WO2024004361A1 - 導電部材、電気化学セル、電気化学セル装置、モジュールおよびモジュール収容装置 - Google Patents

導電部材、電気化学セル、電気化学セル装置、モジュールおよびモジュール収容装置 Download PDF

Info

Publication number
WO2024004361A1
WO2024004361A1 PCT/JP2023/016270 JP2023016270W WO2024004361A1 WO 2024004361 A1 WO2024004361 A1 WO 2024004361A1 JP 2023016270 W JP2023016270 W JP 2023016270W WO 2024004361 A1 WO2024004361 A1 WO 2024004361A1
Authority
WO
WIPO (PCT)
Prior art keywords
polycrystalline film
conductive member
cell
electrochemical cell
module
Prior art date
Application number
PCT/JP2023/016270
Other languages
English (en)
French (fr)
Inventor
章洋 原
和輝 平尾
篤輝 山口
貴弘 小見山
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Publication of WO2024004361A1 publication Critical patent/WO2024004361A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • H01M8/0208Alloys
    • H01M8/021Alloys based on iron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0215Glass; Ceramic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0228Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/247Arrangements for tightening a stack, for accommodation of a stack in a tank or for assembling different tanks
    • H01M8/2475Enclosures, casings or containers of fuel cell stacks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present disclosure relates to a conductive member, an electrochemical cell, an electrochemical cell device, a module, and a module housing device.
  • a fuel cell is a type of electrochemical cell that can obtain electric power using a fuel gas such as a hydrogen-containing gas and an oxygen-containing gas such as air.
  • a conductive member includes a base material and a polycrystalline film.
  • the base material contains chromium.
  • the polycrystalline film includes a plurality of chromium oxide particles and a grain boundary phase located between the plurality of chromium oxide particles, and is located on the base material.
  • the polycrystalline film includes a first element whose first ionization energy and free energy of oxide formation per mole of oxygen are lower than that of chromium.
  • the grain boundary phase has a higher content of the first element than the plurality of chromium oxide particles.
  • the electrochemical cell of the present disclosure includes an element portion and the conductive member described above.
  • a conductive member is connected to the element section.
  • the electrochemical cell device of the present disclosure has a cell stack including the electrochemical cell described above.
  • a module of the present disclosure includes the electrochemical cell device described above and a storage container that houses the electrochemical cell device.
  • the module housing device of the present disclosure includes the module described above, an auxiliary machine for operating the module, and an exterior case that houses the module and the auxiliary machine.
  • FIG. 1A is a cross-sectional view showing an example of an electrochemical cell according to the first embodiment.
  • FIG. 1B is a side view of an example of the electrochemical cell according to the first embodiment, viewed from the air electrode side.
  • FIG. 1C is a side view of an example of the electrochemical cell according to the first embodiment, viewed from the interconnector side.
  • FIG. 2A is a perspective view showing an example of the electrochemical cell device according to the first embodiment.
  • FIG. 2B is a cross-sectional view taken along line XX shown in FIG. 2A.
  • FIG. 2C is a top view showing an example of the electrochemical cell device according to the first embodiment.
  • FIG. 3 is a cross-sectional view showing an example of the conductive member according to the first embodiment.
  • FIG. 4A is a cross-sectional view taken along line AA shown in FIG. 3.
  • FIG. 4B is an enlarged view of region B shown in FIG. 4A.
  • FIG. 4C is an enlarged view of the polycrystalline film shown in FIG. 4B.
  • FIG. 5 is an external perspective view showing an example of the module according to the first embodiment.
  • FIG. 6 is an exploded perspective view schematically showing an example of the module housing device according to the first embodiment.
  • FIG. 7A is a cross-sectional view showing an example of an electrochemical cell according to the second embodiment.
  • FIG. 7B is an enlarged cross-sectional view of the conductive member according to the second embodiment.
  • FIG. 8A is a cross-sectional view showing an example of an electrochemical cell according to the third embodiment.
  • FIG. 8B is a cross-sectional view showing another example of the electrochemical cell according to the third embodiment.
  • FIG. 8C is a cross-sectional view showing another example of the electrochemical cell according to the third embodiment.
  • FIG. 8D is an enlarged view of region C shown in FIG. 8A.
  • FIG. 9A is a perspective view showing an example of an electrochemical cell according to the fourth embodiment.
  • FIG. 9B is a partial cross-sectional view of the electrochemical cell shown in FIG. 9A.
  • FIG. 9C is a partial cross-sectional view of the electrochemical cell shown in FIG. 9A.
  • the internal resistance of the conductive member may increase, and the battery performance may deteriorate.
  • drawings are schematic and the dimensional relationship of each element, the ratio of each element, etc. may differ from reality. Furthermore, drawings may include portions that differ in dimensional relationships, ratios, and the like.
  • the electrochemical cell device may include a cell stack having multiple electrochemical cells.
  • An electrochemical cell device having multiple electrochemical cells is simply referred to as a cell stack device.
  • FIG. 1A is a cross-sectional view showing an example of the electrochemical cell according to the first embodiment
  • FIG. 1B is a side view of the example electrochemical cell according to the first embodiment, viewed from the air electrode side.
  • FIG. 1C is a side view of an example of the electrochemical cell according to the first embodiment, viewed from the interconnector side. Note that FIGS. 1A to 1C show enlarged portions of each structure of the electrochemical cell.
  • the electrochemical cell may be simply referred to as a cell.
  • the cell 1 is a hollow flat plate and has an elongated plate shape.
  • the shape of the entire cell 1 when viewed from the side has, for example, a side length in the length direction L of 5 cm to 50 cm, and a length in the width direction W perpendicular to the length direction L. is, for example, a rectangle with a size of 1 cm to 10 cm.
  • the overall thickness of this cell 1 in the thickness direction T is, for example, 1 mm to 5 mm.
  • the cell 1 includes a conductive support substrate 2, an element section 3, and an interconnector 4.
  • the support substrate 2 has a columnar shape having a pair of opposing first surfaces n1 and second surfaces n2, and a pair of arcuate side surfaces m connecting the first surfaces n1 and second surfaces n2.
  • the element section 3 is located on the first surface n1 of the support substrate 2.
  • the element section 3 includes a fuel electrode 5 that is a first electrode, a solid electrolyte layer 6, and an air electrode 8 that is a second electrode.
  • the interconnector 4 is located on the second surface n2 of the cell 1.
  • the cell 1 may include an intermediate layer 7 between the solid electrolyte layer 6 and the air electrode 8.
  • the air electrode 8 does not extend to the lower end of the cell 1.
  • the solid electrolyte layer 6 is exposed on the first surface n1.
  • the interconnector 4 may extend to the lower end of the cell 1.
  • the interconnector 4 and the solid electrolyte layer 6 are exposed to the surface.
  • the solid electrolyte layer 6 is exposed on the surface of the pair of arcuate side faces m of the cell 1. The interconnector 4 does not have to extend to the lower end of the cell 1.
  • the support substrate 2 has a gas passage 2a inside thereof through which gas flows.
  • the example of the support substrate 2 shown in FIG. 1A has six gas flow paths 2a.
  • the support substrate 2 has gas permeability and allows gas flowing through the gas flow path 2 a to pass through to the fuel electrode 5 .
  • the support substrate 2 may be electrically conductive.
  • the conductive support substrate 2 collects electricity generated in the element portion to the interconnector 4 .
  • the material of the support substrate 2 includes, for example, an iron group metal component and an inorganic oxide.
  • the iron group metal component may be, for example, Ni (nickel) and/or NiO.
  • the inorganic oxide may be, for example, a specific rare earth element oxide.
  • the rare earth element oxide may contain one or more rare earth elements selected from, for example, Sc, Y, La, Nd, Sm, Gd, Dy, and Yb.
  • the fuel electrode 5 may be a porous conductive ceramic containing a material having electron conductivity and a material having ion conductivity.
  • the conductive ceramic for example, ceramics containing calcium oxide, magnesium oxide, or ZrO 2 in which a rare earth element oxide is dissolved, and Ni and/or NiO may be used.
  • This rare earth element oxide may include a plurality of rare earth elements selected from, for example, Sc, Y, La, Nd, Sm, Gd, Dy, and Yb.
  • ZrO 2 containing calcium oxide, magnesium oxide, or rare earth element oxide as a solid solution is sometimes referred to as stabilized zirconia.
  • Stabilized zirconia may include partially stabilized zirconia.
  • the solid electrolyte layer 6 is an electrolyte and transfers ions between the fuel electrode 5 and the air electrode 8. At the same time, the solid electrolyte layer 6 has gas barrier properties, making it difficult for fuel gas and oxygen-containing gas to leak.
  • the material of the solid electrolyte layer 6 may be, for example, ZrO 2 in which 3 mol % to 15 mol % of a rare earth element oxide is dissolved.
  • the rare earth element oxide may contain one or more rare earth elements selected from, for example, Sc, Y, La, Nd, Sm, Gd, Dy, and Yb.
  • the solid electrolyte layer 6 may include, for example, ZrO 2 in which Yb, Sc or Gd is dissolved in solid solution, CeO 2 in which La, Nd or Yb is dissolved in solid solution, BaZrO 3 in which Sc or Yb is dissolved in solid solution. It may also contain BaCeO 3 in which Sc or Yb is solidly dissolved.
  • the air electrode 8 has gas permeability.
  • the open porosity of the air electrode 8 may range, for example, from 20% to 50%, particularly from 30% to 50%.
  • the open porosity of the air electrode 8 is sometimes referred to as the porosity of the air electrode 8.
  • the material of the air electrode 8 is not particularly limited as long as it is commonly used for air electrodes.
  • the material of the air electrode 8 may be, for example, a conductive ceramic such as a so-called ABO 3 perovskite oxide.
  • the material of the air electrode 8 may be, for example, a composite oxide in which Sr (strontium) and La (lanthanum) coexist at the A site.
  • composite oxides include La x Sr 1-x Co y Fe 1-y O 3 , La x Sr 1-x MnO 3 , La x Sr 1-x FeO 3 , La x Sr 1-x Examples include CoO3 . Note that x is 0 ⁇ x ⁇ 1, and y is 0 ⁇ y ⁇ 1.
  • the intermediate layer 7 has a function as a diffusion suppressing layer.
  • Sr Strontium
  • the air electrode 8 diffuses into the solid electrolyte layer 6, a resistance layer of SrZrO 3 is formed in the solid electrolyte layer 6.
  • the intermediate layer 7 makes it difficult for Sr to diffuse, thereby making it difficult for SrZrO 3 to be formed.
  • the material for the intermediate layer 7 is not particularly limited as long as it generally makes it difficult for elements to diffuse between the air electrode 8 and the solid electrolyte layer 6.
  • the material of the intermediate layer 7 may include, for example, cerium oxide (CeO 2 ) in which a rare earth element other than Ce (cerium) is dissolved.
  • CeO 2 cerium oxide
  • rare earth elements for example, Gd (gadolinium), Sm (samarium), etc. may be used.
  • the interconnector 4 is dense and prevents leakage of the fuel gas flowing through the gas flow path 2a located inside the support substrate 2 and the oxygen-containing gas flowing outside the support substrate 2.
  • the interconnector 4 may have a relative density of 93% or more, in particular 95% or more.
  • a lanthanum chromite-based perovskite oxide (LaCrO 3 -based oxide), a lanthanum strontium titanium-based perovskite oxide (LaSrTiO 3 -based oxide), or the like may be used. These materials have electrical conductivity and are not easily reduced or oxidized even when they come into contact with fuel gas such as hydrogen-containing gas and oxygen-containing gas such as air.
  • FIG. 2A is a perspective view showing an example of the electrochemical cell device according to the first embodiment
  • FIG. 2B is a cross-sectional view taken along line XX shown in FIG. 2A
  • FIG. 2C is a perspective view showing an example of the electrochemical cell device according to the first embodiment
  • FIG. 2 is a top view showing an example of an electrochemical cell device according to the embodiment.
  • the cell stack device 10 includes a cell stack 11 having a plurality of cells 1 arranged (stacked) in the thickness direction T of the cells 1 (see FIG. 1A), and a fixing member 12.
  • the fixing member 12 includes a fixing member 13 and a support member 14.
  • the support member 14 supports the cell 1.
  • the fixing member 13 fixes the cell 1 to the support member 14 .
  • the support member 14 includes a support body 15 and a gas tank 16.
  • the support body 15, which is the support member 14, and the gas tank 16 are made of metal and have electrical conductivity.
  • the support body 15 has an insertion hole 15a into which the lower end portions of the plurality of cells 1 are inserted.
  • the lower ends of the plurality of cells 1 and the inner wall of the insertion hole 15a are joined with a fixing material 13.
  • the gas tank 16 has an opening for supplying reaction gas to the plurality of cells 1 through the insertion hole 15a, and a groove 16a located around the opening. An end of the outer periphery of the support body 15 is joined to the gas tank 16 by a joining material 21 filled in the groove 16a of the gas tank 16.
  • fuel gas is stored in the internal space 22 formed by the support body 15, which is the support member 14, and the gas tank 16.
  • a gas flow pipe 20 is connected to the gas tank 16.
  • Fuel gas is supplied to the gas tank 16 through this gas distribution pipe 20, and from the gas tank 16 to the gas passage 2a (see FIG. 1A) inside the cell 1.
  • the fuel gas supplied to the gas tank 16 is generated in a reformer 102 (see FIG. 5), which will be described later.
  • Hydrogen-rich fuel gas can be produced by steam reforming raw fuel.
  • fuel gas is generated by steam reforming, the fuel gas contains steam.
  • FIG. 2A includes two rows of cell stacks 11, two supports 15, and a gas tank 16.
  • the two rows of cell stacks 11 each have a plurality of cells 1.
  • Each cell stack 11 is fixed to each support 15.
  • the gas tank 16 has two through holes on its upper surface.
  • Each support body 15 is arranged in each through hole.
  • Internal space 22 is formed by one gas tank 16 and two supports 15.
  • the shape of the insertion hole 15a is, for example, an oval shape when viewed from above.
  • the length of the insertion hole 15a in the arrangement direction of the cells 1, that is, the thickness direction T is larger than the distance between the two end current collecting members 17 located at both ends of the cell stack 11.
  • the width of the insertion hole 15a is, for example, larger than the length of the cell 1 in the width direction W (see FIG. 1A).
  • the joint between the inner wall of the insertion hole 15a and the lower end of the cell 1 is filled with a fixing material 13 and solidified.
  • the inner wall of the insertion hole 15a and the lower end portions of the plurality of cells 1 are respectively joined and fixed, and the lower end portions of the cells 1 are joined and fixed to each other.
  • the gas flow path 2a of each cell 1 communicates with the internal space 22 of the support member 14 at its lower end.
  • materials with low conductivity such as glass can be used.
  • amorphous glass or the like may be used, and in particular, crystallized glass or the like may be used.
  • crystallized glass examples include SiO 2 -CaO system, MgO-B 2 O 3 system, La 2 O 3 -B 2 O 3 -MgO system, La 2 O 3 -B 2 O 3 -ZnO system, SiO 2 -CaO--ZnO-based materials may be used, and in particular, SiO 2 -MgO-based materials may be used.
  • a conductive member 18 is interposed between adjacent cells 1 among the plurality of cells 1.
  • the conductive member 18 electrically connects the fuel electrode 5 of one adjacent cell 1 and the air electrode 8 of the other cell 1 in series. More specifically, the interconnector 4 electrically connected to the fuel electrode 5 of one adjacent cell 1 is connected to the air electrode 8 of the other cell 1. Note that details of the conductive member 18 connected to the adjacent cells 1 will be described later.
  • the end current collecting member 17 is electrically connected to the outermost cell 1 in the arrangement direction of the plurality of cells 1.
  • the end current collecting member 17 is connected to a conductive portion 19 protruding to the outside of the cell stack 11 .
  • the conductive part 19 collects electricity generated by the power generation of the cell 1 and draws it to the outside. Note that in FIG. 2A, illustration of the end current collecting member 17 is omitted.
  • the conductive portion 19 of the cell stack device 10 is divided into a positive terminal 19A, a negative terminal 19B, and a connection terminal 19C.
  • the positive electrode terminal 19A is a positive electrode for outputting the electric power generated by the cell stack 11 to the outside, and is electrically connected to the end current collecting member 17 on the positive electrode side of the cell stack 11A.
