JPWO2020130060A1 - 耐水素脆性に優れたCr系ステンレス鋼板 - Google Patents

耐水素脆性に優れたCr系ステンレス鋼板 Download PDF

Info

Publication number
JPWO2020130060A1
JPWO2020130060A1 JP2020561497A JP2020561497A JPWO2020130060A1 JP WO2020130060 A1 JPWO2020130060 A1 JP WO2020130060A1 JP 2020561497 A JP2020561497 A JP 2020561497A JP 2020561497 A JP2020561497 A JP 2020561497A JP WO2020130060 A1 JPWO2020130060 A1 JP WO2020130060A1
Authority
JP
Japan
Prior art keywords
less
hydrogen
stainless steel
based stainless
brittleness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020561497A
Other languages
English (en)
Other versions
JP7121142B2 (ja
Inventor
秦野 正治
佑一 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Stainless Steel Corp
Original Assignee
Nippon Steel Stainless Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Stainless Steel Corp filed Critical Nippon Steel Stainless Steel Corp
Publication of JPWO2020130060A1 publication Critical patent/JPWO2020130060A1/ja
Application granted granted Critical
Publication of JP7121142B2 publication Critical patent/JP7121142B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/007Heat treatment of ferrous alloys containing Co
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/30Ferrous alloys, e.g. steel alloys containing chromium with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/05Grain orientation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

質量%で、C:0.020%以下、Si:1.00%以下、Mn:1.00%以下、P:0.040%以下、S:0.0030%以下、Cr:10.0〜18.0%、N:0.020%以下、Al:0.10%以下、さらに、Nb:0.5%以下、Ti:0.5%以下の1種または2種を含み、板表面における集合組織が下記の(i)および(ii)を満たすことを特徴とする耐水素脆性に優れたCr系ステンレス鋼板。
(i)板表面における鋼板表面の法線方向と{211}面方位との角度差が10°以内である結晶粒({211}±10°方位粒)の面積率が30%未満
(ii){211}±10°方位粒において、圧延方向の長さおよび板幅方向の長さがいずれも平均で0.15mm未満

