WO2018008658A1 - フェライト系ステンレス鋼と、その鋼板及びそれらの製造方法 - Google Patents

フェライト系ステンレス鋼と、その鋼板及びそれらの製造方法 Download PDF

Info

Publication number
WO2018008658A1
WO2018008658A1 PCT/JP2017/024557 JP2017024557W WO2018008658A1 WO 2018008658 A1 WO2018008658 A1 WO 2018008658A1 JP 2017024557 W JP2017024557 W JP 2017024557W WO 2018008658 A1 WO2018008658 A1 WO 2018008658A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
stainless steel
ferritic stainless
orientation
oxide film
Prior art date
Application number
PCT/JP2017/024557
Other languages
English (en)
French (fr)
Inventor
秦野 正治
修 池上
Original Assignee
新日鐵住金ステンレス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金ステンレス株式会社 filed Critical 新日鐵住金ステンレス株式会社
Priority to CN201780032954.2A priority Critical patent/CN109196133B/zh
Priority to EP17824261.6A priority patent/EP3480334B1/en
Priority to CN202010745329.6A priority patent/CN111850421B/zh
Priority to KR1020207003162A priority patent/KR102154969B1/ko
Priority to JP2018526403A priority patent/JP6588163B2/ja
Priority to KR1020187032073A priority patent/KR102141291B1/ko
Publication of WO2018008658A1 publication Critical patent/WO2018008658A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/76Adjusting the composition of the atmosphere
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0268Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment between cold rolling steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/30Ferrous alloys, e.g. steel alloys containing chromium with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • H01M8/0208Alloys
    • H01M8/021Alloys based on iron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a ferritic stainless steel that maintains an oxide film excellent in electrical conductivity in a long-term high-temperature oxidation environment and also has creep resistance that suppresses material damage, and a method for producing the same.
  • the present invention also relates to a ferritic stainless steel sheet having both creep resistance and workability that suppresses material damage in a high temperature environment, and a method for producing the same.
  • the present invention is particularly suitable for a separator of a solid oxide fuel cell and a surrounding high temperature member.
  • SOFC solid oxide fuel cells
  • the characteristics required of a metal material are that it first has excellent “oxidation resistance” in the temperature range of 600 to 900 ° C., and then has a “thermal expansion coefficient” equivalent to that of a ceramic solid oxide. It is required to have. In addition to these basic characteristics, the metal material is required to exhibit good “electric conductivity” in a state where it is in close contact with the ceramic solid oxide in terms of power generation efficiency at high temperatures.
  • the application of a highly versatile metal material that does not impair the electrical conductivity of the Cr-based oxide film in the long-term use of an oxidizing environment has become an issue.
  • Patent Documents 1 to 5 disclose ferritic stainless steel having both the above-described oxidation resistance and thermal expansion coefficient.
  • Patent Documents 1 to 3 disclose high Cr type ferritic stainless steel characterized by containing one or more selected from the group consisting of Y, REM (rare earth elements) and Zr. .
  • Y, REM, Zr rare earth elements
  • a Cr-based oxide film is formed on the steel surface, and the addition of (Y, REM, Zr) improves the oxidation resistance and electrical conductivity of the Cr-based oxide film.
  • Patent Documents 4, 5, and 7 disclose high Cr type ferritic stainless steels that do not rely on the addition of expensive rare earth elements and impart electrical conductivity without impairing oxidation resistance. Patent Documents 4 and 7 do not require rare earth elements such as (Y, REM, Zr), and are characterized by the addition of highly conductive Cu. Further, in Patent Document 7, from the viewpoint of conductivity, Al: 0.03 to 5% and Ti + Nb: 0.1 to 3% are subjected to preliminary oxidation to form an oxide film enriched with Al.
  • Mo 0.5 to 2% is essential, Si: 0.15% or less, Mn: 0.3 to 1%, Al: 1% or less and 2.5 ⁇ Mn / ( It is characterized by adjusting the components so that (Si + Al) ⁇ 8.0.
  • SOFC systems with high energy efficiency are expected to be deployed and spread from home use (0.75 kw) to commercial use (3 to 5 kw).
  • the SOFC separator and its peripheral members have an integrated structure called a hot module and are continuously operated in a temperature range of 500 to 800 ° C.
  • the separator is required to have workability for forming a gas flow path with bending, drawing, and overhanging.
  • Patent Document 6 C: 0.02% or less, Si: 2% or less, Mn: 1.5% or less, N: 0.03% or less, Cr: 10 to 30%, one or more of Ti and Nb : In the ferritic stainless steel sheet containing (C + N) to 0.8% in total and Al: 0.1% or less, improvement of workability is disclosed by controlling the texture and reducing in-plane anisotropy and ridging Yes. In addition to being limited to a Cr content of less than 20% in these examples, the creep strength at high temperatures as described above is completely unknown.
  • Patent Document 8 discloses a metal material for a current-carrying member in which the average interval between the local peaks of the surface roughness curve of the metal material having a lipid whose passivating film is easily generated by the atmosphere is 0.3 ⁇ m or less. .
  • the metal material is characterized by excellent corrosion resistance and excellent electrical conductivity.
  • Patent Document 9 discloses that the size of the ⁇ 111 ⁇ -oriented colony in the plate width direction is 100 to 1000 ⁇ m in the plane perpendicular to the plate surface normal at the plate thickness center, and the proportion of the colony in the entire plate width Discloses a ferritic stainless steel sheet having a content of 30 to 95%.
  • the stainless steel plate is characterized by excellent ridging resistance (that is, surface quality after cold rolling) and press workability.
  • Patent Document 10 discloses a ferritic stainless steel in which the electrical conductivity and adhesion of a target oxide film are improved by defining the relationship between the amount of Mn and the amount of (Si + Al).
  • Patent Document 11 discloses a ferritic stainless steel that can have both creep resistance and oxidation resistance of the reformed gas by adding a small amount of B, Mg, and Ca and adding it together with Sn.
  • the ferritic stainless steel disclosed in Patent Document 11 is characterized in that the time to reach 1% creep strain is 50 h or more at 750 ° C. and an initial stress of 15 MPa.
  • Patent Document 12 discloses a ferritic stainless steel in which an oxide layer having a thickness of 0.1 to 10 ⁇ m in which Nb oxide, Ti oxide, and Al oxide are mixed is present between a Cr oxide layer and a base material. Is disclosed.
  • the ferritic stainless steel disclosed in Patent Document 12 is characterized by excellent high-temperature electrical conductivity and oxidation resistance.
  • Patent Document 13 discloses a ferritic stainless steel for a fuel reformer that has both excellent oxidation resistance and economy.
  • the ferritic stainless steel disclosed in Patent Document 13 optimizes the amount of Si, Mn, and Nb in a reformed gas environment, adds a small amount of V, B, and Mg, and adjusts the amount of addition of Al and Ti Thus, the durability of the Cr-based oxide film is improved without relying on rare earth elements or a large amount of Ni addition.
  • ferritic stainless steels disclosed in Patent Documents 8 to 10, 12, and 13 are not intended to improve creep strength and workability.
  • ferritic stainless steel disclosed in Patent Document 11 has improved creep resistance and oxidation resistance of the reformed gas, it is not intended to improve electrical conductivity.
  • the oxidation resistance and electrical conductivity are improved by adjusting components such as Nb, Ti, Mn, Si, and Al.
  • the creep resistance and workability of ferritic stainless steel as a material are important issues for the spread of SOFC systems.
  • the present invention has been devised to solve the above-mentioned problems, and does not depend on the addition of rare earth elements or alloy elements, and in a long-term high temperature oxidation environment, the electrical conductivity and creep resistance of the oxide film.
  • the present invention provides a ferritic stainless steel having both the resistance and a ferritic stainless steel sheet having both creep resistance and workability.
  • the steel is further mass%, Sn: 0.3% or less, Sb: 0.3% or less, Ni: 1% or less, Cu: 1% or less, W: 1% or less, Co: 1 %: B: 0.010% or less, Ga: 0.010% or less, Mg: 0.010% or less, Ca: 0.010% or less, Zr: 0.1% or less, Y: 0.1% or less , REM: 0.1% or less, Ta: 0.1% or less, containing one or more, ferritic stainless steel according to (1).
  • a ferritic stainless steel that combines the electrical conductivity and creep resistance of an oxide film, and creep resistance and workability in a long-term high-temperature oxidation environment without depending on the addition of rare earth elements.
  • a ferritic stainless steel sheet can also be obtained.
  • the inventors of the present invention have the electrical conductivity required in a long-term high-temperature oxidation environment and the creep resistance and processing that suppresses a slight deformation of about 1% occurring near 700 to 750 ° C.
  • the present invention was completed through repeated experiments and examinations on ferritic stainless steel having both properties. The knowledge obtained by the present invention will be described below.
  • the “plate thickness center portion” is the center of the plate thickness t of the steel plate, that is, the region including the position of (1/2) t, preferably from the center of the plate thickness t of the steel plate. An area of 1 / 8t thickness in the surface direction on both sides of the steel sheet.
  • the “(111) ⁇ 15 ° orientation grain” has a crystal orientation in which the angle difference between the normal direction of the plane parallel to the steel plate surface and the ⁇ 111 ⁇ plane orientation at the center of the plate thickness is within 15 °.
  • a crystal grain Although there are still unclear points regarding the effect of texture on such creep resistance, the mechanism for improving creep resistance based on the results of electron beam backscatter diffraction (hereinafter referred to as EBSD) analysis is as follows. I guess that.
  • orientation grain When the former is identified as a ⁇ 111 ⁇ ⁇ 15 ° orientation grain and a crystal grain having other crystal orientation (hereinafter, a crystal grain having a specific crystal orientation is simply referred to as “orientation grain”). Is an effective orientation grain for improving the workability, but the latter orientation grain effectively acts to increase the creep resistance. As a result of comparing the former orientation grain and the latter orientation grain with a crystal orientation map by EBSD in the creep temperature range, the latter orientation grain has a difference in orientation within the grain compared with the former orientation grain. It has been found that it increases within a range that is not recognized as (small-angle grain boundary) (that is, a range of 1 ° to less than 5 °). For this reason, in the creep temperature range, the latter orientation grain contributes to an increase in internal stress accompanying an increase in dislocation density than the former orientation grain.
  • the above-described action becomes obvious and slip of the crystal grain boundary is delayed. That is, in order to delay the time to creep strain up to 1%, it is effective to increase the internal stress by increasing the dislocation density in the crystal grains and to delay the slip of the crystal grain boundary.
  • the latter orientation grain has the largest amount of formation at the center of the plate thickness where the recrystallization of the steel is delayed, and it is necessary to control the texture at the center of the plate thickness in combination with the above-mentioned shape ratio. Contributes to the improvement of workability and workability.
  • ⁇ 001 ⁇ orientation grain means a crystal having a crystal orientation in which the angle difference between the normal direction of the plane parallel to the plate surface at the center of the plate thickness and the ⁇ 001 ⁇ plane orientation is within 10 °. A grain.
  • the above-mentioned texture control is performed by performing heat treatment at a temperature lower than the recrystallization temperature of the steel, and thereafter repeating cold rolling and heat treatment at 1100 ° C. or lower, and finishing heat treatment is 1000 ° C. or higher to change the recrystallization structure It is preferable to obtain.
  • the compatibility between the creep resistance suitable for the SOFC separator and the workability is a plane parallel to the steel plate surface in the center of the plate thickness without depending on the addition of alloy elements.
  • the present invention has been completed based on the examination results described above.
  • (C) The addition of a small amount of Al lowers the oxygen potential at the interface between the Cr-based oxide film and the ground iron and reduces the incorporation of Si into the oxide film. Furthermore, B, Ga, Mg, and Ca combine with C, N, S, and O to form a compound to improve the cleanliness of the steel and enhance the protection of the Cr-based oxide film. Here, B also has the effect of delaying the growth of the Cr-based oxide film by segregating at the grain boundaries and suppressing excessive grain boundary diffusion of Cr. In addition, reducing Mn and V and adding an appropriate amount of Al has a great effect of reducing the vapor pressure (volatility) of the Cr-based oxide film and suppressing the generation and growth of defects in the Cr-based oxide film.
  • the new characteristics of improving the electrical conductivity in a long-term high-temperature oxidation environment and the creep resistance up to 1% are the addition of a small amount of Al, a small amount of Al
  • a small amount of Al We obtained completely new knowledge that this can be achieved by adding elements B, Ga, Mg and Ca and adjusting the components of Mn, V, Al and Si.
  • the present inventions (1) to (5) have been completed based on the above-described examination results.
  • C is an unavoidable impurity element contained in the steel, and inhibits the protection of the Cr-based oxide film targeted by the present invention, while inhibiting the workability and oxidation resistance, and is the target of the present invention. It works effectively on the formation of texture. Therefore, it is preferable that the amount of C is appropriately included. Moreover, excessive reduction leads to a decrease in the creep resistance strength of the present invention and a significant increase in the refining cost. Therefore, the upper limit is 0.030%. From the viewpoint of formation of texture and manufacturability, the preferred range is 0.002% or more and 0.020% or less. From the viewpoint of electrical conductivity and manufacturability of the Cr-based oxide film, the preferred range is 0.001% or more and 0.015% or less.
  • the Si is preferably as low as possible in order to ensure the target processability of the present invention and the electrical conductivity of the Cr-based oxide film. On the other hand, it also has the effect of increasing oxidation resistance and high temperature strength. However, excessive addition leads to a decrease in the creep resistance targeted by the present invention.
  • the upper limit is made 1.00%.
  • the lower limit is preferably set to 0.01% because of an increase in manufacturing cost considering inevitable impurities from the deoxidizer and chromium raw material. From the standpoint of achieving both the basic characteristics targeted for the present invention and the production cost, the preferred range is 0.05% or more and 0.50% or less, and the more preferred range is 0.10% or more and 0.30% or less.
  • the upper limit is preferably 0.30%, and the preferable range of the Si content is 0.05% or more, It is 0.25% or less, and a more preferable range is 0.10% or more and 0.20% or less.
  • Mn has an effect of improving oxidation resistance and an effect of improving the electrical conductivity of the Cr-based oxide film targeted by the present invention.
  • the lower limit is preferably 0.05%.
  • excessive addition inhibits the long-term oxidation resistance of the Cr-based oxide film, and may impair workability and oxidation resistance, so the upper limit is made 1.00%.
  • the preferable range of the Mn content is 0.05% or more and 0.50% or less, and the more preferable range is 0.10% or more and 0.30% or less. is there.
  • the upper limit of the Mn content is preferably set to 0.3%.
  • a preferable range of the Mn content is 0.05% or more and 0.25% or less. A more preferable range is 0.10% or more and 0.20% or less.
  • the upper limit is 0.045%.
  • the lower limit is preferably 0.003%. From the viewpoint of manufacturability and weldability, the preferred range is 0.005 to 0.035%, more preferably 0.010 to 0.030%.
  • S is an unavoidable impurity element contained in the steel, and lowers the electrical conductivity of the Cr-based oxide film targeted by the present invention in addition to the lowering of workability.
  • the presence of Mn inclusions and solute S not only acts as a starting point for reducing the protection of the Cr-based oxide film in a long-term high-temperature oxidizing environment, but also as a starting point for reducing the oxidation resistance in a high-temperature oxidizing environment. Also works. Therefore, the lower the amount of S, the better. Therefore, the upper limit is made 0.0030%. However, excessive reduction leads to an increase in raw materials and refining costs, so the lower limit is made 0.0001%. From the viewpoint of basic characteristics and manufacturability, the preferred range is 0.0001 to 0.0020%, more preferably 0.0002 to 0.0010%.
  • Cr is a constituent element that is fundamental in securing high-temperature characteristics such as electrical conductivity, creep resistance, oxidation resistance, and thermal expansion coefficient of the Cr-based oxide film targeted by the present invention.
  • the lower limit is 20.0%.
  • excessive addition of Cr not only promotes the formation of the ⁇ phase, which is an embrittlement phase when exposed to a high temperature environment, but also promotes Cr evaporation, and the target Cr-based oxide film of the present invention.
  • the electrical conductivity may be impaired, and in addition, the manufacturability may be deteriorated and the target processability of the present invention may be impaired.
  • the upper limit is set to 25.0% from the viewpoints of basic characteristics, manufacturability and workability, which are targets of the present invention. From the viewpoint of cost effectiveness, the preferable range is 20.0% or more and 23.0% or less.
  • Mo is an effective constituent element for securing the target creep resistance and thermal expansion coefficient of the present invention.
  • Mo is also a constituent element effective in securing the thermal expansion coefficient, which is a requirement for the metal separator of the present invention.
  • it acts as a solid solution strengthening element, and effectively acts on the improvement of the creep resistance targeted by the present invention.
  • the lower limit is made 0.3%.
  • Excessive addition promotes the formation of the ⁇ phase, which is an embrittlement phase, and leads to a decrease in manufacturability and an increase in raw material costs.
  • the upper limit is 2.0% from the viewpoint of high temperature characteristics and manufacturability targeted by the present invention. From the viewpoint of cost effectiveness, the preferable range is 0.7% or more and 1.4% or less.
