WO2014203472A1 - ラインパイプ向溶接鋼管用マルテンサイト系ステンレス熱延鋼帯の製造方法 - Google Patents

ラインパイプ向溶接鋼管用マルテンサイト系ステンレス熱延鋼帯の製造方法 Download PDF

Info

Publication number
WO2014203472A1
WO2014203472A1 PCT/JP2014/002913 JP2014002913W WO2014203472A1 WO 2014203472 A1 WO2014203472 A1 WO 2014203472A1 JP 2014002913 W JP2014002913 W JP 2014002913W WO 2014203472 A1 WO2014203472 A1 WO 2014203472A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
amount
hot
steel strip
martensitic stainless
Prior art date
Application number
PCT/JP2014/002913
Other languages
English (en)
French (fr)
Inventor
宮田 由紀夫
木村 光男
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2015522513A priority Critical patent/JP5971415B2/ja
Publication of WO2014203472A1 publication Critical patent/WO2014203472A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys

Definitions

  • the present invention relates to a 13% Cr martensitic stainless hot rolled steel strip (13% Cr hot rolled martensitic stainless steel sheet), and in particular, a gas containing a corrosive gas such as carbon dioxide (carbon dioxide).
  • the present invention relates to a method for producing a martensitic stainless hot-rolled steel strip for welded steel pipe suitable for a line pipe used in a gas field or an oil field.
  • a dual-phase stainless steel pipe has been conventionally used.
  • welded steel pipes have mainly been used for line pipes used in overland pipe pipes because they do not require heavy steel pipes that are as thick as seamless steel pipes. .
  • martensitic stainless steels with lower cost and moderate corrosion resistance were developed and used as welded steel pipes for line pipes.
  • Patent Document 1 describes a martensitic stainless hot-rolled steel strip excellent in manufacturability for use in the above-described welded steel pipes.
  • a hot-rolled steel sheet with a small degree of variation in mechanical characteristics (excellent manufacturability) and excellent quality (stability) of the material (quality of material) can be obtained. It is supposed to be obtained.
  • Patent Document 2 describes a method for producing a martensitic stainless steel welded pipe excellent in intergranular stress corrosion cracking resistance (intergranular stress stress corrosion cracking).
  • the steel strip used as the material of the welded pipe is in mass%, C: less than 0.0200%, N: less than 0.0200%, Si: 1.0% or less, Mn: 2.0% or less, Cr: A martensitic stainless steel strip having a composition containing 10 to 14%, Ni: 3 to 8%, Mo: 1 to 4%, Al: 0.10% or less, V: 0.02 to 0.10%, Ca: 0.0005 to 0.010% As a raw material, it is continuously formed into an open pipe.
  • Both ends of the open pipe are butted together and welded to form a welded pipe, and then the seam welded part is heated to a seam welded part at a temperature in the range of 550 to 700 ° C.
  • Heat treated (post-weld-heat-treatment) is applied to create a seam weld with excellent intergranular stress corrosion cracking resistance.
  • Japanese Patent No. 3800150 Japanese Patent Laid-Open No. 2004-91812
  • Patent Document 1 the creep phenomenon (creep phenomenon) occurs during high-temperature heating during hot rolling, resulting in defective slab shapes (slab geometries), leaving a problem in conveyance during rolling. It was.
  • Patent Document 2 does not mention the conditions for hot rolling, and the manufacturability of the martensitic stainless hot-rolled steel strip having the composition described in Patent Document 2 remains unknown. There was a problem that the hot-rolled steel strip was not optimized as a material.
  • the object of the present invention is to provide a method for producing a martensitic stainless hot-rolled steel strip that solves the problems of the prior art and is excellent in manufacturability that is inexpensive and can be stably produced.
  • excellent manufacturability means, for example, that there are few obstructive factors in the manufacturing process, such as slab shape defects and edge cracking as described above.
  • the “martensitic stainless hot-rolled steel strip” targeted by the present invention has a yield strength of YS: 450 MPa or more after heat treatment including quenching and tempering, This refers to a hot-rolled steel strip excellent in sulfide stress corrosion cracking resistance (SSC resistance) and carbon dioxide-corrosion resistance.
  • the present inventors first decided to optimize the composition of the hot-rolled steel strip for welded steel pipes based on the composition of the steel material for seamless steel pipes.
  • Steel materials for seamless steel pipes have a composition containing a large amount of expensive Ni for the purpose of preventing the formation of delta ferrite (delta ferrite) in order to facilitate hot working at high temperatures.
  • delta ferrite delta ferrite
  • the present inventors have come up with the idea that the heating temperature T of the steel material is adjusted so as to satisfy a special relational expression related to the contents of Ni, Cr, and Mo. .
  • a special relational expression related to the contents of Ni, Cr, and Mo.
  • the inventors adjusted the heating temperature T of the steel material so as to satisfy the above-described special relational expression, thereby preventing the occurrence of the above-described shape defect, the generation of ⁇ ferrite, and the heat. It has been found that there is no decrease in hot workability.
  • the gist of the present invention is as follows.
  • the steel material is mass%, C: less than 0.0150%, N: less than 0.0200%, Si: 0.05 to 1.0%, Mn: 0.1 to 2.0%, P: 0.03% or less, S: 0.010% or less, Al: 0.001 to 0.10%, Cr: 10 to 14%, Ni: 2.0 to 5.0%, Mo: 1.0 to 4.0 %, Ti: 0.03-0.15%, Nb: 0.10% or less, V: 0.10% or less, Zr: 0.10% or less, Hf: 0.20% or less, Ta: 0.20% or less Alternatively, a steel material containing two or more types and the balance Fe and unavoidable impurities is used, and the heating temperature T of the heating is expressed by the following formula (1): 1050 ⁇ T ⁇ 60 (Ni-
  • the composition further contains, by mass%, one or more selected from Cu: 4% or less, Co: 4% or less, and W: 4% or less
  • SSC resistance sulfide stress corrosion cracking
  • Carbon dioxide corrosion resistance which is suitable for welded steel pipes for line pipes.
  • Site-based stainless steel hot-rolled steel strip can be manufactured with high productivity with less troubles during manufacturing, and has a remarkable industrial effect.
