチP1よりも小さい第2ピッチP2で未焼成接着層194のパターンを複数形成することで、未焼成接着層194のパターンとグリーンシート204の収縮後の未焼成リード絶縁層192のパターンとの位置ずれを低減できる。これにより、重複領域の幅の目標値と実際の値とがずれにくくなり、センサ素子101の歩留まりを向上させることができる。
 なお、図7下段では、未焼成接着層194は、素子用領域208のうち非形成領域196を除いたほとんどの領域を覆うように形成されるため、素子用領域208の各々に形成される複数の未焼成接着層194のパターンは互いに連続している(接している)。ただし、素子用領域208の各々の未焼成接着層194のパターンは、未焼成リード絶縁層192などを避ける非形成領域196を有しており、この非形成領域196の所定方向のピッチが複数の未焼成接着層194の所定方向の並びのピッチ(第2ピッチP2)となる。なお、第2ピッチP2は、未焼成リード絶縁層192の乾燥後の収縮を調べて、第1ピッチP1で形成された未焼成リード絶縁層192の乾燥後のピッチ(未焼成接着層194の形成時のピッチ)と一致するような値として、実験的に定めることができる。例えば、第2ピッチP2は第1ピッチP1の99%以上100%未満の長さ[mm]としてもよい。第2ピッチP2は第1ピッチP2の99.5%以上としてもよいし、99.9%以上としてもよい。なお、上述した実施形態のように未焼成リード絶縁層192を複数回に分けて(下側絶縁層193a,上側絶縁層193b)形成する場合、そのうちの最後に形成した際のピッチ(ここでは上側絶縁層193bの形成時のピッチ)を第1ピッチP1とする。また、上述した実施形態のように未焼成接着層194を複数回に分けて(下側接着層194a,上側接着層194b)形成する場合、重複領域195(特に幅方向が所定方向に沿っている第1重複領域195a,195b)を形成する際のピッチ(ここでは上側接着層194bの形成時のピッチ)を第2ピッチP2とする。ただし、未焼成接着層194を形成する複数回のいずれにおいても、第1ピッチP1よりも小さいピッチ(例えば同じ第2ピッチP2)とすることが好ましい。また、下側接着層194aの形成後に乾燥を行ってから上側接着層194bを形成する場合、このときの乾燥による収縮も考慮して、下側接着層194aの形成時のピッチより上側接着層194bの形成時のピッチを小さくしてもよい。なお、未焼成接着層194形成時に限らず、同じグリーンシート200にパターンを形成する際には、後から形成するパターンほどピッチが小さくなるようにしてもよい。例えば、下側絶縁層193a,未焼成測定電極リード191,上側絶縁層193bをこの順で形成する際に、後から形成するパターンほどピッチを小さくしてもよい。ただし、例えば未焼成測定電極リード191の幅よりも下側絶縁層193a,上側絶縁層193bの幅が十分大きければ、下側絶縁層193a,未焼成測定電極リード191,上側絶縁層193bの互いの形成位置が乾燥時の収縮分だけ位置ずれしても、センサ素子101の特性等に与える影響は少ない。そのため、未焼成リード絶縁層192と未焼成接着層194との位置ずれを抑制する方が、他のパターン同士の位置ずれを抑制する場合と比べて、センサ素子101の歩留まりを向上させる効果は高い。
 なお、未焼成リード絶縁層192の形成後の乾燥時には、グリーンシート204は長手方向(図4,図7の左右方向)だけでなく短手方向(図4,7の上下方向)にも収縮する。そのため、センサ素子101の1個に対応するパターンが所定方向と直交する方向に複数(図4では2列)並ぶように各パターンを形成する場合、所定方向と直交する方向のパターンの並びのピッチも、未焼成リード絶縁層192の形成時のピッチより未焼成接着層194の形成時のピッチが小さくなるようにしてもよい。例えば図4における素子用領域p1~p22に形成されるパターンと素子用領域p23~p44に形成されるパターンとのピッチ(図4の上下方向のピッチ)を、未焼成リード絶縁層192の形成時と比べて未焼成接着層194の形成時に小さい値にしてもよい。こうすることで、未焼成リード絶縁層192と未焼成接着層194との重複領域の幅(特に、所定方向に直交する方向の重複の幅である幅Wo3,Wo4)が目標値と異なってしまうことを抑制して、センサ素子101の歩留まりを向上させることができる。ただし、グリーンシート204の収縮量はグリーンシート204の短手方向よりも長手方向の方が大きい。そのため、図7に示した所定方向に沿った並びの第2ピッチP2を第1ピッチP1よりも小さくする方が、センサ素子101の歩留まりを向上させる効果は高い。