  • N is an unavoidable impurity element contained in the steel, and inhibits the protection of the Cr-based oxide film targeted by the present invention, while inhibiting the workability and oxidation resistance, and is the target of the present invention. It works effectively on the formation of texture. Moreover, excessive reduction leads to a decrease in the creep resistance strength of the present invention and a significant increase in the refining cost. Therefore, it is preferable that the amount of N is appropriately included. Therefore, the upper limit is 0.040%. From the viewpoint of formation of texture and manufacturability, the preferred range is 0.002% or more and 0.030% or less.
  • the upper limit of the N content is preferably 0.020%, more preferably 0.003% or more and 0.015%. It is as follows.
  • the lower limit is preferably 0.01%. Further, from the viewpoint of increasing the oxidation resistance of the Cr-based oxide film, which is the target of the present invention, and ensuring electrical conductivity, the lower limit is preferably 0.05%.
  • the upper limit is 0.50%.
  • the preferred range is 0.03% or more and 0.30% or less, more preferably 0.05% or more and 0.25% or less.
  • the preferred range is 0.10% or more, 0.35% or less, more preferably 0.15% or more, It is 0.25% or less.
  • V is preferably as low as possible in order to improve the electrical conductivity of the Cr-based oxide film targeted by the present invention.
  • C and N are fixed as carbonitrides and have an effect of increasing oxidation resistance and high temperature strength.
  • the upper limit is made 0.20%.
  • the lower limit is preferably set to 0.005% because of an increase in raw material cost in consideration of inevitable impurities from the chromium raw material. From the viewpoint of achieving both the target characteristics of the present invention and the raw material cost, the preferred range is 0.01% or more and 0.10% or less, and the more preferred range is 0.01% or more and 0.05% or less.
  • Nb and Ti fix C and N as carbonitrides, and have the effect of increasing texture control and creep resistance, which are targets of the present invention. Moreover, Nb and Ti have the effect
  • the stainless steel of the present invention may further contain Sn: 0.30% or less, Sb: 0.30% or less, Ni: 1.00% or less, Cu: 1.00% or less, and W: 1 as necessary. 0.0% or less, Co: 1.00% or less, B: 0.0100% or less, Ga: 0.0100% or less, Mg: 0.0100% or less, Ca: 0.0100% or less, Zr: 0.10 % Or less, La: 0.10% or less, Y: 0.10% or less, REM: 0.10% or less, Ta: 0.10% or less good.
  • B, Ga, Mg, and Ca are additive elements that are effective for controlling the texture that is the target of the present invention, as described above, and are added as necessary.
  • each upper limit is made into B: 0.0100%, Ga: 0.0100%, Mg: 0.0100%, Ca: 0.0100%.
  • B and Ga are preferably added as elements contributing to the improvement of creep resistance, B: 0.0003% or more and Ga: 0.0005% or more. More preferable addition ranges are B: 0.0005% or more and 0.0030% or less, Ga: 0.001% or more and 0.0050% or less.
  • the lower limit for Mg and Ca is preferably 0.0002%. From the viewpoint of improving the protection and creep resistance of the Cr-based oxide film of the present invention, the preferred range is 0.0005% or more and 0.0050% or less, and the contents of Mg and Ca are controlled by the refining conditions. You can also
  • B, Ga, Mg, Ca addition conditions (a) B, Ga, Mg, Ca addition conditions (a)
  • B, Ga, Mg, and Ca are additive elements that are useful for enhancing the protective property of the Cr-based oxide film targeted by the present invention and exhibiting creep resistance.
  • excessive addition causes a decrease in manufacturability and corrosion resistance of steel.
  • the upper limit of each is B: 0.0050%, Ga: 0.0100%, Mg: 0.0100%, Ca: 0.0100%
  • the formula (1) is preferably 0.030 or more, more preferably 0.050 to 0.080.
  • the upper limit of Formula (1) is not specifically prescribed
  • the formula (2) is preferably less than 0.30, and more preferably in the range of 0.05 to 0.25.
  • 0.45 or more is preferable, and a more preferable range is 0.50 to 2.50.
  • Sn, Sb, Ni, Cu, W, and Co are effective elements for increasing the creep resistance and corrosion resistance of the steel, and are added as necessary.
  • excessive addition leads to an increase in alloy costs and obstructs manufacturability, so the upper limit of Sn and Sb is 0.30% and the upper limit of Ni, Cu, W and Co is 1.00%.
  • the lower limit of the more preferable content of any element is 0.10%.
  • Zr, REM, and Ta are elements that have been conventionally effective in enhancing oxidation resistance and hot workability, and enhancing the protection and electrical conductivity of Cr-based oxide films, and may be added as necessary. .
  • the addition of these elements is not relied on because of the technical idea of the present invention, the idea, and the alloy cost reduction.
  • the upper limit is preferably 0.10%, and the lower limit is preferably 0.001%.
  • REM is an element belonging to two elements of Sc and Y and atomic numbers 57 to 71, such as Y, La, Ce, Pr, and Nd.
  • the ferritic stainless steel sheet of the present invention may contain two or more types of REMs as long as the total content of elements belonging to REM is 0.10% or less.
  • the elements of the present invention can be contained within a range not impairing the effects. It is preferable to reduce as much as possible Zn, Bi, Pb, Se, H, Tl, etc. as well as the aforementioned P and S, which are general impurity elements. On the other hand, the content ratio of these elements is controlled within the limit of solving the problems of the present invention, and, if necessary, Zn ⁇ 100 ppm, Bi ⁇ 100 ppm, Pb ⁇ 100 ppm, Se ⁇ 100 ppm, H ⁇ 100 ppm, Tl One or more of ⁇ 500 ppm may be contained.
  • the reasons for limiting the texture of the ferritic stainless steel sheet of the present invention will be described below.
  • the ferritic stainless steel sheet of the present invention is manufactured from the ferritic stainless steel of the present invention having the above-described steel components.
  • the ferritic stainless steel sheet of the present invention is defined by the texture at the center of the sheet thickness from the viewpoint of contributing to both the creep resistance and the workability targeted by the present invention. Is done.
  • the texture can be analyzed using EBSD as described above.
  • the EBSD measures and analyzes the crystal orientation of each crystal grain in the micro region on the sample surface at high speed.
  • the crystal orientation group that contributes to creep resistance and workability is digitized by displaying a crystal orientation map divided into two regions of ⁇ 111 ⁇ ⁇ 15 ° orientation grains and the other orientation grains at the center of the plate thickness. be able to. For example, in a plane parallel to the steel plate surface in the center of the plate thickness, EBSD measurement is performed with a magnification of 100 in a measurement region of 850 ⁇ m in the plate width direction and 2250 ⁇ m in the rolling direction, and the method of the plane parallel to the steel plate surface as shown in FIG.
  • a crystal orientation map of crystal grains (that is, ⁇ 111 ⁇ ⁇ 15 ° orientation grains) whose angle difference between the linear direction and the ⁇ 111 ⁇ plane orientation is within 15 ° is displayed to display the area ratio. Further, the orientation grains excluding the ⁇ 111 ⁇ ⁇ 15 ° orientation grains correspond to the white areas in FIG. 1, and the shape is the length in the rolling direction (L) and the length in the rolling vertical direction from the EBSD orientation analysis system. (D) is displayed in a histogram format and the maximum value is adopted.
  • ⁇ 111 ⁇ oriented grains are a typical recrystallized texture of ferritic stainless steel and have the effect of improving workability.
  • the ⁇ 111 ⁇ orientation grains are crystal grains having a crystal orientation in which the angle difference between the normal direction of the plane parallel to the steel sheet surface and the vertical direction of the ⁇ 111 ⁇ plane orientation is 0 °, that is, ⁇ 111 ⁇ planes It refers to crystal grains that are parallel to the steel sheet surface.
  • the condition that the orientation difference from the ⁇ 111 ⁇ plane orientation of the ⁇ 111 ⁇ orientation grains is within 15 ° exceeds the condition that the orientation grains of the ⁇ 001 ⁇ plane orientation and the ⁇ 101 ⁇ plane orientation lead to a decrease in workability. Therefore, the orientation grains that fall within an inclination of ⁇ 15 ° from the ⁇ 111 ⁇ plane orientation of the ⁇ 111 ⁇ orientation grains are targeted.
  • orientation grains other than ⁇ 111 ⁇ ⁇ 15 ° orientation grains act to improve creep resistance.
  • the area ratio of ⁇ 111 ⁇ ⁇ 15 ° oriented grains is reduced to less than 60%.
  • excessive reduction impairs the workability of the material, so the lower limit is made 30%.
  • the orientation grains other than the ⁇ 111 ⁇ ⁇ 15 ° orientation grains have a shape extended in the rolling direction effective for the expression of creep resistance: 1.5 ⁇ L / d.
  • L / d ⁇ 8 is set in order to inhibit processability.
  • L is the average length ( ⁇ m) of ⁇ 111 ⁇ ⁇ 15 ° -oriented grains in the rolling direction
  • d is the average length ( ⁇ m) of ⁇ 111 ⁇ ⁇ 15 ° -oriented grains in the rolling direction.
  • the workability targeted by the present invention is to suppress the decrease in elongation in the 45 ° and 90 ° directions from the rolling direction.
  • the decrease in elongation in the 45 ° and 90 ° directions compared to the rolling direction is less than 4%, preferably less than 3%, more preferably less than 2%.
  • the ⁇ 001 ⁇ ⁇ 10 ° orientation grains acting on workability reduction are preferably less than 10%, more preferably 5%. Is less than.
  • the ferritic stainless steel of the present invention is mainly intended for cold-rolled annealed steel sheets that have been hot-rolled steel strips after annealing or descaling by omitting annealing or annealing, followed by finish annealing and descaling. Yes.
  • a hot-rolled annealed plate that is not subjected to cold rolling may be used.
  • a welding rod manufactured from a steel plate is also included.
  • the pipe is not limited to a weld rod, and may be a seamless rod manufactured by hot working.
  • the finish annealing of the steel described above is preferably performed at 800 to 1050 ° C.
  • the recrystallization temperature of the steel is Tr
  • annealing is performed in the range of Tr-100 ⁇ T ⁇ Tr [° C.]. After that, it is preferable to finish by repeating cold rolling and heat treatment at 1050 ° C. or lower.
  • the recrystallization temperature is a temperature at which new crystal grains are generated from the processed structure and the recrystallization rate is 90% or more.
  • Tr-100 ° C or lower insufficient recrystallization of steel remains after finishing heat treatment and the workability is hindered. If it exceeds Tr ° C., it is effective for recrystallization of the hot-rolled steel sheet, but it is more preferable to satisfy T ⁇ Tr [° C.] in order to improve the creep resistance due to the metal structure.
  • T ⁇ Tr [° C.] in order to improve the creep resistance due to the metal structure.
  • a suitable hot-rolled sheet annealing temperature range for obtaining these effects is Tr-70 ⁇ T ⁇ Tr-30 [° C.].
  • the heat treatment for finishing after cold rolling after the hot-rolled sheet annealing is 1000 ° C. or more, and the crystal grain size is GSNo. Growing to 8 or more is preferable for improving creep characteristics.
  • the recrystallization temperature of steel is defined as the lower limit temperature at which a grain size number can be assigned in a microscopic test method for crystal grain size in accordance with JISJG 0551 in the vicinity of a thickness of 1 ⁇ 4 mm.
  • the cooling conditions after annealing in the range of Tr-100 ⁇ T ⁇ Tr [° C.] and the cooling conditions after the heat treatment at 1050 ° C. or lower are not particularly limited. However, in consideration of production in an industrial continuous annealing furnace such as gas cooling, it is preferable to set the cooling rate to air cooling or higher.
  • Example 1 of ferritic stainless steel Ferritic stainless steels having the components shown in Table 1 are melted and hot rolled, annealed pickled, and cold rolled. Cold rolled steel sheets having a thickness of 0.3 to 2.0 mm under the conditions shown in Table 2 (No. 1-19). In addition, all the finish annealing after cold rolling was implemented at 1050 degrees C or less.
  • the steels I to R are out of the component ranges defined in the present invention. Test pieces were cut out from these cold-rolled steel plates and subjected to evaluation of the electrical conductivity of the Cr-based oxide film by an oxidation test and the creep resistance strength by a plate-like creep test.
  • each of the cold-rolled steel plates (Nos. 1 to 19) was held for 100 hours in air that was humidified so that the absolute humidity at 20 ° C. was about 2.3% and heated at 850 ° C. And then cooled to room temperature.
  • the contact resistivity ( ⁇ R ⁇ S, S: current-carrying area) was calculated and used as an evaluation index for electrical conductivity.
  • Contact determination of resistivity ( ⁇ ⁇ m 2) is commercially available SOFC interconnector ferritic alloy Crofer22APU (rare earth element added 22% Cr steel) 0.5 was measured under the same conditions of 1.0 ⁇ 10 - The case where it is in the same range as 3 ⁇ ⁇ m 2 is “ ⁇ ”, the case where it is lower is “ ⁇ ”, and the case where it is higher is “ ⁇ ”.
  • the electrical conductivity targeted by the present invention is “ ⁇ ” and “ ⁇ ⁇ ⁇ ”.
  • the oxide film on the surface generated in the oxidation test can be obtained by glow discharge mass spectrometry (GDS analysis), and the thickness of Cr ⁇ 50% and the maximum Si concentration in the oxide film can be obtained in atomic percent ratio.
  • GDS analysis glow discharge mass spectrometry
  • the profile of each element in the depth direction from the surface is measured with Fe, Cr, Si, Mn, Al, Nb, Ti, Mo, and V, which are constituent elements of steel, together with light elements such as O and C. Therefore, by removing C and creating a profile of the detection element including O, the thickness of Cr ⁇ 50% by atomic percentage and the maximum Si concentration in the oxide film were obtained.
  • the creep test was a constant load test in accordance with JIS Z 2271, and a plate-like test piece having a parallel part of 10 mm width and a length of 35 mm was used.
  • the test conditions were 700 ° C. and an initial stress of 20 MPa, and the time to reach a creep strain of up to 1% was measured in order to evaluate the creep strength against slight high temperature deformation, which is the subject of the present invention.
  • the time to reach 1% creep strain was evaluated as creep resistance, with “x” indicating less than 2500 h, “ ⁇ ” indicating 2500 h or more, and “ ⁇ ” indicating exceeding 3000 h.
  • the target creep resistance strength of the present invention is “ ⁇ ” and “ ⁇ ”.
  • Steel No. Nos. 10, 11, 13, 15 to 18, 20, and 21 are steel components defined in the present invention and any one of formulas (1) to (3) is excluded, and the preferred production method defined in the present invention is carried out. Regardless of this, the electrical conductivity and creep resistance targeted by the present invention could not be compatible, and either evaluation was “x”.
  • the electrical conductivity can be remarkably improved by adding trace elements and adjusting the components to a surface where the depth of Cr ⁇ 50% is less than 2 ⁇ m and the maximum Si concentration is less than 2%.
  • the creep resistance it is extremely effective to implement a preferable production method by setting the value of the formula (1) to 0.050 or more, and further 0.030 or more.
  • Example 2 of ferritic stainless steel sheet Ferritic stainless steels with the components shown in Table 3 are melted and hot rolled, annealed pickled, and cold rolled to produce cold rolled steel sheets with a thickness of 0.2 to 0.6 mm under the conditions shown in Table 4. did.
  • the finish annealing after cold rolling was performed in the range of 1000 to 1050 ° C.
  • the steels K to R are out of the component ranges defined in the present invention.
  • Test pieces were cut out from the above cold-rolled steel sheets, and subjected to analysis of texture by EBSD, evaluation of creep strength by a plate-like creep test, and evaluation of mechanical properties by a JIS No. 13 tensile test.
  • the texture analysis is performed by using EBSD to display a crystal orientation map of ⁇ 111 ⁇ ⁇ 15 ° orientation grains in a plane parallel to the steel surface at the center of the plate thickness, and the area ratio of the orientation grains. And the shape (L / d) of the orientation grain excluding it was determined. Further, a crystal orientation map of ⁇ 001 ⁇ ⁇ 10 ° orientation grains was displayed to determine the area ratio of the orientation grains.
  • the creep test was a constant load test in accordance with JIS Z 2271, and a plate-like test piece having a parallel part of 10 mm width and a length of 35 mm was used.
  • the test conditions were 750 ° C. and initial stress 15 MPa, and the time to reach a creep strain of up to 1% was measured in order to evaluate the creep strength related to slight high temperature deformation, which is the subject of the present invention.
  • the time to reach 1% creep strain was evaluated as creep resistance strength, with “x” indicating less than 1000 h, “ ⁇ ” indicating 1000 h or more, and “ ⁇ ” indicating exceeding 1500 h.
  • the target creep resistance strength of the present invention is “ ⁇ ” and “ ⁇ ”.
  • tensile test a JIS No. 13 B test piece having a width of 12.5 mm and a length of 50 mm from the rolling direction and 45 ° direction and 90 ° direction was used.
  • test conditions tensile strength and elongation were measured according to JIS Z 2411.
  • the elongation is “x” when the difference between the elongation in the 45 ° direction and the minimum value in the 90 ° direction from the rolling direction is 4% or more, “ ⁇ ”, and less than 4% “ ⁇ ”, 2% Less than one was evaluated as “ ⁇ ”.
  • the workability targeted by the present invention is “ ⁇ ” and “ ⁇ ”.
  • No. Nos. 3 and 10 satisfy the steel components defined in the present invention, but the target texture of the present invention was not obtained, and the evaluation of either creep resistance or workability was “x”. It was. No. No. 3 had an excessively high hot-rolled sheet annealing temperature (Tr> 50 [° C.]), and did not satisfy the target texture of the present invention, so that no creep resistance was obtained. On the other hand, no. No. 10 had an excessively low hot-rolled sheet annealing temperature (Tr ⁇ 100 [° C.]), did not satisfy the target texture of the present invention, and did not provide workability.
  • the target creep strength and workability of the present invention can be achieved by satisfying the components and texture of the present invention.
  • a ferritic stainless steel for a solid oxide fuel cell that combines the electrical conductivity and creep resistance of a Cr-based oxide film in a long-term high-temperature oxidation environment without relying on the addition of rare earth elements.
  • a high Cr type ferritic stainless steel sheet having both creep resistance and workability can be obtained by controlling the texture parallel to the plate surface at the center of the plate thickness. Therefore, high-temperature members used in fuel cells, gas turbines, power generation systems, etc., exhaust manifolds, converters, mufflers, turbochargers, EGR coolers, front pipes, center pipes and other automotive parts, stove / fan heaters and other combustion equipment, pressure cookers, etc. It is possible to provide a material suitable for all members used in a high temperature environment, such as a pressure vessel.

