WO2022153731A1 - 固体酸化物形燃料電池用ステンレス鋼材及びその製造方法、並びに固体酸化物形燃料電池用部材及び固体酸化物形燃料電池 - Google Patents

固体酸化物形燃料電池用ステンレス鋼材及びその製造方法、並びに固体酸化物形燃料電池用部材及び固体酸化物形燃料電池 Download PDF

Info

Publication number
WO2022153731A1
WO2022153731A1 PCT/JP2021/045168 JP2021045168W WO2022153731A1 WO 2022153731 A1 WO2022153731 A1 WO 2022153731A1 JP 2021045168 W JP2021045168 W JP 2021045168W WO 2022153731 A1 WO2022153731 A1 WO 2022153731A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
stainless steel
solid oxide
oxide fuel
steel material
Prior art date
Application number
PCT/JP2021/045168
Other languages
English (en)
French (fr)
Inventor
正治 秦野
三月 松本
善一 田井
一幸 景岡
Original Assignee
日鉄ステンレス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日鉄ステンレス株式会社 filed Critical 日鉄ステンレス株式会社
Priority to KR1020237010939A priority Critical patent/KR20230060521A/ko
Priority to JP2022575137A priority patent/JPWO2022153731A1/ja
Priority to CN202180071487.0A priority patent/CN116490631A/zh
Priority to EP21919620.1A priority patent/EP4279623A1/en
Publication of WO2022153731A1 publication Critical patent/WO2022153731A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0278Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/30Ferrous alloys, e.g. steel alloys containing chromium with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • C23G1/08Iron or steel
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • C23G1/08Iron or steel
    • C23G1/086Iron or steel solutions containing HF
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • H01M8/0208Alloys
    • H01M8/021Alloys based on iron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/05Grain orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a stainless steel material for a solid oxide fuel cell and a method for producing the same, and a member for a solid oxide fuel cell and a solid oxide fuel cell.
  • the conventional solid oxide fuel cell is a high temperature operating type with an operating temperature exceeding 600 ° C.
  • low-temperature operating solid oxide fuel cells that operate in a temperature range of 600 ° C. or lower have been proposed (for example, Patent Documents 1 and 2).
  • Stainless steel is generally used as a component of such a solid oxide fuel cell from the viewpoint of cost and corrosion resistance.
  • solid oxide fuel cells were mainly being developed as stationary power sources.
  • mobile vehicles such as commercial / industrial vehicles, automobiles, and airplanes.
  • the members (for example, separators, interconnectors, current collectors, etc.) constituting the solid oxide fuel cell are required to have conductivity.
  • the conductivity of this member decreases as the operating temperature decreases, the member used in the conventional high-temperature operating type solid oxide fuel cell may not have sufficient conductivity.
  • the members used in the conventional stationary solid oxide fuel cell have sufficient thermal shock resistance.
  • the present invention has been made to solve the above problems, and provides a stainless steel material for a solid oxide fuel cell having excellent conductivity and thermal shock resistance at a temperature of 600 ° C. or lower, and a method for producing the same.
  • the purpose is to do.
  • Another object of the present invention is to provide a member for a solid oxide fuel cell and a solid oxide fuel cell provided with a stainless steel material for a solid oxide fuel cell having such characteristics.
  • the present invention is a member for a solid oxide fuel cell including the stainless steel material for the solid oxide fuel cell. Further, the present invention is a solid oxide fuel cell including the member for the solid oxide fuel cell.
  • the present invention it is possible to provide a stainless steel material for a solid oxide fuel cell having excellent conductivity and thermal shock resistance at a temperature of 600 ° C. or lower, and a method for producing the same. Further, according to the present invention, it is possible to provide a member for a solid oxide fuel cell and a solid oxide fuel cell provided with a stainless steel material for a solid oxide fuel cell having such characteristics.
  • the stainless steel material for solid oxide fuel cell (hereinafter abbreviated as "stainless steel material") according to the embodiment of the present invention has C: 0.030% or less, Si: 1.00% or less, Mn: 1.00%.
  • P 0.050% or less
  • S 0.0030% or less
  • Cr 13.0% or more and less than 22.0%
  • Mo 1.50% or less
  • N 0.030% or less
  • Al 0.030% or less
  • Al Al: 0 .30% or less
  • Nb 0.40% or less
  • Cu 1.00% or less
  • the high purity index is less than 1.50%.
  • the balance is composed of Fe and impurities.
  • the "impurity” is a component (for example, an unavoidable impurity) mixed with raw materials such as ore and scrap, and various factors in the manufacturing process when the stainless steel material is industrially manufactured, and is defined in the present invention. It means something that is acceptable as long as it does not adversely affect it.
  • the "stainless steel material” is a concept including various shapes such as a stainless steel strip, a stainless steel plate, and a stainless steel foil.
  • the stainless steel material according to the embodiment of the present invention has B: 0.0050% or less, Sn: 0.5% or less, V: 0.5% or less, W: 0.5% or less, if necessary.
  • C is an element that affects the conductivity of stainless steel materials at a temperature of 600 ° C. or lower. If the C content is too high, the conductivity will decrease. Therefore, the C content is 0.030% or less, preferably 0.020% or less, and more preferably 0.015% or less.
  • the lower limit of the C content is not particularly limited, but as the C content is reduced, the refining process takes more time, which may increase the manufacturing cost. Therefore, the C content is preferably 0.0002% or more, more preferably 0.0005% or more.
  • Si is an element that enhances the heat resistance of stainless steel materials and is effective in forming a Cr oxide film at 600 ° C. or lower.
  • the Si content is 1.00% or less, preferably 0.80% or less, more preferably 0.60% or less, still more preferably 0.30% or less.
  • the lower limit of the Si content is not particularly limited.
  • the Si content is preferably 0.05% or more, more preferably 0.08% or more, from the viewpoint of obtaining the above effects of Si.
  • Mn is an element effective for improving the conductivity of the oxide film by forming ( Mn, Cr) 3O4 type oxide as well as the toughness of the stainless steel material.
  • Mn content is 1.00% or less, preferably 0.50% or less.
  • the lower limit of the Mn content is not particularly limited.
  • the Mn content is preferably 0.05% or more, more preferably 0.08% or more, from the viewpoint of obtaining the above-mentioned effect of Mn.
  • P is an element that may reduce the toughness of the stainless steel material. Therefore, the P content is set to 0.050% or less, preferably 0.040% or less.
  • the lower limit of the P content is not particularly limited, but as the P content is reduced, the refining process takes more time, which may increase the manufacturing cost. Therefore, the P content is preferably 0.001% or more, more preferably 0.010% or more.
  • S is an element that produces sulfide-based inclusions and may reduce the power generation efficiency of SOFC due to evaporation and poisoning to the electrodes. Therefore, the S content is 0.0030% or less, preferably 0.0015% or less.
  • the lower limit of the S content is not particularly limited, but as the S content is reduced, the refining process takes more time, which may increase the manufacturing cost. Therefore, the S content is preferably 0.0001% or more, more preferably 0.0002% or more.
  • Cr is a main element for forming a passivation film on the surface of a stainless steel material, and the passivation film can improve properties such as corrosion resistance and heat resistance.
  • the Cr content is 13.0% or more, preferably 13.5% or more.
  • the Cr content is less than 22.0%, preferably 21.0% or less.
  • Mo is a main element for strengthening the passivation film of a stainless steel material, and the passivation film can improve properties such as corrosion resistance and heat resistance.
  • Mo is also an element that promotes the formation of a Cr oxide film at a temperature of 600 ° C. or lower for stainless steel materials to improve conductivity. Normally, since the Cr oxide generated at 600 ° C. or lower contains Fe, the conductivity is low, but the conductivity can be improved by allowing Mo in the Cr oxide. However, if the Mo content is too high, the toughness and thermal impact resistance may decrease due to hardening. Therefore, the Mo content is 1.50% or less, preferably 1.30% or less, and more preferably 1.00% or less. On the other hand, the lower limit of the Mo content is not particularly limited. The Mo content is preferably 0.05% or more, more preferably 0.30% or more, from the viewpoint of obtaining the above-mentioned effect of Mo.
  • N is an element that binds to Al to generate AlN, which is the starting point of abnormal oxidation, and may reduce the toughness of the stainless steel material. Therefore, the N content is 0.030% or less, preferably 0.025% or less.
  • the lower limit of the N content is not particularly limited, but as the N content is reduced, the refining process takes more time, which may increase the manufacturing cost. Therefore, the N content is preferably 0.001% or more, more preferably 0.010% or more.
  • Al is an element effective for promoting the formation of a Cr oxide film at a temperature of 600 ° C. or lower of a stainless steel material and improving the conductivity.
  • the Al content is 0.30% or less, preferably 0.25% or less.
  • the lower limit of the Al content is not particularly limited.
  • the Al content is preferably 0.01% or more, more preferably 0.03% or more, from the viewpoint of obtaining the above effects of Al.
  • Nb preferentially combines with C and N to form Nb carbonitride, and is therefore an effective element for purifying stainless steel materials. Therefore, Nb promotes the formation of a Cr oxide film at a temperature of 600 ° C. or lower and contributes to the improvement of conductivity. Further, Nb is also an element that suppresses a decrease in corrosion resistance due to the formation of Cr carbonitride. However, if the Nb content is too high, the amount of solid solution Nb that was not consumed in the formation of Nb carbonitride increases. As a result, the toughness and thermal impact resistance may decrease due to the hardening. Therefore, the Nb content is 0.40% or less, preferably 0.35% or less. On the other hand, the lower limit of the Nb content is not particularly limited. The Nb content is preferably 0.01% or more, more preferably 0.05% or more, from the viewpoint of obtaining the above-mentioned effect of Nb.