  • the negative electrode terminal 19B is a negative electrode for outputting the electric power generated by the cell stack 11 to the outside, and is electrically connected to the end current collecting member 17 on the negative electrode side of the cell stack 11B.
  • connection terminal 19C electrically connects the negative end current collecting member 17 of the cell stack 11A and the positive end current collecting member 17 of the cell stack 11B.
  • FIG. 3 is a cross-sectional view showing an example of the conductive member according to the first embodiment.
  • the conductive member 18 has a connecting portion 18a connected to one adjacent cell 1 and a connecting portion 18b connected to the other cell 1. Further, the conductive member 18 has connecting portions 18c at both ends in the width direction W, and connects the connecting portions 18a and 18b. Thereby, the conductive member 18 can electrically connect cells 1 adjacent to each other in the thickness direction T. Note that in FIG. 3, the shape of the cell 1 is illustrated in a simplified manner.
  • connecting portions 18a and 18b have a first surface 181 facing the cell 1 and a second surface 182 facing the connecting portions 18b and 18a.
  • FIG. 4A is a cross-sectional view taken along line AA shown in FIG. 3.
  • FIG. 4B is an enlarged view of region B shown in FIG. 4A.
  • the conductive member 18 extends in the length direction L of the cell 1. As shown in FIG. 4A, a plurality of connection parts 18a and 18b of the conductive member 18 are alternately located along the length direction L of the cell 1. The conductive member 18 is in contact with the cell 1 at each of the connecting portions 18a and 18b.
  • the conductive member 18 includes a base material 41, a polycrystalline film 42, and a covering layer 43. Further, the conductive member 18 has a first surface 181 and a second surface 182 located at both ends of the cell 1 in the thickness direction T. Further, the conductive member 18 has third surfaces 183 and 184 that connect the first surface 181 and the second surface 182.
  • the conductive member 18 (connection portion 18b) is bonded to the cell 1 via a bonding material 50.
  • the bonding material 50 is located between the first surface 181 of the conductive member 18 and the cell 1 and joins the conductive member 18 and the cell 1 together. Further, the second surface 182 and the third surfaces 183, 184 are exposed to an oxidizing atmosphere such as air.
  • the base material 41 has electrical conductivity and heat resistance.
  • Base material 41 contains chromium.
  • the base material 41 is, for example, stainless steel.
  • the base material 41 may contain, for example, a metal oxide.
  • the base material 41 may include a first element described below.
  • FIG. 4C is an enlarged view of the polycrystalline film shown in FIG. 4B.
  • Polycrystalline film 42 is located on base material 41 .
  • Polycrystalline film 42 includes a first element 42a.
  • the first element 42a has a first ionization energy and an oxide formation free energy per mole of oxygen that are smaller than chromium.
  • Examples of the first element 42a include Y, Ce, Eu, Gd, Pr, Yb, and Zr.
  • the free energy of formation is also called the Gibbs energy of formation.
  • the free energy of formation can be confirmed, for example, in a thermodynamics database such as the ⁇ Nuclear Fuel/Nuclear Materials Thermodynamics Database.''
  • the first element 42a may particularly be any one of Ce, Eu, Pr and Zr.
  • polycrystalline film 42 includes a plurality of chromium oxide particles 421 and a grain boundary phase 420.
  • the plurality of chromium oxide particles 421 contain crystals of chromium oxide (Cr 2 O 3 ). Since the polycrystalline film 42 has a plurality of chromium oxide particles 421, the durability of the conductive member 18 is increased.
  • the chromium oxide particles 421 included in the plurality of chromium oxide particles 421 may have an average particle diameter (equivalent circle diameter) of, for example, 500 nm or less, particularly 100 nm or more and 350 nm or less. Further, the chromium oxide particles 421 may contain components other than chromium oxide.
  • the chromium oxide particles 421 may be crystals of chromium oxide (Cr 2 O 3 ). Components other than chromium oxide contained in the chromium oxide particles 421 may be, for example, trace amounts of impurities that do not impair the crystal structure of chromium oxide.
  • the plurality of chromium oxide particles 421 may include first chromium oxide particles containing the first element 42a.
  • the first element 42a contained in the first chromium oxide particles may be, for example, 0.1 atomic % or less.
  • the plurality of chromium oxide particles 421 may include chromium oxide particles 421 that do not contain the first element 42a.
  • the first element 42a may be solidly dissolved in the first chromium oxide particles.
  • the grain boundary phase 420 is located between at least two adjacent chromium oxide particles 421.
  • the grain boundary phase 420 is an amorphous portion having the same composition as the chromium oxide particles 421.
  • the width of the grain boundary phase 420 may be, for example, 10 nm or less.
  • the width of the grain boundary phase 420 is the distance between two adjacent chromium oxide particles 421.
  • the grain boundary phase 420 may contain, for example, 0.01 atomic % or more and 1.0 atomic % or less, particularly 0.05 atomic % or more and 0.3 atomic % or less of the first element 42a.
  • the grain boundary phase 420 has a higher content of the first element 42a than the plurality of chromium oxide particles 421. Since the diffusion rate of Cr at the grain boundaries is higher than the diffusion rate within the grains, by including the first element 42a in the grain boundary phase 420, the diffusion of Cr in the base material 41 is suppressed. For example, the increase in the thickness of the polycrystalline film 42 can be suppressed even in a temperature range of 600° C. or higher, and furthermore, 1000° C. or higher, where Cr diffusion becomes significant. That is, the polycrystalline film 42 including the grain boundary phase 420 containing the first element 42a does not easily increase in thickness even if it is exposed to a high temperature oxidizing atmosphere for a long time.
  • the first chromium oxide particles containing the first element 42a tend to have higher electrical resistivity than the chromium oxide particles 421 not containing the first element 42a.
  • the electrical resistivity of the polycrystalline film 42 can be made difficult to increase.
  • the content of the first element 42a in the grain boundary phase 420 is larger than that of the plurality of chromium oxide particles 421, it becomes difficult for the polycrystalline film 42 to increase in thickness, and the plurality of chromium oxide particles included in the polycrystalline film 42 The electrical resistivity of the chromium oxide particles 421 becomes difficult to increase, and the internal resistance of the conductive member 18 becomes difficult to increase.
  • the fact that the content of the first element 42a in the grain boundary phase 420 is higher than that of the plurality of chromium oxide particles 421 means that the first element 42a in the polycrystalline film 42 is segregated in the grain boundary phase and This means that the content of the first element 42a in the chromium monoxide particles is reduced, or the ratio of the first chromium oxide particles in the plurality of chromium oxide particles 421 is reduced.
  • the polycrystalline film 42 does not need to contain the first chromium oxide particles containing the first element 42a.
  • Polycrystalline film 42 may include first particles 422 .
  • the first particles 422 are crystal particles containing an oxide of the first element 42a, and are different from chromium oxide (Cr 2 O 3 ). Examples of the oxide of the first element 42a include Y 2 O 3 , CeO 2 , EuO, Gd 2 O 3 , PrO 2 , Yb 2 O 3 , and ZrO 2 .
  • the first chromium oxide particles may have first particles 422 inside them.
  • a trace amount of Cr may be solidly dissolved in the first particles 422 .
  • the first particles 422 in which a small amount of Cr is dissolved in solid solution refer to the first particles 422 in which Cr is dissolved in an amount that does not impair the crystal structure of the first particles 422.
  • the first particles 422 may be located between at least two adjacent chromium oxide particles 421.
  • the first particles 422 may contain one or more of the first elements 42a, for example.
  • the first particles 422 may contain an element other than the first element 42a.
  • the first particles 422 may contain, for example, CeO 2 in which Sm (samarium) and Gd (gadolinium) are dissolved in solid solution, or ZrO in which Sc (scandium), Y (yttrium), Yb (ytterbium), etc. are dissolved in solid solution. 2. It may contain so-called stabilized zirconia or partially stabilized zirconia. Further, the first particles 422 may contain a composite oxide containing the first element 42a, such as Ce 2 Ti 2 O 7 , for example.
  • the particle size of the first particles 422 may be 1/10 or less, or even 1/100 or less, of the particle size of the chromium oxide particles 421 that are in contact with the first particles 422 or have the first particles 422 inside.
  • the first particles 422 have electrical insulation or low conductivity, and the inclusion of the first particles 422 may increase the electrical resistivity of the chromium oxide particles 421. Since the first particles 422 have such a small particle size, even if the polycrystalline film 42 contains the first particles 442, the electrical resistivity of the polycrystalline film 42 is difficult to increase, and the conductive member 18 Internal resistance is less likely to increase.
  • the plurality of chromium oxide particles 421 may not include the first chromium oxide particles.
  • the first element 42a contained in the polycrystalline film 42 is detected in the grain boundary phase 420 by the measurement method described later, and may not be detected inside the plurality of chromium oxide particles 421.
  • the polycrystalline film 42 may have a flat interface with the base material 41, or may have an uneven and undulating interface with the base material 41.
  • the polycrystalline film 42 may contain Si, for example.
  • Si may be located at the tips of the protrusions of the polycrystalline film 42 that protrude toward the base material 41 side.
  • the thickness of the polycrystalline film 42 may be, for example, 20 nm or more and 10 ⁇ m or less, or even 200 nm or more and 3.0 ⁇ m or less. Since the polycrystalline film 42 has such a thickness, for example, the influence of the polycrystalline film 42 on the internal resistance can be suppressed to a small level, so that the internal resistance of the conductive member 18 becomes difficult to increase. Thereby, for example, the power generation performance of the cell 1 can be made less likely to deteriorate.
  • the conductive member 18 may include an oxide of the first element 42a located on the polycrystalline film 42.
  • the oxide of the first element 42a may be, for example, Y 2 O 3 , CeO 2 , EuO, Gd 2 O 3 , PrO 2 , Yb 2 O 3 , or ZrO 2 .
  • the content of the first element 42a in the grain boundary phase 420 and the chromium oxide particles 421 can be determined at two arbitrary points in the grain boundary phase 420 and inside the chromium oxide particles 421 in contact with the grain boundary phase 420 using TEM-EDS. It is obtained by performing elemental analysis on each element and calculating the average value of each element.
  • the inside of the chromium oxide particle 421 is defined as a portion separated from the grain boundary phase 420 by 10 nm or more.
  • elemental analysis is carried out using a region 10 nm or more away from the approximate midpoint of the contours of two adjacent chromium oxide particles 421 as the interior of the chromium oxide particles 421. You may go. In this case, the elemental analysis of the grain boundary phase 420 may be performed at approximately the midpoint of the contours of two adjacent chromium oxide particles 421.
  • the size of the first particles 422 containing the first element 42a is determined by, for example, a cross section of the conductive member 18 using a HAADF-STEM (high-angle annular dark-field scanning transmission electron microscope) or a FIB-SEM (focused ion beam scanning electron microscope). This can be confirmed by performing point analysis, line analysis, mapping, etc. of the first element 42a using a microscope) or an EPMA (electron probe microanalyzer). Three points inside the chromium oxide particles 421 are subjected to elemental analysis, and those in which the first element 42a is detected at at least one point are defined as first chromium oxide particles.
  • the average thickness of the polycrystalline film 42 can be determined by mapping chromium and oxygen on the cross section of the conductive member 18 at a magnification of 1,000,000 times using HAADF-STEM with an accelerating voltage of 200 kV, and detecting chromium and oxygen. It is obtained by measuring the thickness of a portion at 10 or more points and calculating the average value.
  • Such a conductive member 18 is obtained by forming a film containing the first element 42a on the surface of a base material 41 containing chromium, and heat-treating the film containing the first element 42a and the base material 41.
  • the film containing the first element 42a may be, for example, an oxide film of the first element 42a.
  • the film containing the first element 42a may be formed, for example, by a physical vapor deposition method such as IAD (Ion Assisted Deposition), or by applying a slurry containing an oxide of the first element 42a.
  • the thickness of the film containing the first element 42a may be, for example, 1 nm or more and 300 nm or less.
  • the thickness of the film containing the first element 42a may be 5 nm or more and 150 nm or less, or even 10 nm or more and 100 nm or less.
  • the coating containing the first element 42a may include particles containing the first element 42a, for example, oxide particles of the first element 42a.
  • the particle size of the particles containing the first element 42a in the coating containing the first element 42a may be, for example, 100 nm or less, 10 nm or less, or even 1 nm or less. When the particles containing the first element 42a are such fine particles, the first element 42a is easily introduced into the polycrystalline film 42, particularly into the grain boundary phase 420 thereof.
  • the heat treatment of the coating containing the first element 42a and the base material 41 may be performed, for example, in air at a temperature of 300° C. to 1200° C.
  • the base material 41 does not need to contain the first element 42a.
  • the polycrystalline film 42 may contain more of the first element 42a on the side farther from the base material 41 than on the side closer to the base material 41.
  • the covering layer 43 is located on the polycrystalline film 42.
  • the coating layer 43 covers the polycrystalline film 42 of the conductive member 18 over the entire thickness direction T and length direction L of the cell 1 in the cross section of FIG. 4B.
  • Covering layer 43 contains a different element from polycrystalline film 42 .
  • the covering layer 43 is, for example, electrically conductive. By being located between the polycrystalline film 42 and the oxidizing atmosphere, the covering layer 43 can suppress release of chromium contained in the base material 41 and/or the polycrystalline film 42, for example. Therefore, since the durability of the conductive member 18 is improved, the durability of the cell 1 can be improved.
  • the coating layer 43 may contain, for example, an oxide containing Mn (manganese) and Co (cobalt). Further, the covering layer 43 may be porous. The covering layer 43 may have a laminated structure containing different elements.
  • FIG. 5 is an external perspective view showing the module according to the first embodiment.
  • FIG. 5 shows a state in which the front and rear surfaces, which are part of the storage container 101, are removed and the fuel cell cell stack device 10 housed inside is taken out rearward.
  • the module 100 includes a storage container 101 and a cell stack device 10 housed within the storage container 101. Furthermore, a reformer 102 is located above the cell stack device 10.
  • the reformer 102 generates fuel gas by reforming raw fuel such as natural gas or kerosene, and supplies the fuel gas to the cell 1.
  • Raw fuel is supplied to the reformer 102 through a raw fuel supply pipe 103.
  • the reformer 102 may include a vaporizing section 102a that vaporizes water, and a reforming section 102b.
  • the reforming section 102b includes a reforming catalyst (not shown), and reformes the raw fuel into fuel gas.
  • Such a reformer 102 can perform steam reforming, which is a highly efficient reforming reaction.
  • the fuel gas generated in the reformer 102 is supplied to the gas flow path 2a of the cell 1 (see FIG. 1A) through the gas distribution pipe 20, the gas tank 16, and the support member 14.
  • the temperature inside the module 100 during normal power generation is approximately 500° C. to 1000° C. due to combustion of gas and power generation in the cell 1.
  • such a module 100 is configured by housing a cell stack device 10 that includes a plurality of cells 1 that make it difficult to reduce power generation performance, thereby making it difficult to reduce power generation performance. be able to.
  • FIG. 6 is an exploded perspective view showing an example of the module housing device according to the first embodiment.