Abstract

希土類元素や合金元素の添加に依存することなく、長期の高温酸化環境下において、酸化皮膜の電気導電性と耐クリープ強さを兼備したフェライト系ステンレス鋼と、耐クリープ強さと加工性を兼備したフェライト系ステンレス鋼板を提供する。 質量%にて、C:0.03%以下、Si:1%以下、Mn:1%以下、P:0.045%以下、S:0.003%以下、Cr:20~25%、Mo:0.3~2%、N:0.04%以下、Al:0.5%以下、V:0.2%以下を有し、Nb:0.001~0.5%及び/又はTi:0.001~0.5%を含み、残部がFeおよび不可避的不純物からなることを特徴とするフェライト系ステンレス鋼。

Description

フェライト系ステンレス鋼と、その鋼板及びそれらの製造方法
 本発明は、長期の高温酸化環境において電気伝導性に優れた酸化皮膜を持続するとともに、材料損傷を抑止した耐クリープ強さを兼備したフェライト系ステンレス鋼およびその製造方法に関する。また、本発明は、高温環境の材料損傷を抑止した耐クリープ強さと加工性を兼備したフェライト系ステンレス鋼板およびその製造方法に関する。本発明は、特に、固体酸化物型燃料電池のセパレーターおよびその周辺の高温部材に好適である。
 近年、石油を代表とする化石燃料の枯渇化、CO2排出による地球温暖化現象等の問題から、従来の発電システムに替わる新しいシステムの普及が加速している。その1つとして、分散電源,自動車の動力源としても実用的価値が高い「燃料電池」が注目されている。燃料電池にはいくつかの種類があるが、その中でも固体酸化物型燃料電池(以下、SOFC)はエネルギー効率が高く、将来の普及拡大が有望視されている。
 SOFCの作動温度は、近年、固体電解質膜の改良により600~900℃で作動するSOFCシステムが主流となっている。この温度域になると、高価で加工性の悪いセラミックスから安価で加工性の良好な金属材料の適用が検討されている。
 金属材料に求められる特性は、先ず、600~900℃の温度域で優れた「耐酸化性」を有していること、次に、セラミックス系の固体酸化物と同等の「熱膨張係数」を有することが求められる。また、これらの基本的特性に加えて、前記金属材料は、高温での発電効率にセラミックス系固体酸化物と密着した状態において良好な「電気伝導性」を呈することが要求されている。ただし、普及拡大の視点からは、酸化環境の長期使用においてCr系酸化皮膜の電気伝導性を損なわない汎用性の高い金属材料の適用が課題となっている。
 特許文献1~5において、上述した耐酸化性と熱膨張係数を兼備したフェライト系ステンレス鋼が開示されている。特許文献1~3には、Y,REM(希土類元素),Zrのグル-プから選ばれる1種または2種以上を含むことを特徴とする高Crタイプのフェライト系ステンレス鋼が開示されている。これら文献記載の発明は、鋼表面にCr系酸化皮膜を形成させ、(Y,REM,Zr)の添加によりCr系酸化皮膜の耐酸化性と電気伝導性を改善している。
 他方、特許文献4、5、7では、高価な希土類元素の添加に頼らず、耐酸化性を損なわず電気伝導性を付与した高Crタイプのフェライト系ステンレス鋼も開示されている。特許文献4、7には、いずれも(Y,REM,Zr)等の希土類元素を必須とせず、導電性の高いCuの添加を特徴としている。更に、特許文献7は、導電性の視点から、Al:0.03~5%、Ti+Nb:0.1~3%として、Alが濃化した酸化皮膜を形成させる予備酸化を施している。また、特許文献5は、Mo:0.5~2%を必須添加とし、Si:0.15%以下、Mn:0.3~1%、Al:1%以下で2.5<Mn/(Si+Al)<8.0となるように成分調整することを特徴としている。
 前記した通り、従来、SOFC用金属材料としては、高Crタイプのフェライト系ステンレス鋼において、(1)高価な希土類元素(Y,REM,Zr等)の添加、(2)Cu及び/又はWの添加、或いはNb、Ti、Mn、Si、Al等の成分調整により耐酸化性と電気伝導性の改善を図っている。前者のステンレス鋼は、SOFC普及拡大の視点から汎用性とコスト低減に大きな課題がある。後者のステンレス鋼は、長期の高温酸化環境において、電気伝導性の耐久性について不明である。
 また、近年、エネルギー効率の高いSOFCシステムは、家庭用(0.75kw)から業務用(3~5kw)への展開・普及が期待されている。SOFCのセパレーターおよびその周辺部材はホットモジュールと呼ばれる一体化された構造体を有し、500~800℃の温度域で連続運転される。
 これらSOFCシステムの耐久・実証試験において、これら部位に希土類元素を添加しない高Crタイプのフェライト系ステンレス鋼を使用した場合、前記した電気伝導性の耐久性が問題となる場合もある。特許文献4、5、7に開示された高Crタイプのフェライト系ステンレス鋼は、長期の高温酸化環境において酸化皮膜の電気導電性に加えて、耐クリープ強さを兼備することが求められる。
 また、家庭用から業務用として発電システムを大型化したSOFCシステムの耐久・実証試験において、前記した高Crフェライト系ステンレス鋼を使用した場合、高温運転中のクリープ変形、特に構造体としての耐久性向上の視点から700℃~750℃付近の1%程度の僅かな変形を抑止することが新たな課題として浮上した。
 更に、システムの軽量化を指向していくには、複数のセルが積み重なってセルスタックを構成する発電部の軽量化が課題となる。その場合、セパレーター材として使用されるフェライト系ステンレス鋼板の薄肉化が求められる。そのような観点から、フェライト系ステンレス鋼の素材としては、クリープ強さの向上に加えて加工性を確保することも重要になる。ここで、セパレーターには、曲げや絞り及び張り出し加工を伴ってガス流路を成形する加工性が求められる。
 特許文献6には、C:0.02%以下、Si:2%以下、Mn:1.5%以下、N:0.03%以下、Cr:10~30%、TiおよびNbの1種以上:合計で(C+N)~0.8%、Al:0.1%以下を含むフェライト系ステンレス鋼板において集合組織を制御して面内異方性やリジングの低減による加工性の改善が開示されている。これら実施例は20%未満のCr量に限定されていることに加えて、前記したような高温でのクリープ強さについては全く不明である。
 特許文献8には、不動態被膜が大気によって容易に生成される脂質を有する金属材料の表面の粗さ曲線の局部山頂の平均間隔が0.3μm以下である通電部材用金属材料が開示されている。前記金属材料は、耐食性が良好であると同時に、電気伝導性に優れることを特徴としている。
 また、特許文献9には、板厚中心における板面法線に垂直な面において、{111}方位コロニーの板幅方向の大きさが100~1000μmで、かつ該コロニーの板幅全体に占める割合が30~95%であるフェライト系ステンレス鋼板が開示されている。前記ステンレス鋼板は、耐リジング性(すなわち、冷間圧延後の表面品質)及びプレス加工性に優れることを特徴としている。
 また、特許文献10には、Mn量と(Si+Al)量の関係を規定することによって、目標とする酸化皮膜の電気伝導性と密着性が向上したフェライト系ステンレス鋼が開示されている。
 また、特許文献11には、B、Mg、Caの微量添加ならびにSnとの複合添加により、耐クリープ強さと改質ガスの耐酸化性を兼備できるフェライト系ステンレス鋼が開示されている。特許文献11に開示されたフェライト系ステンレス鋼は、750℃、初期応力15MPaにおいて、1%のクリープ歪に到達する時間が50h以上であることを特徴とする。
 特許文献12には、Cr酸化物層と母材との間に、Nb酸化物、Ti酸化物及びAl酸化物が混在する厚さ0.1~10μmの酸化物層が存在しているフェライト系ステンレス鋼が開示されている。特許文献12に開示されたフェライト系ステンレス鋼は、高温の電気伝導性と耐酸化性に優れることを特徴としている。
 特許文献13には、優れた耐酸化性と経済性を兼備した燃料改質器用フェライト系ステンレス鋼が開示されている。特許文献13に開示された前記フェライト系ステンレス鋼は、改質ガス環境下において、Si、Mn、Nb量を最適化し、V、B、Mgの微量を添加し、Al、Tiの添加量を調整することにより、希土類元素や多量のNi添加に頼ることなく、Cr系酸化皮膜の耐久性が向上されていることを特徴としている。
 しかしながら、特許文献8~10、12及び13に開示されたフェライト系ステンレス鋼は、クリープ強さと加工性の向上を目的とするものでは無い。尚、特許文献11に開示されたフェライト系ステンレス鋼は耐クリープ強さと改質ガスの耐酸化性が向上されているが、電気伝導性の向上を目的とするものではない。
特許第4310723号公報 特許第4737600号公報 特許第4385328号公報 特許第4675066号公報 特許第5716054号公報 特許第4166657号公報 特許第5377613号公報 特開2010-280989号公報 特開平9-263900号公報 WO2015/108072号公報 特許第6053994号公報 特開2011-179063号公報 WO2015/064739号公報
 前述したように、SOFC用金属材料としては、高Crタイプのフェライト系ステンレス鋼において、(1)高価な希土類元素(Y,REM,Zr等)の添加、(2)Cu及び/又はWの添加、あるいはNb、Ti、Mn、Si、Al等の成分調整により耐酸化性と電気伝導性の向上を図っている。また、SOFCシステムの普及には、素材となるフェライト系ステンレス鋼の耐クリープ強さと加工性が重要な課題である。
 しかし、従来技術では、20%以上のCr量を含む高Crフェライト系ステンレス鋼において、加工性に加えてクリープ強さを考慮した集合組織の制御については明らかにされていない。
 以上に述べた通り、SOFC発電システムの大型化に配慮した耐久性と軽量化の対策として、新たな課題として浮上したクリープ強さと加工性を実現した高Crタイプのフェライト系ステンレス鋼板については未だ出現していないのが現状である。
 本発明は、上述した課題を解消すべく案出されたものであり、希土類元素や合金元素の添加に依存することなく、長期の高温酸化環境下において、酸化皮膜の電気導電性と耐クリープ強さを兼備したフェライト系ステンレス鋼と、耐クリープ強さと加工性を兼備したフェライト系ステンレス鋼板を提供するものである。
(1)質量%にて、C:0.03%以下、Si:1%以下、Mn:1%以下、P:0.045%以下、S:0.003%以下、Cr:20~25%、Mo:0.3~2%、N:0.04%以下、Al:0.5%以下、V:0.2%以下を有し、Nb:0.001~0.5%及び/又はTi:0.001~0.5%を含み、残部がFeおよび不可避的不純物からなることを特徴とするフェライト系ステンレス鋼。
(2)前記鋼が、さらに質量%にて、Sn:0.3%以下、Sb:0.3%以下、Ni:1%以下、Cu:1%以下、W:1%以下、Co:1%以下、B:0.010%以下、Ga:0.010%以下、Mg:0.010%以下、Ca:0.010%以下、Zr:0.1%以下、Y:0.1%以下、REM:0.1%以下、Ta:0.1%以下の1種または2種以上含有していることを特徴とする(1)に記載のフェライト系ステンレス鋼。
(3)更に下記(a)及び(b)の両方の条件を満たすか、又は(b)の条件を満たすことを特徴とする(1)または(2)に記載のフェライト系ステンレス鋼。
(a)B:0.0050%以下、Ga:0.010%以下、Mg:0.010%以下、Ca:0.010%以下の1種または2種以上を満たす範囲で含有し、且つ式(1)を満足すること。
10(B+Ga)+Mg+Ca>0.010・・・式(1)
(b)下記式(2)および(3)を満足すること。
Si/(Mn+Al+V)<0.35・・・式(2)
0.40<Al/(Si+Mn+V)<3.00・・・式(3)
但し、式(1)~(3)中、B、Ga、Mg、Ca、Si、Mn、Al、Vはそれぞれの元素の含有量(質量%)を意味し、対応する元素が含まれていない場合には、0を代入する。
(4)20℃における重量絶対湿度が約2.3%になるように加湿された空気中、850℃にて100時間保持した後で室温へ冷却したとき、その表面に原子%比率でCr≧50%の厚さが2.0μm未満である酸化皮膜が形成され、かつ酸化皮膜中の最大Si濃度が原子%比率で2%未満になることを特徴とする(1)~(3)に記載のフェライト系ステンレス鋼。
(5)原子%比率でCr≧50%の厚さが2.0μm未満である酸化皮膜が形成されており、かつ酸化皮膜中の最大Si濃度が原子%比率で2%未満であることを特徴とする(1)~(3)に記載のフェライト系ステンレス鋼。
(6)700℃、初期応力20MPaにおいて、1%のクリープ歪に到達する時間が2500時間以上であることを特徴とする(1)~(3)に記載のフェライト系ステンレス鋼。
