WO2005035816A1 - 固体高分子型燃料電池セパレータ用ステンレス鋼およびそのステンレス鋼を用いた固体高分子型燃料電池 - Google Patents

固体高分子型燃料電池セパレータ用ステンレス鋼およびそのステンレス鋼を用いた固体高分子型燃料電池 Download PDF

Info

Publication number
WO2005035816A1
WO2005035816A1 PCT/JP2004/008401 JP2004008401W WO2005035816A1 WO 2005035816 A1 WO2005035816 A1 WO 2005035816A1 JP 2004008401 W JP2004008401 W JP 2004008401W WO 2005035816 A1 WO2005035816 A1 WO 2005035816A1
Authority
WO
WIPO (PCT)
Prior art keywords
stainless steel
mass
less
fuel cell
separator
Prior art date
Application number
PCT/JP2004/008401
Other languages
English (en)
French (fr)
Inventor
Shin Ishikawa
Kunio Fukuda
Yasushi Kato
Osamu Furukimi
Kenji Takao
Original Assignee
Jfe Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2003348772A external-priority patent/JP4496750B2/ja
Application filed by Jfe Steel Corporation filed Critical Jfe Steel Corporation
Priority to CA002503030A priority Critical patent/CA2503030C/en
Priority to US10/533,609 priority patent/US8900379B2/en
Publication of WO2005035816A1 publication Critical patent/WO2005035816A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • H01M8/0208Alloys
    • H01M8/021Alloys based on iron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0228Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • H01M8/0254Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form corrugated or undulated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1007Fuel cells with solid electrolytes with both reactants being gaseous or vaporised
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a stainless steel for a solid polymer fuel cell separator having excellent durability and low contact resistance, and a solid polymer using the stainless steel separator. Fuel cell type.
  • polymer electrolyte fuel cells are examples of polymer electrolyte fuel cells.
  • the power generation temperature is about 80 ° C, and power can be generated at a much lower temperature.
  • the weight and size of the fuel cell body can be reduced.
  • polymer electrolyte fuel cells are the hottest fuel cells of today to be used as power sources for onboard electric vehicles, stationary generators for home use, and small portable generators.
  • Polymer electrolyte fuel cell which out taking electricity from between H 2 0 2 through the polymer film, as shown in FIG. 1, the gas diffusion layer 2, 3 (e.g. a car Bonpepa etc.) Contact
  • the membrane-electrode assembly 1 is sandwiched between the separators 4 and 5, and this is defined as a single component (so-called single cell).
  • An electromotive force is generated between the generator 4 and the separator 5.
  • the membrane-electrode assembly 1 is called MEA (that is, Membrane-Electrode Assembly), in which a polymer film and an electrode material such as carbon black carrying a platinum-based catalyst are integrated on the front and back surfaces of the film.
  • the thickness is several tens; ni to several hundreds.
  • the gas diffusion layers 2 and 3 are often integrated with the membrane-electrode assembly 1.
  • the separators 4 and 5 are required to have characteristics such as corrosion resistance that can withstand long-term power generation.
  • the contact resistance between the separators 4, 5 and the gas diffusion layers 2, 3 be as low as possible. The reason is that when the contact resistance between the separators 4 and 5 and the gas diffusion layers 2 and 3 increases, the power generation efficiency of the polymer electrolyte fuel cell decreases. In other words, the smaller the contact resistance, the better the electrical conductivity.
  • Japanese Patent Application Laid-Open No. 8-180883 discloses a technique using a metal such as stainless steel, which easily forms a passive film, as a separator.
  • a metal such as stainless steel
  • the formation of a passive film leads to an increase in contact resistance, leading to a decrease in power generation efficiency.
  • these metal materials have problems to be improved, such as higher contact resistance and lower corrosion resistance than carbon materials such as graphite.
  • JP-A-200-239806 and JP-A-2000-294255 disclose that Cu, Ni are positively added, impurity elements such as S, p, and N are reduced, and C + N 0. 03 mass. / 0 , 10.5% by mass ⁇ Cr + 3XMo ⁇ 43% by mass discloses a frit-based stainless steel for separators.
  • Japanese Patent Application Laid-Open Nos. 2000-265248 and 2000-294256 disclose that Cu and Ni are limited to 0.2% by mass or less to suppress metal ion elution, and that impurities such as S, P, and N element to reduce, and C + N ⁇ 0.
  • 03 wt% 10.5 wt% ⁇ ( ⁇ + 3 X Mo ⁇ 43 separator satisfies mass% ferritic stainless steel is disclosed.
  • the components of stainless steel are specified in the range of determination, and the passive state film is strengthened to improve the surface. It is based on the idea of reducing the catalytic performance of the electrode-carrying catalyst due to eluting metal ions even when used as is without any treatment, and to suppress the increase in contact resistance with the electrode due to corrosion products. Therefore, it does not attempt to lower the contact resistance of the stainless steel itself. Also, it does not provide the durability (that is, the reduction in output voltage) that can endure tens of thousands of hours of power generation. Also, Japanese Patent Application Laid-Open No. 10-228914 discloses a technique in which the surface of a metal separator such as SUS304 is plated with metal to reduce contact resistance and secure high output. However, it is difficult to prevent the occurrence of pinholes with a thin metallization, and conversely, a cost problem remains with a thick metallization.
  • Japanese Patent Application Laid-Open No. 2000-277133 discloses a method of dispersing carbon powder in a ferritic stainless steel base material to obtain a separator having improved electric conductivity.
  • the cost of the surface treatment of the separator is still high, so the cost problem still remains.
  • the surface-treated separator is significantly reduced in corrosion resistance when scratches or the like occur during assembly.
  • Japanese Patent Application Laid-Open No. 2003-223904 is an invention developed by the present applicant, and also studies the effect of surface roughness of stainless steel surface on contact resistance. It discloses that the contact resistance is reduced by setting the surface roughness to Ra: 0.01 / Zm to l / zm and Ry: 0.01 to 20 / m. However, the contact resistance was insufficient from the viewpoint of increasing the output of the battery. Disclosure of the invention
  • the present invention has been made in consideration of the above-mentioned problems (1) of the prior art, and has been developed for polymer electrolyte fuel cell separators having good corrosion resistance and low contact resistance (that is, excellent electrical conductivity).
  • An object of the present invention is to provide stainless steel and a polymer electrolyte fuel cell using the same.
  • the present invention regulates not only the components of the stainless steel as the material but also the components of the passive film present on the surface within a predetermined range, so that the contact resistance is small even without surface treatment, and the power generation efficiency is reduced.
  • An object of the present invention is to provide a stainless steel for a polymer electrolyte fuel cell separator which is excellent and has high corrosion resistance of the stainless steel itself, and a polymer electrolyte fuel cell using the same.
  • C is 0.03% by mass or less
  • is 0.03% by mass. /.
  • 16 to 45% by mass of Cr and 0.1 to 5.0% by mass of Mo. / 0 contains, and the total content of C and N content satisfies 0.03 mass% or less, a stainless steel having the balance consisting of Fe and unavoidable impurities, and the surface of the stainless steel Atomic ratio of Al, Cr and Fe contained in the passivation film of Cr / Fe is 1 or more and the atomic ratio Al / (Cr + Fe) force is less than 0.10.
  • Stainless steel for molecular fuel cell separator is 0.03% by mass or less
  • is 0.03% by mass. /.
  • 16 to 45% by mass of Cr and 0.1 to 5.0% by mass of Mo. / 0 contains, and the total content of C and N content satisfies 0.03 mass% or less, a stainless steel having the balance consisting of Fe and unavoidable impurities, and the surface of the stainless steel Atom
  • C is 0.03% by mass or less
  • N is 0.03% by mass or less
  • Cr is 20 to 45% by mass.
  • Mo is contained in an amount of 0.1 to 5.0% by mass
  • the total of the C content and the N content satisfies 0.03% by mass or less
  • the balance is Fe and unavoidable impurities.
  • Stainless steel having a composition, and a table of the stainless steel Solid polymer type fuel in which the atomic ratio Cr / Fe of Al, Cr and Fe contained in the passive film on the surface is 1 or more and the atomic ratio Al / (Cr + Fe) force is less than 0.05 Stainless steel for fuel cell separator.
  • the stainless steel for a solid polymer fuel cell separator according to the above invention, wherein the stainless steel contains, in addition to the composition, at least one selected from the following groups (1) to (4): It is.
  • the present invention provides the above-mentioned invention, wherein, among the oxygen contained in the passive film, oxygen present in a metal oxide state: O (M) and oxygen present in a metal hydroxide state: O (H) is a stainless steel for polymer electrolyte fuel cell separators in which the atomic ratio of O (M) / O (H) is 0.9 or less.
  • the present invention is the stainless steel for a polymer electrolyte fuel cell separator according to the above invention, wherein the Cr force is 20 to 45% by mass.
  • FIG. 1 is a perspective view schematically showing an example of a polymer electrolyte fuel cell.
  • Figure 2 A cross-sectional view schematically showing a sample used for measuring contact resistance.
  • the present inventors have conducted intensive studies on stainless steel separators for exhibiting high corrosion resistance while keeping the contact resistance low, from the viewpoint of the components of the stainless steel and the components of the passive film. As a result, they found that contact resistance was significantly reduced by adjusting the composition of the passive film formed on the surface of high-purity ferritic stainless steel containing Mo.
  • Masuko and other materials are annealed (950 ° C, 2 minutes) in an atmosphere of 75% by volume H 2 + 25% by volume N 2 with a dew point of 60 ° C, so-called Bright Annealing, B A). Further, nitric acid 10 wt%, hydrochloric acid 50 wt%, with an acidic aqueous solution containing 1 mass 0/0 picric acid, various temperatures for these materials, after performing an etching process in time, pure water cleaning, It was dried with cold air and used for measurement of contact resistance. At the same time, with a portion of the sample wet grinding, generally used mixed acid solution pickling stainless steel (8 wt% nitric acid + 2.5 wt. / 0 hydrofluoric acid, 55 ° C) 300 seconds in a After immersion and pickling, they were washed with pure water, dried with cold air, and subjected to contact resistance measurement.
  • mixed acid solution pickling stainless steel 8 wt% nitric acid + 2.5 wt.
  • the contact resistance values were calculated based on the measured values obtained six times while exchanging one set of two test pieces 8, and the average value is shown in Table 1.
  • the measurement was performed, and the contact resistance value was calculated. The results are shown in Table 1. If the contact resistance value is 10 m ⁇ ⁇ cm 2 or less, there is almost no adverse effect on the characteristics of the fuel cell.
  • the passivation film after the etching and pickling treatments is It was measured by spectroscopy (photoelectron spectroscopy), and the spectral intensity of Fe, Cr, and A1 in the passive film (that is, in the oxidized state) was calculated by the peak separation method.
  • the atomic ratios Cr / Fe and A1Z (Cr + Fe) were calculated from the vector intensity and the relative sensitivity of each element (ie, the spectral intensity and the conversion factor of the number of atoms). The results are shown in Table 1.
  • O (oxygen) contained in the passive film the oxygen present in the form of a metal oxide: O (M) and the oxygen present in the form of a metal hydroxide: O (H) was separated into peaks, and the atomic ratio O (M) / O (H) was calculated from the spectrum intensity. The results are shown in Table 1.
  • the photoelectron spectrometer used in this experiment was AXIS-HS manufactured by KRAT0S, and measurement was performed under the conditions of an acceleration voltage of 15 kV and a current density of 5 mA using the A1-Ka ray as an excitation source.
  • software attached to the apparatus was used for the peak separation of each element.
  • the contact resistance value is reduced by etching the stainless steel sheet.
  • the contact resistance value of the stainless steel sheet is 10 m ⁇ ⁇ cm 2 or less.
  • the contact resistance is reduced by the pickling treatment generally used for pickling stainless steel, the Cr / Fe ratio is less than 1, and the contact angle resistance is not sufficiently reduced.
  • the atomic ratio (O (M) ZOO!) Is 0.9 or less, the contact resistance is further reduced to 8 ⁇ -cm 2 or less.
  • stainless steel with BA finish contains A1 in the passive film
  • the contact resistance value also decreases.