  • Ti preferentially combines with C and N to form Ti carbonitride, and is therefore an effective element for purifying stainless steel materials. Therefore, Ti promotes the formation of a Cr oxide film at a temperature of 600 ° C. or lower and contributes to the improvement of conductivity. Ti is also an element that suppresses a decrease in corrosion resistance due to the formation of Cr carbonitride. However, if the Ti content is too high, the Ti carbonitride becomes coarse, which causes a decrease in toughness and thermal shock resistance. Therefore, the Ti content is 0.40% or less, preferably 0.35% or less. On the other hand, the lower limit of the Ti content is not particularly limited. The Ti content is preferably 0.01% or more, more preferably 0.05% or more, from the viewpoint of obtaining the above effects of Ti.
  • Ni is an element that suppresses the improvement of corrosion resistance and the decrease of toughness of stainless steel materials.
  • Ni is an austenite phase stabilizing element, if the Ni content is too large, the coefficient of thermal expansion increases and the thermostable impact resistance decreases. Therefore, the Ni content is 1.00% or less, preferably 0.80% or less.
  • the lower limit of the Ni content is not particularly limited. The Ni content is preferably 0.01% or more, more preferably 0.05% or more, from the viewpoint of obtaining the above effects of Ni.
  • Cu is an element that improves the corrosion resistance and conductivity of stainless steel materials.
  • Cu is an austenite phase stabilizing element, if the Cu content is too large, the coefficient of thermal expansion increases and the thermostable impact resistance decreases. Therefore, the Cu content is 1.00% or less, preferably 0.80% or less.
  • the lower limit of the Cu content is not particularly limited. The Cu content is preferably 0.01% or more, more preferably 0.03% or more, from the viewpoint of obtaining the above effects of Cu.
  • High purity index 10 (C + N) + 15S + 8P + 2 (Ti + Nb) ... (1)
  • each element symbol represents the content of each element. If the high purity index is too high, the amount of Cr in the surface layer of the stainless steel material is consumed by the formation of carbonitride and the like, and the formation of the Cr oxide film at a temperature of 600 ° C. or lower is impaired. As a result, along with the decrease in conductivity, cracks are likely to occur in the surface layer starting from the carbonitride, which leads to a decrease in thermal impact resistance.
  • the high purity index is less than 1.50%, preferably 1.30% or less, and more preferably less than 1.00%.
  • the lower limit of the high purity index is not particularly limited.
  • the high purity index is preferably 0.30% or more, more preferably 0.40% or more, in order to suppress an excessive refining load and an increase in raw material cost.
  • B is an element effective for increasing the grain boundary strength and improving the secondary workability by preferentially concentrating the grain boundaries, and is contained in the stainless steel material as needed.
  • the B content is 0.0050% or less, preferably 0.0030% or less.
  • the lower limit of the B content is not particularly limited.
  • the B content is preferably 0.0002% or more, more preferably 0.0005% or more, from the viewpoint of obtaining the above-mentioned effect of B.
  • Sn is an element effective for improving the corrosion resistance and conductivity of the stainless steel material, and is contained in the stainless steel material as needed. However, if the Sn content is too high, the hot workability and toughness deteriorate. Therefore, the Sn content is 0.5% or less, preferably 0.3% or less. On the other hand, the lower limit of the Sn content is not particularly limited. The Sn content is preferably 0.01% or more, more preferably 0.05% or more, from the viewpoint of obtaining the above-mentioned effect of Sn.
  • V is an element that improves the strength of the stainless steel material without impairing the toughness of the stainless steel material, and is contained in the stainless steel material as needed.
  • the V content is 0.5% or less, preferably 0.4% or less.
  • the lower limit of the V content is not particularly limited.
  • the V content is preferably 0.01% or more, more preferably 0.05% or more, from the viewpoint of obtaining the above-mentioned effect of V.
  • W is an element that improves the strength of the stainless steel material without impairing the toughness of the stainless steel material, and is contained in the stainless steel material as needed.
  • the W content is 0.5% or less, preferably 0.4% or less.
  • the lower limit of the W content is not particularly limited.
  • the W content is preferably 0.01% or more, more preferably 0.05% or more, from the viewpoint of obtaining the above-mentioned effect of W.
  • Ca is an element that fixes S and is effective for purifying the stainless steel material, and is contained in the stainless steel material as needed.
  • the Ca content is 0.010% or less, preferably 0.005% or less.
  • the lower limit of the Ca content is not particularly limited.
  • the Ca content is preferably 0.0005% or more, more preferably 0.0010% or more, from the viewpoint of obtaining the above-mentioned effect of Ca.
  • Mg is an element effective for refining stainless steel materials, and is contained in stainless steel materials as needed. However, if the Mg content is too high, the amount of inclusions formed increases and the conductivity and thermal impact resistance are lowered. Therefore, the Mg content is 0.010% or less, preferably 0.005% or less. On the other hand, the lower limit of the Mg content is not particularly limited. The Mg content is preferably 0.0001% or more, more preferably 0.0005% or more, from the viewpoint of obtaining the above effects of Mg.
  • Zr is an element that fixes C and is effective for purifying the stainless steel material, and is contained in the stainless steel material as needed. However, if the Zr content is too high, the workability of the stainless steel material will deteriorate. Therefore, the Zr content is 0.50% or less, preferably 0.40% or less. On the other hand, the lower limit of the Zr content is not particularly limited. The Zr content is preferably 0.001% or more, more preferably 0.005% or more, from the viewpoint of obtaining the above-mentioned effect of Zr.
  • Co is an element that improves the strength of the stainless steel material without impairing the toughness, and is contained in the stainless steel material as needed. However, if the Co content is too high, the workability and toughness may decrease, and the cost increases. Therefore, the Co content is 0.5% or less, preferably 0.4% or less. On the other hand, the lower limit of the Co content is not particularly limited. The Co content is preferably 0.01% or more, more preferably 0.05% or more, from the viewpoint of obtaining the above effects of Co.
  • Ga is an element that improves the hot workability of the stainless steel material, and is contained in the stainless steel material as needed. However, if the Ga content is too high, the manufacturability will be reduced. Therefore, the Ga content is 0.01% or less, preferably 0.005% or less. On the other hand, the lower limit of the Ga content is not particularly limited. The Ga content is preferably 0.0001% or more, more preferably 0.0005% or more, from the viewpoint of obtaining the above-mentioned effect of Ga.
  • Hf is an element that fixes C and is effective for purifying the stainless steel material, and is contained in the stainless steel material as needed. However, if the Hf content is too high, the workability of the stainless steel material will deteriorate. Therefore, the Hf content is 0.10% or less, preferably 0.08% or less. On the other hand, the lower limit of the Hf content is not particularly limited. The Hf content is preferably 0.001%, more preferably 0.005%, from the viewpoint of obtaining the above-mentioned effect by Hf.
  • REM rare earth element
  • REM preferentially binds to S and P to form a compound, it is possible to suppress a decrease in conductivity and thermal impact resistance due to S and P.
  • REM is included in the stainless steel material as needed. However, if the REM content is too high, the stainless steel material may become hard and the toughness and workability may decrease. Therefore, the REM content is 0.10% or less, preferably 0.08% or less.
  • the lower limit of the REM content is not particularly limited.
  • the REM content is preferably 0.001% or more, more preferably 0.005% or more, from the viewpoint of obtaining the above-mentioned effect by REM.
  • REM is a general term for two elements, scandium (Sc) and yttrium (Y), and 15 elements (lanthanoids) from lanthanum (La) to lutetium (Lu). These may be used alone or as a mixture. Further, among REMs, La and Y are preferable.
  • the stainless steel material according to the embodiment of the present invention has a crystal orientation ratio ( ⁇ 200 ⁇ / [ ⁇ 110) of crystal orientation ⁇ 200 ⁇ to a total of crystal orientations ⁇ 110 ⁇ and ⁇ 211 ⁇ at a depth of 10 ⁇ m from the surface.
  • ⁇ + ⁇ 211 ⁇ ] is preferably less than 0.30, and more preferably 0.25 or less.
  • the lower limit of the crystal orientation ratio is not particularly limited, but is preferably 0.05 or more, more preferably 0.10 or more.
  • the decrease in thermal shock resistance of the stainless steel material is due to the fact that cracks are likely to occur in the surface layer due to the difference between the texture of the surface layer of the stainless steel material and the texture of the matrix of the stainless steel material.
  • the surface layer of the stainless steel material has many crystal orientations ⁇ 200 ⁇ having a small plastic deformability, cracks are likely to occur. Therefore, by controlling the crystal orientation ratio ( ⁇ 200 ⁇ / [ ⁇ 110 ⁇ + ⁇ 211 ⁇ ]) to less than 0.30, the ratio of the crystal orientation ⁇ 200 ⁇ that is the starting point of the crack is reduced, and the crack is generated.
  • the heat impact resistance can be improved by suppressing the above.
  • the conductivity of the stainless steel material at a temperature of 600 ° C. or lower depends on the decrease in the Cr concentration of the Cr oxide film ((Cr, Fe) 2 O 3 ) formed on the surface layer of the stainless steel material.