(7)固体酸化物型燃料電池に用いられることを特徴とする(1)~(6)のうちいずれかに記載のフェライト系ステンレス鋼。
(8)板厚中心部の集合組織が下記の(a)および(b)を満たすことを特徴とする(1)~(3)のうちいずれかに記載のフェライト系ステンレス鋼板。
(a)板厚中心部における鋼板表面に平行な面の法線方向と{111}面方位との角度差が15°以内である{111}±15°方位粒の面積率が30%超60%未満
(b)(a)で定義した{111}±15°方位粒を除く方位粒の形状が下記式を満足する。
 1.5<L/d<8;但し、Lは{111}±15°方位粒の圧延方向の平均長さ(μm)、dは{111}±15°方位粒の圧延垂直方向の平均長さ(μm)とする。
(9)前記鋼の集合組織が、さらに下記の(c)を満たすことを特徴とする(8)に記載のフェライト系ステンレス鋼板。
(c)前記板厚中心部における鋼板表面に平行な面の法線方向と{001}面方位との角度差が10°以内である{001}±10°方位粒の面積率が10%未満である。
(10)750℃、初期応力15MPaにおいて、1%のクリープ歪に到達する時間が1000時間以上であることを特徴とする(8)又は(9)に記載の耐熱性と加工性に優れたフェライト系ステンレス鋼板。
(11)固体酸化物型燃料電池に用いられることを特徴とする(8)~(10)のうちいずれかに記載のフェライト系ステンレス鋼板。
(12)(1)~(3)のうちいずれかに記載の組成を有するステンレス鋼を、冷間圧延前においてTr-100<T<Trの範囲で熱処理を行い、その後冷間圧延と1100℃以下の熱処理を繰り返し、仕上げの熱処理は1000℃以上とすることを特徴とする耐熱性と加工性に優れたフェライト系ステンレス鋼材の製造方法。
Tr(℃):鋼の再結晶温度、T:冷間圧延前の熱処理温度
 本発明によれば、希土類元素の添加に頼ることなく、長期の高温酸化環境下において、酸化皮膜の電気導電性と耐クリープ強さを兼備したフェライト系ステンレス鋼と、耐クリープ強さと加工性を兼備したフェライト系ステンレス鋼板を得ることができる。
板厚中心部における鋼板表面に平行な面の法線方向と{111}面方位との角度差が15°以内である{111}±15°方位粒及び前記{111}±15°方位粒を除く方位粒の結晶方位マップであって、EBSD方位解析システムを用いて作成されたものである。
 本発明者らは、前記した課題を解決するために、長期の高温酸化環境下において求められる電気導電性ならびに700~750℃付近で生じる1%程度の僅かな変形を抑止する耐クリープ強さと加工性を兼備するフェライト系ステンレス鋼について鋭意実験と検討を重ね、本発明を完成させた。以下に本発明で得られた知見について説明する。
[板厚中央部における板面に平行な集合組織の作用効果に関する知見]
(a)通常、SOFCシステムは、発電部の高温域において700~750℃で連続運転される場合が多い。セルスタックの大型化とセパレーターの薄肉化に伴って、高温運転中で課題となる僅かな変形を抑止するには、材料の高温強度やクリープ破断寿命そのものを上昇させるよりも、750℃付近の定荷重下で生じる1%までのクリープ歪に到達する時間を遅延させることが極めて効果的である。
(b)前記したクリープ強さは、固溶・析出強化に寄与するNb、Cu等の合金添加に頼ることなく、板厚中心部における鋼板表面に平行な面の集合組織で存在する{111}±15°方位粒の面積率とそれを除く方位粒の形状比を制御することにより著しく向上するという新規な知見を見出した。尚、本発明において、「板厚中心部」とは、鋼板の板厚tの中心、すなわち、(1/2)tの位置を含む領域であり、好ましくは鋼板の板厚tの中心から当該鋼板の両側の面方向に1/8tの厚さの領域をいう。また、「(111)±15°方位粒」とは、板厚中心部における鋼板表面に平行な面の法線方向と{111}面方位との角度差が15°以内である結晶方位を持つ結晶粒をいう。このような耐クリープ強さに及ぼす集合組織の影響については未だ不明な点はあるものの、電子線後方散乱回折法(以下、EBSD)の解析結果に基づいて耐クリープ強さの向上機構については次のように推察している。
(c){111}±15°方位粒とそれ以外の結晶方位を有する結晶粒(以下、特定の結晶方位を有する結晶粒を単に「方位粒」という。)の2者に識別した場合、前者は加工性の向上に効果的な方位粒であるものの、耐クリープ強さを高めるには後者の方位粒が有効に作用する。前者の方位粒と後者の方位粒とをクリープ温度域におけるEBSDによる結晶方位マップで比較した結果、後者の方位粒は、前者の方位粒と比較して、結晶粒内の方位差が結晶粒界(小角粒界)として認識されない範囲内(すなわち、1°以上5°未満の範囲)で大きくなることを見出した。そのため、クリープ温度域において、後者の方位粒は、前者の方位粒よりも転位密度の上昇に伴う内部応力の増加に寄与する。
 更に、後者の方位粒を圧延方向に伸びた形状比とすることで、前記した作用が顕在化するとともに結晶粒界のすべりを遅延させる。つまり、1%までのクリープ歪に至る時間を遅延するには、結晶粒内の転位密度の上昇により内部応力を高めるとともに結晶粒界のすべりを遅延させることが有効に作用する。
 そのような視点において、前者の方位粒の面積率は加工性と耐クリープ強さを両立する範囲とし、後者の方位粒において圧延垂直方向に対する圧延方向の形状比を上昇させることが極めて有効である。ここで、後者の方位粒は、鋼の再結晶が遅延する板厚中心部でその生成量が最も多く、上述の形状比とあわせて板厚中心部の集合組織を制御することが耐クリープ強さの向上と加工性の両立に寄与する。
(d)また、加工性は、素材の薄肉化により圧延方向から45°及び90°方向の伸びが低下し易くなる。このような延性低下を抑制することは、前記したセパレーター形状への加工性を担保する。素材の延性低下は、(c)で述べた後者の方位粒のうち、{001}±10°方位粒の面積率を低減することで抑制することができる。ここで、「{001}方位粒」とは、前記板厚中心部における板面に平行な面の法線方向と{001}面方位との角度差が10°以内である結晶方位を持つ結晶粒をいう。
(f)前記した集合組織の制御は、鋼の再結晶温度よりも低い温度で熱処理を行い、その後冷間圧延と1100℃以下の熱処理を繰り返して、仕上げ熱処理は1000℃以上として再結晶組織を得ることが好ましい。
(g)更に、前記した集合組織の制御はNbやTiの添加量を調整して、微量元素であるB、Ga、Mg、Caが(c)で述べた後者の方位粒の残留と形状比に対して有効に作用することも分かった。
 上述したように、高Crタイプのフェライト系ステンレス鋼において、SOFCセパレーターに好適な耐クリープ強さと加工性の両立は、合金元素の添加に依ることなく、板厚中心部における鋼板表面に平行な面の集合組織の結晶方位を制御することにより達成できるという全く新規な知見を獲得した。本発明は、上述した検討結果に基づいて完成されたものである。
[Al添加、微量元素B、Ga、Mg、Caの添加ならびにMn、V、Al、Siの成分調整の作用効果に関する知見]
 更に、本発明者らは、前記した課題を解決するために、長期の高温酸化環境下において求められる電気導電性ならびに700℃付近で生じる1%程度の僅かな変形を抑止する耐クリープ強さを兼備するフェライト系ステンレス鋼について鋭意実験と検討を重ね、以下の知見を得た。
(a)通常、金属セパレーターの電気伝導性は、750℃付近のSOFC作動温度で10万時間に及ぶ電気伝導性を加速条件で間接的に評価されることが多い。このような長期運転中の金属セパレーターで課題となる電気導電性の低下を抑制するには、加速条件として加湿された空気(20℃における重量絶対湿度が約2.3%)中の850℃で形成するCr系酸化皮膜においてOを含む原子%比率でCr≧50%の厚さならびに酸化皮膜中へのSiの混入を低減することが極めて有効である。
(b)上述したCr系酸化皮膜の改質は、必ずしも希土類元素の添加によらず、Al、B、Ga、Mg、Caの微量添加により著しく向上することを見出した。更に、脱酸剤およびクロム原料から混入するMn、Vを低下し、AlとSiの添加量を調整することが効果的である全く新規な知見が得られた。このような酸化皮膜の改質作用については未だ不明な点も多いが、実験事実に基づいて以下に述べるような作用機構を推察している。
(c)微量のAl添加は、Cr系酸化皮膜と地鉄界面の酸素ポテンシャルを低下させてSiの酸化皮膜中への混入を低減する。更に、B、Ga、Mg、Caは、C、N、S、Oと結合して化合物を形成して鋼の清浄度を向上させてCr系酸化皮膜の保護性を高める。ここで、Bは粒界偏析して過度なCrの粒界拡散を抑制してCr系酸化皮膜の成長を遅延させる作用もある。加えて、Mn、Vを低下して適量のAlを添加することは、Cr系酸化皮膜の蒸気圧(揮発性)を低減させてCr系酸化皮膜の欠陥生成や成長を抑制させる効果が大きい。
(d)また、高温運転中の構造体で課題となる僅かな変形を抑止するには、材料の高温強度やクリープ破断寿命そのものを上昇させるよりも、700℃付近の定荷重下で生じる1%までのクリープ歪に到達する時間を遅延させることが極めて効果的である。
(e)前記したクリープ強さは、固溶・析出強化に寄与するNb、Cu等の添加によらず、上述した微量元素の添加により著しく向上することを見出した。特に、BやGaは、1%までの初期のクリープ歪に至る時間を大幅に遅延させる作用を持つ。これら微量元素は、偏析により結晶粒界のすべりを遅延させるとともに、結晶粒内において転位密度の上昇に伴う内部応力を高める作用がある。
(f)前記したB、Gaの作用効果は、MgとCaの複合添加ならびにSnやSbの微量添加により重畳する。
(g)前記した電気伝導性や耐クリープ強さを高める作用効果は、鋼の再結晶温度よりも低い温度で、冷間圧延前に熱延鋼板に対して熱処理を行い、その後冷間圧延と1050℃以下の熱処理を繰り返して再結晶組織を得ることが有効であることも分かった。
 上述したように、高Crタイプのフェライト系ステンレス鋼において、長期の高温酸化環境下での電気伝導性と1%までの耐クリープ強さを向上させるという新たな特性は、微量のAl添加、微量元素B、Ga、Mg、Caの添加ならびにMn、V、Al、Siの成分調整により達成できるという全く新規な知見を獲得した。前記(1)~(5)の本発明は、上述した検討結果に基づいて完成されたものである。
 以下、本発明の各要件について詳しく説明する。なお、各元素の含有量の「%」表示は「質量%」を意味する。
(I)本発明のフェライト系ステンレス鋼の成分の限定理由を以下に説明する。
 Cは、鋼中に含まれる不可避的不純物元素であり、本発明の目標とするCr系酸化皮膜の保護性を阻害し、加工性や耐酸化性を阻害する一方で、本発明の目標とする集合組織の形成に有効に作用する。そのため、C量は適度に含まれることが好ましい。また、過度な低減は本発明の耐クリープ強さの低下や精錬コストの大幅な上昇を招く。従って、上限は0.030%とする。集合組織の形成と製造性の点から、好ましい範囲は0.002%以上、0.020%以下である。Cr系酸化皮膜の電気導電性と製造性の点から、好ましい範囲は0.001%以上、0.015%以下である。
 Siは、本発明の目標とする加工性及びCr系酸化皮膜の電気伝導性を確保するために低いほど好ましい。一方で、耐酸化性や高温強度を高める作用も持つ。しかし、過度な添加は本発明の目標とする耐クリープ強さの低下を招く。これら基本特性の視点から、上限は1.00%とする。下限は、脱酸剤やクロム原料からの不可避的不純物を考慮した製造コストの上昇から、0.01%とすることが好ましい。本発明の目標とする基本特性と製造コストを両立する点から、好ましい範囲は0.05%以上、0.50%以下、より好ましい範囲は0.10%以上、0.30%以下である。
 また、本発明の目標とするCr系酸化皮膜の電気伝導性と製造コストを両立する点から、上限は0.30%とすることが好ましく、Si含有量の好ましい範囲は0.05%以上、0.25%以下、より好ましい範囲は0.10%以上、0.20%以下である。
 Mnは、脱酸元素として有効に作用することに加えて、耐酸化性を向上させる作用を持つとともに、本発明の目標とするCr系酸化皮膜の電気伝導性を向上させる作用を持つ。これら効果を得るために下限は、0.05%とすることが好ましい。一方、過度な添加は、Cr系酸化皮膜の長期に渡る耐酸化性を阻害し、加工性や耐酸化性を阻害する場合もあるため、上限は1.00%とする。本発明の目標とする加工性と基本特性の点から、Mn含有量の好ましい範囲は0.05%以上、0.50%以下、より好ましい範囲は0.10%以上、0.30%以下である。