  • the module housing device 110 according to this embodiment includes an exterior case 111, the module 100 shown in FIG. 5, and an auxiliary device not shown.
  • the auxiliary machine operates the module 100.
  • the module 100 and auxiliary equipment are housed in an exterior case 111. Note that in FIG. 6, some configurations are omitted.
  • the exterior case 111 of the module housing device 110 shown in FIG. 6 includes a support 112 and an exterior plate 113.
  • the partition plate 114 divides the interior of the exterior case 111 into upper and lower sections.
  • the space above the partition plate 114 in the exterior case 111 is a module storage chamber 115 that accommodates the module 100, and the space below the partition plate 114 in the exterior case 111 accommodates auxiliary equipment that operates the module 100.
  • This is the auxiliary equipment storage chamber 116. Note that, in FIG. 6, the auxiliary equipment accommodated in the auxiliary equipment storage chamber 116 is omitted.
  • the partition plate 114 has an air flow port 117 for flowing air from the auxiliary equipment storage chamber 116 to the module storage chamber 115 side.
  • the exterior plate 113 configuring the module storage chamber 115 has an exhaust port 118 for exhausting the air inside the module storage chamber 115 .
  • the module housing chamber 115 is equipped with the module 100 that makes it difficult to reduce the power generation performance, thereby making the module housing device 110 hard to reduce the power generation performance. Can be done.
  • FIG. 7A is a cross-sectional view showing an example of an electrochemical cell according to the second embodiment.
  • a plurality of cells 1A extend in the length direction L from a pipe 73 through which fuel gas flows.
  • the cell 1A has a plurality of element parts 3A on the support substrate 2.
  • a gas flow path 2a through which gas from the piping 73 flows is provided inside the support substrate 2.
  • Each element section 3A on the support substrate 2 is electrically connected by a connection layer (not shown).
  • the plurality of cells 1A are electrically connected to each other via conductive members 18.
  • the conductive member 18 is located between the element portions 3A of each cell 1A, and electrically connects adjacent cells 1A.
  • a current collector or interconnector is electrically connected to the air electrode of the element section 3A of one of the adjacent cells 1A, and a fuel electrode of the element section 3A of the other cell 1A is electrically connected to the air electrode of the element section 3A of the other cell 1A. electrically connected to the electrically connected current collector or interconnector.
  • FIG. 7B is an enlarged cross-sectional view of the conductive member according to the second embodiment.
  • the conductive members 18 are bonded to adjacent cells 1A via bonding material 50, respectively.
  • the conductive member 18 has a first surface 181 and a second surface 182 that face each other with the base material 41 in between.
  • the conductive member 18 has third surfaces 183 and 184 that connect the first surface 181 and the second surface 182.
  • the conductive member 18 is bonded to the cell 1A via a bonding material 50.
  • the bonding material 50 is located between the first surface 181 of the conductive member 18 and the element section 3A of one cell 1A, and between the second surface 182 of the conductive member 18 and the element section 3A of the other cell 1A. Then, a pair of cells 1A and the conductive member 18 facing each other with the conductive member 18 in between are joined. Further, the third surfaces 183 and 184 are exposed to an oxidizing atmosphere such as air.
  • the conductive member 18 includes a base material 41, a polycrystalline film 42, and a covering layer 43. Each part of the conductive member 18 can be made of, for example, the same material as the conductive member 18 according to the first embodiment described above.
  • the polycrystalline film 42 is located on the base material 41. Polycrystalline film 42 is located between base material 41 and covering layer 43.
  • the polycrystalline film 42 includes a plurality of chromium oxide particles 421 and a grain boundary phase 420 located between the plurality of chromium oxide particles 421 (see FIG. 4C).
  • the polycrystalline film 42 includes a first element 42a whose first ionization energy and free energy of oxide formation per mole of oxygen are lower than that of chromium.
  • the grain boundary phase 420 has a higher content of the first element 42a than the plurality of chromium oxide particles 421.
  • the conductive member 18 has the first element 42a at a specific position of the polycrystalline film 42, the thickness of the polycrystalline film 42 becomes difficult to increase, and the electrical resistivity of the polycrystalline film 42 becomes difficult to increase. Therefore, the internal resistance of the conductive member 18 is less likely to increase. This makes it difficult to reduce the power generation performance of the cell 1A, thereby making it difficult to reduce the power generation performance of the cell stack device 10A. It is also conceivable that by including the first element 42a in the polycrystalline film 42, for example, chromium in the polycrystalline film 42 becomes difficult to evaporate from the surface of the polycrystalline film 42 into an oxidizing atmosphere such as air.
  • FIG. 8A is a cross-sectional view showing an example of an electrochemical cell according to the third embodiment.
  • FIGS. 8B and 8C are cross-sectional views showing other examples of the electrochemical cell according to the third embodiment.
  • FIG. 8D is an enlarged view of region C shown in FIG. 8A. Note that FIG. 8D can also be applied to the examples of FIGS. 8B and 8C.
  • the cell 1B includes an element section 3B in which a fuel electrode 5, a solid electrolyte layer 6, and an air electrode 8 are stacked, and a support substrate 2.
  • the support substrate 2 has a through hole or pore in a portion of the element portion 3B that contacts the fuel electrode 5, and also has a member 120 located outside the gas flow path 2a.
  • the support substrate 2 can allow gas to flow between the gas flow path 2a and the element section 3B.
  • the support substrate 2 may be composed of one or more metal plates, for example.
  • the material of the metal plate may contain chromium.
  • the metal plate may have a conductive coating layer.
  • the support substrate 2 is a conductive member that electrically connects adjacent cells 1B.
  • the element portion 3B may be directly formed on the support substrate 2, or may be bonded to the support substrate 2 with a bonding material.
  • the side surface of the fuel electrode 5 is covered with a solid electrolyte layer 6, and the gas flow path 2a through which the fuel gas flows is hermetically sealed.
  • the side surface of the fuel electrode 5 may be covered and sealed with a dense sealing material 9.
  • the sealing material 9 covering the side surface of the fuel electrode 5 may have electrical insulation properties.
  • the material of the sealing material 9 may be glass or ceramics, for example.
  • the gas flow path 2a of the support substrate 2 may be formed of a member 120 having unevenness.
  • the member 120 is joined to the air electrode 8 of another adjacent cell 1B via another conductive member such as the inter-cell connection member 60 and the bonding material 50. Note that the member 120 may be in direct contact with the air electrode 8 of another cell 1B without using another conductive member.
  • the member 120 includes a base material 41, a polycrystalline film 42, and a covering layer 43.
  • Each part of the member 120 can be made of, for example, a material such as the conductive member 18 described above.
  • the intercell connection member 60 and/or the support substrate 2 are also conductive members such as the member 120 having the base material 41, the polycrystalline film 42, and the coating layer 43. Good too.
  • the polycrystalline film 42 is located between the base material 40 and another adjacent cell 1B.
  • the polycrystalline film 42 includes a plurality of chromium oxide particles 421 and a grain boundary phase 420 located between the plurality of chromium oxide particles 421 (see FIG. 4C).
  • the polycrystalline film 42 includes a first element 42a whose first ionization energy and free energy of oxide formation per mole of oxygen are lower than that of chromium.
  • the grain boundary phase 420 has a higher content of the first element 42a than the plurality of chromium oxide particles 421.
  • the member 120 since the member 120 has the specific polycrystalline film 42 as described above, the thickness of the polycrystalline film 42 becomes difficult to increase, and therefore, the internal resistance of the member 120 becomes difficult to increase. This makes it difficult for the power generation performance of the cell 1B to deteriorate, thereby making it difficult for the power generation performance of the electrochemical cell device to deteriorate. It is also conceivable that by including the first element 42a in the polycrystalline film 42, for example, chromium in the polycrystalline film 42 becomes difficult to evaporate from the surface of the polycrystalline film 42 into an oxidizing atmosphere such as air.
  • the polycrystalline film 42 may be formed only on a part of the member 120.
  • the first portion 120a facing the air electrode 8 of another cell 1B has the polycrystalline film 42 and the coating layer 43
  • the second portion 120b facing the support substrate 2 has the polycrystalline film 42 and the coating layer 43.
  • the support substrate 2 may have a polycrystalline film 42 on the portion facing the fuel electrode 5 of the cell 1B.
  • FIG. 9A is a perspective view showing an electrochemical cell according to a fourth embodiment.
  • 9B and 9C are partial cross-sectional views of the electrochemical cell shown in FIG. 9A.
  • the cell 1C has an element section 3C in which a fuel electrode 5, a solid electrolyte layer 6, and an air electrode 8 are stacked.
  • a cell stack device in which a plurality of flat cells are stacked, for example, a plurality of cells 1C are electrically connected by conductive members 91 and 92, which are metal layers adjacent to each other.
  • the conductive members 91 and 92 electrically connect adjacent cells 1C to each other and have gas flow paths that supply gas to the fuel electrode 5 or the air electrode 8.
  • the conductive member 92 has a gas flow path 94 that supplies oxygen-containing gas to the air electrode 8.
  • the conductive member 92 is bonded to the element portion 3C (air electrode 8) via the bonding material 50. Note that the conductive member 92 may be in direct contact with the element portion 3C without using the bonding material 50. In other words, in this embodiment, the conductive member 92 may be directly connected to the element portion 3C without using the bonding material 50.
  • the conductive member 92 includes a base material 41, a polycrystalline film 42, and a covering layer 43. Each portion of the conductive member 92 can be made of, for example, the same material as the conductive member 18 described above.
  • the polycrystalline film 42 is located on the base material 41. Polycrystalline film 42 is located between base material 41 and covering layer 43.
  • the polycrystalline film 42 includes a plurality of chromium oxide particles 421 and a grain boundary phase 420 located between the plurality of chromium oxide particles 421 (see FIG. 4C).
  • the polycrystalline film 42 includes a first element 42a whose first ionization energy and free energy of oxide formation per mole of oxygen are lower than that of chromium.
  • the grain boundary phase 420 has a higher content of the first element 42a than the plurality of chromium oxide particles 421.
  • the conductive member 92 since the conductive member 92 has the specific polycrystalline film 42 as described above, the thickness of the polycrystalline film 42 becomes difficult to increase, so that the internal resistance of the conductive member 92 becomes difficult to increase. This makes it difficult to reduce the power generation performance of the cell 1C, thereby making it difficult to reduce the power generation performance of a cell stack device having a plurality of cells 1C. It is also conceivable that by including the first element 42a in the polycrystalline film 42, for example, chromium in the polycrystalline film 42 becomes difficult to evaporate from the surface of the polycrystalline film 42 into an oxidizing atmosphere such as air.
  • the conductive member 91 has a gas flow path 93 that supplies fuel gas to the fuel electrode 5.
  • the conductive member 91 is bonded to the element portion 3C (fuel electrode 5) via the bonding material 50. Note that the conductive member 91 may be in direct contact with the element portion 3C without using the bonding material 50. In other words, the conductive member 91 may be directly connected to the element portion 3C without using the bonding material 50.
  • the conductive member 91 includes a base material 41, a polycrystalline film 42, and a covering layer 43. Each portion of the conductive member 91 can be made of, for example, a material such as the conductive member 92 (conductive member 18) described above. The conductive member 91 does not need to have the covering layer 43.
  • the polycrystalline film 42 is located on the base material 41.
  • the polycrystalline film 42 is located between the base material 41 and the covering layer 43.
  • the polycrystalline film 42 includes a plurality of chromium oxide particles 421 and a grain boundary phase 420 located between the plurality of chromium oxide particles 421 (see FIG. 4C).
  • the polycrystalline film 42 includes a first element 42a whose first ionization energy and free energy of oxide formation per mole of oxygen are lower than that of chromium.
  • the grain boundary phase 420 has a higher content of the first element 42a than the plurality of chromium oxide particles 421.
  • the conductive member 91 since the conductive member 91 has the specific polycrystalline film 42, the thickness of the polycrystalline film 42 becomes difficult to increase, so that the internal resistance of the conductive member 91 becomes difficult to increase. This makes it difficult to reduce the power generation performance of the cell 1C, thereby making it difficult to reduce the power generation performance of an electrochemical cell device having a plurality of cells 1C.
  • the conductive members 91 and 92 are described as having the coating layer 43 in FIGS. 9B and 9C, one or both of the conductive members 91 and 92 may not have the coating layer 43. That is, the polycrystalline film 42 may be in contact with the gas supplied to the fuel electrode 5 or the air electrode 8. Further, in the present embodiment, the description has been made assuming that both the conductive members 91 and 92 each have the polycrystalline film 42, but one of the conductive members 91 and 92 may not have the polycrystalline film 42.
  • a fuel cell, a fuel cell stack device, a fuel cell module, and a fuel cell device are shown as examples of an “electrochemical cell,” “electrochemical cell device,” “module,” and “module housing device.”
  • electrolytic cell has a hydrogen electrode as a first electrode and an oxygen electrode as a second electrode, and decomposes water vapor into hydrogen and oxygen by supplying electric power.
  • an oxide ion conductor or a hydrogen ion conductor is shown as an example of the electrolyte material of the electrochemical cell, but a hydroxide ion conductor may also be used. According to such an electrolytic cell, an electrolytic cell stack device, an electrolytic module, and an electrolytic device, electrolytic performance can be improved.
  • the conductive member 18 includes the base material 41 and the polycrystalline film 42 located on the base material 41.
  • Base material 41 contains chromium.
  • the polycrystalline film 42 includes a plurality of chromium oxide particles 421 and a grain boundary phase 420 located between the plurality of chromium oxide particles 421.
  • the polycrystalline film 42 includes a first element 42a whose first ionization energy and free energy of oxide formation per mole of oxygen are lower than that of chromium.
  • the grain boundary phase 420 has a higher content of the first element 42a than the plurality of chromium oxide particles 421. Thereby, increase in internal resistance of the conductive member 18 can be reduced.
  • the electrochemical cell according to the embodiment includes the element section 3 and the conductive member 18 described above.
  • the conductive member 18 is connected to the element section 3.
  • the electrochemical cell device according to the embodiment includes a cell stack 11 including the electrochemical cell described above. This makes it possible to provide an electrochemical cell device that is less likely to suffer from deterioration in performance due to an increase in internal resistance.
  • the module 100 includes the electrochemical cell device described above and a storage container 101 that houses the electrochemical cell device. This makes it possible to provide the module 100 in which performance deterioration due to an increase in internal resistance is less likely to occur.
  • the module housing device 110 includes the module 100 described above, an auxiliary machine for operating the module 100, and an exterior case that houses the module 100 and the auxiliary machine. Thereby, the module housing device 110 can be made such that the performance is less likely to deteriorate due to an increase in internal resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Composite Materials (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

