WO2016052591A1 - 固体酸化物形燃料電池用鋼及びその製造方法 - Google Patents

固体酸化物形燃料電池用鋼及びその製造方法 Download PDF

Info

Publication number
WO2016052591A1
WO2016052591A1 PCT/JP2015/077679 JP2015077679W WO2016052591A1 WO 2016052591 A1 WO2016052591 A1 WO 2016052591A1 JP 2015077679 W JP2015077679 W JP 2015077679W WO 2016052591 A1 WO2016052591 A1 WO 2016052591A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
oxide fuel
solid oxide
steel
fuel cell
Prior art date
Application number
PCT/JP2015/077679
Other languages
English (en)
French (fr)
Inventor
和広 山村
上原 利弘
茂徳 田中
Original Assignee
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立金属株式会社 filed Critical 日立金属株式会社
Priority to US15/512,417 priority Critical patent/US10995384B2/en
Priority to JP2016552106A priority patent/JP6120199B2/ja
Priority to EP15845681.4A priority patent/EP3202936B1/en
Priority to KR1020177010192A priority patent/KR101929138B1/ko
Priority to CA2962651A priority patent/CA2962651C/en
Priority to CN201580051042.0A priority patent/CN106715743B/zh
Publication of WO2016052591A1 publication Critical patent/WO2016052591A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • B21B3/02Rolling special iron alloys, e.g. stainless steel
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • H01M8/0208Alloys
    • H01M8/021Alloys based on iron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a solid oxide fuel cell steel excellent in oxidation resistance and a method for producing the same.
  • the solid oxide fuel cell operates at a high temperature of about 600 to 1000 ° C., so that its power generation efficiency is high, the amount of SOx, NOx, and CO 2 generated is small, and the responsiveness to load fluctuations is good. Because it has excellent features such as being able to cope with fuel diversity and being compact, it is a large-scale centralized type as an alternative to thermal power generation, distributed in the suburbs of urban areas, distributed power supply for private power generation, auxiliary power supply for automobiles, etc. It is expected to be applied to a wide range of power generation systems. Among them, components for solid oxide fuel cells such as separators, interconnectors, current collectors, etc.
  • Patent Document 2 proposes ferritic stainless steel having excellent oxidation resistance.
  • Patent Document 3 proposes ferritic stainless steel having excellent oxidation resistance.
  • Patent Document 4 proposes ferritic stainless steel having excellent oxidation resistance.
  • the aforementioned solid oxide fuel cell steel proposed by the applicant of the present application has excellent oxidation resistance and electrical conductivity.
  • carbon (C) and nitrogen (N) are elements that are regulated to be low as elements that deteriorate oxidation resistance.
  • the present inventors have found that when the C and N of the solid oxide fuel cell steels of Patent Documents 1 to 4 described above are significantly reduced, the oxidation resistance may not be significantly improved. did.
  • An object of the present invention is to provide a solid oxide fuel cell steel having a composition balance capable of stably obtaining excellent oxidation resistance in a solid oxide fuel cell steel containing Zr. .
  • the present inventor has studied in detail a composition and a metal structure that can stably obtain good oxidation resistance in a solid oxide fuel cell steel containing Zr. As a result, the inventors have found that good oxidation resistance can be stably obtained by suppressing the amount of intermetallic compound containing Fe and Zr found in the ferrite matrix, and the present invention has been achieved.
  • the present invention in mass%, exceeds C: 0 to 0.05% or less, N: 0.050% or less, O: 0.01% or less, Al: 0.15% or less, Si: 0.15% Mn: 0.1 to 1.0%, Cr: 20.0 to 25.0%, Ni: more than 0% and 1.0% or less, La: 0.02 to 0.12%, Zr: In solid oxide fuel cell steel comprising 0.1 to 0.5%, La + Zr: 0.15 to 0.5%, balance Fe and impurities, the solid oxide fuel cell steel has the following relational expression: And the solid oxide fuel cell steel is a solid oxide fuel cell steel in which the intermetallic compound containing Fe and Zr found in the ferrite matrix is 1.1% or less in view area ratio It is.
  • the present invention uses a cold rolling material having the above composition, a cold rolling process for performing cold rolling, an intermediate annealing process at 800 to 1100 ° C.
  • the cold-rolled material subjected to the final cold rolling of 30% or more is subjected to final annealing at 750 to 1050 ° C., and the intermetallic compound containing Fe and Zr found in the ferrite matrix is 1.1% in view area ratio.
  • a final annealing step Is a method for producing steel for solid oxide fuel cells.
  • the solid oxide fuel cell steel of the present invention stabilizes the deterioration of the performance of the fuel cell over a long period of time by stably improving the oxidation resistance of the solid oxide fuel cell steel containing Zr in particular. Can be suppressed. Further, the characteristics that the electrical conductivity and the difference in thermal expansion from the electrolyte and the electrode material are small are maintained as they are. Furthermore, these characteristics are maintained even in thin plates. Therefore, in solid oxide fuel cell parts, when used as separators, interconnectors, current collectors, etc. with the strictest required characteristics as parts made of metal materials, it is possible to improve durability and improve performance over a long period of time. It can contribute greatly.
  • the present invention essentially contains Zr.
  • Zr suppresses the growth of the oxide film by adding a small amount, densifies the oxide film, and improves the adhesion of the oxide film, thereby significantly improving the oxidation resistance and the electrical conductivity of the oxide film.
  • Zr generates an intermetallic compound with Fe.
  • the intermetallic compound containing Fe and Zr here is an intermetallic compound generally called a Laves phase represented by the chemical formula Fe 2 Zr, and the compound may contain other elements such as Cr. is there.
  • the oxidation resistance deteriorates as the amount of precipitation of the intermetallic compound containing Fe and Zr increases.
  • the effect of improving the oxidation resistance described above can be obtained by the solid solution of Zr in the alloy.
  • the intermetallic compound containing Fe and Zr is precipitated, the solid solution is dissolved in the alloy matrix.
  • the effective Zr amount is considered to decrease.
  • the effect of improving the oxidation resistance which should originally be exhibited with an appropriately adjusted alloy composition, is reduced.
  • the intermetallic compound phase containing Fe and Zr exceeds 1.1% continuously at the crystal grain boundary in the ferrite matrix, the deterioration of oxidation resistance increases, so the intermetallic compound containing Fe and Zr is 1.1% or less.
  • EPMA electron beam microanalyzer
  • C is one of the most important elements to be defined in order to suppress deterioration of oxidation resistance.
  • C is an element that forms Cr carbide by combining with Cr as described above to reduce the amount of solid solution Cr in the parent phase and reduce oxidation resistance. Therefore, in order to improve the oxidation resistance, it is effective to lower C, and in the present invention, it is limited to a range of 0.05% or less.
  • a preferred upper limit is 0.040%, a more preferred upper limit is 0.030%, and a further preferred upper limit is 0.025%.
  • N is an element that is combined with Cr to form Cr nitride to reduce the amount of solid solution Cr in the parent phase and deteriorate the oxidation resistance.
  • Cr Cr
  • nitride Cr
  • ⁇ N 0.050% or less>
  • N is an element that is combined with Cr to form Cr nitride to reduce the amount of solid solution Cr in the parent phase and deteriorate the oxidation resistance.
  • it is necessary to use a raw material having a low nitrogen content, or to reduce nitrogen in molten steel by out-of-furnace smelting, resulting in an increase in manufacturing costs.
  • N reacts with C and Zr to form Zr carbonitride to impair hot workability and cold workability. Therefore, in the present invention, it is limited to the range of 0.050% or less.
  • a preferable upper limit is 0.040%, a more preferable upper limit is 0.030%, and a further preferable upper limit is 0.020%.
  • Zr nitride Zr carbonitride if C is also present
  • Zr is further contained in the ferrite matrix.
  • excessive Zr may remain even after solid solution. Excess Zr reacts with Fe to form an intermetallic compound such as a Laves phase and precipitates to lower the oxidation resistance. Therefore, N needs to exceed 0%.
  • a preferable lower limit of N is 0.001%.
  • Zr has the effect of greatly improving the oxidation resistance and the electrical conductivity of the oxide film by adding a small amount to suppress the growth of the oxide film, densifying the oxide film, and improving the adhesion of the oxide film.
  • Zr is less than 0.1%, the effect of suppressing the growth of the oxide film and improving the denseness and adhesion of the oxide film is small.
  • Zr is set to 0.1 to 0.5% because hot workability and cold workability may be deteriorated.
  • the lower limit of Zr is preferably 0.15%, more preferably 0.20%.
  • the upper limit of preferable Zr is 0.45%, More preferably, it is 0.4%.
  • ⁇ La: 0.02 to 0.12%> La is added in a small amount to suppress the growth of the oxide film, and it exhibits good oxidation resistance by densifying the oxide film mainly containing Cr or improving the adhesion of the oxide film. Is essential. When La is added less than 0.02%, the effect of improving the denseness and adhesion of the oxide film is small. On the other hand, when it is added more than 0.12%, inclusions such as oxide containing La increase and hot working. Therefore, La may be 0.02 to 0.12%.
  • the preferable lower limit of La is 0.03%, and the more preferable lower limit is 0.04%.
  • the preferable upper limit of La is 0.11%, and a more preferable upper limit is 0.10%.