 また、Cr系酸化皮膜の長期に渡る耐酸化性の阻害を防止する観点において、Mn含有量の上限を0.3%とすることが好ましい。本発明の目標とするCr系酸化皮膜の電気伝導性と基本特性の点から、Mn含有量の好ましい範囲は0.05%以上、0.25%以下である。さらに好ましい範囲は0.10%以上、0.20%以下である。
 Pは、製造性や溶接性を阻害する元素であり、その含有量は少ないほど良いため、上限は0.045%とする。但し、過度な低減は精錬コストの上昇に繋がるため、下限は0.003%とすることが好ましい。製造性と溶接性の点から,好ましい範囲は0.005~0.035%、より好ましくは0.010~0.030%である。
 Sは、鋼中に含まれる不可避的不純物元素であり、加工性の低下に加えて、本発明の目標とするCr系酸化皮膜の電気伝導性を低下させる。特に、Mn系介在物や固溶Sの存在は、長期の高温酸化環境におけるCr系酸化皮膜の保護性を低下させる起点として作用するだけで無く、高温酸化環境における耐酸化性を低下させる起点としても作用する。そのため,S量は低いほど良いため、上限は0.0030%とする。但し、過度な低減は原料や精錬コストの上昇に繋がるため、下限は0.0001%とする。基本特性と製造性の点から、好ましい範囲は0.0001~0.0020%、より好ましくは0.0002~0.0010%である。
 Crは、本発明の目標とするCr系酸化皮膜の電気伝導性、耐クリープ強さならびに耐酸化性や熱膨張係数等の高温特性を確保する上で基本となる構成元素である。本発明においては、20.0%以下では目標とする高温特性が十分に確保されない。従って、下限は20.0%とする。しかし、過度なCrの添加は、高温環境に曝された際、脆化相であるσ相の生成を助長することに加え、Cr蒸発を助長して本発明の目標とするCr系酸化皮膜の電気伝導性を損なう場合があり、また、製造性の低下と本発明の目標とする加工性を損なう場合がある。上限は、本発明の目標とする基本特性と製造性や加工性の点から25.0%とする。コスト対効果の視点から,好ましい範囲は20.0%以上、23.0%以下である。
 Moは、Crとともに本発明の目標とする耐クリープ強さならびに熱膨張係数を確保する上で有効な構成元素である。また、Moは、本発明の金属セパレーターとしての要件である熱膨張係数を確保する上で有効な構成元素でもある。特に、固溶強化元素として作用し、本発明の目標とする耐クリープ強さの向上に対して有効に作用する。これら効果を得るために、下限を0.3%とする。過度な添加は、脆化相であるσ相の生成を助長することに加え、製造性の低下と原料コストの上昇を招く。上限は、本発明の目標とする高温特性と製造性の点から2.0%である。コスト対効果の視点から,好ましい範囲は0.7%以上、1.4%以下である。
 Nは、鋼中に含まれる不可避的不純物元素であり、本発明の目標とするCr系酸化皮膜の保護性を阻害し、加工性や耐酸化性を阻害する一方で、本発明の目標とする集合組織の形成に有効に作用する。また、過度な低減は本発明の耐クリープ強さの低下や精錬コストの大幅な上昇を招く。そのため,N量は適度に含まれることが好ましい。従って、上限は0.040%とする。集合組織の形成と製造性の点から、好ましい範囲は0.002%以上、0.030%以下である。
 更に、本発明の目標とするCr系酸化皮膜の保護性の観点から、N含有量の上限は0.020%とすることが好ましく、より好ましい範囲は、0.003%以上、0.015%以下である。
 Alは、強力な脱酸元素として有効であることに加えて、本発明の目標とする耐クリープ強さならびに耐酸化性を高める作用がある。これら作用効果を得るために、下限は0.01%とすることが好ましい。また、本発明の目標とする長期にわたるCr系酸化皮膜の耐酸化性を高めて電気伝導性を確保する観点では、下限は0.05%とすることが好ましい。
 一方、Alの過度な添加は、Cr系酸化皮膜の電気伝導性を低下させ、熱膨張係数の上昇や加工性を低下させる場合がある。これら基本特性の視点から、上限は0.50%とする。本発明の目標とする耐クリープ強さと基本特性を両立する視点から、好ましい範囲は0.03%以上、0.30%以下、より好ましくは0.05%以上、0.25%以下である。また、本発明の目標とするCr系酸化皮膜の耐酸化性と電気伝導性を両立する視点から、好ましい範囲は0.10%以上、0.35%以下、より好ましくは0.15%以上、0.25%以下である。
 Vは、前記した通り、本発明の目標とするCr系酸化皮膜の電気伝導性を向上させるために低いほど好ましい。一方で、CやNを炭窒化物として固定し耐酸化性や高温強度を高める作用も持つ。これら基本特性の視点から、上限は0.20%とする。下限は、クロム原料からの不可避的不純物を考慮した原料コストの上昇から、0.005%とすることが好ましい。本発明の目標とする特性と原料コストを両立する点から、好ましい範囲は0.01%以上、0.10%以下、より好ましい範囲は0.01%以上、0.05%以下である。
 Nb、Tiは、CやNを炭窒化物として固定し、本発明の目標とする集合組織の制御と耐クリープ強さを高める作用を持つ。また、Nb、Tiは、本発明の目標とするCr系酸化皮膜の保護性を高めるとともに、高温部材として必要な強度を高める作用をも有する。これら効果を得るために、下限を0.001%とする。過度な添加は、原料コストの上昇や加工性を阻害するため上限は0.500%とする。コスト対効果の点から、好ましい範囲は0.050%以上、0.400%以下、より好ましい範囲は0.150%以上、0.350%以下である。NbとTiは単独もしくは複合して添加しても良い。
 また、本発明のステンレス鋼は、更に必要に応じて、Sn:0.30%以下、Sb:0.30%以下、Ni:1.00%以下、Cu:1.00%以下、W:1.0%以下、Co:1.00%以下、B:0.0100%以下、Ga:0.0100%以下、Mg:0.0100%以下、Ca:0.0100%以下、Zr:0.10%以下、La:0.10%以下、Y:0.10%以下、REM:0.10%以下、Ta:0.10%以下の1種または2種以上含有しているものであっても良い。
 B、Ga、Mg、Caは、前記した通り、本発明の目標とする集合組織の制御に効果的な添加元素であり、必要に応じて添加する。一方、過度な添加は、製造性と鋼の耐食性の低下を招く。このため、それぞれの上限は、B:0.0100%、Ga:0.0100%、Mg:0.0100%、Ca:0.0100%とする。また、BおよびGaは耐クリープ強さの向上に寄与する元素として、B:0.0003%以上、Ga:0.0005%以上を添加することが好ましい。より好ましい添加範囲は、B:0.0005%以上、0.0030%以下、Ga:0.001%以上、0.0050%以下である。Mg、Caの下限は、それぞれ0.0002%とすることが好ましい。本発明のCr系酸化皮膜の保護性と耐クリープ強さを向上させる視点から、好ましい範囲は、0.0005%以上、0.0050%以下であり、MgとCaの含有量は精錬条件により制御することもできる。
(B、Ga、Mg、Caの添加条件(a))
 B、Ga、Mg、Caは、前記した通り、本発明の目標とするCr系酸化皮膜の保護性を高めて耐クリープ強さを発現するために有用な添加元素である。一方、過度な添加は、製造性と鋼の耐食性の低下を招く。このため、B、Ga、Mg、Caを添加する場合、それぞれの上限は、B:0.0050%、Ga:0.0100%、Mg:0.0100%、Ca:0.0100%とし、1種または2種以上を含み、以下の式(1)を満たすように、本発明の固体酸化物型燃料電池用フェライト系ステンレス鋼に含有させることが好ましい。但し、該当する元素が含まれていない場合、0を代入する。
 10(B+Ga)+Mg+Ca>0.010・・・式(1)
 特に、耐クリープ強さを向上させる点から、式(1)は、0.030以上が好ましく、より好ましくは0.050~0.080の範囲とする。なお、式(1)の上限は、添加元素の上限値で特に規定するものでないが、耐クリープ強さと製造性の視点から0.1%とすることが好ましい。
(Si、Mn、Al、Vの添加条件(b))
 前述した通り、脱酸剤およびクロム原料から混入するMn、Vを低下し、AlとSiの添加量を調整することは、Cr系酸化皮膜の保護性の向上に効果的である。また、Mn、Vを低下して適量のAlを添加することは、Cr系酸化皮膜の揮発性を低減させてCr系酸化皮膜の欠陥生成や成長を抑制させる効果が大きい。そこで、本発明の目標とする基本特性を得るために、Al、Si、Mn、Vの含有量は、前記した含有量の範囲とし、更に、以下の式(2)及び(3)を満たすことが好ましい。
Si/(Mn+Al+V)<0.35・・・式(2)但し、該当する元素が含まれていない場合、0を代入する。
0.40<Al/(Si+Mn+V)<3.00・・・式(3)
Cr系酸化皮膜の電気伝導性を向上させる視点から、式(2)は、0.30未満が好ましく、より好ましい範囲は0.05~0.25である。式(3)は、0.45以上が好ましく、より好ましい範囲は0.50~2.50である。
 Sn、Sb、Ni、Cu、W、Coは、当該鋼の耐クリープ強さならびに耐食性を高めるのに有効な元素であり、必要に応じて添加する。但し、過度な添加は合金コストの上昇や製造性を阻害することに繋がるため、Sn、Sbの上限は0.30%、Ni、Cu、W、Coの上限は1.00%とする。いずれの元素もより好ましい含有量の下限は、0.10%とする。
 Zr、REM、Taは、従来から耐酸化性や熱間加工性を高め、Cr系酸化皮膜の保護性と電気伝導性を高める上で有効な元素であり、必要に応じて添加しても良い。但し、本発明の技術思想ならびに着想と合金コストの低減から、これら元素の添加効果に頼るものではない。添加する場合、上限はそれぞれ0.10%とし、下限は0.001%とすることが好ましい。ここで、REMは、ScとYの2元素と原子番号57~71に帰属する元素であり、例えば、Y、La、Ce、Pr、Nd等である。本発明のフェライト系ステンレス鋼板は、REMに属する元素の含有量の合計が0.10%以下であれば、2種類以上のREMを含有しても良い。
 以上説明した各元素の他にも、本発明の効果を損なわない範囲で含有させることが出来る。一般的な不純物元素である前述のP、Sを始め、Zn、Bi、Pb、Se、H、Tl等は可能な限り低減することが好ましい。一方、これらの元素は、本発明の課題を解決する限度において、その含有割合が制御され、必要に応じて、Zn≦100ppm、Bi≦100ppm、Pb≦100ppm、Se≦100ppm、H≦100ppm、Tl≦500ppmの1種以上を含有してもよい。
(II)本発明のフェライト系ステンレス鋼板の集合組織の限定理由を以下に説明する。
 本発明のフェライト系ステンレス鋼板は、上述した鋼成分を有する本発明のフェライト系ステンレス鋼から製造される。上述した鋼成分の限定条件に加えて、本発明のフェライト系ステンレス鋼板は、本発明の目標とする耐クリープ強さと加工性を両立に寄与するという観点から、板厚中心部の集合組織が規定される。
 集合組織は、前記したようにEBSDを用いて解析することができる。EBSDは、試料表面のミクロ領域における結晶粒毎の結晶方位を高速に測定・解析するものである。耐クリープ強さと加工性に寄与する結晶方位集団は、板厚中心部における{111}±15°方位粒とそれを除く方位粒の2つの領域に分割した結晶方位マップを表示させて数値化することができる。例えば、板厚中心部における鋼板表面に平行な面において、板幅方向850μm、圧延方向2250μmの測定領域で倍率100としてEBSDの測定を行い、図1のように、鋼板表面に平行な面の法線方向と{111}面方位との角度差が15°以内である結晶粒(すなわち、{111}±15°方位粒)の結晶方位マップを表示させてその面積率を表示する。また、{111}±15°方位粒を除く方位粒は、図1の白抜きの領域に相当し、その形状はEBSD方位解析システムから圧延方向の長さ(L)と圧延垂直方向の長さ(d)をヒストグラム形式で表示させて、その最大値を採用する。
 {111}方位粒はフェライト系ステンレス鋼の代表的な再結晶集合組織であり、加工性を高める作用を持つ。{111}方位粒とは、鋼板表面に平行な面の法線方向と{111}面方位の垂直方向との角度差が0°である結晶方位を有する結晶粒、すなわち、{111}面が鋼板表面に平行になっている結晶粒をいう。