  • the stainless steel with BA finish The contact resistance of the steel sheet is less than 10 m ⁇ ⁇ cm 2 .
  • the contact resistance value is 10 m ⁇ ⁇ cm 2 or less, there is almost no adverse effect on the characteristics of the fuel cell.
  • C and N both react with Cr in stainless steel and precipitate at the grain boundaries as Cr carbonitrides, resulting in lower corrosion resistance. Therefore, C, N Are preferably as small as possible. If C: 0.03% by mass or less and N: 0.03% by mass or less, the corrosion resistance is not significantly reduced. When the sum of the C content and the N content (hereinafter, referred to as C + N) exceeds 0.03% by mass, cracks generated when the separator is pressed are significantly increased. Therefore, C + N is set to 0.03% by mass or less. Preferably, C: 0.015% by mass or less, N: 0.015% by mass. / 0 or less, C + N: 0.02% by mass or less.
  • Cr is an element necessary for ensuring the corrosion resistance of stainless steel sheets. If the Cr content is less than 16% by mass, it cannot be used for a long time as a separator. If the Cr content is less than 16% by mass, it is difficult to adjust the atomic ratio Cr / Fe of the passivation film to 1 or more to make the contact resistance 10 m ⁇ ⁇ cm 2 or less. On the other hand, if the Cr content exceeds 45% by mass, toughness is reduced due to precipitation of the ⁇ phase. Therefore, the Cr content was set to 16 to 45% by mass. When long-term durability on the order of tens of thousands of hours is required, a higher Cr content is more advantageous from the viewpoint of corrosion resistance. Therefore, the content is preferably 20 to 45% by mass. Further, the content is preferably 22 to 35% by mass.
  • Mo is an element effective in improving the crevice corrosion resistance of stainless steel sheets. In order to exhibit this effect, it is necessary to contain 0.1% by mass or more. On the other hand, if it is added in excess of 5.0% by mass, the stainless steel becomes extremely brittle and production becomes difficult. Therefore, the Mo content was set to 0.1 to 5.0% by mass. Preferably 0.5 to 3.0 wt%. In the stainless steel for separator according to the present invention, it is desirable that the content of the following components be defined in addition to the above-described red iron.
  • the content is preferably 0.01% by mass or more. However, if it is contained excessively, the stainless steel sheet becomes harder and ductility is reduced. Therefore, the upper limit of the Si content is preferably set to 1.0% by mass. More preferably, it is 0.01 to 0.6% by mass.
  • Mn combines with S and has the effect of reducing S dissolved in stainless steel, it is an effective element for suppressing grain boundary segregation of S and preventing cracking during hot rolling. .
  • the content is preferably 0.01% by mass or more. If the Mn content is 1.0% by mass or less, this effect is sufficiently exerted. The preferred properly is 0.001 to 0.8 mass 0/0.
  • A1 is an element effective for deoxidation in the steelmaking process, and its effect requires 0.001% by mass or more. On the other hand, if the content exceeds 0.2% by mass, the effect is saturated and the cost is increased. Therefore, the A1 content is 0.001 to 0.2 mass. / 0 is preferable.
  • Ti and Nb fix C and N in stainless steel as carbonitride, It is an element effective for improving the loess formability.
  • the C content and N content satisfy the above ranges and Ti or Nb is added, the effect will be improved if the Ti content is 0.01% by mass or more or the Nb content is 0.01% by mass or more. Be demonstrated.
  • Ti and Nb are added, the effect is exhibited if the total content of Ti and Nb is 0.01% by mass or more.
  • Ti or Nb is added, the Ti content is 0.5 mass. / 0 or Nb: If the content exceeds 0.5% by mass, the effect is saturated.
  • Ti and Nb are added, the effect is saturated when the total of Ti and Nb exceeds 0.5% by mass.
  • Ti or Nb when Ti or Nb is added, Ti is contained at 0.01 to 0.5% by mass or Nb is contained at 0.01 to 0.5% by mass, and when Ti and Nb are added, Ti and Nb are added. It is preferable that the total content be 0.01 to 0.5% by mass.
  • each of Ca, Mg, REM (that is, rare earth element) and B is 0.1% by mass or less.
  • Ni 1% by mass or less may be added for the purpose of improving the toughness of the stainless steel sheet.
  • Ag 1 mass to reduce contact resistance. / 0 or less, Cu: 5 mass% / 0 or less, and V: 0.5 mass% or less for the purpose of finely dispersing Ag.
  • the steel sheet of the present invention is a ferrite-based stainless steel sheet having a ferrite structure from the above-described component range of the present invention.
  • the atomic ratio Cr / Fe needs to be 1 or more.
  • O (oxygen) contained in the passive film can also reduce contact resistance. It is an important factor.
  • the atomic ratio O between the oxygen present in the metal oxide state (ie, O (M)) and the oxygen present in the metal hydroxide state (ie, O (H)) It is effective to lower (M) ZO (H).
  • a contact resistance value of 8 ⁇ ⁇ cm 2 or less can be obtained.
  • the production conditions of the steel of the present invention are not particularly limited, and a general production method of ferritic stainless steel can be used.
  • the method for producing the stainless steel for a separator of the present invention all known methods can be applied, and there is no particular limitation. For example, it is preferable to melt in a converter and perform secondary refining by strong agitation * vacuum oxygen decarburization treatment (S SV OD).
  • the cycling method is preferably a continuous molding method in terms of productivity and quality.
  • the slab obtained by the forging is heated to, for example, 100 to 125 ° C., and is hot rolled to have a desired thickness by hot rolling.
  • This hot-rolled sheet is hot-rolled at 800 to 1150 ° C, pickled, cold-rolled to a predetermined product thickness, or further annealed at 800 to 1150 ° C.
  • the product is preferably further subjected to an acid washing treatment.
  • two or more times of cold rolling including intermediate annealing may be performed as necessary depending on production reasons.
  • the total rolling reduction in the cold rolling step comprising one or more cold rollings is 60% or more, preferably 70% or more.
  • light temper rolling skin pass rolling, skin pass rolling, etc.
  • the stainless steel sheet obtained in this manner be used as a separator by forming a gas flow path by press working or the like, and then further adjusting the composition of the passive film.
  • nitric acid + hydrofluoric acid aqueous solution good results were obtained with an acid solution in which the concentration of hydrofluoric acid was 1.5 times or more that of nitric acid.
  • the preferred temperature of the acid solution in the case of the aqueous solution of nitric acid + hydrochloric acid and the aqueous solution of nitric acid + hydrofluoric acid is 45 or more. The higher the temperature of the acid solution, the shorter the treatment time.
  • the treatment liquid used in the treatment of the present invention is not limited to these, and various kinds of acids or acids may be used in the case of treatment by immersion according to the composition and surface finish of the material stainless steel. , Composition, acid solution temperature and treatment time. When processing by electrolysis, the composition of various electrolytes and Solution conditions, acid solution temperature, treatment time, etc. can be selected.
  • Such adjustment of the composition of the passive film may be performed before processing the stainless steel sheet into the separator, or may be performed after processing the stainless steel sheet into the separator.
  • the passivation film may be damaged by processing. Therefore, it is preferable to perform a composition adjustment process after processing into a separator.
  • a stainless steel having the components shown in Table 2 was melted by a converter and strong stirring vacuum-oxygen decarburization (abbreviated as SS-VOD). Slab. After heating the slab to 1250 ° C, it was hot-rolled into a hot-rolled stainless steel sheet with a thickness of 4 mm, and further annealed (850-1100 ° C) and pickled. Next, the thickness is reduced to 0.3IM1 by cold rolling, and further annealed (
  • temper rolling was performed to produce a so-called 2B-finished cold-rolled stainless steel sheet.
  • the center of the obtained cold rolled stainless steel sheet in the sheet width direction and the center in the longitudinal direction Four 200ran X 200mm test pieces were cut out from the part.
  • Four test pieces cut out from cold-rolled stainless steel sheets of steel numbers 1 to 9 were pressed to obtain separators having a predetermined shape. After that, for each steel number, the composition ratio of the passive film was adjusted on some of the separators to adjust the atomic ratio Cr / Fe.
  • A 10% by mass of nitric acid and 50% by weight of hydrochloric acid.
  • the cathode side flow of air, to the anode side is supplied after humidified by a bubbler holding ultrapure water containing (purity 99.9999 vol 0/0) to 80 ⁇ 1 ° C, Denkomo density 0.4 A cm 2 (Condition 1) and the output voltage of 0.7AZcm 2 (Condition 2) were measured.
  • a stainless steel plate (equivalent to SUS304) is caloried into the same shape as steel numbers 1 to 9 above, and then the surface is gold-plated (thickness: about ⁇ . ⁇ ⁇ ), and is 3 mm wide 2 mm on one side of the graph eye bets plate, with a separator arranged 17 rows with grooves 2 mm spacing height lmm, current density 0. 4 a / cm 2 Oyopi 0.7 a // The output voltage in cm 2 was measured. The method of measuring the output voltage is the same as that for steel numbers 1 to 9 above.
  • a stainless steel satisfying the composition range of the present invention (i.e., steel numbers 3 to 6 and 9) was treated with the liquid A or B to adjust the composition of the passive film.
  • Sepa with atomic ratio Cr / Fe of 1 or more A single cell using a radiator has a low contact resistance, and can obtain the same output voltage as the gold-plated separator ⁇ ⁇ ⁇ ⁇ ⁇ the graphite plate separator in both the initial output voltage and the output voltage after 2,000 hours. It was at a level that could withstand practical use.
  • the stainless steel satisfies the component range of the present invention (that is, steel Nos. 3 to 6 and 9), it is generally used in the case where the passivation film composition adjustment treatment is not performed or when pickling stainless steel.
  • pickling the atomic ratio CrZFe of the passivation film was low, and the initial output voltage was lower than that of the gold-plated separator / graphite plate separator.
  • the hot-rolled stainless steel sheet used in Example 1 was cold-rolled to a thickness of 0.2 mm, and further annealed (900 to 1000 ° C for 2 minutes) in an ammonia decomposition gas having a dew point of 60 ° C to obtain a so-called BA.
  • the finished cold rolled stainless steel sheet was used. Annealing As a result, a 2 to 10 nm BA film is formed.
  • a test piece was taken from the obtained cold-rolled stainless steel sheet in the same manner as in Example 1 to obtain a separator having a predetermined shape.
  • the Cr / Fe ratio, O (M) / O (H) ratio, and Al / (Cr + Fe) ratio of the passive film of this separator were calculated. Further, the contact resistance was measured.
  • the separator shape and forming method, the passivation film composition adjustment treatment, pickling treatment, the method for measuring the content of each element, and the method for measuring contact resistance are the same as in Example 1, and therefore description thereof is omitted.
  • the stainless steel satisfying the component range of the present invention (that is, steel numbers 3 to 6 and 9) is treated with the liquid A or B, A single cell using a separator with a Cr / Fe ratio of 1 or more and an Al / (Cr + Fe) ratio of 0.10 or less by adjusting the composition of the passive film has a low contact resistance and an initial output voltage.
  • the output voltage after 2,000 hours had passed was equivalent to that of the gold-plated separator / graphite plate separator, and was at a level sufficient for practical use.
  • the initial output voltage after about 2,000 hours has passed regardless of whether or not the passivation film composition was adjusted. The output voltage was lower than that of the gold-plated separator / graphite plate separator.
  • the passivation film composition adjustment treatment was not performed, the acid generally used for pickling stainless steel was used.
  • the atomic ratio A1Z (Cr + Fe) of the passive film is high and the contact resistance is high.
  • the output voltage after the initial 200 hours is the value of the gold-plated separator. It was lower than that of the separator on the iron plate.
  • a stainless steel for a polymer electrolyte fuel cell separator having a low contact resistance value and excellent corrosion resistance can be obtained. Therefore, it has become possible to provide an inexpensive stainless steel separator to polymer electrolyte fuel cells, which used to use expensive graphite separators due to durability issues.
  • the present invention is not limited to a polymer electrolyte fuel cell separator, but can be widely used as an electrical component made of stainless steel having electrical conductivity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Fuel Cell (AREA)