 上述した実施形態では、重複領域195が第1~第4重複領域195a~195dを有するように未焼成接着層194を形成したが、これに限らず未焼成リード絶縁層192の縁部分の少なくとも一部と未焼成接着層194が重複していればよい。すなわち、少なくとも重複領域195が存在するように未焼成接着層194を形成すればよい。例えば、第4重複領域195dは存在しなくてもよい。また、少なくとも第1重複領域195a及び第3重複領域195cが存在するものとしてもよい。なお、上述したように電極と空隙との距離が近いほど、空隙内の酸素が電極周辺に到達しやすい。そのため、例えば第1~第4重複領域195a~195dのうち少なくとも第1重複領域195aが存在することが好ましく、続いて第3重複領域195cが存在することが好ましく、次に第2重複領域195bが存在することが好ましい。ただし、例えば少なくとも第3重複領域195cが存在するものとしてもよい。
 上述した実施形態では、第1~第4重複領域195a~195dの幅Wo1~Wo4は同じ値としたが、これに限らず幅Wo1~Wo4のいずれか1以上が他と異なる値であってもよい。また、第1重複領域195aの幅Wo1が前後方向のいずれの位置でも略一定としたが、これに限られない。例えば第1重複領域195aのうち未焼成測定電極144に近い側(前方)では幅Wo1が大きく、遠い側(後方)では幅Wo1が小さくなるような傾向にしてもよい。また、幅Wo1の平均値(第1重複領域195aの幅の前後方向の複数位置の値の平均値)が20μm以上140μm以下であってもよい。また、幅Wo1が第1重複領域195aの前後方向のいずれの位置でも20μm以上140μm以下の範囲内にあってもよい。第2~第4重複領域195b~195dについても同様である。
 上述した実施形態では、比Womax/Wiが値0.04以上値0.29以下であることが好ましいことを述べたが、幅Wo1,Wo2の最大値Wo12max[μm]と幅Wiとの比Wo12max/Wiが値0.04以上値0.29以下であってもよい。なお、最大値Wo12maxは、第1,第2重複領域195a,195bの幅の最大値である。言い換えると、最大値Wo12maxは、未焼成リード絶縁層192の直線部193の長手方向に沿った縁部分と、未焼成接着層と、の重複する部分の幅である。
 上述した実施形態では、ステップ(a)では、未焼成電極として、焼成後に測定電極44となる未焼成測定電極144を形成し、ステップ(b)では、未焼成電極リードとして、未焼成測定電極144に接続され焼成後に測定電極リード91となる未焼成測定電極リード191を形成したが、特にこれに限られない。ステップ(b)で形成する未焼成電極リードは、積層体においてグリーンシートの間に配置される未焼成電極リードであればよい。こうしても、その未焼成電極リードを囲む未焼成リード絶縁層と未焼成接着層との間に重複領域が存在するようにすることで、その未焼成電極リードに接続される電極の周辺に空隙内の酸素が供給されてしまうことを抑制でき、センサ素子における特定ガス濃度の検出精度の低下を抑制することができる。例えば、焼成後に内側ポンプ電極22又は補助ポンプ電極51となる未焼成電極に接続される未焼成電極リードに関して、これを囲む未焼成リード絶縁層と未焼成接着層との間に重複領域が存在するようにすれば、上述した実施形態と同様に、センサ素子101の初期安定性の低下を抑制する効果が得られる。すなわち、内側ポンプ電極22又は補助ポンプ電極51の周辺に空隙から酸素が供給されると、これらの電極を含むポンプセル(主ポンプセル21又は補助ポンプセル50)によるこれらの酸素の汲み出しが完了するまではセンサ素子101の検出精度が低下する場合があるが、そのようなことを抑制できる。なお、複数の電極(例えば測定電極44,内側ポンプ電極22,及び補助ポンプ電極51のうち2以上)及びそれに接続される電極リードの各々に関して、ステップ(a)~(c)を行ってもよい。こうすれば、複数の電極に関してその周囲に空隙から酸素が供給されることを抑制できるため、センサ素子101の検出精度の低下を抑制する効果が高まる。
