WO2012043877A1 - オーステナイト系高Mnステンレス鋼およびその製造方法と、その鋼を用いた部材 - Google Patents

オーステナイト系高Mnステンレス鋼およびその製造方法と、その鋼を用いた部材 Download PDF

Info

Publication number
WO2012043877A1
WO2012043877A1 PCT/JP2011/073030 JP2011073030W WO2012043877A1 WO 2012043877 A1 WO2012043877 A1 WO 2012043877A1 JP 2011073030 W JP2011073030 W JP 2011073030W WO 2012043877 A1 WO2012043877 A1 WO 2012043877A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
stainless steel
steel
ferrite
hydrogen
Prior art date
Application number
PCT/JP2011/073030
Other languages
English (en)
French (fr)
Inventor
秦野 正治
成雄 福元
藤井 秀樹
慎一 大宮
Original Assignee
新日鐵住金ステンレス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金ステンレス株式会社 filed Critical 新日鐵住金ステンレス株式会社
Priority to CN201180047358.4A priority Critical patent/CN103154291B/zh
Priority to JP2012536611A priority patent/JP5709881B2/ja
Priority to EP11829427.1A priority patent/EP2623624B1/en
Priority to KR1020137007357A priority patent/KR20130045931A/ko
Priority to US13/824,290 priority patent/US9175361B2/en
Priority to ES11829427.1T priority patent/ES2595630T3/es
Publication of WO2012043877A1 publication Critical patent/WO2012043877A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • C21D8/105Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J12/00Pressure vessels in general
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K51/00Other details not peculiar to particular types of valves or cut-off apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L9/00Rigid pipes
    • F16L9/02Rigid pipes of metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C1/00Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Definitions