Description

本発明は耐水素脆性に優れたCr系ステンレス鋼板に関するものであり、特に、高圧水素ガス用機器の金属材料として好適なCr系ステンレス鋼板に関する。
近年、地球温暖化が一因となる異常気象から、二酸化炭素を主とする温室効果ガスの発生を抑制することが強く求められている。この一環として、燃料電池を電力源とする自動車や輸送機器の開発が進められている。燃料電池は水素を燃料として電力を発生させるため、二酸化炭素が発生せず、またエネルギー変換効率も高いので、有力な電力源と位置付けられている。
水素を燃料とする燃料電池や、それに水素を供給するための水素ステーションを含む機器においては、構成部品が水素ガス環境に曝される。水素ガス環境に曝される金属材料では、材料内に侵入した水素によって引張強さや伸びあるいは絞りなどの機械的性質が低下する現象が知られている。これら現象は水素脆化と呼ばれている。このような水素脆化の問題から、日本自動車研究所技術標準JARIS001では圧力35MPaの自動車用高圧水素容器に対して、またKHKS0128では圧力70MPaの自動車用高圧水素容器に対して、いずれもオーステナイト系ステンレス鋼SUS316Lとアルミ合金6061−T6の使用を規定している。
一般高圧ガス保安規則の例示基準では、圧力20MPa以上、圧力82MPa以下の水素インフラ機器に対して、JIS G 4304およびJIS G 4305に規定するオーステナイト系ステンレス鋼板(SUS316とSUS316L)のNi当量(Ni+0.65Cr+0.98Mo+1.05Mn+0.35Si+12.6C)を高めた材料(例えばNi当量≧28.5)の使用を規定している。使用温度は−45℃以上、250℃以下である。これらオーステナイト系ステンレス鋼において、例えば、特許文献1や特許文献2ではSUS316Lの強度上昇や高価なMoの低下による経済性を改良しようとしたステンレス鋼も開示されている。
前記した一般高圧ガス保安規則では、2016年の改正により圧力20MPa以下の水素機器に対する材料規制が撤廃された。これら規制緩和に伴い、高圧水素ガス中においても経済性の高いステンレス鋼板の使用ニーズが益々高くなっており、多様な鋼材において高圧水素ガス中での耐水素脆性の評価が望まれている。フェライト系およびマルテンサイト系ステンレス鋼板(以下、総称して「Cr系ステンレス鋼板」という。)は、レアメタルであるNiを殆ど含まないことから、オーステナイト系ステンレス鋼板と比べて経済性に優れる。従来、例えば、非特許文献1ではステンレス鋼を含む鉄鋼材料全般を対象として、室温・高圧水素ガス中で評価した水素脆化特性が開示されている。代表的なオーステナイト系ステンレス鋼であるSUS304、及びCr系ステンレス鋼は、水素脆化しやすいことが報告されている。そのため、一般的には圧力20MPa程度の高圧水素ガス中においてもSUS316LやSUS316の使用を推奨している。さらに、体心立方構造を有するCr系ステンレス鋼は面心立方構造のオーステナイト系ステンレス鋼と比べて、室温以下の低温で靭性が低下するという課題(低温脆性)もある。
高圧水素ガス環境で使用できる材料の拡大を目的として、耐水素脆性に優れるAlまたはAl合金で被覆した材料も考案されている。特許文献3には、AlまたはAl合金で被覆した高圧水素ガス用圧力容器と高圧水素ガス用配管が開示されている。実施例では、オーステナイト系ステンレス鋼とオーステナイト相を含む二相ステンレス鋼への皮膜付与を対象としており、水素脆化しやすい鋼材、例えばCr系ステンレス鋼における皮膜形成や水素侵入特性は示されていない。
また、特許文献4には、単体では水素脆化しやすい鋼材に対して、Siの添加量を1〜5%としたAl−Si系合金を用いた溶融めっきを施し、これにより耐水素透過皮膜を形成した水素機器用の基材が開示されている。基材の鋼材は炭素鋼、低合金鋼、Cr系ステンレス鋼とし、水素脆化を防止し、併せて製作コストを低く抑えられるとしている。しかしながら、実施例は、SUS304、SUS630(15Cr−4Ni−3Cu)並びにSCM435(低合金鋼)に限定されている。経済性の高いCr系ステンレス鋼板に関しては、その水素脆化特性についてもその使用についても全く言及されていない。
特開2014−114471号公報 特開2016−183412号公報 特開2004−324800号公報 国際公開WO2015−098981号
PVP2007−26820 南雲道彦「水素脆性の基礎」内田老鶴圃(2008年12月)
前記した特許文献1〜4に記載されたステンレス鋼はオーステナイト系と二相およびSUS630(析出硬化型)にとどまり、さらに非特許文献1に開示されたCr系ステンレス鋼は水素脆化しやすく高圧水素ガス用途において使用する耐水素脆性を有するものではない。Cr系ステンレス鋼については、低温脆性の課題も有する。
本発明は上記事情に鑑みてなされたものであり、高圧水素ガス中で使用するための耐水素脆性を備え、高圧水素ガス用機器の金属材料として好適な、耐水素脆性に優れたCr系ステンレス鋼板を提供することを課題とする。併せて、耐低温脆性との両立を実現することを課題とする。
上記課題を解決するため、本発明は以下の構成を採用する。
[1]質量%で、C:0.020%以下、Si:1.00%以下、Mn:1.00%以下、P:0.040%以下、S:0.0030%以下、Cr:10.0〜18.0%、N:0.020%以下、Al:0.10%以下、さらにNb:0.5%以下、Ti:0.5%以下の1種または2種を含み、Sn:0〜0.3%、B:0〜0.005%、Ni:0〜1%、Cu:0〜1%、Mo:0〜1%、Sb:0.2%以下、V:0〜0.5%、W:0〜0.5%、Zr:0〜0.5%、Co:0〜0.5%、Mg:0〜0.005%、Ca:0〜0.005%、Ga:0〜0.020%、La:0〜0.1%、Y:0〜0.1%、Hf:0〜0.1%、REM:0〜0.1%、残部がFeおよび不純物からなり、板表面における集合組織が下記の(i)および(ii)を満たすことを特徴とするCr系ステンレス鋼板。
(i)板表面における鋼板表面の法線方向と{211}面方位との角度差が10°以内である結晶粒(以下「{211}±10°方位粒」という。)の面積率が30%未満
(ii)(i)で定義した{211}±10°方位粒において、圧延方向の長さおよび板幅方向の長さがいずれも平均で0.15mm未満
[2]さらに質量%で、Sn:0.001〜0.3%、B:0.005%以下を含有し、
下記(1)式を満たすことを特徴とする本発明のCr系ステンレス鋼板。
Si+0.5Mn+10P+5Nb+2Ti<2.00・・・(1)式
上記式で元素記号は当該元素の含有量(質量%)を意味する。
[3]さらに質量%で、Ni:1%以下、Cu:1%以下、Mo:1%以下、Sb:0.2%以下、V:0.5%以下、W:0.5%以下、Zr:0.5%以下、Co:0.5%以下、Mg:0.005%以下、Ca:0.005%以下、Ga:0.020%以下、La:0.1%以下、Y:0.1%以下、Hf:0.1%以下、REM:0.1%以下の1種または2種以上を含有することを特徴とする本発明のCr系ステンレス鋼板。
[4]高圧水素ガス用機器の金属材料として用いられることを特徴とする本発明のCr系ステンレス鋼板。
本発明によれば、耐水素脆性に優れるとともに、低温靭性にも優れたCr系ステンレス鋼板を提供できる。また、本発明のCr系ステンレス鋼板は、高圧水素ガス用機器の金属材料として好適に用いることができる。
本発明者らは、前記した課題を解決するために、Cr系ステンレス鋼板において、耐水素脆性及び耐低温脆性に及ぼす合金元素と集合組織の影響について鋭意検討を行い,下記の新しい知見を得て本発明をなすに至った。
(a)上述のように、高圧水素ガス用機器の金属材料に求められる特性には、耐水素脆性及び耐低温脆性がある。Cr系ステンレス鋼板は、オーステナイト系ステンレス鋼板に比べて高圧水素ガス中から鋼材へ侵入する水素量が結晶構造に由来して低減するものの、高圧水素ガス用途に好適な耐水素脆性を有するものは得られていない。非特許文献2によれば、水素脆化は塑性変形の関与する機械的性質(強度、伸び、絞り)の低下として特徴づけられる。従って、水素脆化は、高圧水素ガス中から鋼材へ侵入した水素と塑性変形との相互作用により材料の破壊が進行する事象である。近年の研究成果から、水素脆化のメカニズムは水素と塑性変形との相互作用により鋼中において空孔性格子欠陥の生成を助長して破壊が進行する、水素助長歪誘起空孔理論が有力視されている[非特許文献2]。従って、高圧水素ガス用として好適なCr系ステンレス鋼板を実現するためには、水素と塑性変形との相互作用を可能な限り低減させる必要がある。特にCrは水素のトラップ能力が大きいために、本発明ではCr量については18%以下に抑制する。さらに本発明者らは、Si、Mn、P、Ti、Nbの添加量を所定の範囲に制御することが好ましいことを知見した。