導電部材は、基材と、多結晶膜とを有する。基材は、クロムを含有する。多結晶膜は、複数の酸化クロム粒子と、複数の酸化クロム粒子の間に位置する粒界相とを含み、基材上に位置する。多結晶膜は、第一イオン化エネルギーおよび酸素1モル当たりの酸化物の生成自由エネルギーがクロムよりも小さい第1元素を含む。粒界相は、複数の酸化クロム粒子よりも第1元素の含有量が大きい。

Description

導電部材、電気化学セル、電気化学セル装置、モジュールおよびモジュール収容装置
 本開示は、導電部材、電気化学セル、電気化学セル装置、モジュールおよびモジュール収容装置に関する。
 近年、次世代エネルギーとして、燃料電池セルを複数有する燃料電池セルスタック装置が種々提案されている。燃料電池セルは、水素含有ガス等の燃料ガスと空気等の酸素含有ガスとを用いて電力を得ることができる電気化学セルの一種である。
国際公開第2009/131180号
 実施形態の一態様に係る導電部材は、基材と、多結晶膜とを有する。基材は、クロムを含有する。多結晶膜は、複数の酸化クロム粒子と、前記複数の酸化クロム粒子の間に位置する粒界相とを含み、前記基材上に位置する。前記多結晶膜は、第一イオン化エネルギーおよび酸素1モル当たりの酸化物の生成自由エネルギーがクロムよりも小さい第1元素を含む。前記粒界相は、前記複数の酸化クロム粒子よりも前記第1元素の含有率が大きい。
 また、本開示の電気化学セルは、素子部と、上記に記載の導電部材とを備える。導電部材は、前記素子部に接続される。
 また、本開示の電気化学セル装置は、上記に記載の電気化学セルを含むセルスタックを有する。
 また、本開示のモジュールは、上記に記載の電気化学セル装置と、電気化学セル装置を収納する収納容器とを備える。
 また、本開示のモジュール収容装置は、上記に記載のモジュールと、モジュールの運転を行うための補機と、モジュールおよび補機を収容する外装ケースとを備える。
図1Aは、第1の実施形態に係る電気化学セルの一例を示す横断面図である。 図1Bは、第1の実施形態に係る電気化学セルの一例を空気極側からみた側面図である。 図1Cは、第1の実施形態に係る電気化学セルの一例をインターコネクタ側からみた側面図である。 図2Aは、第1の実施形態に係る電気化学セル装置の一例を示す斜視図である。 図2Bは、図2Aに示すX-X線の断面図である。 図2Cは、第1の実施形態に係る電気化学セル装置の一例を示す上面図である。 図3は、第1の実施形態に係る導電部材の一例を示す横断面図である。 図4Aは、図3に示すA-A線に沿った断面図である。 図4Bは、図4Aに示す領域Bの拡大図である。 図4Cは、図4Bに示す多結晶膜の拡大図である。 図5は、第1の実施形態に係るモジュールの一例を示す外観斜視図である。 図6は、第1の実施形態に係るモジュール収容装置の一例を概略的に示す分解斜視図である。 図7Aは、第2の実施形態に係る電気化学セルの一例を示す断面図である。 図7Bは、第2の実施形態に係る導電部材の拡大断面図である。 図8Aは、第3の実施形態に係る電気化学セルの一例を示す横断面図である。 図8Bは、第3の実施形態に係る電気化学セルの他の一例を示す横断面図である。 図8Cは、第3の実施形態に係る電気化学セルの他の一例を示す横断面図である。 図8Dは、図8Aに示す領域Cの拡大図である。 図9Aは、第4の実施形態に係る電気化学セルの一例を示す斜視図である。 図9Bは、図9Aに示す電気化学セルの部分断面図である。 図9Cは、図9Aに示す電気化学セルの部分断面図である。
 上述の燃料電池セルスタック装置では、たとえば、導電部材の内部抵抗が増大し、電池性能が低下する可能性があった。
 そこで、内部抵抗の増大を低減することができる導電部材、電気化学セル、電気化学セル装置、モジュールおよびモジュール収容装置の提供が期待されている。
 以下、添付図面を参照して、本願の開示する導電部材、電気化学セル、電気化学セル装置、モジュールおよびモジュール収容装置の実施形態を詳細に説明する。なお、以下に示す実施形態によりこの開示が限定されるものではない。
 また、図面は模式的なものであり、各要素の寸法の関係、各要素の比率などは、現実と異なる場合があることに留意する必要がある。さらに、図面の相互間においても、互いの寸法の関係、比率などが異なる部分が含まれている場合がある。
[第1の実施形態]
<電気化学セルの構成>
 まず、図1A~図1Cを参照しながら、第1の実施形態に係る電気化学セルとして、固体酸化物形の燃料電池セルの例を用いて説明する。電気化学セル装置は、複数の電気化学セルを有するセルスタックを備えていてもよい。複数の電気化学セルを有する電気化学セル装置を、単にセルスタック装置と称する。
 図1Aは、第1の実施形態に係る電気化学セルの一例を示す横断面図であり、図1Bは、第1の実施形態に係る電気化学セルの一例を空気極側からみた側面図であり、図1Cは、第1の実施形態に係る電気化学セルの一例をインターコネクタ側からみた側面図である。なお、図1A~図1Cは、電気化学セルの各構成の一部を拡大して示している。以下、電気化学セルを単にセルという場合もある。
 図1A~図1Cに示す例において、セル1は中空平板型で、細長い板状である。図1Bに示すように、セル1の全体を側面から見た形状は、たとえば、長さ方向Lの辺の長さが5cm~50cmで、この長さ方向Lに直交する幅方向Wの長さが、たとえば、1cm~10cmの長方形である。このセル1の全体の厚み方向Tの厚さは、たとえば、1mm~5mmである。
 図1Aに示すように、セル1は、導電性の支持基板2と、素子部3と、インターコネクタ4とを備えている。支持基板2は、一対の対向する第1面n1、第2面n2、かかる第1面n1および第2面n2を接続する一対の円弧状の側面mを有する柱状である。
 素子部3は、支持基板2の第1面n1上に位置している。素子部3は、第1電極である燃料極5と、固体電解質層6と、第2電極である空気極8とを有している。また、図1Aに示す例では、セル1の第2面n2上にインターコネクタ4が位置している。なお、セル1は、固体電解質層6と空気極8との間に中間層7を備えていてもよい。
 また、図1Bに示すように、空気極8はセル1の下端まで延びていない。セル1の下端部では、固体電解質層6のみが第1面n1の表面に露出している。また、図1Cに示すように、インターコネクタ4がセル1の下端まで延びていてもよい。セル1の下端部では、インターコネクタ4および固体電解質層6が表面に露出している。なお、図1Aに示すように、セル1の一対の円弧状の側面mにおける表面では、固体電解質層6が露出している。インターコネクタ4は、セル1の下端まで延びていなくてもよい。
 以下、セル1を構成する各構成部材について説明する。
 支持基板2は、ガスが流れるガス流路2aを内部に有している。図1Aに示す支持基板2の例は、6つのガス流路2aを有している。支持基板2は、ガス透過性を有し、ガス流路2aに流れるガスを燃料極5まで透過させる。支持基板2は導電性を有していてもよい。導電性を有する支持基板2は、素子部で生じた電気をインターコネクタ4に集電する。
 支持基板2の材料は、たとえば、鉄族金属成分および無機酸化物を含む。鉄族金属成分は、たとえば、Ni(ニッケル)および/またはNiOであってもよい。無機酸化物は、たとえば、特定の希土類元素酸化物であってもよい。希土類元素酸化物は、たとえば、Sc、Y、La、Nd、Sm、Gd、DyおよびYbから選択される1以上の希土類元素を含んでよい。
 燃料極5の材料には、一般的に公知のものを使用することができる。燃料極5は、電子伝導性を有する材料とイオン伝導性を有する材料とを含む多孔質の導電性セラミックスであってもよい。導電性セラミックスとしては、たとえば酸化カルシウム、酸化マグネシウム、または希土類元素酸化物が固溶しているZrOと、Niおよび/またはNiOとを含むセラミックスなどを用いてもよい。この希土類元素酸化物は、たとえば、Sc、Y、La、Nd、Sm、Gd、DyおよびYbから選択される複数の希土類元素を含んでもよい。酸化カルシウム、酸化マグネシウム、または希土類元素酸化物が固溶しているZrOを安定化ジルコニアと称する場合もある。安定化ジルコニアは、部分安定化ジルコニアを含んでもよい。
 固体電解質層6は、電解質であり、燃料極5と空気極8との間のイオンの受け渡しをする。同時に、固体電解質層6は、ガス遮断性を有し、燃料ガスと酸素含有ガスとのリークを生じにくくする。
 固体電解質層6の材料は、たとえば、3モル%~15モル%の希土類元素酸化物が固溶したZrOであってもよい。希土類元素酸化物は、たとえば、Sc、Y、La、Nd、Sm、Gd、DyおよびYbから選択される1以上の希土類元素を含んでよい。固体電解質層6は、たとえば、Yb、ScまたはGdが固溶したZrOを含んでもよく、La、NdまたはYbが固溶したCeOを含んでもよく、ScまたはYbが固溶したBaZrOを含んでもよく、ScまたはYbが固溶したBaCeOを含んでもよい。
 空気極8は、ガス透過性を有している。空気極8の開気孔率は、たとえば20%~50%、特に30%~50%の範囲であってもよい。空気極8の開気孔率を空気極8の空隙率と称する場合もある。
 空気極8の材料は、一般的に空気極に用いられるものであれば特に制限はない。空気極8の材料は、たとえば、いわゆるABO型のペロブスカイト型酸化物など導電性セラミックスでもよい。
 空気極8の材料は、たとえば、AサイトにSr(ストロンチウム)とLa(ランタン)が共存する複合酸化物であってもよい。このような複合酸化物の例としては、LaSr1-xCoFe1-y、LaSr1-xMnO、LaSr1-xFeO、LaSr1-xCoOなどが挙げられる。なお、xは0<x<1、yは0<y<1である。
 また、素子部3が中間層7を有する場合、中間層7は、拡散抑制層としての機能を有する。空気極8に含まれるSr(ストロンチウム)が固体電解質層6に拡散すると、かかる固体電解質層6にSrZrOの抵抗層が形成される。中間層7は、Srを拡散させにくくすることで、SrZrOが形成されにくくする。
 中間層7の材料は、一般的に空気極8と固体電解質層6との間の元素の拡散を生じにくくするものであれば特に制限はない。中間層7の材料は、たとえば、Ce(セリウム)を除く希土類元素が固溶した酸化セリウム(CeO)を含んでもよい。かかる希土類元素としては、たとえば、Gd(ガドリニウム)、Sm(サマリウム)などを用いてもよい。
 また、インターコネクタ4は、緻密質であり、支持基板2の内部に位置するガス流路2aを流通する燃料ガス、および支持基板2の外側を流通する酸素含有ガスのリークを生じにくくする。インターコネクタ4は、93%以上、特に95%以上の相対密度を有していてもよい。
 インターコネクタ4の材料には、ランタンクロマイト系のペロブスカイト型酸化物(LaCrO系酸化物)、ランタンストロンチウムチタン系のペロブスカイト型酸化物(LaSrTiO系酸化物)などを用いてもよい。これらの材料は、導電性を有し、かつ水素含有ガスなどの燃料ガスおよび空気などの酸素含有ガスと接触しても還元も酸化もされにくい。
<電気化学セル装置の構成>
 次に、上述したセル1を用いた本実施形態に係るセルスタック装置10について、図2A~図2Cを参照しながら説明する。図2Aは、第1の実施形態に係る電気化学セル装置の一例を示す斜視図であり、図2Bは、図2Aに示すX-X線の断面図であり、図2Cは、第1の実施形態に係る電気化学セル装置の一例を示す上面図である。
 図2Aに示すように、セルスタック装置10は、セル1の厚み方向T(図1A参照)に配列(積層)された複数のセル1を有するセルスタック11と、固定部材12とを備える。
 固定部材12は、固定材13と、支持部材14とを有する。支持部材14は、セル1を支持する。固定材13は、セル1を支持部材14に固定する。また、支持部材14は、支持体15と、ガスタンク16とを有する。支持部材14である支持体15およびガスタンク16は、金属製であり導電性を有している。
