WO2017215121A1 - 一种电池浆料、电池极片及其制备方法 - Google Patents

一种电池浆料、电池极片及其制备方法 Download PDF

Info

Publication number
WO2017215121A1
WO2017215121A1 PCT/CN2016/096922 CN2016096922W WO2017215121A1 WO 2017215121 A1 WO2017215121 A1 WO 2017215121A1 CN 2016096922 W CN2016096922 W CN 2016096922W WO 2017215121 A1 WO2017215121 A1 WO 2017215121A1
Authority
WO
WIPO (PCT)
Prior art keywords
pole piece
lithium
battery
difluorophosphate
fluorophosphate
Prior art date
Application number
PCT/CN2016/096922
Other languages
English (en)
French (fr)
Inventor
骆浩
杨光华
夏永高
刘兆平
Original Assignee
中国科学院宁波材料技术与工程研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院宁波材料技术与工程研究所 filed Critical 中国科学院宁波材料技术与工程研究所
Priority to EP16905234.7A priority Critical patent/EP3474350A4/en
Priority to US16/310,355 priority patent/US10978693B2/en
Priority to JP2018566298A priority patent/JP6713554B2/ja
Priority to KR1020197000636A priority patent/KR102237866B1/ko
Publication of WO2017215121A1 publication Critical patent/WO2017215121A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • H01M4/0435Rolling or calendering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the technical field of batteries, and in particular relates to a battery slurry, a battery pole piece and a preparation method thereof.
  • Lithium-ion secondary batteries have become one of the most widely used secondary batteries due to their advantages of high voltage, high energy density and long cycle life.
  • the energy density of lithium ion secondary batteries as energy storage power sources has been raised. The higher the requirements.
  • the concentration of lithium ions in the electrolyte gradually decreases from the location away from the current collector to the vicinity of the current collector, resulting in the generation of concentration polarization, which is especially significant for thick-pole sheets.
  • the large concentration polarization leads to a non-uniform distribution of the electrochemical reaction rate, so that the active material inside the pole piece (near the current collector) can hardly participate in the electrochemical reaction, resulting in the capacity not functioning properly, and the outer part of the pole piece (away from the current collector)
  • the active material is deeply discharged, which in turn causes structural damage during long cycles and exacerbates capacity decay.
  • the key is to increase the migration speed of lithium ions in the pole piece.
  • the Chinese Patent Application No. CN200580027135.6 discloses a pole piece structure and a manufacturing method thereof, which adopts a multi-layer coating method, so that the pole piece has a close from the current collector to the distance set.
  • the non-uniform porosity of the fluid direction is reduced.
  • This pore distribution deteriorates the wettability of the electrolyte in the pole piece, thereby reducing the migration speed of lithium ions in the pole piece, which is especially serious for thick pole pieces.
  • CN201210191956.5 discloses a pole piece structure and a method of manufacturing the same, which employs a spray drying coating method such that a pole piece has a surface close to the current collector and away from the current collector
  • the porosity of the diaphragm gradually increases in the direction of the surface, and the pore distribution deteriorates the wettability of the electrolyte in the pole piece, thereby increasing the migration speed of lithium ions in the pole piece, which is prepared by the method of the invention.
  • the battery assembled by the thick pole piece not only has high energy density, but also has good electrochemical performance: the capacity is normal, the rate performance is obviously improved, the lithium precipitation condition is obviously improved, and the cycle stability is also obviously improved.
  • Cia Patent Publication No. CN101651233A discloses a lithium ion secondary battery and a preparation method thereof, using a conductive polymer having a linear structure (polyaniline, polypyridamium, polythiane, etc.) As a binder of a positive electrode active material of a lithium ion secondary battery, the electron conductivity in the positive electrode tab is improved, and the high rate discharge performance and cycle performance of the lithium ion secondary battery are remarkably improved.
  • a conductive polymer contains only a rigid polymer main chain, the binding ability to the negative electrode active material is weak, and when it is directly used for a negative electrode piece containing an alloy-based negative electrode active material, it is required to greatly increase the amount thereof.
  • the mixture of the materials not only maintains the adhesion of the binder of the conventional lithium ion secondary battery, but also improves the conductivity of the pole piece of the lithium ion secondary battery.
  • these polymers do not have Lithium ion conductivity, the performance improvement of lithium ion secondary batteries is very limited.
  • the technical problem to be solved by the present invention is to provide a battery slurry, a battery pole piece and a preparation method thereof, and the battery pole piece prepared by the method has good electrochemical performance and high energy density.
  • the present invention provides an electrode slurry comprising a fluorophosphate salt.
  • the fluorophosphate is as shown in formula (I):
  • the method comprises:
  • the fluorophosphate is as shown in formula (I):
  • the dispersing solvent is one or more of N-methylpyrrolidone, acetone, ethanol and water.
  • the present invention also provides a battery pole piece comprising a current collector and an electrode slurry film attached to the current collector; the electrode slurry film being formed of the electrode slurry.
  • the current collector comprises an electrode slurry film attached to the current collector;
  • the electrode slurry film comprises an active material, a conductive agent, a polymer binder and a fluorophosphate; the active material, a conductive agent,
  • the mass ratio of the polymer binder to the fluorophosphate is (75 to 97): (1 to 10): (1 to 10): (0.1 to 10);
  • the fluorophosphate is as shown in formula (I):
  • the quaternary phosphonium cation is selected from the group consisting of a quaternary ammonium cation, a quaternary phosphonium cation, an imidazole cation, a pyridine cation, a piperidine cation, an aniline cation, and a morpholine cation.
  • the fluorophosphate is selected from the group consisting of tetraethylammonium difluorophosphate, 1-ethyl-3-methylimidazolium difluorophosphate, and 1-butyl-3-methylimidazolium difluorophosphate.
  • N-methylpyridinium difluorophosphate N-butylpyridine difluorophosphate, N-propyl-N-methylpiperidine difluorophosphate, N-butyl-N-methylpiperidine difluorophosphate Salt, N,N,N-triethylanilinium difluorophosphate, N,N,N-trimethylanilinium difluorophosphate, N,N-dimethylmorpholine difluorophosphate, difluorophosphate N -propyl-N-methylmorpholine salt, N-propyl-N-methylmorpholine difluorophosphate.
  • the M is lithium, sodium, potassium, calcium, iron, cobalt or nickel.
  • the active material is a lithium-containing transition metal oxide, a transition metal oxide, a transition metal sulfide, a metal lithium, a lithium alloy, a lithium titanate material, a carbon material, a tin oxide, a cerium oxide, a vanadium oxide, or a titanium oxide. Or silicon.
  • the active material is a lithium-containing transition metal oxide, a transition metal oxide, a transition metal sulfide, a transition metal lithium phosphate, a metal lithium, a lithium alloy, a lithium titanate material, a carbon material, a tin oxide, a cerium oxide, Vanadium oxide, titanium oxide or silicon.
  • the lithium-containing transition metal oxide is selected from one or more of the following formulas 1 to 6;
  • the transition metal lithium phosphate is selected from the structures shown in the following formula 7 and/or formula 8;
  • LiMPO 4 M is Fe, Co, Mn or Ni of formula 7; LiFe x Mn (1-x) PO 4 , 0 ⁇ x ⁇ 1 of formula 8.
  • the polymer binder is selected from the group consisting of vinylidene fluoride-hexafluoropropylene copolymer, polyvinylidene fluoride, polyacrylonitrile, polymethyl methacrylate, polytetrafluoroethylene and styrene-butadiene rubber based In polymer One or more.
  • the battery pole piece has a thickness of 20 to 500 ⁇ m.
  • the battery pole piece has a thickness of 100 to 500 ⁇ m.
  • the invention also provides a preparation method of a battery pole piece, comprising:
  • the battery slurry was coated on a current collector, and after drying and rolling, a battery pole piece was obtained.
  • the method comprises:
  • the fluorophosphate is as shown in formula (I):
  • the invention also provides a lithium ion battery comprising a battery pole piece.
  • the invention improves the composition of the electrode slurry membrane, so that the prepared battery pole piece, especially the thick pole piece, has good cycle performance and high rate charge and discharge performance, and the preparation method is simple. Easy to operate, low cost, can be combined with existing production equipment, suitable for industrial production applications; at the same time, the battery pole piece of the invention contains fluorophosphate, which can play the role of flame retardant, can improve lithium ion battery Security.