(b)さらに本発明者らは、高圧水素ガス中で低歪速度引張試験をした場合、水素と塑性変形との相互作用による割れの発生に対して結晶方位の影響があることを突きとめた。水素脆化が顕在化する場合、割れは結晶粒内から発生・進展する頻度が高くなる。結晶粒内の割れは、再結晶集合組織である{111}方位粒({111}面方位が鋼板表面の法線方向を向いた結晶粒)でなく、圧延集合組織である{211}方位粒({211}面方位が鋼板表面の法線方向を向いた結晶粒)で発生する場合が多いことが分かった。これらの事実より、{211}方位粒は水素と塑性変形との相互作用により歪が導入・蓄積しやすいものと推定される。そして、{211}方位粒において、前記した空孔性格子欠陥の生成が活発化することで、割れの発生サイトとして作用したものと推察している。このようなメカニズムで進行する水素脆化を抑制するためには、前記した合金元素の範囲を調整することに加えて、{211}方位粒の面積率とサイズを低下させることが効果的であり、そのしきい値を見出すに至った。
(c)また、高圧水素ガス中から鋼材へ侵入した水素は、結晶粒界を主要な拡散経路として移動する。粒界偏析元素であるSn及びBの微量添加は、水素の結晶粒界における拡散障壁となって水素と塑性変形との相互作用を低減させる。従来のCr系ステンレス鋼では、結晶粒界にPやSの不純物元素が偏析して低温脆性を助長しやすい。そこで本発明者らはSnとBの微量添加に着目し、これら元素を所定の範囲で含有させることにより、PやS等の悪影響を抑制して耐水素脆性と耐低温脆性の両立が見込まれることを見出した。
上記(a)〜(c)の知見に基づいて成された本発明の要旨は、以下の通りである。
本実施形態のCr系ステンレス鋼板は、質量%で、C:0.020%以下、Si:1.00%以下、Mn:1.00%以下、P:0.040%以下、S:0.0030%以下、Cr:10.0〜18.0%、N:0.020%以下、Al:0.10%以下、さらにNb:0.5%以下、Ti:0.5%以下の1種または2種を含み、残部がFeおよび不純物からなり、板表面における集合組織が下記(i)および(ii)を満たすことを特徴とする耐水素脆性と耐低温脆性に優れたCr系ステンレス鋼板である。
(i)板表面における鋼板表面の法線方向と{211}面方位との角度差が10°以内である結晶粒({211}±10°方位粒)の面積率が30%未満
(ii)(i)で定義した{211}±10°方位粒において、圧延方向の長さおよび板幅方向の長さがいずれも平均で0.15mm未満
また、本実施形態のCr系ステンレス鋼板は、さらに質量%で、Sn:0.001〜0.3%、B:0.005%以下を含有し、下記(1)式を満たすことが好ましい。
Si+0.5Mn+10P+5Nb+2Ti<2.00・・・(1)式
上記式で元素記号は当該元素の含有量(質量%)を意味する。
また、本実施形態のCr系ステンレス鋼板は、さらに質量%で、Ni:1%以下、Cu:1%以下、Mo:1%以下、Sb:0.2%以下、V:0.5%以下、W:0.5%以下、Zr:0.5%以下、Co:0.5%以下、Mg:0.005%以下、Ca:0.005%以下、Ga:0.020%以下、La:0.1%以下、Y:0.1%以下、Hf:0.1%以下、REM:0.1%以下の1種または2種以上を含有してもよい。
また、本実施形態のCr系ステンレス鋼板は、高圧水素ガス用機器の金属材料として用いられることが好ましい。
以下、本発明の各要件について詳しく説明する。なお、各元素の含有量の「%」表示は「質量%」を意味する。
C:0.020%以下
Cは、固溶および炭化物の析出により鋼の加工硬化を上昇させて耐水素脆性を劣化させ、更には靱性を低下させて耐低温脆性を悪化させるため、その含有量は少ないほどよく、上限を0.020%以下とする。ただし、C量を低減させるには精錬工程が煩雑になりコストが増大する。よってC量は0.001%以上とすることが好ましい。精錬コストも考慮した好ましい範囲は0.003〜0.015%であり、更に好ましい範囲は0.003〜0.010%である。
Si:1.00%以下
Siは、脱酸元素として有効である一方、過剰に含有させると固溶強化と加工硬化を上昇させて耐水素脆性ならびに耐低温脆性の低下を招くため、上限を1.00%以下とする。脱酸能力を確保するために下限を0.01%以上とすることが好ましい。好ましい範囲は、製造性と特性を考慮して0.05〜0.50%であり、0.05〜0.30%であってもよい。
Mn:1.00%以下
Mnは、脱酸元素として有効であり、また、Sを固定して靭性を改善して耐低温脆性を得るために有効な元素でもある。一方、Mnは過剰に含有させると加工硬化を上昇させて耐水素脆性と耐低温靭性の低下を招くため、上限を1.00%以下とする。脱酸やS固定の作用を確保するため、下限は0.01%以上とすることが好ましい。好ましい範囲は、効果と製造性を考慮して0.05〜0.50%であり、0.05〜0.30%であってもよい。
P:0.040%以下
Pは、粒界偏析して耐低温脆性を低下させる元素であり、その含有量は少ないほどよいため、上限を0.040%以下とする。但し、過度の低減は精錬コストの増加に繋がるため、下限を0.005%以上とすることが好ましい。より好ましい範囲は、製造コストと特性を考慮して0.010〜0.030%であり、0.010〜0.020%であってもよい。
S:0.0030%以下
Sは、粒界偏析や鋼中に硫化物を形成して耐低温脆性を劣化させるため、その含有量は少ないほどよく、上限を0.0030%以下とする。但し、過度の低減は原料及び精錬コストの増加に繋がるため、下限を0.0001%以上とすることが好ましい。より好ましい範囲は、製造コストと特性を考慮して0.0002〜0.0015%であり、0.0002〜0.0008%であってもよい。
Cr:10.0〜18.0%
Crは、本実施形態のCr系ステンレス鋼の基本元素であり、鋼の耐食性に加えて耐水素脆性および耐低温脆性を保持するために必須の元素である。本実施形態の高圧水素ガス用途を想定した前記特性を得るために下限を10.0%以上とする。上限は、耐水素脆性と耐低温脆性を両立する観点から18.0%以下とする。水素のトラップ能力が高いCrが18.0%を超えると高圧水素ガス環境から鋼中に侵入する水素量が増加して耐水素脆性が劣化するとともに、集合組織が本発明好適範囲から外れることがある。より好ましいCrの範囲は、11.0〜17.0%未満としてもよく、12.0〜15.0%でもよい。
N:0.020%以下
Nは、Cと同様に、固溶および炭化物の析出により鋼の加工硬化を上昇させて耐水素脆性を劣化させ、更には靱性を低下させて耐低温脆性を悪化させるため、その含有量は少ないほどよく上限を0.020%以下とする。ただし、N量を低減させるには精錬工程が煩雑になりコストが増大する。よってN量は0.001%以上とすることが好ましい。好ましい範囲は、特性と製造コストを考慮して0.005〜0.015%である。
Al:0.10%以下
Alは、脱酸元素として極めて有効な元素である。一方、鋼の靭性を低下させて耐低温脆性を劣化させるとともに、集合組織が本発明好適範囲から外れることがあるため、上限を0.10%以下とする。下限は、脱酸効果を考慮して0.005%以上とすることが好ましい。好ましい範囲は、特性と製造性を考慮して0.01〜0.07%であり、0.01〜0.05%であってもよい。
Nb:0.5%以下、Ti:0.5%以下の1種または2種
Nb、Tiは、粒界に偏析することでPやSの粒界偏析を抑制して耐低温脆性の改善を図る作用がある。また、Nb、Tiには、C,N,P,Sを固定する安定化元素としての作用により鋼の加工硬化を抑制して耐水素脆性の改善も見込める。Nb,Tiとも、これら2つの作用を発揮するため、本発明の目標とする耐水素脆性と耐低温脆性の改善に有効な元素となる。含有する場合は、それぞれその効果が発現する0.01%以上とすることが好ましい。但し、過度な含有は加工硬化を高めて耐水素脆性の低下や合金コストの上昇に繋がり、さらに、靱性が低下して耐低温脆性が劣化するとともに、集合組織が本発明好適範囲から外れることがあるため、上限をそれぞれ0.5%以下とする。好ましい範囲は、前記特性の向上効果と合金コストを考慮して、Nb、Tiの1種または2種の合計について0.05〜0.5%とする。より好ましい範囲は1種または2種の合計について0.08〜0.4%であり、0.1〜0.3%であってもよい。
さらに好ましくは、SnとBを下記含有量範囲で含有する。
Sn:0.001〜0.3%
Snは、本発明の目標とする耐水素脆性と耐低温脆性を向上させるために有効な元素である。粒界偏析元素であるSnは、水素の結晶粒界における拡散障壁となって水素と塑性変形との相互作用を低減させる。また、結晶粒界においてPやSの偏析を抑制して耐低温脆性の悪影響も緩和する。Snを所定の範囲で含有させることにより、耐水素脆性と耐低温脆性の両立が見込まれるので、本発明では0.001〜0.5%の範囲で含有させることが好ましい。Snを0.001%以上含有させることで、前記の効果が発現されて耐水素脆性が向上する。但し、過度な含有は、結晶粒界におけるSn濃度を増大させて耐低温脆性や製造性の低下を招くため、上限を0.5%以下とする。好ましくは0.005〜0.3%であり、0.010〜0.2%でもよい。