  • both La and Zr described above have the effect of improving the excellent oxidation resistance at high temperature, the effect can be further exhibited by adding them in combination. In that case, if the total amount of La and Zr is less than 0.15%, the effect of improving the oxidation resistance is small. On the other hand, if added over 0.5%, a large amount of La and Zr-containing compounds are generated. La and Zr are made 0.15 to 0.5% in total because there is a concern about deterioration of cold workability and cold workability.
  • a preferable lower limit of La + Zr is 0.20%.
  • O is one of the important elements that should be limited to compensate for the deterioration in oxidation resistance.
  • O forms oxide inclusions with Al, Si, Mn, Cr, Zr, La and the like, and not only harms hot workability and cold workability, but also contributes greatly to improving oxidation resistance.
  • the effect of improving the oxidation resistance by these elements is reduced. Therefore, it is good to limit to 0.01% or less.
  • it is 0.008% or less, more preferably 0.005% or less.
  • Al 0.15% or less> Al is added in a small amount for deoxidation, and by reducing the amount of oxygen in the steel, the amount of Zr and La effective for oxidation resistance is increased, which is an important element for improving oxidation resistance.
  • Al forms Al 2 O 3 in the form of particles and needles in the metal structure near the Cr oxide film at the operating temperature of the solid oxide fuel cell. As a result, the outdiffusion of Cr is non-uniform and the formation of a stable Cr oxide film is prevented, thereby degrading the oxidation resistance. For this reason, in this invention, it limits to 0.15% or less of range.
  • Al is preferably made 0.1% or less. More preferably, it is made 0.05% or less.
  • Si 0.15% or less> Si is added in a small amount for deoxidation, and by reducing the amount of oxygen in the steel, the amount of Zr and La effective for oxidation resistance is increased, which is an important element for improving oxidation resistance.
  • Si forms a film-like SiO 2 near the interface between the Cr oxide film and the base material at the operating temperature of the solid oxide fuel cell. Since the electrical resistivity of SiO 2 is higher than that of Cr oxide, the electrical conductivity is lowered. Further, like the formation of Al 2 O 3 described above, the oxidation resistance is deteriorated by preventing the formation of a stable Cr oxide film. For this reason, in this invention, it limits to 0.15% or less of range.
  • the upper limit of Si is preferably set to 0.10% or less. Preferably it is 0.08% or less, More preferably, it is 0.07% or less, More preferably, it is 0.06% or less.
  • Mn is an important element that improves the conductivity at high temperature by forming a spinel oxide with Cr at the operating temperature of the solid oxide fuel cell.
  • the spinel type oxide layer containing Mn is formed on the outer side (surface side) of the Cr 2 O 3 oxide layer.
  • Cr 20.0 to 25.0%> Cr is an element that is basically necessary for realizing excellent oxidation resistance by forming a dense Cr oxide film typified by Cr 2 O 3 at the operating temperature of the solid oxide fuel cell. In addition, it is an important element for maintaining electrical conductivity. A minimum of 20.0% is required to stably obtain good oxidation resistance and electrical conductivity. However, excessive addition is not so effective in improving oxidation resistance, but also causes deterioration of workability, so the upper limit is limited to 25.0%. A preferable lower limit of Cr is 21.0%, and a more preferable lower limit is 22.0%. ⁇ Ni: more than 0% and 1.0% or less> Ni is effective in improving toughness by adding a small amount.
  • Ni is more than 0% and 1.0% or less.
  • a preferable upper limit of Ni is 0.8%, and a more preferable upper limit is 0.7%.
  • the lower limit of Ni in the case of containing Cu is preferably 0.1%, the preferable lower limit is 0.2%, and the more preferable lower limit is 0.3. %.
  • the solid oxide fuel cell steel of the present invention has a two-layer Cr structure in which a spinel-type oxide layer containing Mn is formed on a Cr 2 O 3 oxide layer at an operating temperature of about 700 to 900 ° C. An oxide film is formed.
  • Cu by densifying a spinel type oxide containing Mn is formed on the Cr 2 O 3 oxide layer, there is a further effect of suppressing the evaporation of Cr from Cr 2 O 3 oxide layer.
  • the amount of Cu added is too small, the effect of further suppressing Cr evaporation is insufficient. For this reason, in order to exhibit the inhibitory effect of Cr evaporation by adding Cu, Cu is added 0.5% or more.
  • Cu is added in an amount of more than 2.0%, a Cu phase precipitates in the matrix phase, and it becomes difficult to form a dense Cr oxide at the location where the Cu phase is present. Since there is a possibility that workability is lowered and the ferrite structure becomes unstable, Cu is made 0.5 to 2.0%.
  • the lower limit of Cu is preferably 0.7%, more preferably 0.8%.
  • the upper limit of Cu is preferably 1.5%, more preferably 1.3%.
  • Mo is known as an element that exhibits the same effect as W for solid solution strengthening and the like. However, W has a higher effect of suppressing the outward diffusion of Cr when oxidized at the operating temperature of the solid oxide fuel cell than Mo.
  • W can be added in an amount of 1.0 to 3.0% in order to develop the oxidation resistance improvement by adding W.
  • W can also prevent abnormal oxidation of the alloy and maintain excellent oxidation resistance.
  • Such an effect of improving the oxidation resistance due to the addition of W brings about a higher effect by simultaneously increasing the Cr content. Therefore, it is preferable to add W and increase the lower limit of the Cr content.
  • W is set to 3.0% or less.
  • a preferable upper limit is 2.5%, More preferably, it is 2.3%, A preferable minimum is 1.5%, More preferably, it is 1.7%.
  • each element is 0%.
  • Mo 0.2% or less> Mo reduces the oxidation resistance, so it is not actively added and is limited to 0.2% or less.
  • S 0.015% or less> S forms sulfide inclusions with rare earth elements to reduce the amount of effective rare earth elements having an effect on oxidation resistance, and not only lower oxidation resistance but also hot workability and surface skin. In order to deteriorate, it is good to make it 0.015% or less. Preferably, 0.008% or less is good.
  • ⁇ P 0.04% or less>
  • P is an element that is more easily oxidized than Cr forming an oxide film, and is preferably limited to 0.04% or less in order to deteriorate the oxidation resistance. Preferably, it is 0.03% or less, more preferably 0.02% or less, and still more preferably 0.01% or less. However, when Cu and W are included, a slightly larger amount is allowed due to the effect of improving the oxidation resistance of these elements, and P may be limited to 0.04% or less, and preferably 0.03% or less.
  • ⁇ B: 0.003% or less> B increases the growth rate of the oxide film at a high temperature of about 700 ° C. or higher, and degrades the oxidation resistance.
  • B should be limited to 0.003% or less, and should be reduced to 0% as much as possible.
  • the upper limit is preferably 0.002% or less, and more preferably less than 0.001%.
  • H When H is excessively present in the Fe—Cr ferrite matrix, it tends to collect at the defect part such as a grain boundary and may cause cracking during production by causing hydrogen embrittlement. It is better to limit it to less than%. More preferably, it is 0.0003% or less.
  • C, N and Zr for ensuring good oxidation resistance are closely related, and it is necessary to make them within a range satisfying the following relational expression. 5 (7C + 6N) / (7-4 (7C + 6N)) ⁇ Zr ⁇ 41 (7C + 6N) / (7 + 66 (7C + 6N)) (1) Note that Zr, C, and N in the relational expressions indicate mass% of Zr, C, and N, respectively.
  • the composition range of C, N and Zr in the solid oxide fuel cell steel of the present invention is defined by the compound phase precipitated in the metal structure.
  • the relational expression indicates an index representing the range of C, N, and Zr that suppresses the precipitation of a compound phase harmful to oxidation resistance.
  • the compound harmful to oxidation resistance refers to an intermetallic compound containing Cr carbide and Fe and Zr which may be precipitated in the vicinity of the operating temperature or remain in the manufacturing process.
  • This relational expression was derived from the results of careful investigations by the present inventors on the relationship between the amount of intermetallic compounds and carbides deposited in many solid oxide fuel cell steels, the amount of oxidation increase, and the chemical composition. 1 and is illustrated by FIG.
  • Zr carbonitride Zr (C, N)
  • the formation of Zr (C, N) has the effect of improving oxidation resistance, workability, etc. by reducing C and N in the alloy matrix, while excessively forming C and N in the alloy matrix. If the amount is reduced, the oxidation resistance is reduced. Also, when the amount of Zr is insufficient and the amount of C and N in the alloy matrix cannot be sufficiently reduced, the oxidation resistance is also lowered. That is, there is an optimum range for the balance of the amounts of C, N, and Zr.
  • the present inventors pay attention to the composition ratio forming Zr (C, N), and adopt Zr / (C + 6N / 7) as an index of the balance of C, N, and Zr as a value considering the atomic weight of C and N. did. Subsequently, as shown in FIG. 1, the relationship between Zr amount and Zr / (C + 6N / 7) in the solid oxide fuel cell steel investigated by the present inventors is arranged, and the observation result of the metal structure and the oxidation increase amount are arranged. As a result of comparison, the inventors have found that the optimum range of C, N, and Zr can be explained by the following two formulas.
  • Zr / (C + 6N / 7) ⁇ 4Zr + 5 (2) 5 (7C + 6N) / (7-4 (7C + 6N)) ⁇ Zr (2) ′;