 上述した実施形態では、1つのグリーンシート204が複数の素子用領域208を図4に示すように44個備えるものとしたが、素子用領域208の数や配置は特にこれに限られない。例えば、1つのグリーンシートが素子用領域208を1つのみ備えていてもよい。
 上述した実施形態では、センサ素子101は被測定ガス中の特定ガス濃度としてNOx濃度を検出したが、これに限られない。例えば、センサ素子101は特定ガス濃度として酸素濃度を検出してもよい。
 以下には、センサ素子を具体的に作製した例を実施例として説明する。実験例2~6が本発明の実施例に相当し、実験例1が比較例に相当する。なお、本発明は以下の実施例に限定されるものではない。
[実験例1]
 図4~6を用いて説明した実施形態のセンサ素子101の製造方法に従って、図1に示したセンサ素子101を作製して実験例1とした。ただし、実験例1では、工程(d)において未焼成リード絶縁層192と未焼成接着層194とが縁部分で互いに接するようにし、重複領域195が存在しないようにした。すなわち、幅Wo1~幅Wo4=最大値Womax=0μmとし、比Womax/Wiを値0とした(いずれも目標値すなわち設定値)。製造したセンサ素子101の大きさは、前後方向の長さが67.5mm、左右方向の幅が4.25mm、上下方向の厚さが1.45mmとした。センサ素子101を作製するにあたり、グリーンシート200は、安定化剤のイットリアを4mol%添加したジルコニア粒子と有機バインダーと有機溶剤とを混合し、テープ成形により成形した。未焼成測定電極リード191用の導電性ペーストは、安定化剤のイットリアを4mol%添加したジルコニア粒子11.2質量%と白金60質量%と有機バインダーと有機溶剤を混合したペーストを用いた。リード絶縁層92用の絶縁性ペーストは、アルミナ粉末とバインダー溶液とを1:2の重量割合で混合して、常温時の粘度が40[Pa・s]となるように調整した。接着層94は、安定化剤のイットリアを4mol%添加したジルコニア粒子と有機バインダーと有機溶剤とを混合し、常温時の粘度が20[Pa・s]となるように調整した。未焼成測定電極リード191の厚みは7~17μmとし、その中の第2直線部191bの厚みは9~15μmとした。未焼成リード絶縁層192の幅Wiは490μmとし、下側絶縁層193aと上側絶縁層193bとの合計厚みは30μmとした。下側接着層194aと上側接着層194bの合計厚みは35μmとした。未焼成裏面接着層197の厚さは10μmとした。なお、図7に示したように、未焼成リード絶縁層192の第1ピッチP1よりも未焼成接着層194の第2ピッチP2を小さくして、幅Wo1~幅Wo4の目標値と実際の値とがなるべく一致するようにした。具体的には、未焼成リード絶縁層192(下側絶縁層193a及び上側絶縁層193b)及び未焼成測定電極リード191はいずれも第1ピッチP1を5.27mmとして形成した。未焼成接着層194(下側接着層194a,上側接着層194b)はいずれも第2ピッチP2を5.267mmとして形成した。また、下側絶縁層193a,未焼成測定電極リード191,上側絶縁層193b,下側接着層194a,及び第2重複領域195bのパターンをこの順で形成するにあたり、1つのパターンを形成する毎に乾燥を行った。
[実験例2~6]