  • a steel material such as a slab is heated to a temperature T satisfying the relational expressions related to its Ni, Cr, and Mo contents, and then hot-rolled and wound into a coil to form a hot-rolled steel strip.
  • these hot-rolled steel sheet was cooled to room temperature, further subjected to Ac 3 transformation point (Ac 3 transformation point) or more quenching cooling with air or a cooling rate after reheating to a temperature, then, It is preferable to perform the tempering treatment at a temperature below the Ac 1 transformation point.
  • C Less than 0.0150% C is an element that dissolves in steel and contributes to increasing the strength of steel. In order to obtain this effect, 0.0060% or more is preferable. However, if contained in a large amount, the weld heat affected zone HAZ is hardened, causing weld cracks or degrading the weld heat affected zone toughness. For this reason, in this invention, it is desirable to reduce as much as possible and limited to less than 0.0150%. In addition, Preferably it is 0.0100% or less.
  • N Less than 0.0200% N, like C, is an element that dissolves in steel and contributes to an increase in steel strength. In order to obtain this effect, 0.0060% or more is preferable. However, if a large amount is contained, the welded portion is hardened to cause a weld crack or to deteriorate the weld heat affected zone toughness. Also, N combines with Ti, Nb, Zr, V, Hf, Ta, etc. to form nitrides, thus forming carbides and suppressing formation of Cr-deficient layers Ti, Nb, Zr, V, Hf, Ta The amount will be substantially reduced. For this reason, it is desirable to reduce N as much as possible. Since the adverse effect of N described above is acceptable if it is less than 0.0200%, N is limited to less than 0.0200% in the present invention. In addition, Preferably it is 0.0100% or less.
  • Si 0.05-1.0%
  • Si is an element that acts as a deoxidizer and contributes to an increase in strength by solid solution in steel. In order to acquire such an effect, 0.05% or more of content is required.
  • Si is also a ferrite-forming element, and a large content exceeding 1.0% degrades the base metal and HAZ toughness. For this reason, Si is limited to 0.05 to 1.0%. Note that the content is preferably 0.10 to 0.5%.
  • Mn 0.1-2.0%
  • Mn is a solid solution that contributes to increasing the strength of the steel and is an austenite formation element that suppresses ferrite formation and improves the base metal and HAZ toughness.
  • the content 0.1% or more is required.
  • the content is 0.3 to 1.0%.
  • P 0.03% or less
  • P is an element that segregates at grain boundaries to lower grain boundary strength and adversely affects resistance to sulfide stress corrosion cracking. Therefore, it is preferable to reduce as much as possible, but 0.03% is acceptable. Therefore, P is limited to 0.03% or less. From the viewpoint of hot workability, it is preferably 0.02% or less.
  • S 0.010% or less
  • S is an element that forms a sulfide such as MnS and lowers workability. In the present invention, it is preferable to reduce as much as possible, but 0.010% is acceptable. For this reason, S was limited to 0.010% or less. In addition, Preferably it is 0.005% or less.
  • Al 0.001 to 0.10%
  • Al is an element that acts as a deoxidizer, and in order to obtain such an effect, it is necessary to contain 0.001% or more. However, the content exceeding 0.10% deteriorates toughness. For this reason, Al was limited to 0.001 to 0.10%. Note that the content is preferably 0.010 to 0.060%.
  • Cr 10-14%
  • Cr is a basic element for improving the corrosion resistance such as carbon dioxide gas corrosion resistance, pitting corrosion resistance, sulfide stress corrosion cracking resistance, etc.
  • it is necessary to contain 10% or more.
  • the content exceeds 14%, a ferrite phase is likely to be generated, and a large amount of other alloy elements is required to stably secure a martensite structure, resulting in an increase in material cost. Therefore, in the present invention, Cr is limited to the range of 10 to 14%.
  • Ni 2.0-5.0%
  • Ni is an element that contributes to increase in strength by solid solution, improves toughness, and improves resistance to carbon dioxide corrosion.
  • Ni is an austenite-forming element and acts effectively to stably secure a martensite structure in a low carbon region.
  • a content of 2.0% or more is required. Preferably, it is 2.5% or more.
  • the content exceeds 5.0% the material cost increases. For this reason, Ni is limited to the range of 2.0 to 5.0%.
  • Ni content can be suppressed by adjusting the amount of other alloy elements and manufacturing conditions.
  • Mo 1.0-4.0%
  • Mo is an element that improves the resistance to sulfide stress corrosion cracking and pitting corrosion. To obtain such an effect, it is necessary to contain 1.0% or more. On the other hand, if the content exceeds 4.0%, ferrite is easily generated and the effect of improving resistance to sulfide stress corrosion cracking is saturated, and an effect commensurate with the content cannot be expected, which is economically disadvantageous. For this reason, Mo is limited to the range of 1.0 to 4.0%. Preferably, the content is 1.5 to 3.0%.
  • Ti 0.03-0.15%
  • Ti is an element that combines with C or N to form carbides or nitrides, refines crystal grains, and improves strength and toughness. In order to obtain such an effect, the content of 0.03% or more is required. On the other hand, even if it is contained in a large amount exceeding 0.15%, the effect is saturated and an effect commensurate with the content cannot be expected, which is economically disadvantageous. For this reason, Ti is limited to the range of 0.03 to 0.15%. Note that the content is preferably 0.05 to 0.12%.
  • Nb 0.10% or less
  • V 0.10% or less
  • Zr 0.10% or less
  • Hf 0.20% or less
  • Ta 0.20% or less
  • Nb V, Zr, Hf, Ta Is a carbide-forming element, has a precipitation strengthening function, and optionally contains one or more for increasing strength.
  • Nb 0.02% or more
  • V 0.02% or more
  • Zr 0.03% or more
  • Ta 0.03% or more.
  • the above components are basic components.
  • one or two elements selected from Cu: 4% or less, Co: 4% or less, and W: 4% or less are selected as the selection element.
  • the above can be contained.
  • Cu, Co, and W are all elements that improve the corrosion resistance of carbon dioxide gas, or further improve the resistance to pitting corrosion, and can be selected from one or more as required.