  • Zr / (C + 6N / 7) is lower than the lower limit defined by the relational expression (2) shown in FIG. 1, Zr necessary for forming Zr carbonitride is insufficient, so that excess C and N are Bonds with Cr in steel to form Cr carbide and Cr nitride.
  • the effective Cr amount of the base material is reduced, and as a result, the oxidation resistance of the solid oxide fuel cell steel is reduced. Therefore, it is preferable that Zr, C, and N satisfy the relational expression (2).
  • the relational expression (2) ′ can be obtained by arranging the relational expression (2) with respect to Zr.
  • Zr / (C + 6N / 7) ⁇ ⁇ 66Zr + 41 (3), Zr ⁇ 41 (7C + 6N) / (7 + 66 (7C + 6N)) (3) ′;
  • Zr / (C + 6N / 7) exceeds the upper limit defined by the relational expression (3) shown in FIG. 1, Zr carbonitride is formed in the solid oxide fuel cell steel, and the excess Zr is still present. Will occur. At this time, surplus Zr combines with Fe in the steel to form an intermetallic compound containing Fe and Zr in the ferrite matrix.
  • the relational expression (3) ′ can be obtained by rearranging the relational expression (3) with respect to Zr.
  • the relational expression (1) is obtained by arranging the relational expressions (2) ′ and (3) ′ obtained as described above.
  • the steel for solid oxide fuel cells of the present invention is provided as steel for solid oxide fuel cells by rolling, and the plate thickness is preferably 0.5 mm or less.
  • the plate thickness is set to 0.5 mm. Needless to say, even when the plate thickness exceeds 0.5 mm, the oxidation resistance of the solid oxide fuel cell steel can be improved by achieving the alloy composition and alloy structure of the present invention.
  • the solid oxide fuel cell steel of the present invention is characterized not only by its alloy composition but also by its alloy structure, the alloy structure is not uniquely determined only by the alloy composition, and its production The method is extremely important.
  • Cold rolling material a cold rolling material having the composition defined in the present invention (cold rolling step).
  • a hot rolled material having a thickness of about 2 to 5 mm may be used.
  • annealing and cold rolling are repeated to obtain a desired thickness.
  • ⁇ Intermediate annealing process> One purpose of performing the annealing in the cold rolling process of the present invention at 800 to 1100 ° C.
  • the intermetallic compound containing Fe and Zr can ideally suppress the precipitation by using the alloy composition described above, but it is industrially During the production of large steel ingots, precipitation of intermetallic compounds containing Fe and Zr may be observed inside the steel ingot due to the effect of segregation. For this reason, when the material for cold rolling having the composition described above is used, intermediate annealing is performed for the purpose of dissolving an intermetallic compound containing Fe and Zr.
  • the annealing temperature is less than 800 ° C.
  • the cold rolled material is not sufficiently softened and not only there is a risk of cracking during final rolling, but also when an intermetallic compound containing Fe and Zr is precipitated in a large amount, An intermetallic compound containing Fe and Zr cannot be sufficiently dissolved.
  • the annealing process is performed at a temperature exceeding 1100 ° C., the crystal grains of the cold-rolled material become coarse, so that the crystal grains do not become fine even if the final cold rolling and the final annealing are performed.
  • solid oxide fuel cell steel is provided as a solid oxide fuel cell component by various plastic workings represented by press working.
  • the intermediate annealing temperature is set to 800 ° C. or higher and 1100 ° C. or lower.
  • a preferable temperature range of the intermediate annealing is 820 to 1050 ° C, more preferably 850 to 1000 ° C.
  • the final cold rolling is set to 30% or more by introducing sufficient strain into the steel strip for the solid oxide fuel cell to promote the recrystallization by the subsequent final annealing, and the fine crystal This is to form grains.
  • the crystal grains of the solid oxide fuel cell steel are preferably fine, and the final cold rolling is performed at 30% or more. Preferably it is 35% or more, more preferably 40% or more.
  • the upper limit of rolling is not particularly set, but if cold rolling is performed exceeding 90%, the end of the steel strip is cracked, which may reduce the yield.
  • the thickness of the material used for the final cold rolling is adjusted by cold rolling and intermediate annealing so that the final rolling is 90% or less. It is preferable.
  • the final annealing at 750 to 1050 ° C. is performed on the cold-rolled material that has been subjected to the final cold rolling in the present invention in order to remove the strain in the solid oxide fuel cell steel and form fine crystal grains. It is.
  • the final annealing is performed at a temperature equal to or lower than the above-mentioned intermediate annealing in order to make the metal structure of the solid oxide fuel cell steel finally obtained into fine crystal grains. Then, it is preferable to suppress crystal grain growth. Therefore, the final annealing temperature range is 750 to 1050 ° C. A preferred temperature range is 780 to 1000 ° C.
  • the atmosphere for both the intermediate annealing and the final annealing is preferably a non-oxidizing atmosphere using an inert gas such as N 2 or H 2 .
  • the cooling rate after the intermediate annealing and the final annealing is slow, there is a possibility that the intermetallic compound containing Fe and Zr once dissolved is precipitated again during the cooling.
  • the cooling rate after annealing shall be 50 degrees C / h or more. More preferably, it is 100 degreeC / h or more, More preferably, it is 200 degreeC / h or more.
  • the steel for solid oxide fuel cell of the present invention described above has excellent oxidation resistance, for example, a separator, an interconnector, a current collecting component, an end plate, a current connecting component, a fastening bolt, etc. It is suitable for various solid oxide fuel cell members. Nets, thin wires, thin plates, strips, bars, and members formed by pressing them, etched members, machined members, welded members, brazed member metals or alloy clad members, metals, It is also possible to process and use in various shapes such as a surface-treated member of an alloy or oxide.
  • a 10 kg steel ingot was produced by vacuum melting, forging and hot rolling were performed, and annealing and cold rolling were repeated to produce a steel strip for a solid oxide fuel cell having a thickness of 0.5 mm.
  • the intermediate annealing was performed at 820 to 950 ° C., after which 50% final cold rolling was performed, and then final annealing was performed at 820 to 950 ° C.
  • Table 1 shows the chemical compositions of Examples Steels 1 to 12 having an alloy composition within the range specified by the present invention and Comparative Steels 21 to 26 having an alloy composition outside the range specified by the present invention.
  • the impurity elements not shown in Table 1 are within the ranges of Mo ⁇ 0.2%, H ⁇ 0.0003%, B ⁇ 0.001%, P ⁇ 0.04%, and S ⁇ 0.015% in each alloy. there were.
  • FIG. 1 represents the composition range of the solid oxide fuel cell steel of the present invention.
  • a test piece of 15 mm (w) ⁇ 15 mm (l) ⁇ 0.5 mm (t) was cut out from the above-mentioned steel for solid oxide fuel cell having a thickness of 0.5 mm and subjected to oxidation treatment at 850 ° C. for 1000 hours in the atmosphere. went.
  • the oxidation resistance was evaluated by measuring the weight before and after oxidation. The results are shown in Table 3.
  • No. defined in the present invention Nos. 1-12 and No. 1 as a comparative example.
  • the metal structure of the cross section was observed with EPMA, and the visual field area ratio of the intermetallic compound containing Fe and Zr found in 0.25 mm 2 was investigated.
  • the material used was the above-mentioned steel for a solid oxide fuel cell having a thickness of 0.5 mm, and five points were analyzed near the center in the thickness direction at an observation magnification of 400 times.
  • the visual field area ratio of the intermetallic compound containing Fe and Zr was measured by image analysis. The results are shown in Table 3.
  • the chemical composition defined in the present invention is satisfied, and among them, No.
  • FIG. 2 shows the increase in oxidation after oxidation treatment at 850 ° C. for 1000 hours in air and the visual field area ratio of the intermetallic compound containing Fe and Zr.
  • the solid oxide fuel cell steels 1 to 12 are thin plate-like test pieces having a thickness of 0.5 mm and have a smaller oxidation increase than the comparative steels 21 to 26 and are excellent in oxidation resistance.
  • Nos. 1 to 9 and comparative steel no. 21 to 25 comparative steel No. 1 in which an intermetallic compound containing Fe and Zr was observed at 1.1% or more was observed.
  • Nos. 21 to 25 have a larger oxidation increase than the steels of the present invention having the same Cr, W, Mn and Cu amounts, and it is clear that the presence of intermetallic compounds impairs oxidation resistance.
  • Table 3 also shows that when the relational expression is satisfied even when the Cr and Mn contents are different, the visual field area ratio of the intermetallic compound containing Fe and Zr in the metal structure is 1.1% or less.
  • no. Nos. 10 to 12 have a composition in which the Mn amount is large and W is not included, so that the oxidation resistance is apt to be inferior in this example.
  • the comparative steel No By setting it to 1% or less, the comparative steel No. It can be seen that the oxidation resistance is 21 to 25 or more.
  • Comparative Steel No. In addition to the fact that the composition is out of the range defined in the present invention, the amount of Zr itself is insufficient, and the amount of C and N in the alloy matrix cannot be sufficiently reduced. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Sustainable Development (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Fuel Cell (AREA)