 未焼成接着層194の形成用のスクリーンマスクにおける非形成領域196の形状を変更して、最大値Womax及び比Womax/Wiの目標値を種々変更した点以外は、実験例1と同様の方法でセンサ素子101を作製し、実験例2~6とした。具体的には、実験例2は幅Wo1~幅Wo3=最大値Womax=30μmとし、比Womax/Wiを値0.06とした。実験例3は幅Wo1~幅Wo3=最大値Womax=60μmとし、比Womax/Wiを値0.12とした。実験例4は幅Wo1~幅Wo3=最大値Womax=100μmとし、比Womax/Wiを値0.20とした。実験例5は幅Wo1~幅Wo3=最大値Womax=130μmとし、比Womax/Wiを値0.27とした。実験例6は幅Wo1~幅Wo3=最大値Womax=150μmとし、比Womax/Wiを値0.31とした。なお、実験例2~6のいずれにおいても、重複領域195は第4重複領域195dを有さないものとした。また、実験例2~6の第1ピッチP1及び第2ピッチP2は、実験例1と同じ値とした。
[初期安定性の評価]
 実験例1~6について、センサ素子101の被測定ガスの検出精度、より具体的には初期安定性を評価した。具体的には、まず、ヒータ72の温度が所定温度になるようにヒータ部70に電圧を印加してヒータ72に通電し、ガス流通部には窒素を流入させた。そして、各セル21,41,50,80~83を駆動開始させ、開始後一定時間(240秒)経過後のNOx濃度検出の値(ポンプ電流Ip2の値)を測定した。測定は、各実験例1~6について作製された44本のセンサ素子101の全てについて行い、各実験例1~6についてポンプ電流Ip2の平均値及び標準偏差σを導出した。そして、ポンプ電流Ip2の平均値が0.065μA以下の場合に初期安定性が良好(A),0.065μA超過の場合に不良(C)と判定した。なお、ガス流通部に流入させたのは酸素を含まないガス(窒素)であるため、ポンプ電流Ip2は理想的には0μAとなり、センサ素子101内部の空隙から酸素が供給されていると、ポンプ電流Ip2の値は大きい値になる。
[センサ素子の反り量の評価]
 実験例1~6について、焼成後のセンサ素子101の反り量を測定した。測定は、各実験例1~6について作製された44本のセンサ素子101の全てについて行い、各実験例1~6について反り量の平均値及び標準偏差σを導出した。そして、反り量の平均値が240μm以下の場合に非常に良好(A),240μm超過350μm以下の場合に良好(B),350μm超過の場合に不良(C)と判定した。
 実験例1~6の最大値Womaxの目標値,比Womax/Wiの目標値,ポンプ電流Ip2の平均値,ポンプ電流Ip2の標準偏差,初期安定性評価,反り量の平均値,反り量の標準偏差,及び反り量評価を、表1にまとめて示す。また、図8は、実験例1~6の最大値Womaxの目標値とポンプ電流Ip2とをプロットしたグラフである。図9は、実験例1~6の最大値Womaxの目標値と反り量とをプロットしたグラフである。なお、図8,9において、菱形の点は平均値を示し、その上下の横棒は平均値±σの値を示している。
Figure JPOXMLDOC01-appb-T000001
 表1及び図8からわかるように、重複領域195が存在しないすなわち最大値Womaxの目標値が値0である実験例1と比べると、最大値Womaxの目標値が値0超過である実験例2~6はいずれもポンプ電流Ip2の値が小さくなっており、初期安定性が高かった。また、ポンプ電流Ip2の標準偏差についても、実験例1と比べて実験例2~6は小さい値であった。また、表1及び図9からわかるように、最大値Womaxの目標値が小さいほど反り量が小さくなる傾向が見られた。最大値Womaxの目標値が値130μm以下である実験例1~5は、値0.27超過である実験例6と比べて反り量が小さかった。また、最大値Womaxの目標値が値100μm以下である実験例1~4は、実験例5と比べて反り量が小さかった。これらの結果から、センサ素子101の検出精度の低下抑制の観点からは、最大値Womaxは20μm以上が好ましく、30μm以上がより好ましいと考えられる。同様に、センサ素子101の検出精度の低下抑制の観点からは、比Womax/Wiは値0.04以上が好ましく、値0.06以上がより好ましいと考えられる。