Abstract

耐食性が良好であると同時に、接触抵抗が小さい(すなわち電気伝導性に優れる)固体高分子型燃料電池セパレータ用ステンレス鋼、およびそれを用いた固体高分子型燃料電池を提供する。具体的には、Cを0.03質量%以下、Nを0.03質量%以下、Crを16 ~45質量%、Moを 0.1~5.0 質量%含有し、かつC含有量とN含有量の合計が0.03質量%以下を満足し、残部がFeおよび不可避的不純物からなる組成を有するステンレス鋼であって、かつステンレス鋼の表面の不働態皮膜に含有されるCr含有量とFe含有量から算出されるCr/Fe比を原子数比で1以上とする。

Description

明細書
固体高分子型燃料電池セパレータ用ステンレス鋼およびそのステンレス 鋼を用いた固体高分子型燃料電池 技術分野
本発明は、 耐久性に優れるとともに接触抵抗値(contact resistance) の小さい固体高分子型燃料電池(solid polymer fuel cell)セパレータ(s eparator)用ステンレス鋼ならびにそのステンレス鋼製セパレータを用い た固体高分子型燃料電池に関するものである。
背景技術
近年、 地球環境保全の観点から、 発電効率に優れ、 C02 を排出しない 燃料電池の開発が進められている。 この燃料電池は H2 と 02 を反応させ て電気を発生させるものであり、 使用される電解質の種類により、 リ ン 酸型燃料電池(phosphoric acid type fuel cell), 溶融炭酸塩型燃料電 ¾ (molten sodium type fuel cell), 固体電解質型燃料電池(solid ele ctrolyte type fuel cell), アルカ リ型燃料電池(alkaline type fuel cell) , 固体高分子型燃料電池(solid polymer fuel cell)等が開発され ている。
これらの燃料電池のうち、 固体高分子型燃料電池は、 他の燃料電池に 比べて、
(a) 発電温度が 80°C程度であり、 格段に低い温度で発電できる、 (b) 燃料電池本体の軽量化, 小型化が可能である、
(c) 短時間で立上げできる、
等の利点を有している。 このため、 固体高分子型燃料電池は、 電気自動 車の搭載用電源, 家庭用の定置型発電機, 携帯用の小型発電機として利 用するべく、 今日もっとも注目されている燃料電池である。
固体高分子型燃料電池は、 高分子膜を介して H2 と 02から電気を取り 出すものであり、 図 1に示すように、 ガス拡散層 2, 3 (たとえばカー ボンぺーパ等) およぴセパレータ 4, 5によって膜—電極接合体 1を挟 み込み、 これを単一の構成要素 (いわゆる単セル) とし、 セノ、。レータ 4 とセパレータ 5との間に起電力を生じさせるものである。
なお膜—電極接合体 1は、 M E A (すなわち Membrane- Electrode Ass embly ) と呼ばれており、 高分子膜とその膜の表裏面に白金系触媒を担 持したカーボンブラック等の電極材料を一体化したものであり、 厚さは 数 10 ; ni〜数 100 である。 ガス拡散層 2, 3は、 膜ー鼋極接合体 1 と一体化される場合も多い。
固体高分子型燃料電池を上記した用途に適用する場合は、 このような 単セルを直列に数十〜数百個つないで燃料電池スタックを構威して使用 している。
セパレータ 4, 5には、
(A) 単セル間を隔てる隔壁
としての役割に加え、
(B) 発生した電子を運ぶ導電体、 (0 02 (すなわち空気) と H2が流れる空気流路, 水泰流路、 (D) 生成した水やガスを排出する排出路
としての機能が求められる。 さらに固体高分子型燃料電池を実用に供す るためには、 耐久性や電気伝導性に優れたセパレータ 4, 5を使用する 必要がある。
耐久性 (すなわち耐出力電圧低下) に関しては、 電気自動車の搭載用 電源として使用される場合は、 約 5000時間と想定されている。 あるいは 家庭用の定置型発電機等として使用される場合は、 約 40000時間と想定 されている。 したがってセパレータ 4, 5には、 長時間の発電に耐えら れる耐食性等の特性が要求される。
また,電気伝導性に関しては、 セパレータ 4, 5とガス拡散層 2, 3と の接触抵抗は極力低いことが望まれる。 その理由は、 セパレータ 4 , 5 とガス拡散層 2, 3との接触抵抗が増大すると、 固体高分子型燃料電池 の発電効率が低下するからである。 つまり、 接触抵抗が小さいほど、 電 気伝導性が優れている。
現在までに、 セパレータ 4, 5としてグラフアイ ト(graphite)を用い た固体高分子型燃料電池が実用化されている。 このグラフアイ トからな るセパレータ 4, 5は、 接触抵抗が比較的低く、 しかも腐食しないとい う利点がある。 しかしながら衝撃によって破損しやすい。 しかも空気流 路 6, 水素流路 7を形成するための加工コストが高いという欠点がある。 グラフアイ トからなるセパレータ 4, 5が有するこれらの欠点は、 固体 高分子型燃料電池の普及を妨げる原因になっている。 そこでセパレータ 4, 5の素材として、 グラフアイ トに替えて金属素 材を適用する試みがなされている。 特に、 耐久性向上の観点から、 ステ ンレス鋼を素材としたセパレータ 4, 5の実用化に向けて、 種々の検討 がなされている。
たとえば特開平 8- 180883号公報には、 不働態皮膜を形成しやすいステ ンレス鋼等の金属をセパレータとして用いる技術が開示されている。 し かし不働態皮膜の形成は、 接触抵抗の上昇を招くことになり、 発電効率 の低下につながる。 このため、 これらの金属素材は、 グラフアイ ト等の カーボン素材(carbon material)と比べて接触抵抗が大きく、 しかも耐食 性が劣る等の改善すべき問題点が指摘されていた。
さらに、 ステンレス鋼に表面処理を施さず、 そのままセパレータに適 用しょうとする試みがなされている。 たとえば特開 2O00- 239806 号公報 ゃ特開 2000- 294255 号公報には、 Cu, Niを積極的に添加した上で、 S, p, N等の不純物元素を低減し、 かつ C + N 0. 03質量。 /0, 10. 5質量% ≤Cr+ 3 X Mo≤43質量%を満足するセパレータ用フ ライ ト系ステンレ ス鋼が開示されている。 特開 2000 - 265248 号公報や待開 2000 - 294256 号 公報には、 Cu, Niを 0. 2質量%以下に制限して金属イオンの溶出を抑え た上で、 S, P , N等の不純物元素を低減し、 かつ C + N≤0. 03 質量% 10. 5質量%≤(^+ 3 X Mo≤43質量%を満足するセパレータ用フェライ ト 系ステンレス鋼が開示されている。
これらの発明は、 いずれもステンレス鋼の成分を折定の範囲に規定し て、 不働態皮膜(passive state film)を強固にすることによって、 表面 処理を施さず、 そのまま使用しても溶出金属イオンによる電極担持触媒 の触媒能の劣化を低減し、 腐食生成物による電極との接触抵抗の増加を 抑制しょうとする思想に基づいている。 したがって、 ステンレス鋼自体 の接触抵抗を低下させようとするものではない。 また数万時間の発電に 耐える耐久性 (すなわち耐出力電圧低下) を確保できるものでもない。 また特開平 10- 228914 号公報には、 SUS304等の金属セパ レータの表面 に金めつきを施すことにより、 接触抵抗を低減し、 高出力を確保する技 術が開示されている。 しかし、 薄い金めつきではピンホーノレ(pinhole)の 発生防止が困難であり、 逆に厚い金めつきではコス トの問題が残る。
また特開 2000- 277133 号公報には、 フェライ ト系ステンレス(ferri tic stainless steel)鋼基材にカーボン粉末を分散させて、 電気伝導性を改 善したセパレータを得る方法が開示されている。 しかしながらカーボン 粉末を用いた場合も、 セパレータの表面処理には相応のコス トがかかる ことから、 依然としてコス トの問題が残っている。 また、 表面処理を施 したセパレータは、 組立て時にキズ等が生じた場合に、 耐食性が著しく 低下するという問題点も指摘されている。
一方、 特開 2003- 223904号は、 本出願人が、 開発した発明で、 接触抵 抗に及ぼすステンレス鋼表面の表面粗さ(surface roughness)の影響につ いても検討しており、 ステンレス鋼の表面粗さを Ra: 0. 01 /Z m〜l /z m、 R y: 0. 01〜20 / mとすることにより接触抵抗が低減することを開示してい る。 しかし、 電池の高出力化という観点から、 接触抵抗値が不十分であ つた。 発明の開示