Abstract

 Zrを含む固体酸化物形燃料電池用鋼において、薄板で安定して優れた耐酸化性を得ることのできる組成バランスを有する固体酸化物形燃料電池用鋼を提供する。 質量%でC0を超えて0.05%以下、N0.05%以下、O0.01%以下、Al0.2%以下、Si0.15%以下、Mn0.1~1.0%、Cr20.0~25.0%、Ni0%を超えて1.0%以下、La0.02~0.12%、Zr0.1~0.5%、La+Zr0.15~0.5%、残部Fe及び不純物からなる固体酸化物形燃料電池用鋼において、前記固体酸化物形燃料電池用鋼が下記の関係式を満足し、前記固体酸化物形燃料電池用鋼は、フェライト基地中に見られるFeとZrを含む金属間化合物が視野面積率で1.1%以下である固体酸化物形燃料電池用鋼。 5(7C+6N)/(7-4(7C+6N))≦Zr≦41(7C+6N)/(7+66(7C+6N))

Description

固体酸化物形燃料電池用鋼及びその製造方法
 本発明は、耐酸化性に優れた固体酸化物形燃料電池用鋼及びその製造方法に関するものである。
 固体酸化物形燃料電池は、600~1000℃程度の高温で作動するため、その発電効率が高いこと、SOx、NOx、COの発生量が少ないこと、負荷の変動に対する応答性が良いこと、燃料多様性に対応できること、コンパクトであること等の優れた特徴を有するため、火力発電の代替としての大規模集中型、都市近郊分散配置型、及び自家発電用分散電源、自動車等の補助電源等の幅広い発電システムへの適用が期待されている。その中で、セパレータ、インターコネクタ、集電体等の固体酸化物形燃料電池用の部品には、当初、作動温度の主流が1000℃程度の高温であったため、耐酸化性、電気伝導性、及び、電解質・電極に近い熱膨張係数等の特性を要求されることからセラミックスが多く用いられてきた。
 しかし、セラミックスは加工性が悪く、高価であること、また、近年、固体酸化物形燃料電池の作動温度が低下し、600~900℃程度になってきたことから、例えば、セパレータの部品等にはセラミックスより安価で、かつ加工性が良く、耐酸化性の優れた金属製の部品を用いる検討が盛んに行われている。
 前述の固体酸化物形燃料電池用に用いられる金属製の部品には、優れた耐酸化性が求められ、本願出願人も特開2007-16297号公報(特許文献1)、特開2005-320625号公報(特許文献2)、WO2011/034002号パンフレット(特許文献3)、WO2012/144600号パンフレット(特許文献4)等として、耐酸化性に優れるフェライト系ステンレス鋼を提案している。
特開2007-016297号公報 特開2005-320625号公報 WO2011/034002号パンフレット WO2012/144600号パンフレット
 上述した本願出願人の提案による固体酸化物形燃料電池用鋼は、優れた耐酸化性と電気伝導性を有するものである。ところで、特許文献3に記載されるように、炭素(C)及び窒素(N)は耐酸化性を劣化する元素として、低く規制される元素である。本発明者の検討によれば、炭素や窒素の含有量が極めて少ない原料を使用し、真空製錬を行うことで固体酸化物形燃料電池用鋼中の炭素及び窒素含有量を低下させることが可能である。
 しかし、本発明者らは、前記の特許文献1~4の固体酸化物形燃料電池用鋼のC、Nを大幅に低減したところ、必ずしも耐酸化性が大幅に向上しない場合があることを知見した。これは特に、酸化膜の成長を抑制し、酸化被膜を緻密化させたり、酸化被膜の密着性を向上させる働きを有するZrを含む合金で、かつ板厚が0.5mm以下である薄板において特に顕著であることを新たに知見した。
 本発明の目的は、Zrを含む固体酸化物形燃料電池用鋼において、安定して優れた耐酸化性を得ることのできる組成バランスを有する固体酸化物形燃料電池用鋼を提供することである。
 本発明者は、Zrを含有する固体酸化物形燃料電池用鋼において、良好な耐酸化性を安定して得られる組成や金属組織を詳細に検討した。
 その結果、フェライト基地中に見られるFeとZrを含む金属間化合物の量を低く抑えることによって安定して良好な耐酸化性を得ることができることを見出し、本発明に到達した。
 すなわち本発明は、質量%でC:0を超えて0.05%以下、N:0.050%以下、O:0.01%以下、Al:0.15%以下、Si:0.15%以下、Mn:0.1~1.0%、Cr:20.0~25.0%、Ni:0%を超えて1.0%以下、La:0.02~0.12%、Zr:0.1~0.5%、La+Zr:0.15~0.5%、残部Fe及び不純物からなる固体酸化物形燃料電池用鋼において、前記固体酸化物形燃料電池用鋼が下記の関係式を満足し、かつ前記固体酸化物形燃料電池用鋼は、フェライト基地中に見られるFeとZrを含む金属間化合物が視野面積率で1.1%以下である固体酸化物形燃料電池用鋼である。
 5(7C+6N)/(7-4(7C+6N))≦Zr≦41(7C+6N)/(7+66(7C+6N))
 好ましくは更に質量%でCu:0.5~2.0%、W:1.0~3.0%を含有し、且つ前記MnとCrの含有量が、Mn:0.1~0.4%、Cr:22.0~25.0%である固体酸化物形燃料電池用鋼である。
 更に好ましくは厚さが0.5mm以下である前記何れかに記載の固体酸化物形燃料電池用鋼である。
 また本発明は前記の組成を有する冷間圧延用素材を用いて、冷間圧延を行う冷間圧延工程と、冷間圧延工程中の焼鈍を800~1100℃の中間焼鈍工程と、
 30%以上の最終冷間圧延を行った冷間圧延材に750~1050℃の最終焼鈍を行って、フェライト基地中に見られるFeとZrを含む金属間化合物が視野面積率で1.1%と以下とする最終焼鈍工程と、
 を含む固体酸化物形燃料電池用鋼の製造方法である。
 本発明の固体酸化物形燃料電池用鋼は、特にZrを含む固体酸化物形燃料電池用鋼の耐酸化性を安定的に向上することで燃料電池の長時間使用での性能の低下を安定的に抑制することができる。また、電気伝導性や、電解質や電極材との熱膨張差が小さいという特徴はそのまま維持したものである。さらにこうした特徴を薄板においても維持したものである。従って、固体酸化物形燃料電池の部品において、金属材料製の部品として最も要求特性の厳しいセパレータ、インターコネクタや集電体等として用いた場合に、長時間での耐久性向上、高性能化に大きく寄与できる。
実施例と比較例の化学組成を表す図である。 FeとZrを含む金属間化合物(Laves相)の視野面積率と酸化増量の関係を示す図である。
 上述したように、本発明の重要な特徴は固体酸化物形燃料電池用鋼において耐酸化性を大きく改善する適切な金属組織を見出したことにある。以下に本発明を詳しく説明する。
 <金属組織>
 上述したように、本発明はZrを必須で含有する。Zrは少量添加により酸化膜の成長を抑制し、酸化被膜を緻密化させたり、酸化被膜の密着性を向上させることで、耐酸化性、及び酸化被膜の電気伝導度を大幅に改善する効果を有する。その一方で、ZrはFeとの金属間化合物を生成する。なお、ここでいうFeとZrを含む金属間化合物とは一般に化学式FeZrで表されるラーベス(Laves)相と呼ばれる金属間化合物であり、化合物中に他の元素、例えばCrを含むこともある。
 本発明者らの知見によればFeとZrを含む金属間化合物の析出量が多くなるにつれて耐酸化性が悪化することが明らかとなった。この詳細な理由については明らかではないが、以下のように推定することができる。
 前述したように合金中に固溶したZrにより上述した耐酸化性の向上に効果を得ることができるが、FeとZrとを含む金属間化合物が析出するにつれて、合金基地中に固溶している実効Zr量が減少すると考えられる。その結果、本来、適正に調整した合金組成で発揮されるはずの耐酸化性向上効果が小さくなったと考えられる。
 上述したFeとZrを含む金属間化合物相がフェライト基地中の結晶粒界に連続して1.1%を超えると耐酸化性の劣化が大きくなることから、FeとZrを含む金属間化合物は1.1%以下とする。
 また視野面積率を測定する場合、経験上、電子線マイクロアナライザ(EPMA)を用い、視野面積0.25mmの面積を観察し、面積率を測定すれば十分である。
 次に本発明の固体酸化物形燃料電池用鋼において、各元素の含有量の範囲を規定した理由を述べる。
 <C:0を超えて0.05%以下>
 Cは、耐酸化性の劣化を抑制するために規定すべき最も重要な元素の一つである。Cは、上述したようにCrと結び付くことによりCr炭化物を形成して母相の固溶Cr量を減少させ、耐酸化性を低下させる元素である。そのため、耐酸化性を向上させるためには、Cは低くすることが有効であり、本発明では0.05%以下の範囲に限定する。なお好ましい上限は0.040%であり、より好ましい上限は0.030%であり、更に好ましい上限は0.025%である。
 一方、Zrを含む本発明の固体酸化物形燃料電池用鋼の場合、Cが低すぎるとZr炭化物(Nも存在する場合はZr炭窒化物)を形成し、さらにZrがフェライト基地中に固溶してもなお余剰のZrが残存する場合がある。余剰のZrはFeと反応してLaves相等の金属間化合物を形成して析出し耐酸化性を低下させる。そのため、Cは0%を超える必要がある。Cの好ましい下限は0.001%である。
 <N:0.050%以下>
 Nは、Crと結びつくことでCr窒化物を形成して母相の固溶Cr量を減少させ、耐酸化性を劣化させる元素であるため低い方が好ましい。しかしながら、低窒素とするには、窒素含有量の低い原料を使用して溶解したり、炉外製錬により溶鋼中の窒素を低減したりする必要があり、製造時のコストの上昇を招く。耐酸化性を向上させるためには、Nは低くすることが有効であり、また、NはC、Zrと反応してZr炭窒化物を形成して熱間加工性、冷間加工性を害することから、本発明では0.050%以下の範囲に限定する。好ましい上限は0.040%であり、より好ましい上限は0.030%であり、更に好ましい上限は0.020%である。
 一方、Zrを含む本発明の固体酸化物形燃料電池用鋼の場合、Nが低すぎるとZr窒化物(Cも存在する場合はZr炭窒化物)を形成し、さらにZrがフェライト基地中に固溶してもなお余剰のZrが残存する場合がある。余剰のZrがFeと反応してLaves相等の金属間化合物を形成して析出し耐酸化性を低下させる。そのため、Nは0%を超える必要がある。Nの好ましい下限は0.001%である。
 <Zr:0.1~0.5%>
 Zrは、少量添加により酸化膜の成長を抑制し、酸化被膜を緻密化させたり、酸化被膜の密着性を向上させることで、耐酸化性、及び酸化被膜の電気伝導度を大幅に改善する効果を有する。Zrは0.1%より少ないと酸化膜の成長抑制、酸化被膜の緻密性、密着性を向上させる効果が少なく、一方、0.5%より多く添加するとZrを含む粗大な化合物が多く形成され、熱間加工性及び冷間加工性が劣化するおそれがあることから、Zrは0.1~0.5%とする。好ましいZrの下限は0.15%であり、より好ましくは0.20%である。また、好ましいZrの上限は0.45%であり、より好ましくは0.4%である。
 <La:0.02~0.12%>