  • Cu 4% or less, Co: 4% or less, and W: 4% or less, respectively.
  • the balance other than the above components is composed of Fe and inevitable impurities.
  • O oxygen
  • the steel material having the above composition is heated and hot-rolled and wound into a coil to form a hot-rolled steel strip.
  • the manufacturing method of the steel material used in the present invention is not particularly limited, and the molten steel having the above composition is usually converted into a converter, an electric furnace, a vacuum melting furnace, a vacuum melting furnace, and the like.
  • Steel material such as slabs of a predetermined size by a known method such as continuous casting method, ingot-making ⁇ and bloomig method It is preferable to do.
  • the following formula (1) is a special relational expression corresponding to the contents of Ni, Cr, and Mo: 1050 ⁇ T ⁇ 60 (Ni-0.9Cr-1.1Mo) + 1720 (1) (Where T: heating temperature (° C.), Ni, Cr, Mo: content of each element (mass%))
  • T heating temperature
  • Ni, Cr, Mo content of each element (mass%)
  • the heating temperature T (° C.) satisfies This makes it possible to stably produce a martensitic stainless hot-rolled steel strip without causing troubles during hot rolling such as defective shape of the steel material, precipitation of ⁇ ferrite, and edge cracking.
  • the heating temperature T of the steel material exceeds the upper limit of the above equation (1), a shape defect in the steel material due to the creep phenomenon occurs, and troubles occur during transportation, and ⁇ ferrite is likely to precipitate. , Hot workability decreases.
  • the heating temperature T is less than the lower limit of the above equation (1), the deformation resistance (deformation resistance) becomes high and stable rolling becomes difficult.
  • the heating temperature T is preferably 1100 to 1150 ° C.
  • the steel material heated to the heating temperature T satisfying the above equation (1) is hot-rolled and then cooled to the coiling temperature, wound in a coil to form a hot-rolled steel strip, to room temperature. To be cooled.
  • the conditions for hot rolling other than the heating temperature are not particularly limited, and any hot rolling under normal conditions can be applied.
  • the hot-rolled steel strip cooled to room temperature is heated to 750 to 1000 ° C above the Ac 3 transformation point and then cooled to 100 ° C or below at a cooling rate above air cooling, followed by Ac A heat treatment comprising a tempering treatment tempered at 550 to 700 ° C. below the 1 transformation point is performed.
  • a structure mainly composed of a tempered martensite phase can be obtained, and the above-described desired high strength can be ensured.
  • the “main organization” means a case where the phase is 70% or more in area ratio.
  • the steel having the above composition can be made into a martensitic structure if it is cooled at a cooling rate equal to or higher than air cooling after hot rolling, so that the quenching treatment is omitted and the steel is cooled to room temperature after hot rolling. Thereafter, direct tempering treatment may be performed.
  • Molten steel having the composition shown in Table 1 was melted in a converter and made into a steel material (slab: wall thickness 265 mm) by a continuous casting method.
  • the obtained slab was heated to the heating temperature shown in Table 2, and then hot-rolled to obtain a hot rolled steel strip having a thickness of 4.0 to 8.0 mm.
  • the presence or absence of occurrence of troubles during hot rolling was investigated and the manufacturability was evaluated.
  • Test materials were collected from the heat-treated hot-rolled steel strip and subjected to a tensile test and a corrosion resistance test.
  • the test conditions were as follows. (1) Tensile test In accordance with API 5LC regulations, API specimen specimens by API standard 5CT are collected from the test materials, tensile tests are performed, and tensile properties (yield strength YS, Tensile strength TS) was determined. (2) Corrosion resistance test Corrosion specimens 3mm thick x 30mm wide x 40mm long are made from the test material by machining, and carbon dioxide corrosion test Tensile specimens were collected from the test materials in accordance with NACE-TM0177, Method A, and subjected to a sulfide stress corrosion cracking test.
  • the carbon dioxide gas corrosion test is performed by immersing a corrosion test piece in a 20% by mass NaCl aqueous solution (liquid temperature: 150 ° C, CO 2 gas partial pressure: 3.0 MPa CO 2 gas atmosphere) held in an autoclave. The immersion period was 168 hr). The test piece after the corrosion test was weighed, and the corrosion rate was calculated from the weight loss before and after the corrosion test. Moreover, about the test piece after a corrosion test, the presence or absence of pitting corrosion (observing pitting corrosion) was observed with a 10 times magnifier (magnifying glass). Corrosion rate: 0.1 mm / y or less and no pitting corrosion were evaluated as “good” as being excellent in carbon dioxide gas corrosion resistance. Other than that, the carbon dioxide gas corrosion resistance was inferior, and was evaluated as x.
  • the sulfide stress corrosion cracking test was carried out using a four-point bending test method in accordance with the EFC17 regulations and applying 90% YS stress and holding it for 720 hours. The case where it did not break after 720 hours passed was evaluated as “good” because it was excellent in resistance to sulfide stress corrosion cracking, and “x” otherwise.
  • the test solution used was adjusted to pH 3.5 by adding CH 3 COONa to (5.0 mass% NaCl + 0.5 mass% acetic acid) aqueous solution (liquid temperature: 24 ° C). %, (10% H 2 S + 90% CO 2 ) was conducted in an environment where a gas was passed.
  • Table 3 shows the obtained results. In addition, about the thing which had a trouble at the time of manufacture and was not able to obtain a test material, it did not test and described in Table 3 "not measured".
  • the hot rolled steel strip was excellent in manufacturability, desired high strength, and excellent in carbon dioxide corrosion resistance and sulfide stress corrosion cracking resistance. ing.
  • the comparative example which is out of the scope of the present invention is inferior in manufacturability, or has poor carbon dioxide gas corrosion resistance and sulfide stress corrosion cracking resistance.