  • the crystal orientation ratio ( ⁇ 200 ⁇ / [ ⁇ 110 ⁇ + ⁇ 211 ⁇ ]) to less than 0.30, the orientation with the Cr oxide film is improved and the surface layer ((Cr, Fe)). Since the Cr concentration of 2 O 3 ) can be increased, the conductivity at a temperature of 600 ° C. or lower can be improved.
  • the stainless steel material according to the embodiment of the present invention has a crystal orientation ⁇ 111 ⁇ ⁇ 15 ° ratio of 60 at the position of the central portion in the thickness direction (position of t / 2 when the thickness of the stainless steel material is t). It is preferably in excess of%, more preferably 65% to 99%. The upper limit of this ratio is preferably 98%, more preferably 95%.
  • the ratio of crystal orientation ⁇ 111 ⁇ ⁇ 15 ° can be measured by an EBSP orientation analysis system that can visualize the crystal orientation of each crystal grain. Specifically, a stainless steel material is cut, polished (thinned) from the surface to t / 2, and the surface is subjected to colloidal silica polishing to remove processing strain and EBSP orientation analysis is performed. For example, it is preferable to capture a region having a width of 1 mm and a length of 2 mm for the orientation analysis.
  • the ratio of ⁇ 111 ⁇ ⁇ 15 ° can be obtained by dividing the crystal orientation map display of the EBSP orientation analysis system into a region consisting of ⁇ 111 ⁇ ⁇ 15 ° and other orientations.
  • the shape of the stainless steel material according to the embodiment of the present invention is not particularly limited, but is preferably plate-shaped or foil-shaped.
  • its thickness is, for example, 0.1 to 5.0 mm, preferably 0.1 to 3.0 mm, more preferably 0.1 to 1.0 mm, still more preferably. Is 0.1 to 0.5 mm.
  • the stainless steel material according to the embodiment of the present invention can be produced according to a known method except that a slab having the above composition is used.
  • a slab having the above composition is used.
  • an example of a typical manufacturing method of the stainless steel material according to the embodiment of the present invention will be described.
  • the method for producing a stainless steel material according to the embodiment of the present invention is not limited to the following production method.
  • the stainless steel material according to the embodiment of the present invention can be produced by hot rolling a slab having the above composition and then cold rolling.
  • the conditions for hot rolling and cold rolling are not particularly limited and may be appropriately adjusted according to the composition.
  • Cold rolling after hot rolling can include intermediate rolling and finish rolling.
  • the intermediate rolling is preferably performed using a large-diameter roll having a diameter of 100 mm or more. By performing intermediate rolling using such a large-diameter roll, strain can be easily introduced in the vicinity of the center of the plate thickness in addition to the surface layer, so that the crystal orientation can be easily controlled as described above.
  • Finish rolling is preferably performed using a small diameter roll.
  • cold rolling is generally carried out using a multi-stage small-diameter roll such as a Zendimia mill.
  • Cold rolling of large-diameter rolls can be performed, for example, by using a tandem mill rolling mill used for cold rolling of carbon steel.
  • the cold-rolled material obtained by cold rolling is preferably pickled and then surface-ground. Under such conditions, it becomes easy to control the crystal orientation of the stainless steel material within the above range.
  • the surface grinding method is not particularly limited, and for example, buffing, grindstone polishing, or the like can be used.
  • the thickness of the surface grinding is not particularly limited, but is 0.001 to 0.050 mm. After hot rolling, known steps such as annealing and pickling may be carried out.
  • a passivation film is formed on the surface in an oxygen-containing atmosphere (for example, an atmospheric atmosphere).
  • This passivation film has excellent conductivity at a temperature of 600 ° C. or lower.
  • this stainless steel material is also excellent in thermal shock resistance, it is a solid oxide fuel cell, particularly a low temperature operation type solid oxide fuel cell that operates in a temperature range of 600 ° C. or lower (for example, 500 to 600 ° C.). Suitable for use in fuel cells.
  • the stainless steel material according to the embodiment of the present invention is used for a solid oxide fuel cell, a separator, a current collector (for example, an air electrode current collector and a fuel electrode current collector), an interconnector, a bus bar, and an end plate.
  • a stainless steel material can be used for members such as a fuel electrode frame.
  • the stainless steel material according to the embodiment of the present invention is preferably used for one or more kinds of members selected from a separator, an interconnector, and a current collector.
  • the solid oxide fuel cell member according to the embodiment of the present invention includes the stainless steel material according to the embodiment of the present invention. Further, the solid oxide fuel cell according to the embodiment of the present invention includes a member for the solid oxide fuel cell according to the embodiment of the present invention.
  • the member for a solid oxide fuel cell is not particularly limited, and examples thereof include the above-mentioned various members.
  • the stainless steel material can be appropriately shaped according to the shapes of various members.
  • a conductive coating layer may be formed on the surface of the stainless steel material.
  • the conductive coating layer is not particularly limited and can be formed from a material known in the art. For example, the conductive coating layer can be formed by using a metal having excellent conductivity such as Ag and Co.
  • the conductive coating layer may be a single metal layer or an alloy layer, and may have a single layer structure or a laminated structure.
  • the stainless steel material may be modified (roughened) of the passivation film from the viewpoint of enhancing the adhesion to the conductive coating layer.
  • the modification (roughening) of the passivation film can be performed by a known method such as immersing a stainless steel material in a fluorinated nitric acid solution.
  • the slab having the composition shown in Table 1 was melted, heated to 1200 ° C., and then hot-rolled to obtain a hot-rolled plate having a thickness of 3.0 mm.
  • the hot-rolled sheet was annealed and pickled, and then cold-rolled.
  • cold rolling a hot-rolled sheet is intermediate-rolled at 40-60% using a large-diameter roll having a diameter of 100 mm, then intermediate-annealed and pickled, and then finish-rolled on a small-diameter roll to 0.1- A 0.5 mm cold rolled plate was used.
  • the cold-rolled plate was finish-annealed and pickled, and the surface was ground by 0.005 to 0.01 mm by polishing with a grindstone to obtain a stainless steel material. Further, in the cold rolling, a stainless steel material obtained by cold rolling the intermediate rolling with the same small diameter roll as the finish rolling was also produced. Table 2 shows the roll diameters used in the intermediate rolling.
  • the crystal orientations ⁇ 110 ⁇ , ⁇ 211 ⁇ and ⁇ 200 ⁇ at a depth of 10 ⁇ m from the surface were measured, and the crystal orientation ratio ( ⁇ 200 ⁇ / [ ⁇ 110 ⁇ + ⁇ 211 ⁇ ])) was obtained. Moreover, the ratio of the crystal orientation ⁇ 111 ⁇ ⁇ 15 ° at the position of the central portion in the thickness direction was measured. The crystal orientation was measured under the above conditions. The results are shown in Table 2.
  • the evaluation method is as follows. (1) Surface modification is performed by immersing a conductive stainless steel material in an aqueous solution (liquid temperature 60 ° C.) containing 5.0% by mass of phosphoric acid and 15% by mass of nitric acid for 1 to 5 minutes, and then a coating treatment is performed. Was carried out to form a conductive coating layer. In the coating treatment, the surface of the surface-modified stainless steel material was adjusted so that Co-plating was formed with a thickness of 2 to 5 ⁇ m.
  • a conductive paste (Ag paste) was applied in a square shape (10 mm on a side and 10 ⁇ m in thickness) to the central portion of the two stainless steel materials 10 with a conductive coating layer and dried to form the conductive portion 20.
  • the conductive portions 20 of the two stainless steel materials 10 with a conductive coating layer were stacked and arranged in a cross shape, sandwiched between alumina plates, placed with a weight (200 g), and baked in the electric furnace. (850 ° C. x 30 minutes).
  • the surface was scraped using a minitor until the metal base material was exposed to form the wiring attachment portion 30 shown in FIG.
  • a silver wire 40 ( ⁇ 0.3 mm) was wound around the wiring attachment portion 30, a conductive paste was applied, and the mixture was dried at 150 ° C. for 30 minutes to obtain a test piece for measurement.
  • this measurement test piece was placed in a high-temperature electrochemical measuring device, and a voltage-current curve was obtained by a four-terminal method using a potentiostat. In this measurement, the measurement temperature was 600 ° C. and the voltage was swept up to 10 mV. Moreover, the resistance value was calculated from the slope of the voltage-current curve.
  • the heat-resistant impact resistance was evaluated by repeating the heating / cooling cycle of the above-mentioned stainless steel material with a conductive coating layer. Specifically, the above-mentioned stainless steel material with a Co-plated conductive coating layer was cut and processed to prepare a 10 mm ⁇ 25 mm test piece. Next, the test piece is housed in a mobile muffle furnace heated to 600 ° C., held in the atmosphere for 25 minutes (inside the muffle furnace), released to the atmosphere and cooled for 5 minutes (muffle furnace movement) as one cycle, and 100 cycles. An intermittent heating test was conducted.
  • test No. 16 is conductivity
  • test No. 18 to 20 had insufficient thermal impact resistance.
  • the present invention it is possible to provide a stainless steel material for a solid oxide fuel cell having excellent conductivity and thermal shock resistance at a temperature of 600 ° C. or lower, and a method for producing the same. Further, according to the present invention, it is possible to provide a member for a solid oxide fuel cell and a solid oxide fuel cell provided with a stainless steel material for a solid oxide fuel cell having such characteristics.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electromagnetism (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