本発明は、 従来の技術が抱えている上記のような問題 Λ¾に鑑み、 耐食 性が良好であると同時に、 接触抵抗が小さい (すなわち電気伝導性に優 れる) 固体高分子型燃料電池セパレータ用ステンレス鋼、 およびそれを 用いた固体高分子型燃料電池を提供することを目的とする。
すなわち本発明は、 素材となるステンレス鋼の成分のみならず表面に 存在する不働態皮膜の成分を所定の範囲に規定することにより、 表面処 理を施さなくても接触抵抗が小さく、 発電効率が優れ、 かつステンレス 鋼自体の耐食性が高い固体高分子型燃料電池セパレータ用ステンレス鋼、 およびそれを用いた固体高分子型燃料電池を提供することを目的とする。 以上の目的を達成するための、 本発明の特徴は下記の通りである。
本発明は、 Cを 0. 03質量%以下、 Νを 0. 03質量。/。以下、 Crを 16〜45 質量%、 Moを 0. 1〜5. 0 質量。 /0含有し、 かつ C含有量と N含有量の合計 が 0. 03質量%以下を満足し、 残部が Feおよび不可避的不純物からなる 組成を有するステンレス鋼であって、 かつ前記ステンレス鋼の表面の不 働態皮膜に含有される Al、 Crおよび Feの原子数比(atomic ratio) Cr/F eが 1以上で、 かつ原子数比 Al/ (Cr + Fe) 力 0. 10未満である固体高 分子型燃料電池セパレータ用ステンレス鋼である。
また、 本発明は、 Cを 0. 03質量%以下、 Nを 0. 03質量%以下、 Crを 20〜45質量。 /0、 Moを 0. 1〜5. 0 質量%含有し、 かつ C含有量と N含有量 の合計が 0. 03質量%以下を満足し、 残部が Feおよび不可避的不純物か らなる糸且成を有するステンレス鋼であって、 かつ前記ステンレス鋼の表 面の不働態皮膜に含有される Al、 Crおよび Feの原子数比 Cr/Feが 1以 上で、 かつ原子数比 Al/ (Cr + Fe) 力 0. 05未満である固体高分子型燃 料電池セパレータ用ステンレス鋼である。
また、 本発明は、 上記発明において、 前記ステンレス鋼が、 前記組成 に加えて下記の (1)〜(4) の群から選ばれる 1種以上を含有する固体高 分子型燃料電池セパレータ用ステンレス鋼である。
(1) Si: 1. 0質量%以下
(2) Mn: 1. 0質量%以下
(3) A1: 0. 001〜0. 2 質量。/。以下
(4) Tiまたは Nbを 0. 01〜0. 5 質量%、 あるいは Tiおよび Nbを合 計 0. 01〜0. 5 質量%
また、 本発明は、 上記発明において、 前記不働態皮膜に含有される酸 素のうち、 金属酸化物の状態で存在する酸素: O (M)と、 金属水酸化物の 状態で存在する酸素: O (H) の O (M) / O (H)が、 原子数比で 0. 9以下 である固体高分子型燃料電池セパレータ用ステンレス鋼である。
また、 本発明は、 上記発明において、 Cr力 S、 20-45 質量%である固体 高分子型燃料電池セパレータ用ステンレス鋼である。
また、 本発明は、 上記発明に記載のステンレス鋼をセパレータに用いた固 体高分子膜、 電極 (electrode)およぴセパレータとからなる固体高分子型燃料電 池である。 図面の簡単な説明 図 1 : 固体高分子型燃料電池の例を模式的に示す斜視図である。
図 2 : 接触抵抗の測定に用いた試料を模式的に示す断面図である。
符号の説明
1 膜—電極接合体、 2 ガス拡散層、 3 ガス拡散層
4 セパレータ、 5 セパレータ、 6 空気流路
7 水素流路、 8 試験片、 9 カーボンぺーパ、 10 電極 発明を実施するための最良の形態
本発明者は、 接触抵抗を低く抑えた上で、 高い耐食性を発揮するため のステンレス鋼製セパレータについて、 ステンレス鋼の成分, 不働態皮 膜の成分の観点から鋭意研究を行なった。 その結果、 Moを含有した高純 度フェライ ト系ステンレス鋼を素材として、 その表面に生成する不働態 皮膜の成分を調整することによって接触抵抗が大幅に低減されることを 見出した。
まず本発明を想到するにいたつた実験結果について説明する。
実験では、 C : 0. 004質量%, N : 0. 007質量%, Si : 0. 1質量0 /0, Mn: 0. 1 質量0 /0, Cr: 30. 5 質量0 /o, Mo: 1. 85質量0 /0, P : 0. 03 質量0 /0 S : 0. 005質量0 /0を含有し、 冷間圧延を施したフ-ライ ト系ステンレス 鋼 (板厚 0. 5mm ) を素材とした。 一部の素材には大気中で焼鈍 ( 950°C 2分間) を行なった後、 湿式で 600番研磨を行なった。 ますこ、 他の素材 には、 露点一 60°Cの 75体積%H2 + 25体積%N2雰囲気中で焼鈍 ( 95 0°C, 2分間) を行ない、 いわゆる光輝焼鈍(Bright Annealing, 以降 B Aと略す)仕上げとした。 さらに、 硝酸を 10質量%, 塩酸を 50質量%, ピクリン酸を 1質量0 /0含む酸性水溶液を用いて、 これらの素材に種々の 温度, 時間でエッチング処理を行なった後、 純水洗浄, 冷風乾燥して、 接触抵抗の測定に供した。 同時に、 湿式研磨したサンプルの一部につい ては、 ステンレス鋼の酸洗に一般的に用いられる混酸溶液 (8質量%硝酸 + 2. 5質量。 /0フッ酸、 55°C) 中に 300秒間浸漬して酸洗処理した後、 純水 洗浄, 冷風乾燥して接触抵抗の測定に供した。
接触抵抗の測定は、 同一条件でエツチング処理および酸洗処理した試 験片 (50mm X 50mni) を 4枚準備して、 図 2に示すように 2枚の試験片 8 を、 その両側から同じ大きさの 3枚のカーボンぺーパ (東レ製 TGP-H- 12 0) 9で交互に挟み、 さらに銅板に金めつきを施した電極 10 を接触させ、 単位面積あたり 137. 2N /cm2 (すなわち UkgfZcm2 ) の圧力をかけて 試験片 8間の抵抗を測定した。 その測定値に接触面の面積を乗じ、 さら に接触面の数 (= 2 ) で除した値を接触抵抗値とした。
なお接触抵抗値は、 2枚 1組の試験片 8を交換しながら 6回測定した 測定値に基づいてそれぞれ算出し、 その平均値を表 1 に示す。
参考例として、 表面に金めつき (厚さ約 0. 1 m ) を施したステンレ ス鋼板 (厚さ 0. 3mm, SUS304相当) およびグラフアイ ト板 (厚さ 5 mm) についても、 同様の測定を行ない、 接触抵抗値を算出した。 その結果を 表 1に併せて示す。 接触抵抗値が 10m Ω · cm2以下であれば、 燃料電池 の特性にほとんど悪影響を及ぼさない。
またエツチング処理および酸洗処理を施した後の不働体皮膜を光電子 分光法(photoelectron spectroscopy)によって測定し、 ピーク分離法(pe ak separation method)により不働体皮膜中 (すなわち酸匕状態) の Fe, Cr, A1 のスペク トル強度(spectral intensity)を算出し、 このスぺク ト ル強度おょぴ各元素の相対感度係数(relative sensitivity) (すなわち スぺク トル強度と原子数の換算係数) から原子数比 Cr/Feおよび A1Z (Cr + Fe) を算出した。 その結果を表 1に示す。
不働態皮膜に含有される O (酸素) のうち、'金属酸化物(metal oxide) の状態で存在する酸素: O (M)と、 金属水酸化物(metal hydrride)の状態 で存在する酸素: O (H)をピーク分離してこのスぺク トル強度から原子数 比 O (M) / O (H) を算出した。 その結果を表 1に示す。
なお、 本実験で用いた光電子分光測定装置は KRAT0S社製 AXIS-HSで、 A1 - K a線を励起源として、 加速電圧 15kV、 電流密度 5mAの条件で測定し た。 また、 各元素のピーク分離は、 前記装置に付属のソフ 卜ウェアを用 いた。
表 1から明らかなように、 ステンレス鋼板をェツチング処理すること によって接触抵抗値は低下する。 特に、 不働態皮膜の原子数比 CrZFeが 1以上であれば、 ステンレス鋼板の接触抵抗値は 10m Ω · cm2以下とな る。 一方、 ステンレス鋼の酸洗に一般的に用いられる酸洗処理によって も接触抵抗は低減するが、 Cr/Fe比が 1未満で、 十分に接角 ¾抵抗が低減し ない。 また原子数比 O (M) Z O O!)で 0. 9以下では、 接独抵抗値がさら に低減して 8 πι Ω - cm2以下となる。