Abstract

ラインパイプ向溶接鋼管用として好適な、高強度と、耐硫化物応力腐食割れ性(耐SSC性)および耐炭酸ガス腐食性に優れたマルテンサイト系ステンレス熱延鋼帯を、製造時のトラブル発生もなく生産性高く製造する方法を提供する。 C:0.0150%未満、N:0.0200%未満、Si:0.05~1.0%、Mn:0.1~2.0%、P :0.03%以下、S :0.010%以下、Al:0.001~0.10%、Cr:10~14%、Ni:2.0~5.0%、Mo:1.0~4.0%、Ti:0.03~0.15%を含み、さらに、Nb:0.10%以下、V:0.10%以下、Zr:0.10%以下、Hf:0.20%以下、Ta:0.20%以下のうちから選ばれた1種または2種以上を含有する組成を有する鋼素材を、1050≦T≦60(Ni-0.9Cr-1.1Mo)+1720を満足する加熱温度Tに加熱した後、熱間圧延を施し、熱延鋼帯とする。

Description

ラインパイプ向溶接鋼管用マルテンサイト系ステンレス熱延鋼帯の製造方法
 本発明は、13%Crマルテンサイト系ステンレス熱延鋼帯(13%Cr hot rolled martensitic stainless steel sheet)に係り、とくに、炭酸ガス(carbon dioxide)等の腐食性ガス(corrosive gas)を含有するガス田(gas field)や油田(oilfield)で使用されるラインパイプ(line pipe)向けとして好適な、溶接鋼管(welded steel pipe)用マルテンサイト系ステンレス熱延鋼帯の製造方法に関する。
 近年、原油価格の高騰や、近い将来に予想される石油資源の枯渇に対処するために、従来、省みられなかったような深層油田(deep- oilfield)や、一旦、開発が放棄されていた腐食性の強いガス田等に対する開発が世界的規模で盛んになっている。このような油田、ガス田において、使用される油井管(Oil Country Tubular Goods)やラインパイプ用鋼管には、耐食性(corrosion resistance)に優れることが要求されている。
 このような耐食性に優れた鋼管として、従来は、主として二相ステンレス鋼管(dual phase stainless steel pipe)が使用されてきた。とくに、陸上パイプライン(overland pipeline)に使用されるラインパイプには、継目無鋼管(seamless steel tube)ほどの厚肉鋼管(heavy wall steel tube)は必要ないため、主として溶接鋼管が使用されてきた。1990年代後半になって、より安価で適度な耐食性を有するマルテンサイト系ステンレス鋼が開発され、ラインパイプ用溶接鋼管としても使用されてきた。
 上記した使途向けの溶接鋼管用として、例えば、特許文献1には、製造性に優れるマルテンサイト系ステンレス熱延鋼帯が記載されている。特許文献1に記載された技術では、質量%で、C:0.02%以下、Si:0.1~0.3%、Mn:0.1~0.3%、Cr:11~15%、Ni:5~8%、Mo:1.5~3%、Al:0.10%以下、N:0.020%以下を含有し、熱処理条件を調整して、単位体積%当たりのγ相(gamma phase or austenite phase)中のNi量であるP値を0.3~1.0とすることにより、機械的特性(mechanical characteristics)の変動の程度の小さい(製造性(manufacturability)に優れる)、材質(quality of material)の安定性(stability)に優れた熱延鋼板が得られるとしている。
 また、特許文献2には、耐粒界応力腐食割れ性(inter granular stress corrosion crack)に優れたマルテンサイト系ステンレス鋼溶接管の製造方法が記載されている。特許文献2に記載された技術では、溶接管の素材とする鋼帯を、質量%で、C:0.0200%未満、N:0.0200%未満、Si:1.0%以下、Mn:2.0%以下、Cr:10~14%、Ni:3~8%、Mo:1~4%、Al:0.10%以下、V:0.02~0.10%、Ca:0.0005~0.010%を含有する組成のマルテンサイト系ステンレス鋼帯を素材として、連続的に成形しオープン管として、該オープン管の両端面同士を突合せ、溶接接合して溶接管としたのち、シーム溶接部に550~700℃の範囲の温度でシーム溶接部に後熱処理(post weld heat treatment)を施して、耐粒界応力腐食割れ性に優れたシーム溶接部としている。
特許第3800150号公報(特開2004-91812号公報) 特開2011-89159号公報
 しかしながら、特許文献1に記載された技術では、熱間圧延時の高温加熱時にクリープ現象(creep phenomenon)のため、スラブ形状(slab geometries)の不良が発生し、圧延時の搬送に問題を残していた。また、特許文献2には、熱間圧延の条件についての言及がなく、特許文献2に記載された組成のマルテンサイト系ステンレス熱延鋼帯の製造性については不明のままであり、溶接鋼管用素材として熱延鋼帯の適正化が図られていないという問題があった。
 本発明は、かかる従来技術の問題を解決し、安価で、安定した製造ができる製造性に優れる、マルテンサイト系ステンレス熱延鋼帯の製造方法を提供することを目的とする。なお、ここでいう「製造性に優れた」とは、例えば、上記したようなスラブ形状不良、エッジ割れ(edge cracking)等の製造工程の阻害要因の少ないことを意味する。なお、本発明が、目標とする「マルテンサイト系ステンレス熱延鋼帯」は、焼入れ処理(quenching)および焼戻処理(tempering)からなる熱処理後に、降伏強さYS:450MPa以上を満足し、耐硫化物応力腐食割れ性(sulfide stress corrosion cracking resistance)(耐SSC性)および耐炭酸ガス腐食性(carbon dioxide-corrosion resistance)に優れた熱延鋼帯をいうものとする。このような「マルテンサイト系ステンレス熱延鋼帯」を素材として、造管して溶接鋼管とすると、降伏強さYS:450MPa以上のAPI X65~X80の高強度溶接鋼管が得られる。
 本発明者らは、上記した目的を達成するため、まず、継目無鋼管用の鋼素材の組成を基準として、溶接鋼管用熱延鋼帯の組成の適正化を図ることにした。継目無鋼管用の鋼素材では、高温での熱間加工を容易にするため、δフェライト(delta ferrite)の生成を防止する目的から高価なNiを多量に含有する組成となっている。しかし、安価な素材を提供するという観点から、高価なNiの含有を避けた比較的低いNi含有量とすることが、溶接鋼管用熱延鋼帯では、材料コストの点から有利になる。
 しかし、Ni含有を低くした組成の鋼素材で、加熱温度を高Ni組成並に高温とすると、加熱に際し、クリープ現象に起因した鋼素材における形状不良(defect of shape)が発生し、搬送等に不具合が生じるなど製造上の問題があることを知見した。
 そこで、本発明者らは、更なる検討を行った結果、鋼素材の加熱温度TをNi、Cr、Moの含有量と関連した特別な関係式を満足するように調整することに思い至った。これにより、上記した製造上の問題を回避でき、製造性に優れ安定した製造が可能となることを見出した。また、本発明者らは、上記した特別な関係式を満足するように、鋼素材の加熱温度Tを調整することにより、上記した形状不良の発生もなく、またδフェライトの生成もなく、熱間加工性(hot workability)の低下も認められないことを知見している。
 本発明は、かかる知見に基づき、さらに検討を加えて完成されたものである。すなわち、本発明の要旨はつぎのとおりである。