 Laは、少量添加により、酸化膜の成長を抑制し、主としてCrを含む酸化被膜を緻密化させたり、酸化膜の密着性を向上させることによって、良好な耐酸化性を発揮させており、添加が不可欠である。Laは0.02%より添加が少ないと酸化被膜の緻密性、密着性を向上させる効果が少なく、一方0.12%より多く添加するとLaを含む酸化物等の介在物が増加し熱間加工性が劣化するおそれがあるため、Laは0.02~0.12%とする。Laの好ましい下限は0.03%であり、より好ましい下限は0.04%である。また、Laの好ましい上限は0.11%であり、より好ましい上限0.10%である。
 <La+Zr:0.15~0.5%>
 本発明では、前述のLa及びZrについて、何れも優れた高温での耐酸化性を向上させる効果を有することから複合添加することで、より効果を発揮させることができる。その場合、LaとZrの合計が0.15%より少ないと耐酸化性向上への効果が少なく、一方、0.5%を超えて添加するとLaやZrを含む化合物が多く生成することによって熱間加工性や冷間加工性の低下が心配されることから、LaとZrは合計で0.15~0.5%とする。好ましいLa+Zrの下限は0.20%である。
 <O:0.01%以下>
 Oは、耐酸化性の劣化を補償するために制限すべき重要な元素の一つである。Oは、Al、Si、Mn、Cr、Zr、La等と酸化物系介在物を形成して、熱間加工性、冷間加工性を害するだけでなく、耐酸化性向上に大きく寄与するLa、Zr等の固溶量を減少させるため、これらの元素による耐酸化性向上効果を減じる。従って、0.01%以下に制限すると良い。好ましくは、0.008%以下、より好ましくは0.005%以下である。
 <Al:0.15%以下>
 Alは、脱酸のために少量添加され、鋼中の酸素量を低減することで耐酸化性に有効なZr、Laの固溶量を増加させて、耐酸化性を向上させる重要な元素の一つである。また、Alは、固体酸化物形燃料電池の作動温度において、Cr酸化被膜近傍の金属組織中にAlを粒子状、及び針状に形成する。これにより、Crの外方拡散を不均一にして安定なCr酸化被膜の形成を妨げることで、耐酸化性を劣化させる。このため、本発明では0.15%以下の範囲に限定する。前述のAlを低減した場合の効果をより確実に得るには、Alを0.1%以下とするのが好ましい。更に好ましくは0.05%以下とする。
 <Si:0.15%以下>
 Siは、脱酸のために少量添加され、鋼中の酸素量を低減することで耐酸化性に有効なZr、Laの固溶量を増加させて、耐酸化性を向上させる重要な元素の一つである。また、Siは、固体酸化物形燃料電池の作動温度において、Cr酸化被膜と母材の界面付近に膜状のSiOを形成する。SiOの電気比抵抗がCrの酸化物よりも高いことから、電気伝導性を低下させる。また、上述のAlの形成と同様に、安定なCr酸化被膜の形成を妨げることで、耐酸化性を劣化させる。このため、本発明では0.15%以下の範囲に限定する。前述のSiを低減した場合の効果をより確実に得るには、Siの上限を0.10%以下とすると良い。好ましくは0.08%以下であり、更に好ましくは0.07%以下、更に好ましくは0.06%以下である。
 <Mn:0.1~1.0%>
 Mnは、固体酸化物形燃料電池の作動温度において、Crと共にスピネル型酸化物を形成することによって高温での導電性を向上させる重要な元素である。Mnを含むスピネル型酸化物層は、Cr酸化物層の外側(表面側)に形成される。ここでCr表面酸化層から蒸発したCrは固体酸化物形燃料電池のセラミックス部品に蒸着して燃料電池の性能を劣化させる複合酸化物を形成することが知られている。このスピネル型酸化物層は、固体酸化物形燃料電池用鋼のCr表面酸化層からCrが蒸発するのを防ぐ保護効果を有する。また、このスピネル型酸化物は、通常Crに比べると酸化速度が大きいので、耐酸化性そのものに対しては不利に働く一方で、酸化被膜の平滑さを維持して、接触抵抗の低下や燃料電池セルに対して有害なCrの蒸発を防ぐ効果を有している。このため、最低限0.1%を必要とする。好ましいMnの下限は0.2%である。
 一方、過度に添加すると酸化被膜の成長速度を速めるために耐酸化性が悪くなる。従って、Mnは1.0%を上限とする。好ましいMnの上限は0.6%であり、より好ましくは0.4%である
 <Cr:20.0~25.0%>
 Crは、固体酸化物形燃料電池の作動温度において、緻密なCrに代表されるCr酸化被膜の生成により、優れた耐酸化性を実現するに基本的に必要な元素である。また、電気伝導性を維持するために重要な元素である。安定して良好な耐酸化性及び電気伝導性を得るため最低限20.0%を必要とする。
 しかしながら、過度の添加は耐酸化性向上にさほど効果がないばかりか加工性の劣化を招くので上限を25.0%に限定する。好ましいCrの下限は21.0%であり、より好ましい下限は22.0%である。
 <Ni:0%を超えて1.0%以下>
 Niは、少量添加することで靱性の向上に効果がある。その一方で、オーステナイト生成元素であるため、過度に含有した場合、フェライト-オーステナイトの二相組織となり易く、熱膨張係数を増加させる。また、本発明のようなフェライト相を母相とする鋼を製造する際に、例えば、リサイクル材の溶解原料を用いたりすると、不可避的に混入する場合もある。Niの含有量が多くなり過ぎると、熱膨張係数の上昇によりセラミックス系の部品との接合性が低下することが懸念されるため、多量の添加または混入は好ましくない。そのため本発明においては、Niは0%を超えて1.0%以下とする。Niの好ましい上限は0.8%、更に好ましい上限は0.7%である。
 なお、本発明において後述のようにCuを含む場合は、赤熱脆性により熱間加工性が低下することが心配される。これを抑制するために少量のNiを添加することが有効である。なお、熱間加工性の改善の効果を得ようとする場合には、Cuを含む場合のNiの下限は0.1%が良く、好ましい下限は0.2%、更に好ましい下限は0.3%である。
 <Cu:0.5~2.0%>
 本発明の固体酸化物形燃料電池用鋼は、700~900℃程度の作動温度では、Cr酸化物層上に、Mnを含むスピネル型酸化物層が形成された2層構造のCr酸化被膜を形成する。
 Cuは、Cr酸化物層上に形成されるMnを含むスピネル型酸化物を緻密化することで、Cr酸化物層からのCrの蒸発を更に抑制する効果がある。しかし、Cuの添加量が少なすぎてもCr蒸発を更に抑制する効果は不十分となる。このためCuを添加することによるCr蒸発の抑制効果を発揮させるためには、Cuを0.5%以上添加する。しかし、Cuを2.0%より多く添加すると母相中にCu相が析出して、Cu相の存在場所でち密なCr酸化物が形成されにくくなり、耐酸化性が低下したり、熱間加工性が低下したり、フェライト組織が不安定となる可能性があるので、Cuを0.5~2.0%とした。好ましいCuの下限は、0.7%、更に好ましくは0.8%である。好ましいCuの上限は1.5%、更に好ましくは1.3%である。
 <W:1.0~3.0%>
 一般に、固溶強化等に対してWと同じ作用効果を発揮する元素としてMoが知られている。しかし、WはMoと比較して、固体酸化物形燃料電池の作動温度で酸化したときのCrの外方拡散を抑制する効果が高い。このことは特に耐酸化性が低下しやすい薄板において大きな効果をもたらし、薄板の耐酸化性を大幅に向上させる効果を有する。そのため、Wを添加することによる耐酸化性向上を発現させるために本発明では、Wを1.0~3.0%添加することができる。
 W添加によりCrの外方拡散を抑制することで、Cr酸化被膜形成後の合金内部のCr量の減少を抑制することができる。また、Wは合金の異常酸化も防止して、優れた耐酸化性を維持することができる。このようなW添加による耐酸化性向上効果は、同時にCr量を高めることによって更に高い効果をもたらすことから、Wを添加するとともにCr量の下限を高めるのがよい。しかし、Wを3.0%を超えて添加してもより一層の向上効果はなく、一方で熱間加工性が劣化するため、Wは3.0%以下とする。なお、好ましい上限は2.5%、更に好ましくは2.3%であり、好ましい下限は1.5%、更に好ましくは1.7%である。
 本発明では、上述した元素以外は、Fe及び不純物とする。以下、代表的な不純物とその好ましい上限を以下に示しておく。なお、不純物元素であるため、各元素の好ましい下限は0%である。
 <Mo:0.2%以下>
 Moは、耐酸化性を低下させることから積極的な添加は行わず0.2%以下に制限する。
 <S:0.015%以下>
 Sは、希土類元素と硫化物系介在物を形成して、耐酸化性に効果をもつ有効な希土類元素量を低下させ、耐酸化性を低下させるだけでなく、熱間加工性、表面肌を劣化させるため、0.015%以下にすると良い。好ましくは、0.008%以下が良い。
 <P:0.04%以下>
 Pは酸化被膜を形成するCrよりも酸化しやすい元素であり、耐酸化性を劣化させるため、0.04%以下に制限すると良い。好ましくは、0.03%以下が良く、更に好ましくは、0.02%以下、更には0.01%以下が良い。ただし、Cu、Wを含む場合にはこれらの元素の耐酸化性向上効果により、やや多めでも許容され、Pは、0.04%以下に制限すると良く、好ましくは0.03%以下である。
 <B:0.003%以下>
 Bは、約700℃以上の高温で酸化被膜の成長速度を大きくし、耐酸化性を劣化させる。また、酸化被膜の表面粗さを大きくして酸化被膜と電極との接触面積を小さくすることによって接触抵抗を劣化させる。そのため、Bは0.003%以下に制限すると良く、できるだけ0%まで低減させる方が良い。好ましい上限は0.002%以下が良く、更に好ましくは0.001%未満が良い。
 <H:0.0004%以下>
 Hは、Fe-Cr系フェライト母相中に過剰に存在すると、粒界等の欠陥部へ集まり易く、水素脆化を起こすことで製造中に割れを発生させる場合があることから、0.0004%以下に制限すると良い。更に好ましくは0.0003%以下が良い。
 <関係式>
 本発明において、良好な耐酸化性を確保するためのC、N及びZrは、密接に関係しており、下記の関係式を満足する範囲とするのが必要である。
 5(7C+6N)/(7-4(7C+6N))≦Zr≦41(7C+6N)/(7+66(7C+6N))…(1)
 なお関係式中のZr、C、Nはそれぞれ、Zr、C、Nの質量%を示す。
 本発明の固体酸化物形燃料電池用鋼におけるC、N及びZrの組成範囲は金属組織中に析出する化合物相によって規定される。関係式で表されるものは耐酸化性に有害な化合物相の析出を抑制するC、N及びZrの範囲を表す指標を示すものである。ここで、耐酸化性に有害な化合物とは、作動温度付近で析出したり、製造工程中に残存する可能性のあるCr炭化物、FeとZrを含む金属間化合物をいう。この関係式は、本発明者らが多数の固体酸化物形燃料電池用鋼における金属間化合物、炭化物の析出状況と酸化増量の大小、更に化学成分との関係を入念に調査した結果から導いたものであり、図1によって説明される。