  • the present invention relates to an austenitic high Mn stainless steel having good mechanical properties (strength and ductility) in a high-pressure hydrogen gas or liquid hydrogen environment.
  • the present invention also relates to a gas tank for high-pressure hydrogen gas or a tank for liquid hydrogen, in which the container body and the liner are made of austenitic high Mn stainless steel excellent in hydrogen environment fragility.
  • the present invention relates to a pipe for transporting high-pressure hydrogen gas or liquid hydrogen, which is made of an austenitic high Mn stainless steel excellent in hydrogen environment fragility.
  • this invention relates to the valve
  • SUS316 steel The existing JIS standard SUS316 austenitic stainless steel (hereinafter referred to as “SUS316 steel”) has other structural steels that are resistant to hydrogen gas brittleness in a high-pressure hydrogen gas environment, such as the above-described Cr—Mo steel. Because it is better than carbon steel and SUS304 type austenitic stainless steel (hereinafter referred to as “SUS304 steel”), it is also used for piping materials or high-pressure hydrogen fuel tank liners for fuel cell vehicles. Has been.
  • SUS316 steel is a stainless steel containing 10% or more of expensive Ni and 2% or more of Mo. Therefore, SUS316 steel has big problems in versatility and economy (cost).
  • Austenitic SUS304 steel or SUS316 steel has been conventionally used for cryogenic temperatures of liquid hydrogen. Also for the liquid hydrogen container, it is desirable to use SUS316 steel excellent in hydrogen gas embrittlement resistance because it is necessary to consider low temperature hydrogen gas embrittlement in the upper layer portion where the liquid hydrogen becomes vapor.
  • a high nitrogen content austenitic stainless steel is known as a stainless steel for high-pressure hydrogen gas with increased material strength.
  • Patent Document 1 N: 0.1 to 0.5%, Cr: 22 to 30%, Ni: 17 to 30%, Mn: 3 to 30%, V, Ti, Zr, or Hf And high pressure hydrogen gas stainless steel satisfying 5Cr + 3.4Mn ⁇ 500N, and containers and equipment made of the steel are disclosed.
  • Patent Document 2 N: 0.1 to 0.5%, Cr: 15 to 22%, Ni: 5 to 20%, Mn: 7 to 30%, V, Ti, Zr, or Hf And high pressure hydrogen gas stainless steel satisfying 2.5Cr + 3.4Mn ⁇ 300N, and containers and equipment made of the steel are disclosed.
  • Patent Document 1 and Patent Document 2 are oriented to high Cr-high Ni as compared to SUS316 steel. Even in the stainless steel disclosed in Patent Document 2 having a relatively low alloy element content, the Cr content is substantially over 17%, the N content is over 0.25% and contains Ni, Mn, Mo, Nb, etc. High alloy steel.
  • Patent Document 3 discloses a pressure vessel and piping pipe that are excellent in hydrogen environment embrittlement resistance and stress corrosion cracking resistance, and can be applied to high-pressure hydrogen gas of 70 MPa or more without relying on a large increase in thickness and diameter.
  • Steel used for these pressure vessels and piping pipes is Cr: 15 to 20%, Ni: 8 to 17%, Si: 1.3 to 3.5%, Mn: 3.5% or less, N: 0.00. It consists of a component composition of 2% or less.
  • Patent Document 4 as an austenitic stainless steel welded tube suitable for high-pressure hydrogen transport of about 40 MPa, Cr: 14 to 28%, Ni: 6 to 20%, Si: 4% or less, Mn: 3% or less, N : 0.25% or less stainless steel is disclosed.
  • the stainless steels disclosed in Patent Document 3 and Patent Document 4 are characterized by Si addition and low Mn, and the Ni content is substantially 9 to 15%, which is substantially equal to or higher than that of SUS316 steel.
  • the present inventors have a workability capable of performing press forming such as cold working and deep drawing at a high working rate, and do not generate strain-induced martensite even after working and maintain non-magnetism.
  • Austenitic high Mn stainless steel This stainless steel is a small amount of addition of Ni: 6% or less and Mo: 0.3% or more, and is remarkably excellent in economic efficiency as compared with SUS316 steel.
  • Patent Document 6 an austenitic high Mn stainless steel for high-pressure hydrogen gas that combines both low cost, low cost and high strength intended for application to a low temperature hydrogen gas environment.
  • This austenitic high-Mn stainless steel pursues thorough alloying.
  • Cr less than 15%
  • Ni 6% or less
  • N 0.01 to 0.4%
  • trace Mo addition It is recommended that the austenite stability index Md30 be in the range of -120 to 20.
  • an object of the present invention is to provide inexpensive stainless steel or inexpensive and high-strength stainless steel that can be used in both high-pressure hydrogen gas and liquid hydrogen environments exceeding 40 MPa.
  • the material in the austenitic high Mn stainless steel studied so far by the present inventors, the material is designed so that the alloy composition and the steel structure satisfy specific conditions, thereby adapting to both high-pressure hydrogen gas and liquid hydrogen environments.
  • An object of the present invention is to provide inexpensive stainless steel, or inexpensive and high-strength stainless steel.
  • the target characteristics of the present invention are that the hydrogen gas brittleness resistance in high-pressure hydrogen gas is equal to or higher than that of SUS316 steel, and the strength / ductility balance in liquid hydrogen is equal to or higher than that of SUS316 steel, more preferably SUS304 steel. Equivalent or better.
  • the present inventors have investigated the austenitic high Mn stainless steels that have been studied so far, and have good mechanical properties in both high-pressure hydrogen gas and liquid hydrogen environments (both strength and ductility).
  • the present inventors have earnestly studied the relationship between the alloy composition composed of the main elements Cr, Mn, Ni and the trace element Mo, etc., and the steel structure, and obtained the following new knowledge. It came to be completed.
  • (E) In order to control the volume ratio and size of the prescribed ⁇ ferrite, it is effective to set the Cr content to 17% or less and the Mn content to 11% or less. Furthermore, it is preferable to reduce the addition amount of Mo, which is a ferrite-forming element and a trace additive element, to 0.3% or less. Mn contributes to improving the coexistence of hydrogen gas embrittlement resistance and strength and ductility in liquid hydrogen as an austenite stabilizing element from room temperature to extremely low temperature, but in the solidification and hot working temperature range of steel, Promotes the formation of ferrite.
  • the size of the ⁇ ferrite is 0.05 mm in the major axis.
  • the present invention has been made based on the above findings (a) to (f), and the gist of the present invention is as follows.
  • the steel is further mass%, Mo: 0.3% or less, Al: 0.2% or less, B: 0.01% or less, Ca: 0.01% or less, Mg: 0.01 % Austenitic high Mn stainless steel according to (1) above, which contains one or more elements selected from REM: 0.1% or less.
  • the steel is further mass%, Mo: 0.3% or less, Al: 0.2% or less, B: 0.01% or less, Ca: 0.01% or less, Mg: 0.01 % Or less, and REM: One or more elements selected from 0.1% or less are contained, and the austenitic high Mn stainless steel according to (2) above.
  • the steel is further mass%, Mo: 0.3% or less, Al: 0.2% or less, B: 0.01% or less, Ca: 0.01% or less, Mg: 0.01 % Austenitic high Mn stainless steel according to (6) or (7) above, which contains one or more elements selected from REM: 0.1% or less Steel manufacturing method.
  • a gas tank for high pressure hydrogen comprising the austenitic high Mn stainless steel according to claim 1.
  • a liquid hydrogen tank for storing liquid hydrogen wherein at least one of the container body and the liner of the liquid hydrogen tank is the austenitic high Mn stainless steel according to any one of (1) to (5) above A tank for liquid hydrogen made of steel.
  • valve connected to a pipe for transporting liquid hydrogen, wherein the valve is made of the austenitic high Mn stainless steel according to any one of (1) to (5) above. Valve for hydrogen.
  • the present invention is excellent in economic efficiency without causing an increase in alloy costs and manufacturing costs, and has mechanical properties that achieve both hydrogen gas brittleness resistance equal to or better than SUS316 series austenitic stainless steel, strength and ductility in liquid hydrogen. Inexpensive stainless steel, or inexpensive and high-strength stainless steel can be obtained.
  • % display of the content of each element means “mass%”.
  • material characteristic in both high-pressure hydrogen gas and liquid hydrogen environments is referred to as hydrogen environment fragility.
  • C is an element effective in stabilizing the austenite phase and suppressing the formation of ⁇ ferrite in the austenitic high Mn stainless steel of the present invention.
  • C increases the material strength by solid solution strengthening. Therefore, it is preferable to add 0.01% or more in order to increase the stability of the austenite phase and improve the hydrogen environment brittleness resistance.
  • excessive addition of C not only saturates the effect but also increases the strength of the processing-induced martensite phase and remarkably impairs ductility in a liquid hydrogen environment, so the upper limit must be 0.1%. .
  • it is 0.04 to 0.08% of range.
  • Si is an effective element in the austenitic high Mn stainless steel of the present invention, which increases the austenite stability from room temperature to a cryogenic environment and improves hydrogen environment brittleness resistance.
  • it is a solid solution strengthening element that is also effective in increasing the material strength that is the object of the present invention.
  • the lower limit is set to 0.4%.
  • Excessive addition of Si promotes the formation of ⁇ ferrite and inhibits the improvement of hydrogen environment embrittlement resistance, which is the object of the present invention, and also promotes the formation of intermetallic compounds such as sigma phase, thereby providing hot workability and toughness.
  • the upper limit is made 1.5%.
  • it is in the range of 0.5 to 1.0%.
  • Mn is an effective element that reduces the amount of Ni and increases the austenite stability from room temperature to a cryogenic environment to improve hydrogen environment embrittlement resistance.
  • the amount of Ni which is an expensive element, needs to be 8% or less, which is smaller than that of general-purpose SUS304 steel.
  • the lower limit of Mn needs to be 8%.
  • the upper limit is made 11%. Preferably, it is in the range of 9 to 10%.
  • Cr is an alloy element essential for obtaining the corrosion resistance required for stainless steel.
  • 15% or more of Cr is added as described in (a) above.
  • the upper limit is made 17%.
  • it is in the range of more than 15% to 16%.
  • Ni is an extremely effective element that improves the resistance to hydrogen embrittlement resistance, which is a target of the present invention, as is well known in existing SUS316 steel.
  • the lower limit of the amount of Ni added varies depending on the amount of N in the steel.
  • the N content in steel is 0.01 to less than 0.15%
  • the lower limit of Ni needs to be 5%.
  • the N content in the steel is 0.15 to 0.3%
  • the lower limit of Ni needs to be 6%.
  • the amount of Ni added is 8% or less, which is smaller than that of general-purpose SUS304 steel.
  • the upper limit of Ni is preferably 7%.
  • Cu like Mn and Ni, is an austenite stabilizing element and is an element effective in improving hydrogen environment embrittlement resistance targeted by the present invention.
  • Cu dissolves in the steel and synergizes with Mn to increase the stability of the state from room temperature to extremely low temperature, and becomes a deformed structure that is not easily affected by hydrogen gas embrittlement.
  • the lower limit of Cu is 1%.
  • excessive addition of Cu may saturate the above effect due to precipitation of Cu in the steel, or may reduce Cu contamination and hot workability during steelmaking. Therefore, the upper limit of Cu is 4%. Preferably, it is in the range of 2 to 3% from the viewpoint of achieving both the above effects and manufacturability.
  • N is an element effective in stabilizing the austenite phase and suppressing the formation of ⁇ ferrite in the austenitic high Mn stainless steel of the present invention.
  • the lower limit of N is 0.01%.
  • N is an element effective in increasing the material strength by solid solution strengthening. That is, the addition of N is an effective means for reducing the thickness and weight of the substrate because it can impart strength as a structural material without cold working.
  • solid solution strengthening by N in order to increase the material strength, solid solution strengthening by N is used.
  • N is not intentionally added to the steel, and solid solution strengthening is performed with N existing in the steel.
  • the explanation will be divided into the case where N is intentionally added to the steel at the stage to strengthen the solution.
  • the N content in the steel is 0.01 to less than 0.15%.
  • the amount of N in the steel is 0.15 to 0.3%. Addition of N exceeding 0.3% is difficult in a normal industrial smelting process, and in addition to a significant increase in steelmaking cost, it impedes improvement in resistance to hydrogen environment brittleness.
  • the upper limit of the N amount when N is intentionally added is preferably 0.25%.
  • Mo is an element that is extremely effective in improving corrosion resistance, but promotes the stabilization of the austenite phase and the formation of ⁇ ferrite in the austenitic high Mn stainless steel of the present invention.
  • the upper limit of Mo is preferably set to 0.3%.
  • Mo is an element inevitably mixed in from scrap which is a melting raw material. Excessive reduction of Mo leads to an increase in manufacturing cost by incurring restrictions on melting raw materials. Therefore, from the viewpoint of achieving both the above effects and manufacturability, the lower limit of Mo is preferably 0.05%. A more preferable range of Mo is 0.1 to 0.2%.
  • Al, B, Ca, Mg, and REM are effective elements for improving deoxidation, hot workability, and corrosion resistance. Therefore, one or two kinds selected from these are selected as necessary. The above can be added. However, excessive addition of these elements causes a significant increase in manufacturing costs. Therefore, when adding these elements, it is preferable that Al: 0.2% or less, B, Ca, and Mg be 0.01% or less and REM: 0.1% or less, respectively. In addition, when adding, it is preferable that the lower limit is Al: 0.01%, B, Ca, and Mg are 0.0002% and REM: 0.01%, respectively.
  • the austenitic high-Mn stainless steel of the present invention has the component composition limited in the above (A), and austenite that becomes the starting point of embrittlement in order to achieve both hydrogen environment brittleness resistance in high-pressure hydrogen and liquid hydrogen.
  • the volume ratio of ⁇ ferrite varies depending on the amount of N in the steel.
  • the volume fraction of ⁇ ferrite is 10% or less.
  • the volume ratio of ⁇ ferrite is 5% or less by heating at a high temperature of 1200 ° C. or higher and repeating hot working and annealing, or by annealing after hot working without annealing. Can be.
  • the volume ratio of ⁇ ferrite is preferably as small as possible, and the lower limit is not particularly limited.
  • volume fraction of ⁇ ferrite can be easily measured by, for example, a commercially available Fischer ferrite meter. It can also be obtained by image analysis of optical microscope observation.
  • the major axis of ⁇ ferrite varies depending on the amount of N in the steel, as described in (d) above.
  • the major axis of ⁇ ferrite is 0.1 mm or less.
  • hot processing and annealing are repeated by heating at a high temperature of 1200 ° C. or higher, or after the hot processing, annealing is performed after the cold processing as it is, so that the major axis of the ⁇ ferrite is less than 0.05 mm.
  • the lower limit of the major axis of ⁇ ferrite is not particularly limited.
  • the amount of N in the steel is 0.01 to less than 0.15%, it is heated at a high temperature of 1200 ° C. or higher and repeats hot working and annealing, or after hot working, it is not annealed and remains as it is. If none of annealing is performed after cold working, 0.05 mm is the lower limit of the major axis of ⁇ ferrite.
  • the N content in the steel is 0.15 to 0.3%
  • the major axis of the ⁇ ferrite is less than 0.05 mm, but the N content in the steel is 0.01 to 0.15%.
  • high temperature heating to 1200 ° C. or higher is repeated, and hot working and annealing are repeated, or after hot working, annealing is not performed, and after cold working as it is, annealing is not necessary.
  • the N content in the steel is 0.15 to 0.3%, the longer diameter of the ⁇ ferrite is better as it is smaller and is not particularly limited.
  • the major axis of ⁇ ferrite can be measured by the following procedure. First, the region having the highest ⁇ ferrite volume fraction is identified from the measurement by the ferrite meter described above, and a sample is cut out from the region. The cut out sample is embedded in a resin, polished and etched, and subjected to observation with an optical microscope.
  • the largest diameter of ⁇ ferrite in the observation field As described in the above (b), embrittlement in high-pressure hydrogen gas and liquid hydrogen occurs starting from the most fragile region of the material. As described in the above (d), the most fragile region of the material is a portion where the major axis of ⁇ ferrite is large. Accordingly, the major axis of ⁇ ferrite is the largest value among the observed and measured values. Note that the minimum diameter of the minimum ⁇ ferrite that can be confirmed by this observation method is 0.005 mm.
  • the major axis of ⁇ ferrite is reduced to 0 by annealing after hot working as described below or by annealing after hot working as it is.
  • the thickness is reduced to less than 0.05 mm, that is, by miniaturizing the ⁇ ferrite, the characteristics are improved.
  • Prior to hot working it is preferable to heat at a high temperature of 1200 to 1300 ° C. in order to refine the ⁇ ferrite formed in the melting and solidification process. When the heating temperature exceeds 1300 ° C., the formation of ⁇ ferrite may be promoted.
  • the heating time is set to 1 hour or longer to refine the ⁇ ferrite.
  • the upper limit of the heating time is not particularly limited, but it is preferably 24 hours or less in consideration of industrial productivity when a batch furnace is used.
  • the hot working is performed to produce a shape of a plate, a rod, and a tube, and the working method and the working degree are not particularly limited.
  • the hot-worked material is annealed at 900 to 1300 ° C. in order to refine the remaining ⁇ ferrite and adjust the mechanical properties.
  • the annealing temperature is less than 900 ° C., recrystallization of the hot rolled material becomes insufficient, which is not preferable.
  • the temperature exceeds 1300 ° C., the coarsening of crystal grains causes a decrease in processing characteristics and fracture toughness at extremely low temperatures, which is not preferable.
  • anneal when manufacturing a cold work material of a plate, a rod, and a tube, after hot working, omitting the solution treatment (solution annealing), and after cold working to a predetermined product shape, It is preferable to anneal at 900 to 1200 ° C. from the viewpoint of improving the hydrogen environment embrittlement resistance by reducing the size (major axis) of the ⁇ ferrite (austenite negative segregation region) of the present invention.
  • the annealing temperature is less than 900 ° C., recrystallization is insufficient in the austenitic high Mn stainless steel of the present invention, which is not preferable.
  • it exceeds 1200 ° C. the coarsening of the crystal grains causes a reduction in processing characteristics and fracture toughness at extremely low temperatures, which is not preferable.
  • the major axis is 0 without annealing after hot working or after cold working as described above.
  • .Delta Ferrite of less than .05 mm, that is, refined .delta. Ferrite can be obtained, and the characteristics can be improved. If annealing (solution annealing) is performed before cold working, ⁇ ferrite grows, and the major axis of ⁇ ferrite cannot be made less than 0.05 mm, which is not preferable.
  • the austenitic high Mn stainless steel satisfying the above-described component composition and steel structure can be used as a container body of a tank for storing high-pressure hydrogen gas and liquid hydrogen, or as a structural material for a liner. Further, it can be used as a material for high-pressure hydrogen gas and liquid hydrogen piping, or a high-pressure hydrogen gas and liquid hydrogen valve.
  • the upper limit of the pressure is preferably 120 MPa.
  • the upper limit of the use temperature is set to 80 ° C. assumed due to the temperature increase of hydrogen gas filling in the outdoor use environment.
  • the lower limit is assumed to be an extremely low temperature of 20K for liquid hydrogen and an operating temperature of -40 ° C. for a fuel cell vehicle for high-pressure hydrogen gas, but is not limited thereto.
  • Stainless steels having the component compositions shown in Tables 1 and 2 were melted, and hot rolled sheets having a thickness of 5.0 mm were produced by hot rolling at heating temperatures of 1150 to 1300 ° C.
  • the hot-rolled sheet was used as a test material as a hot-rolled sheet annealed material annealed at 1080 ° C., and the hot-rolled sheet annealing was omitted to obtain a cold-rolled sheet having a thickness of 2.0 mm.
  • Table 1 shows the component composition of the low N specimen having an N amount of 0.01 to less than 0.15%
  • Table 2 shows the component composition of the high N specimen having an N amount of 0.15 to 0.3%.
  • the atmospheric tensile test was performed at a test temperature: normal temperature, a test environment: air, and a strain rate: 8 ⁇ 10 ⁇ 4 / sec.
  • the tensile test in high-pressure hydrogen gas was performed at a test temperature: normal temperature, a test environment: 45 MPa hydrogen, 90 MPa hydrogen, 120 MPa hydrogen, and a strain rate of 8 ⁇ 10 ⁇ 5 / sec.
  • the resistance to hydrogen environment resistance in high-pressure hydrogen gas was evaluated by the value of (elongation in high-pressure hydrogen gas) / (elongation in the atmosphere). It should be noted that (elongation in high-pressure hydrogen gas) / (elongation in the atmosphere) in 45 MPa hydrogen, 90 MPa hydrogen, and 120 MPa hydrogen are expressed as EL: 45 MPa, EL: 90 MPa, and EL: 120 MPa. .
  • SUS316L steel JIS standard SUS316L steel (hereinafter referred to as “SUS316L steel”) was heated and then hot-worked into a hot-rolled sheet, and the hot-rolled sheet with a thickness of 5 mm was used as Conventional Example 1. . Moreover, after heating SUS316L steel, it hot-processed to make a hot-rolled sheet, and after annealing the hot-rolled sheet, it was further cold-worked and annealed to obtain a cold-rolled annealed sheet having a thickness of 2 mm as Conventional Example 2. .
  • JIS304L steel (henceforth "SUS304L steel") of a JIS specification, it hot-processed into a hot-rolled sheet, and the hot-rolled annealed sheet of thickness 5mm which annealed the hot-rolled sheet is the prior art example 3. It was.
  • the hydrogen gas embrittlement resistance in the high-pressure hydrogen gas when the EL: 45 MPa, EL: 90 MPa, and EL: 120 MPa of each test material are the same as or larger than those in Conventional Example 1, the hydrogen gas embrittlement resistance in the high-pressure hydrogen gas is “ Excellent. " Moreover, when EL: 45MPa, EL: 90MPa, and EL: 120MPa of each test material were the same or larger than the prior art example 2, the hydrogen gas embrittlement resistance in high-pressure hydrogen gas was regarded as "very excellent".
  • the ⁇ ferrite volume fraction of the test material was obtained with a Fischer ferrite meter.
  • the major axis of ⁇ ferrite was measured by preparing a specimen embedded in a cross section of a steel sheet, performing an etching process after mirror polishing, and observing with an optical microscope in the above-described procedure.
  • Table 3-1 and Table 3-2 show the evaluation results of hydrogen environment resistance brittleness of the low-N specimen. Tables 3-1 and 3-2 also show the heating temperature during hot working, the presence or absence of hot-rolled sheet annealing, and the presence or absence of cold rolling (including annealing after cold rolling).
  • Test No. which is an example of the invention Nos. 1 to 8 and 20 to 23 satisfy the composition of the austenitic high Mn stainless steel of the present invention. As a result, a desired steel structure is obtained.
  • EL: 45 MPa, EL: 90 MPa, and EL: 120 MPa of 1 to 8 and 20 to 23 are larger than EL: 45 MPa, EL: 90 MPa, and EL: 120 MPa of Conventional Example 1. 1 to 8 and 20 to 23 were confirmed to have excellent hydrogen gas embrittlement resistance equivalent to or better than the target SUS316L.
  • TS ⁇ EL of 1 to 8 and 20 to 23 is larger than TS ⁇ EL of Conventional Example 1 or Conventional Example 2, and it can be confirmed that the TS ⁇ EL has excellent hydrogen environment resistance in liquid hydrogen equivalent to or better than SUS316L. It was.
  • test no. Nos. 1, 3, 5, 6, 8, 20, 21, 22, and 23 were annealed after hot working or after cold working as they were after hot working.
  • EL: 120 MPa are larger than EL: 45 MPa
  • Test No. 1, 3, 5, 6, 8, 20, 21, 22, and 23 were confirmed to have very excellent hydrogen gas embrittlement resistance.
  • test no. TS ⁇ EL of 1, 3, 5, 6, 8, 20, 21, 22, and 23 is larger than TS ⁇ EL of Conventional Example 3, and test no. 1, 3, 5, 6, 8, 20, 21, 22, and 23 were confirmed to have excellent hydrogen environment embrittlement resistance in liquid hydrogen.
  • test no. Nos. 9 to 19 deviate from the component composition of the austenitic high Mn stainless steel of the present invention, and are annealed after hot working as specified in the present invention, or after cold working as it is after hot working, and then annealed.
  • Table 4-1 and Table 4-2 show the hydrogen environment resistance of high N specimens.
  • Tables 4-1 and 4-2 the heating temperature during hot working, the presence or absence of hot-rolled sheet annealing, and the presence or absence of cold rolling (including annealing after cold rolling) are also shown.
  • Test No. 51 to 57 and 73 to 78 satisfy the component composition of the austenitic high Mn stainless steel of the present invention. That is, test no. 51-57 and 73-78 have N content in the steel of 0.15-0.3%, and Ni content is 6-8%. After the cold working as it is after the processing, without annealing, the hydrogen embrittlement resistance in the high pressure hydrogen gas, which is equal to or better than the target SUS316L, and the liquid hydrogen, which is equal to or better than SUS304L, Hydrogen brittleness resistance.
  • test no. Nos. 58 to 61 are steel Nos. With N content in steel exceeding 0.3%. It was obtained by hot rolling slabs of H6 to H7, and it was confirmed that hydrogen environment embrittlement resistance in high-pressure hydrogen gas and liquid hydrogen was greatly reduced.
  • Test No. Nos. 62 and 63 are steel Nos. With Ni amount of less than 6%. This is a hot rolled slab of H8, which is excellent in hydrogen environment embrittlement resistance in high-pressure hydrogen gas, but has not obtained hydrogen environment embrittlement resistance in desired liquid hydrogen. Test No. Nos.
  • 64 to 72 are hot-rolled steel slabs in which the component composition of elements other than Ni deviates from the scope of the present invention, and are excellent in hydrogen environment embrittlement resistance in high-pressure hydrogen gas, but in desired liquid hydrogen. Hydrogen brittleness resistance was not obtained.
  • hydrogen gas brittleness resistance in high-pressure hydrogen gas is equal to or higher than that of SUS316L steel
  • strength / ductility balance in liquid hydrogen is equal to or higher than that of SUS316L steel, more preferably equal to or higher than that of SUS304L steel.
  • an austenitic high Mn stainless steel can be obtained.
  • the present invention has a remarkable effect industrially.
  • the container body or liner of the tank for storing high-pressure hydrogen gas and liquid hydrogen exceeding 40 MPa, as well as piping, valve instruments, etc. can be increased in cost compared to SUS316L steel or SUS304 steel. Without being accompanied, it can have the same or higher resistance to hydrogen environment embrittlement.
  • the present invention has high industrial utility value.