(1)鋼素材を、加熱し熱間圧延してコイル状に巻取り熱延鋼帯とするにあたり、前記鋼素材を、質量%で、C:0.0150%未満、N:0.0200%未満、Si:0.05~1.0%、Mn:0.1~2.0%、P:0.03%以下、S:0.010%以下、Al:0.001~0.10%、Cr:10~14%、Ni:2.0~5.0%、Mo:1.0~4.0%、Ti:0.03~0.15%を含み、さらに、Nb:0.10%以下、V:0.10%以下、Zr:0.10%以下、Hf:0.20%以下、Ta:0.20%以下のうちから選ばれた1種または2種以上を含有し、残部Feおよび不可避的不純物からなる組成を有する鋼素材とし、前記加熱の加熱温度Tを、次(1)式
  1050 ≦ T ≦ 60(Ni-0.9Cr-1.1Mo)+1720   ‥‥(1)
(ここで、T:加熱温度(℃)、Ni、Cr、Mo:各元素の含有量(質量%))
を満足する温度とする、ラインパイプ向溶接鋼管用マルテンサイト系ステンレス熱延鋼帯の製造方法。
(2)(1)において、前記組成に加えてさらに、質量%で、Cu:4%以下、Co:4%以下、W:4%以下のうちから選ばれた1種または2種以上を含有する、ラインパイプ向溶接鋼管用マルテンサイト系ステンレス熱延鋼帯の製造方法。
(3)(1)または(2)において、前記熱間圧延後に、焼入れ処理と焼戻処理とからなる熱処理を施す、ラインパイプ向溶接鋼管用マルテンサイト系ステンレス熱延鋼帯の製造方法。
 本発明によれば、ラインパイプ向溶接鋼管用として好適な、降伏強さYS:450MPa以上の高強度と、耐硫化物応力腐食割れ性(耐SSC性)および耐炭酸ガス腐食性に優れたマルテンサイト系ステンレス熱延鋼帯を、製造時のトラブル発生も少なく生産性高く製造でき、産業上格段の効果を奏する。
 本発明では、スラブ等の鋼素材をそのNi、Cr、Mo含有量に関連した関係式を満足する温度Tに加熱したのち、熱間圧延しコイル状に巻取り、熱延鋼帯とする。
 熱間圧延後、室温まで冷却したこれら熱延鋼板には、さらにAc3変態点(Actransformation point)以上の温度に再加熱したのち空冷以上の冷却速度で冷却する焼入れ処理を施し、ついで、Ac1変態点以下の温度で焼戻し処理を行うことが好ましい。
 まず、本発明で使用する鋼素材の組成限定理由について説明する。以下、とくに断わらない限り、質量%は単に%で記す。
 C:0.0150%未満
 Cは、鋼中に固溶し、鋼の強度増加に寄与する元素である。この効果を得るためには、0.0060%以上が好ましい。しかし、多量の含有は、溶接熱影響部HAZを硬化させ、溶接割れを生じさせたり、溶接熱影響部靭性を劣化させる。このため、本発明では、できるだけ低減することが望ましく、0.0150%未満に限定した。なお、好ましくは0.0100%以下である。
 N:0.0200%未満
 Nは、Cと同様に、鋼中に固溶し、鋼の強度増加に寄与する元素である。この効果を得るためには、0.0060%以上が好ましい。しかし、多量の含有は、溶接部を硬化させ、溶接割れを生じさせたり、溶接熱影響部靭性を劣化させる。また、Nは、Ti、Nb、Zr、V、Hf、Ta等と結合し窒化物を形成するため、炭化物を形成してCr欠乏層形成を抑制するTi、Nb、Zr、V、Hf、Ta量を実質的に低減することになる。このため、Nはできるだけ低減することが望ましい。上記したNの悪影響は、0.0200%未満であれば許容できるため、本発明では、Nは0.0200%未満に限定した。なお、好ましくは0.0100%以下である。
 Si:0.05~1.0%
 Siは、脱酸剤として作用するとともに、鋼中に固溶して強度増加に寄与する元素である。このような効果を得るためには0.05%以上の含有を必要とする。しかし、Si はフェライト生成元素でもあり、1.0%を超える多量の含有は母材およびHAZ靭性を劣化させる。このため、Si は0.05~1.0%に限定した。なお、好ましくは0.10~0.5%である。
 Mn:0.1~2.0%
 Mnは、固溶して鋼の強度上昇に寄与するとともに、オーステナイト生成元素(austenite formation elements)であり、フェライト生成を抑制して母材およびHAZ靭性を向上させる。このような効果を確保するためには0.1%以上の含有を必要とする。一方、2.0%を超えて含有しても効果が飽和する。このため、Mnは0.1~2.0%に限定した。なお、好ましくは0.3~1.0%である。
 P:0.03%以下
 Pは、粒界に偏析して粒界強度(grain boundary strength)を低下させ、耐硫化物応力腐食割れ性に悪影響を及ぼす元素である。そのため、できるだけ低減することが好ましいが、0.03%までは許容できる。よって、Pは0.03%以下に限定した。なお、熱間加工性の観点からは、0.02%以下とすることが好ましい。
 S:0.010%以下
 Sは、MnS等の硫化物を形成し、加工性を低下させる元素である。本発明ではできるだけ低減することが好ましいが、0.010%までは許容できる。このため、Sは0.010%以下に限定した。なお、好ましくは0.005%以下である。
 Al:0.001~0.10%
 Alは、脱酸剤として作用する元素であり、このような効果を得るためには0.001%以上含有する必要がある。しかし、0.10%を超える含有は靭性を劣化させる。このため、Alは0.001~0.10%に限定した。なお、好ましくは0.010~0.060%である。
 Cr:10~14%
 Crは、耐炭酸ガス腐食性、耐孔食性(pitting corrosion resistance)、耐硫化物応力腐食割れ性等の耐食性を向上させるための基本元素であり、本発明では10%以上含有する必要がある。一方、14%を超えて含有すると、フェライト相が生成しやすくなり、マルテンサイト組織を安定して確保するために他の合金元素の多量含有が必要となり、材料コストの高騰を招く。このため、本発明では、Crは10~14%の範囲に限定した。
 Ni:2.0~5.0%
 Niは、固溶して強度上昇に寄与し、また靭性を向上させるとともに、耐炭酸ガス腐食性を向上させる元素である。また、Niはオーステナイト形成元素であり、低炭素域でマルテンサイト組織を安定して確保するために有効に作用する。このような効果を得るためには、2.0%以上の含有を必要とする。好ましくは、2.5%以上である。一方、5.0%を超える含有は、材料コストの高騰を招く。このため、Niは2.0~5.0%の範囲に限定した。なお、好ましくは4.5%以下である。さらに好ましくは、3%未満である。
なお、他の合金元素量や製造条件の調整により、Ni含有量を抑制できる。
 Mo:1.0~4.0%
 Moは、耐硫化物応力腐食割れ性、耐孔食性を向上させる元素であり、このような効果を得るためには1.0%以上含有する必要がある。一方、4.0%を超える含有は、フェライトを生成しやすくするとともに、耐硫化物応力腐食割れ性向上効果が飽和し、含有量に見合う効果が期待できなくなり経済的に不利となる。このため、Moは1.0~4.0%の範囲に限定した。なお、好ましくは1.5~3.0%である。
 Ti:0.03~0.15%
 Tiは、CあるいはNと結合して炭化物あるいは窒化物を形成し、結晶粒を微細化し、強度および靭性を向上させる元素である。このような効果を得るためには、0.03%以上の含有を必要とする。一方、0.15%を超えて多量に含有しても、効果が飽和し、含有量に見合う効果が期待できなくなり、経済的に不利となる。このため、Tiは0.03~0.15%の範囲に限定した。なお、好ましくは0.05~0.12%である。
 Nb:0.10%以下、V:0.10%以下、Zr:0.10%以下、Hf:0.20%以下、Ta:0.20%以下のうちから選ばれた1種または2種以上