質量基準で、C:0.030%以下、Si:1.00%以下、Mn:1.00%以下、P:0.050%以下、S:0.0030%以下、Cr:13.0%以上22.0%未満、Mo:1.50%以下、N:0.030%以下、Al:0.30%以下、Nb:0.40%以下、Ti:0.40%以下、Ni:1.00%以下、Cu:1.00%以下を含み、下記式(1)で表される高純度指数が1.50%未満であり、残部がFe及び不純物からなる固体酸化物形燃料電池用ステンレス鋼材である。 高純度指数=10(C+N)+15S+8P+2(Ti+Nb) ・・・ (1) 式中、各元素記号は、各元素の含有量を表す。

Description

固体酸化物形燃料電池用ステンレス鋼材及びその製造方法、並びに固体酸化物形燃料電池用部材及び固体酸化物形燃料電池
 本発明は、固体酸化物形燃料電池用ステンレス鋼材及びその製造方法、並びに固体酸化物形燃料電池用部材及び固体酸化物形燃料電池に関する。
 従来の固体酸化物形燃料電池(SOFC)は、作動温度が600℃を超える高温作動型であった。しかし、近年、600℃以下の温度帯域で作動する低温作動型の固体酸化物形燃料電池が提案されている(例えば、特許文献1及び2)。このような固体酸化物形燃料電池の構成部材には、コストや耐食性などの観点から、ステンレス鋼材が一般的に用いられる。
 また、固体酸化物形燃料電池は、主に定置型電源として開発が進められていた。しかし、近年、業務・産業用車両や、自動車、飛行機などの様々な移動体への用途拡大が期待されている。
特開2020-53388号公報 特許第6696992号公報
 固体酸化物形燃料電池を構成する部材(例えば、セパレータ、インターコネクタ、集電体など)には、導電性が要求される。しかし、この部材の導電性は、作動温度が低くなるにつれて低下するため、従来の高温作動型の固体酸化物形燃料電池に用いられていた部材では導電性が十分でないことがある。
 また、移動体へ用途拡大する場合、定置型に比べて起動・停止することが多いため、熱衝撃に強いことが要求される。しかし、従来の定置型の固体酸化物形燃料電池に用いられていた部材は、耐熱衝撃性が十分であるとはいえない。
 本発明は、上記のような課題を解決するためになされたものであり、600℃以下の温度における導電性、及び耐熱衝撃性に優れる固体酸化物形燃料電池用ステンレス鋼材及びその製造方法を提供することを目的とする。また、本発明は、このような特徴を有する固体酸化物形燃料電池用ステンレス鋼材を備える固体酸化物形燃料電池用部材及び固体酸化物形燃料電池を提供することを目的とする。
 本発明者らは、ステンレス鋼材について鋭意研究を行った結果、特定の組成に制御することにより、上記の問題を解決し得ることを見出し、本発明を完成するに至った。
 すなわち、本発明は、質量基準で、C:0.030%以下、Si:1.00%以下、Mn:1.00%以下、P:0.050%以下、S:0.0030%以下、Cr:13.0%以上22.0%未満、Mo:1.50%以下、N:0.030%以下、Al:0.30%以下、Nb:0.40%以下、Ti:0.40%以下、Ni:1.00%以下、Cu:1.00%以下を含み、下記式(1)で表される高純度指数が1.50%未満であり、残部がFe及び不純物からなる固体酸化物形燃料電池用ステンレス鋼材である。
 高純度指数=10(C+N)+15S+8P+2(Ti+Nb) ・・・ (1)
 式中、各元素記号は、各元素の含有量を表す。
 また、本発明は、質量基準で、C:0.030%以下、Si:1.00%以下、Mn:1.00%以下、P:0.050%以下、S:0.0030%以下、Cr:13.0%以上22.0%未満、Mo:1.50%以下、N:0.030%以下、Al:0.30%以下、Nb:0.40%以下、Ti:0.40%以下、Ni:1.00%以下、Cu:1.00%以下を含み、下記式(1)で表される高純度指数が1.50%未満であり、残部がFe及び不純物からなるスラブを熱間圧延した後、冷間圧延を行う固体酸化物形燃料電池用ステンレス鋼材の製造方法である。
 高純度指数=10(C+N)+15S+8P+2(Ti+Nb) ・・・ (1)
 式中、各元素記号は、各元素の含有量を表す。
 また、本発明は、前記固体酸化物形燃料電池用ステンレス鋼材を備える固体酸化物形燃料電池用部材である。
 さらに、本発明は、前記固体酸化物形燃料電池用部材を備える固体酸化物形燃料電池である。
 本発明によれば、600℃以下の温度における導電性、及び耐熱衝撃性に優れる固体酸化物形燃料電池用ステンレス鋼材及びその製造方法を提供することができる。また、本発明によれば、このような特徴を有する固体酸化物形燃料電池用ステンレス鋼材を備える固体酸化物形燃料電池用部材及び固体酸化物形燃料電池を提供することができる。
導電性の測定用試験片の上面概略図である。
 以下、本発明の実施形態について具体的に説明する。本発明は以下の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、当業者の通常の知識に基づいて、以下の実施形態に対し変更、改良などが適宜加えられたものも本発明の範囲に入ることが理解されるべきである。
 なお、本明細書において成分に関する「%」表示は、特に断らない限り「質量%」を意味する。
 本発明の実施形態に係る固体酸化物形燃料電池用ステンレス鋼材(以下、「ステンレス鋼材」と略す)は、C:0.030%以下、Si:1.00%以下、Mn:1.00%以下、P:0.050%以下、S:0.0030%以下、Cr:13.0%以上22.0%未満、Mo:1.50%以下、N:0.030%以下、Al:0.30%以下、Nb:0.40%以下、Ti:0.40%以下、Ni:1.00%以下、Cu:1.00%以下を含み、高純度指数が1.50%未満であり、残部がFe及び不純物からなる組成を有する。
 ここで、「不純物」とは、ステンレス鋼材を工業的に製造する際に、鉱石、スクラップなどの原料、製造工程の種々の要因によって混入する成分(例えば、不可避不純物)であって、本発明に悪影響を与えない範囲で許容されるものを意味する。また、「ステンレス鋼材」とは、ステンレス鋼帯、ステンレス鋼板、ステンレス鋼箔などの各種形状を含む概念である。
 また、本発明の実施形態に係るステンレス鋼材は、必要に応じて、B:0.0050%以下、Sn:0.5%以下、V:0.5%以下、W:0.5%以下、Ca:0.010%以下、Mg:0.010%以下、Zr:0.50%以下、Co:0.5%以下、Ga:0.01%以下、Hf:0.10%以下、REM:0.10%以下から選択される1種以上を更に含むことができる。
<C:0.030%以下>
 Cは、ステンレス鋼材の600℃以下の温度における導電性に影響を与える元素である。C含有量が多すぎると、当該導電性が低下する。そのため、C含有量は、0.030%以下、好ましくは0.020%以下、より好ましくは0.015%以下とする。一方、C含有量の下限は、特に限定されないが、C含有量を低減するほど精錬工程に時間を要することとなり、製造コストが上昇する恐れがある。そのため、C含有量は、好ましくは0.0002%以上、より好ましくは0.0005%以上である。
<Si:1.00%以下>
 Siは、ステンレス鋼材の耐熱性を高めるとともに、600℃以下でのCr酸化皮膜の生成に有効な元素である。ただし、Si含有量が多すぎると、ステンレス鋼材の界面にSiO2の連続酸化物が生成して導電性が低下するとともに、硬質化によって靭性が低下する恐れがある。そのため、Si含有量は、1.00%以下、好ましくは0.80%以下、より好ましくは0.60%以下、更に好ましくは0.30%以下とする。一方、Si含有量の下限は、特に限定されない。Si含有量は、Siによる上記の効果を得る観点から、好ましくは0.05%以上、より好ましくは0.08%以上である。
<Mn:1.00%以下>
 Mnは、ステンレス鋼材の靭性とともに、(Mn,Cr)34型酸化物の生成によって酸化皮膜の導電性を向上させるのに有効な元素である。ただし、Mn含有量が多すぎると、耐熱性や加工性が低下する恐れがある。そのため、Mn含有量は、1.00%以下、好ましくは0.50%以下とする。一方、Mn含有量の下限は、特に限定されない。Mn含有量は、Mnによる上記の効果を得る観点から、好ましくは0.05%以上、より好ましくは0.08%以上である。
<P:0.050%以下>
 Pは、ステンレス鋼材の靭性を低下させる恐れがある元素である。そのため、P含有量は、0.050%以下、好ましくは0.040%以下とする。一方、P含有量の下限は、特に限定されないが、P含有量を低減するほど精錬工程に時間を要することとなり、製造コストが上昇する恐れがある。そのため、P含有量は、好ましくは0.001%以上、より好ましくは0.010%以上である。
<S:0.0030%以下>
 Sは、硫化物系介在物を生成し、電極への蒸散・被毒によってSOFCの発電効率を低下させる恐れがある元素である。そのため、S含有量は、0.0030%以下、好ましくは0.0015%以下とする。一方、S含有量の下限は、特に限定されないが、S含有量を低減するほど精錬工程に時間を要することとなり、製造コストが上昇する恐れがある。そのため、S含有量は、好ましくは0.0001%以上、より好ましくは0.0002%以上である。
<Cr:13.0%以上22.0%未満>
 Crは、ステンレス鋼材の表面に不動態皮膜を形成するための主要な元素であり、不動態皮膜によって耐食性、耐熱性などの特性を向上させることができる。600℃以下の温度における導電性に優れるCr酸化皮膜を形成する観点から、Cr含有量は、13.0%以上、好ましくは13.5%以上とする。一方、Cr含有量が多すぎると、靭性や耐熱衝撃性が低下するため、Cr含有量は、22.0%未満、好ましくは21.0%以下である。
<Mo:1.50%以下>
 Moは、ステンレス鋼材の不動態皮膜を強化するための主要な元素であり、不動態皮膜によって耐食性、耐熱性などの特性を向上させることができる。また、Moは、ステンレス鋼材の600℃以下の温度におけるCr酸化皮膜の生成を促進して導電性を向上させる元素でもある。通常、600℃以下で生成するCr酸化物はFeを含むことから、導電性が低いものの、MoをCr酸化物中に存在させることによって導電性を向上させることができる。ただし、Mo含有量が多すぎると、硬質化によって靭性や耐熱衝撃性が低下する恐れがある。そのため、Mo含有量は、1.50%以下、好ましくは1.30%以下、より好ましくは1.00%以下とする。一方、Mo含有量の下限は、特に限定されない。Mo含有量は、Moによる上記の効果を得る観点から、好ましくは0.05%以上、より好ましくは0.30%以上である。
<N:0.030%以下>
 Nは、Alと結合して異常酸化の起点となるAlNを生成し、ステンレス鋼材の靭性を低下させる恐れがある元素である。そのため、N含有量は、0.030%以下、好ましくは0.025%以下とする。一方、N含有量の下限は、特に限定されないが、N含有量を低減するほど精錬工程に時間を要することとなり、製造コストが上昇する恐れがある。そのため、N含有量は、好ましくは0.001%以上、より好ましくは0.010%以上である。
<Al:0.30%以下>