また、センサ素子101の反り抑制の観点からは、最大値Womaxは140μm以下が好ましく、130μm以下がより好ましく、120μm以下がさらに好ましく、100μm以下が特に好ましく、90μm以下が一層好ましく、70μm以下がより一層好ましく、60μm以下がさらに一層好ましいと考えられる。同様に、センサ素子101の反り抑制の観点からは、比Womax/Wiは値0.29以下が好ましく、値0.27以下がより好ましく、値0.24以下がさらに好ましく、値0.20以下が特に好ましく、値0.18以下が一層好ましく、値0.14以下がより一層好ましく、値0.12μm以下がさらに一層好ましいと考えられる。
 なお、実験例1において、図4の素子用領域p1,p11,p22の位置で作製されたセンサ素子101をそれぞれ複数個切断して、断面におけるリード絶縁層92と接着層94との間の空隙の有無や大きさを調べたところ、空隙の幅は平均値で46.7μmであった。なお、空隙の幅は、具体的には以下のように測定した。まず、リード絶縁層92の直線部193を図6と同様の断面で観察し、断面に現れている空隙のうち直線部193の左右両側(図6の左側及び右側に相当)に存在する空隙の幅の和を測定した。そして、その幅の和の半分の値を、そのセンサ素子101の空隙の幅とした。実験例3についても同様に空隙の幅の平均値を導出したところ3.8μmであり、実験例1と比べて実験例3ではリード絶縁層92と接着層94との間の空隙が生じにくいことが確認できた。なお、実験例3では断面に空隙が全く存在しない(=上記の空隙の幅が0μm)センサ素子101もあったが、実験例1では全てのセンサ素子101において断面に空隙が存在していた。
 本出願は、2016年7月21日に出願された日本国特許出願第2016-143044号を優先権主張の基礎としており、引用によりその内容の全てが本明細書に含まれる。
 本発明は、自動車の排気ガスなどの被測定ガスにおけるNOxなどの特定ガス濃度を検出するセンサ素子の製造産業に利用可能である。
 1 第1基板層、2 第2基板層、3 第3基板層、4 第1固体電解質層、5 スペーサ層、6 第2固体電解質層、10 ガス導入口、11 第1拡散律速部、12 緩衝空間、13 第2拡散律速部、20 第1内部空所、21 主ポンプセル、22 内側ポンプ電極、22a 天井電極部、22b 底部電極部、23 外側ポンプ電極、24 可変電源、30 第3拡散律速部、40 第2内部空所、41 測定用ポンプセル、42 基準電極、43 基準ガス導入空間、44 測定電極、45 第4拡散律速部、46 可変電源、48 大気導入層、50 補助ポンプセル、51 補助ポンプ電極、51a 天井電極部、51b 底部電極部、52 可変電源、70 ヒータ部、72 ヒータ、73 スルーホール、74 ヒータ絶縁層、75 圧力放散孔、80 主ポンプ制御用酸素分圧検出センサセル、81 補助ポンプ制御用酸素分圧検出センサセル、82 測定用ポンプ制御用酸素分圧検出センサセル、83 センサセル、85 上部コネクタパッド、86 下部コネクタパッド、91 測定電極リード、91a~91c 第1~第3直線部、92 リード絶縁層、93 直線部、94 接着層、95 重複領域、95a~95d 第1~第4重複領域、100 ガスセンサ、101 センサ素子、143 空間、144 未焼成測定電極、145 未焼成第4拡散律速部、151 未焼成補助ポンプ電極、191 未焼成測定電極リード、191a~191c 第1~第3直線部、192 未焼成リード絶縁層、193 直線部、193a 下側絶縁層、193b 上側絶縁層、194 未焼成接着層、194a 下側接着層、194b 上側接着層、195 重複領域、195a~195d 第1~第4重複領域、196 非形成領域、197 未焼成裏面接着層、200,204,205 グリーンシート、208 素子用領域、p1~p44 素子用領域、691 リード、692 絶縁層、694 接着層、701,702 グリーンシート、791 未焼成リード、792 未焼成絶縁層、794 未焼成接着層、797 未焼成裏面接着層、799 空隙。