 本発明の固体酸化物形燃料電池用鋼中においてC及びNは、Zrと化合してZr炭窒化物(Zr(C,N))を形成している。Zr(C,N)の形成は、合金母相中のC及びNを低減することによって、耐酸化性、加工性等を向上させる効果を有する一方で、過度に合金母相中のC及びN量を低減すると逆に耐酸化性等の低下を招く。また、Zr量が不十分で合金母相中のC及びN量を十分低減できない場合もまた、耐酸化性の低下を招く。即ち、C、N及びZr量のバランスには、最適な範囲が存在する。
 本発明者らはZr(C,N)を形成する組成比に着目し、CとNとの原子量を考慮した値としてZr/(C+6N/7)をC、N、Zrのバランスの指標として採用した。続いて、図1に示すように、本発明者らが調査した固体酸化物形燃料電池用鋼におけるZr量とZr/(C+6N/7)の関係を整理し、金属組織の観察結果および酸化増量の大小を比較したところ、以下の2式でC、N、Zrの最適な範囲を説明できることを見出したのである。
 Zr/(C+6N/7)≧4Zr+5…(2)
 5(7C+6N)/(7-4(7C+6N))≦Zr…(2)’;
 Zr/(C+6N/7)が図1で示された関係式(2)で規定する下限を下回ると、Zr炭窒化物を形成するために必要なZrが不足するため、余剰のC及びNは鋼中のCrと結合し、Cr炭化物やCr窒化物を形成する。その結果、母材の有効Cr量を低下させ、ひいては固体酸化物形燃料電池用鋼の耐酸化性を低下させる。そのため、Zr、C、Nは関係式(2)を満たすことが好ましい。なお、関係式(2)をZrについて整理することで関係式(2)’を得ることができる。
 Zr/(C+6N/7)≦-66Zr+41…(3)、
 Zr≦41(7C+6N)/(7+66(7C+6N))…(3)’;
 Zr/(C+6N/7)が図1で示された関係式(3)で規定する上限を上回ると、固体酸化物形燃料電池用鋼中でZr炭窒化物を形成してなお余剰のZrが生ずることになる。このとき余剰のZrは鋼中のFeと化合し、フェライト基地中にFeとZrを含む金属間化合物を形成する。このような金属間化合物は合金基地中の実効Zr濃度を低下させ、ひいては固体酸化物形燃料電池用鋼の耐酸化性を低下させる。そのため、Zrは関係式(3)を満たすことが好ましい。なお関係式(3)をZrについて整理することで関係式(3)’を得ることができる。
 以上より得られた関係式(2)’、関係式(3)’を整理して関係式(1)が得られる。
 <厚さ0.5mm以下>
 本発明の固体酸化物形燃料電池用鋼は圧延によって、固体酸化物形燃料電池用鋼として供せられ、その板厚は0.5mm以下とすることが良い。一般に高温環境下で使用される合金の耐酸化性は板厚が薄くなるにつれて低下し、また合金素材の性質をより顕著に反映することが知られている。本発明は上述した合金組成及び合金組織を達成することで、特に薄板における耐酸化性を向上させることができる。そのため、本発明の固体酸化物形燃料電池用鋼の板厚の好ましい上限を0.5mmとした。なお、板厚が0.5mm超であった場合においても本発明の合金組成及び合金組織を達成することで固体酸化物形燃料電池用鋼の耐酸化性の向上が図られることは言うまでもない。
 本発明の固体酸化物形燃料電池用鋼はその合金組成だけでなく、合金組織にも特徴を有しているが、合金組織は合金組成だけで一義的に決定されるものではなく、その製造方法が極めて重要である。
 <冷間圧延用素材>
 先ず、前述の本発明で規定する組成を有する冷間圧延用素材を用いて、冷間圧延を行う(冷間圧延工程)。冷間圧延用の素材は、厚さが2~5mm程度の熱間圧延材を用いればよい。この冷間圧延用素材を用いて、焼鈍と冷間圧延を繰返して所望の厚さとする。
 <中間焼鈍工程>
 本発明の冷間圧延工程中の焼鈍を800~1100℃で行う一つの目的は、冷間圧延によって導入された歪みを除去して冷間圧延材を軟化させることで最終冷間圧延材の割れを防止するためである。また、本発明の固体酸化物形燃料電池用鋼において、FeとZrを含む金属間化合物は前記記載の合金組成とすることで理想的にはその析出を抑制することができるが、工業的な大型鋼塊の製造時においては偏析の影響で鋼塊内部にFeとZrを含む金属間化合物の析出が認められる場合がある。このため、前記記載の組成を有する冷間圧延用素材を用いた場合において、FeとZrを含む金属間化合物を固溶させることを目的として中間焼鈍を行う。
 焼鈍温度が800℃未満では冷間圧延材が十分に軟化せず、最終圧延時に割れが発生するおそれがあるだけでなく、FeとZrとを含む金属間化合物が多量に析出していた場合、FeとZrとを含む金属間化合物を十分に固溶させることができない。一方、焼鈍工程を1100℃を超えた温度で実施すると、冷間圧延材の結晶粒が粗大化してしまうため、最終冷間圧延と最終焼鈍を施しても結晶粒が微細にならない。一般に固体酸化物形燃料電池用鋼はプレス加工に代表される種々の塑性加工によって固体酸化物形燃料電池用部品として供せられるが、結晶粒が粗大な場合、塑性加工によって割れを生じやすくなるだけでなく、固体酸化物形燃料電池用の帯鋼の強度や靱性が低下するおそれがある。従って固体酸化物形燃料電池用鋼の結晶粒を微細とするため、中間焼鈍温度は800℃以上、1100℃以下とする。好ましい中間焼鈍の温度範囲は820~1050℃であり、より好ましくは850~1000℃である。
 <最終冷間圧延>
 本発明で最終冷間圧延を30%以上とするのは、固体酸化物形燃料電池用の帯鋼に十分な歪みを導入することで、その後の最終焼鈍によって再結晶化を促進し、微細結晶粒を形成させるためである。上述したように固体酸化物形燃料電池用鋼の結晶粒は微細であることが好ましく、最終冷間圧延を30%以上実施するものとする。好ましくは35%以上であり、より好ましくは40%以上である。なお圧延の上限は特に設けないが、90%を超えて冷間圧延を施すと帯鋼の端部に割れが生じ、歩留まりを低下させるおそれがある。このため、より薄い固体酸化物形燃料電池用鋼を製造したい場合、最終圧延が90%以下となるよう、最終冷間圧延に供する素材の厚さを冷間圧延と中間焼鈍によって調整しておくことが好ましい。
 <最終焼鈍>
 また、本発明で最終冷間圧延を行った冷間圧延材に750~1050℃の最終焼鈍を行うのは、固体酸化物形燃料電池用鋼中の歪みを除去して微細結晶粒にするためである。最終焼鈍以降、結晶組織を制御する工程はないため、最終的に得られる固体酸化物形燃料電池用鋼の金属組織を微細結晶粒とするため、前記の中間焼鈍以下の温度で最終焼鈍を実施し、結晶粒成長を抑制するとよい。従って最終焼鈍の温度範囲は750~1050℃とする。好ましい温度範囲は780~1000℃である。
 なお中間焼鈍、最終焼鈍ともにその雰囲気はN等の不活性ガスやH等を使用した非酸化性雰囲気とすることが好ましい。また中間焼鈍および最終焼鈍後の冷却速度が遅い場合、一度固溶したFeとZrを含む金属間化合物が冷却中に再度析出するおそれがある。このため焼鈍後の冷却速度は50℃/h以上とすることが好ましい。より好ましくは100℃/h以上であり、更に好ましくは200℃/h以上である。
 この製造方法を適用することで、上述した本発明で規定する金属組織を得ることができる。
 以上、説明する本発明の固体酸化物形燃料電池用鋼は、優れた耐酸化性を有しているため、例えば、セパレータ、インターコネクタ、集電部品、エンドプレート、電流接続部品、締結ボルト等の種々の固体酸化物形燃料電池の部材に好適である。網、細線、薄板、帯材、棒材、及びこれらをプレス成形した部材、エッチング加工した部材、機械加工した部材、溶接接合した部材、ロウ付接合した部材金属または合金をクラッドした部材、金属、合金または酸化物を表面処理した部材などの種々形状に加工して使用することも可能である。
 以下の実施例で本発明を更に詳しく説明するが、これら実施例によって本発明が限定されるものではない。
 真空溶解で10kg鋼塊を作製し、鍛造、熱間圧延を行い、焼鈍と冷間圧延を繰返して、厚さ0.5mmの固体酸化物形燃料電池用の帯鋼を作製した。なお中間焼鈍は820~950℃で行い、その後50%の最終冷間圧延を実施した後、820~950℃で最終焼鈍を行った。
 本発明で規定する範囲内の合金組成を有する実施鋼1~12、並びに本発明で規定する範囲から外れた合金組成を有する比較鋼21~26の化学組成を表1に示す。表1に示さない不純物元素は、各合金ともに、Mo≦0.2%、H≦0.0003%、B<0.001%、P≦0.04%、S≦0.015%の範囲であった。
Figure JPOXMLDOC01-appb-T000001
 続いてこれらのC、N量に基づき関係式(1)で規定されるZrの範囲を算出し、各々のZr含有量と比較した。また併せてZr含有量とZr/(C+6/7N)との関係を比較した。表2、図1に結果を示す。なお図1着色部は本発明の固体酸化物形燃料電池用鋼の組成範囲を表している。
Figure JPOXMLDOC01-appb-T000002
 上記厚さ0.5mmの固体酸化物形燃料電池用鋼より15mm(w)×15mm(l)×0.5mm(t)の試験片を切り出し、大気中で850℃で1000時間の酸化処理を行った。酸化前後の重量を測定し、耐酸化性の評価を行った。この結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 続いて本発明で規定するNo.1~12と、比較例であるNo.21~26の酸化前の試験片について、断面の金属組織をEPMAにて観察し、0.25mm中に見られるFeとZrを含む金属間化合物の視野面積率を調査した。
 用いた素材は厚さ0.5mmの上記固体酸化物形燃料電池用鋼であり、厚さ方向の中心近傍を観察倍率400倍にて5点分析した。FeとZrを含む金属間化合物の視野面積率を画像解析にて計測した。この結果を表3に示す。また本発明で規定する化学組成を満足し、中でもCr含有量が多いNo.1~9と本発明で規定する化学組成よりZr量が過剰であるNo.21~25について、大気中で850℃で1000時間酸化処理した後の酸化増量とFeとZrとを含む金属間化合物の視野面積率を併せて図2に示す。
 本発明で規定する化学組成の範囲を満足するNo.1~12の固体酸化物形燃料電池用鋼は、厚さ0.5mmの薄い板状試験片で比較鋼21~26と比べ酸化増量が少なく耐酸化性に優れることが明らかである。またCr、W、Mn、Cu量がほぼ同等のNo.1~9と比較鋼No.21~25とを比較すると、FeとZrを含む金属間化合物が1.1%以上観察された比較鋼No.21~25はCr、W、Mn、Cu量が同等の本発明鋼と比較して酸化増量が多く、金属間化合物の存在が耐酸化性を害することが明らかである。
 また表3よりCr、Mnの含有量が異なる場合においても関係式を満足する場合、金属組織中のFeとZrを含む金属間化合物の視野面積率は1.1%以下となることがわかる。特にNo.10~12はMn量が多く、Wを含まないために本実施例の中でも耐酸化性が劣りやすい組成を有するが、金属組織中のFeとZrを含む金属間化合物の視野面積率を1.1%以下とすることで、比較鋼No.21~25以上の耐酸化性を示すことがわかる。
 一方、比較鋼No.26は組成が本発明で規定する範囲から外れていることに加え、Zr量そのものが不足し、合金母相中のC、N量を十分低減できないため、耐酸化性が良くないものと考えられる。