 Alは、ステンレス鋼材の600℃以下の温度におけるCr酸化皮膜の生成を促進して導電性を向上させるのに有効な元素である。ただし、Al含有量が多すぎると、異常酸化の起点となるAlNを生成し易くなるとともに、ステンレス鋼材の靭性や耐熱衝撃性が低下する恐れがある。そのため、Al含有量は、0.30%以下、好ましくは0.25%以下とする。一方、Al含有量の下限は、特に限定されない。Al含有量は、Alによる上記の効果を得る観点から、好ましくは0.01%以上、より好ましくは0.03%以上である。
<Nb:0.40%以下>
 Nbは、Tiと同様に、C及びNと優先的に結合してNb炭窒化物を生成するため、ステンレス鋼材の高純度化に有効な元素である。そのため、Nbは、600℃以下の温度におけるCr酸化皮膜の生成を促進して導電性の向上に寄与する。また、Nbは、Cr炭窒化物の生成による耐食性の低下を抑制する元素でもある。ただし、Nb含有量が多すぎると、Nb炭窒化物の生成に消費されなかった固溶Nbの量が増える。その結果、硬質化によって靭性や耐熱衝撃性が低下する恐れがある。そのため、Nb含有量は、0.40%以下、好ましくは0.35%以下とする。一方、Nb含有量の下限は、特に限定されない。Nb含有量は、Nbによる上記の効果を得る観点から、好ましくは0.01%以上、より好ましくは0.05%以上である。
<Ti:0.40%以下>
 Tiは、Nbと同様に、C及びNと優先的に結合してTi炭窒化物を生成するため、ステンレス鋼材の高純度化に有効な元素である。そのため、Tiは、600℃以下の温度におけるCr酸化皮膜の生成を促進して導電性の向上に寄与する。また、Tiは、Cr炭窒化物の生成による耐食性の低下を抑制する元素でもある。ただし、Ti含有量が多すぎると、Ti炭窒化物が粗大化してしまい、それが起点となって靭性や耐熱衝撃性が低下してしまう。そのため、Ti含有量は、0.40%以下、好ましくは0.35%以下とする。一方、Ti含有量の下限は、特に限定されない。Ti含有量は、Tiによる上記の効果を得る観点から、好ましくは0.01%以上、より好ましくは0.05%以上である。
<Ni:1.00%以下>
 Niは、ステンレス鋼材の耐食性の向上及び靭性の低下を抑制する元素である。ただし、Niはオーステナイト相安定化元素であるため、Ni含有量が多すぎると、熱膨張係数が上昇して耐熱衝撃性が低下する。そのため、Ni含有量は、1.00%以下、好ましくは0.80%以下とする。一方、Ni含有量の下限は、特に限定されない。Ni含有量は、Niによる上記の効果を得る観点から、好ましくは0.01%以上、より好ましくは0.05%以上である。
<Cu:1.00%以下>
 Cuは、ステンレス鋼材の耐食性や導電性を向上させる元素である。ただし、Cuはオーステナイト相安定化元素であるため、Cu含有量が多すぎると、熱膨張係数が上昇して耐熱衝撃性が低下する。そのため、Cu含有量は1.00%以下、好ましくは0.80%以下とする。一方、Cu含有量の下限は、特に限定されない。Cu含有量は、Cuによる上記の効果を得る観点から、好ましくは0.01%以上、より好ましくは0.03%以上とする。
<高純度指数:1.50%未満>
 高純度指数は、下記式(1)で表される。
 高純度指数=10(C+N)+15S+8P+2(Ti+Nb) ・・・ (1)
 式中、各元素記号は、各元素の含有量を表す。
 高純度指数が高すぎると、ステンレス鋼材の表層のCr量が炭窒化物などの生成で消費されて少なくなってしまい、600℃以下の温度におけるCr酸化皮膜の生成が損なわれる。その結果、導電性の低下とともに炭窒化物を起点として表層に亀裂が発生し易くなり耐熱衝撃性の低下を招く。そのため、高純度指数は、1.50%未満、好ましくは1.30%以下、より好ましくは1.00%未満である。一方、高純度指数の下限は、特に限定されない。高純度指数は、過度な精錬負荷や原料コストの上昇を抑制するために、好ましくは0.30%以上、より好ましくは0.40%以上である。
<B:0.0050%以下>
 Bは、粒界に優先的に濃化することで粒界強度を高めて二次加工性を向上させるのに有効な元素であり、必要に応じてステンレス鋼材に含まれる。ただし、B含有量が過剰になると粒界のボライド(Cr2B)が粗大化することにより耐熱衝撃性を低下させる。そのため、B含有量は、0.0050%以下、好ましくは0.0030%以下とする。一方、B含有量の下限は、特に限定されない。B含有量は、Bによる上記の効果を得る観点から、好ましくは0.0002%以上、より好ましくは0.0005%以上である。
<Sn:0.5%以下>
 Snは、ステンレス鋼材の耐食性や導電性の向上に効果的な元素であり、必要に応じてステンレス鋼材に含まれる。ただし、Sn含有量が多すぎると、熱間加工性や靭性が低下する。そのため、Sn含有量は、0.5%以下、好ましくは0.3%以下とする。一方、Sn含有量の下限は、特に限定されない。Sn含有量は、Snによる上記の効果を得る観点から、好ましくは0.01%以上、より好ましくは0.05%以上である。
<V:0.5%以下>
 Vは、ステンレス鋼材の靭性を損なわずに強度を向上させる元素であり、必要に応じてステンレス鋼材に含まれる。ただし、V含有量が多すぎると、加工性及び靭性が低下する恐れがあるとともに、コストが上昇する。そのため、V含有量は、0.5%以下、好ましくは0.4%以下とする。一方、V含有量の下限は、特に限定されない。V含有量は、Vによる上記の効果を得る観点から、好ましくは0.01%以上、より好ましくは0.05%以上である。
<W:0.5%以下>
 Wは、ステンレス鋼材の靭性を損なわずに強度を向上させる元素であり、必要に応じてステンレス鋼材に含まれる。ただし、W含有量が多すぎると、加工性及び靭性が低下する恐れがあるとともに、コストが上昇する。そのため、W含有量は、0.5%以下、好ましくは0.4%以下とする。一方、W含有量の下限は、特に限定されない。W含有量は、Wによる上記の効果を得る観点から、好ましくは0.01%以上、より好ましくは0.05%以上である。
<Ca:0.010%以下>
 Caは、Sを固定してステンレス鋼材の高純度化に有効な元素であり、必要に応じてステンレス鋼材に含まれる。ただし、Ca含有量が多すぎると、介在物の生成量が増加して導電性や耐熱衝撃性を低下させてしまう。そのため、Ca含有量は、0.010%以下、好ましくは0.005%以下とする。一方、Ca含有量の下限は、特に限定されない。Ca含有量は、Caによる上記の効果を得る観点から、好ましくは0.0005%以上、より好ましくは0.0010%以上である。
<Mg:0.010%以下>
 Mgは、ステンレス鋼材の精錬に有効な元素であり、必要に応じてステンレス鋼材に含まれる。ただし、Mg含有量が多すぎると、介在物の生成量が増加して導電性や耐熱衝撃性を低下させてしまう。そのため、Mg含有量は、0.010%以下、好ましくは0.005%以下とする。一方、Mg含有量の下限は、特に限定されない。Mg含有量は、Mgによる上記の効果を得る観点から、好ましくは0.0001%以上、より好ましくは0.0005%以上である。
<Zr:0.50%以下>
 Zrは、Cを固定してステンレス鋼材の高純度化に有効な元素であり、必要に応じてステンレス鋼材に含まれる。ただし、Zr含有量が多すぎると、ステンレス鋼材の加工性が低下してしまう。そのため、Zr含有量は、0.50%以下、好ましくは0.40%以下とする。一方、Zr含有量の下限は、特に限定されない。Zr含有量は、Zrによる上記の効果を得る観点から、好ましくは0.001%以上、より好ましくは0.005%以上である。
<Co:0.5%以下>
 Coは、ステンレス鋼材の靭性を損なわずに強度を向上させる元素であり、必要に応じてステンレス鋼材に含まれる。ただし、Co含有量が多すぎると、加工性及び靭性が低下する恐れがあるとともに、コストが上昇する。そのため、Co含有量は、0.5%以下、好ましくは0.4%以下とする。一方、Co含有量の下限は、特に限定されない。Co含有量は、Coによる上記の効果を得る観点から、好ましくは0.01%以上、より好ましくは0.05%以上である。
<Ga:0.01%以下>
 Gaは、ステンレス鋼材の熱間加工性を向上させる元素であり、必要に応じてステンレス鋼材に含まれる。ただし、Ga含有量が多すぎると、製造性を低下させてしまう。そのため、Ga含有量は、0.01%以下、好ましくは0.005%以下とする。一方、Ga含有量の下限は、特に限定されない。Ga含有量は、Gaによる上記の効果を得る観点から、好ましくは0.0001%以上、より好ましくは0.0005%以上である。
<Hf:0.10%以下>
 Hfは、Cを固定してステンレス鋼材の高純度化に有効な元素であり、必要に応じてステンレス鋼材に含まれる。ただし、Hf含有量が多すぎると、ステンレス鋼材の加工性が低下してしまう。そのため、Hf含有量は、0.10%以下、好ましくは0.08%以下とする。一方、Hf含有量の下限は、特に限定されない。Hf含有量は、Hfによる上記の効果を得る観点から、好ましくは0.001%、より好ましくは0.005%である。
<REM:0.10%以下>
 REM(希土類元素)は、S及びPに対して優先的に結合して化合物を生成するため、S及びPによる導電性や耐熱衝撃性の低下を抑制することができる。REMは、必要に応じてステンレス鋼材に含まれる。ただし、REM含有量が多すぎると、ステンレス鋼材が硬質化し、靭性や加工性が低下する恐れがある。そのため、REM含有量は、0.10%以下、好ましくは0.08%以下とする。一方、REM含有量の下限は、特に限定されない。REM含有量は、REMによる上記の効果を得る観点から、好ましくは0.001%以上、より好ましくは0.005%以上である。
 なお、REMは、スカンジウム(Sc)、イットリウム(Y)の2元素と、ランタン(La)からルテチウム(Lu)までの15元素(ランタノイド)の総称を指す。これらは単独で用いてもよいし、混合物として用いてもよい。また、REMの中でも、La及びYが好ましい。
 本発明の実施形態に係るステンレス鋼材は、表面から10μmの深さの位置において、結晶方位{110}及び{211}の合計に対する結晶方位{200}の結晶方位比率({200}/[{110}+{211}])が0.30未満であることが好ましく、0.25以下であることがより好ましい。なお、この結晶方位比率の下限は、特に限定されないが、好ましくは0.05以上、より好ましくは0.10以上である。
 ステンレス鋼材の耐熱衝撃性の低下は、ステンレス鋼材の表層の集合組織と、ステンレス鋼材の母相の集合組織との違いにより、表層に亀裂が発生し易くなることに起因している。特に、ステンレス鋼材の表層に塑性変形能の小さい結晶方位{200}が多いと、亀裂が発生し易くなる。そのため、結晶方位比率({200}/[{110}+{211}])を0.30未満に制御することにより、亀裂の起点となる結晶方位{200}の比率を低減し、亀裂の発生を抑制することで耐熱衝撃性を向上させることができる。
 また、ステンレス鋼材の600℃以下の温度における導電性は、ステンレス鋼材の表層に生成するCr酸化皮膜((Cr,Fe)23)のCr濃度の低下に依存する。しかし、結晶方位比率({200}/[{110}+{211}])を0.30未満に制御することにより、Cr酸化皮膜との配向性が改善して表層の((Cr,Fe)23)のCr濃度を高めることができるため、600℃以下の温度における導電性を向上させることができる。