 図2Bに示すように、支持体15は、複数のセル1の下端部が挿入される挿入孔15aを有している。複数のセル1の下端部と挿入孔15aの内壁とは、固定材13で接合されている。
 ガスタンク16は、挿入孔15aを通じて複数のセル1に反応ガスを供給する開口部と、かかる開口部の周囲に位置する凹溝16aとを有する。支持体15の外周の端部は、ガスタンク16の凹溝16aに充填された接合材21によって、ガスタンク16と接合されている。
 図2Aに示す例では、支持部材14である支持体15とガスタンク16とで形成される内部空間22に燃料ガスが貯留される。ガスタンク16にはガス流通管20が接続されている。燃料ガスは、このガス流通管20を通してガスタンク16に供給され、ガスタンク16からセル1の内部のガス流路2a(図1A参照)に供給される。ガスタンク16に供給される燃料ガスは、後述する改質器102(図5参照)で生成される。
 水素リッチな燃料ガスは、原燃料を水蒸気改質などすることによって生成することができる。水蒸気改質により燃料ガスを生成する場合には、燃料ガスは水蒸気を含む。
 図2Aに示す例は、2列のセルスタック11、2つの支持体15、およびガスタンク16を備えている。2列のセルスタック11は、複数のセル1をそれぞれ有する。各セルスタック11は、各支持体15に固定されている。ガスタンク16は上面に2つの貫通孔を有している。各貫通孔には、各支持体15が配置されている。内部空間22は、1つのガスタンク16と、2つの支持体15とで形成される。
 挿入孔15aの形状は、たとえば、上面視で長円形状である。挿入孔15aは、たとえば、セル1の配列方向すなわち厚み方向Tの長さが、セルスタック11の両端に位置する2つの端部集電部材17の間の距離よりも大きい。挿入孔15aの幅は、たとえば、セル1の幅方向W(図1A参照)の長さよりも大きい。
 図2Bに示すように、挿入孔15aの内壁とセル1の下端部との接合部には、固定材13が充填され、固化されている。これにより、挿入孔15aの内壁と複数個のセル1の下端部とがそれぞれ接合・固定され、また、セル1の下端部同士が接合・固定されている。各セル1のガス流路2aは、下端部で支持部材14の内部空間22と連通している。
 固定材13および接合材21は、ガラスなどの導電性が低いものを用いることができる。固定材13および接合材21の具体的な材料としては、非晶質ガラスなどを用いてもよく、特に結晶化ガラスなどを用いてもよい。
 結晶化ガラスとしては、たとえば、SiO-CaO系、MgO-B系、La-B-MgO系、La-B-ZnO系、SiO-CaO-ZnO系などの材料のいずれかを用いてもよく、特にSiO-MgO系の材料を用いてもよい。
 また、図2Bに示すように、複数のセル1のうち隣接するセル1の間には、導電部材18が介在している。導電部材18は、隣接する一方のセル1の燃料極5と他方のセル1の空気極8とを電気的に直列に接続する。より具体的には、隣接する一方のセル1の燃料極5と電気的に接続されたインターコネクタ4と、他方のセル1の空気極8とを接続している。なお、隣接するセル1に接続された導電部材18の詳細については、後述する。
 また、図2Bに示すように、複数のセル1の配列方向における最も外側に位置するセル1に、端部集電部材17が電気的に接続されている。端部集電部材17は、セルスタック11の外側に突出する導電部19に接続されている。導電部19は、セル1の発電により生じた電気を集電して外部に引き出す。なお、図2Aでは、端部集電部材17の図示を省略している。
 また、図2Cに示すように、セルスタック装置10は、2つのセルスタック11A、11Bが直列に接続され、一つの電池として機能する。そのため、セルスタック装置10の導電部19は、正極端子19Aと、負極端子19Bと、接続端子19Cとに区別される。
 正極端子19Aは、セルスタック11が発電した電力を外部に出力する場合の正極であり、セルスタック11Aにおける正極側の端部集電部材17に電気的に接続される。負極端子19Bは、セルスタック11が発電した電力を外部に出力する場合の負極であり、セルスタック11Bにおける負極側の端部集電部材17に電気的に接続される。
 接続端子19Cは、セルスタック11Aにおける負極側の端部集電部材17と、セルスタック11Bにおける正極側の端部集電部材17とを電気的に接続する。
<導電部材の詳細>
 つづいて、第1の実施形態に係る導電部材18の詳細について、図3~図4Cを参照しながら説明する。図3は、第1の実施形態に係る導電部材の一例を示す横断面図である。
 図3に示すように、導電部材18は、隣接する一方のセル1に接続される接続部18aと、他方のセル1に接続される接続部18bとを有する。また、導電部材18は、幅方向Wの両端に連結部18cを有しており、接続部18a,18bを接続する。これにより、導電部材18は、厚み方向Tに隣り合うセル1同士を電気的に接続することができる。なお、図3では、セル1の形状を単純化して図示している。
 また、接続部18a,18bは、セル1と向かい合う第1面181と、接続部18b,18aと向かい合う第2面182とを有している。
 図4Aは、図3に示すA-A線に沿った断面図である。図4Bは、図4Aに示す領域Bの拡大図である。
 導電部材18は、セル1の長さ方向Lに延在している。図4Aに示すように、導電部材18の接続部18a,18bは、セル1の長さ方向Lに沿って互い違いに複数位置している。導電部材18は、接続部18a,18bのそれぞれでセル1と接触している。
 また、図4Bに示すように、導電部材18は、基材41と、多結晶膜42と、被覆層43とを有している。また、導電部材18は、セル1の厚み方向Tの両端に位置する第1面181および第2面182を有する。また、導電部材18は、第1面181および第2面182をつなぐ第3面183,184を有する。
 導電部材18(接続部18b)は、接合材50を介してセル1と接合されている。接合材50は、導電部材18の第1面181とセル1との間に位置しており、導電部材18とセル1とを接合する。また、第2面182および第3面183,184は、たとえば空気など、酸化雰囲気に露出している。
 基材41は、導電性および耐熱性を有する。基材41は、クロムを含有する。基材41は、たとえば、ステンレス鋼である。基材41は、たとえば、金属酸化物を含有してもよい。基材41は、後述する第1元素を含んでもよい。
 図4Cは、図4Bに示す多結晶膜の拡大図である。多結晶膜42は、基材41上に位置している。多結晶膜42は、第1元素42aを含む。
 第1元素42aは、第一イオン化エネルギーおよび酸素1モル当たりの酸化物の生成自由エネルギーがクロムよりも小さい。第1元素42aとしては、たとえば、Y、Ce、Eu、Gd、Pr、YbおよびZrなどが挙げられる。生成自由エネルギーは、生成ギブズエネルギーともいう。生成自由エネルギーは、たとえば「核燃料・原子力材料熱力学データベース」などの熱力学データベースで確認できる。第1元素42aは、特にCe、Eu、PrおよびZrのうちいずれかであってもよい。
 図4Cに示すように、多結晶膜42は、複数の酸化クロム粒子421と、粒界相420とを含む。複数の酸化クロム粒子421は、酸化クロム(Cr)の結晶を含有する。多結晶膜42が複数の酸化クロム粒子421を有することにより、導電部材18の耐久性が高まる。複数の酸化クロム粒子421に含まれる酸化クロム粒子421は、たとえば、500nm以下、特に100nm以上350nm以下の平均粒径(円相当径)を有してもよい。また、酸化クロム粒子421は、酸化クロム以外の成分を含有してもよい。酸化クロム粒子421は、酸化クロム(Cr)の結晶であってもよい。酸化クロム粒子421に含まれる酸化クロム以外の成分は、たとえば酸化クロムの結晶構造を損なわない程度の微量の不純物であってもよい。
 複数の酸化クロム粒子421は、第1元素42aを含む第1酸化クロム粒子を含んでもよい。第1酸化クロム粒子に含まれる第1元素42aは、たとえば、0.1原子%以下であってもよい。複数の酸化クロム粒子421は、第1元素42aを含まない酸化クロム粒子421を含んでいてもよい。第1元素42aは、第1酸化クロム粒子中に固溶していてもよい。
 粒界相420は、隣接する少なくとも2つの酸化クロム粒子421の間に位置している。粒界相420は、酸化クロム粒子421と同じ組成を有する非晶質の部分である。粒界相420の幅は、たとえば、10nm以下であってもよい。粒界相420の幅とは、隣接する2つの酸化クロム粒子421間の距離である。粒界相420は、たとえば0.01原子%以上1.0原子%以下、特に0.05原子%以上0.3原子%以下の第1元素42aを含んでいてもよい。
 粒界相420は、複数の酸化クロム粒子421よりも第1元素42aの含有率が大きい。Crは粒内の拡散速度より粒界の拡散速度の方が大きいので、粒界相420に第1元素42aを含有することにより、基材41中のCrの拡散が抑えられる。たとえば、Crの拡散が顕著となる600℃以上、さらに、1000℃以上の温度領域においても、多結晶膜42の厚みの増大を抑えることができる。すなわち、第1元素42aを含有する粒界相420を含む多結晶膜42は、高温の酸化雰囲気中に長時間さらされても厚みを増しにくい。これにより、導電部材18は、たとえば、内部抵抗が増大しにくくなることから、セル1の発電性能を低下しにくくすることができる。また、第1元素42aを含む第1酸化クロム粒子は、第1元素42aを含まない酸化クロム粒子421よりも電気抵抗率が大きくなる傾向がある。第1酸化クロム粒子に含まれる第1元素42aを少なくすることで、第1酸化クロム粒子の電気抵抗率を増大しにくくすることができる。また、多結晶膜42に含まれる第1酸化クロム粒子を少なくすることで、多結晶膜42の電気抵抗率を増大しにくくすることができる。
 このように、粒界相420の第1元素42aの含有率が、複数の酸化クロム粒子421よりも大きいことにより、多結晶膜42が厚みを増しにくくなるとともに、多結晶膜42に含まれる複数の酸化クロム粒子421における電気抵抗率が増大しにくくなり、導電部材18の内部抵抗が増大しにくくなる。粒界相420の第1元素42aの含有率が、複数の酸化クロム粒子421よりも大きいということは、換言すれば、多結晶膜42中の第1元素42aを粒界相に偏析させ、第1酸化クロム粒子中の第1元素42aの含有率を小さくする、または複数の酸化クロム粒子421中の第1酸化クロム粒子の比率を小さくするということである。多結晶膜42は、第1元素42aを含む第1酸化クロム粒子を含まなくてもよい。
 多結晶膜42は、第1粒子422を含んでもよい。第1粒子422は、第1元素42aの酸化物を含む結晶粒子であり、酸化クロム(Cr)とは異なる。第1元素42aの酸化物としては、たとえば、Y、CeO、EuO、Gd、PrO、Yb、ZrOが該当する。第1酸化クロム粒子は、その内部に第1粒子422を有していてもよい。第1粒子422には、微量のCrが固溶していてもよい。微量のCrが固溶した第1粒子422とは、第1粒子422の結晶構造を損なわない程度のCrが固溶した第1粒子422を指す。第1粒子422は、隣接する少なくとも2つの酸化クロム粒子421の間に位置していてもよい。
 第1粒子422は、たとえば、第1元素42aのうち、1以上を含有してもよい。第1粒子422は、第1元素42a以外の元素を含んでいてもよい。第1粒子422は、たとえばSm(サマリウム)、Gd(ガドリニウム)が固溶したCeOを含有してもよいし、Sc(スカンジウム)、Y(イットリウム)、Yb(イッテルビウム)等が固溶したZrO、いわゆる安定化ジルコニアまたは部分安定化ジルコニアを含有してもよい。また、第1粒子422は、たとえばCeTiなどの第1元素42aを含む複合酸化物を含有してもよい。