さらに B A仕上げとしたステンレス鋼では、 不働態皮膜中に A1が含ま れているが、 エッチング処理によって A1含有量を低下させると、 接触抵 抗値も低下する。 このとき、 不働態皮膜を構成する主要な金属元素であ る Cr, Fe, A1に対して原子数比 Al/ (Cr + Fe) で 0. 1 O未満であれば、 ' B A仕上げとしたステンレス鋼板の接触抵抗値は 10m Ω · cm2以下とな る。
接触抵抗値が 10m Ω · cm2以下であれば、 燃料電池の特性にほとんど 悪影響を及ぼさない。
これまで耐食性の観点から不働態皮膜の原子数比 Crノ Feの影響が調查 された例はあるが、 この実験によって、 不働態皮膜の成分を調整すれば 接触抵抗値を大幅に低減できるという従来にない知見を得た。 このメカ 二ズムは明らかではないが、 おそらく原子数比 Cr/Feの増加による接触 抵抗の低下は、 不働態皮膜が緻密になり電気伝導の妨げとなる不働態皮 膜中の空隙が減少したためであり、 原子数比 O (M) / O (H)の低下による 接触抵抗の低下は、 酸化物に比べ水酸化物の導電性が高いためであると 推察される。 また、 A1含有量の低下による接触抵抗の低下は、 不働態皮 膜中において、 導電性の低い A1酸化物が減少することによるものと推定 される。
まず、 本発明に係るセパレータ用ステンレス鋼の成分の限定理由を説 明する。
• C : 0. 03質量%以下, N : 0. 03質量%以下, C + N : 0. 03質量%以下
Cおよび Nは、 ともにステンレス鋼中の Crと反応し、 粒界に Cr炭窒 化物として析出するので、 耐食性の低下をもたらす。 したがって C, N は、 いずれも含有量が小さいほど好ましく、 C : 0. 03質量%以下, N : 0. 03質量%以下であれば、 耐食性を著しく低下させることはない。 また、 C含有量と N含有量の合計 (以下、 C + Nという) が 0. 03質量%を超え ると、 セパレータをプレス加工する際に生じる割れが著しく増加する。 したがって C + Nは、 0. 03質量%以下とする。 好ましくは、 C : 0. 015 質量%以下, N : 0. 015質量。 /0以下, C + N : 0. 02質量%以下である。
• Cr: 16 ~45質量%
Crは、 ステンレス鋼板の耐食性を確保するために必要な元素であり、 C r含有量が 16 質量%未満では、 セパレータとして長時間の使用に耐えら れない。 また、 Cr含有量が 16 質量%未満では、 不働態皮膜の原子数比 Cr/Feを 1以上に調整して、 接触抵抗値を 10m Ω · cm2以下とすること が困難である。 一方、 Cr含有量が 45質量%を超えると、 σ相の析出によ つて靱性が低下する。 したがって Cr含有量は、 16 〜45質量%とした。 数万時間レベルの長期耐久性を求められる場合には耐食性の点から Cr含 有量が高いほうが有利なので、 好ましくは 20~45質量%である。 さらに、 好ましくは 22〜35質量%である。
• Mo: 0. 1〜5. 0 質量0 /0
Moは、 ステンレス鋼板の耐隙間腐食性を改善するのに有効な元素であ る。 この効果を発揮するためには、 0. 1質量%以上含有させる必要があ る。 一方、 5. 0質量%を超えて添加すると、 ステン'レス鋼が著しく脆化 して生産が困難になる。 したがって Mo含有量は、 0. 1〜5. 0 質量%とし た。 好ましくは 0. 5〜3. 0 質量%である。 本発明に係るセパレータ用ステンレス鋼は、 上記した紅成に加えて、 次の成分についても含有量を規定することが望ましい。
• Si : 1.0質量%以下
Siは、 脱酸のために有効な元素であり、 ステンレス鋼の溶製段階で添 加される。 この効果を得るためには、 0.01質量%以上が好ましい。 しか し過度に含有させるとステンレス鋼板が硬質化し、 しかも延性が低下す る。 したがって Si含有量の上限を 1.0質量%とするのが好ましい。 さら に好ましくは 0.01〜0.6 質量%である。
• Mn: 1.0質量。/。以下
Mnは、 Sと結合し、 ステンレス鋼に固溶した Sを低減する効果を有す るので、 Sの粒界偏析を抑制し、 熱間圧延時の割れを防止するのに有効 な元素である。 この効果を得るためには、 0.01質量%以上が好ましい。 Mn含有量が 1.0質量%以下であれば、 この効果を十分に 揮する。 好ま しくは 0.001〜0.8 質量0 /0である。
• A1: 0.001〜0.2 質量%
A1は、 製鋼工程における脱酸に有効な元素であり、 その効果を得るた めには 0.001質量%以上が必要である。 一方、 0.2 質量%を超えて添加 しても、 その効果は飽和し、 コストアップとなる。 した って A1含有量 は、 0.001〜0.2 質量。 /0とするのが好ましい。
. Tiを 0.01〜0.5 質量0 /0または Nbを 0.01〜0.5 質量0 /0, あるいは Tiお ょぴ Nbを合計 0.01〜0.5 質量0 /0
Tiおよび Nbは、 ステンレス鋼中の C, Nを炭窒化物と して固定し、 プ レス成形性を改善するのに有効な元素である。 C含有量と N含有量が上 記した範囲を満足し、 Tiまたは Nbを添加する場合は、 Ti含有量が 0. 01 質量%以上または Nb含有量が 0. 01 質量%以上でその効果が発揮される。 また Tiおよび Nbを添加する場合は、 Tiおよび Nbを合計 0. 01質量%以 上含有すると、 その効果が発揮される。 一方、 Tiまたは Nbを添加する場 合に、 Ti含有量が 0. 5質量。 /0または Nb:含有量が 0. 5質量%を超える と、 その効果は飽和する。 また Tiおよび Nbを添加する場合は、 Tiおよ ぴ Nbが合計 0. 5質量%を超えると、 その効果は飽和する。 したがって T iまたは Nbを添加する場合は、 Tiを 0. 01〜0. 5 質量%または Nbを 0. 01 〜0. 5 質量%含有させ、 Tiおよび Nbを添加する場合は、 Tiおよび Nbを 合計 0. 01〜0. 5 質量%させるのが好ましい。
本発明では、 セパレータの素材となるステンレス鋼板の熱間加工性を 向上するために上記した元素の他に、 Ca, Mg, REM (すなわち希土類元 素) , Bをそれぞれ 0. 1質量%以下、 あるいはステンレス鋼板の靭性向 上の目的で Ni : 1質量%以下を添加しても良い。 また、 接触抵抗値を低 減するために、 Ag : 1質量。 /0以下, Cu : 5質量 °/0以下を添加し、 さらに A gを微細に分散させる目的で V : 0. 5質量%以下を添加しても良い。
その他の元素は、 残部 Feおよび不可避的不純物である。
なお、 本発明の鋼板は、 上記の発明の成分範囲からフェライ ト組織か らなるフェライ ト系ステンレス鋼板である。
次に、 本発明に係るセパレータ用ステンレス鋼が具備すべき特性につ いて説明する。 ' ステンレス鋼板表面の不働態皮膜の原子数比 Cr/Fe: 1以上 不働態皮膜は高々数 nmの厚さであるが、 金属に比べ導電性に劣るため、 その組成によって、 接触抵抗の増加を招く場合がある。 不働態皮膜の導 電性は皮膜の成分により異なり、 不働態皮膜の導電性を高め、 接触抵抗 値を低くするためには、 不働態皮膜の Cr含有量と Fe含有量から算出さ れる Cr/Fe比を高くする必要がある。 前記した実験結果で説明した通り、
10m Ω · cm2以下の接触抵抗値を得るために 、 原子数比 Cr/Feを 1以 上とする必要がある。
. ステンレス鋼板表面の不働態皮膜の原子数比 O (M) / O (H) : 0. 9以下 不働態皮膜に含有される O (酸素) の結合状態も、 接触抵抗値を低減 する上で重要な因子である。 接触抵抗値を低減するためには、 金属酸化 物の状態で存在する酸素 (すなわち O (M) ) と金属水酸化物の状態で存 在する酸素 (すなわち O (H) ) の原子数比 O (M) Z O (H)を低くするのが 有効である。 前記した実験結果で説明した通り 、原子数比 Ο (Μ) / Ο (Η) を 0. 9以下とすれば、 8 πι Ω · cm2以下の接触抵抗値が得られる。
• ステンレス鋼板表面の不働態皮膜の原子数比 A1Z (Cr + Fe) : 0. 10 不働態皮膜に A1酸化物が含まれると、 接触抵抗値が増加する。 酸洗仕 上げや研磨仕上げのステンレス鋼板に比べて、 光輝焼鈍 (bright anneal ing、 以下、 B A仕上げと称す。 ) されたステンレス鋼板では不働態皮膜 に含まれる A1が多い。 したがって B A仕上げのステンレス鋼板の接触抵 抗値を低減するためには、 不働態皮膜中の A1量を減少させる必要がある。 前記した実験結果で説明した通り、 不働態皮膜の Cr, Fe, A1の 原子数 比 AlZ (Cr + Fe) を 0. 10未満とすれば、 B A仕上げのステンレス鋼板に おいても 10m Ω · cm2以下の接触抵抗値が得られる。