 ここで、本明細書において、結晶方位は、ステンレス鋼材の表面のX線回折によって求められる。具体的には、ステンレス鋼材を切断し、その表面においてX線回折装置(株式会社リガク製RINT 2500)を用いて結晶方位の測定を行う。例えば、銅管球を用いそれから発せられるCuKαの特性X線(波長(λ)=1.5444Å)を回折に使う。その場合、2θ法において、{110}は44.79°、{200}は65.20°、{211}は82.58°に検出されるため、それら結晶面のX線強度比を算出する。
 本発明の実施形態に係るステンレス鋼材は、厚さ方向中心部の位置(ステンレス鋼材の厚さをtとした場合にt/2の位置)において、結晶方位{111}±15°の比率が60%超過であることが好ましく、65%~99%であることがより好ましい。なお、この比率の上限値は、好ましくは98%、より好ましくは95%である。
 厚さ方向中心部の位置における結晶方位を上記のように制御することにより、表層に亀裂が発生し難くなるため、耐熱衝撃性を向上させることができる。また、この結晶方位を上記のように制御することにより、表層の酸化皮膜を高Cr化させ易くなるため、耐熱衝撃性及び600℃以下の温度における導電性を向上させることができる。
 ここで、本明細書において、結晶方位{111}±15°の比率は、結晶粒毎の結晶方位を可視化できるEBSP方位解析システムにより測定することができる。具体的には、ステンレス鋼材を切断し、その表面からt/2まで研磨(減肉加工)し、その表面をコロイダルシリカ研磨により加工歪を除去してEBSP方位解析を行う。例えば、方位解析には、1mm幅、2mm長さの領域を取り込むことが好ましい。{111}±15°の比率は、EBSP方位解析システムの結晶方位マップ表示において、{111}±15°とそれ以外の方位からなる領域に分割することで求めることができる。
 本発明の実施形態に係るステンレス鋼材の形状は、特に限定されないが、板状又は箔状であることが好ましい。ステンレス鋼材が板状又は箔状である場合、その厚さは、例えば、0.1~5.0mm、好ましくは0.1~3.0mm、より好ましくは0.1~1.0mm、更に好ましくは0.1~0.5mmである。
 本発明の実施形態に係るステンレス鋼材は、上記のような組成を有するスラブを用いること以外は、公知の方法に準じて製造することができる。
 ここで、本発明の実施形態に係るステンレス鋼材の典型的な製造方法の一例について説明する。なお、本発明の実施形態に係るステンレス鋼材の製造方法は、下記の製造方法に限定されるものではない。
 本発明の実施形態に係るステンレス鋼材は、上記の組成を有するスラブを熱間圧延した後、冷間圧延を行うことによって製造することができる。熱間圧延及び冷間圧延の条件は、特に限定されず、組成に応じて適宜調整すればよい。
 熱間圧延後の冷間圧延は、中間圧延及び仕上圧延を含むことができる。中間圧延は、直径が100mm以上の大径ロールを用いて行うことが好ましい。このような大径ロールを用いて中間圧延を行うことにより、表層に加えて板厚中心付近へ歪を容易に導入することができるため、結晶方位を上記のように制御し易くなる。仕上圧延は、小径ロールを用いて行うことが好ましい。
 なお、冷間圧延は、炭素鋼と比べて硬質なステンレス鋼の場合、ゼンジミアミルなど多段式の小径ロールで実施するのが一般的である。大径ロールの冷間圧延は、例えば、炭素鋼の冷間圧延に使用されるタンデムミル圧延機を用いて行うことができる。
 冷間圧延で得られた冷延材は、酸洗を行った後に表面研削を行うことが好ましい。このような条件とすることにより、ステンレス鋼材の結晶方位を上記の範囲に制御し易くなる。
 表面研削の方法としては、特に限定されず、例えば、バフ研磨、砥石研磨などを用いることができる。表面研削の厚さは、特に限定されないが、0.001~0.050mmである。
 なお、熱間圧延後には、焼鈍や酸洗などの公知の工程を実施してもよい。
 上記のようにして製造される本発明の実施形態に係るステンレス鋼材は、酸素含有雰囲気(例えば、大気雰囲気)下で不動態皮膜が表面に形成される。この不動態皮膜は、600℃以下の温度における導電性に優れている。また、このステンレス鋼材は、耐熱衝撃性にも優れているため、固体酸化物形燃料電池、特に600℃以下(例えば、500~600℃)の温度帯域で作動する低温作動型の固体酸化物形燃料電池に用いるのに適している。
 本発明の実施形態に係るステンレス鋼材が固体酸化物形燃料電池に用いられる場合、セパレータ、集電体(例えば、空気極集電体及び燃料極集電体)、インターコネクタ、バスバー、端部プレート、燃料極フレームなどの部材にステンレス鋼材を用いることができる。これらの中でも、本発明の実施形態に係るステンレス鋼材は、セパレータ、インターコネクタ及び集電体から選択される1種以上の部材に用いることが好ましい。
 本発明の実施形態に係る固体酸化物形燃料電池用部材は、本発明の実施形態に係るステンレス鋼材を備える。また、本発明の実施形態に係る固体酸化物形燃料電池は、本発明の実施形態に係る固体酸化物形燃料電池用部材を備える。
 固体酸化物形燃料電池用部材としては、特に限定されず、上記した各種部材が挙げられる。
 ステンレス鋼材は、各種部材の形状に合わせて適宜形状加工することができる。また、ステンレス鋼材の表面には、導電コーティング層が形成されていてもよい。導電コーティング層としては、特に限定されず、当該技術分野において公知の材料から形成することができる。例えば、導電コーティング層は、Ag、Coなどの導電性に優れる金属を用いて形成することができる。また、導電コーティング層は、単一金属の層であっても合金の層であってもよく、また、単層構造であっても積層構造であってもよい。
 なお、ステンレス鋼材は、導電コーティング層との密着性を高める観点から、不動態皮膜の改質(粗面化)を行ってもよい。例えば、不動態皮膜の改質(粗面化)は、ステンレス鋼材を弗硝酸溶液に浸漬するなどの公知の方法によって行うことができる。
 以下に、実施例を挙げて本発明の内容を詳細に説明するが、本発明はこれらに限定して解釈されるものではない。
 表1に示す組成のスラブを溶製し、1200℃に加熱した後、熱間圧延して厚さ3.0mmの熱延板とした。次に、熱延板を焼鈍及び酸洗した後に冷間圧延した。冷間圧延は、熱延板を、直径が100mmの大径ロールを用いて40~60%で中間圧延した後、中間焼鈍及び酸洗し、次いで仕上圧延を小径ロールで行って0.1~0.5mmの冷延板とした。その後、冷延板を仕上げ焼鈍及び酸洗し、砥石研磨によって0.005~0.01mm表面研削することにより、ステンレス鋼材を得た。また、冷間圧延において、中間圧延を仕上圧延と同じ小径ロールにより冷間圧延したステンレス鋼材も製造した。なお、中間圧延で使用したロール径については表2に示す。
Figure JPOXMLDOC01-appb-T000001
 次に、得られたステンレス鋼材について、表面から10μmの深さの位置における結晶方位{110}、{211}及び{200}を測定し、結晶方位比率({200}/[{110}+{211}])を求めた。また、厚さ方向中心部の位置における結晶方位{111}±15°の比率を測定した。結晶方位の測定は、上記の条件で行った。この結果を表2に示す。
 また、得られたステンレス鋼材について、導電性及び耐熱衝撃性の評価を行った。評価方法は以下の通りである。
(1)導電性
 ステンレス鋼材を5.0質量%の弗酸及び15質量%の硝酸を含む水溶液(液温60℃)に1~5分浸漬することによって表面改質を行った後、コーティング処理を行って導電コーティング層を形成した。コーティング処理では、表面改質を行ったステンレス鋼材の表面にCoめっきが2~5μmの厚みで形成されるように調整した。
 導電コーティング層を形成したステンレス鋼材(以下、「導電コーティング層付きステンレス鋼材」という)2枚を露点-40℃(H2O濃度:約0.013%)に調整した乾燥空気雰囲気下にて600℃で1000時間熱暴露させた後、この2枚の導電コーティング層付きステンレス鋼材2枚を用いて図1に示すような測定用試験片を作製し、ポテンショスタットを用いた四端子法による測定を行った。具体的には以下のようにして行った。
 まず、2枚の導電コーティング層付きステンレス鋼材10の中央部に導電ペースト(Agペースト)を正方形状(一辺が10mm、厚さ10μm)に塗布して乾燥させ、導電部20を形成した。次に、2枚の導電コーティング層付きステンレス鋼材10の導電部20を重ねて十字型に配置した後、アルミナ板で挟み、重り(200g)を載せて電気炉で導電部20の焼付けを行った(850℃×30分)。次に、ミニターを用いて金属母材が露出するまで表面を削り、図1に示す配線取付部30を形成した。次に、銀線40(φ0.3mm)を配線取付部30に巻き付け、導電ペーストを塗布して150℃で30分間乾燥させることにより、測定用試験片を得た。次に、この測定用試験片を高温電気化学測定装置に配置し、ポテンショスタットを用いた四端子法により、電圧-電流曲線を求めた。この測定では、測定温度は600℃とし、電圧を10mVまで掃引した。また、電圧-電流曲線の傾きから抵抗値を算出した。この評価において、抵抗値が20mΩ・cm2以下であった場合をA(高温導電性が特に優れる)、20mΩ・cm2超過50mΩ・cm2以下であった場合をB(高温導電性が優れる)、抵抗値が50mΩ・cm2超過であった場合をC(高温導電性が不十分である)と判断した。
(2)耐熱衝撃性
 上記の導電コーティング層付きステンレス鋼材を加熱・冷却のサイクルを繰り返すことによって、耐熱衝撃性を評価した。具体的には、上記のCoめっきした導電コーティング層付きステンレス鋼材を切断加工して10mm×25mm試験片を準備した。次に、試験片を600℃に加熱した移動式マッフル炉に収容し、大気中で25分(マッフル炉内)保持し、大気解放・5分冷却(マッフル炉移動)を1サイクルとし、100サイクルの断続加熱試験を行った。断続加熱試験により、Coめっきが剥離しなかった場合をA(耐熱衝撃性が高い)、Coめっきが剥離した場合をC(耐熱衝撃性が低い)と判断した。
 上記の各評価結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示されるように、試験No.1~13(本発明例)のステンレス鋼材は、所定の組成を有しているため、導電性及び耐熱衝撃性に優れていた。特に、試験No.2、4、9及び13のステンレス鋼材は、好ましい組成を有し且つ大径ロールでの中間圧延(冷間圧延)を実施したものであったため、結晶方位が好ましい範囲を有し、導電性が非常に良好であった。
 これに対して試験No.14~20(比較例)のステンレス鋼材は、組成又は高純度指数が所定の範囲外であったため、導電性及び耐熱衝撃性の一方又は両方が不十分であった。特に、試験No.16及び18~20は、大径ロールでの中間圧延(冷間圧延)を実施することによって適切な結晶方位を有していたものの、Cr、Mo又はAl量が所定の範囲外であった。そのため、試験No.16は導電性、試験No.18~20は耐熱衝撃性が不十分であった。
 以上の結果からわかるように、本発明によれば、600℃以下の温度における導電性、及び耐熱衝撃性に優れる固体酸化物形燃料電池用ステンレス鋼材及びその製造方法を提供することができる。また、本発明によれば、このような特徴を有する固体酸化物形燃料電池用ステンレス鋼材を備える固体酸化物形燃料電池用部材及び固体酸化物形燃料電池を提供することができる。
 10 導電コーティング層付きステンレス鋼材
 20 導電部
 30 配線取付部
 40 銀線