 第1粒子422の粒径は、第1粒子422に接する、または第1粒子422を内部に有する酸化クロム粒子421の粒径の1/10以下、さらには1/100以下であってもよい。第1粒子422は、電気絶縁性または低い導電性を有しており、第1粒子422を含むことで酸化クロム粒子421の電気抵抗率が増大する場合がある。第1粒子422がこのように小さい粒径を有することで、多結晶膜42が第1粒子442を含有していても、多結晶膜42の電気抵抗率が増大しにくくなり、導電部材18の内部抵抗が増大しにくくなる。
 複数の酸化クロム粒子421は、第1酸化クロム粒子を含まなくてもよい。換言すれば、多結晶膜42に含まれる第1元素42aは、後述する測定方法により、粒界相420において検出され、複数の酸化クロム粒子421の内部には検出されなくてもよい。
 多結晶膜42は、たとえば、基材41との界面が平坦であってもよく、基材41との界面に凹凸を有してうねっていてもよい。
 また、多結晶膜42は、たとえば、Siを含有してもよい。かかるSiは、たとえば、多結晶膜42が基材41との界面に凹凸を有する場合、基材41側に突出する多結晶膜42の凸部の先端に位置してもよい。
 また、多結晶膜42の厚みは、たとえば、20nm以上10μm以下、さらには200nm以上3.0μm以下であってもよい。多結晶膜42がこのような厚みを有することにより、たとえば、内部抵抗に対する多結晶膜42の影響を小さく抑えられることから、導電部材18は、内部抵抗が増大しにくくなる。これにより、たとえば、セル1の発電性能を低下しにくくすることができる。
 なお、導電部材18は、多結晶膜42上に位置する第1元素42aの酸化物を有してもよい。第1元素42aの酸化物は、たとえば、Y、CeO、EuO、Gd、PrO、Yb、ZrOであってもよい。
 粒界相420および酸化クロム粒子421における第1元素42aの含有率は、粒界相420および粒界相420に接する酸化クロム粒子421の内部それぞれにおいて、TEM-EDSを用いてそれぞれ任意の二点で元素分析を行い、その平均値をそれぞれ算出することで得られる。酸化クロム粒子421の内部とは、粒界相420から10nm以上離れた部位とする。酸化クロム粒子421と粒界相420の境界が不明瞭な場合、隣接する2つの酸化クロム粒子421の輪郭の概ね中点から10nm以上離れた部位を、酸化クロム粒子421の内部として、元素分析を行ってもよい。この場合、粒界相420の元素分析は、隣接する2つの酸化クロム粒子421の輪郭の概ね中点で行ってもよい。
 また、第1元素42aを含む第1粒子422の大きさは、たとえば導電部材18の断面において、HAADF-STEM(高角度環状暗視野走査透過型電子顕微鏡)、FIB-SEM(収束イオンビーム走査電子顕微鏡)またはEPMA(電子プローブマイクロアナライザ)を用いて第1元素42aの点分析、線分析、マッピングなどを行うことで確認できる。酸化クロム粒子421の内部の3点を元素分析し、少なくとも1点に第1元素42aが検出されたものを第1酸化クロム粒子とする。元素分析した3点のいずれにも第1元素42aが検出されなかったものは、第1元素42aを含まない酸化クロム粒子421とする。また、多結晶膜42の平均厚みは、たとえば、加速電圧200kVのHAADF-STEMを用い、導電部材18の断面において倍率100万倍でクロムおよび酸素のマッピングをそれぞれ行い、クロムおよび酸素が検出された部分の厚みを10点以上測定してその平均値を算出することで得られる。
 このような導電部材18は、クロムを含有する基材41の表面に、第1元素42aを含む被膜を形成し、第1元素42aを含む被膜および基材41を熱処理することで得られる。第1元素42aを含む被膜は、たとえば第1元素42aの酸化物被膜でもよい。第1元素42aを含む被膜は、たとえばIAD(Ion Assisted Deposition)などの物理蒸着法、第1元素42aの酸化物を含むスラリーの塗布などにより形成してもよい。第1元素42aを含む被膜の厚さは、たとえば1nm以上300nm以下としてもよい。第1元素42aを含む被膜の厚さは、5nm以上150nm以下、さらには10nm以上100nm以下としてもよい。第1元素42aを含む被膜は、第1元素42aを含む粒子、たとえば第1元素42aの酸化物粒子を含んでもよい。第1元素42aを含む被膜中の第1元素42aを含む粒子の粒径は、たとえば100nm以下、10nm以下、さらには1nm以下であってもよい。第1元素42aを含む粒子がこのように微粒であると、第1元素42aが多結晶膜42、特にその粒界相420に導入されやすくなる。第1元素42aを含む被膜および基材41の熱処理は、たとえば空気中において300℃~1200℃の温度で行えばよい。基材41は、第1元素42aを含まなくてもよい。多結晶膜42は、基材41に近い側よりも基材41から遠い側に、多くの第1元素42aを含有していてもよい。
 被覆層43は、多結晶膜42上に位置している。被覆層43は、図4Bの断面においてセル1の厚み方向Tおよび長さ方向Lの全体にわたって導電部材18の多結晶膜42を被覆する。被覆層43は、多結晶膜42とは異なる元素を含んでいる。被覆層43は、たとえば導電性を有する。被覆層43は、多結晶膜42と酸化雰囲気との間に位置することにより、たとえば、基材41および/または多結晶膜42が含有するクロムの放出を抑えることができる。このため、導電部材18の耐久性が向上することから、セル1の耐久性を向上することができる。
 また、被覆層43は、たとえば、Mn(マンガン)およびCo(コバルト)を含む酸化物を含有してもよい。また、被覆層43は、多孔質であってもよい。被覆層43は、異なる元素を含み積層された構造を有してもよい。
<モジュール>
 次に、上述したセルスタック装置10を用いた本開示の実施形態に係るモジュールについて、図5を用いて説明する。図5は、第1の実施形態に係るモジュールを示す外観斜視図である。図5では、収納容器101の一部である前面および後面を取り外し、内部に収納される燃料電池のセルスタック装置10を後方に取り出した状態を示している。
 図5に示すように、モジュール100は、収納容器101、および収納容器101内に収納されたセルスタック装置10を備えている。また、セルスタック装置10の上方には、改質器102が位置している。
 かかる改質器102は、天然ガス、灯油などの原燃料を改質して燃料ガスを生成し、セル1に供給する。原燃料は、原燃料供給管103を通じて改質器102に供給される。なお、改質器102は、水を気化させる気化部102aと、改質部102bとを備えていてもよい。改質部102bは、図示しない改質触媒を備えており、原燃料を燃料ガスに改質する。このような改質器102は、効率の高い改質反応である水蒸気改質を行うことができる。
 そして、改質器102で生成された燃料ガスは、ガス流通管20、ガスタンク16、および支持部材14を通じて、セル1のガス流路2a(図1A参照)に供給される。
 また、上述の構成のモジュール100では、ガスの燃焼およびセル1の発電に伴い、通常発電時におけるモジュール100内の温度が500℃~1000℃程度となる。
 このようなモジュール100においては、上述したように、発電性能を低下しにくくするセル1を複数備えるセルスタック装置10を収納して構成されることにより、発電性能を低下しにくくするモジュール100とすることができる。
<モジュール収容装置>
 図6は、第1の実施形態に係るモジュール収容装置の一例を示す分解斜視図である。本実施形態に係るモジュール収容装置110は、外装ケース111と、図5で示したモジュール100と、図示しない補機と、を備えている。補機は、モジュール100の運転を行う。モジュール100および補機は、外装ケース111内に収容されている。なお、図6においては一部構成を省略して示している。
 図6に示すモジュール収容装置110の外装ケース111は、支柱112と外装板113とを有する。仕切板114は、外装ケース111内を上下に区画している。外装ケース111内の仕切板114より上側の空間は、モジュール100を収容するモジュール収容室115であり、外装ケース111内の仕切板114より下側の空間は、モジュール100を運転する補機を収容する補機収容室116である。なお、図6では、補機収容室116に収容する補機を省略して示している。
 また、仕切板114は、補機収容室116の空気をモジュール収容室115側に流すための空気流通口117を有している。モジュール収容室115を構成する外装板113は、モジュール収容室115内の空気を排気するための排気口118を有している。
 このようなモジュール収容装置110においては、上述したように、発電性能を低下しにくくするモジュール100をモジュール収容室115に備えていることにより、発電性能を低下しにくくするモジュール収容装置110とすることができる。
 なお、上述の実施形態では、中空平板型の支持基板を用いた場合を例示したが、円筒型の支持基板を用いたセルスタック装置に適用することもできる。
[第2の実施形態]
 つづいて、第2の実施形態に係る電気化学セルおよび電気化学セル装置について、図7A、図7Bを参照しながら説明する。
 上述の実施形態では、支持基板の表面に燃料極、固体電解質層および空気極を含む素子部が1つのみ設けられたいわゆる「縦縞型」を例示したが、支持基板の表面の互いに離れた複数個所にて素子部がそれぞれ設けられ、隣り合う素子部の間が電気的に接続されたいわゆる「横縞型」の電気化学セルを配列した電気化学セル装置に適用することができる。
 図7Aは、第2の実施形態に係る電気化学セルの一例を示す断面図である。セルスタック装置10Aは、燃料ガスを流通させる配管73から複数のセル1Aが長さ方向Lに延びている。セル1Aは、支持基板2上に複数の素子部3Aを有している。支持基板2の内部には、配管73からのガスが流れるガス流路2aが設けられている。支持基板2上の各素子部3Aは、図示しない接続層により電気的に接続されている。複数のセル1Aは、導電部材18を介して互いに電気的に接続されている。導電部材18は、各セル1Aがそれぞれ有する素子部3Aの間に位置しており、隣り合うセル1Aを電気的に接続している。具体的には、隣り合うセル1Aのうち一方のセル1Aの素子部3Aの空気極と電気的に接続された集電体またはインターコネクタと、他方のセル1Aの素子部3Aの燃料極と電気的に接続された集電体またはインターコネクタとを電気的に接続している。
 図7Bは、第2の実施形態に係る導電部材の拡大断面図である。図7Bに示すように、導電部材18は、接合材50を介して互いに隣り合うセル1Aとそれぞれ接合されている。また、導電部材18は、基材41を挟んで向かい合う第1面181および第2面182を有する。また、導電部材18は、第1面181および第2面182をつなぐ第3面183,184を有する。
 導電部材18は、接合材50を介してセル1Aと接合されている。接合材50は、導電部材18の第1面181と一方のセル1Aの素子部3Aとの間、導電部材18の第2面182と他方のセル1Aの素子部3Aとの間に位置しており、導電部材18を挟んで向かい合う一対のセル1Aと導電部材18とを接合する。また、第3面183,184は、たとえば空気など、酸化雰囲気に露出している。
 導電部材18は、基材41と、多結晶膜42と、被覆層43とを有している。導電部材18を構成する各部位は、たとえば、先に述べた第1の実施形態に係る導電部材18のような材料で構成することができる。
 多結晶膜42は、基材41上に位置している。多結晶膜42は、基材41と被覆層43との間に位置している。多結晶膜42は、複数の酸化クロム粒子421と、複数の酸化クロム粒子421の間に位置する粒界相420とを含む(図4C参照)。多結晶膜42は、第一イオン化エネルギーおよび酸素1モル当たりの酸化物の生成自由エネルギーがクロムよりも小さい第1元素42aを含む。粒界相420は、複数の酸化クロム粒子421よりも第1元素42aの含有率が大きい。