さらに好適には、 接触抵抗値を 8 πι Ω · cm2以下とするためには、 原子数 比 AlZ (Cr + Fe) を O. O5未満とする。 次に、 この発明鋼の好適製造方法について説明する。 この発明鋼の製造条件 はとくに限定されるものではなく、 フェライト系ステンレス鋼の一般的な製造方法 を利用できる。本願発明のセパレータ用ステンレス鋼の溶製方法は、 公知の溶製方法 がすべて適用でき、 特に限定する必要はなレ、。 例えば、 転炉で溶製し、 強攪拌 *真 空酸素脱炭処理 ( S S-V OD) により 2次精鍊を行うのが好適である。 鐃造方法は、 生産性、 品質の面から連続鎵造法が好ましい。 鎳造により得られたスラブは、 例え ば、 1 0 0 0〜 1 2 5 0 °Cに加熱され、 熱閬圧延により所望の板厚の熱延板とされ る。 この熱延板は、 800~1150°Cの熱延板焼鈍後、 酸洗された後、 さらに、 冷間圧延 して所定の製品板厚とし、 あるいはさらに 8O0〜1150°Cの焼鈍、 また、 あるいはさら に酸洗処理を施して製品とするのが好ましい。 この冷間圧延工程では、 生産上の都 合により、 必要に応じて中間焼鈍を含む 2回以上の冷間圧延を行ってもよい。 1回 または 2回以上の冷間圧延からなる冷延工程の総圧下率を 6 0 %以上、 好ましくは 7 0 %以上とする。 また、 用途によってま、 冷延焼鈍後に軽度の調質圧延(skin pass rolling, スキンパス圧延等) を加える。 このようにして得られたステンレ ス鋼板を、 プレス加工等によりガス流路を开 $成した後、 さらに不働態皮膜組成を調 整し、 セパレータとすることが望ましい。
不働態皮膜の Cr含有量, Fe含有量, A1含有量および O (酸素) の結 合状態を調整するためには、 酸を用いたエッチング, 酸性水溶液への浸 漬および電解エッチング等の手法を用 、ることができる。
ステンレス鋼の製造工程では,いわゆる酸洗工程として,各種の酸ある いは混酸への浸漬,あるいは電解により、 脱スケールが行われることが多 い。 また、 耐食性の向上を目的として、 酸洗を含む種々の不動態化処理 が知られている。 しかしながら、 耐食性とともに,導電性の向上のために 不働態皮膜の Cr含有量, Fe含有量, A1含有量および O (酸素) の結合 状態を酸溶液への浸漬により調整するためには,通常の酸洗で用いられる 溶液とは全く異なる組成の酸溶液を用いる必要がある。
本発明者の検討結果によれば,例えば,本発明の実験で示したように、 高 Crステンレス鋼を、 硝酸 +塩酸水溶液で処理する場合には、 硝酸の濃 度に対して塩酸の濃度を 2〜10倍程度にした酸溶液で,原子数比 Cr/Feが 増加するとともに 0 (M) /0 (H) が減少し、 良好な結果が得られた。 また、 さらにこれに、 0. 5~ 1. 0質量%の濃度のピクリン酸を添加すると、 短時 間で処理の効果が得られるので、 好ましい。
また、 硝酸 +フッ酸水溶液の場合には、 硝酸の濃度に対してフッ酸の 濃度を 1. 5倍以上にした酸溶液で,良好な結果が得られた。 これらの硝酸 +塩酸水溶液および硝酸 +フッ酸水溶液の場合の好適な酸溶液の温度は、 4 5で以上で、 酸溶液の温度が高いほど、 処理時間を短くできる。 ただ し,本発明の処理に使用される処理液は、 これらに限るものではなく、 素 材ステンレス鋼の組成、 表面仕上げ等に応じて、 浸漬により処理する場 合には種々の酸の種類や,組成の選択、 酸溶液の温度や処理時間などの選 択が可能である。 電解により処理する場合には種々の電解液の組成や,電 解条件、 酸溶液の温度や処理時閩などの選択が可能である。
このような不働態皮膜の駔成の調整は、 ステンレス鋼板をセパレータ に加工する前に行なっても良いし、 あるいはセパレータに加工した後で 行なっても良い。 ただし、 原子数比 Cr/Fe, O (M) / O (H) , kl/ (Cr + Fe) を所定の範囲に安定して維持するためには、 加工により不働態皮 膜を破壊する恐れがあるので、 セパレータに加工した後で組成調整処理 を行なうのが好ましい。
このようにして作製したステンレス鋼製セパレ一タを用いて固体高分 子型燃料電池を製造すると、 接角虫抵抗値が低く、 発電効率が優れ、 かつ 耐食性が高い固体高分子型燃料電池が製造できる。 実施例
実施例 1
転炉および強攪拌真空酸素脱炭処理法 (strong stirring vacuum-oxyg en - decarburization、 S S— V O Dと略す) によって表 2に示す成分の ステンレス鋼を溶製し、 さらに連続铸造法によって厚さ 200πιπι のスラブ とした。 このスラブを 1250°Cにカロ熱した後、 熱間圧延によって厚さ 4 mm の熱延ステンレス鋼板とし、 さらに焼鈍 ( 850〜1100°C) およぴ酸洗処 理を施した。 次いで、 冷間圧延によって厚さ 0· 3IM1 とし、 さらに焼鈍 (
850〜1100°C) およぴ酸洗処理の後、 調質圧延を行ない、 いわゆる 2 B仕 上げの冷延ステンレス鋼板とした。
得られた冷延ステンレス鋼板の板幅方向の中央部かつ長手方向の中央 部から 200ran X 200mm の試験片を 4枚ずつ切り出した。 鋼番号 1〜 9の 冷延ステンレス鋼板から各々切り出した 4枚の試験片にプレス加工を施 して、 所定の形状を有するセパレータとした。 その後、 各鋼番号毎に一 部のセパレータに不働態皮膜の組成調整処理を施して原子数比 Cr/Fe を調整した。 ここで不働態皮膜の組成調整処理を行なう際には、 A :硝 酸を 10質量%と塩酸を 50質量。 /0とピクリン酸を 1質量%含む溶液 (5 0°C , 120 秒) あるいは B :硝酸を 5質量%とフッ酸を 20質量%含む溶 液 (50°C , 300 秒) を用いた。 さらに鋼 5 と 6については、 ステンレス 鋼の酸洗に一般的に用いられる混酸 (酸洗 1 : 8質量%硝酸 + 2. 5質量% フッ酸、 55°C, 300 禾少、 酸洗 2 : 5質量%硝酸 + 3質量%フッ酸、 40°C、 6 00秒) を用いた酸洗処理を行った。
また、 原子数比 CrZFe、 O (M) / 0 (!!)ぉょぴ 1 (Cr + Fe) の測定 は、 不働態皮膜の組成調整処理を行なわなかった場合はプレス加工後に、 不働態皮膜の組成調整処理を行なった場合はプレス加工後さらに、 不働 態皮膜の組成調整処理を施した後に、 前述の実験 (表 1 ) と同じ方法で、 不働体皮膜を光電子分光法によって測定し、 ピーク分離法により算出し た。
さらに、 前述の実験 (表 1 と図 2 ) と同じ方法で、 接触抵抗を測定し、 接触抵抗値を求めた。
こうして不働態皮膜の組成調整処理を行なったセパレータと処理を行 なわなかったセパレータを用いて、 それぞれ発電特性を調査した。 発電 特性の評価のために、 高分子膜と電極、 さらにガス拡散層 2 , 3がー体 化された有効面種 50cm2 の膜一電極接合体 1 (エレク トロケム社製 FC5 0-MEA ) を用いて、 図 1に示す形状の単セルを作成した。 単セルの空気 流路 6と水素流路 7は、 いずれも高さ lmm, 幅 2 mmの矩形とし、 全体で 17列配置した。 カソード側には空気を流し、 アノード側には超高純度水 素 (純度 99.9999体積0 /0) を 80± 1 °Cに保持したバブラにより加湿した 後供給して、 電菰密度 0.4A cm2 (条件 1) および 0.7AZcm2 (条件 2) の出力電圧を測定した。
また電流密度 0.4および 0.7A/cm2の条件で 2000時間にわたって連続 して稼動させた後、 条件 1および条件 2の出力電圧を測定した。 この単 セルの発電実験の期間中は、 単セル本体の温度は 80土 1°Cに保持した。 また膜一電極接合体 1, カーボンぺーパ 9等は試験片を替えるたびに新 品に取り替えた。
参考例として、 ステンレス鋼板 (SUS304相当) を上記の鋼番号 1〜 9 と同様の形状にカロェした後、 表面に金めつき (厚さ約 Ο. ΐμ πι) を施し たセパレ一タ、 および厚さ 3 mmのグラフアイ ト板の片面に幅 2 mm, 高さ lmmの溝を 2 mm間隔で 17列配置したセパレータを用いて、 電流密度 0. 4 A /cm2およぴ 0.7A// cm2の出力電圧を測定した。 出力電圧の測定方法 は、 上記の鋼番号 1〜 9と同じである。