 ここで、{111}方位粒の{111}面方位からの方位差が15°以内という条件は、それを超えると加工性の低下に繋がる{001}面方位及び{101}面方位の方位粒を取り込むため、{111}方位粒の{111}面方位から±15°までの傾きに入る方位粒を対象とする。一方、{111}±15°方位粒以外の方位粒は、耐クリープ強さの向上に作用する。本発明の目標とする耐クリープ強さを得るには、{111}±15°方位粒の面積率を低下させて60%未満とする。一方、過度な低減は、素材の加工性を損なうため、下限は30%とする。
 {111}±15°方位粒以外の方位粒は、耐クリープ強さの発現に有効な圧延方向に伸びた形状:1.5<L/dとする。過度な伸長組織の場合、加工性を阻害するためL/d<8とする。ここで、加工性の低下を極力小さくして耐クリープ強さを向上させるために、好ましくは{111}±15°方位粒の面積率>40%かつL/d>3、より好ましくは{111}±15°方位粒の面積率>50%かつL/d>5とする。但し、Lは{111}±15°方位粒の圧延方向の平均長さ(μm)、dは{111}±15°方位粒の圧延垂直方向の平均長さ(μm)とする。
 本発明の目標とする加工性は、前記した通り、圧延方向から45°及び90°方向の伸びの低下を抑制するものである。具体的には、0.5mm以下の板厚において、圧延方向と比較した45°及び90°方向の伸びの低下は4%未満、好ましくは3%未満、より好ましくは2%未満とする。そのためには、{111}±15°方位粒を除く方位粒の中で、加工性の低下に作用する{001}±10°方位粒を10%未満とすることが好ましく、より好ましくは5%未満である。
(III)本発明のフェライト系ステンレス鋼及びフェライト系ステンレス鋼板の好ましい製造方法を以下に説明する。
 本発明のフェライト系ステンレス鋼は、主として、熱間圧延鋼帯を焼鈍あるいは焼鈍を省略してデスケ-リングの後冷間圧延し,続いて仕上げ焼鈍とデスケ-リングした冷延焼鈍板を対象としている。場合によっては、冷間圧延を施さない熱延焼鈍板でも構わない。さらに、ガス配管用としては、鋼板から製造した溶接菅も含まれる。配管は、溶接菅に限定するものでなく、熱間加工により製造した継ぎ目無し菅でもよい。上述した鋼の仕上げ焼鈍は、800~1050℃とするのが好ましい。800℃未満では鋼の軟質化と再結晶が不十分となり、所定の材料特性が得られないこともある。他方、1050℃超では粗大粒となり、鋼の靭性・延性を阻害することもある。
 本発明ではまた、耐クリープ強さを高めるために、冷間圧延前の熱間圧延鋼板において、鋼の再結晶温度をTrとした場合、Tr-100<T<Tr[℃]の範囲で焼鈍を行い、その後冷間圧延と1050℃以下の熱処理を繰り返して仕上げることが好ましい。尚、前記再結晶温度とは、加工組織から新しい結晶粒が生成して、再結晶率が90%以上になる温度とする。
 Tr-100℃以下の場合、鋼の再結晶不足が仕上げ熱処理後も残存して加工性が阻害される。Tr℃超の場合、熱間圧延鋼板の再結晶には効果的であるものの、金属組織による耐クリープ強さの向上を得るためには、T<Tr[℃]とすることがより好ましい。再結晶温度の近傍ないしそれ以下で熱延板焼鈍を行うことにより、冷間圧延後、1100℃以下の熱処理においても炭硫化物などの微細析出物が残存する。前記残存した微細析出物は、本発明の目標とするCr系酸化皮膜の保護性ならびに耐クリープ強さを高めることに有効に作用するとともに、(111)±15°方位粒の成長を遅延させて、本発明の目標とする集合組織の形成に有効に作用する。
 これらの効果を得る好適な熱延板焼鈍温度の範囲は、Tr-70<T<Tr-30[℃]である。前記熱延板焼鈍を経た冷間圧延後の仕上げの熱処理は1000℃以上とし、結晶粒径をGSNo.8以上へ成長させることがクリープ特性の向上に好ましい。なお、鋼の再結晶温度は、板厚1/4mm付近においてJIS G 0551に準拠する結晶粒度の顕微鏡試験方法において、粒度番号が付与できる下限の温度と定義する。
 尚、Tr-100<T<Tr[℃]の範囲での焼鈍後の冷却条件、及び前記1050℃以下の熱処理後の冷却条件は、特に限定されない。但し、ガス冷却等の工業的な連続焼鈍炉で生産することを考慮して、空冷以上の冷却速度とすることが好ましい。
 以下に、本発明の実施例について述べる。
[フェライト系ステンレス鋼の実施例1]
 表1に成分を示すフェライト系ステンレス鋼を溶製し、熱間圧延、焼鈍酸洗、冷間圧延を行い、表2に示す条件で板厚0.3~2.0mmの冷延鋼板(No.1~19)を製造した。なお、冷間圧延後の仕上げ焼鈍は、いずれも1050℃以下で実施した。ここで、鋼I~Rは、本発明の規定する成分範囲から外れるものである。これら冷延鋼板から試験片を切り出し、酸化試験によるCr系酸化皮膜の電気伝導性と板状のクリープ試験による耐クリープ強さの評価に供した。
Figure JPOXMLDOC01-appb-T000001
 酸化試験は、20℃における重量絶対湿度が約2.3%になるように加湿され、且つ850℃で加熱された空気中に、前記冷延鋼板(No.1~19)のそれぞれを100h保持し、その後室温まで冷却することにより行った。Cr系酸化皮膜の電気伝導性は、Ptメッシュを酸化試験片の表面へ焼き付け、4端子法により測定した。具体的には、マッフル炉へ酸化試験片を挿入し、750℃に昇温した後、通電(I)時の電圧降下値(ΔV)を測定し、接触抵抗(R=ΔV/I)を求め、接触抵抗率(ρ=R×S、S:通電面積)を算出して電気伝導性の評価指標とした。接触抵抗率(Ω・m)の判定は、市販されているSOFCインターコネクタ用フェライト系合金Crofer22APU(希土類元素添加22%Cr鋼)の同条件で測定した0.5~1.0×10-3Ω・mと同等の範囲にある場合を「○」、さらに低い場合を「◎」、高い場合を「×」とした。なお、本発明の目標とする電気導電性は「○」ならびに「◎」とする。
 酸化試験で生成した表面の酸化皮膜は、グロー放電質量分析法(GDS分析法)により、原子%比率でCr≧50%の厚さと酸化皮膜中の最大Si濃度を求めることができる。表面から深さ方向における各元素のプロファイルは、鋼の構成元素であるFe、Cr、Si、Mn、Al、Nb、Ti、Mo、VをO、Cなどの軽元素とともに測定する。そこでCを除去し、Oを含めて検出元素のプロファイルを作成することにより、原子%比率でCr≧50%の厚さと酸化皮膜中の最大Si濃度を求めた。
 クリープ試験は、JIS Z 2271準拠する定荷重試験とし、平行部10mm幅で35mm長さの板状試験片を用いた。試験条件は、700℃、初期応力20MPaとし、本発明の課題である僅かな高温変形に関わる耐クリープ強さを評価するために、1%までのクリープ歪に到達に至る時間を測定した。ここで、1%のクリープ歪に到達する時間は、2500h未満のものを「×」、2500h以上のものを「○」、3000hを超えるものを「◎」として耐クリープ強さを評価した。なお、本発明の目標とする耐クリープ強さは「○」ならびに「◎」とする。
Figure JPOXMLDOC01-appb-T000002
 得られた結果を表2に併記した。No.1~9は、本発明で規定する成分を満たし、本発明の目標とする電気伝導性と耐クリープ強さの評価は「○」あるいは「◎」となったものである。中でも、No.4、7は、本発明のより好ましい範囲で式(2)及び式(3)の両者を満たした場合であり、顕著な電気伝導性の向上効果を発現して「◎」となった。更に、No.6、8は、本発明のより好ましい範囲で式(1)を満たした場合であり、耐クリープ強さの評価は「◎」となった。また。No.3、4は、本発明の好ましい製造方法を実施することにより、より好ましい範囲で式(1)を満たさなくとも、耐クリープ強さの評価が「○」から「◎」まで向上した。
 鋼No.10、11、13、15~18、20、21は、本発明で規定する鋼成分ならびに式(1)から(3)のいずれかが外れるものであり、本発明で規定する好ましい製造方法の実施によらず本発明の目標とする電気伝導性と耐クリープ強さを両立することができず、いずれかの評価が「×」となった。
 以上の結果から、電気伝導性は、微量元素の添加ならびに成分調整により、表面に原子%比率でCr≧50%の深さを2μm未満かつ最大Si濃度2%未満とすれば著しく向上することが分かる。耐クリープ強さについては、式(1)の値を0.050以上とし、更に0.030以上とすることによって好ましい製造方法を実施することが極めて有効である。
[フェライト系ステンレス鋼板の実施例2]
 表3に成分を示すフェライト系ステンレス鋼を溶製し、熱間圧延、焼鈍酸洗、冷間圧延を行い、表4に示す条件で板厚0.2~0.6mmの冷延鋼板を製造した。なお、冷間圧延後の仕上げ焼鈍は、1000~1050℃の範囲で実施した。ここで、鋼K~Rは、本発明の規定する成分範囲から外れるものである。以上の冷延鋼板から試験片を切り出し、集合組織のEBSDによる解析、板状のクリープ試験による耐クリープ強さの評価、JIS13号引張試験による機械的性質の評価に供した。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 集合組織の解析は、前述の通り、EBSDを用いて板厚中心部における鋼表面に平行な面において、{111}±15°方位粒の結晶方位マップを表示させて、当該方位粒の面積率とそれを除く方位粒の形状(L/d)を求めた。さらに、{001}±10°方位粒の結晶方位マップを表示させて、当該方位粒の面積率を求めた。
 クリープ試験は、JIS Z 2271準拠する定荷重試験とし、平行部10mm幅で35mm長さの板状試験片を用いた。試験条件は、750℃、初期応力15MPaとし、本発明の課題である僅かな高温変形に関わる耐クリープ強さを評価するために、1%までのクリープ歪に到達に至る時間を測定した。ここで、1%のクリープ歪に到達する時間は、1000h未満のものを「×」、1000h以上のものを「○」、1500hを超えるものを「◎」として耐クリープ強さを評価した。なお、本発明の目標とする耐クリープ強さは「○」ならびに「◎」とする。
 引張試験は、圧延方向から45°方向及び90°方向から平行部12.5mm幅で50mm長さのJIS13号B試験片を用いた。試験条件は、JIS Z 2241準拠して引張強さと伸びを測定した。ここで、伸びは、圧延方向から45°方向の伸びと90°方向の伸びとの最小値との差が4%以上のものを「×」、4%未満のものを「○」、2%未満ものを「◎」として評価した。なお、本発明の目標とする加工性は「○」ならびに「◎」とする。
 得られた結果を表4に併記した。No.1、2、4~9、11、12、21~24は、本発明で規定する成分と集合組織の両者を満たし、本発明の目標とする耐クリープ強さと加工性の評価は「○」あるいは「◎」となったものである。中でも、No.11、12は、好ましい微量元素の添加とより好適な製法の両者を実施することにより、本発明の目標とするより好ましい集合組織制御を満たした場合であり、顕著な耐クリープ強さと加工性の向上効果を発現して「◎」となった。更に、No.5は、C及びN量の低下により加工性が「◎」へ向上したものである。
 No.3、10は、本発明で規定する鋼成分を満たすものの、本発明の目標とする集合組織が得られなかったものであり、耐クリープ強さと加工性のいずれかの評価が「×」となった。No.3は、熱延板焼鈍温度が過度に高く(Tr>50[℃])、本発明の目標とする集合組織を満たさず耐クリープ強さが得られなかった。他方、No.10は、熱延板焼鈍温度が過度に低く(Tr<100[℃])、本発明の目標とする集合組織を満たさず加工性が得られなかった。
 以上の結果から、本発明の目標とする耐クリープ強さと加工性は、本発明の成分と集合組織を満たすことにより両立できることが分かる。耐クリープ強さの向上に有効な集合組織として50%<{111}±15°方位粒の面積率<60%、5<L/d<6と、加工性に有効な{001}±10°方位粒の面積率<5の両者を満たすことが極めて有効であり、B、Ga、Mg、Caの微量元素の添加と熱延板焼鈍温度の範囲をTr-70<T<Tr-30[℃]で実施することが効果的である。
 本発明によれば、希土類元素の添加に頼ることなく、長期の高温酸化環境下において、Cr系酸化皮膜の電気伝導性と耐クリープ強さを兼備した固体酸化物型燃料電池用フェライト系ステンレス鋼を得ることができる。また、本発明によれば、板厚中心部における板面に平行な集合組織を制御することによって耐クリープ強さと加工性を兼備した高Crタイプのフェライト系ステンレス鋼板を得ることができる。したがって、燃料電池、ガスタービン、発電システムなどに用いられる高温部材、エキゾーストマニホールド、コンバータ、マフラー、ターボチャージャー、EGRクーラー、フロントパイプ、センターパイプ等の自動車部材、ストーブ・ファンヒータ等の燃焼機器、圧力鍋等の圧力容器など、高温環境下で使用される部材全般に好適な材料を提供することが出来る。