  • the present invention provides an electrode slurry comprising a fluorophosphate salt.
  • the fluorophosphate is as shown in formula (I):
  • the electrode paste comprises:
  • the fluorophosphate is as shown in formula (I):
  • the source of the raw materials of the present invention is not particularly limited and is commercially available.
  • the content of the active material is preferably 80 to 97 parts by weight, more preferably 80 to 95 parts by weight, still more preferably 85 to 95 parts by weight; in some embodiments provided by the present invention, the content of the active material is preferably 85 parts by weight; in other embodiments provided by the present invention, the content of the active material is preferably 95 parts by weight;
  • the active material may be a positive electrode active material or a negative electrode active material well known to those skilled in the art, and a specific limitation; in the present invention, the positive active material is preferably a lithium-containing transition metal oxide, a transition metal oxide, a transition metal sulfide or a transition metal lithium phosphate, more preferably a lithium-containing transition metal oxide;
  • the transition metal lithium phosphate is a transition metal lithium phosphate which is well known to those skilled in the art and can be used as a positive electrode active material, and is not particularly limited.
  • LiMPO 4 M is Fe, Co, Mn, Ni), LiFe x Mn (1-x) PO 4 (0 ⁇ x ⁇ 1); and the negative electrode active material is a negative electrode well known to those skilled in the art.
  • the active material is not particularly limited, and in the present invention, metal lithium, a lithium alloy, a lithium titanate material capable of doping and dedoping lithium ions, a carbon material capable of doping and dedoping lithium ions, Tin oxide capable of doping and dedoping lithium ions, yttrium oxide capable of doping and dedoping lithium ions, vanadium oxide doping and dedoping lithium ions, oxidation of doped and dedoped lithium ions Titanium or silicon doped and dedoped with lithium ions; said doped and dedoped lithium
  • the carbon material of the sub-part is preferably graphite or amorphous carbon, more preferably activated carbon, carbon fiber, carbon black or natural graphite.
  • the content of the conductive agent is preferably 1 to 8 parts by weight, more preferably 2 to 7 parts by weight, still more preferably 3 to 6 parts by weight, most preferably 4 to 6 parts by weight; In some embodiments provided by the invention, the content of the conductive agent is preferably 5 parts by weight; the type of the conductive agent is a conductive agent well known to those skilled in the art, and is not particularly limited, and is preferably in the present invention.
  • the carbon material is more preferably carbon black and/or acetylene black; when the electrode slurry is used as a negative electrode slurry, since the negative electrode active material may be a carbon material, it may also serve as a conductive agent.
  • the content of the polymer binder is preferably from 1 to 9 parts by weight, more preferably from 1 to 8 parts by weight, still more preferably from 1 to 7 parts by weight; in some embodiments provided by the invention, the polymer is viscous
  • the content of the binder is preferably 7 parts by weight; in other embodiments provided by the present invention, the content of the polymer binder is preferably 1 part by weight.
  • the type of the polymer binder is not limited to a polymer which is well known to those skilled in the art as a binder, and may be an oil-soluble polymer binder or an aqueous polymer binder.
  • a binder preferably a vinylidene fluoride/hexafluoropropylene copolymer, polyvinylidene fluoride, polyacrylonitrile, polymethyl methacrylate, polytetrafluoroethylene and a styrene-butadiene rubber-based polymer in the present invention One or more of them.
  • the content of the fluorophosphate is preferably from 1 to 8 parts by weight, more preferably from 1 to 6 parts by weight, still more preferably from 1 to 5 parts by weight, most preferably from 1 to 3 parts by weight; some of the embodiments provided by the present invention
  • the content of the phosphate is preferably 3 parts by weight; the fluorophosphate is as shown in the formula (I):
  • the M is preferably lithium, sodium, potassium, calcium, iron, cobalt or nickel; the quaternary phosphonium cation is preferably selected from the group consisting of quaternary ammonium cations, quaternary phosphonium cations, imidazole cations, pyridine cations, piperidine cations.
  • the fluorophosphate is preferably sodium difluorophosphate; in some embodiments provided herein, the fluoro The phosphate is preferably lithium difluorophosphate; in other embodiments provided by the present invention, the quaternary phosphonium fluorophosphate may preferably be tetraethylammonium difluorophosphate or 1-ethyl difluorophosphate.
  • 3-methylimidazolium salt 1-butyl-3-methylimidazolium difluorophosphate, N-methylpyridinium difluorophosphate, N-butylpyridinium difluorophosphate, N-propyl difluorophosphate -N-methylpiperidine salt, N-butyl-N-methylpiperidine difluorophosphate, N,N,N-triethylaniline difluorophosphate, N,N,N-three difluorophosphate Methylaniline salt, N,N-dimethylmorpholine difluorophosphate, N-propyl-N-methylmorpholine difluorophosphate, N-propyl-N-methylmorpholine difluorophosphate Etc. root Further preferred is tetraethylammonium difluorophosphate according to the practicality of production.
  • the content of the dispersing solvent is preferably 100 to 200 parts by weight; the dispersing solvent may be a dispersing solvent well known to those skilled in the art, and may be an oily solvent or an aqueous solvent, and is not particularly limited. Preferred is one or more of N-methylpyrrolidone, acetone, ethanol and water, more preferably N-methylpyrrolidone, acetone, ethanol or water.
  • the electrode slurry when it is a negative electrode slurry, it preferably further comprises 0.5 to 10 parts by weight of a thickener, more preferably 0.5 to 8 parts by weight of a thickener, and still more preferably 1 to 5 parts by weight.
  • the thickener most preferably further comprises 1 to 3 parts by weight of a thickener; the type of the thickener is a thickener well known to those skilled in the art, and is not particularly limited, and is preferably a carboxy group in the present invention. Sodium methylcellulose.
  • the present invention also provides a battery pole piece comprising a current collector and an electrode slurry film attached to the current collector; the electrode slurry film being formed of the electrode slurry described above.
  • the electrode slurry film comprises an active material, a conductive agent, a polymer binder and a fluorophosphate; the active material, a conductive agent, a polymer binder and a fluorophosphate salt.
  • the mass ratio is (75 to 97): (1 to 10): (1 to 10): (0.1 to 10).
  • the current collector is a current collector well known to those skilled in the art, and is not particularly limited, and is preferably an aluminum current collector or a copper current collector in the present invention.
  • the electrode slurry film is formed by the above electrode slurry; the active material, the conductive agent, the polymer binder and the fluorophosphate are all the same as described above, and are not described herein; the substance, the conductive agent,
  • the mass ratio of the polymer binder to the fluorophosphate is preferably (80 to 97): (1 to 8): (2 to 10): (1 to 8), more preferably (80 to 95): (2) ⁇ 7): (2 to 8): (1 to 6), more preferably (85 to 95): (3 to 6): (2 to 7): (1 to 5), and most preferably (85 to 95) ): (4 to 6): (2 to 7): (1 to 3).
  • the thickness of the battery pole piece is preferably from 20 to 500 ⁇ m, more preferably from 200 to 500 ⁇ m, still more preferably from 300 to 500 ⁇ m, still more preferably from 300 to 450 ⁇ m, most preferably from 350 to 400 ⁇ m; in some embodiments provided by the present invention
  • the thickness of the battery pole piece is preferably 375 ⁇ m; in other embodiments provided by the present invention, the thickness of the battery pole piece is preferably 360 ⁇ m.
  • the fluorophosphate on the battery pole piece of the invention can be detected by the following three rapid detection methods:
  • X-ray diffraction detection (XRD): The solid sample coated on the surface of the current collector is collected, and the collected sample is detected by an X-ray diffractometer.
  • the test parameters are: scanning range 10° to 80°, scanning step It is 0.02 degrees per second.
  • SEM-EDX Scanning Electron Microscopy-Elemental Analysis
  • the invention improves the composition of the electrode slurry membrane, so that the prepared battery pole piece, especially the thick pole piece, has good cycle performance and high rate charge and discharge performance, and the preparation method is simple and easy, and the cost is low.
  • the invention can be combined with existing production equipment and is suitable for industrial production applications; meanwhile, the battery pole piece of the invention contains fluorophosphate, which can play the role of a flame retardant and can improve the safety of the lithium ion battery.