Abstract

 40MPa超の高圧水素ガスでの耐水素環境、あるいは、液体水素での耐水素環境において使用しても、優れた耐水素環境脆性を有する、安価なステンレス鋼および安価かつ高強度のステンレス鋼であって、質量%で、C:0.1%以下、Si:0.4~1.5%、Mn:8~11%、Cr:15~17%、Ni:5~8%、Cu:1~4%、およびN:0.01~0.15%未満を含有し、残部はFeおよび不可避的不純物とし、δフェライトの体積率を10%以下、かつ焼鈍前のδフェライトの長径を0.04~0.1mmとする。

Description

オーステナイト系高Mnステンレス鋼およびその製造方法と、その鋼を用いた部材
 本発明は、高圧水素ガスまたは液体水素環境下において良好な機械的性質(強度、延性)を有するオ−ステナイト系高Mnステンレス鋼に関する。
 また、本発明は、容器本体およびライナーが、耐水素環境脆性に優れたオ−ステナイト系高Mnステンレス鋼からなる、高圧水素ガス用ガスタンクまたは液体水素用タンクに関する。
 さらに、本発明は、耐水素環境脆性に優れたオ−ステナイト系高Mnステンレス鋼からなる、高圧水素ガスまたは液体水素を輸送する配管に関する。
 そして、本発明は、耐水素環境脆性に優れたオ−ステナイト系高Mnステンレス鋼からなる、高圧水素ガスまたは液体水素を輸送する配管に連結されるバルブに関する。
 近年、地球温暖化の観点から、温室効果ガス(CO、NO、SO)の排出を抑制するために、水素をエネルギ−として利用する技術開発が進んでいる。従来、水素を高圧水素ガスとして貯蔵する際には、厚肉のCr−Mo鋼製のボンベに圧力40MPa程度までの水素ガスを充填していた。
 しかし、このようなCr−Mo鋼製のボンベは、高圧水素の充填と放出を繰り返すことによって、内圧の変動と水素の浸入により疲労強度が低下するため、肉厚を30mm程度にする必要があり、重量がかさむ。そのため、設備機器の重量増加や大型化が深刻な問題となる。
 既存のJIS規格のSUS316系オ−ステナイトステンレス鋼(以下、「SUS316鋼」という。)は、高圧水素ガス環境下での耐水素ガス脆性が他の構造用鋼、例えば上記のCr−Mo鋼を含む炭素鋼やJIS規格のSUS304系オ−ステナイトステンレス鋼(以下、「SUS304鋼」という。)と比べて良好であることから、配管用材料あるいは燃料電池自動車の高圧水素燃料タンクライナ−にも使用されている。
 SUS316鋼は、高価なNiを10%以上、Moを2%以上含有するステンレス鋼である。そのためSUS316鋼は、汎用性と経済性(コスト)に大きな課題がある。
 また、大量の水素ガスを貯蔵・輸送するためには、水素ガスの圧力を40MPa超とする高圧化と、液体水素の活用が挙げられる。高圧化については、例えば、SUS316鋼製配管を40MPa超の高圧水素ガス環境下で使用するには、現在、肉厚3mmであった配管を6mm厚以上としなければ強度的に耐えられないという事も指摘されている。
 液体水素の極低温用には、従来、オーステナイト系のSUS304鋼もしくはSUS316鋼が使用されている。液体水素容器についても、液体水素が蒸気となる上層部は低温水素ガス脆性を考慮する必要があるために、耐水素ガス脆性に優れたSUS316鋼を使用することが望ましい。
 また、近年、燃料電池自動車の導入に先駆けて水素ステーションの公的な試作・実証試験が進行している。大量の水素を液体水素として貯蔵し、液体水素を昇圧して70MPa超の高圧水素ガスとして供給できる水素ステーションも実証段階にある。このような水素ステーションの実用・普及へ移行していく中で、高圧水素ガスと液体水素の両水素環境において使用できる、Ni、Moを低減した安価な金属材料、安価かつ強度の高い金属材料に対するニーズがより一層強くなっている。
 従来、材料強度を高めた高圧水素ガス用ステンレス鋼として、高窒素含有オーステナイト系ステンレス鋼が知られている。
 例えば、特許文献1には、N:0.1~0.5%、Cr:22~30%、Ni:17~30%、Mn:3~30%、V、Ti、Zr、Hfのいずれかを含み、5Cr+3.4Mn≦500Nを満たす高圧水素ガス用ステンレス鋼、および、その鋼からなる容器および機器が開示されている。
 さらに、特許文献2には、N:0.1~0.5%、Cr:15~22%、Ni:5~20%、Mn:7~30%、V、Ti、Zr、Hfのいずれかを含み、2.5Cr+3.4Mn≦300Nを満たす高圧水素ガス用ステンレス鋼、および、その鋼からなる容器および機器が開示されている。
 これら特許文献1および特許文献2に開示されるステンレス鋼は、SUS316鋼と比較して高Cr−高Niを指向している。比較的合金元素の含有量が少ない特許文献2に開示されるステンレス鋼においても、実質的にCr量は17%超、N量は0.25%超でNi、Mn、Mo、Nb等を含有する高合金鋼である。
 特許文献3には、耐水素環境脆性および耐応力腐食割れ性に優れ、大幅な厚肉大径化に頼ることなく、70MPa以上の高圧水素ガスに適用可能な圧力容器および配管用パイプが開示されている。これらの圧力容器および配管パイプに用いられる鋼は、Cr:15~20%、Ni:8~17%、Si:1.3~3.5%、Mn:3.5%以下、N:0.2%以下の成分組成からなる。
 特許文献4には、40MPa程度の高圧水素輸送に好適なオーステナイト系ステンレス鋼溶接管として、Cr:14~28%、Ni:6~20%、Si:4%以下、Mn:3%以下、N:0.25%以下のステンレス鋼が開示されている。
 特許文献3および特許文献4に開示されたステンレス鋼は、Si添加、低Mnを特徴とし、Ni量は実質的に9~15%でSUS316鋼と同程度以上含まれている。
 本発明者らは、特許文献5において、高い加工率で冷間加工や深絞り加工などのプレス成形ができる加工性を有し、加工後にも歪誘起マルテンサイトを生成せず非磁性が維持されるオーステナイト系高Mnステンレス鋼を提案している。このステンレス鋼は、Ni:6%以下、Mo:0.3%以上の微量添加であり、SUS316鋼と比較して著しく経済性に優れている。
 さらに、本発明者らは、特許文献6において、低温水素ガス環境への適用を意図した安価あるいは安価かつ高強度の両者を兼備した高圧水素ガス用オーステナイト系高Mnステンレス鋼を提案している。このオーステナイト系高Mnステンレス鋼は徹底した低合金化を追求した結果、Cr:15%未満、Ni:6%以下、N:0.01~0.4%、0.35%の微量Mo添加を推奨し、オーステナイト安定度の指標Md30を−120~20の範囲としている。
 しかし、このオーステナイト系高Mnステンレス鋼は、高圧水素ガスに加えて、液体水素環境までの適応を考慮したものではなく、液体水素の極低温下における材料特性については不明である。
 従って、上述したように、40MPa超の高圧水素ガスと液体水素の両水素環境において使用できる、安価なステンレス鋼、あるいは、安価かつ強度の高いステンレス鋼は未だ出現していないのが現状である。
国際公開第WO2004−083476号公報 国際公開第WO2004−083477号公報 特開2009−299174号公報 特開2010−121190号公報 特開2005−154890号公報 国際公開第WO2007−052773号公報
 上記の実情に鑑み、本発明は、40MPa超の高圧水素ガスと液体水素の両水素環境において使用できる、安価なステンレス鋼、あるいは、安価かつ高強度のステンレス鋼を提供することを目的とする。
 即ち、本発明者らがこれまで検討したオーステナイト系高Mnステンレス鋼において、合金成分と鋼組織が特定条件を満足するように材料設計することにより、高圧水素ガスと液体水素の両水素環境へ適応される安価なステンレス鋼、あるいは、安価かつ高強度のステンレス鋼を提供することを目的とする。
 なお、本発明の目標とする特性は、高圧水素ガス中での耐水素ガス脆性がSUS316鋼と同等以上、液体水素中での強度・延性バランスがSUS316鋼と同等以上、より好ましくはSUS304鋼と同等以上とする。
 本発明者らは、前記した課題を解決するために、これまで検討したオーステナイト系高Mnステンレス鋼において、高圧水素ガスと液体水素の両環境下において良好な機械的性質(強度と延性の両立)を実現するために、主要元素であるCr、Mn、Niと微量元素であるMo等で構成される合金成分組成と鋼組織の関係について鋭意研究を行い、下記の新しい知見を得て本発明を完成するに至った。
(a)高圧水素ガス環境での耐水素ガス脆性に加えて、液体水素中(温度が20K)でSUS304鋼またはSUS316鋼と同等以上の強度・延性バランスを確保するには、オーステナイト相から加工誘起変態したマルテンサイト相の延性を改善する必要がある。そのためには、Crを15%以上添加する必要がある。また、Niの添加量は、鋼中のN量により異なるものとすることが有効である。製鋼段階において鋼中にNを意図的に添加しない場合、即ち、鋼中のN量が0.01~0.15%未満の場合には、Niを5%以上添加する必要がある。一方、製鋼段階において鋼中にNを意図的に添加する場合、即ち、鋼中のN量が0.15%以上の場合には、Niを6%以上添加する必要がある。
(b)高圧水素ガス中および液体水素中の引張試験で、材料破断は、鋼中に少量残存したδフェライト周辺で、不可避的に混入したオーステナイト生成元素(Ni)が希薄な領域(負偏析領域)を起点として生じることを見出した。このような鋼組織の詳細な解析結果に基づいて、オーステナイト生成元素の負偏析領域を低減することにより、良好な耐水素ガス脆性と液体水素中での強度と延性の両立とを兼備することができる。
(c)上述したオーステナイト生成元素の負偏析領域は、X線マイクロアナライザーによる鋼組織を元素分析することにより確認することができる。しかしながら、このような分析は時間と労力を費やすため、ミクロ組織観察から比較的容易に確認できる簡便な評価手法として、鋼中に残存したδフェライトの体積率およびそのサイズとX線マイクロアナライザーによる鋼組織の元素分析結果との相関を検討した。
(d)前記した簡便な評価手法とX線マイクロアナライザーによる分析との相関関係から、本発明が目標とする耐水素ガス脆性と液体水素中での強度と延性の両立とを兼備するために、鋼組織中のδフェライト体積率とδフェライトの長径とを所定値以下にすることがよいことを知見した。そして、鋼組織は鋼中のN量で異なることを併せて知見した。
(e)規定のδフェライトの体積率とサイズを制御するには、Cr量を17%以下、Mn量を11%以下とすることが有効である。さらに、フェライト生成元素で微量添加元素であるMoの添加量を0.3%以下に低減することが好ましい。Mnは、常温から極低温にかけて、オーステナイト安定化元素として耐水素ガス脆性および液体水素中での強度と延性の両立を改善することに寄与するものの、鋼の凝固と熱間加工温度域では、δフェライトの生成を促進する。
(f)δフェライトのサイズを低減するには、前記(a)および(e)で述べた成分組成の限定に加えて、1200℃以上での高温加熱後に熱間加工および焼鈍を繰り返す、あるいは、熱間加工後は焼鈍せず、そのまま冷間加工を施した後に焼鈍して、δフェライトを微細化することが有効である。製鋼段階において鋼中に意図的にNを添加しない場合、即ち、鋼中のN量が0.01~0.15%未満の場合には、δフェライトのサイズを、その長径で0.05mm未満に低減するのに、1200℃以上に高温加熱して熱間加工および焼鈍を繰り返す、あるいは、熱間加工後は焼鈍せず、そのまま冷間加工を施した後、焼鈍することが特に有効である。一方、製鋼段階において鋼中に意図的にNを添加する場合、即ち、鋼中のN量が0.15~0.3%の場合には、δフェライトのサイズを、その長径で0.05mm未満に低減するのに、前記(a)で述べたCr、Ni等の成分を調整するだけでよく、1200℃以上に高温加熱して熱間加工および焼鈍を繰り返す、あるいは、熱間加工後は焼鈍せず、そのまま冷間加工した後、焼鈍する、という工程を施さなくてよい。
 本発明は、上記(a)~(f)の知見に基づきなされたもので、本発明の要旨は、以下の通りである。
(1)質量%で、C:0.1%以下、Si:0.4~1.5%、Mn:8~11%、Cr:15~17%、Ni:5~8%、Cu:1~4%、およびN:0.01~0.15%未満を含有し、残部はFeおよび不可避的不純物からなり、δフェライトの体積率が10%以下、かつδフェライトの長径が0.1mm以下であることを特徴とするオーステナイト系高Mnステンレス鋼。
(2)質量%で、C:0.1%以下、Si:0.4~1.5%、Mn:8~11%、Cr:15~17%、Ni:6~8%、Cu:1~4%、およびN:0.15~0.3%を含有し、残部はFeおよび不可避的不純物からなり、δフェライトの体積率が5%以下、かつδフェライトの長径が0.05mm未満であることを特徴とするオーステナイト系高Mnステンレス鋼。