Claims (7)

  1.  被測定ガス中の特定ガス濃度を検出するセンサ素子の製造方法であって、
     酸素イオン伝導性の固体電解質であるセラミックスを主成分とするグリーンシートを複数用意する準備工程と、
    (a)前記複数のグリーンシートの1つに、導電ペーストからなる未焼成電極を形成するステップと、
    (b)前記ステップ(a)と同じグリーンシートに、導電ペーストからなり前記未焼成電極に接続される未焼成電極リードと、該未焼成電極リードの少なくとも一部を囲み絶縁ペーストからなる未焼成リード絶縁層と、を形成するステップと、
    (c)前記ステップ(b)を行ったグリーンシート上の前記未焼成リード絶縁層がない領域の少なくとも一部を埋めるように接着ペーストからなる未焼成接着層を形成し、且つ該未焼成リード絶縁層の縁部分の少なくとも一部と重複するように該未焼成接着層を形成するステップと、
     を含む形成工程と、
     前記ステップ(a)~(c)が行われたグリーンシートを含む前記複数のグリーンシートを積層して、前記未焼成電極リードがグリーンシートの間に配置された積層体とする積層工程と、
     前記積層体から未焼成センサ素子を切り出す切り出し工程と、
     前記未焼成センサ素子を焼成して、前記未焼成電極が電極となり、前記未焼成電極リードが電極リードとなり、前記未焼成リード絶縁層がリード絶縁層となり、前記未焼成接着層が接着層となったセンサ素子を得る焼成工程と、
     を含むセンサ素子の製造方法。
  2.  前記ステップ(c)では、前記未焼成リード絶縁層と前記未焼成接着層との重複領域の幅の最大値Womaxが20μm以上140μm以下となるように該未焼成接着層を形成する、
     請求項1に記載のセンサ素子の製造方法。
  3.  前記ステップ(c)では、前記未焼成リード絶縁層と前記未焼成接着層との重複領域の幅の最大値Womax[μm]と、前記未焼成リード絶縁層のうち前記未焼成電極リードの通電方向に垂直な方向の幅Wi[μm]と、の比Womax/Wiが、値0.04以上値0.29以下となるように前記未焼成接着層を形成する、
     請求項1又は2に記載のセンサ素子の製造方法。
  4.  前記ステップ(b)で形成される前記未焼成リード絶縁層は、長手方向の延長上に前記未焼成電極が位置しないように配置された直線部を有しており、
     前記ステップ(c)では、前記直線部の長手方向に沿った縁部分のうち少なくとも前記未焼成電極に近い側の縁部分と重複するように前記未焼成接着層を形成する、
     請求項1~3のいずれか1項に記載のセンサ素子の製造方法。
  5.  前記ステップ(a)では、前記未焼成電極として、焼成後に測定電極となる未焼成測定電極を形成し、
     前記ステップ(b)では、前記未焼成電極リードとして、前記未焼成測定電極に接続され焼成後に測定電極リードとなる未焼成測定電極リードを形成する、
     請求項1~4のいずれか1項に記載のセンサ素子の製造方法。
  6.  前記ステップ(a)~(c)では、前記グリーンシートに対して、前記センサ素子1個に対応するパターンが該センサ素子の長手方向と直交する所定方向に並ぶように、前記未焼成電極,前記未焼成電極リード,前記未焼成リード絶縁層,及び前記未焼成接着層の各々のパターンを複数形成し、
     前記切り出し工程では、前記積層体から複数の前記未焼成センサ素子を切り出し、
     前記焼成工程では、複数の前記未焼成センサ素子を焼成して複数のセンサ素子を得る、
     請求項1~5のいずれか1項に記載のセンサ素子の製造方法。
  7.  前記ステップ(b)では、前記センサ素子1個に対応する前記未焼成リード絶縁層のパターンが、前記所定方向に第1ピッチで並ぶように、該未焼成リード絶縁層のパターンを複数形成し、
     前記ステップ(c)では、前記センサ素子1個に対応する前記未焼成接着層のパターンが、前記所定方向に前記第1ピッチよりも小さい第2ピッチで並ぶように、該未焼成接着層のパターンを複数形成する、
     請求項6に記載のセンサ素子の製造方法。
PCT/JP2017/026341 2016-07-21 2017-07-20 センサ素子の製造方法 WO2018016604A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780044642.3A CN109477812B (zh) 2016-07-21 2017-07-20 传感器元件的制造方法
JP2018528876A JP6781258B2 (ja) 2016-07-21 2017-07-20 センサ素子の製造方法
DE112017003656.9T DE112017003656T5 (de) 2016-07-21 2017-07-20 Herstellungsverfahren für Sensorelement
US16/251,148 US11067533B2 (en) 2016-07-21 2019-01-18 Manufacturing method for sensor element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016143044 2016-07-21
JP2016-143044 2016-07-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/251,148 Continuation US11067533B2 (en) 2016-07-21 2019-01-18 Manufacturing method for sensor element