  • the invention also provides a method for preparing the above battery pole piece, comprising: coating a battery slurry on On the current collector, after drying and rolling, a battery pole piece is obtained.
  • the present invention is preferably prepared by the following steps: 75 to 97 parts by weight of the active material, 1 to 10 parts by weight of the conductive agent, 1 to 10 parts by weight of the polymer binder, 0.1 to 10 parts by weight of the fluorophosphate Mixing with 100 to 200 parts by weight of a dispersion solvent to obtain an electrode slurry; coating the electrode slurry on a current collector, drying and rolling to obtain a battery pole piece;
  • the fluorophosphate is as shown in formula (I):
  • the active material, the conductive agent, the polymer binder, the fluorophosphate and the dispersion solvent are all the same as described above, and are not described herein again.
  • the preparation method of the battery pole piece provided by the invention is simple and easy, the cost is low, and the existing production equipment can be combined, and is suitable for industrial production application.
  • the present invention also provides a lithium ion battery comprising the above battery pole piece, which preferably further comprises a nonaqueous electrolyte and a separator.
  • the separator can be any material commonly used in lithium ion batteries.
  • the separator needs to have low impedance to the movement of ions of the electrolyte and good absorption and wettability to the electrolyte.
  • the material can be a nonwoven or woven fabric of glass fibers, polyester, polyethylene, polytetrafluoroethylene, and combinations thereof. More preferably, a flexible porous separator such as polyethylene or polypropylene.
  • the lithium ion battery provided by the present invention may have a cylindrical shape, a coin shape, a square shape, or any other shape.
  • the shape of the battery is not related to the basic structure, and design changes may be made depending on the purpose without departing from the intention and scope of the invention.
  • LiCoO 2 lithium cobaltate
  • acetylene black as a conductive material
  • PVDF polyvinylidene fluoride
  • the electrode slurry obtained in 1.1 was coated on both sides of an aluminum foil having a thickness of 15 ⁇ m, dried, and calendered to a thickness of 375 ⁇ m by a press, and then cut into an active material layer having a width of 100 mm and a length of 100 mm and a width of 30 mm.
  • the shape of the uncoated portion was taken as the positive electrode A1.
  • Lithium nickel manganese cobaltate (LiNi 1/3 Mn 1/3 Co 1/3 O 2 ) was used instead of lithium cobaltate as a positive electrode active material, and was produced in the same manner as the positive electrode A1, and this was designated as a positive electrode A2.
  • Lithium iron phosphate (LiFePO 4 ) was used instead of lithium cobaltate as a positive electrode active material, and was produced in the same manner as the positive electrode A1, and this was designated as a positive electrode A3.
  • Lithium-rich manganese manganese cobaltate (Li 1.2 Ni 1/6 Mn 1/6 Co 4/6 O 2 ) was used instead of lithium cobaltate as a positive electrode active material, and was produced in the same manner as the positive electrode A1, and this was designated as a positive electrode A4.
  • lithium difluorophosphate was used instead of sodium difluorophosphate, and this was used as the positive electrode A5.
  • lithium difluorophosphate was used instead of sodium difluorophosphate, and this was used as the positive electrode A6.
  • lithium difluorophosphate was used instead of sodium difluorophosphate, and this was designated as the positive electrode A7.
  • lithium difluorophosphate was used instead of sodium difluorophosphate, and this was used as the positive electrode A8.
  • a tetraethylammonium difluorophosphate salt was used, and it was produced in the same manner as the positive electrode A1, and this was designated as the positive electrode A9.
  • a tetraethylammonium difluorophosphate salt was used, and it was produced in the same manner as the positive electrode A2, and this was made into the positive electrode A10.
  • a tetraethylammonium difluorophosphate salt was used, and it was produced in the same manner as the positive electrode A3, and this was made into the positive electrode A11.
  • a tetraethylammonium difluorophosphate salt was used, and it was produced in the same manner as the positive electrode A4, and this was made into the positive electrode A12.
  • the obtained slurry was coated on both sides of a copper foil having a thickness of 10 ⁇ m, dried, and calendered to a thickness of 360 ⁇ m by a press, and then cut into an active material layer having a width of 104 mm and a length of 104 mm and an uncoated body having a width of 30 mm. Part of the shape as the negative electrode C1.
  • Natural graphite was used instead of artificial graphite, and was produced in the same manner as the negative electrode C1, and this was designated as the negative electrode C2.
  • lithium difluorophosphate was used instead of sodium difluorophosphate, and this was designated as the negative electrode C3.
  • a tetraethylammonium difluorophosphate salt was used instead of sodium difluorophosphate, and this was designated as a negative electrode C4.
  • lithium difluorophosphate was used instead of sodium difluorophosphate, and this was designated as the negative electrode C5.
  • the same preparation as the negative electrode C2 is carried out by using tetraethylammonium difluorophosphate instead of sodium difluorophosphate. This serves as the negative electrode C6.
  • LiCoO 2 lithium cobaltate
  • acetylene black as a conductive material
  • PVDF N-methylpyrrolidone solvent Ethylene
  • the electrode slurry obtained in 1.1 was coated on both sides of an aluminum foil having a thickness of 15 ⁇ m, dried, and calendered to a thickness of 360 ⁇ m by a press, and then cut into an active material layer having a width of 100 mm and a length of 100 mm and a width of 30 mm.
  • the shape of the uncoated portion is taken as the positive electrode B1.
  • Lithium nickel manganese cobaltate (LiNi 1/3 Mn 1/3 Co 1/3 O 2 ) was used instead of lithium cobaltate as a positive electrode active material, and was produced in the same manner as the positive electrode B1, and this was designated as a positive electrode B2.
  • Lithium iron phosphate (LiFePO 4 ) was used instead of lithium cobaltate as a positive electrode active material, and was produced in the same manner as the positive electrode B1, and this was designated as a positive electrode B3.
  • Lithium-rich manganese manganese cobaltate (Li 1.2 Ni 1/6 Mn 1/6 Co 4/6 O 2 ) was used instead of lithium cobaltate as a positive electrode active material, and was produced in the same manner as the positive electrode B1, and this was designated as a positive electrode B4.
  • the electrode slurry obtained in 5.1 was coated on both sides of a copper foil having a thickness of 10 ⁇ m, dried, and calendered to a thickness of 360 ⁇ m by a press, and then cut into an active material layer having a width of 104 mm and a length of 104 mm and a width of 30 mm.
  • the shape of the uncoated portion was taken as the negative electrode B5.
  • Natural graphite was used instead of artificial graphite, and was produced in the same manner as the negative electrode B5, and this was designated as the negative electrode B6.
  • the positive electrode and the negative electrode were stacked and wound together with a separator made of polyethylene so that the positive electrode and the negative electrode were not in direct contact with each other to form an electrode body.
  • the terminals of the positive electrode and the negative electrode are exposed to the outside in a battery can.
  • 5 mL of the above-mentioned electrolytic solution was injected thereinto, and then caulking was performed to prepare a 18650-type cylindrical battery, which was used as a lithium ion secondary battery.
  • the evaluation of the secondary battery was performed for each battery under the following conditions.
  • Cyclic test For a battery subjected to initial charge and discharge, 500 cycles were performed at 25 ° C: after charging at a constant current constant voltage of 1 C to 4.3 V, and then discharging at a constant current of 1 C to a charge and discharge of 3.0 V. The ratio of the 500th cycle discharge capacity at this time to the first cycle discharge capacity was taken as the cycle retention ratio.
  • Examples 19 to 24, Examples 43 to 48, and Examples 67 to 72 were compared with Comparative Example 7 and Comparative Example 8, and Examples 19 to 3 of the method for producing a battery sheet of the present invention were used.
  • Example 24 Example 43 to Example 48, and Example 67 to Example 72, the cycle retention ratio was remarkably improved as compared with Comparative Example 7 and Comparative Example 8.
  • Example 25 to Example 30, Example 49 to Example 54, and Example 73 to Example 78 were compared with Comparative Example 9 and Comparative Example 10, and Example 25 of the electrode sheet production method of the present invention was used.
  • Example 30 Example 49 to Example 54, and Example 73 to Example 78, the cycle retention ratio was remarkably improved as compared with Comparative Example 9 and Comparative Example 10.