(3)前記鋼が、さらに、質量%で、Mo:0.3%以下、Al:0.2%以下、B:0.01%以下、Ca:0.01%以下、Mg:0.01%以下、およびREM:0.1%以下のうちから選ばれる1種または2種以上の元素を含有していることを特徴とする上記(1)に記載のオーステナイト系高Mnステンレス鋼。
(4)前記鋼が、さらに、質量%で、Mo:0.3%以下、Al:0.2%以下、B:0.01%以下、Ca:0.01%以下、Mg:0.01%以下、およびREM:0.1%以下のうちから選ばれる1種または2種以上の元素を含有していることを特徴とする上記(2)に記載のオーステナイト系高Mnステンレス鋼。
(5)δフェライトの体積率が5%以下、かつδフェライトの長径が0.05mm未満であることを特徴とする上記(1)または(3)に記載のオーステナイト系高Mnステンレス鋼。
(6)上記(5)に記載のオーステナイト系高Mnステンレス鋼の製造方法であって、質量%で、C:0.1%以下、Si:0.4~1.5%、Mn:8~11%、Cr:15~17%、Ni:5~8%、Cu:1~4%、およびN:0.01~0.15%未満を含有し、残部はFeおよび不可避的不純物からなる鋼を、1200~1300℃で1時間以上加熱した後、熱間加工を行い、次いで900~1300℃で焼鈍してδフェライトを微細化することを特徴とするオーステナイト系高Mnステンレス鋼の製造方法。
(7)上記(5)に記載のオーステナイト系高Mnステンレス鋼の製造方法であって、質量%で、C:0.1%以下、Si:0.4~1.5%、Mn:8~11%、Cr:15~17%、Ni:5~8%、Cu:1~4%、およびN:0.01~0.15%未満を含有し、残部はFeおよび不可避的不純物からなる鋼を、1200~1300℃で1時間以上加熱した後、熱間加工を行い、焼鈍することなく冷間加工した後、900~1200℃で焼鈍してδフェライトを微細化することを特徴とするオーステナイト系高Mnステンレス鋼の製造方法。
(8)前記鋼が、さらに、質量%で、Mo:0.3%以下、Al:0.2%以下、B:0.01%以下、Ca:0.01%以下、Mg:0.01%以下、およびREM:0.1%以下のうちから選ばれる1種または2種以上の元素を含有していることを特徴とする上記(6)または(7)に記載のオーステナイト系高Mnステンレス鋼の製造方法。
(9)圧力が0.1~120MPaの高圧水素ガスを貯蔵する高圧水素用ガスタンクであって、該高圧水素用ガスタンクの容器本体およびライナーの少なくとも一方が、上記(1)~(5)のいずれかに記載のオーステナイト系高Mnステンレス鋼からなることを特徴とする高圧水素用ガスタンク。
(10)液体水素を貯蔵する液体水素用タンクであって、該液体水素用タンクの容器本体およびライナーの少なくとも一方が、上記(1)~(5)のいずれかに記載のオーステナイト系高Mnステンレス鋼からなることを特徴とする液体水素用タンク。
(11)圧力が0.1~120MPaの高圧水素ガスを輸送する配管であって、該配管が、上記(1)~(5)のいずれかに記載のオーステナイト系高Mnステンレス鋼からなることを特徴とする高圧水素用配管。
(12)圧力が0.1~120MPaの高圧水素ガスを輸送する配管に連結されるバルブであって、該バルブが、上記(1)~(5)のいずれかに記載のオーステナイト系高Mnステンレス鋼からなることを特徴とする高圧水素用バルブ。
(13)液体水素を輸送する配管であって、該配管が、上記(1)~(5)のいずれかに記載のオーステナイト系高Mnステンレス鋼からなることを特徴とする液体水素用配管。
(14)液体水素を輸送する配管に連結されるバルブであって、該バルブが、上記(1)~(5)のいずれかに記載のオーステナイト系高Mnステンレス鋼からなることを特徴とする液体水素用バルブ。
 本発明によれば、合金コストや製造コストの上昇を招くことなく経済性に優れ、SUS316系オーステナイトステンレス鋼と同等以上の耐水素ガス脆性と液体水素中での強度と延性を両立する機械的性質とを有する、安価なステンレス鋼、あるいは、安価かつ高強度のステンレス鋼を得ることができる。
 以下、本発明について詳しく説明する。なお、各元素の含有量の「%」表示は「質量%」を意味する。また、高圧水素ガス中と液体水素中の両環境下での材料特性を、耐水素環境脆性と称する。
(A)成分組成の限定理由を以下に説明する。
 Cは、本発明のオーステナイト系高Mnステンレス鋼において、オーステナイト相の安定化やδフェライトの生成抑制に有効な元素である。また、Cは固溶強化により材料強度を上昇させる。従って、オーステナイト相の安定度を高めて耐水素環境脆性を向上させるために、0.01%以上添加することが好ましい。一方、Cの過度の添加は、その効果が飽和するとともに、加工誘起マルテンサイト相の強度を上昇させて液体水素環境下の延性を著しく阻害するため、上限を0.1%とする必要がある。好ましくは0.04~0.08%の範囲である。
 Siは、本発明のオーステナイト系高Mnステンレス鋼において、常温から極低温環境でオーステナイト安定度を高めて耐水素環境脆性を向上させる有効な元素である。加えて、本発明の目的である材料強度を上昇させる上でも効果的な固溶強化元素である。これら効果を発現させるために下限は0.4%とする。Siの過度の添加は、δフェライトの生成を助長して本発明の目的である耐水素環境脆性改善を阻害するとともに、シグマ相などの金属間化合物の生成を助長して熱間加工性や靭性の低下も懸念される。そのため、上限を1.5%とする。好ましくは、0.5~1.0%の範囲である。
 Mnは、Ni量を低減して、常温から極低温環境でオーステナイト安定度を高めて耐水素環境脆性を向上させる有効な元素である。本発明の目的である経済性向上を達成するには、高価な元素であるNiの添加量を汎用のSUS304鋼よりも少ない8%以下とする必要がある。Niの添加量の減少分を補い、上記の効果を得るためには、Mnの下限は8%とする必要がある。一方、Mnの過度の添加は、δフェライトの生成を促進して本発明の目的である耐水素環境脆性改善を阻害するため、上限を11%とする。好ましくは、9~10%の範囲である。
 Crは、ステンレス鋼に要求される耐食性を得るために必須の合金元素である。加えて、液体水素中でSUS304鋼等の既存ステンレス鋼と同等以上の強度・延性バランスを確保するには、上記(a)で述べたようにCrを15%以上添加する。一方、Crの過度な添加は、δフェライトの生成を促進して本発明の目標とする耐水素環境脆性改善を阻害するため、上限を17%とする。好ましくは、15%超~16%の範囲である。
 Niは、既存のSUS316鋼でも周知のように、本発明の目標とする耐水素環境脆性を改善させる極めて有効な元素である。上記(a)で述べたように、液体水素中での強度と延性の両立を目標水準に向上させるためには、鋼中のN量によってNiの添加量の下限が異なる。鋼中のN量が0.01~0.15%未満の場合は、Niの下限を5%とする必要がある。一方、鋼中のN量が0.15~0.3%の場合は、Niの下限を6%とする必要がある。また、本発明の目的である経済性向上を達成するには、Niの添加量を、汎用のSUS304鋼よりも少ない8%以下とする。本発明が目標とする耐水素環境脆性改善と材料コスト低減の観点から、Niの上限は7%とすることが好ましい。
 Cuは、MnやNiと同様にオーステナイト安定化元素であり、本発明が目標とする耐水素環境脆性の改善に有効な元素である。Cuは鋼中に固溶してMnとの相乗効果によって常温から極低温でのオーステイト安定度を高め、水素ガス脆性の影響を受けにくい変形組織となる。この効果を得るために、Cuの下限は1%とする。しかし、Cuの過度の添加は、鋼中にCuが析出することにより上記の効果が飽和すること、あるいは、製鋼時のCu汚染や熱間加工性を低下させるおそれもある。そのためCuの上限は4%とする。好ましくは、上記効果と製造性を両立させる観点から、2~3%の範囲である。
 Nは、本発明のオーステナイト系高Mnステンレス鋼において、オーステナイト相の安定化やδフェライトの生成抑制に有効な元素である。これらの効果を得るために、Nの下限は0.01%とする。Nを0.01%未満とするには製鋼コストの負担に加え、鋼のオーステナイト安定度を低下させる。また、Nは固溶強化により材料強度を上昇させるうえで有効な元素である。即ち、Nの添加は冷間加工を施さなくても構造材としての強度を付与できるため、基材の薄肉化および軽量化に有効な手段である。
 本発明では、材料強度を高めるために、Nによる固溶強化を利用するが、製鋼段階において鋼に意図的にNを添加せず、鋼中に存在するNで固溶強化する場合と、製鋼段階で鋼に意図的にNを添加して固溶強化する場合とに分けて説明する。
 製鋼段階で鋼に意図的にNを添加しない場合、鋼中のN量は0.01~0.15%未満となる。一方、製鋼段階で鋼に意図的にNを添加する場合、鋼中のN量は0.15~0.3%となる。0.3%を超えるNの添加は、工業的な通常の溶製プロセスにおいて困難であり、製鋼コストの大幅な上昇に加え、耐水素環境脆性改善を阻害する。上記効果と製造性を両立させる観点から、意図的にNを添加する場合のN量の上限は、0.25%とすることが好ましい。
 Moは、耐食性の向上に極めて有効な元素であるが、本発明のオーステナイト系高Mnステンレス鋼において、オーステナイト相の安定化やδフェライトの生成を促進する。本発明の目的である耐水素環境脆性を改善するために、δフェライトの体積率を低減させることが有効であり、Moの含有量を低減することによるδフェライト体積率低減効果は大きい。従って、Moの上限は0.3%とすることが好ましい。一方、Moは溶解原料であるスクラップから不可避的に混入する元素である。Moの過度の低減は、溶解原料の制約を招くことにより、製造コストの上昇に繋がる。従って、上記効果と製造性を両立させる観点から、Moの下限は0.05%とすることが好ましい。より好ましいMoの範囲は0.1~0.2%である。
 Al、B、Ca、Mg、およびREMは、脱酸作用、熱間加工性および耐食性の向上に対して有効な元素であるため、必要に応じて、これらのうちから選んだ1種また2種以上を添加することができる。しかし、これらの元素の過剰な添加は、製造コストの著しい上昇を招く。従って、これらの元素を添加する場合、Al:0.2%以下、B、Ca、およびMgをそれぞれ0.01%以下、REM:0.1%以下とすることが好ましい。なお、添加する場合の下限は、Al:0.01%、B、Ca、およびMgをそれぞれ0.0002%、REM:0.01%とすることが好ましい。
(B)鋼組織の限定理由を、以下に説明する。
 本発明のオーステナイト系高Mnステンレス鋼は、上記(A)で限定した成分組成を有し、高圧水素中と液体水素中での耐水素環境脆性を両立するために、脆化の起点となるオーステナイト生成元素の負偏析領域を低減した鋼組織とする。
 δフェライトの体積率は、上記(d)で述べたように、鋼中のN量によって異なる。鋼中のN量が0.01~0.15%未満の場合には、δフェライトの体積率は10%以下である。ただし、1200℃以上に高温加熱して熱間加工および焼鈍を繰り返す、あるいは、熱間加工後は焼鈍せず、そのまま冷間加工した後、焼鈍することにより、δフェライトの体積率を5%以下にすることができる。δフェライトの体積率は小さいほどよく、下限は特に制限されるものではない。ただし、δフェライトの体積率を極端に低くするには、焼鈍工程の時間を長くする必要があり、生産性を低下させることから1.0%を下限とする。一方、鋼中のN量が0.15~0.3%の場合には、δフェライトの体積率は5%以下であるが、鋼中のN量が0.01~0.15%のときに施す、1200℃以上に高温加熱して熱間加工および焼鈍を繰り返す、あるいは、熱間加工後は焼鈍せず、そのまま冷間加工した後、焼鈍する工程は不要である。ただし、δフェライトの体積率を極端に低くするには、焼鈍工程の時間を長くする必要があり、生産性を低下させることから0.1%を下限とする。δフェライトの体積率は、例えば、市販のフィッシャー製フェライトメーターで簡便に測定することができる。また、光学顕微鏡観察の画像解析でも求めることができる。
 δフェライトの長径は、上記(d)で述べたように、鋼中のN量によって異なる。鋼中のN量が0.01~0.15%未満の場合には、δフェライトの長径は、0.1mm以下である。ただし、1200℃以上に高温加熱して熱間加工および焼鈍を繰り返す、あるいは、熱間加工後は焼鈍せず、そのまま冷間加工した後、焼鈍することにより、δフェライトの長径を0.05mm未満にすることができる。δフェライトの長径は、小さいほどよく、δフェライトの長径の下限は、特に制限されるものではない。しかしながら、鋼中のN量が0.01~0.15%未満の場合で、1200℃以上に高温加熱して熱間加工および焼鈍を繰り返すこと、あるいは、熱間加工後は焼鈍せず、そのまま冷間加工した後、焼鈍することのいずれも行わない場合には、δフェライトの長径は0.05mmが下限となる。