B:0.005%以下
Bは、粒界偏析元素であり、Snと同様に耐水素脆性と耐低温脆性を向上させる元素であり、本実施形態のCr系ステンレス鋼に含有させることは有効である。本発明では、耐水素脆化特性の向上を図るため0.0003%以上とすることが好ましい。しかし、過度のBの含有は、伸びや製造性の低下を招くため、上限を0.005%以下とする。好ましくは0.0005〜0.002%とし、0.001〜0.002%でもよい。
Si、Mn、P、Nb、Tiは、それぞれ前記した含有量の範囲とするとともに、本発明の目標とする耐水素脆性と耐低温脆性を向上させるために、さらに以下の式(1)を満たすことが好ましい。
Si+0.5Mn+10P+5Nb+2Ti<2.00・・・式(1)
上記式で元素記号は当該元素の含有量(質量%)を意味する。
本発明の目標とする前記特性を向上させるために、式(1)は2.00未満とし、下限は特性と製造性の観点から0.05とすることが好ましい。好ましい範囲は0.35〜1.80、より好ましい範囲は0.50〜1.50である。
上記した元素以外は、Feおよび不純物からなる。但し、本発明の技術特徴が奏する効果を阻害しない範囲で、上記以外の以下に記載する元素を、選択的に含有させることができる。以下に限定理由を記載する。これらの元素の下限は0%である。
Ni:1%以下
Cu:1%以下
Mo:1%以下
Ni、Cu、Moは耐食性ならびにNiとCuは耐低温靭性の改善にも有効な元素である。この効果を発揮させるため、Ni、Cu、Moはそれぞれ、0.05%以上の範囲で含有させてもよい。過度の含有は、ステンレス鋼の固溶強化と加工硬化を上昇させて耐水素脆性の低下を招くため、それぞれ上限は1%以下とする。より好ましい範囲はそれぞれ、0.1%以上0.8%以下であり、更に好ましくは0.2%以上0.5%以下である。
Sb:0.2%以下
V:0.5%以下
W:0.5%以下
Zr:0.5%以下
Co:0.5%以下
Sb、V、W、Zr、Coは、耐食性の改善とP、Sの粒界偏析を抑制して耐低温脆性の向上に有効な元素であり、必要に応じて含有させる。特にSbは強力な粒界偏析元素であり、SnやBと同様に、P、Sなど不純物元素の粒界偏析を排除する作用を持つ。これらの元素を含有させる場合は、それぞれその効果が発現する0.01%以上とすることが好ましい。過度な含有は製造性や耐低温脆性の低下に繋がるため、Sbを0.2%以下、V、W、Zr、Coをそれぞれ0.5%以下とする。より好ましいSbの範囲は、0.02〜0.15%、更に好ましくは0.02〜0.1%以下である。V、W、Zr、Coのより好ましい範囲は0.02〜0.3%、更に好ましい範囲は0.02〜0.2%である。
Mg:0.005%以下
Mgは、溶鋼中でAlとともにMg酸化物を形成し脱酸剤として作用する他、TiNの晶出核として作用する。TiNは凝固過程においてフェライト相の凝固核となり、TiNの晶出を促進させることで、凝固時にフェライト相を微細生成させることができる。凝固組織を微細化させることにより、耐低温脆性を向上させることもできる。含有させる場合は、これら効果を発現する0.0001%以上とすることが好ましい。但し、Mgが0.005%を超えると製造性や耐食性が劣化するため、上限を0.005%以下とする。好ましくは0.0003〜0.002%とし、更に好ましくは0.0003〜0.001%する。
Ca:0.005%以下
Ga:0.020%以下
Ca、Gaは、鋼の清浄度を向上させる元素であり、加工硬化の上昇を抑制して耐水素脆性を高めるため必要に応じて含有させる。含有させる場合は、これら効果を発現するためにそれぞれ0.0003%以上とすることが好ましい。しかし、過度の含有は製造性や耐食性の劣化に繋がるため、上限をCaは0.005%以下、Gaは0.020%以下とする。好ましくは、Caが0.0003〜0.0030%とし、Gaは0.0030〜0.015%する。
La:0.1%以下
Y:0.1%以下
Hf:0.1%以下
REM:0.1%以下
La、Y、Hf、REMは、Ca、Gaと同様に鋼の清浄度を向上させる元素であり、加工硬化の上昇を抑制して耐水素脆性を高めるため必要に応じて含有してもよい。含有させる場合は、効果が発現するためにそれぞれ0.001%以上とすることが好ましい。しかし、過度の含有は、合金コストの上昇と製造性の劣化に繋がるため、上限をそれぞれ0.1%以下とする。好ましくはそれぞれ0.001〜0.05%とし、更に好ましくは0.001〜0.03%とする。
REM(希土類元素)は、スカンジウム(Sc)、イットリウム(Y)の2元素と、周期律表においてセリウム(Ce)からルテチウム(Lu)までの14元素(ランタノイド)の総称を指す。これらの元素は単独で含有させてもよいし、混合物であってもよい。
なお、残部に含まれる不純物とは、鋼を工業的に製造する際に、原料としての鉱石、スクラップ、または製造環境などから混入されるものであって、本発明の課題を解決する限度において許容されるものを意味する。必要に応じてTa:0.1%以下、Bi:0.01%以下、Zn:0.05%、H:0.0005%以下を含有してもよい。本実施形態のCr系ステンレス鋼は、フェライトの結晶粒を含有するもので、マルテンサイトの結晶粒を含有するものであってもよい。
次に本実施形態のCr系ステンレス鋼板の集合組織について説明する。本実施形態のCr系ステンレス鋼板は、板表面における集合組織が下記の(i)および(ii)を満たすものである。
(i)板表面における鋼板表面の法線方向と{211}面方位との角度差が10°以内である結晶粒({211}±10°方位粒)の面積率が30%未満
(ii)(i)で定義した{211}±10°方位粒において、圧延方向の長さおよび板幅方向の長さがいずれも平均で0.15mm未満
ここで{211}面方位とは、{211}面の法線方向を意味する。
{211}方位はα−fiberと呼ばれ、冷間圧延で集積する圧延集合組織である。本発明ではこれら耐水素脆性を向上させるために、板表面において割れの発生サイトとなる頻度が高い{211}±10°方位粒の面積率とサイズを制御することが効果的であることを知見した。{211}±10°方位粒の面積率は30%未満とし、板表面において再結晶集合組織である{111}方位の存在比率を高めることで耐水素脆性の向上に寄与することができる。耐水素脆性と製造性の観点から、{211}±10°方位粒の面積率の好ましい範囲は5〜20%、より好ましい範囲は3〜15%である。
また、板表面において{211}±10°方位粒のサイズは圧延方向および板幅方向(圧延垂直方向)の長さはいずれも平均で0.15mm未満とする。{211}±10°方位粒のサイズを細分化することで{211}±10°方位粒への歪の導入・蓄積が緩和されて、耐水素脆性の向上に寄与する。耐水素脆性と製造性の観点から、{211}±10°方位粒の好ましいサイズは0.10mm未満であり、より好ましくは0.07mm未満である。
本発明において、「板表面」とは、鋼板の板厚tのt/8までの領域であり、鋼板の表面から当該鋼板の両側の面方向に1/8tの厚さまでの領域をいう。また、{211}±10°方位粒とは、上記板表面において、鋼板表面の法線方向と{211}面方位との角度差が10°以内である結晶方位を持つ結晶粒をいう。
前記した集合組織については、電子線後方散乱回折法(以下、EBSD)を用いて解析することができる。EBSDは、試料表面のミクロ領域における結晶粒毎の結晶方位を高速に測定・解析するものである。耐水素脆性に寄与する結晶方位集団は、板表面における{211}±10°方位粒とその他の領域に分割した結晶方位マップを表示させて、{211}±10°方位粒の面積率や粒子サイズを数値化することができる。例えば、鋼板表面から鋼板の板厚tのt/8までの、鋼板表面に平行な面において、板幅方向850μm、圧延方向2250μmの測定領域で倍率100としてEBSDの測定を行い、鋼板表面に平行な面の法線方向と{211}面方位との角度差が10°以内である結晶粒(すなわち{211}±10°方位粒)の結晶方位マップを表示させてその面積率ならびに粒子径のサイズ(圧延方向、板幅方向)を数値化することができる。鋼板表面から鋼板の板厚tのt/8までの範囲を検査面とすれば、板表面の集合組織を再現性よく評価することができる。
耐水素脆性は、歪速度の比較的小さい低歪速度引張試験で評価するものとし、歪速度は10−5/sとすることが好ましい。歪速度の比較的大きい10−4/s以上の場合、鋼中への水素の侵入と拡散が進行せずに鋼の水素脆性が軽減する場合もある。一方、歪速度の小さい10−6/sの場合、過度な試験時間を要するとともに水素脆化特性への影響も飽和する。耐水素脆性は、前記した低歪速度引張試験において引張強さや破断伸びで評価し、大気中もしくは不活性ガス中の引張強さや破断伸びと比較して高圧水素ガス中での値が低下し難いほど良好である。ここで、高圧水素ガス中の引張強さを大気中もしくは不活性ガス中の引張強さで除した値を「相対引張強さ」と呼ぶ。高圧水素ガス中の破断伸びを大気中もしくは不活性ガス中の破断伸びで除した値を「相対伸び」と呼ぶ。本実施形態のCr系ステンレス鋼板は、相対引張強さは0.98以上、相対伸びは0.75以上であることが好ましい。より好ましい範囲は、相対引張強さが0.98〜1.05、相対伸びが0.85〜1.05である。