  • Examples 31 to 36, Examples 55 to 60, and Examples 79 to 84 were compared with Comparative Example 11 and Comparative Example 12, and Examples 31 to Examples using the pole piece preparation method of the present invention were used. 36. In Examples 55 to 60 and Examples 79 to 84, the cycle retention ratio was remarkably improved as compared with Comparative Example 11 and Comparative Example 12.
  • Examples 37 to 42, Examples 61 to 66, and Examples 85 to 90 were compared with Comparative Example 13 and Comparative Example 14, and Examples 37 to Examples using the pole piece preparation method of the present invention were used. 42.
  • Examples 61 to 66 and Examples 85 to 90 the cycle retention ratio was remarkably improved as compared with Comparative Example 13 and Comparative Example 14.
  • the lithium ion secondary battery using the battery sheet of the present invention is excellent in large current discharge characteristics and cycle retention.
  • the positive electrode binder is PVDF
  • the negative electrode binder is CMC and SBR
  • the fluorophosphate is lithium difluorophosphate.
  • the types and abbreviations of the positive electrode active material are as follows: lithium cobaltate (LiCoO 2 ), lithium nickel manganese cobalt oxide (LiNi 1/3 Mn 1/3 Co 1/3 O 2 , NCM 111; LiNi 3/5 Mn 1 /5 Co 1/5 O 2 , NCM622), nickel-rich lithium manganese cobalt oxide (Li 1.2 Ni 1/6 Mn 1/6 Co 4/6 O 2 , LR-NMC114), lithium iron phosphate (LiFePO 4 ), phosphoric acid Lithium manganese (LiMnPO 4 ).
  • Comparative Example 9, Example 29, and Example 97 to Example 110 were compared; from the viewpoints of initial capacity, cycle retention, and economy, the lithium nickel manganese cobalt electrode sheet in the battery sheet preparation method of the present invention was used (
  • the content of fluorophosphate (lithium difluorophosphate) of NCM111) should be controlled to 1 part by weight.
  • the content of fluorophosphate (lithium difluorophosphate) in NCM622 pole piece should be controlled at 2 parts by weight, the initial capacity of the battery. And cycle retention rate is better.
  • the fluorophosphate (lithium difluorophosphate) of the lithium manganese phosphate electrode sheet in the battery sheet preparation method of the present invention is used from the viewpoints of initial capacity, cycle retention, and economy.
  • the content of the battery should be controlled at 3 parts by weight, and the initial capacity and cycle retention of the battery were both good.
  • the capacity and cycle retention ratio of the lithium ion secondary battery using the battery sheet of the present invention are both good, and it is necessary to determine the amount of the added fluorophosphate according to the type of the positive and negative electrodes selected.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明提供了一种电极浆料、电池极片及其制备方法,该电池极片包括包括集流体与附着在集流体上的电极浆料膜;所述电极浆料膜包括活性物质、导电剂、聚合物粘结剂与氟代磷酸盐。与现有技术相比,本发明通过调整电极浆料膜的组分,使制备出的电池极片,特别是厚极片,具有良好的循环性能以及高倍率充放电性能,并且该制备方法简单易行,成本较低,可结合现有的生产设备,适合于工业化生产应用;同时,本发明电池极片中含有氟代磷酸盐,其可起到阻燃剂的效果,可改善锂离子电池的安全性。 MZ+[POxFy]Z (I)

Description

一种电池浆料、电池极片及其制备方法
本申请要求于2016年6月15日提交中国专利局、申请号为201610427469.2、发明名称为“一种电池浆料、电池极片及其制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明属于电池技术领域,尤其涉及一种电池浆料、电池极片及其制备方法。
背景技术
锂离子二次电池由于具有高电压、高能量密度和长循环寿命的优势,成为应用范围最广的二次电池之一。但随着便携式电子设备微型化、长待机的不断发展,以及电动自行车、电动汽车等大功率、高能量设备的启用,都对作为储能电源的锂离子二次电池的能量密度的提出了越来越高的要求。