 Nb、V、Zr、Hf、Taはいずれも、炭化物形成元素(carbide-forming element)であり、析出強化作用(precipitation strengthening function)を有し、強度の増加のために、選択して1種または2種以上を含有する。このような効果を得るためには、Nb:0.02%以上、V:0.02%以上、Zr:0.03%以上、Hf:0.03%以上、Ta:0.03%以上含有することが望ましい。しかし、Nb:0.10%、V:0.10%、Zr:0.10%、Hf:0.20%、Ta:0.20%を超えて多量に含有すると、靭性および、耐溶接割れ性(weld crack resistance)が低下する。このため、含有する場合には、Nb:0.10%以下、V:0.10%以下、Zr:0.10%以下、Hf:0.20%以下、Ta:0.20%以下に、それぞれ限定する。
 上記した成分が基本の成分であり、この基本組成に加えてさらに、選択元素として、Cu:4%以下、Co:4%以下、W:4%以下のうちから選ばれた1種または2種以上が含有できる。
 Cu、Co、Wはいずれも、耐炭酸ガス腐食性,あるいはさらに耐孔食性を向上させる元素であり、必要に応じて1種または2種以上を選択して含有できる。このような効果を得るためには、Cu:0.20%以上、Co:0.20%以上、W:0.20%以上それぞれ含有することが望ましい。一方、Cu:4%、Co:4%、W:4%をそれぞれ超えて含有しても、効果が飽和し、含有量に見合う効果が期待できなくなり経済的に不利となる。このため、Cu:4%以下、Co:4%以下、W:4%以下にそれぞれ限定することが好ましい。
 上記した成分以外の残部は、Feおよび不可避的不純物からなる。なお、不可避的不純物としては、O(酸素):0.010%以下が許容できる。
 本発明では、上記した組成の鋼素材を、加熱して熱間圧延を施し、コイル状に巻取り、熱延鋼帯とする。
 本発明で使用する鋼素材の製造方法は、とくに限定する必要はなく、上記した組成の溶鋼を、転炉(converter)、電気炉(electric furnace)、真空溶解炉(vacuum melting furnace)などの通常の溶製方法で溶製し、連続鋳造法(continuous casting)、造塊-分塊圧延法(ingot-making and bloomig method)などの公知の方法で所定寸法のスラブ(slub)等の鋼素材とすることが好ましい。
 鋼素材の加熱では、Ni、Cr、Moの含有量に応じた特別な関係式である、次(1)式
  1050 ≦ T ≦ 60(Ni-0.9Cr-1.1Mo)+1720   ‥‥(1)
(ここで、T:加熱温度(℃)、Ni、Cr、Mo:各元素の含有量(質量%))
を満足する加熱温度T(℃)とする。これにより、鋼素材の形状不良、δフェライトの析出、さらにはエッジ割れ等の、熱間圧延時のトラブル発生もなく、安定してマルテンサイト系ステンレス熱延鋼帯を製造できる。
 鋼素材の加熱温度Tが、上記した(1)式の上限を超える場合には、クリープ現象に起因した鋼素材における形状不良が発生し、搬送時に不具合が生じるとともに、δフェライトが析出しやすくなり、熱間加工性が低下する。一方、加熱温度Tが、上記した(1)式の下限未満では、変形抵抗(deformation resistance)が高くなり安定した圧延が困難となる。なお、好ましくは、加熱温度Tは、1100~1150℃である。
 上記した(1)式を満足する加熱温度Tに加熱された鋼素材は、熱間圧延を施されたのち巻取温度まで冷却し、コイル状に巻き取られ熱延鋼帯とされ、室温まで冷却される。加熱温度以外の熱間圧延の条件は、とくに限定する必要はなく、通常条件の熱間圧延がいずれも適用できる。
 なお、熱間圧延後、室温まで冷却された熱延鋼帯は、Ac3変態点以上の750~1000℃に加熱後、空冷以上の冷却速度で100℃以下まで冷却する焼入れ処理と、ついでAc1変態点以下の550~700℃で焼戻される焼戻処理とからなる熱処理を施される。この熱処理により、焼戻マルテンサイト相を主体とする組織とすることができ、上記した所望の高強度を確保できる。ここで「主体とする組織」とは、当該相が面積率で70%以上である場合をいうものとする。
 なお、上記した組成の鋼は、熱間圧延後、空冷以上の冷却速度で冷却すれば、マルテンサイト組織とすることができるので、焼入れ処理を省略して、熱間圧延後、室温まで冷却したのち、直接焼戻し処理を施してもよい。
 以下、実施例に基づき、さらに本発明を詳細に説明する。
 表1に示す組成の溶鋼を転炉で溶製し、連続鋳造法で鋼素材(スラブ:肉厚265mm)とした。得られたスラブを、表2に示す加熱温度に加熱したのち、熱間圧延を施し、板厚:4.0~8.0mmの熱延鋼帯とした。なお、熱間圧延時のトラブルの発生(鋼素材の形状不良、熱間加工性の低下など)の有無について調査し、製造性を評価した。
 ついで、得られた熱延鋼帯の一部について、表2に示す条件で焼入れ処理、焼戻処理を施した。なお、熱間圧延時にトラブルが発生した場合には、焼入れ処理、焼戻処理は実施しなかった。
 熱処理を施された熱延鋼帯から、試験材を採取し、引張試験および、耐食性試験を実施した。試験条件はつぎの通りとした。
(1)引張試験
 試験材から、API 5LCの規定に準拠して、API弧状引張試験片(strip specimen specified by API standard 5CT)を採取し、引張試験を実施し、引張特性(降伏強さYS、引張強さTS)を求めた。
(2)耐食性試験
 試験材から、厚さ3mm×幅30mm×長さ40mmの腐食試験片(corrosion specimen)を機械加工(machining)によって作製し、炭酸ガス腐食試験(carbon dioxide corrosion test)を、また試験材から、NACE-TM0177のMethod Aの規定に準拠して引張試験片を採取し、硫化物応力腐食割れ試験を実施した。
 炭酸ガス腐食試験は、オートクレーブ中に保持された試験液:20質量%NaCl水溶液(液温:150℃、COガス分圧:3.0MPaのCOガス雰囲気)中に、腐食試験片を浸漬し、浸漬期間を168hr)として実施した。腐食試験後の試験片について、重量を測定し、腐食試験前後の重量減から、腐食速度(corrosion rate)を算出した。また、腐食試験後の試験片について、10倍のルーペ(magnifying glass)で孔食(pitting corrosion)の有無を観察した。腐食速度:0.1mm/y以下で、かつ孔食なしの場合を、耐炭酸ガス腐食性に優れるとして○と評価した。それ以外を、耐炭酸ガス腐食性が劣るとして、×と評価した。
 硫化物応力腐食割れ試験は、EFC17の規定に準拠した四点曲げ試験法(four‐point bending test)を用い、YSの90%の応力を負荷し、720hr間保持する試験を実施した。720hr経過後に破断していない場合を、耐硫化物応力腐食割れ性に優れるとして○と評価し、それ以外は×とした。なお、使用した試験液は、(5.0質量%NaCl+0.5質量%酢酸)水溶液(液温:24℃)にCHCOONaを添加して、pH:3.5に調整したものを用い、試験は、体積%で、(10%HS+90%CO)のガスを流す環境下で行った。
 得られた結果を表3に示す。なお、製造時にトラブルがあり、試験材が得られなかったものについては、試験を行わず、表3において「測定せず」と記載した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 本発明例はいずれも、製造時のトラブル発生は認められず、製造性に優れ、所望の高強度と、耐炭酸ガス腐食性、耐硫化物応力腐食割れ性に優れた熱延鋼帯となっている。これに対し、本発明範囲を外れる比較例は、製造性に劣るか、あるいは耐炭酸ガス腐食性、耐硫化物応力腐食割れ性が低下している。