Claims (11)

  1.  質量基準で、C:0.030%以下、Si:1.00%以下、Mn:1.00%以下、P:0.050%以下、S:0.0030%以下、Cr:13.0%以上22.0%未満、Mo:1.50%以下、N:0.030%以下、Al:0.30%以下、Nb:0.40%以下、Ti:0.40%以下、Ni:1.00%以下、Cu:1.00%以下を含み、下記式(1)で表される高純度指数が1.50%未満であり、残部がFe及び不純物からなる固体酸化物形燃料電池用ステンレス鋼材。
     高純度指数=10(C+N)+15S+8P+2(Ti+Nb) ・・・ (1)
     式中、各元素記号は、各元素の含有量を表す。
  2.  質量基準で、B:0.0050%以下、Sn:0.5%以下、V:0.5%以下、W:0.5%以下、Ca:0.010%以下、Mg:0.010%以下、Zr:0.50%以下、Co:0.5%以下、Ga:0.01%以下、Hf:0.10%以下、REM:0.10%以下から選択される1種以上を更に含む、請求項1に記載の固体酸化物形燃料電池用ステンレス鋼材。
  3.  表面から10μmの深さの位置において、結晶方位{110}及び{211}の合計に対する結晶方位{200}の結晶方位比率({200}/[{110}+{211}])が0.30未満である、請求項1又は2に記載の固体酸化物形燃料電池用ステンレス鋼材。
  4.  厚さ方向中心部の位置において、結晶方位{111}±15°の比率が60%超過である、請求項1~3のいずれか一項に記載の固体酸化物形燃料電池用ステンレス鋼材。
  5.  セパレータ、インターコネクタ及び集電体から選択される1種以上の部材に用いられる、請求項1~4のいずれか一項に記載の固体酸化物形燃料電池用ステンレス鋼材。
  6.  質量基準で、C:0.030%以下、Si:1.00%以下、Mn:1.00%以下、P:0.050%以下、S:0.0030%以下、Cr:13.0%以上22.0%未満、Mo:1.50%以下、N:0.030%以下、Al:0.30%以下、Nb:0.40%以下、Ti:0.40%以下、Ni:1.00%以下、Cu:1.00%以下を含み、下記式(1)で表される高純度指数が1.50%未満であり、残部がFe及び不純物からなるスラブを熱間圧延した後、冷間圧延を行う固体酸化物形燃料電池用ステンレス鋼材の製造方法。
     高純度指数=10(C+N)+15S+8P+2(Ti+Nb) ・・・ (1)
     式中、各元素記号は、各元素の含有量を表す。
  7.  前記スラブは、質量基準で、B:0.0050%以下、Sn:0.5%以下、V:0.5%以下、W:0.5%以下、Ca:0.010%以下、Mg:0.010%以下、Zr:0.50%以下、Co:0.5%以下、Ga:0.01%以下、Hf:0.10%以下、REM:0.10%以下から選択される1種以上を更に含む、請求項6に記載の固体酸化物形燃料電池用ステンレス鋼材の製造方法。
  8.  前記冷間圧延は、直径が100mm以上の大径ロールを用いて中間圧延を行うことを含む、請求項6又は7に記載の固体酸化物形燃料電池用ステンレス鋼材の製造方法。
  9.  前記冷間圧延で得られた冷延材に対して酸洗を行った後に表面研削を行う、請求項6~8のいずれか一項に記載の固体酸化物形燃料電池用ステンレス鋼材の製造方法。
  10.  請求項1~5のいずれか一項に記載の固体酸化物形燃料電池用ステンレス鋼材を備える固体酸化物形燃料電池用部材。
  11.  請求項10に記載の固体酸化物形燃料電池用部材を備える固体酸化物形燃料電池。
PCT/JP2021/045168 2021-01-14 2021-12-08 固体酸化物形燃料電池用ステンレス鋼材及びその製造方法、並びに固体酸化物形燃料電池用部材及び固体酸化物形燃料電池 WO2022153731A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020237010939A KR20230060521A (ko) 2021-01-14 2021-12-08 고체 산화물형 연료 전지용 스테인리스 강재 및 그 제조 방법, 그리고 고체 산화물형 연료 전지용 부재 및 고체 산화물형 연료 전지
JP2022575137A JPWO2022153731A1 (ja) 2021-01-14 2021-12-08
CN202180071487.0A CN116490631A (zh) 2021-01-14 2021-12-08 固体氧化物型燃料电池用不锈钢材及其制造方法、固体氧化物型燃料电池用构件和固体氧化物型燃料电池
EP21919620.1A EP4279623A1 (en) 2021-01-14 2021-12-08 Stainless steel material for solid oxide fuel cells, method for producing same, member for solid oxide fuel cells, and solid oxide fuel cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-004148 2021-01-14
JP2021004148 2021-01-14