 

Claims (5)

  1.  質量%でC:0を超えて0.05%以下、N:0.050%以下、O:0.01%以下、Al:0.15%以下、Si:0.15%以下、Mn:0.1~1.0%、Cr:20.0~25.0%、Ni:0%を超えて1.0%以下、La:0.02~0.12%、Zr:0.1~0.5%、La+Zr:0.15~0.5%、残部Fe及び不純物からなる固体酸化物形燃料電池用鋼において、前記固体酸化物形燃料電池用鋼が下記の関係式を満足し、かつ前記固体酸化物形燃料電池用鋼は、フェライト基地中に見られるFeとZrを含む金属間化合物が視野面積率で1.1%以下であることを特徴とする固体酸化物形燃料電池用鋼。
     5(7C+6N)/(7-4(7C+6N))≦Zr≦41(7C+6N)/(7+66(7C+6N))
  2.  前記固体酸化物形燃料電池用鋼は、更に質量%でCu:0.5~2.0%、W:1.0~3.0%を含有し、且つ前記MnとCrの含有量が、Mn:0.1~0.4%、Cr:22.0~25.0%であることを特徴とする固体酸化物形燃料電池用鋼。
  3.  厚さが0.5mm以下であることを特徴とする請求項1または2に記載の固体酸化物形燃料電池用鋼。
  4.  質量%でC:0を超えて0.05%以下、N:0.05%以下、O:0.01%以下、Al:0.15%以下、Si:0.15%以下、Mn:0.1~1.0%、Cr:20.0~25.0%、Ni:0%を超えて1.0%以下、La:0.02~0.12%、Zr:0.1~0.5%、La+Zr:0.15~0.5%、残部Fe及び不純物からなる固体酸化物形燃料電池用鋼において、前記固体酸化物形燃料電池用鋼が下記の関係式を満足し、
     前記の組成を有する冷間圧延用素材を用いて、冷間圧延を行う冷間圧延工程と、
     前記冷間圧延工程中の焼鈍を800~1100℃で行う中間焼鈍工程と、
     圧延率30%以上の最終冷間圧延を行った冷間圧延材に750~1050℃の最終焼鈍を行って、フェライト基地中に見られるFeとZrを含む金属間化合物が視野面積率で1.1%以下とする最終焼鈍工程と、
     を含むことを特徴とする固体酸化物形燃料電池用鋼の製造方法。
     5(7C+6N)/(7-4(7C+6N))≦Zr≦41(7C+6N)/(7+66(7C+6N))
  5.  請求項4に記載の固体酸化物形燃料電池用鋼の製造方法であって、前記固体酸化物形燃料電池用鋼は、更に質量%でCu:0.5~2.0%、W:1.0~3.0%を含有し、且つ前記MnとCrの含有量が、Mn:0.1~0.4%、Cr:22.0~25.0%であることを特徴とする固体酸化物形燃料電池用鋼の製造方法。