Claims (3)

  1.  鋼素材を、加熱し熱間圧延して熱延鋼帯とするにあたり、
    前記鋼素材を、質量%で、C :0.0150%未満、N:0.0200%未満、Si:0.05~1.0%、Mn:0.1~2.0%、P :0.03%以下、S :0.010%以下、Al:0.001~0.10%、Cr:10~14%、Ni:2.0~5.0%、Mo:1.0~4.0%、Ti:0.03~0.15%を含み、さらに、Nb:0.10%以下、V:0.10%以下、Zr:0.10%以下、Hf:0.20%以下、Ta:0.20%以下のうちから選ばれた1種または2種以上を含有し、残部Feおよび不可避的不純物からなる組成を有する鋼素材とし、
    前記加熱の加熱温度Tを、下記(1)式を満足する温度とする、ラインパイプ向溶接鋼管用マルテンサイト系ステンレス熱延鋼帯の製造方法。
                        記
      1050 ≦ T ≦ 60(Ni-0.9Cr-1.1Mo)+1720   ‥‥(1)
          ここで、T:加熱温度(℃)、
         Ni、Cr、Mo:各元素の含有量(質量%)
  2.  前記組成に加えてさらに、質量%で、Cu:4%以下、Co:4%以下、W:4%以下のうちから選ばれた1種または2種以上を含有する、請求項1に記載のラインパイプ向溶接鋼管用マルテンサイト系ステンレス熱延鋼帯の製造方法。
  3.  前記熱間圧延後に、焼入れ処理と焼戻処理とからなる熱処理を施す、請求項1または2に記載のラインパイプ向溶接鋼管用マルテンサイト系ステンレス熱延鋼帯の製造方法。
PCT/JP2014/002913 2013-06-19 2014-06-02 ラインパイプ向溶接鋼管用マルテンサイト系ステンレス熱延鋼帯の製造方法 WO2014203472A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015522513A JP5971415B2 (ja) 2013-06-19 2014-06-02 ラインパイプ向溶接鋼管用マルテンサイト系ステンレス熱延鋼帯の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-128544 2013-06-19
JP2013128544 2013-06-19