Publications (1)

Publication Number Publication Date
WO2018016604A1 true WO2018016604A1 (ja) 2018-01-25

Family

ID=60993086

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/026341 WO2018016604A1 (ja) 2016-07-21 2017-07-20 センサ素子の製造方法

Country Status (5)

Country Link
US (1) US11067533B2 (ja)
JP (1) JP6781258B2 (ja)
CN (1) CN109477812B (ja)
DE (1) DE112017003656T5 (ja)
WO (1) WO2018016604A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018230703A1 (ja) * 2017-06-16 2018-12-20 日本碍子株式会社 センサ素子及びガスセンサ
US20210080423A1 (en) * 2019-09-18 2021-03-18 Ngk Spark Plug Co., Ltd. Sensor element, gas sensor, and method for manufacturing sensor element

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004294455A (ja) * 2004-07-26 2004-10-21 Ngk Insulators Ltd ガスセンサ
JP2005051013A (ja) * 2003-07-28 2005-02-24 Matsushita Electric Works Ltd 半導体基板及びその製造方法
JP2005135869A (ja) * 2003-10-31 2005-05-26 Kyocera Corp 積層焼結体、セラミックヒータ、ガスセンサ素子、積層焼結体の製造方法およびガスセンサ素子の製造方法。
JP2014010126A (ja) * 2012-07-03 2014-01-20 Denso Corp アルミナ/ジルコニア積層焼結体とその製造方法、並びに、アルミナ/ジルコニア積層焼結体を含むガスセンサ素子
JP2015180867A (ja) * 2014-03-07 2015-10-15 日本碍子株式会社 センサ素子の製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3758442B2 (ja) * 1999-02-23 2006-03-22 株式会社村田製作所 積層セラミックコンデンサの製造方法
JP2002228626A (ja) * 2000-11-30 2002-08-14 Denso Corp ガスセンサ素子
DE10157733B4 (de) * 2001-11-24 2004-02-26 Robert Bosch Gmbh Sensor zur Bestimmung der Konzentration einer Gaskomponente in einem Gasgemisch
KR100489820B1 (ko) * 2002-11-19 2005-05-16 삼성전기주식회사 세라믹 다층기판 및 그 제조방법
US7951277B2 (en) * 2005-02-08 2011-05-31 Ngk Spark Plug Co., Ltd. Gas sensor and method for manufacturing the same
JP2007243040A (ja) * 2006-03-10 2007-09-20 Tdk Corp 積層セラミック電子部品
DE602007011058D1 (de) * 2006-05-29 2011-01-20 Murata Manufacturing Co Verfahren zur herstellung eines keramischen, mehrschichtsubstrats
US7819996B2 (en) * 2006-10-27 2010-10-26 Nippon Soken, Inc. Method of manufacturing ceramic sheet and method of manufacturing gas sensing element
JP5119131B2 (ja) * 2008-02-22 2013-01-16 日本特殊陶業株式会社 アンモニアガスセンサ
JP5841115B2 (ja) 2013-01-08 2016-01-13 日本特殊陶業株式会社 ガスセンサ素子及びガスセンサ
US9551684B2 (en) 2013-01-08 2017-01-24 Ngk Spark Plug Co., Ltd. Gas sensor element and gas sensor
JP6059110B2 (ja) * 2013-08-09 2017-01-11 日本特殊陶業株式会社 センサ素子およびセンサ
JP6641697B2 (ja) 2015-02-05 2020-02-05 大日本印刷株式会社 太陽電池付き表示体