在实际的设计中,通过提高活性物质的质量百分含量或增加极片的厚度,以及降低非活性物质的质量百分含量是都是提升电池能量密度的有效方法。然而,厚极片的设计加大了底层活性物质与电解液的接触距离,延长了锂离子的迁移路径,导致电池在充放电过程中,锂离子无法顺利、快速的到达极片底部,形成较大的浓差极化,进而引起电池容量无法正常发挥、倍率性能差、低温析锂、循环容量衰减等一系列问题。
尤其是在大电流放电时,电解液中的锂离子浓度由远离集流体处到靠近集流体处逐渐降低,从而造成浓差极化的产生,对于厚极片该浓差极化尤为显著,较大的浓差极化带来电化学反应速率的非均匀分布,使得极片内部(靠近集流体)活性物质几乎无法参与电化学反应,导致容量无法正常发挥,而极片外部(远离集流体处)活性物质深度放电,进而引发长循环时结构破坏,加剧容量衰减。
为了改善由于极片厚度增加所带来的上述问题,关键是提高锂离子在极片中的迁移速度,在现有的技术中有以下两种方式:
(1)调节极片在厚度方向上的孔隙率分布
申请号为CN200580027135.6的中国发明专利申请公开了一种极片结构及其制造方法,其采用多层涂布的方式,使得极片具有从靠近集流体到远离集 流体方向降低的非均匀的孔隙率,这种孔隙分布会使得电解液在极片中的浸润性变差,从而降低锂离子在极片中的迁移速度,对于厚极片而言尤为严重。但对于超厚极片来说,以沉积或滚压方式很难实现平滑的孔隙率梯度,而且多层组合物在工艺上难于控制,大大增加了制作成本。申请号为CN201210191956.5的中国发明专利申请公开了一种极片结构及其制造方法,其采用喷雾干燥涂布的方式,使得极片具有从靠近所述集流体的表面到远离所述集流体的表面的方向上膜片的孔隙率逐渐增加,这种孔隙分布会使得电解液在极片中的浸润性变差,从而提高锂离子在极片中的迁移速度,采用此发明的方法制备的厚极片组装成的电池不仅具有较高的能量密度,而且具有良好的电化学性能:容量发挥正常、倍率性能明显提高,而且析锂状况明显改善、循环稳定性也有明显提高。然而此方法对粘结剂和分散溶剂的搭配及其比例控制的非常严格,且对喷雾干燥的设备要求高(排气温度往往需要120℃以上,热能的损失很大),且需要对现有的涂布所需的相关设备进行升级。
(2)添加导电聚合物
2010年2月17日公开的公开号为CN101651233A的中国专利公开了一种锂离子二次电池及其制备方法,使用具有直链结构的导电聚合物(聚苯胺、聚吡硌、聚噻砏等)作为锂离子二次电池正极活性材料的粘结剂,以改善正极极片中的电子传导能力,并显著提高锂离子二次电池的高倍率放电性能以及循环性能。然而由于此类导电聚合物仅含有刚性的高分子主链,对负极活性材料的粘结能力较弱,当将其直接用于含合金类负极活性材料的负极极片时,需要大大提高其用量以保证具有足够的粘结能力来抑制合金类负极活性材料在充放电过程中的体积变化。这样一方面会降低负极极片中负极活性材料的相对含量,从而导致锂离子二次电池整体能量密度的降低;另一方面,由于这类导电聚合物不具有锂离子传导性能,过量使用会阻碍锂离子在极片中的传导从而导致严重的极化现象。于2011年3月30日授权公告的授权公告号为CN101867037B的中国专利公开了一种用于大功率锂离子二次电池的复合电极材料及其制备方法,其中使用有机导电聚合物和不导电聚合物的混合物作为锂离子二次电池的粘结剂,不仅保持传统锂离子二次电池的粘结剂的粘结力,而且提高锂离子二次电池的极片的导电性能。然而由于这些聚合物本身不具有 锂离子传导性能,对锂离子二次电池性能的改善十分有限。
发明内容
有鉴于此,本发明要解决的技术问题在于提供一种电池浆料、电池极片及其制备方法,该方法制备的电池极片具有良好的电化学性能和较高的能量密度。
本发明提供了一种电极浆料,包括氟代磷酸盐。
优选的,所述氟代磷酸盐如式(I)所示:
MZ+[POxFy]Z         (I);
其中,M为元素周期表IA族、IIA族与VIII族元素中的一种或Mz+为季鎓阳离子;所述x、y与z均为整数,x≥1,y≥1,z≤3,x+y=4。
优选的,包括:
Figure PCTCN2016096922-appb-000001
所述氟代磷酸盐如式(I)所示:
MZ+[POxFy]Z        (I);
其中,M为元素周期表IA族、IIA族与VIII族元素中的一种或Mz+为季鎓阳离子;所述x、y与z均为整数,x≥1,y≥1,z≤3,x+y=4。
优选的,所述分散溶剂为N-甲基吡咯烷酮、丙酮、乙醇与水中的一种或多种。
本发明还提供了一种电池极片,包括集流体与附着在集流体上的电极浆料膜;所述电极浆料膜由电极浆料形成。
优选的,包括集流体与附着在集流体上的电极浆料膜;所述电极浆料膜包括活性物质、导电剂、聚合物粘结剂与氟代磷酸盐;所述活性物质、导电剂、聚合物粘结剂与氟代磷酸盐的质量比为(75~97):(1~10):(1~10):(0.1~10);
所述氟代磷酸盐如式(I)所示:
MZ+[POxFy]Z       (I);
其中,M为元素周期表IA族、IIA族与VIII族元素中的一种或Mz+为季鎓阳离子;所述x、y与z均为整数,x≥1,y≥1,z≤3,x+y=4。
优选的,其特征在于,所述季鎓阳离子选自季铵类阳离子、季鏻类阳离子、咪唑类阳离子、吡啶类阳离子、哌啶类阳离子、苯胺类阳离子与吗啉类阳离子中的一种。
优选的,所述氟代磷酸盐选自二氟磷酸四乙基铵盐、二氟磷酸1-乙基-3-甲基咪唑盐、二氟磷酸1-丁基-3-甲基咪唑盐、二氟磷酸N-甲基吡啶盐、二氟磷酸N-丁基吡啶盐、二氟磷酸N-丙基-N-甲基哌啶盐、二氟磷酸N-丁基-N-甲基哌啶盐、二氟磷酸N,N,N-三乙基苯胺盐、二氟磷酸N,N,N-三甲基苯胺盐、二氟磷酸N,N-二甲基吗啉盐、二氟磷酸N-丙基-N-甲基吗啉盐、二氟磷酸N-丙基-N-甲基吗啉盐。
优选的,所述M为锂、钠、钾、钙、铁、钴或镍。
优选的,所述活性物质为含锂过渡金属氧化物、过渡金属氧化物、过渡金属硫化物、金属锂、锂合金、钛酸锂材料、碳材料、氧化锡、氧化铌、氧化钒、氧化钛或硅。
优选的,所述活性物质为含锂过渡金属氧化物、过渡金属氧化物、过渡金属硫化物、过渡金属磷酸锂、金属锂、锂合金、钛酸锂材料、碳材料、氧化锡、氧化铌、氧化钒、氧化钛或硅。
优选的,所述含锂过渡金属氧化物选自以下式1~式6中的一种或多种;
LiCoO2式1;LiMnxO2x,x=1或2式2;LiNi1-xMnxO2,0≤x<1式3;LiNixCo1-xO2,0<x<1式4;LiNixMnyCozO2,0≤x,y,z≤1,x+y+z=1式5;xLi2MnO3-(1-x)LiMO2,0≤x≤1,M为Ni、Co或Mn式6;
所述过渡金属磷酸锂选自以下式7和/或式8所示的结构;
LiMPO4,M为Fe、Co、Mn或Ni式7;LiFexMn(1-x)PO4,0≤x≤1式8。
优选的,所述聚合物粘合剂选自偏二氟乙烯-六氟丙烯共聚物、聚偏二氟乙烯、聚丙烯腈、聚甲基丙烯酸甲酯、聚四氟乙烯与基于丁苯橡胶的聚合物中 的一种或多种。
优选的,所述电池极片的厚度为20~500μm。
优选的,所述电池极片的厚度为100~500μm。
本发明还提供了一种电池极片的制备方法,包括:
将电池浆料涂布在集流体上,经干燥和辊压后,得到电池极片。
优选的,包括:
将75~97重量份活性物质、1~10重量份导电剂、1~10重量份聚合物粘结剂、0.1~10重量份氟代磷酸盐与100~200重量份分散溶剂混合,得到电极浆料;
将所述电极浆料涂布在集流体上,经干燥和辊压后,得到电池极片;
所述氟代磷酸盐如式(I)所示:
MZ+[POxFy]Z      (I);
其中,M为元素周期表I族、II族与XIII族中的一种或Mz+为季鎓阳离子;所述x、y与z均为整数,x≥1,y≥1,z≤3,x+y=4。
本发明还提供了一种锂离子电池,包括电池极片。
本发明提供了一种电极浆料、电池极片及其制备方法,该电池极片包括包括集流体与附着在集流体上的电极浆料膜;所述电极浆料膜包括活性物质、导电剂、聚合物粘结剂与氟代磷酸盐;所述活性物质、导电剂、聚合物粘结剂与氟代磷酸盐的质量比为(75~97):(1~10):(1~10):(0.1~10);所述氟代磷酸盐如式(I)所示;其中,M为元素周期表IA族、IIA族与VIII族元素中的一种或Mz+为季鎓阳离子;所述x、y与z均为整数,x≥1,y≥1,z≤3,x+y=4。与现有技术相比,本发明通过调整电极浆料膜的组分,使制备出的电池极片,特别是厚极片,具有良好的循环性能以及高倍率充放电性能,并且该制备方法简单易行,成本较低,可结合现有的生产设备,适合于工业化生产应用;同时,本发明电池极片中含有氟代磷酸盐,其可起到阻燃剂的效果,可改善锂离子电池的安全性。