 一方、鋼中のN量が0.15~0.3%の場合には、δフェライトの長径は、0.05mm未満であるが、鋼中のN量が0.01~0.15%のときに施す、1200℃以上に高温加熱して熱間加工および焼鈍を繰り返す、あるいは、熱間加工後は焼鈍せず、そのまま冷間加工した後、焼鈍する工程は不要である。なお、鋼中のN量が0.15~0.3%の場合も、δフェライトの長径は、小さいほどよく、特に制限されるものではない。
 δフェライトの長径は以下の手順で測定することが出来る。先ず、上述したフェライトメーターによる測定から、δフェライト体積率の最も高い領域を特定し、その領域から試料を切り出す。切り出した試料は、樹脂に埋め込んで研磨・エッチングを施し、光学顕微鏡観察に供する。
 観察視野において、δフェライトの長径は最も大きいものを計測する。高圧水素ガス中および液体水素中での脆化は、上記(b)で述べたように、材料の最も脆弱な領域を起点として発生する。材料の最も脆弱な領域は、上記(d)で述べたように、δフェライトの長径が大きい部位である。従って、δフェライトの長径は、観察・測定した値の中で最も大きな値とする。なお、この観察方法で確認できる最小のδフェライトの長径は、0.005mmである。
 鋼中のN量が0.01~0.15%未満の場合、以下に述べる熱間加工後焼鈍、または、熱間加工後そのまま冷間加工した後焼鈍することで、δフェライトの長径を0.05mm未満にする、即ち、δフェライトを微細化することにより、特性が向上する。熱間加工に先立って、溶解・凝固過程で生成したδフェライトを微細化させるには1200~1300℃の高温で加熱することが好ましい。加熱温度が1300℃超の場合、逆にδフェライトの生成を助長する場合がある。加熱時間は、δフェライトの微細化のため1時間以上とする。加熱時間の上限は特に制限されるものではないが、バッチ炉を使用した際の工業的な生産性を考慮して24時間以下とすることが好ましい。
 熱間加工は、板、棒、管の形状を製造するために行うもので、加工方法および加工度は、特に制限されるものではない。熱間加工材は、残留したδフェライトの微細化と機械的性質を調整するために900~1300℃で焼鈍を行う。焼鈍温度が900℃未満であると、熱延材の再結晶が不十分となり好ましくない。一方、1300℃を超えると、結晶粒粗大化により加工特性および極低温での破壊靭性低下を招くため好ましくない。
 また、板、棒、管の冷間加工材を製造する場合には、熱間加工後、溶体化処理(溶体化焼鈍)を省略して、所定の製品形状に冷間加工を施した後、900~1200℃で焼鈍することが本発明のδフェライト(オーステナイト負偏析領域)のサイズ(長径)を低減して耐水素環境脆性を改善する観点から好ましい。焼鈍温度が900℃未満であると、本発明のオーステナイト系高Mnステンレス鋼において再結晶が不十分となり好ましくない。一方、1200℃を超えると、結晶粒粗大化により加工特性および極低温での破壊靭性低下を招くため好ましくない。
 鋼中のN量が0.15~0.3%の場合、上記のような、熱間加工後焼鈍、または、熱間加工後そのまま冷間加工した後、焼鈍することなしに、長径が0.05mm未満のδフェライト、即ち、微細化されたδフェライトを得ることができ、特性を向上させることができる。なお、冷間加工の前に焼鈍(溶体化焼鈍)を行うと、δフェライトが成長し、δフェライトの長径を0.05mm未満にすることができず好ましくない。
 上述した成分組成と鋼組織を満足したオーステナイト系高Mnステンレス鋼は、高圧水素ガスおよび液体水素を貯蔵するタンクの容器本体、またはライナーの構造材として使用することができる。また、高圧水素ガスおよび液体水素用配管、あるいは、高圧水素ガスおよび液体水素用バルブの材料として使用することができる。
 120MPaを超える圧力容器、配管、バルブ計器類にも、本発明のオーステナイト系高Mnステンレス鋼を使用することは可能であるが、構造設計上、120MPaを超える圧力仕様は殆ど必要とされていないため、圧力の上限は120MPaとすることが好ましい。また、使用温度の上限は、屋外使用環境において水素ガス充填の温度上昇により想定される80℃とする。一方、下限は、液体水素用の場合には20Kの極低温、高圧水素ガス用の場合には、燃料電池自動車の作動温度−40℃を想定したが、これらに限られるものではない。
 次に、本発明を実施例でさらに説明するが、実施例での条件は、本発明の実施可能性および効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。
 表1と表2の成分組成を有するステンレス鋼を溶製し、加熱温度1150~1300℃の熱間圧延により板厚5.0mmの熱延板を作製した。次いで、熱延板は1080℃で焼鈍した熱延板焼鈍材として供試材としたもの、熱延板焼鈍を省略して板厚2.0mmの冷間圧延材とし、さらに、冷間圧延板を1000℃で焼鈍した後、酸洗して2.0mm厚の冷延焼鈍板として供試材としたもの、を作製した。なお、表1はN量が0.01~0.15%未満の低N供試材、表2はN量が0.15~0.3%の高N供試材の成分組成を示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 このようにして得られた、5.0mm厚の熱延焼鈍板とした供試材、または、2.0mm厚の冷延焼鈍板とした供試材から、全長120mmで平行部の長さ35mm(評点間距離25mm)、幅6.25mmの引張試験片を採取して、1)大気中引張試験、2)高圧水素ガス中引張試験、3)液体水素中引張試験に供した。
 大気中引張試験は、試験温度:常温、試験環境:大気、歪速度:8×10−4/秒で実施した。
 高圧水素ガス中引張試験は、試験温度:常温、試験環境:45MPa水素中、90MPa水素中、120MPa水素中、歪速度:8×10−5/秒で実施した。そして、高圧水素ガス中での耐水素環境脆性は、(高圧水素ガス中での伸び)/(大気中での伸び)の値により評価した。なお、45MPa水素中、90MPa水素中、120MPa水素中それぞれの(高圧水素ガス中での伸び)/(大気中での伸び)は、EL:45MPa、EL:90MPa、EL:120MPaと表すものとする。
 液体水素中の引張試験は、0.2%耐力まで1.7×10−4/秒、それ以降6.8×10−4/秒で実施した。液体水素中での耐水素環境脆性は、引張強さと伸びの積:TS×ELで表わされる数値(強度・延性バランス)で評価した。
 評価の基準としては、次の従来例1~3を基に判定した。JIS規格のSUS316L鋼(以下、「SUS316L鋼」という。)を加熱した後、熱間加工して熱延板とし、その熱延板を焼鈍した5mm厚の熱延焼鈍板を従来例1とした。また、SUS316L鋼を加熱した後、熱間加工して熱延板とし、その熱延板を焼鈍した後、さらに冷間加工し、焼鈍した2mm厚さの冷延焼鈍板を従来例2とした。そして、JIS規格のSUS304L鋼(以下、「SUS304L鋼」という。)を加熱した後、熱間加工して熱延板とし、その熱延板を焼鈍した5mm厚の熱延焼鈍板を従来例3とした。
 高圧水素ガス中の耐水素ガス脆性については、各供試材のEL:45MPa、EL:90MPa、EL:120MPaが、従来例1と同じか大きい場合、高圧水素ガス中の耐水素ガス脆性が「優れる」とした。また、各供試材のEL:45MPa、EL:90MPa、EL:120MPaが、従来例2よりも同じか大きい場合、高圧水素ガス中の耐水素ガス脆性が「非常に優れる」とした。
 液体水素中の耐水素環境脆性については、各供試材のTS×ELが、従来例1または従来例2と同じか大きい場合、液体水素中の耐水素環境脆性は「優れる」とした。また、各供試材のTS×ELが従来例3と同じか大きい場合、液体水素中の耐水素環境脆性は「非常に優れる」とした。
 供試材のδフェライト体積率は、フィッシャー製フェライトメーターで求めた。δフェライトの長径は、鋼板断面埋め込み試料を作製して、鏡面研磨後エッチング処理を施し、上述した手順で光学顕微鏡観察を行って測定した。
 低N供試材の耐水素環境脆性の評価結果を表3−1および表3−2に示す。表3−1および表3−2には、熱間加工するときの加熱温度、熱延板焼鈍の有無、冷間圧延(冷間圧延後の焼鈍を含む)の有無を併記した。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 発明例である試験No.1~8、20~23は、本発明のオーステナイト系高Mnステンレス鋼の成分組成を満足し、その結果、所望の鋼組織が得られ、試験No.1~8、20~23のEL:45MPa、EL:90MPa、EL:120MPaは、従来例1のEL:45MPa、EL:90MPa、EL:120MPaよりも大きく、試験No.1~8、20~23は、目標とするSUS316Lと同等以上の優れた耐水素ガス脆性を有することが確認できた。
 また、試験片No.1~8、20~23のTS×ELは、従来例1または従来例2のTS×ELよりも大きく、とSUS316Lと同等以上の優れた液体水素中の耐水素環境脆性を有することが確認できた。
 さらに、試験No.1、3、5、6、8、20、21、22、および23は、熱間加工後焼鈍、あるいは、熱間加工後そのまま冷間加工した後に焼鈍していることから、試験No.1、3、5、6、8、20、21、22、および23のEL:45MPa、EL:90MPa、EL:120MPaは、従来例2のEL:45MPa、EL:90MPa、EL:120MPaよりも大きく、試験No.1、3、5、6、8、20、21、22、および23は、非常に優れた耐水素ガス脆性を有することが確認できた。
 また、試験No.1、3、5、6、8、20、21、22、および23のTS×ELは、従来例3のTS×ELより大きく、試験No.1、3、5、6、8、20、21、22、および23は、非常に優れた液体水素中の耐水素環境脆性を有することが確認できた。
 これに対し、試験No.9~19は、本発明のオーステナイト系高Mnステンレス鋼の成分組成から外れるものであり、本発明で規定する熱間加工後焼鈍、あるいは、熱間加工後そのまま冷間加工した後、焼鈍しても、所望の鋼組織を得ることができず、その結果、高圧水素ガス中の耐水素環境脆性、および、液体水素中の耐水素環境脆性のいずれか一方または両方に劣ることが確認できた。
 高N供試材の耐水素環境脆性を表4−1および表4−2に示す。表4−1および表4−2には、熱間加工するときの加熱温度、熱延板焼鈍の有無、冷間圧延(冷間圧延後の焼鈍を含む)の有無を併記した。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 試験No.51~57、73~78は、本発明のオーステナイト系高Mnステンレス鋼の成分組成を満足している。即ち、試験No.51~57、73~78は、鋼中のN量が0.15~0.3%とし、それに併せ、Ni量を6~8%としたことで、熱間加工後焼鈍、あるいは、熱間加工後そのまま冷間加工した後、焼鈍することなしに、目標とするSUS316Lと同等以上の非常に優れた高圧水素ガス中の耐水素脆性と、SUS304Lと同等以上の非常に優れた液体水素中の耐水素環境脆性を有するものである。
 これに対し、試験No.58~61は、鋼中のN量が0.3%を超える、鋼No.H6~H7の鋳片を熱間圧延したもので、高圧水素ガス中および液体水素中での耐水素環境脆性が大幅に低下していることを確認できた。試験No.62、63は、Ni量が6%未満の鋼No.H8の鋳片を熱間圧延したもので、高圧水素ガス中の耐水素環境脆性に優れるものの、所望の液体水素中の耐水素環境脆性が得られなかったものである。試験No.64~72は、Ni以外の元素の成分組成が本発明の範囲を外れる鋼の鋳片を熱間圧延したもので、高圧水素ガス中の耐水素環境脆性に優れるものの、所望の液体水素中の耐水素環境脆性が得られなかったものである。
 なお、上述したところは、本発明の実施形態を例示したものにすぎず、本発明は、特許請求の範囲において種々変更することができる。
 本発明によれば、高圧水素ガス中の耐水素ガス脆性がSUS316L鋼と同等以上、液体水素中の強度・延性バランスがSUS316L鋼と同等以上、より好ましくはSUS304L鋼と同等以上の耐水素環境脆性を兼備している、オーステナイト系高Mnステンレス鋼を得ることができる。本発明は、工業上、顕著な効果を奏するものである。
 また、本発明によれば、40MPaを超える高圧水素ガスおよび液体水素を貯蔵するタンクの容器本体またはライナー、ならびに、配管やバルブ計器類等を、SUS316L鋼やSUS304鋼と比較して、コストアップを伴うことなく、同等以上の耐水素環境脆性を有するものとすることができる。本発明は、工業上の利用価値が高いものである。