 このように、導電部材18が多結晶膜42の特定の位置に第1元素42aを有することにより、多結晶膜42が厚みを増しにくくなり、多結晶膜42の電気抵抗率が増大しにくくなることから、導電部材18は、内部抵抗が増大しにくくなる。これにより、セル1Aの発電性能を低下しにくくすることができることから、セルスタック装置10Aの発電性能を低下しにくくすることができる。また、多結晶膜42が、第1元素42aを含むことにより、たとえば多結晶膜42中のクロムが、多結晶膜42の表面から空気などの酸化雰囲気に蒸発しにくくなることも考えられる。
[第3の実施形態]
 図8Aは、第3の実施形態に係る電気化学セルの一例を示す横断面図である。図8B、図8Cは、第3の実施形態に係る電気化学セルの他の一例を示す横断面図である。図8Dは、図8Aに示す領域Cの拡大図である。なお、図8Dは、図8B、図8Cの例にも適用できる。
 図8A~図8Cに示すように、セル1Bは、燃料極5、固体電解質層6、および空気極8が積層された素子部3Bと、支持基板2とを有している。支持基板2は、素子部3Bの燃料極5と接する部位に貫通孔または細孔を有するとともに、ガス流路2aの外側に位置する部材120を有する。支持基板2は、ガス流路2aと素子部3Bとの間でガスを流通させることができる。支持基板2は、たとえば、1または複数の金属板で構成されてもよい。金属板の材料は、クロムを含有していてもよい。金属板は、導電性の被覆層を有していてもよい。支持基板2は、隣接するセル1B同士を電気的に接続する導電部材である。素子部3Bは、支持基板2上に直接形成されていてもよいし、接合材により支持基板2に接合されていてもよい。
 図8Aに示す例では、燃料極5の側面は固体電解質層6により被覆され、燃料ガスが流れるガス流路2aを気密に封止している。図8Bに示すように、燃料極5の側面は緻密な封止材9で被覆され、封止されていてもよい。燃料極5の側面を被覆する封止材9は、電気絶縁性を有していてもよい。封止材9の材料は、例えばガラスまたはセラミックスであってもよい。
 また、図8Cに示すように、支持基板2のガス流路2aは、凹凸を有する部材120により形成されていてもよい。
 第3の実施形態において、部材120は、隣接する別のセル1Bの空気極8とセル間接続部材60などの他の導電部材および接合材50を介して接合されている。なお、部材120は、他の導電部材を介さずに直接別のセル1Bの空気極8と接触していてもよい。
 図8Dに示すように、部材120は、基材41と、多結晶膜42と、被覆層43とを有している。部材120を構成する各部位は、たとえば、先に述べた導電部材18のような材料で構成することができる。図示による詳細な説明は省略するが、セル間接続部材60および/または支持基板2も、基材41と、多結晶膜42と、被覆層43とを有する部材120のような導電部材であってもよい。
 多結晶膜42は、基材40と隣接する別のセル1Bとの間に位置している。多結晶膜42は、複数の酸化クロム粒子421と、複数の酸化クロム粒子421の間に位置する粒界相420とを含む(図4C参照)。多結晶膜42は、第一イオン化エネルギーおよび酸素1モル当たりの酸化物の生成自由エネルギーがクロムよりも小さい第1元素42aを含む。粒界相420は、複数の酸化クロム粒子421よりも第1元素42aの含有率が大きい。
 このように、部材120が上述したような特定の多結晶膜42を有することにより、多結晶膜42が厚みを増しにくくなることから、部材120は、内部抵抗が増大しにくくなる。これにより、セル1Bの発電性能が低下しにくくなることから、電気化学セル装置の発電性能を低下しにくくすることができる。また、多結晶膜42が、第1元素42aを含むことにより、たとえば多結晶膜42中のクロムが、多結晶膜42の表面から空気などの酸化雰囲気に蒸発しにくくなることも考えられる。
 なお、本実施形態において、多結晶膜42は、部材120の一部にのみ形成されてもよい。たとえば、図8Cに示す例では、別のセル1Bの空気極8に面する第1部分120aにのみ多結晶膜42と被覆層43とを有し、支持基板2に面する第2部分120bには多結晶膜42のみを有してもよい。支持基板2が、セル1Bの燃料極5に面する部分に多結晶膜42を有していてもよい。
[第4の実施形態]
 図9Aは、第4の実施形態に係る電気化学セルを示す斜視図である。図9B、図9Cは、図9Aに示す電気化学セルの部分断面図である。
 図9Aに示すように、セル1Cは、燃料極5、固体電解質層6および空気極8が積層された素子部3Cを有している。複数の平板型セルを積層させたセルスタック装置は、たとえば複数のセル1Cが、互いに隣り合う金属層である導電部材91,92により電気的に接続されている。導電部材91,92は、隣接するセル1C同士を電気的に接続するとともに、燃料極5または空気極8にガスを供給するガス流路を有している。
 図9Bに示すように、本実施形態では、導電部材92は、空気極8に酸素含有ガスを供給するガス流路94を有している。導電部材92は、接合材50を介して素子部3C(空気極8)と接合されている。なお、導電部材92は、接合材50を介さず直接素子部3Cと接触していてもよい。換言すれば、本実施形態では、接合材50を用いずに、導電部材92が素子部3Cに直接接続されていてもよい。
 導電部材92は、基材41と、多結晶膜42と、被覆層43とを有している。導電部材92を構成する各部位は、たとえば、先に述べた導電部材18のような材料で構成することができる。
 多結晶膜42は、基材41上に位置している。多結晶膜42は、基材41と被覆層43との間に位置している。多結晶膜42は、複数の酸化クロム粒子421と、複数の酸化クロム粒子421の間に位置する粒界相420とを含む(図4C参照)。多結晶膜42は、第一イオン化エネルギーおよび酸素1モル当たりの酸化物の生成自由エネルギーがクロムよりも小さい第1元素42aを含む。粒界相420は、複数の酸化クロム粒子421よりも第1元素42aの含有率が大きい。
 このように、導電部材92が上述したような特定の多結晶膜42を有することにより、多結晶膜42が厚みを増しにくくなることから、導電部材92は、内部抵抗が増大しにくくなる。これにより、セル1Cの発電性能を低下しにくくすることができることから、複数のセル1Cを有するセルスタック装置の発電性能を低下しにくくすることができる。また、多結晶膜42が、第1元素42aを含むことにより、たとえば多結晶膜42中のクロムが、多結晶膜42の表面から空気などの酸化雰囲気に蒸発しにくくなることも考えられる。
 また、図9Cに示すように、導電部材91は、燃料極5に燃料ガスを供給するガス流路93を有している。導電部材91は、接合材50を介して素子部3C(燃料極5)と接合されている。なお、導電部材91は、接合材50を介さず直接素子部3Cと接触していてもよい。換言すれば、導電部材91は、接合材50を用いずに素子部3Cに直接接続されていてもよい。
 導電部材91は、基材41と、多結晶膜42と、被覆層43とを有している。導電部材91を構成する各部位は、たとえば、先に述べた導電部材92(導電部材18)のような材料で構成することができる。導電部材91は、被覆層43を有していなくてもよい。
 多結晶膜42は、基材41上に位置している。導電部材91が被覆層43を有する場合、多結晶膜42は、基材41と被覆層43との間に位置している。多結晶膜42は、複数の酸化クロム粒子421と、複数の酸化クロム粒子421の間に位置する粒界相420とを含む(図4C参照)。多結晶膜42は、第一イオン化エネルギーおよび酸素1モル当たりの酸化物の生成自由エネルギーがクロムよりも小さい第1元素42aを含む。粒界相420は、複数の酸化クロム粒子421よりも第1元素42aの含有率が大きい。
 このように、導電部材91が特定の多結晶膜42を有することにより、多結晶膜42が厚みを増しにくくなることから、導電部材91は、内部抵抗が増大しにくくなる。これにより、セル1Cの発電性能を低下しにくくすることができることから、複数のセル1Cを有する電気化学セル装置の発電性能を低下しにくくすることができる。
 なお、図9Bおよび図9Cでは、導電部材91,92が被覆層43を有するとして説明したが、導電部材91,92のうち一方または両方が被覆層43を有さなくてもよい。すなわち、燃料極5または空気極8に供給されるガスに多結晶膜42が接触してもよい。また、本実施形態では、導電部材91,92の両方が多結晶膜42をそれぞれ有するとして説明したが、導電部材91,92のうち一方が多結晶膜42を有さなくてもよい。
[その他の実施形態]
 つづいて、実施形態のその他の実施形態に係る電気化学セル装置について説明する。
 上記実施形態では、「電気化学セル」、「電気化学セル装置」、「モジュール」および「モジュール収容装置」の一例として燃料電池セル、燃料電池セルスタック装置、燃料電池モジュールおよび燃料電池装置を示したが、他の例としてはそれぞれ、電解セル、電解セルスタック装置、電解モジュールおよび電解装置であってもよい。電解セルは、第1電極である水素極および第2電極である酸素極を有し、電力の供給により水蒸気を水素と酸素に分解する。また、上記実施形態では電気化学セルの電解質材料の一例として酸化物イオン伝導体または水素イオン伝導体を示したが、水酸化物イオン伝導体であってもよい。このような電解セル、電解セルスタック装置、電解モジュールおよび電解装置によれば、電解性能を向上することができる。
 以上、本開示について詳細に説明したが、本開示は上述の実施の形態に限定されるものではなく、本開示の要旨を逸脱しない範囲内において、種々の変更、改良等が可能である。
 以上のように、実施形態に係る導電部材18は、基材41と、基材41上に位置する多結晶膜42とを有する。基材41は、クロムを含有する。多結晶膜42は、複数の酸化クロム粒子421と、複数の酸化クロム粒子421の間に位置する粒界相420とを含む。多結晶膜42は、第一イオン化エネルギーおよび酸素1モル当たりの酸化物の生成自由エネルギーがクロムよりも小さい第1元素42aを含む。粒界相420は、複数の酸化クロム粒子421よりも第1元素42aの含有率が大きい。これにより、導電部材18の内部抵抗の増大を低減することができる。
 また、実施形態に係る電気化学セルは、素子部3と、上記に記載の導電部材18とを備える。導電部材18は、素子部3に接続される。これにより、内部抵抗の増大に伴う性能の低下が生じにくい電気化学セルとすることができる。
 また、実施形態に係る電気化学セル装置は、上記に記載の電気化学セルを含むセルスタック11を有する。これにより、内部抵抗の増大に伴う性能の低下が生じにくい電気化学セル装置とすることができる。
 また、実施形態に係るモジュール100は、上記に記載の電気化学セル装置と、電気化学セル装置を収納する収納容器101とを備える。これにより、内部抵抗の増大に伴う性能の低下が生じにくいモジュール100とすることができる。
 また、実施形態に係るモジュール収容装置110は、上記に記載のモジュール100と、モジュール100の運転を行うための補機と、モジュール100および補機を収容する外装ケースとを備える。これにより、内部抵抗の増大に伴う性能の低下が生じにくいモジュール収容装置110とすることができる。
 今回開示された実施形態は全ての点で例示であって制限的なものではないと考えられるべきである。実に、上記した実施形態は多様な形態で具現され得る。また、上記の実施形態は、添付の請求の範囲及びその趣旨を逸脱することなく、様々な形態で省略、置換、変更されてもよい。
  1,1A,1B,1C セル
  3,3A,3B,3C 素子部
  5 燃料極
  6 固体電解質層
  7 中間層
  8 空気極
 10 セルスタック装置
 11 セルスタック
 12 固定部材
 13 固定材
 14 支持部材
 15 支持体
 16 ガスタンク
 17 端部集電部材
 18 導電部材
 41 基材
 42 多結晶膜
 43 被覆層
100 モジュール
110 モジュール収容装置