具体实施方式
下面将结合本发明实施例,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实 施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明提供了一种电极浆料,包括氟代磷酸盐。
优选的,所述氟代磷酸盐如式(I)所示:
MZ+[POxFy]Z        (I);
其中,M为元素周期表IA族、IIA族与VIII族元素中的一种或Mz+为季鎓阳离子;所述x、y与z均为整数,x≥1,y≥1,z≤3,x+y=4。
按照本发明,更优选地,所述电极浆料包括:
Figure PCTCN2016096922-appb-000002
所述氟代磷酸盐如式(I)所示:
MZ+[POxFy]Z        (I);
其中,M为元素周期表IA族、IIA族与VIII元素中的一种或Mz+季鎓阳离子;所述x、y与z均为整数,x≥1,y≥1,z≤3,x+y=4。
本发明对所有原料的来源并没有特殊的限制,为市售即可。
所述活性物质的含量优选为80~97重量份,更优选为80~95重量份,再优选为85~95重量份;在本发明提供的一些实施例中,所述活性物质的含量优选为85重量份;在本发明提供的另一些实施例中,所述活性物质的含量优选为95重量份;所述活性物质为本领域技术人员熟知的正极活性物质或负极活性物质即可,并无特殊的限制;在本发明中,所述正极活性物质优选为含锂过渡金属氧化物、过渡金属氧化物、过渡金属硫化物或过渡金属磷酸锂,更优选为含锂过渡金属氧化物;所述含锂过渡金属氧化物可为本领域中通常使用的任何含锂过渡金属金属氧化物,如LiCoO2、LiMnxO2x(x=1、2)、LiNi1-xMnxO2(0≤x<1)、LiNixCo1-xO2(0<x<1)、LiNixMnyCozO2(0≤x,y,z≤1,x+y+z=1)、 xLi2MnO3-(1-x)LiMO2(0≤x≤1,M为Ni、Co、Mn)等,更优选为xLi2MnO3-(1-x)LiMO2(0≤x≤1,M为Ni、Co、Mn);所述过渡金属氧化物与过渡金属硫化物为本领域技术人员熟知的可作为正极活性物质的过渡金属氧化物与过渡金属硫化物即可,并无特殊的限制,本发明中优选为MoS2、SnS2、MoO3或V2O5;所述过渡金属磷酸锂为本领域技术人员熟知的可作为正极活性物质的过渡金属磷酸锂即可,并无特殊的限制,本发明中优选为LiMPO4(M为Fe、Co、Mn、Ni)、LiFexMn(1-x)PO4(0≤x≤1);所述负极活性物质为本领域技术人员熟知的负极活性物质即可,并无特殊的限制,本发明中优选为金属锂、锂合金、可掺杂和脱掺杂锂离子的钛酸锂材料、可掺杂和脱掺杂锂离子的碳材料、可掺杂和脱掺杂锂离子的氧化锡、可掺杂和脱掺杂锂离子的氧化铌、可掺杂和脱掺杂锂离子的氧化钒、可掺杂和脱掺杂锂离子的氧化钛或可掺杂和脱掺杂锂离子的硅;所述可掺杂和脱掺杂锂离子的碳材料优选为石墨或非晶碳,更优选为活性碳、碳纤维、碳黑或天然石墨。
本发明提供的电极浆料中,所述导电剂的含量优选为1~8重量份,更优选为2~7重量份,再优选为3~6重量份,最优选为4~6重量份;在发明提供的一些实施例中,所述导电剂的含量优选为5重量份;所述导电剂的种类为本领域技术人员熟知的导电剂即可,并无特殊的限制,本发明中优选为碳材料,更优选为碳黑和/或乙炔黑;在电极浆料作为负极浆料时,由于负极活性物质可为碳材料,其可同时也作为导电剂。
所述聚合物粘结剂的含量优选为1~9重量份,更优选为1~8重量份,再优选为1~7重量份;在本发明提供的一些实施例中,所述聚合物粘结剂的含量优选为7重量份;在本发明提供的另一些实施例中,所述聚合物粘结剂的含量优选为1重量份。所述聚合物粘结剂的种类为本领域技术人员熟知的可作为粘结剂的聚合物即可,并无特殊的限制,其可为油溶性聚合物粘结剂也可为水溶液聚合物粘结剂,在本发明中,优选为偏二氟乙烯/六氟丙烯共聚物、聚偏二氟乙烯、聚丙烯腈、聚甲基丙烯酸甲酯、聚四氟乙烯与基于丁苯橡胶的聚合物中的一种或多种。
所述氟代磷酸盐的含量优选为1~8重量份,更优选为1~6重量份,再优选为1~5重量份,最优选为1~3重量份;在本发明提供的一些实施例中,所述氟 代磷酸盐的含量优选为3重量份;所述氟代磷酸盐如式(I)所示:
MZ+[POxFy]Z         (I);
其中,M为元素周期表IA族、IIA族与VIII元素中的一种或Mz+季鎓阳离子;所述x、y与z均为整数,x≥1,y≥1,z≤3,x+y=4。
所述M优选为锂、钠、钾、钙、铁、钴或镍;所述季鎓阳离子优选为选自季铵类阳离子、季鏻类阳离子、咪唑类阳离子、吡啶类阳离子、哌啶类阳离子、苯胺类阳离子与吗啉类阳离子中的一种;在本发明提供的一些实施例中,所述氟代磷酸盐优选为二氟磷酸钠;在本发明提供的一些实施例中,所述氟代磷酸盐优选为二氟磷酸锂;在本发明提供的另一些实施例中,所述季鎓阳离子型氟代磷酸盐可优选为二氟磷酸四乙基铵盐、二氟磷酸1-乙基-3-甲基咪唑盐、二氟磷酸1-丁基-3-甲基咪唑盐、二氟磷酸N-甲基吡啶盐、二氟磷酸N-丁基吡啶盐、二氟磷酸N-丙基-N-甲基哌啶盐、二氟磷酸N-丁基-N-甲基哌啶盐、二氟磷酸N,N,N-三乙基苯胺盐、二氟磷酸N,N,N-三甲基苯胺盐、二氟磷酸N,N-二甲基吗啉盐、二氟磷酸N-丙基-N-甲基吗啉盐、二氟磷酸N-丙基-N-甲基吗啉盐等、根据生产的实用性可进一步优选为二氟磷酸四乙基铵盐。
所述分散溶剂的含量优选为100~200重量份;所述分散溶剂为本领域技术人员熟知的分散溶剂即可,其可为油性溶剂也可为水性溶剂,并无特殊的限制,在本发明中优选为N-甲基吡咯烷酮、丙酮、乙醇与水中的一种或多种,更优选为N-甲基吡咯烷酮、丙酮、乙醇或水。
当所述电极浆料为负极电极浆料时,优选还包括0.5~10重量份的增稠剂,更优选还包括0.5~8重量份的增稠剂,再优选还包括1~5重量份的增稠剂,最优选还包括1~3重量份的增稠剂;所述增稠剂的种类为本领域技术人员熟知的增稠剂即可,并无特殊的限制,本发明中优选为羧甲基纤维素钠。
本发明还提供了一种电池极片,包括集流体与附着在集流体上的电极浆料膜;所述电极浆料膜由上述的电极浆料形成。
在本发明中优选地,所述电极浆料膜包括活性物质、导电剂、聚合物粘结剂与氟代磷酸盐;所述活性物质、导电剂、聚合物粘结剂与氟代磷酸盐的质量比为(75~97):(1~10):(1~10):(0.1~10)。
其中,所述集流体为本领域技术人员熟知的集流体即可,并无特殊的限制,在本发明中优选为铝集流体或铜集流体。
所述电极浆料膜由上述电极浆料形成;所述活性物质、导电剂、聚合物粘结剂与氟代磷酸盐均同上所述,在此不再赘述;所述性物质、导电剂、聚合物粘结剂与氟代磷酸盐的质量比优选为(80~97):(1~8):(2~10):(1~8),更优选为(80~95):(2~7):(2~8):(1~6),再优选为(85~95):(3~6):(2~7):(1~5),最优选为(85~95):(4~6):(2~7):(1~3)。
所述电池极片的厚度优选为20~500μm,更优选为200~500μm,再优选为300~500μm,再优选为300~450μm,最优选为350~400μm;在本发明提供的一些实施例中,所述电池极片的厚度优选为375μm;在本发明提供的另一些实施例中,所述电池极片的厚度优选为360μm。
本发明电池极片上的氟代磷酸盐可采用以下三种快速检测方法进行检测:
(1)X-射线衍射检测(XRD):收集涂布在靠集流体表面的固体样品,采用X-射线衍射仪对收集样品进行检测,测试参数为:扫描范围10°~80°,扫描步长0.02度每秒。
(2)扫描电镜-元素分析(SEM-EDX):收集涂布在靠集流体表面的固体样品,采用扫描电镜带有的SEM-EDX对收集样品进行元素检测。