Publications (1)

Publication Number Publication Date
WO2022153731A1 true WO2022153731A1 (ja) 2022-07-21

Family

ID=82448276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/045168 WO2022153731A1 (ja) 2021-01-14 2021-12-08 固体酸化物形燃料電池用ステンレス鋼材及びその製造方法、並びに固体酸化物形燃料電池用部材及び固体酸化物形燃料電池

Country Status (5)

Country Link
EP (1) EP4279623A1 (ja)
JP (1) JPWO2022153731A1 (ja)
KR (1) KR20230060521A (ja)
CN (1) CN116490631A (ja)
WO (1) WO2022153731A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005226083A (ja) * 2004-02-10 2005-08-25 Nisshin Steel Co Ltd 固体酸化物型燃料電池セパレータ用フェライト系ステンレス鋼
CN101195894A (zh) * 2007-12-19 2008-06-11 吉林化工学院 含稀土元素钇的用于固体氧化物燃料电池的铁素体不锈钢
WO2014010680A1 (ja) * 2012-07-13 2014-01-16 新日鐵住金ステンレス株式会社 フェライト系ステンレス鋼板および酸化皮膜の導電性と密着性に優れたフェライト系ステンレス鋼板の製造方法
JP2017125248A (ja) * 2016-01-15 2017-07-20 新日鐵住金ステンレス株式会社 耐熱性に優れた固体酸化物型燃料電池用フェライト系ステンレス鋼およびその製造方法
WO2018008658A1 (ja) * 2016-07-04 2018-01-11 新日鐵住金ステンレス株式会社 フェライト系ステンレス鋼と、その鋼板及びそれらの製造方法
JP2020053388A (ja) 2018-09-21 2020-04-02 パナソニックIpマネジメント株式会社 燃料電池システムおよびその運転方法、電気化学システム
JP6696992B2 (ja) 2015-02-10 2020-05-20 シーリーズ インテレクチュアル プロパティ カンパニー リミティド 低温固体酸化物燃料電池のための相互接続
CN111876661A (zh) * 2020-06-17 2020-11-03 宁波宝新不锈钢有限公司 一种燃料电池用高耐蚀铁素体不锈钢及其制造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4299644B2 (ja) * 2003-12-02 2009-07-22 日新製鋼株式会社 親水性ステンレス鋼板及びその製造方法
KR101940427B1 (ko) * 2014-08-14 2019-01-18 제이에프이 스틸 가부시키가이샤 페라이트계 스테인리스 강판
MX2017009376A (es) * 2015-01-19 2017-11-08 Nippon Steel & Sumikin Sst Acero inoxidable ferritico para miembro de sistema de escape que tiene excelente resistencia a la corrosion despues del calentamiento.

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005226083A (ja) * 2004-02-10 2005-08-25 Nisshin Steel Co Ltd 固体酸化物型燃料電池セパレータ用フェライト系ステンレス鋼
CN101195894A (zh) * 2007-12-19 2008-06-11 吉林化工学院 含稀土元素钇的用于固体氧化物燃料电池的铁素体不锈钢
WO2014010680A1 (ja) * 2012-07-13 2014-01-16 新日鐵住金ステンレス株式会社 フェライト系ステンレス鋼板および酸化皮膜の導電性と密着性に優れたフェライト系ステンレス鋼板の製造方法
JP6696992B2 (ja) 2015-02-10 2020-05-20 シーリーズ インテレクチュアル プロパティ カンパニー リミティド 低温固体酸化物燃料電池のための相互接続
JP2017125248A (ja) * 2016-01-15 2017-07-20 新日鐵住金ステンレス株式会社 耐熱性に優れた固体酸化物型燃料電池用フェライト系ステンレス鋼およびその製造方法
WO2018008658A1 (ja) * 2016-07-04 2018-01-11 新日鐵住金ステンレス株式会社 フェライト系ステンレス鋼と、その鋼板及びそれらの製造方法
JP2020053388A (ja) 2018-09-21 2020-04-02 パナソニックIpマネジメント株式会社 燃料電池システムおよびその運転方法、電気化学システム
CN111876661A (zh) * 2020-06-17 2020-11-03 宁波宝新不锈钢有限公司 一种燃料电池用高耐蚀铁素体不锈钢及其制造方法

Also Published As

Publication number Publication date
KR20230060521A (ko) 2023-05-04
EP4279623A1 (en) 2023-11-22
CN116490631A (zh) 2023-07-25
JPWO2022153731A1 (ja) 2022-07-21

Similar Documents

Publication Publication Date Title
KR100858572B1 (ko) 연료전지용 금속재료, 그것을 사용한 연료전지 및, 그재료의 제조방법
JP4761586B1 (ja) 高強度チタン銅板及びその製造方法
WO2005090626A1 (ja) 通電部材用金属材料、それを用いた燃料電池用セパレータおよびその燃料電池
JP2007538157A (ja) 耐熱鋼
JP2008285731A (ja) 表面電気伝導性優れたステンレス鋼板およびその製造方法
JP2003223904A (ja) 燃料電池用セパレータとその製造方法および固体高分子型燃料電池
JP2004149920A (ja) 固体高分子型燃料電池セパレータ用ステンレス鋼とその製造方法およびそのステンレス鋼を用いた固体高分子型燃料電池
JP4967398B2 (ja) 固体高分子形燃料電池およびそのセパレータに好適なステンレス鋼
CN114574759A (zh) 用于燃料电池双极板的铁素体不锈钢、表面粗糙度的调控方法、形成钝化膜的方法和用途
JP3922154B2 (ja) 固体高分子型燃料電池セパレータ用ステンレス鋼とその製造方法および固体高分子型燃料電池
WO2005035816A1 (ja) 固体高分子型燃料電池セパレータ用ステンレス鋼およびそのステンレス鋼を用いた固体高分子型燃料電池
JP4967397B2 (ja) 固体高分子形燃料電池およびそのセパレータに好適なステンレス鋼
WO2022153731A1 (ja) 固体酸化物形燃料電池用ステンレス鋼材及びその製造方法、並びに固体酸化物形燃料電池用部材及び固体酸化物形燃料電池
JP7563919B2 (ja) フェライト系ステンレス鋼及びその製造方法
WO2016052591A1 (ja) 固体酸化物形燃料電池用鋼及びその製造方法
WO2022153752A1 (ja) 固体酸化物形燃料電池用ステンレス鋼材及びその製造方法、並びに固体酸化物形燃料電池用部材及び固体酸化物形燃料電池
JP2004269969A (ja) 固体高分子型燃料電池用セパレータおよびその製造方法
JP7450423B2 (ja) フェライト系ステンレス鋼板およびその製造方法ならびに基板
JP2020506499A (ja) 接触抵抗が優秀な高分子燃料電池分離板用ステンレス鋼およびその製造方法
JP2022136912A (ja) 固体酸化物形燃料電池用ステンレス鋼材、酸化皮膜の形成方法、固体酸化物形燃料電池用部材及び固体酸化物形燃料電池
JP7133917B2 (ja) 表面性状と耐硫化腐食性に優れたAl含有フェライト系ステンレス鋼板およびその製造方法
JP5703560B2 (ja) 導電性に優れた燃料電池セパレータ用ステンレス鋼板
JP2022136911A (ja) 固体酸化物形燃料電池用ステンレス鋼材、酸化皮膜の形成方法、固体酸化物形燃料電池用部材及び固体酸化物形燃料電池
JP4259225B2 (ja) 燃料電池用金属材料および固体酸化物型燃料電池
JP7151892B2 (ja) 固体酸化物型燃料電池用フェライト系ステンレス鋼

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21919620

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022575137

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237010939

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180071487.0

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021919620

Country of ref document: EP

Effective date: 20230814