Claims (10)

  1.  クロムを含有する基材と、
     複数の酸化クロム粒子と、前記複数の酸化クロム粒子の間に位置する粒界相とを含み、前記基材上に位置する多結晶膜と
     を有し、
     前記多結晶膜は、第一イオン化エネルギーおよび酸素1モル当たりの酸化物の生成自由エネルギーがクロムよりも小さい第1元素を含み、
     前記粒界相は、前記複数の酸化クロム粒子よりも前記第1元素の含有率が大きい
     導電部材。
  2.  前記基材は、前記多結晶膜よりも前記第1元素の含有率が小さい
     請求項1に記載の導電部材。
  3.  前記第1元素が、Ce、Eu、Pr、およびZrから選択される1以上の元素である
     請求項1または2に記載の導電部材。
  4.  前記複数の酸化クロム粒子は、前記第1元素を含む第1粒子を内部に有する
     請求項1~3のいずれか1つに記載の導電部材。
  5.  前記多結晶膜上に位置する前記第1元素の酸化物を有する
     請求項1~4のいずれか1つに記載の導電部材。
  6.  前記多結晶膜上に位置する導電性の被覆層をさらに有する
     請求項1~5のいずれか1つに記載の導電部材。
  7.  素子部と、
     前記素子部に接続される請求項1~6のいずれか1つに記載の導電部材と
     を備える電気化学セル。
  8.  請求項7に記載の電気化学セルを含むセルスタックを有する電気化学セル装置。
  9.  請求項8に記載の電気化学セル装置と、
     前記電気化学セル装置を収納する収納容器と
     を備えるモジュール。
  10.  請求項9に記載のモジュールと、
     前記モジュールの運転を行うための補機と、
     前記モジュールおよび前記補機を収容する外装ケースと
     を備えるモジュール収容装置。
PCT/JP2023/016270 2022-06-30 2023-04-25 導電部材、電気化学セル、電気化学セル装置、モジュールおよびモジュール収容装置 WO2024004361A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022106506 2022-06-30
JP2022-106506 2022-06-30

Publications (1)

Publication Number Publication Date
WO2024004361A1 true WO2024004361A1 (ja) 2024-01-04

Family

ID=89381897

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/016270 WO2024004361A1 (ja) 2022-06-30 2023-04-25 導電部材、電気化学セル、電気化学セル装置、モジュールおよびモジュール収容装置

Country Status (1)

Country Link
WO (1) WO2024004361A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0967672A (ja) * 1995-08-29 1997-03-11 Tokyo Gas Co Ltd フェライト系ステンレス鋼、これを使用した固体電解質燃料電池およびこのフェライト系ステンレス鋼の製造方法
WO2016052591A1 (ja) * 2014-09-30 2016-04-07 日立金属株式会社 固体酸化物形燃料電池用鋼及びその製造方法
WO2017131176A1 (ja) * 2016-01-28 2017-08-03 京セラ株式会社 導電部材、セルスタック、モジュール及びモジュール収容装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0967672A (ja) * 1995-08-29 1997-03-11 Tokyo Gas Co Ltd フェライト系ステンレス鋼、これを使用した固体電解質燃料電池およびこのフェライト系ステンレス鋼の製造方法
WO2016052591A1 (ja) * 2014-09-30 2016-04-07 日立金属株式会社 固体酸化物形燃料電池用鋼及びその製造方法
WO2017131176A1 (ja) * 2016-01-28 2017-08-03 京セラ株式会社 導電部材、セルスタック、モジュール及びモジュール収容装置

Similar Documents

Publication Publication Date Title
JP2024038153A (ja) セルスタック装置、モジュール、モジュール収容装置および導電部材
WO2023200016A1 (ja) 導電部材、電気化学セル装置、モジュールおよびモジュール収容装置
JP7242970B2 (ja) 導電部材、電気化学セル装置、モジュール、モジュール収容装置および導電部材の製造方法
JP7197747B2 (ja) セル、セルスタック装置、モジュールおよびモジュール収容装置
JP7050214B1 (ja) 導電部材、セル、セルスタック装置、モジュールおよびモジュール収容装置
JP2024013791A (ja) 電気化学セル装置、モジュールおよびモジュール収容装置
WO2024004361A1 (ja) 導電部材、電気化学セル、電気化学セル装置、モジュールおよびモジュール収容装置
KR102564764B1 (ko) 전기 화학 장치, 에너지 시스템, 및 고체 산화물형 연료 전지
WO2023074807A1 (ja) 導電部材、電気化学セル、電気化学セル装置、モジュールおよびモジュール収容装置
WO2024117052A1 (ja) 複合部材、電気化学セル、電気化学セル装置、モジュールおよびモジュール収容装置
JP7453485B1 (ja) 電気化学セル、電気化学セル装置、モジュールおよびモジュール収容装置
WO2023190754A1 (ja) 電気化学セル、電気化学セル装置、モジュールおよびモジュール収容装置
WO2023145903A1 (ja) 導電部材、電気化学セル、電気化学セル装置、モジュールおよびモジュール収容装置
WO2024071093A1 (ja) 導電部材、電気化学セル装置、モジュールおよびモジュール収容装置
WO2024071416A1 (ja) 電気化学セル、電気化学セル装置、モジュールおよびモジュール収容装置
WO2024095998A1 (ja) 電気化学セル、電気化学セル装置、モジュールおよびモジュール収容装置
WO2024143416A1 (ja) 導電部材、電気化学セル装置、モジュールおよびモジュール収容装置
WO2023195520A1 (ja) 電気化学セル、電気化学セル装置、モジュールおよびモジュール収容装置
JP7433450B2 (ja) セル、セルスタック装置、モジュールおよびモジュール収容装置
WO2024143355A1 (ja) 電気化学セル、電気化学セル装置、モジュールおよびモジュール収容装置
WO2023286749A1 (ja) 電気化学セル、電気化学セル装置、モジュールおよびモジュール収容装置
EP4394958A1 (en) Electrochemical cell, electrochemical cell device, module, and module storage device
WO2022113411A1 (ja) 導電部材、セル、セルスタック装置、モジュールおよびモジュール収容装置
WO2024048629A1 (ja) 電気化学セル装置、モジュールおよびモジュール収容装置
WO2023074702A1 (ja) 電気化学セル、電気化学セル装置、モジュールおよびモジュール収容装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23830814

Country of ref document: EP

Kind code of ref document: A1