耐低温脆性は、JIS Z 2242に準拠するシャルピー衝撃試験で評価するものとし、例えばVノッチの2mm厚試験片を使用して吸収エネルギーを測定する。耐低温脆性は、前記JISの附属書Dに準拠したエネルギー遷移温度で評価し、エネルルギー遷移温度が低いほど良好である。エネルギー遷移温度とは、延性破壊による破面率100%となる温度における吸収エネルギーの1/2の値に相当する温度である。本実施形態のCr系ステンレス鋼板は、屋外や車載用の水素機器での使用を考慮してエネルギー遷移温度が−10℃以下であることが好ましい。より好ましくは寒冷地域での使用に配慮して−40℃以下である。
次に、本実施形態のCr系ステンレス鋼板の製造方法について説明する。
本実施形態のCr系ステンレス鋼板は上記の化学成分を満足すれば、鋳造、熱間圧延、冷間圧延等の通常のプロセス条件で製造しても本発明の目標とする耐水素脆性と耐低温脆性を確保できる場合もある。
本実施形態のCr系ステンレス鋼板は、本発明の集合組織を形成して耐水素脆性を向上させるために、上記の化学成分を満足するとともに、以下の製造方法が好ましい。
前記した化学組成を有する鋼を熱間圧延後、900℃以下で熱延後焼鈍し、その後に圧下率40%以上の冷間圧延を行い、900℃超の温度で仕上げ焼鈍を行うことが好ましい。熱間圧延後の熱処理(熱延後焼鈍)は、熱間圧延段階で生成した{211}方位粒の成長を抑制するために900℃以下、より好ましい範囲は700〜900℃である。
冷間圧延は、可逆式の20段ゼンジミア圧延機や6段あるいは12段圧延機で実施しても良く、複数パスを連続的に圧延するタンデム圧延機で実施しても良い。本発明の集合組織を形成するには、ワークロール径は大きい方が好ましい。そのため、ワークロール径は200mm以上とすることが好ましい。このような大径ロール圧延は、1次冷延(複数回冷延を繰返し行う場合の初期冷延)時に実施すると好ましい。これにより再結晶集合組織である{111}方位粒が発達し、圧延集合組織である{211}±10°方位粒の面積率が低減するので、本発明の目標とする集合組織の形成に有効である。冷間圧延は、40%以上の圧下率で実施することが好ましい。冷間圧延率が40%未満の場合、再結晶集合組織において{211}±10°方位粒の面積率とサイズが上昇しやすくなり、耐水素脆性の低下を招く場合がある。耐水素脆性と製造性の観点から、好ましい圧下率の範囲は40〜90%であり、より好ましい範囲は50〜80%である。
冷間圧延後の仕上げ焼鈍は、{111}方位粒を発達させて{211}方位粒の面積率とサイズを低減させるために、900℃超で熱処理することが好ましい。過度な温度上昇は、結晶粒成長により{211}±10°方位粒のサイズを上昇させるため、仕上げ焼鈍温度の上限は1050℃であることが好ましい。また、仕上げ焼鈍時の雰囲気は特に規定するものではないが、大気中、LNG燃料雰囲気、BA雰囲気であることが好ましい。
熱処理(仕上げ焼鈍)の均熱時間は、10秒〜10分とすることが好ましい。均熱時間が10秒以上であれば、冷間圧延のための材料の軟質化が図れるので好ましい。また、均熱時間が10分以下であれば、{211}±10°方位粒の成長を抑制して当該結晶粒のサイズを小さく抑え、耐水素脆性に有効な集合組織を確保することができる。
以下、本発明の実施例を説明する。
Figure 2020130060
表1の成分組成を有するCr系ステンレス鋼を溶製した。表1のNb、Ti、Sn、Bの含有量において、「0.0」と記載したものは当該元素を添加していないことを意味する。
加熱温度1150〜1250℃まで加熱して熱間圧延を行い、板厚5.0mmの熱延鋼板を製造した。熱延鋼板を700〜900℃の範囲にて熱延後焼鈍し、酸洗後に板厚1.5〜2.5mmの範囲で冷間圧延して冷延鋼板とした。冷延条件は表2に示す。冷間圧延は異なるワークロール径のゼンジミア圧延機とタンデム圧延機で実施し、前者は小径ロール(60mm)(表2で「S」と表示)、後者は大径ロール(200mm)(表2で「L」と表示)を使用した。冷延鋼板に対して920〜1020℃の仕上げ焼鈍と酸洗を行い、Cr系ステンレス鋼板を製造した。
集合組織は、EBSDを用いて解析した。耐水素脆性に寄与する結晶方位集団は、板表面における{211}±10°方位粒とその他の領域に分割した結晶方位マップを表示させて数値化した。すなわち、鋼板表面から鋼板の板厚tのt/8範囲の、鋼板表面に平行な面において、板幅方向850μm、圧延方向2250μmの測定領域で倍率100としてEBSDの測定を行い、鋼板表面に平行な面の法線方向と{211}面方位との角度差が10°以内である結晶粒(すなわち{211}±10°方位粒)の結晶方位マップを表示し、併せて結晶粒界を表示し、当該結晶粒の面積率と平均粒子径(圧延方向および板幅方向)を測定した。表2の{211}±10°方位粒の「サイズ」欄の表記は、「圧延方向/板幅方向」を意味する。また、一部の比較例については、参考として板厚中心(t/2)における測定結果も併記した。結晶方位が15°以上異なる部位を結晶粒界とした。
Figure 2020130060
得られたCr系ステンレス鋼板は、水素脆性および低温脆性の評価に供した。耐水素脆性は比較材として市販の2mm厚SUS316L鋼板(17.5%Cr−12%Ni−2%Mo)およびSUS316鋼板(17.5%Cr−10%Ni−2%Mo)を評価に用いた。
水素脆性の評価は、以下の手順で実施した。
平行部の幅4mm、長さ20mmの引張試験片を作製し、高圧水素ガス中での引張試験直前に表面を乾式#600エメリー紙で研磨後に有機溶剤で脱脂洗浄した。高圧水素ガス中の引張試験は、表1に示すように水素ガスの圧力を20MPa又は45MPaとし、試験温度は−40℃、歪速度は10−5/sで行った。比較の引張試験は、−40℃の0.1MPa窒素中で実施した。高圧水素ガス中の引張強さを0.1MPa窒素中の引張強さで除して相対引張強さとし、高圧水素ガス中の破断伸びを0.1MPa窒素中の破断伸びで除して相対伸びとした。耐水素脆性は、相対引張強さと相対伸びを評価指標として評価した。評価基準は以下の通りとした。AおよびBを合格とした。
A:相対引張強さ0.98以上かつ相対伸び0.85以上を満たす。
B:上記以外で相対引張強さ0.98以上かつ相対伸び0.75以上を満たす。
X:相対引張強さ0.98未満または相対伸び0.75未満の何れか一方または両方である。
ここで、水素ガスの圧力45MPa、試験温度−40℃の場合、SUS316L鋼板は相対伸び0.75未満となり評価はXとなる。また、水素ガスの圧力20MPa、試験温度−40℃の場合、SUS316鋼板は相対伸び0.75未満となり評価はXとなる。
低温脆性の評価は、JIS Z 2242に準拠したシャルピー衝撃試験で行った。試験片は1.5〜2.5mm厚×10mm幅×55mm長さのVノッチ形状とし、試験温度は−100℃から室温(20℃)の範囲とした。耐低温脆性は、シャルピー試験で測定した吸収エネルギーから前記したエネルギー遷移温度を求めて評価指標とした。評価基準は以下の通りとした。AおよびBを合格とした。
A:エネルギー遷移温度−40℃以下を満たす。
B:エネルギー遷移温度−40℃超−10℃以下を満たす。
X:エネルギー遷移温度−10℃超である。
表2に試験結果をまとめて示す。
No.1〜11は、何れも本発明範囲の化学成分と集合組織を有するCr系ステンレス鋼板であり、耐水素脆性及び耐低温脆性が良好であった。特に、好ましい成分と集合組織の範囲としたNo.5、6、9、10は、水素ガスの圧力45MPaにおいて耐水素脆性指標が「B」または「A」であり、その耐水素脆性はSUS316Lと比較しても高位であった。また、No.6、8、10は大径ロールを使用して{211}±10°方位粒を低減したものであり、同じ化学成分でありながらNo.5、7、9に比べて耐水素脆性が更に向上した。
No.12〜20は、何れも本発明範囲の化学成分を有しないCr系ステンレス鋼板であり、本発明範囲の集合組織を形成できず、耐水素脆性または耐低温脆性のいずれか一方または両方が劣位となった。また、No.17、19、20は、板厚中心の{211}±10°方位粒の面積率は30%未満であるが板表面における当該面積率は30%を超えており、耐水素脆性と耐低温脆性を共に得るためには、板表面における面積率を制御することが重要であると分かる。
以上の評価結果から、本発明範囲の成分と集合組織を有することでCr系ステンレス鋼板の耐水素脆性は市中のSUS316と比べて高位であった。さらに、好ましい成分を有して大径ロールを使用して好ましい集合組織に制御することで、SUS316Lを凌ぐ耐水素脆性となることが分かった。