Claims (12)

  1.  質量%にて、C:0.030%以下、Si:1.00%以下、Mn:1.00%以下、P:0.045%以下、S:0.0030%以下、Cr:20.0~25.0%、Mo:0.3~2.0%、N:0.040%以下、Al:0.50%以下、V:0.20%以下を有し、Nb:0.001~0.500%及び/又はTi:0.001~0.50%を含み、残部がFeおよび不可避的不純物からなることを特徴とするフェライト系ステンレス鋼。
  2.  前記鋼が、さらに質量%にて、Sn:0.30%以下、Sb:0.30%以下、Ni:1.00%以下、Cu:1.00%以下、W:1.0%以下、Co:1.00%以下、B:0.0100%以下、Ga:0.0100%以下、Mg:0.0100%以下、Ca:0.0100%以下、Zr:0.10%以下、Y:0.10%以下、REM:0.10%以下、Ta:0.10%以下の1種または2種以上含有していることを特徴とする請求項1に記載のフェライト系ステンレス鋼。
  3.  更に下記(a)及び(b)の両方の条件を満たすか、又は(b)の条件を満たすことを特徴とする請求項1又は2に記載のフェライト系ステンレス鋼。
    (a)B:0.0050%以下、Ga:0.0100%以下、Mg:0.0100%以下、Ca:0.0100%以下の1種または2種以上を満たす範囲で含有し、且つ式(1)を満足すること。
    10(B+Ga)+Mg+Ca>0.010・・・式(1)
    (b)下記式(2)および(3)を満足すること。
    Si/(Mn+Al+V)<0.35・・・式(2)
    0.40<Al/(Si+Mn+V)<3.00・・・式(3)
    但し、式(1)~(3)中、B、Ga、Mg、Ca、Si、Mn、Al、Vはそれぞれの元素の含有量(質量%)を意味し、対応する元素が含まれていない場合、0を代入する。
  4.  20℃における重量絶対湿度が約2.3%になるように加湿された空気中、850℃にて100時間保持した後で室温へ冷却したとき、その表面に原子%比率でCr≧50%の厚さが2.0μm未満である酸化皮膜が形成され、かつ酸化皮膜中の最大Si濃度が原子%比率で2%未満になることを特徴とする請求項1~3に記載のフェライト系ステンレス鋼。
  5.  原子%比率でCr≧50%の厚さが2.0μm未満である酸化皮膜が形成されており、かつ酸化皮膜中の最大Si濃度が原子%比率で2%未満であることを特徴とする請求項1~3に記載のフェライト系ステンレス鋼。
  6.  700℃、初期応力20MPaにおいて、1%のクリープ歪に到達する時間が2500時間以上であることを特徴とする請求項1~3に記載のフェライト系ステンレス鋼。
  7.  固体酸化物型燃料電池に用いられることを特徴とする請求項1~6のうちいずれか1項に記載のフェライト系ステンレス鋼。
  8.  板厚中心部の集合組織が下記の(a)および(b)を満たすことを特徴とする請求項1~3のうちいずれか1項に記載のフェライト系ステンレス鋼板。
    (a)板厚中心部における鋼板表面に平行な面の法線方向と{111}面方位との角度差が15°以内である{111}±15°方位粒の面積率が30%超60%未満
    (b)(a)で定義した{111}±15°方位粒を除く方位粒の形状が下記式を満足する。
     1.5<L/d<8;但し、Lは{111}±15°方位粒の圧延方向の平均長さ(μm)、dは{111}±15°方位粒の圧延垂直方向の平均長さ(μm)とする。
  9.  前記鋼の集合組織が、さらに下記の(c)を満たすことを特徴とする請求項8に記載のフェライト系ステンレス鋼板。
    (c)前記板厚中心部における鋼板表面に平行な面の法線方向と{001}面方位との角度差が10°以内である{001}±10°方位粒の面積率が10%未満である。
  10.  750℃、初期応力15MPaにおいて、1%のクリープ歪に到達する時間が1000時間以上であることを特徴とする請求項8又は9に記載の耐熱性と加工性に優れたフェライト系ステンレス鋼板。
  11.  固体酸化物型燃料電池に用いられることを特徴とする請求項8~10のうちいずれか1項に記載のフェライト系ステンレス鋼板。
  12.  請求項1~3のうちいずれか1項に記載の組成を有するステンレス鋼を、冷間圧延前においてTr-100<T<Trの範囲で熱処理を行い、その後冷間圧延と1100℃以下の熱処理を繰り返し、仕上げの熱処理は1000℃以上とすることを特徴とする耐熱性と加工性に優れたフェライト系ステンレス鋼材の製造方法。
    Tr(℃):鋼の再結晶温度、T:冷間圧延前の熱処理温度
PCT/JP2017/024557 2016-07-04 2017-07-04 フェライト系ステンレス鋼と、その鋼板及びそれらの製造方法 WO2018008658A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201780032954.2A CN109196133B (zh) 2016-07-04 2017-07-04 铁素体系不锈钢及其钢板以及它们的制造方法
EP17824261.6A EP3480334B1 (en) 2016-07-04 2017-07-04 Ferritic stainless steel, steel sheet thereof, and methods for producing these
CN202010745329.6A CN111850421B (zh) 2016-07-04 2017-07-04 铁素体系不锈钢板及铁素体系不锈钢材的制造方法
KR1020207003162A KR102154969B1 (ko) 2016-07-04 2017-07-04 페라이트계 스테인리스강과, 그의 강판 및 그들의 제조 방법
JP2018526403A JP6588163B2 (ja) 2016-07-04 2017-07-04 フェライト系ステンレス鋼と、その鋼板及びそれらの製造方法
KR1020187032073A KR102141291B1 (ko) 2016-07-04 2017-07-04 페라이트계 스테인리스강과, 그의 강판 및 그들의 제조 방법