その結果を表 3に示す。
表 3から明らかなように、 本発明の成分範囲を満足するステンレス鋼 (すなわち鋼番号 3〜 6および 9) に Aまたは Bの液を用いて処理を行 ない、 不働態皮膜の成分を調整し原子数比 Cr/Fe を 1以上としたセパ レータを用いた単セルは、 接触抵抗が低く、 初期の出力電圧および 2000 時間経過後の出力電圧ともに、 金めつきを施したセパレータゃグラファ ィ ト板のセパレータと同等の出力電圧が得られ、 十分に実用に耐え得る レベルであった。
さらに、 原子数比 O (M) / O (H)が 0. 9以下のセパレータを用いた単 セルは、 性能が一層向上し、 初期の出力電圧おょぴ 2000時間経過後の出 力電圧ともに、 金めつきを施したセパレータゃグラフアイ ト板のセパレ ータと同等の出力電圧が得られた。
一方、 本発明の成分範囲を外れるステンレス鋼 (すなわち鋼番号 1 , 2, 7, 8 ) では、 不働態皮膜の組成調整処理の有無に関わらず、 初期 の出力電圧おょぴ 2000時間経過後の出力電圧は、 いずれも金めつきを施 したセパレータゃグラフアイ ト板のセパレータに比べて低下した。
また、 本発明の成分範囲を満足するステンレス鋼 (すなわち鋼番号 3 〜 6および 9 ) であっても不働態皮膜の組成調整処理を行なわなかった 場合やステンレス鋼の酸洗に一般的に用いられる酸洗処理の場合は、 不 働態皮膜の原子数比 CrZFeが低く、 初期の出力電圧は、 金めつきを施し たセパレータゃグラフアイ ト板のセパレータに比べて低下した。
実施例 2
実施例 1で用いた熱延ステンレス鋼板を、 冷間圧延によって厚さ 0. 2mm とし、 さらに露点一60°Cのアンモニア分解ガス中で焼鈍 (900〜1000°C 2分) を施し、 いわゆる B A仕上げの冷延ステンレス鋼板とした。 焼鈍に より、 2〜10nmの B A皮膜が形成される。
得られた冷延ステンレス鋼板から、 実施例 1と同じ方法で試験片を採 取し、 所定の形状を有するセパレータとした。 さらに、 このセパレータ の不働態皮膜の Cr/Fe比, O (M) / O (H) 比, Al/ (Cr + Fe) 比を算出 した。 また、 さらに、 接触抵抗を測定した。 なお、 セパレータの形状や 成形方法, 不働態皮膜の組成調整処理, 酸洗処理、 各元素の含有量の測 定方法、 接触抵抗測定方法は実施例 1 と同じであるから説明を省略する。
さらに実施例 1 と同様に、 セパレータの発電特性を調査した。 それら の結果を表 4に示す。
表 4から明らかなように、 B A仕上げとしたステンレス鋼板において も、 本発明の成分範囲を満足するステンレス鋼 (すなわち鋼番号 3〜6 および 9 ) に Aまたは Bの液を用いて処理を行ない、 不働態皮膜の成分 を調整し Cr/Fe比を 1以上とし、 かつ Al/ (Cr + Fe) 比を 0. 10以下と したセパレータを用いた単セルは、 接触抵抗が低く、 初期の出力電圧お ょぴ 2000時間経過後の出力電圧ともに、 金めつきを施したセパレータゃ グラフアイ ト板のセパレータと同等の出力電圧が得られ、 十分に実用に 耐え得るレベルであった。
原子数比 O (Μ) / θ (H)が 0. 9以下のセパレータ、 またはさらに、 原子 数比 Al/ (Cr + Fe) が 0. 05未満のセパレータを用いた単セルは、 性能が 一層向上し、 初期の出力電圧および 2000時間経過後の出力電圧ともに、 金めつきを施したセパレータゃグラフアイ ト板のセパレータと同等の出 力電圧が得られた。 一方、 本発明の成分範囲を外れるステンレス鋼 (すなわち鋼番号 1, 2, 7 , 8 ) では、 不働態皮膜の組成調整処理の有無に関わらず、 初期 の出力電圧おょぴ 2000時間経過後の出力電圧は、 いずれも金めつきを施 したセパレータゃグラフアイ ト板のセパレータに比べて低下した。
また、 本発明の成分範囲を満足するステンレス鋼 (すなわち鋼番号 3 - 6 ) であっても不働態皮膜の組成調整処理を行なわなかった場合ゃス テンレス鋼の酸洗に一般的に用いられる酸洗処理の場合は、 不働態皮膜 の原子数比 A1Z (Cr + Fe) と接触抵抗値が高く、 初期おょぴ 2 0 0 0 時間後の出力電圧は、 金めつきを施したセパレータゃグラフアイ ト板の セパレータに比べて低下した。
産業上の利用可能性
本発明によれば、 接触抵抗値が低く、 かつ耐食性に優れた固体高分子 型燃料電池セパレータ用ステンレス鋼が得られる。 したがって、 従来は 耐久性の問題から高価なグラフアイ ト製セパレータを使用していた固体 高分子型燃料電池に、 安価なステンレス鋼製セパレータを提供すること が可能となった。
なお、 本発明は、 固体高分子型燃料電池セパレータに限らず、 電気伝 導性を有するステレンス鋼製電気部品としても広く利用できる。 エッチング処理 不働態皮膜 接触 仕 処 理 Cr / 0(M) A1 /
曰 抵抗値
Fe比 / (Cr+Fe)
上 (。c) 0(H) 比 m · 彻 比 cm2 ) 酲
ス 30 60 0.48 1.84 0.01 80.1 テ 研 30 120 0.60 1.68 0.02 75.3 ン 30 300 0.78 1.55 0.01 55.6 m
レ 45 60 0.95 1.21 0.02 39.1 ス 45 120 1.08 1.15 <0.01 9.8 鋼 45 300 1.20 0.97 <0.01 9.2 板 60 60 1.28 0.91 <0.01 9.1
60 120 1.65 0.62 <0.01 6.3
60 300 1.76 0.58 <0.01 5.2
0.82 1.32 0.01 30.2 処理なし 0.33 1.99 0.07 94.2
45 60 1.85 0.87 0.10 21.5
B 45 120 2.20 0.95 0.08 9.5
A 45 300 2.63 0.97 0.06 8.3
60 60 2.01 0.88 0.06 9.3
60 120 2.42 0.74 0.04 6.1
60 300 2.55 0.54 <0.01 5.0 処理なし 2.88 0.75 0.61 48.6 金めつき SUS 3 04 2.1 グラフアイト 3.0 vu/ Oさ oifcld8SSS0SM
m 一 9ΐ ·0 96 "0 9 "91 300 ·0 SCO Ό 9ΐ0 '0 81 ·0 οε ·ο 8210 Ό 9Ζ00 ·0 ZSOO ·0 Οΐ ζι ·0 π ·0 96 ·ΐ S ·6Ζ 900 ·0 920 ·0 lO Ό οζ ·0 81 ·ο STO ·0 Ϊ500 '0 £800 ·0 6
ZZ '0 ― ST 'Ζ I ·6Ζ εοο ·ο 8Ζ0 Ό ΖΐΟ ·0 £Ζ ·0 ιζ ,0 09 0 ·0 09Ζ0 ·0 ΟΤΖΟ "0 8
IZ Ό ― 00 ' 3 '6Ζ '0 LZ0 ·0 910 '0 ιζ ·0 31 ·0 0Ζ90 ·0 ΟΟΖΟ ·0 02^0 '0 L
― SZ ·0 38 "I 9 ·χε 900 ·0 2Ζ0 ·0 6ΐ0 ·0 ιζ ·0 S3 "0 9ΖΪ0 ·0 SZOO "0 Τ900 '0 9
― ― so ·ε 6 'ΖΖ too '0 6Τ0 ·0 fOO Ό ζζ ·0 QZ ·0 εζοο ·ο τεοο 'ο ZfOO ·0 9
\ ζζ ·0 ΐ ·ζζ 800 ·0 ΖΖΟ ·0 800 ·0 9Ζ Ό 01 ·0 ζετο ·ο S900 ·0 9 00 ·0 V
― τε ·ο Of ·0 ε ·ζζ εοο ·ο 0Ζ0 ·0 STO ·0 LI ·0 οζ ·0 6900 '0 SSOO '0 εοο ·ο ε
― fZ ·ο εο ·ο ζ ·οε 900 -0 6Τ0 ·0 ιζ ·0 ζζ ·0 TSOO ·0 ΖΖΰϋ ·0 6Ζ0Ο ·0 ζ ^ r 0ΐ ·0 SZ 'Τ Ζ '9Τ 900 'Ο πο ·ο τε Ό ιζ ·0 89Τ0 "0 8800 Ό 0800 ·0 I qN S d IV TS Μ + 0 Ν 0
(%¥Μ)
Figure imgf000027_0001
表 3
Figure imgf000028_0001
B: «5質^0 /0+フッ酸 20質量% (50 : 一 :測定 ¾ 表 4
Figure imgf000029_0001
* A ··赚 10質量0 /0+麵 50質量0 /0+ピクリン酸 1質量0 /0 (50°C, 120秒) B:«5質量% +フク酸 20質量0 /0 (50V, 300秒)
一 :測定 ¾rf