Claims (4)

  1. 質量%で、
    C:0.020%以下、
    Si:1.00%以下、
    Mn:1.00%以下、
    P:0.040%以下、
    S:0.0030%以下、
    Cr:10.0〜18.0%、
    N:0.020%以下、
    Al:0.10%以下、
    さらに、Nb:0.5%以下、Ti:0.5%以下の1種または2種を含み、
    Sn:0〜0.3%、
    B:0〜0.005%、
    Ni:0〜1%、
    Cu:0〜1%、
    Mo:0〜1%、
    Sb:0.2%以下、
    V:0〜0.5%、
    W:0〜0.5%、
    Zr:0〜0.5%、
    Co:0〜0.5%、
    Mg:0〜0.005%、
    Ca:0〜0.005%、
    Ga:0〜0.020%、
    La:0〜0.1%、
    Y:0〜0.1%、
    Hf:0〜0.1%、
    REM:0〜0.1%、
    残部がFeおよび不純物からなり、板表面における集合組織が下記の(i)および(ii)を満たすことを特徴とするCr系ステンレス鋼板。
    (i)板表面における鋼板表面の法線方向と{211}面方位との角度差が10°以内である結晶粒(以下「{211}±10°方位粒」という。)の面積率が30%未満
    (ii)(i)で定義した{211}±10°方位粒において、圧延方向の長さおよび板幅方向の長さがいずれも平均で0.15mm未満
  2. さらに質量%で、Sn:0.001〜0.3%、B:0.005%以下を含有し、
    下記(1)式を満たすことを特徴とする請求項1に記載のCr系ステンレス鋼板。
    Si+0.5Mn+10P+5Nb+2Ti<2.00・・・(1)式
    上記式で元素記号は当該元素の含有量(質量%)を意味する。
  3. さらに質量%で、
    Ni:1%以下、
    Cu:1%以下、
    Mo:1%以下、
    Sb:0.2%以下、
    V:0.5%以下、
    W:0.5%以下、
    Zr:0.5%以下、
    Co:0.5%以下、
    Mg:0.005%以下、
    Ca:0.005%以下、
    Ga:0.020%以下、
    La:0.1%以下、
    Y:0.1%以下、
    Hf:0.1%以下、
    REM:0.1%以下
    の1種または2種以上を含有することを特徴とする請求項1または請求項2に記載のCr系ステンレス鋼板。
  4. 高圧水素ガス用機器の金属材料として用いられることを特徴とする請求項1から請求項3の何れか一項に記載のCr系ステンレス鋼板。
JP2020561497A 2018-12-21 2019-12-18 耐水素脆性に優れたCr系ステンレス鋼板 Active JP7121142B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018239243 2018-12-21
JP2018239243 2018-12-21
PCT/JP2019/049717 WO2020130060A1 (ja) 2018-12-21 2019-12-18 耐水素脆性に優れたCr系ステンレス鋼板