Claims (14)

  1.  質量%で、C:0.1%以下、Si:0.4~1.5%、Mn:8~11%、Cr:15~17%、Ni:5~8%、Cu:1~4%、およびN:0.01~0.15%未満を含有し、残部はFeおよび不可避的不純物からなり、δフェライトの体積率が10%以下、かつδフェライトの長径が0.1mm以下であることを特徴とするオーステナイト系高Mnステンレス鋼。
  2.  質量%で、C:0.1%以下、Si:0.4~1.5%、Mn:8~11%、Cr:15~17%、Ni:6~8%、Cu:1~4%、およびN:0.15~0.3%を含有し、残部はFeおよび不可避的不純物からなり、δフェライトの体積率が5%以下、かつδフェライトの長径が0.05mm未満であることを特徴とするオーステナイト系高Mnステンレス鋼。
  3.  前記鋼が、さらに、質量%で、Mo:0.3%以下、Al:0.2%以下、B:0.01%以下、Ca:0.01%以下、Mg:0.01%以下、およびREM:0.1%以下のうちから選ばれる1種または2種以上の元素を含有していることを特徴とする請求項1に記載のオーステナイト系高Mnステンレス鋼。
  4.  前記鋼が、さらに、質量%で、Mo:0.3%以下、Al:0.2%以下、B:0.01%以下、Ca:0.01%以下、Mg:0.01%以下、およびREM:0.1%以下のうちから選ばれる1種または2種以上の元素を含有していることを特徴とする請求項2に記載のオーステナイト系高Mnステンレス鋼。
  5.  δフェライトの体積率が5%以下、かつδフェライトの長径が0.05mm未満であることを特徴とする請求項1または3に記載のオーステナイト系高Mnステンレス鋼。
  6.  請求項5に記載のオーステナイト系高Mnステンレス鋼の製造方法であって、質量%で、C:0.1%以下、Si:0.4~1.5%、Mn:8~11%、Cr:15~17%、Ni:5~8%、Cu:1~4%、およびN:0.01~0.15%未満を含有し、残部はFeおよび不可避的不純物からなる鋼を、1200~1300℃で1時間以上加熱した後、熱間加工を行い、次いで900~1300℃で焼鈍してδフェライトを微細化することを特徴とするオーステナイト系高Mnステンレス鋼の製造方法。
  7.  請求項5に記載のオーステナイト系高ステンレス鋼の製造方法であって、質量%で、C:0.1%以下、Si:0.4~1.5%、Mn:8~11%、Cr:15~17%、Ni:5~8%、Cu:1~4%、およびN:0.01~0.15%未満を含有し、残部はFeおよび不可避的不純物からなる鋼を、1200~1300℃で1時間以上加熱した後、熱間加工を行い、焼鈍することなく冷間加工した後、900~1200℃で焼鈍してδフェライトを微細化することを特徴とするオーステナイト系高Mnステンレス鋼の製造方法。
  8.  前記鋼が、さらに、質量%で、Mo:0.3%以下、Al:0.2%以下、B:0.01%以下、Ca:0.01%以下、Mg:0.01%以下、およびREM:0.1%以下のうちから選ばれる1種または2種以上の元素を含有していることを特徴とする請求項6または7に記載のオーステナイト系高Mnステンレス鋼の製造方法。
  9.  圧力が0.1~120MPaの高圧水素ガスを貯蔵する高圧水素用ガスタンクであって、該高圧水素用ガスタンクの容器本体およびライナーの少なくとも一方が、請求項1~5のいずれか1項に記載のオーステナイト系高Mnステンレス鋼からなることを特徴とする高圧水素用ガスタンク。
  10.  液体水素を貯蔵する液体水素用タンクであって、該液体水素用タンクの容器本体およびライナーの少なくとも一方が、請求項1~5のいずれか1項に記載のオーステナイト系高Mnステンレス鋼からなることを特徴とする液体水素用タンク。
  11.  圧力が0.1~120MPaの高圧水素ガスを輸送する配管であって、該配管が、請求項1~5のいずれか1項に記載のオーステナイト系高Mnステンレス鋼からなることを特徴とする高圧水素用配管。
  12.  圧力が0.1~120MPaの高圧水素ガスを輸送する配管に連結されるバルブであって、該バルブが、請求項1~5のいずれか1項に記載のオーステナイト系高Mnステンレス鋼からなることを特徴とする高圧水素用バルブ。
  13.  液体水素を輸送する配管であって、該配管が、請求項1~5のいずれか1項に記載のオーステナイト系高Mnステンレス鋼からなることを特徴とする液体水素用配管。
  14.  液体水素を輸送する配管に連結されるバルブであって、該バルブが、請求項1~5のいずれか1項に記載のオーステナイト系高Mnステンレス鋼からなることを特徴とする液体水素用バルブ。
PCT/JP2011/073030 2010-09-29 2011-09-29 オーステナイト系高Mnステンレス鋼およびその製造方法と、その鋼を用いた部材 WO2012043877A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201180047358.4A CN103154291B (zh) 2010-09-29 2011-09-29 奥氏体系高Mn不锈钢及其制造方法和使用该钢的构件
JP2012536611A JP5709881B2 (ja) 2010-09-29 2011-09-29 オーステナイト系高Mnステンレス鋼およびその製造方法と、その鋼を用いた部材
EP11829427.1A EP2623624B1 (en) 2010-09-29 2011-09-29 Austenite high-manganese stainless steel, manufacturing method therefor, and member using said steel
KR1020137007357A KR20130045931A (ko) 2010-09-29 2011-09-29 오스테나이트계 고 Mn 스테인리스 강 및 그 제조 방법과, 그 강을 사용한 부재
US13/824,290 US9175361B2 (en) 2010-09-29 2011-09-29 Austenitic high Mn stainless steel and method production of same and member using that steel
ES11829427.1T ES2595630T3 (es) 2010-09-29 2011-09-29 Acero inoxidable austenítico de alto contenido en Mn y procedimiento de producción del mismo y miembro que usa ese acero