Publications (1)

Publication Number Publication Date
WO2014203472A1 true WO2014203472A1 (ja) 2014-12-24

Family

ID=52104224

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/002913 WO2014203472A1 (ja) 2013-06-19 2014-06-02 ラインパイプ向溶接鋼管用マルテンサイト系ステンレス熱延鋼帯の製造方法

Country Status (2)

Country Link
JP (1) JP5971415B2 (ja)
WO (1) WO2014203472A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105648337A (zh) * 2016-01-15 2016-06-08 宝山钢铁股份有限公司 一种低碳抗co2正火态无缝管线管及其制造方法
CN112673121A (zh) * 2018-10-12 2021-04-16 日本制铁株式会社 扭力梁用电阻焊钢管
CN112955576A (zh) * 2018-11-05 2021-06-11 杰富意钢铁株式会社 油井管用马氏体系不锈钢无缝钢管及其制造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113699463A (zh) * 2021-08-25 2021-11-26 哈尔滨工程大学 一种多相强化超高强马氏体时效不锈钢及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09316611A (ja) * 1996-03-27 1997-12-09 Kawasaki Steel Corp 耐食性および溶接性に優れたラインパイプ用マルテンサイト鋼
JP2002129291A (ja) * 2000-10-30 2002-05-09 Nippon Steel Corp 耐火性に優れたマルテンサイト系ステンレス鋼溶接構造体
JP2004204343A (ja) * 2002-03-28 2004-07-22 Jfe Steel Kk 耐粒界腐食性及び加工性に優れた溶接構造用ステンレス鋼板

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000328202A (ja) * 1999-05-19 2000-11-28 Sumitomo Metal Ind Ltd 成形性と耐食性ならびに靭性に優れた低炭素マルテンサイト系ステンレス鋼板とその製造方法および溶接鋼管

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09316611A (ja) * 1996-03-27 1997-12-09 Kawasaki Steel Corp 耐食性および溶接性に優れたラインパイプ用マルテンサイト鋼
JP2002129291A (ja) * 2000-10-30 2002-05-09 Nippon Steel Corp 耐火性に優れたマルテンサイト系ステンレス鋼溶接構造体
JP2004204343A (ja) * 2002-03-28 2004-07-22 Jfe Steel Kk 耐粒界腐食性及び加工性に優れた溶接構造用ステンレス鋼板

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105648337A (zh) * 2016-01-15 2016-06-08 宝山钢铁股份有限公司 一种低碳抗co2正火态无缝管线管及其制造方法
CN112673121A (zh) * 2018-10-12 2021-04-16 日本制铁株式会社 扭力梁用电阻焊钢管
CN112955576A (zh) * 2018-11-05 2021-06-11 杰富意钢铁株式会社 油井管用马氏体系不锈钢无缝钢管及其制造方法

Also Published As

Publication number Publication date
JP5971415B2 (ja) 2016-08-17
JPWO2014203472A1 (ja) 2017-02-23

Similar Documents

Publication Publication Date Title
JP5499733B2 (ja) 低温靭性に優れた厚肉高張力熱延鋼板およびその製造方法
JP6047947B2 (ja) 耐サワー性に優れたラインパイプ用厚肉高強度継目無鋼管およびその製造方法
CN111094610B9 (zh) 钢管和钢板
JP5223511B2 (ja) 高強度耐サワーラインパイプ用鋼板およびその製造方法および鋼管
JP5679114B2 (ja) 低温靭性に優れた低降伏比高強度熱延鋼板およびその製造方法
JP5765036B2 (ja) 溶接熱影響部の耐粒界応力腐食割れ性に優れたラインパイプ用Cr含有鋼管
JP4905240B2 (ja) 表面品質、破壊靱性および耐サワー性に優れる熱延鋼板の製造方法
RU2677554C1 (ru) Толстолистовая сталь для конструкционных труб или трубок, способ производства толстолистовой стали для конструкционных труб или трубок и конструкционные трубы или трубки
JP5499731B2 (ja) 耐hic性に優れた厚肉高張力熱延鋼板及びその製造方法
WO2015151469A1 (ja) 耐歪時効特性及び耐hic特性に優れた高変形能ラインパイプ用鋼材およびその製造方法ならびに溶接鋼管
JP2006299415A (ja) 低温靭性に優れた低降伏比電縫鋼管用熱延鋼板の製造方法
JP2007254797A (ja) 母材部および電縫溶接部の靱性に優れた厚肉電縫鋼管およびその製造方法
JP2015190026A (ja) ラインパイプ用厚肉高強度電縫鋼管およびその製造方法
JP5151233B2 (ja) 表面品質および延性亀裂伝播特性に優れる熱延鋼板およびその製造方法
JP7315097B2 (ja) 油井用高強度ステンレス継目無鋼管およびその製造方法
EP3276025A1 (en) Steel plate for structural pipe, method for producing steel plate for structural pipe, and structural pipe
WO2015151468A1 (ja) 耐歪時効特性及び耐hic特性に優れた高変形能ラインパイプ用鋼材およびその製造方法ならびに溶接鋼管
JP2020509181A (ja) 低温靭性及び後熱処理特性に優れた耐サワー厚板鋼材及びその製造方法
JP5971415B2 (ja) ラインパイプ向溶接鋼管用マルテンサイト系ステンレス熱延鋼帯の製造方法
JP5640777B2 (ja) 溶接熱影響部の耐粒界応力腐食割れ性に優れたラインパイプ用Cr含有鋼管
JP6179604B2 (ja) 電気抵抗溶接鋼管用鋼帯および電気抵抗溶接鋼管ならびに電気抵抗溶接鋼管用鋼帯の製造方法
JP3226278B2 (ja) 耐食性および溶接性に優れた鋼材および鋼管の製造方法
JP3879723B2 (ja) 耐水素誘起割れ性に優れた高強度継目無鋼管およびその製造方法
JPH04191319A (ja) 低炭素マルテンサイト系ステンレス鋼ラインパイプの製造方法
JP4900260B2 (ja) 延性亀裂伝播特性および耐サワー性に優れる熱延鋼板の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14813334

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015522513

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14813334

Country of ref document: EP

Kind code of ref document: A1