Publications (2)

Publication Number Publication Date
JPWO2020130060A1 true JPWO2020130060A1 (ja) 2021-10-14
JP7121142B2 JP7121142B2 (ja) 2022-08-17

Family

ID=71102066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020561497A Active JP7121142B2 (ja) 2018-12-21 2019-12-18 耐水素脆性に優れたCr系ステンレス鋼板

Country Status (6)

Country Link
US (1) US20220033944A1 (ja)
EP (1) EP3901292A4 (ja)
JP (1) JP7121142B2 (ja)
KR (1) KR102539588B1 (ja)
CN (1) CN113227414B (ja)
WO (1) WO2020130060A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7186601B2 (ja) * 2018-12-21 2022-12-09 日鉄ステンレス株式会社 高圧水素ガス用機器の金属材料として用いるCr系ステンレス鋼
CN114107630B (zh) * 2021-11-19 2022-08-19 北京科技大学 提高马氏体不锈钢抗氢脆性的热处理方法、不锈钢及应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04371550A (ja) * 1991-06-18 1992-12-24 Nisshin Steel Co Ltd 封着用合金部材
JP2009013478A (ja) * 2007-07-05 2009-01-22 Nippon Steel Corp 高剛性高強度冷延鋼鈑及びその製造方法
WO2012043877A1 (ja) * 2010-09-29 2012-04-05 新日鐵住金ステンレス株式会社 オーステナイト系高Mnステンレス鋼およびその製造方法と、その鋼を用いた部材
JP2012107333A (ja) * 2010-10-28 2012-06-07 Jfe Steel Corp 高圧水素貯蔵容器用高強度鋼材
WO2013133259A1 (ja) * 2012-03-09 2013-09-12 新日鐵住金ステンレス株式会社 面内異方性が小さいフェライト・オーステナイト2相ステンレス鋼板およびその製造方法
WO2015159554A1 (ja) * 2014-04-17 2015-10-22 新日鐵住金株式会社 オーステナイト系ステンレス鋼及びその製造方法
WO2018008658A1 (ja) * 2016-07-04 2018-01-11 新日鐵住金ステンレス株式会社 フェライト系ステンレス鋼と、その鋼板及びそれらの製造方法
JP2018119196A (ja) * 2017-01-27 2018-08-02 新日鐵住金ステンレス株式会社 耐熱性に優れた耐熱部材締結部品用フェライト系ステンレス鋼板および締結部品並びに耐熱管状部材用円状クランプ