Claims

請求の範囲
1. Cを 0.03質量%以下、 Nを 0.03質量。/。以下、 Crを 16 〜45質 量%、 Moを 0.1〜5.0 質量%含有し、 かつ C含有量と N含有量の合 計が 0.03質量%以下を満足し、 残部が Feおよび不可避的不純物か らなる組成を有するステンレス鋼であって、 かつ前記ステンレス鋼 の表面の不働態皮膜に含有される Al、 Crおよび Feの原子数比 Cr /Feが 1以上で、 かつ原子数比 A1Z (Cr + Fe) 、 0.10未満である 固体高分子型燃料電池セパレータ用ステンレス鋼。
2. Cを 0.03質量%以下、 Nを 0.03質量%以下、 Crを 20〜45質 量%、 Moを 0.1~5.0 質量。 /0含有し、 かつ C含有量と N含有量の合 計が 0.03質量%以下を満足し、 残部が Feおよび不可避的不純物か らなる組成を有するステンレス鋼であって、 かつ前記ステンレス鋼 の表面の不働態皮膜に含有される Al、 Crおよび Feの原子数比 Cr ZFeが 1以上で、 かつ原子数比 Al/ (Cr+Fe) 力 S、 0.05未満である 固体高分子型燃料電池セパレータ用ステンレス鋼。
3. 請求項 1または、 2の任意の請求項において、 前記ステンレス 鋼が、 前記組成に加えて下記の (1)〜(4) の群から選ばれる 1種以 上を含有する固体高分子型燃料電池セパレータ用ステンレス鋼。
(1) Si: 1.0質量%以下
(2) Mn: 1.0質量%以下 (3) Al: 0· 001〜0· 2 質量%以下
(4) Tiまたは Nbを 0. 01〜0. 5 質量0 /0、 あるいは Tiおよび Nb を合計 0. 01〜0. 5 質量%
4 . 請求項 1〜 3の任意の請求項において、 前記不働態皮膜に含有 される酸素のうち、 金属酸化物の状態で存在する酸素 : O (M)と、 金 属水酸化物の状態で存在する酸素 : O (H) の原子数比 0 (M) / O (H) が、 0. 9 以下である固体高分子型燃料電池セパレータ用ステンレス鋼。
5 . 請求項 1、 3および 4の任意の請求項において、 Crが、 20〜45 質量%である固体高分子型燃料電池セパレータ用ステンレス鋼。
6 . 請求項 1〜 5の任意の請求項に記載のステンレス鋼をセパレータに用 いた固体高分子膜、 電極およびセパレータとからなる固体高分子型燃料電 池。
PCT/JP2004/008401 2003-10-07 2004-06-09 固体高分子型燃料電池セパレータ用ステンレス鋼およびそのステンレス鋼を用いた固体高分子型燃料電池 WO2005035816A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CA002503030A CA2503030C (en) 2003-10-07 2004-06-09 Stainless steel for proton-exchange membrane fuel cell separator and proton-exchange membrane fuel cell using the same
US10/533,609 US8900379B2 (en) 2003-10-07 2004-06-09 Stainless steel for solid polymer fuel cell separator and solid polymer typefuel cell using the stainless steel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003348772A JP4496750B2 (ja) 2002-10-07 2003-10-07 固体高分子型燃料電池セパレータ用ステンレス鋼とそのステンレス鋼を用いた固体高分子型燃料電池
JP2003-348772 2003-10-07

Publications (1)

Publication Number Publication Date
WO2005035816A1 true WO2005035816A1 (ja) 2005-04-21

Family

ID=34430983

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/008401 WO2005035816A1 (ja) 2003-10-07 2004-06-09 固体高分子型燃料電池セパレータ用ステンレス鋼およびそのステンレス鋼を用いた固体高分子型燃料電池

Country Status (3)

Country Link
US (1) US8900379B2 (ja)
CA (1) CA2503030C (ja)
WO (1) WO2005035816A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012046879A1 (ja) 2010-10-08 2012-04-12 Jfeスチール株式会社 耐食性および電気伝導性に優れたフェライト系ステンレス鋼とその製造方法、固体高分子型燃料電池セパレータおよび固体高分子型燃料電池

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100777123B1 (ko) * 2007-04-18 2007-11-19 현대하이스코 주식회사 연료전지용 스테인리스강 분리판 및 그 제조방법
JP4485552B2 (ja) * 2007-08-03 2010-06-23 本田技研工業株式会社 燃料電池用セパレータの製造方法
US20090286107A1 (en) * 2008-05-13 2009-11-19 Ut-Battelle, Llc Ferritic Alloy Compositions
KR100993412B1 (ko) 2008-12-29 2010-11-09 주식회사 포스코 고분자 연료전지 분리판용 스테인리스강 및 그 제조방법
KR101231462B1 (ko) * 2009-07-30 2013-02-07 제이에프이 스틸 가부시키가이샤 도전성과 연성이 우수한 연료 전지 세퍼레이터용 스테인리스강 및 그 제조 방법
KR101319384B1 (ko) * 2010-08-03 2013-10-22 삼성에스디아이 주식회사 연료 전지용 세퍼레이터 및 이를 포함하는 연료 전지 시스템
CN103717772B (zh) * 2011-07-29 2016-10-26 杰富意钢铁株式会社 燃料电池隔板用不锈钢
JP6323624B1 (ja) 2016-06-10 2018-05-16 Jfeスチール株式会社 燃料電池のセパレータ用ステンレス鋼板およびその製造方法
KR102165049B1 (ko) 2016-06-10 2020-10-13 제이에프이 스틸 가부시키가이샤 연료 전지의 세퍼레이터용 스테인리스 강판 및 그의 제조 방법
JP7064723B2 (ja) 2017-03-31 2022-05-11 株式会社Flosfia 成膜方法
WO2018199327A1 (ja) 2017-04-28 2018-11-01 株式会社Flosfia 導電性部材およびその製造方法
GB2565370B (en) * 2017-08-11 2020-10-07 Intelligent Energy Ltd Fuel cell units having angled offset flow channels
US20190165383A1 (en) * 2017-11-29 2019-05-30 Flosfia Inc. Layered structure, electronic device including layered structure, system including electronic device, and method of manufacturing layered structure

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002013300A1 (en) * 2000-08-05 2002-02-14 Ineos Chlor Limited Stainless steel substrate treatment
JP2002270196A (ja) * 2001-03-07 2002-09-20 Matsushita Electric Ind Co Ltd 高分子電解質型燃料電池およびその運転方法
JP2003223904A (ja) * 2001-02-22 2003-08-08 Jfe Steel Kk 燃料電池用セパレータとその製造方法および固体高分子型燃料電池

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1117882C (zh) * 1999-04-19 2003-08-13 住友金属工业株式会社 固体高分子型燃料电池用不锈钢材
US20030170526A1 (en) * 2000-08-05 2003-09-11 Ineos Chlor Limited Substrate treatment
CA2372326C (en) * 2001-02-22 2007-09-11 Kawasaki Steel Corporation Stainless steel separator for fuel cells, method for making the same, and solid polymer fuel cell including the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002013300A1 (en) * 2000-08-05 2002-02-14 Ineos Chlor Limited Stainless steel substrate treatment
JP2003223904A (ja) * 2001-02-22 2003-08-08 Jfe Steel Kk 燃料電池用セパレータとその製造方法および固体高分子型燃料電池
JP2002270196A (ja) * 2001-03-07 2002-09-20 Matsushita Electric Ind Co Ltd 高分子電解質型燃料電池およびその運転方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012046879A1 (ja) 2010-10-08 2012-04-12 Jfeスチール株式会社 耐食性および電気伝導性に優れたフェライト系ステンレス鋼とその製造方法、固体高分子型燃料電池セパレータおよび固体高分子型燃料電池
US9587297B2 (en) 2010-10-08 2017-03-07 Jfe Steel Corporation Ferritic stainless steel excellent in corrosion resistance and conductivity and method for manufacturing the same, separator of proton-exchange membrane fuel cell and proton-exchange membrane fuel cell

Also Published As

Publication number Publication date
US20060105218A1 (en) 2006-05-18
CA2503030A1 (en) 2005-04-21
US8900379B2 (en) 2014-12-02
CA2503030C (en) 2009-05-12

Similar Documents

Publication Publication Date Title
EP1235290B1 (en) Stainless steel separator for fuel cells, method for making the same, and solid polymer fuel cell including the same
CN102471848B (zh) 燃料电池隔板用不锈钢及其制造方法
JP4496750B2 (ja) 固体高分子型燃料電池セパレータ用ステンレス鋼とそのステンレス鋼を用いた固体高分子型燃料電池
EP2667439A1 (en) Method for producing stainless steel for fuel cell separators, stainless steel for fuel cell separators, fuel cell separator, and fuel cell
WO2005090626A1 (ja) 通電部材用金属材料、それを用いた燃料電池用セパレータおよびその燃料電池
WO2005035816A1 (ja) 固体高分子型燃料電池セパレータ用ステンレス鋼およびそのステンレス鋼を用いた固体高分子型燃料電池
JP2012177157A (ja) 固体高分子形燃料電池セパレータ用ステンレス鋼およびその製造方法
JP3922154B2 (ja) 固体高分子型燃料電池セパレータ用ステンレス鋼とその製造方法および固体高分子型燃料電池
JP2007254795A (ja) 固体高分子形燃料電池およびそのセパレータに好適なステンレス鋼
JP4967831B2 (ja) 固体高分子形燃料電池セパレータ用フェライト系ステンレス鋼およびそれを用いた固体高分子形燃料電池
JP4930222B2 (ja) 固体高分子形燃料電池セパレータ用オーステナイト系ステンレス鋼およびそれを用いた固体高分子形燃料電池
CN110199047B (zh) 具有优异的接触电阻的用于聚合物燃料电池隔板的不锈钢及其制造方法
JP2005166276A (ja) 固体高分子型燃料電池セパレータ用ステンレス鋼,それを用いた固体高分子型燃料電池セパレータおよび固体高分子型燃料電池
JP2004269969A (ja) 固体高分子型燃料電池用セパレータおよびその製造方法
JP2005089800A (ja) 固体高分子型燃料電池セパレータ用ステンレス鋼およびそれを用いた固体高分子型燃料電池
JP5560533B2 (ja) 固体高分子形燃料電池セパレータ用ステンレス鋼およびそれを用いた固体高分子形燃料電池
JP5217755B2 (ja) 燃料電池セパレータ用ステンレス鋼および燃料電池用セパレータ
JP5703560B2 (ja) 導電性に優れた燃料電池セパレータ用ステンレス鋼板
JP6648273B2 (ja) 親水性および接触抵抗が向上した高分子燃料電池の分離板用ステンレス鋼およびその製造方法
KR102497442B1 (ko) 접촉저항이 향상된 고분자 연료전지 분리판용 오스테나이트계 스테인리스강 및 그 제조 방법
JP2008103136A (ja) 燃料電池、燃料電池の製造方法及び燃料電池車両
CN114730892A (zh) 用于制造聚合物燃料电池隔离件用不锈钢的方法
JP2008059978A (ja) 燃料電池、燃料電池の製造方法及び燃料電池車両

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2503030

Country of ref document: CA

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

ENP Entry into the national phase

Ref document number: 2006105218

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10533609

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 10533609

Country of ref document: US

122 Ep: pct application non-entry in european phase