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-219396 2010-09-29
JP2010219396 2010-09-29

Publications (1)

Publication Number Publication Date
WO2012043877A1 true WO2012043877A1 (ja) 2012-04-05

Family

ID=45893307

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/073030 WO2012043877A1 (ja) 2010-09-29 2011-09-29 オーステナイト系高Mnステンレス鋼およびその製造方法と、その鋼を用いた部材

Country Status (7)

Country Link
US (1) US9175361B2 (ja)
EP (1) EP2623624B1 (ja)
JP (1) JP5709881B2 (ja)
KR (1) KR20130045931A (ja)
CN (1) CN103154291B (ja)
ES (1) ES2595630T3 (ja)
WO (1) WO2012043877A1 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2545856C2 (ru) * 2013-08-02 2015-04-10 Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) Конструкционная криогенная аустенитная высокопрочная свариваемая сталь и способ ее получения
JP2015171729A (ja) * 2014-02-21 2015-10-01 新日鐵住金株式会社 高圧水素ガスおよび液体水素用オーステナイト系高Mnステンレス鋼溶接継手およびその製造方法
JP2016102244A (ja) * 2014-11-28 2016-06-02 株式会社日本製鋼所 耐水素脆性に優れた高強度オーステナイト鋼およびその製造方法
RU2585899C1 (ru) * 2015-02-02 2016-06-10 Григорьянц Александр Григорьевич Конструкционная криогенная аустенитная высокопрочная свариваемая сталь и способ ее получения
JP2016199776A (ja) * 2015-04-07 2016-12-01 新日鐵住金株式会社 オーステナイト系ステンレス鋼
JP2017008371A (ja) * 2015-06-23 2017-01-12 新日鐵住金株式会社 高圧水素ガス用高Mn鋼鋼材ならびにその鋼材からなる、配管、容器、バルブおよび継手
JP2017014547A (ja) * 2015-06-29 2017-01-19 新日鐵住金株式会社 高圧水素ガス用高Mn鋼鋼材ならびにその鋼材からなる、配管、容器、バルブおよび継手
JP2017031483A (ja) * 2015-08-05 2017-02-09 新日鐵住金株式会社 高圧水素ガス用高Mn鋼鋼材およびその製造方法、ならびにその鋼材からなる、配管、容器、バルブおよび継手
WO2018180788A1 (ja) * 2017-03-30 2018-10-04 新日鐵住金ステンレス株式会社 溶接性に優れた水素用高Mnオーステナイト系ステンレス鋼、それを用いた溶接継手および水素用機器、並びに溶接継手の製造方法
JP2019143227A (ja) * 2018-02-23 2019-08-29 日鉄ステンレス株式会社 高Mnオーステナイト系ステンレス鋼
US10513764B2 (en) * 2012-05-16 2019-12-24 Bayerische Motoren Werke Aktiengesellschaft Reduced cost steel for hydrogen technology with high resistance to hydrogen-induced embrittlement
JP2020510808A (ja) * 2017-03-13 2020-04-09 エルジー エレクトロニクス インコーポレイティド 空気調和機
WO2020130060A1 (ja) * 2018-12-21 2020-06-25 日鉄ステンレス株式会社 耐水素脆性に優れたCr系ステンレス鋼板
JP2020534480A (ja) * 2017-09-14 2020-11-26 サンドヴィック マテリアルズ テクノロジー ドイチュラント ゲーエムベーハー 液体水素の輸送システム

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101490567B1 (ko) * 2012-12-27 2015-02-05 주식회사 포스코 용접성이 우수한 고망간 내마모강 및 그 제조방법
JP6082866B2 (ja) * 2013-09-27 2017-02-22 国立研究開発法人産業技術総合研究所 ステンレス鋼部材の接合方法およびステンレス鋼
LU92321B1 (en) * 2013-12-03 2015-06-04 Luxembourg Patent Co Sa High pressure hydrogen valve
WO2016143486A1 (ja) * 2015-03-06 2016-09-15 新日鐵住金ステンレス株式会社 耐水素脆化特性に優れた高強度オーステナイト系ステンレス鋼およびその製造方法
US11149324B2 (en) 2015-03-26 2021-10-19 Nippon Steel Stainless Steel Corporation High strength austenitic stainless steel having excellent resistance to hydrogen embrittlement, method for manufacturing the same, and hydrogen equipment used for high-pressure hydrogen gas and liquid hydrogen environment
WO2017171178A1 (ko) * 2016-03-28 2017-10-05 엘지전자 주식회사 스테인리스강 및 상기 스테인리스강으로 이루어지는 배관
CN106011690B (zh) * 2016-06-12 2018-03-09 安徽固齐线路器材有限公司 一种耐腐蚀防震锤的表面处理工艺
KR20180054031A (ko) * 2016-11-14 2018-05-24 주식회사 포스코 내수소취성이 개선된 오스테나이트계 스테인리스강 및 이를 포함하는 고압 수소 가스용 용기
CN106834963B (zh) * 2016-12-16 2018-08-24 安徽宝恒新材料科技有限公司 一种抗菌不锈钢及其制作方法
KR102141900B1 (ko) * 2017-01-23 2020-08-07 엘지전자 주식회사 공기 조화기 시스템
KR20180104521A (ko) * 2017-03-13 2018-09-21 엘지전자 주식회사 공기 조화기
KR20180104513A (ko) 2017-03-13 2018-09-21 엘지전자 주식회사 공기 조화기
KR20180104508A (ko) * 2017-03-13 2018-09-21 엘지전자 주식회사 공기 조화기
KR20180104507A (ko) * 2017-03-13 2018-09-21 엘지전자 주식회사 공기 조화기
KR20180104509A (ko) 2017-03-13 2018-09-21 엘지전자 주식회사 공기 조화기
KR20180104519A (ko) * 2017-03-13 2018-09-21 엘지전자 주식회사 공기 조화기
KR102357608B1 (ko) * 2017-03-13 2022-02-04 엘지전자 주식회사 공기 조화기
KR20180104520A (ko) 2017-03-13 2018-09-21 엘지전자 주식회사 공기 조화기
KR20180104511A (ko) * 2017-03-13 2018-09-21 엘지전자 주식회사 공기 조화기
KR20180104506A (ko) 2017-03-13 2018-09-21 엘지전자 주식회사 공기 조화기
KR20180104514A (ko) * 2017-03-13 2018-09-21 엘지전자 주식회사 공기 조화기
KR20180111416A (ko) * 2017-03-31 2018-10-11 엘지전자 주식회사 연성 스테인리스 강관
KR20190000254A (ko) * 2017-06-22 2019-01-02 엘지전자 주식회사 공기 조화기
KR102419898B1 (ko) * 2017-06-26 2022-07-12 엘지전자 주식회사 가스 히트 펌프 시스템
CN107245563A (zh) * 2017-07-10 2017-10-13 青岛大学 一种提高马氏体型耐热钢铸锭中难溶δ铁素体固溶速率同时细化奥氏体晶粒的技术
KR102364389B1 (ko) * 2017-09-27 2022-02-17 엘지전자 주식회사 공기 조화기
KR102364388B1 (ko) * 2017-09-27 2022-02-17 엘지전자 주식회사 공기 조화기
CN111263828B (zh) 2017-10-26 2021-08-17 日本制铁株式会社 低温用含镍钢
KR102308364B1 (ko) 2017-10-26 2021-10-06 닛폰세이테츠 가부시키가이샤 저온용 니켈 함유 강
US11371127B2 (en) 2017-10-26 2022-06-28 Nippon Steel Corporation Nickel-containing steel for low temperature
US11371126B2 (en) 2017-10-26 2022-06-28 Nippon Steel Corporation Nickel-containing steel for low temperature
EP3686310B1 (en) * 2018-05-23 2021-09-22 Manchao He Npr anchor rod steel material and production method therefor
KR102170945B1 (ko) * 2018-10-23 2020-10-29 주식회사 포스코 피로수명이 우수한 오스테나이트계 스테인리스강 및 그 제조방법
KR102229906B1 (ko) * 2018-12-13 2021-03-22 한국표준과학연구원 In situ 국소용융풀 가스 개질처리를 통한 내수소취화부품 제조방법
TWI757044B (zh) * 2020-01-09 2022-03-01 日商日鐵不銹鋼股份有限公司 沃斯田鐵系不鏽鋼材
CN112962029B (zh) * 2021-02-01 2021-12-21 广东鑫发精密金属科技有限公司 一种拉链纽扣用低硬度易加工的不锈钢材料及其制备方法
CN113235019A (zh) * 2021-05-20 2021-08-10 成都先进金属材料产业技术研究院股份有限公司 Fe-Mn-Al-N-S系高氮低密度易切削钢棒材及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0770700A (ja) * 1993-08-31 1995-03-14 Nidatsuku Kk 高耐力高耐食性オーステナイト系ステンレス鋳鋼
WO2004083476A1 (ja) 2003-03-20 2004-09-30 Sumitomo Metal Industries, Ltd. 高圧水素ガス用ステンレス鋼、その鋼からなる容器および機器
WO2004083477A1 (ja) 2003-03-20 2004-09-30 Sumitomo Metal Industries, Ltd. 高圧水素ガス用ステンレス鋼、その鋼からなる容器および機器
JP2005154890A (ja) 2003-11-07 2005-06-16 Nippon Steel & Sumikin Stainless Steel Corp 加工性に優れたオ−ステナイト系高Mnステンレス鋼
WO2007052773A1 (ja) 2005-11-01 2007-05-10 Nippon Steel & Sumikin Stainless Steel Corporation 高圧水素ガス用オーステナイト系高Mnステンレス鋼
JP2009030128A (ja) * 2007-07-30 2009-02-12 Nippon Steel & Sumikin Stainless Steel Corp 衝撃吸収特性に優れた構造部材用オーステナイト系ステンレス鋼板
JP2009299174A (ja) 2008-06-17 2009-12-24 Nisshin Steel Co Ltd 高圧水素ガス用圧力容器およびパイプ
JP2010121190A (ja) 2008-11-21 2010-06-03 Nisshin Steel Co Ltd 高圧水素輸送用オーステナイト系ステンレス鋼溶接管およびその製造方法
JP2010196142A (ja) * 2009-02-27 2010-09-09 Nippon Yakin Kogyo Co Ltd 高Mnオーステナイト系ステンレス鋼と服飾用金属部品