(3)液态核磁(NMR):收集并称取涂布在靠集流体表面的固体样品(m1),用一定量的丙酮(或其他溶剂)对其进行洗涤和过滤,合并丙酮相后进行浓缩、真空干燥处理,所得的样品进行称重(m2),采用NNR进行测试,测试其氟谱(19F-NMR)和磷谱(31P-NMR),并可以辅助采用上述的检测方法(1)和(2)进行检测。当氟代磷酸盐的阳离子为季鎓阳离子时,还应该测试氢谱(1H-NMR)和碳谱(12C-NMR)。极片中氟代磷酸盐的浓度计算公式为:C=m2/m1×100%。
本发明通过调整电极浆料膜的组分,使制备出的电池极片,特别是厚极片,具有良好的循环性能以及高倍率充放电性能,并且该制备方法简单易行,成本较低,可结合现有的生产设备,适合于工业化生产应用;同时,本发明电池极片中含有氟代磷酸盐,其可起到阻燃剂的效果,可改善锂离子电池的安全性。
本发明还提供的一种上述电池极片的制备方法,包括:将电池浆料涂布在 集流体上,经干燥和辊压后,得到电池极片。
在本发明中,优选地按照以下步骤进行制备:将75~97重量份活性物质、1~10重量份导电剂、1~10重量份聚合物粘结剂、0.1~10重量份氟代磷酸盐与100~200重量份分散溶剂混合,得到电极浆料;将所述电极浆料涂布在集流体上,经干燥和辊压后,得到电池极片;
所述氟代磷酸盐如式(I)所示:
MZ+[POxFy]Z      (I);
其中,M为元素周期表IA族、IIA族与VIII族元素中的一种或Mz+季鎓阳离子;所述x、y与z均为整数,x≥1,y≥1,z≤3,x+y=4。
所述活性物质、导电剂、聚合物粘结剂、氟代磷酸盐与分散溶剂均同上所述,在此不再赘述。
本发明提供的电池极片制备方法简单易行,成本较低,可结合现有的生产设备,适合于工业化生产应用。
本发明还提供了一种锂离子电池,包括上述的电池极片,其优选还包括非水电解液与隔膜。
所述隔膜可为在锂离子电池中通常使用的任何材料。隔膜需要对电解质的离子的移动具有低阻抗和对电解液具有良好吸收能力和浸润性。例如,该材料可为玻璃纤维、聚酯、聚乙烯、聚四氟乙烯及其组合的无纺物或纺织物。更优选聚乙烯、或聚丙烯等可卷绕的多孔性隔膜。
本发明提供的锂离子电池可为圆筒形、硬币型、方形、其它任意的形状。但是电池的形状与基本结构无关,只要不脱离本发明的意图和范围,可根据目的而实施设计变更。
为了进一步说明本发明,以下结合实施例对本发明提供的一种电极浆料、电池极片及其制备方法进行详细描述。
以下实施例中所用的试剂均为市售。
实施例1:正极A1的制作
1.1在N-甲基吡咯烷酮溶剂中混合85重量份作为正极活性物质的钴酸锂(LiCoO2)、5重量份作为导电材料的乙炔黑、7重量份作为粘合剂的聚偏氟乙 烯(PVDF)和3重量份二氟磷酸钠,并制成电极浆料。
1.2将1.1中得到的电极浆料涂布在厚度15μm的铝箔两面,并干燥,用压制机压延成厚度为375μm,再将其切成具有宽100mm、长100mm大小的活性物质层和宽30mm的未涂布部分的形状,作为正极A1。
实施例2:正极A2的制作
使用镍锰钴酸锂(LiNi1/3Mn1/3Co1/3O2)来代替钴酸锂作为正极活性物质,与正极A1同样的制作,将其作为正极A2。
实施例3:正极A3的制作
使用铁磷酸锂(LiFePO4)来代替钴酸锂作为正极活性物质,与正极A1同样的制作,将其作为正极A3。
实施例4:正极A4的制作
使用富镍锰钴酸锂(Li1.2Ni1/6Mn1/6Co4/6O2)来代替钴酸锂作为正极活性物质,与正极A1同样的制作,将其作为正极A4。
实施例5:正极A5的制作
使用二氟磷酸锂来代替二氟磷酸钠,与正极A1同样的制作,将其作为正极A5。
实施例6:正极A6的制作
使用二氟磷酸锂来代替二氟磷酸钠,与正极A2同样的制作,将其作为正极A6。
实施例7:正极A7的制作
使用二氟磷酸锂来代替二氟磷酸钠,与正极A3同样的制作,将其作为正极A7。
实施例8:正极A8的制作
使用二氟磷酸锂来代替二氟磷酸钠,与正极A4同样的制作,将其作为正极A8。
实施例9:正极A9的制作
使用二氟磷酸四乙基铵盐来代替二氟磷酸钠,与正极A1同样的制作,将其作为正极A9。
实施例10:正极A10的制作
使用二氟磷酸四乙基铵盐来代替二氟磷酸钠,与正极A2同样的制作,将其作为正极A10。
实施例11:正极A11的制作
使用二氟磷酸四乙基铵盐来代替二氟磷酸钠,与正极A3同样的制作,将其作为正极A11。
实施例12:正极A12的制作
使用二氟磷酸四乙基铵盐来代替二氟磷酸钠,与正极A4同样的制作,将其作为正极A12。
实施例13:负极C1的制作
在95份重量人造石墨粉末KS-44中添加100份重量作为增稠剂的羧甲基纤维素钠的水性分散液(羧甲基纤维素钠的浓度为1%)、2份重量作为粘合剂的苯乙烯-丁二烯橡胶的水性分散液(苯乙烯-丁二烯橡胶的浓度为50%)和3份重量的二氟磷酸钠,用分散器进行混合,制成浆料。将得到的浆料涂布在厚度10μm的铜箔两面,并干燥,用压制机压延成厚度为360μm,再将其切成具有宽104mm、长104mm大小的活性物质层和宽30mm的未涂布部分的形状,作为负极C1。
实施例14:负极C2的制作
使用天然石墨来代替人造石墨,与负极C1同样的制作,将其作为负极C2。
实施例15:负极C3的制作
使用二氟磷酸锂来代替二氟磷酸钠,与负极C1同样的制作,将其作为负极C3。
实施例16:负极C4的制作
使用二氟磷酸四乙基铵盐来代替二氟磷酸钠,与负极C1同样的制作,将其作为负极C4。
实施例17:负极C5的制作
使用二氟磷酸锂来代替二氟磷酸钠,与负极C2同样的制作,将其作为负极C5。
实施例18:负极C6的制作
使用二氟磷酸四乙基铵盐来代替二氟磷酸钠,与负极C2同样的制作,将 其作为负极C6。
比较例1:正极B1的制作
1.1在N-甲基吡咯烷酮溶剂中混合85重量份的作为正极活性物质的钴酸锂(LiCoO2)、8重量份的作为导电材料的乙炔黑和7重量份的作为粘合剂的聚偏氟乙烯(PVDF),并制成电极浆料。
1.2将1.1中得到的电极浆料涂布在厚度15μm的铝箔两面,并干燥,用压制机压延成厚度为360μm,再将其切成具有宽100mm、长100mm大小的活性物质层和宽30mm的未涂布部分的形状,作为正极B1。
比较例2:正极B2的制作
使用镍锰钴酸锂(LiNi1/3Mn1/3Co1/3O2)来代替钴酸锂作为正极活性物质,与正极B1同样的制作,将其作为正极B2。
比较例3:正极B3的制作
使用铁磷酸锂(LiFePO4)来代替钴酸锂作为正极活性物质,与正极B1同样的制作,将其作为正极B3。
比较例4:正极B4的制作
使用富镍锰钴酸锂(Li1.2Ni1/6Mn1/6Co4/6O2)来代替钴酸锂作为正极活性物质,与正极B1同样的制作,将其作为正极B4。
比较例5:负极B5的制作
5.1在95份重量人造石墨粉末KS-44中添加200份重量作为增稠剂的羧甲基纤维素钠的水性分散液(羧甲基纤维素钠的浓度为1%)和6份重量作为粘合剂的苯乙烯-丁二烯橡胶的水性分散液(苯乙烯-丁二烯橡胶的浓度为50%),用分散器进行混合,制成电极浆料。
5.2将5.1得到的电极浆料涂布在厚度10μm的铜箔两面,并干燥,用压制机压延成厚度为360μm,再将其切成具有宽104mm、长104mm大小的活性物质层和宽30mm的未涂布部分的形状,作为负极B5。
比较例6:负极B6的制作
使用天然石墨来代替人造石墨,与负极B5同样的制作,将其作为负极B6。
电解液的配方如表1所示。
表1电解液配方
Figure PCTCN2016096922-appb-000003
锂离子二次电池的组装:将正极和负极与聚乙烯制的隔板一起重叠卷绕以使正极与负极不直接接触,制成电极体。使正极和负极的端子露出外部地装在电池罐中。然后,向其中注入5mL前述的电解液后,进行铆接成型,制备18650型圆筒电池,将其作为锂离子二次电池。
实施例19~90比较例7~14
作为实施例19~90以及比较例7~14,对每个实施例及比较例都按照表2和表3所示的实验条件(正负极种类、电解液和充放电压范围)的组合进行实验,并对下面所述的评价项进行评价。其结果也示于表2和表3中。
二次电池的评价
二次电池的评价是对每个电池在下面的条件下进行评价。
循环保持率