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-132585 2016-07-04
JP2016132585 2016-07-04
JP2016-220579 2016-11-11
JP2016220579 2016-11-11

Publications (1)

Publication Number Publication Date
WO2018008658A1 true WO2018008658A1 (ja) 2018-01-11

Family

ID=60912731

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/024557 WO2018008658A1 (ja) 2016-07-04 2017-07-04 フェライト系ステンレス鋼と、その鋼板及びそれらの製造方法

Country Status (5)

Country Link
EP (1) EP3480334B1 (ja)
JP (2) JP6588163B2 (ja)
KR (2) KR102141291B1 (ja)
CN (2) CN109196133B (ja)
WO (1) WO2018008658A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019149353A (ja) * 2018-02-28 2019-09-05 トヨタ自動車株式会社 ステンレス鋼基材、燃料電池用セパレータ及び燃料電池
WO2020130060A1 (ja) * 2018-12-21 2020-06-25 日鉄ステンレス株式会社 耐水素脆性に優れたCr系ステンレス鋼板
JPWO2020004595A1 (ja) * 2018-06-27 2021-03-25 日鉄ケミカル&マテリアル株式会社 二次電池正極用ステンレス箔集電体および二次電池
WO2021177063A1 (ja) 2020-03-02 2021-09-10 Jfeスチール株式会社 固体酸化物型燃料電池用フェライト系ステンレス鋼
TWI764512B (zh) * 2020-01-15 2022-05-11 日商日鐵不銹鋼股份有限公司 肥粒鐵系不鏽鋼
WO2022153731A1 (ja) * 2021-01-14 2022-07-21 日鉄ステンレス株式会社 固体酸化物形燃料電池用ステンレス鋼材及びその製造方法、並びに固体酸化物形燃料電池用部材及び固体酸化物形燃料電池
WO2022153752A1 (ja) * 2021-01-14 2022-07-21 日鉄ステンレス株式会社 固体酸化物形燃料電池用ステンレス鋼材及びその製造方法、並びに固体酸化物形燃料電池用部材及び固体酸化物形燃料電池

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109913758B (zh) * 2019-03-29 2020-08-11 东北大学 高温强度和成形性能良好的铁素体不锈钢板及其制备方法
KR102279909B1 (ko) * 2019-11-19 2021-07-22 주식회사 포스코 고투자율 페라이트계 스테인리스강
CN115612918A (zh) * 2022-07-25 2023-01-17 宁波宝新不锈钢有限公司 一种具有高温性能的铁素体不锈钢及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001316775A (ja) * 1999-12-03 2001-11-16 Kawasaki Steel Corp 耐リジング性および成形性に優れたフェライト系ステンレス鋼板ならびにその製造方法
JP2004083972A (ja) * 2002-08-26 2004-03-18 Nisshin Steel Co Ltd 二次加工性に優れるフェライト系ステンレス鋼冷延焼鈍材及びその製造方法
JP2011174152A (ja) * 2010-02-25 2011-09-08 Nisshin Steel Co Ltd 高温での耐酸化性に優れた希土類金属無添加のフェライト系ステンレス鋼
JP2014177659A (ja) * 2013-03-13 2014-09-25 Nippon Steel & Sumikin Stainless Steel Corp 低温靭性に優れた耐熱フェライト系ステンレス鋼板およびその製造方法
WO2015108072A1 (ja) * 2014-01-14 2015-07-23 新日鐵住金ステンレス株式会社 酸化皮膜の電気伝導性と密着性に優れたフェライト系ステンレス鋼板

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4737600Y1 (ja) 1969-12-09 1972-11-14
JPS515777A (en) 1974-07-02 1976-01-17 Nippon Steel Corp Tetsupanno jidoshiwakehoho oyobi sochi
JPS6053994B2 (ja) 1980-08-19 1985-11-28 日本ビクター株式会社 円盤状情報記録媒体再生装置
JP3451830B2 (ja) 1996-03-29 2003-09-29 Jfeスチール株式会社 耐リジング性および加工性に優れたフェライト系ステンレス鋼板およびその製造方法
JP4310723B2 (ja) 2001-09-27 2009-08-12 日立金属株式会社 固体酸化物型燃料電池セパレータ用鋼
JP2004083792A (ja) * 2002-08-28 2004-03-18 Kuraray Co Ltd 熱可塑性樹脂組成物
JP4166657B2 (ja) 2003-09-30 2008-10-15 新日鐵住金ステンレス株式会社 フェライト系ステンレス鋼板およびその製造方法
CA2714829C (en) 2004-03-18 2016-02-09 Jfe Steel Corporation Metallic material for conductive member, separator for fuel cell using the same, and fuel cell using the separator
JP4675066B2 (ja) 2004-06-23 2011-04-20 日新製鋼株式会社 固体酸化物型燃料電池セパレーター用フェライト系ステンレス鋼
JP4385328B2 (ja) 2004-08-20 2009-12-16 日立金属株式会社 固体酸化物型燃料電池セパレータ用鋼
CN102741445B (zh) * 2010-02-02 2014-12-17 杰富意钢铁株式会社 韧性优异的高耐腐蚀性铁素体系不锈钢冷轧钢板及其制造方法
JP5576146B2 (ja) 2010-03-01 2014-08-20 日新製鋼株式会社 固体酸化物形燃料電池の導電部材
JP5377613B2 (ja) 2011-10-24 2013-12-25 日新製鋼株式会社 表面電気伝導性に優れた導電部材用ステンレス鋼板
JP5716054B2 (ja) * 2012-07-13 2015-05-13 新日鐵住金ステンレス株式会社 酸化皮膜の電気伝導性と密着性に優れたフェライト系ステンレス鋼板
JP6075349B2 (ja) * 2013-10-08 2017-02-08 Jfeスチール株式会社 フェライト系ステンレス鋼
JP6067134B2 (ja) 2013-11-01 2017-02-01 新日鐵住金ステンレス株式会社 燃料改質器用フェライト系ステンレス鋼およびその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001316775A (ja) * 1999-12-03 2001-11-16 Kawasaki Steel Corp 耐リジング性および成形性に優れたフェライト系ステンレス鋼板ならびにその製造方法
JP2004083972A (ja) * 2002-08-26 2004-03-18 Nisshin Steel Co Ltd 二次加工性に優れるフェライト系ステンレス鋼冷延焼鈍材及びその製造方法
JP2011174152A (ja) * 2010-02-25 2011-09-08 Nisshin Steel Co Ltd 高温での耐酸化性に優れた希土類金属無添加のフェライト系ステンレス鋼
JP2014177659A (ja) * 2013-03-13 2014-09-25 Nippon Steel & Sumikin Stainless Steel Corp 低温靭性に優れた耐熱フェライト系ステンレス鋼板およびその製造方法
WO2015108072A1 (ja) * 2014-01-14 2015-07-23 新日鐵住金ステンレス株式会社 酸化皮膜の電気伝導性と密着性に優れたフェライト系ステンレス鋼板

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3480334A4 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7172056B2 (ja) 2018-02-28 2022-11-16 トヨタ自動車株式会社 ステンレス鋼基材、燃料電池用セパレータ及び燃料電池
JP2019149353A (ja) * 2018-02-28 2019-09-05 トヨタ自動車株式会社 ステンレス鋼基材、燃料電池用セパレータ及び燃料電池
US11183696B2 (en) 2018-02-28 2021-11-23 Toyota Jidosha Kabushiki Kaisha Stainless steel substrate, fuel cell separator, and fuel cell
JPWO2020004595A1 (ja) * 2018-06-27 2021-03-25 日鉄ケミカル&マテリアル株式会社 二次電池正極用ステンレス箔集電体および二次電池
JP7148608B2 (ja) 2018-06-27 2022-10-05 日鉄ケミカル&マテリアル株式会社 二次電池正極用ステンレス箔集電体および二次電池
WO2020130060A1 (ja) * 2018-12-21 2020-06-25 日鉄ステンレス株式会社 耐水素脆性に優れたCr系ステンレス鋼板
CN113227414A (zh) * 2018-12-21 2021-08-06 日铁不锈钢株式会社 耐氢脆性优异的Cr系不锈钢板
JPWO2020130060A1 (ja) * 2018-12-21 2021-10-14 日鉄ステンレス株式会社 耐水素脆性に優れたCr系ステンレス鋼板
CN113227414B (zh) * 2018-12-21 2023-08-11 日铁不锈钢株式会社 耐氢脆性优异的Cr系不锈钢板
EP3901292A4 (en) * 2018-12-21 2022-11-23 NIPPON STEEL Stainless Steel Corporation CR-BASED STAINLESS STEEL WITH EXCELLENT RESISTANCE TO HYDROGEN EMBRITTLEMENT
JP7121142B2 (ja) 2018-12-21 2022-08-17 日鉄ステンレス株式会社 耐水素脆性に優れたCr系ステンレス鋼板
TWI764512B (zh) * 2020-01-15 2022-05-11 日商日鐵不銹鋼股份有限公司 肥粒鐵系不鏽鋼
WO2021177063A1 (ja) 2020-03-02 2021-09-10 Jfeスチール株式会社 固体酸化物型燃料電池用フェライト系ステンレス鋼
WO2022153752A1 (ja) * 2021-01-14 2022-07-21 日鉄ステンレス株式会社 固体酸化物形燃料電池用ステンレス鋼材及びその製造方法、並びに固体酸化物形燃料電池用部材及び固体酸化物形燃料電池
WO2022153731A1 (ja) * 2021-01-14 2022-07-21 日鉄ステンレス株式会社 固体酸化物形燃料電池用ステンレス鋼材及びその製造方法、並びに固体酸化物形燃料電池用部材及び固体酸化物形燃料電池
JP7434611B2 (ja) 2021-01-14 2024-02-20 日鉄ステンレス株式会社 固体酸化物形燃料電池用ステンレス鋼材及びその製造方法、並びに固体酸化物形燃料電池用部材及び固体酸化物形燃料電池

Also Published As

Publication number Publication date
KR20200015820A (ko) 2020-02-12
EP3480334B1 (en) 2021-10-20
CN109196133A (zh) 2019-01-11
JPWO2018008658A1 (ja) 2019-05-16
CN109196133B (zh) 2020-12-04
CN111850421B (zh) 2022-05-24
KR20180125598A (ko) 2018-11-23
CN111850421A (zh) 2020-10-30
JP2020007644A (ja) 2020-01-16
JP6832999B2 (ja) 2021-02-24
EP3480334A4 (en) 2020-02-26
JP6588163B2 (ja) 2019-10-09
EP3480334A1 (en) 2019-05-08
KR102141291B1 (ko) 2020-08-04
KR102154969B1 (ko) 2020-09-10

Similar Documents

Publication Publication Date Title
JP6588163B2 (ja) フェライト系ステンレス鋼と、その鋼板及びそれらの製造方法
JP6392501B2 (ja) 絶縁性に優れた熱膨張係数の小さいステンレス製太陽電池用基板およびその製造方法
JP5716054B2 (ja) 酸化皮膜の電気伝導性と密着性に優れたフェライト系ステンレス鋼板
JP5645417B2 (ja) 耐酸化性と電気伝導性に優れたAl含有フェライト系ステンレス鋼
KR101692660B1 (ko) 내열성이 우수한 페라이트계 스테인레스 강판
WO2011111871A1 (ja) 耐酸化性に優れたフェライト系ステンレス鋼板並びに耐熱性に優れたフェライト系ステンレス鋼板及びその製造方法
US20210025022A1 (en) Ferritic stainless steel and method for manufacturing same, ferritic stainless steel sheet and method for manufacturing same, and fuel cell member
JP2018131643A (ja) 耐熱性に優れた固体酸化物形燃料電池用セパレータおよびこれを用いた燃料電池
JP5125600B2 (ja) 高温強度、耐水蒸気酸化性および加工性に優れるフェライト系ステンレス鋼
JP6643906B2 (ja) 耐熱性に優れた固体酸化物型燃料電池用フェライト系ステンレス鋼およびその製造方法
JP6765287B2 (ja) フェライト系ステンレス鋼とその製造方法、及び燃料電池部材
JP7270444B2 (ja) フェライト系ステンレス鋼板およびその製造方法
JP7224141B2 (ja) フェライト系ステンレス鋼板及びその製造方法、並びに燃料電池用部材
JP2009007601A (ja) 集熱機器用フェライト系ステンレス鋼材
JP4078881B2 (ja) 熱交換器用オーステナイト系ステンレス鋼板
JP6053994B1 (ja) 耐クリープ強さに優れた燃料電池用フェライト系ステンレス鋼およびその製造方法
JP2019173072A (ja) フェライト系ステンレス鋼およびその製造方法、ならびに燃料電池用部材
JP2020125518A (ja) Al含有フェライト系ステンレス鋼板及びその製造方法
JP2014218727A (ja) 絶縁性に優れた熱膨張係数の小さい太陽電池基板用ステンレス鋼材
JP7233195B2 (ja) フェライト系ステンレス鋼及びその製造方法、並びに燃料電池用部材
WO2023058358A1 (ja) フェライト系ステンレス鋼管及びその製造方法、並びに燃料電池

Legal Events

Date Code Title Description
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 20187032073

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17824261

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018526403

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017824261

Country of ref document: EP

Effective date: 20190204