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60200326T2 (de) * 2001-01-18 2005-03-17 Jfe Steel Corp. Ferritisches rostfreies Stahlblech mit hervorragender Verformbarkeit und Verfahren zu dessen Herstellung
JP3788311B2 (ja) * 2001-10-31 2006-06-21 Jfeスチール株式会社 フェライト系ステンレス鋼板及びその製造方法
JP3886864B2 (ja) * 2002-08-26 2007-02-28 日新製鋼株式会社 二次加工性に優れるフェライト系ステンレス鋼冷延焼鈍材及びその製造方法
JP4167587B2 (ja) * 2003-02-28 2008-10-15 新日本製鐵株式会社 耐水素脆化に優れた高強度薄鋼板及びその製造方法
JP4700263B2 (ja) 2003-04-25 2011-06-15 新日本製鐵株式会社 高圧水素ガス用タンク及び配管
JP3886933B2 (ja) * 2003-06-04 2007-02-28 日新製鋼株式会社 プレス成形性,二次加工性に優れたフェライト系ステンレス鋼板及びその製造方法
JP5196807B2 (ja) * 2007-02-26 2013-05-15 新日鐵住金ステンレス株式会社 加工肌荒れの小さい成形性に優れたフェライト系ステンレス鋼板およびその製造方法
JP5610796B2 (ja) * 2010-03-08 2014-10-22 新日鐵住金ステンレス株式会社 炭化水素燃焼排ガスから発生する凝縮水環境における耐食性に優れるフェライト系ステンレス鋼
JP5793459B2 (ja) * 2012-03-30 2015-10-14 新日鐵住金ステンレス株式会社 加工性に優れた耐熱フェライト系ステンレス冷延鋼板、冷延素材用フェライト系ステンレス熱延鋼板及びそれらの製造方法
JP6089657B2 (ja) 2012-12-07 2017-03-08 愛知製鋼株式会社 低温での水素脆化感受性に優れた高圧水素用オーステナイト系ステンレス鋼及びその製造方法
CN104968823B (zh) * 2013-02-04 2018-06-12 新日铁住金不锈钢株式会社 加工性优良的铁素体系不锈钢板及其制造方法
JPWO2015098981A1 (ja) 2013-12-27 2017-03-23 国立大学法人九州大学 水素機器用の基材及びその製造方法
JP5908936B2 (ja) * 2014-03-26 2016-04-26 新日鐵住金ステンレス株式会社 フランジ用フェライト系ステンレス鋼板とその製造方法およびフランジ部品
US20170314093A1 (en) * 2014-10-31 2017-11-02 Nippon Steel & Sumikin Stainless Steel Corporation Ferrite-based stainless steel plate, steel pipe, and production method therefor
JP6684620B2 (ja) 2015-03-26 2020-04-22 日鉄ステンレス株式会社 耐水素脆化特性に優れた高強度オーステナイト系ステンレス鋼およびその製造方法、ならびに高圧水素ガスおよび液体水素環境中で用いる水素用機器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04371550A (ja) * 1991-06-18 1992-12-24 Nisshin Steel Co Ltd 封着用合金部材
JP2009013478A (ja) * 2007-07-05 2009-01-22 Nippon Steel Corp 高剛性高強度冷延鋼鈑及びその製造方法
WO2012043877A1 (ja) * 2010-09-29 2012-04-05 新日鐵住金ステンレス株式会社 オーステナイト系高Mnステンレス鋼およびその製造方法と、その鋼を用いた部材
JP2012107333A (ja) * 2010-10-28 2012-06-07 Jfe Steel Corp 高圧水素貯蔵容器用高強度鋼材
WO2013133259A1 (ja) * 2012-03-09 2013-09-12 新日鐵住金ステンレス株式会社 面内異方性が小さいフェライト・オーステナイト2相ステンレス鋼板およびその製造方法
WO2015159554A1 (ja) * 2014-04-17 2015-10-22 新日鐵住金株式会社 オーステナイト系ステンレス鋼及びその製造方法
WO2018008658A1 (ja) * 2016-07-04 2018-01-11 新日鐵住金ステンレス株式会社 フェライト系ステンレス鋼と、その鋼板及びそれらの製造方法
JP2018119196A (ja) * 2017-01-27 2018-08-02 新日鐵住金ステンレス株式会社 耐熱性に優れた耐熱部材締結部品用フェライト系ステンレス鋼板および締結部品並びに耐熱管状部材用円状クランプ

Also Published As

Publication number Publication date
WO2020130060A1 (ja) 2020-06-25
JP7121142B2 (ja) 2022-08-17
CN113227414B (zh) 2023-08-11
KR102539588B1 (ko) 2023-06-01
EP3901292A1 (en) 2021-10-27
US20220033944A1 (en) 2022-02-03
KR20210092292A (ko) 2021-07-23
EP3901292A4 (en) 2022-11-23
CN113227414A (zh) 2021-08-06

Similar Documents

Publication Publication Date Title
JP5352793B2 (ja) 耐遅れ破壊特性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
TWI412609B (zh) 高強度鋼板及其製造方法
JP5561442B1 (ja) 鋼板およびlngタンク
CN108779528A (zh) 具有高延展性的奥氏体低密度高强度钢带材或片材、制备所述钢的方法及其用途
JP2011219849A (ja) 極低温用厚鋼板およびその製造方法
JPWO2013089156A1 (ja) 低温靭性に優れた高強度h形鋼及びその製造方法
JP6852805B2 (ja) 低温用ニッケル含有鋼
JP2012107333A (ja) 高圧水素貯蔵容器用高強度鋼材
US11384416B2 (en) Nickel-containing steel for low temperature
JP6852807B2 (ja) 低温用ニッケル含有鋼
KR102539588B1 (ko) 내수소 취성이 우수한 Cr계 스테인리스 강판
CN112840055B (zh) 薄钢板及其制造方法
JP6620662B2 (ja) 液体水素用Ni鋼
JP6620661B2 (ja) 液体水素用Ni鋼
EP3868910A1 (en) Thin steel sheet and method for manufacturing same
JP2020059880A (ja) 鋼材およびその製造方法
JP6620660B2 (ja) 液体水素用Ni鋼
JP7186601B2 (ja) 高圧水素ガス用機器の金属材料として用いるCr系ステンレス鋼
JP4712839B2 (ja) 耐水素脆化特性および加工性に優れた高強度冷延鋼板
CN111868283B (zh) 钢板
JP6620659B2 (ja) 液体水素用Ni鋼
WO2011039885A1 (ja) 冷延鋼板
JP2024020934A (ja) オーステナイト系ステンレス鋼板
JP2024020935A (ja) オーステナイト系ステンレス鋼板
KR20240017368A (ko) 오스테나이트계 스테인리스 강재 및 그 제조 방법 그리고 수소용 기기

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220804

R150 Certificate of patent or registration of utility model

Ref document number: 7121142

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150