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5910493A (ja) * 1982-07-09 1984-01-19 Kawasaki Steel Corp 極低温用オ−ステナイト系ステンレス鋼の純アルゴン被包ガス溶接用ワイヤ
JPS60121098A (ja) * 1983-12-05 1985-06-28 Kawasaki Steel Corp オ−ステナイト系ステンレス鋼肉盛溶接における水素はくり割れ防止方法
US5286310A (en) * 1992-10-13 1994-02-15 Allegheny Ludlum Corporation Low nickel, copper containing chromium-nickel-manganese-copper-nitrogen austenitic stainless steel
CN100567542C (zh) * 2003-03-20 2009-12-09 住友金属工业株式会社 高压氢气用不锈钢、由该钢制作的容器以及器具
CN1833043B (zh) * 2003-06-10 2010-09-22 住友金属工业株式会社 氢气用奥氏体不锈钢及其制造方法
JP5116265B2 (ja) * 2006-07-13 2013-01-09 新日鐵住金ステンレス株式会社 強度及び延性に優れたオーステナイト系ステンレス圧延鋼板及びその製造方法
JP2008038191A (ja) 2006-08-04 2008-02-21 Nippon Metal Ind Co Ltd オーステナイト系ステンレス鋼とその製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0770700A (ja) * 1993-08-31 1995-03-14 Nidatsuku Kk 高耐力高耐食性オーステナイト系ステンレス鋳鋼
WO2004083476A1 (ja) 2003-03-20 2004-09-30 Sumitomo Metal Industries, Ltd. 高圧水素ガス用ステンレス鋼、その鋼からなる容器および機器
WO2004083477A1 (ja) 2003-03-20 2004-09-30 Sumitomo Metal Industries, Ltd. 高圧水素ガス用ステンレス鋼、その鋼からなる容器および機器
JP2005154890A (ja) 2003-11-07 2005-06-16 Nippon Steel & Sumikin Stainless Steel Corp 加工性に優れたオ−ステナイト系高Mnステンレス鋼
WO2007052773A1 (ja) 2005-11-01 2007-05-10 Nippon Steel & Sumikin Stainless Steel Corporation 高圧水素ガス用オーステナイト系高Mnステンレス鋼
JP2007126688A (ja) * 2005-11-01 2007-05-24 Nippon Steel & Sumikin Stainless Steel Corp 高圧水素ガス用オ−ステナイト系高Mnステンレス鋼
JP2009030128A (ja) * 2007-07-30 2009-02-12 Nippon Steel & Sumikin Stainless Steel Corp 衝撃吸収特性に優れた構造部材用オーステナイト系ステンレス鋼板
JP2009299174A (ja) 2008-06-17 2009-12-24 Nisshin Steel Co Ltd 高圧水素ガス用圧力容器およびパイプ
JP2010121190A (ja) 2008-11-21 2010-06-03 Nisshin Steel Co Ltd 高圧水素輸送用オーステナイト系ステンレス鋼溶接管およびその製造方法
JP2010196142A (ja) * 2009-02-27 2010-09-09 Nippon Yakin Kogyo Co Ltd 高Mnオーステナイト系ステンレス鋼と服飾用金属部品

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MASAHARU HATANO ET AL.: "Suiso Energy Yo Tei Ni Austenitic Stainless Steel no Kaihatsu", CURRENT ADVANCES IN MATERIALS AND PROCESSES, vol. 20, no. 6, 1 September 2007 (2007-09-01), pages 1068 - 1071, XP008170167 *
See also references of EP2623624A4 *

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10513764B2 (en) * 2012-05-16 2019-12-24 Bayerische Motoren Werke Aktiengesellschaft Reduced cost steel for hydrogen technology with high resistance to hydrogen-induced embrittlement
RU2545856C2 (ru) * 2013-08-02 2015-04-10 Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) Конструкционная криогенная аустенитная высокопрочная свариваемая сталь и способ ее получения
JP2015171729A (ja) * 2014-02-21 2015-10-01 新日鐵住金株式会社 高圧水素ガスおよび液体水素用オーステナイト系高Mnステンレス鋼溶接継手およびその製造方法
JP2016102244A (ja) * 2014-11-28 2016-06-02 株式会社日本製鋼所 耐水素脆性に優れた高強度オーステナイト鋼およびその製造方法
RU2585899C1 (ru) * 2015-02-02 2016-06-10 Григорьянц Александр Григорьевич Конструкционная криогенная аустенитная высокопрочная свариваемая сталь и способ ее получения
JP2016199776A (ja) * 2015-04-07 2016-12-01 新日鐵住金株式会社 オーステナイト系ステンレス鋼
JP2017008371A (ja) * 2015-06-23 2017-01-12 新日鐵住金株式会社 高圧水素ガス用高Mn鋼鋼材ならびにその鋼材からなる、配管、容器、バルブおよび継手
JP2017014547A (ja) * 2015-06-29 2017-01-19 新日鐵住金株式会社 高圧水素ガス用高Mn鋼鋼材ならびにその鋼材からなる、配管、容器、バルブおよび継手
JP2017031483A (ja) * 2015-08-05 2017-02-09 新日鐵住金株式会社 高圧水素ガス用高Mn鋼鋼材およびその製造方法、ならびにその鋼材からなる、配管、容器、バルブおよび継手
JP2020510808A (ja) * 2017-03-13 2020-04-09 エルジー エレクトロニクス インコーポレイティド 空気調和機
CN110462082A (zh) * 2017-03-30 2019-11-15 日铁不锈钢株式会社 焊接性优良的氢用高Mn奥氏体系不锈钢、使用该不锈钢的焊接接头和氢用设备、以及焊接接头的制造方法
JPWO2018180788A1 (ja) * 2017-03-30 2020-03-26 日鉄ステンレス株式会社 溶接性に優れた水素用高Mnオーステナイト系ステンレス鋼、それを用いた溶接継手および水素用機器、並びに溶接継手の製造方法
WO2018180788A1 (ja) * 2017-03-30 2018-10-04 新日鐵住金ステンレス株式会社 溶接性に優れた水素用高Mnオーステナイト系ステンレス鋼、それを用いた溶接継手および水素用機器、並びに溶接継手の製造方法
US11225705B2 (en) 2017-03-30 2022-01-18 Nippon Steel Stainless Steel Corporation High-Mn austenitic stainless steel for hydrogen having excellent weldability, welded joint using same, device for hydrogen using same, and method for producing welded joint
JP2020534480A (ja) * 2017-09-14 2020-11-26 サンドヴィック マテリアルズ テクノロジー ドイチュラント ゲーエムベーハー 液体水素の輸送システム
JP2019143227A (ja) * 2018-02-23 2019-08-29 日鉄ステンレス株式会社 高Mnオーステナイト系ステンレス鋼
JP7262172B2 (ja) 2018-02-23 2023-04-21 日鉄ステンレス株式会社 高Mnオーステナイト系ステンレス鋼
WO2020130060A1 (ja) * 2018-12-21 2020-06-25 日鉄ステンレス株式会社 耐水素脆性に優れたCr系ステンレス鋼板
JPWO2020130060A1 (ja) * 2018-12-21 2021-10-14 日鉄ステンレス株式会社 耐水素脆性に優れたCr系ステンレス鋼板
JP7121142B2 (ja) 2018-12-21 2022-08-17 日鉄ステンレス株式会社 耐水素脆性に優れたCr系ステンレス鋼板

Also Published As

Publication number Publication date
US20130174949A1 (en) 2013-07-11
US9175361B2 (en) 2015-11-03
ES2595630T3 (es) 2017-01-02
EP2623624A1 (en) 2013-08-07
JPWO2012043877A1 (ja) 2014-02-24
EP2623624A4 (en) 2015-04-22
CN103154291B (zh) 2016-03-16
CN103154291A (zh) 2013-06-12
EP2623624B1 (en) 2016-08-17
JP5709881B2 (ja) 2015-04-30
KR20130045931A (ko) 2013-05-06

Similar Documents

Publication Publication Date Title
JP5709881B2 (ja) オーステナイト系高Mnステンレス鋼およびその製造方法と、その鋼を用いた部材
JP4907151B2 (ja) 高圧水素ガス用オ−ステナイト系高Mnステンレス鋼
US9932651B2 (en) Thick-walled high-strength seamless steel pipe with excellent sour resistance for pipe for pipeline, and process for producing same
JP6384636B1 (ja) 高強度ステンレス継目無鋼管およびその製造方法
RU2502820C1 (ru) Толстолистовая сталь, характеризующаяся низким соотношением между пределом текучести и пределом прочности, высокой прочностью и высоким равномерным относительным удлинением, и способ ее изготовления
JP4911266B2 (ja) 高強度油井用ステンレス鋼及び高強度油井用ステンレス鋼管
JP5685198B2 (ja) フェライト−オーステナイト系ステンレス鋼
US10597760B2 (en) High-strength steel material for oil well and oil well pipes
WO2005017222A1 (ja) 耐食性に優れた油井用高強度ステンレス鋼管およびその製造方法
WO2009119048A1 (ja) 油井管に用いられるステンレス鋼
MX2014009444A (es) Acero inoxidable para pozos de petroleo y tuberias de acero inoxidable para pozos de petroleo.
JP6856129B2 (ja) 高Mn鋼の製造方法
WO2017208946A1 (ja) 二相ステンレス鋼及び二相ステンレス鋼の製造方法
JP2012107333A (ja) 高圧水素貯蔵容器用高強度鋼材
CN115298343A (zh) 不锈钢无缝钢管和不锈钢无缝钢管的制造方法
WO2016079920A1 (ja) 油井用高強度ステンレス継目無鋼管
CN115349024A (zh) 不锈钢无缝钢管和不锈钢无缝钢管的制造方法
JP2012107332A (ja) 高圧水素貯蔵用鋼材
WO2014203472A1 (ja) ラインパイプ向溶接鋼管用マルテンサイト系ステンレス熱延鋼帯の製造方法
RU2584315C1 (ru) Конструкционная криогенная аустенитная высокопрочная коррозионно-стойкая, в том числе в биоактивных средах, свариваемая сталь и способ ее обработки
JP2019143227A (ja) 高Mnオーステナイト系ステンレス鋼
WO2021117382A1 (ja) 鋼板およびその製造方法
JP6848519B2 (ja) 高圧水素用オーステナイト系ステンレス鋼
JP6947330B2 (ja) 鋼およびその製造方法
WO2023162507A1 (ja) 鋼板およびその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180047358.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11829427

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2012536611

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13824290

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20137007357

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2011829427

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011829427

Country of ref document: EP