     
PCT/JP2015/077679 2014-09-30 2015-09-30 固体酸化物形燃料電池用鋼及びその製造方法 WO2016052591A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US15/512,417 US10995384B2 (en) 2014-09-30 2015-09-30 Steel for solid oxide fuel cells and manufacturing method thereof
JP2016552106A JP6120199B2 (ja) 2014-09-30 2015-09-30 固体酸化物形燃料電池用鋼及びその製造方法
EP15845681.4A EP3202936B1 (en) 2014-09-30 2015-09-30 Steel for solid oxide fuel cells and method for producing same
KR1020177010192A KR101929138B1 (ko) 2014-09-30 2015-09-30 고체 산화물형 연료 전지용 강 및 그 제조방법
CA2962651A CA2962651C (en) 2014-09-30 2015-09-30 Steel for solid oxide fuel cells and manufacturing method thereof
CN201580051042.0A CN106715743B (zh) 2014-09-30 2015-09-30 固体氧化物型燃料电池用钢和其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-199725 2014-09-30
JP2014199725 2014-09-30

Publications (1)

Publication Number Publication Date
WO2016052591A1 true WO2016052591A1 (ja) 2016-04-07

Family

ID=55630616

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/077679 WO2016052591A1 (ja) 2014-09-30 2015-09-30 固体酸化物形燃料電池用鋼及びその製造方法

Country Status (7)

Country Link
US (1) US10995384B2 (ja)
EP (1) EP3202936B1 (ja)
JP (1) JP6120199B2 (ja)
KR (1) KR101929138B1 (ja)
CN (1) CN106715743B (ja)
CA (1) CA2962651C (ja)
WO (1) WO2016052591A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024004361A1 (ja) * 2022-06-30 2024-01-04 京セラ株式会社 導電部材、電気化学セル、電気化学セル装置、モジュールおよびモジュール収容装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109355591A (zh) * 2018-11-19 2019-02-19 深圳市致远动力科技有限公司 一种耐高温合金
WO2024100433A1 (fr) * 2022-11-08 2024-05-16 Aperam Tôle d'acier inoxydable ferritique et procédé de fabrication associé

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06116686A (ja) * 1992-10-06 1994-04-26 Kawasaki Steel Corp 耐酸化性に優れたFe−Cr−Al系合金およびその箔
JP2004269915A (ja) * 2003-03-05 2004-09-30 Jfe Steel Kk 接合時にしわよれのないAl含有高耐酸化性ステンレス箔および触媒担持体
WO2011034002A1 (ja) * 2009-09-16 2011-03-24 日立金属株式会社 耐酸化性に優れた固体酸化物形燃料電池用鋼
WO2012144600A1 (ja) * 2011-04-22 2012-10-26 日立金属株式会社 耐酸化性に優れた固体酸化物形燃料電池用鋼及びそれを用いた固体酸化物形燃料電池用部材
JP2013001962A (ja) * 2011-06-16 2013-01-07 Nippon Steel & Sumikin Stainless Steel Corp 熱間加工性と耐銹性に優れたフェライト系ステンレス鋼板及びその製造方法
JP2014031572A (ja) * 2012-07-13 2014-02-20 Nippon Steel & Sumikin Stainless Steel Corp 酸化皮膜の電気伝導性と密着性に優れたフェライト系ステンレス鋼板
JP2014139342A (ja) * 2014-01-08 2014-07-31 Nippon Steel & Sumikin Stainless Steel Corp 燃料電池用Al含有耐熱フェライト系ステンレス鋼およびその製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1298228B2 (en) * 2001-09-27 2012-08-22 Hitachi Metals, Ltd. Steel for separators of solid-oxide type fuel cells
JP4737600B2 (ja) 2004-04-09 2011-08-03 日立金属株式会社 固体酸化物型燃料電池セパレータ用鋼
JP2007016297A (ja) 2005-07-11 2007-01-25 Hitachi Metals Ltd 固体酸化物型燃料電池セパレータ用鋼
CN100513619C (zh) * 2007-12-19 2009-07-15 吉林化工学院 含稀土元素钇的用于固体氧化物燃料电池的铁素体不锈钢
JP4386144B2 (ja) * 2008-03-07 2009-12-16 Jfeスチール株式会社 耐熱性に優れるフェライト系ステンレス鋼
JP5645417B2 (ja) * 2010-02-12 2014-12-24 新日鐵住金ステンレス株式会社 耐酸化性と電気伝導性に優れたAl含有フェライト系ステンレス鋼
TWI480391B (zh) 2011-06-16 2015-04-11 Nippon Steel & Sumikin Sst Fat iron type stainless steel plate with excellent resistance to bulking and its manufacturing method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06116686A (ja) * 1992-10-06 1994-04-26 Kawasaki Steel Corp 耐酸化性に優れたFe−Cr−Al系合金およびその箔
JP2004269915A (ja) * 2003-03-05 2004-09-30 Jfe Steel Kk 接合時にしわよれのないAl含有高耐酸化性ステンレス箔および触媒担持体
WO2011034002A1 (ja) * 2009-09-16 2011-03-24 日立金属株式会社 耐酸化性に優れた固体酸化物形燃料電池用鋼
WO2012144600A1 (ja) * 2011-04-22 2012-10-26 日立金属株式会社 耐酸化性に優れた固体酸化物形燃料電池用鋼及びそれを用いた固体酸化物形燃料電池用部材
JP2013001962A (ja) * 2011-06-16 2013-01-07 Nippon Steel & Sumikin Stainless Steel Corp 熱間加工性と耐銹性に優れたフェライト系ステンレス鋼板及びその製造方法
JP2014031572A (ja) * 2012-07-13 2014-02-20 Nippon Steel & Sumikin Stainless Steel Corp 酸化皮膜の電気伝導性と密着性に優れたフェライト系ステンレス鋼板
JP2014139342A (ja) * 2014-01-08 2014-07-31 Nippon Steel & Sumikin Stainless Steel Corp 燃料電池用Al含有耐熱フェライト系ステンレス鋼およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3202936A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024004361A1 (ja) * 2022-06-30 2024-01-04 京セラ株式会社 導電部材、電気化学セル、電気化学セル装置、モジュールおよびモジュール収容装置

Also Published As

Publication number Publication date
EP3202936A1 (en) 2017-08-09
JP6120199B2 (ja) 2017-04-26
US20170275728A1 (en) 2017-09-28
CA2962651A1 (en) 2016-04-07
KR101929138B1 (ko) 2018-12-13
CA2962651C (en) 2018-12-18
JPWO2016052591A1 (ja) 2017-05-25
CN106715743A (zh) 2017-05-24
CN106715743B (zh) 2019-01-22
US10995384B2 (en) 2021-05-04
EP3202936A4 (en) 2017-08-23
EP3202936B1 (en) 2021-05-26
KR20170056644A (ko) 2017-05-23

Similar Documents

Publication Publication Date Title
JP4310723B2 (ja) 固体酸化物型燃料電池セパレータ用鋼
US9065084B2 (en) Steel for solid oxide fuel cell having excellent oxidation resistance
CA2833693C (en) Steel for solid oxide fuel cells having excellent oxidation resistance, and member for solid oxide fuel cells using same
EP1298228B2 (en) Steel for separators of solid-oxide type fuel cells
JP2005120399A (ja) 延性に優れた高強度低比重鋼板およびその製造方法
EP2933349B1 (en) Stainless steel sheet and stainless steel foil
JP6120199B2 (ja) 固体酸化物形燃料電池用鋼及びその製造方法
JP5858424B2 (ja) 固体高分子型燃料電池セパレータ用ステンレス鋼およびその製造方法
JP4430502B2 (ja) 延性に優れた低比重鋼板の製造方法
JP2007016297A (ja) 固体酸化物型燃料電池セパレータ用鋼
JP6395037B2 (ja) 固体酸化物形燃料電池用帯鋼
JP4524760B2 (ja) 耐酸化性鋼及びそれを用いてなる固体酸化物型燃料電池用部品
WO2020135438A1 (zh) 一种高强度覆铝基板用钢及其制造方法
JPH06293941A (ja) 固体電解質型燃料電池用金属材料
WO2004087980A1 (en) Stainless steel for use in high temperature applications
JP2014198868A (ja) 固体酸化物形燃料電池用ステンレス鋼の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15845681

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016552106

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2962651

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177010192

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15512417

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015845681

Country of ref document: EP