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005051013A (ja) * 2003-07-28 2005-02-24 Matsushita Electric Works Ltd 半導体基板及びその製造方法
JP2005135869A (ja) * 2003-10-31 2005-05-26 Kyocera Corp 積層焼結体、セラミックヒータ、ガスセンサ素子、積層焼結体の製造方法およびガスセンサ素子の製造方法。
JP2004294455A (ja) * 2004-07-26 2004-10-21 Ngk Insulators Ltd ガスセンサ
JP2014010126A (ja) * 2012-07-03 2014-01-20 Denso Corp アルミナ/ジルコニア積層焼結体とその製造方法、並びに、アルミナ/ジルコニア積層焼結体を含むガスセンサ素子
JP2015180867A (ja) * 2014-03-07 2015-10-15 日本碍子株式会社 センサ素子の製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018230703A1 (ja) * 2017-06-16 2018-12-20 日本碍子株式会社 センサ素子及びガスセンサ
US11442036B2 (en) 2017-06-16 2022-09-13 Ngk Insulators, Ltd. Sensor element and gas sensor
DE112018000051B4 (de) 2017-06-16 2023-03-30 Ngk Insulators, Ltd. Sensorelement und Gassensor
US20210080423A1 (en) * 2019-09-18 2021-03-18 Ngk Spark Plug Co., Ltd. Sensor element, gas sensor, and method for manufacturing sensor element
US11940405B2 (en) * 2019-09-18 2024-03-26 Niterra Co., Ltd. Sensor element, gas sensor, and method for manufacturing sensor element

Also Published As

Publication number Publication date
JPWO2018016604A1 (ja) 2019-05-09
CN109477812B (zh) 2021-03-16
JP6781258B2 (ja) 2020-11-04
CN109477812A (zh) 2019-03-15
US11067533B2 (en) 2021-07-20
US20190154629A1 (en) 2019-05-23
DE112017003656T5 (de) 2019-04-04

Similar Documents

Publication Publication Date Title
US10955376B2 (en) Gas sensor
US8747635B2 (en) Gas sensor
JP4999894B2 (ja) ガスセンサ
JP2014209128A (ja) ガスセンサおよびセンサ素子の製造方法
JP5155712B2 (ja) ガスセンサ、NOxセンサ、およびガスセンサの作製方法
JP2011102797A (ja) ガスセンサおよびセンサ素子の製造方法
JP2010237044A (ja) ガスセンサの製造方法、ガスセンサ、およびガスセンサに備わる積層構造
WO2018016604A1 (ja) センサ素子の製造方法
US11442036B2 (en) Sensor element and gas sensor
JP5254260B2 (ja) 導通電極の印刷方法
JP6586368B2 (ja) センサ素子の製造方法、センサ素子及びガスセンサ
JP2018173367A (ja) センサ素子
JP2013140175A (ja) ガスセンサ
JP6376990B2 (ja) センサ素子の製造方法
CN115901898A (zh) 传感器元件及气体传感器
JP2018189571A (ja) センサ素子
JP2017041421A (ja) セラミックスヒータ,センサ素子及びガスセンサ
JP6584219B2 (ja) セラミックスヒータ,センサ素子及びガスセンサ
US20230304961A1 (en) Gas sensor element
JP6603072B2 (ja) センサ素子及びガスセンサ
JP7307718B2 (ja) セラミック積層体及びガスセンサ
JP2023033155A (ja) センサ素子及びガスセンサ
CN114813891A (zh) 气体传感器的传感器元件
JP6697232B2 (ja) セラミックスヒータ,センサ素子及びガスセンサ
JP2005300472A (ja) 積層型ガスセンサ素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17831120

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018528876

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17831120

Country of ref document: EP

Kind code of ref document: A1