初期充放电:在25℃下用0.2C的恒定电流恒定电压充电法充电至4.3V后,以0.2C的恒定电流放电至3.0V。将其进行5个循环使电池稳定。将此时的第5个循环的放电容量作为初期容量。而且,将1小时放电额定容量的电流值作为1C。
循环试验:对实施了初期充放电的电池,在25℃下进行500个如下的循环:以1C的恒定电流恒定电压充电至4.3V后,再以1C的恒定电流放电至3.0V的充放电。将此时的第500个循环放电容量相对于第1个循环放电容量的比例作为循环保持率。
结果:
表2实施例中电池的组装与测试结果
Figure PCTCN2016096922-appb-000004
Figure PCTCN2016096922-appb-000005
Figure PCTCN2016096922-appb-000006
表3比较例中电池的组装与测试结果
Figure PCTCN2016096922-appb-000007
由表2和表3的结果,可知下述结论:
将实施例19~实施例24、实施例43~实施例48、实施例67~实施例72与比较例7、比较例8相比较,使用本发明的电池极片制备方法的实施例19~实施例24、实施例43~实施例48、实施例67~实施例72与比较例7、比较例8相比,循环保持率显著提高。
此外,将实施例25~实施例30、实施例49~实施例54、实施例73~实施例78与比较例9、比较例10相比较,使用本发明的电极极片制备方法的实施例25~实施例30、实施例49~实施例54、实施例73~实施例78与比较例9、比较例10相比,循环保持率显著提高。
将实施例31~实施例36、实施例55~实施例60、实施例79~实施例84与比较例11、比较例12相比较,使用本发明的极片制备方法的实施例31~实施例36、实施例55~实施例60、实施例79~实施例84与比较例11、比较例12相比,循环保持率显著提高。
将实施例37~实施例42、实施例61~实施例66、实施例85~实施例90与比较例13、比较例14相比较,使用本发明的极片制备方法的实施例37~实施例42、实施例61~实施例66、实施例85~实施例90与比较例13、比较例14相比,循环保持率显著提高。
由以上结果可知,使用了本发明的电池极片的制备的锂离子二次电池的大电流放电特性和循环保持率优异。
实施例91~140
作为实施例91~140,对每个实施例都按照表4所示的实验条件(不同氟代磷酸盐的含量对电池性能的影响)的组合进行实验,并对其进行评价测试。其中,正极粘结剂选用PVDF,负极粘结剂为CMC和SBR,氟代磷酸盐为二氟磷酸锂。实施例中,正极活性材料的种类及简写如下:钴酸锂(LiCoO2)、镍锰钴酸锂(LiNi1/3Mn1/3Co1/3O2,NCM111;LiNi3/5Mn1/5Co1/5O2,NCM622)、富镍锰钴酸锂(Li1.2Ni1/6Mn1/6Co4/6O2,LR-NMC114)、磷酸铁锂(LiFePO4)、磷酸锰锂(LiMnPO4)。
表4氟代磷酸盐的含量对电池性能的影响
Figure PCTCN2016096922-appb-000008
Figure PCTCN2016096922-appb-000009
Figure PCTCN2016096922-appb-000010
Figure PCTCN2016096922-appb-000011
由表4的结果,可知下述结论:
将比较例7、实施例23、实施例91~实施例96相比较;从初始容量、循环保持率以及经济性角度出发,使用本发明的电池极片制备方法中钴酸锂极片的氟代磷酸盐(二氟磷酸锂)的含量应该控制在2重量份时,电池的初始容量和循环保持率都较好。
将比较例9、实施例29、实施例97~实施例110相比较;从初始容量、循环保持率以及经济性角度出发,使用本发明的电池极片制备方法中镍锰钴酸锂极片(NCM111)的氟代磷酸盐(二氟磷酸锂)的含量应该控制在1重量份时,NCM622极片中氟代磷酸盐(二氟磷酸锂)的含量应该控制在2重量份,电池的初始容量和循环保持率都较好。
将比较例13、实施例41、实施例111~实施例125相比较;从初始容量、 循环保持率以及经济性角度出发,使用本发明的电池极片制备方法中富镍锰钴酸锂极片的氟代磷酸盐(二氟磷酸锂)的含量应该控制在3重量份时,电池的初始容量和循环保持率都较好。
将比较例11、实施例35、实施例126~实施例132相比较;从初始容量、循环保持率以及经济性角度出发,使用本发明的电池极片制备方法中磷酸铁锂极片的氟代磷酸盐(二氟磷酸锂)的含量应该控制在2重量份时,电池的初始容量和循环保持率都较好。
将实施例133~实施例140相比较,从初始容量、循环保持率以及经济性角度出发,使用本发明的电池极片制备方法中磷酸锰锂极片的氟代磷酸盐(二氟磷酸锂)的含量应该控制在3重量份时,电池的初始容量和循环保持率都较好。
由以上结果可知,使用了本发明的电池极片的制备的锂离子二次电池的容量和循环保持率都较好,需要根据所选择的正负极种类而确定添加氟代磷酸盐的量。

Claims (18)

  1. 一种电极浆料,其特征在于,包括氟代磷酸盐。
  2. 根据权利要求1所述的电极浆料,其特征在于,所述氟代磷酸盐如式(I)所示:
    MZ+[POxFy]Z  (I);
    其中,M为元素周期表IA族、IIA族与VIII族元素中的一种或Mz+为季鎓阳离子;所述x、y与z均为整数,x≥1,y≥1,z≤3,x+y=4。
  3. 根据权利要求1所述的电极浆料,其特征在于,包括:
    Figure PCTCN2016096922-appb-100001
    所述氟代磷酸盐如式(I)所示:
    MZ+[POxFy]Z  (I);
    其中,M为元素周期表IA族、IIA族与VIII族元素中的一种或Mz+为季鎓阳离子;所述x、y与z均为整数,x≥1,y≥1,z≤3,x+y=4。
  4. 根据权利要求3所述的电极浆料,其特征在于,所述分散溶剂为N-甲基吡咯烷酮、丙酮、乙醇与水中的一种或多种。
  5. 一种电池极片,其特征在于,包括集流体与附着在集流体上的电极浆料膜;所述电极浆料膜由权利要求1~4任意一项所述的电极浆料形成。
  6. 根据权利要求5所述的电池极片,其特征在于,包括集流体与附着在集流体上的电极浆料膜;所述电极浆料膜包括活性物质、导电剂、聚合物粘结剂与氟代磷酸盐;所述活性物质、导电剂、聚合物粘结剂与氟代磷酸盐的质量比为(75~97):(1~10):(1~10):(0.1~10);
    所述氟代磷酸盐如式(I)所示:
    MZ+[POxFy]Z  (I);
    其中,M为元素周期表IA族、IIA族与VIII族元素中的一种或Mz+为季鎓阳离子;所述x、y与z均为整数,x≥1,y≥1,z≤3,x+y=4。
  7. 根据权利要求6所述的电池极片,其特征在于,所述季鎓阳离子选自季铵类阳离子、季鏻类阳离子、咪唑类阳离子、吡啶类阳离子、哌啶类阳离子、苯胺类阳离子与吗啉类阳离子中的一种。
  8. 根据权利要求6所述的电池极片,其特征在于,所述氟代磷酸盐选自二氟磷酸四乙基铵盐、二氟磷酸1-乙基-3-甲基咪唑盐、二氟磷酸1-丁基-3-甲基咪唑盐、二氟磷酸N-甲基吡啶盐、二氟磷酸N-丁基吡啶盐、二氟磷酸N-丙基-N-甲基哌啶盐、二氟磷酸N-丁基-N-甲基哌啶盐、二氟磷酸N,N,N-三乙基苯胺盐、二氟磷酸N,N,N-三甲基苯胺盐、二氟磷酸N,N-二甲基吗啉盐、二氟磷酸N-丙基-N-甲基吗啉盐、二氟磷酸N-丙基-N-甲基吗啉盐。
  9. 根据权利要求6所述的电池极片,其特征在于,所述M为锂、钠、钾、钙、铁、钴或镍。
  10. 根据权利要求6所述的电池极片,其特征在于,所述活性物质为含锂过渡金属氧化物、过渡金属氧化物、过渡金属硫化物、金属锂、锂合金、钛酸锂材料、碳材料、氧化锡、氧化铌、氧化钒、氧化钛或硅。
  11. 根据权利要求6所述的电池极片,其特征在于,所述活性物质为含锂过渡金属氧化物、过渡金属氧化物、过渡金属硫化物、过渡金属磷酸锂、金属锂、锂合金、钛酸锂材料、碳材料、氧化锡、氧化铌、氧化钒、氧化钛或硅。
  12. 根据权利要求11所述的电池极片,其特征在于,所述含锂过渡金属氧化物选自以下式1~式6中的一种或多种;
    LiCoO2式1;LiMnxO2x,x=1或2式2;LiNi1-xMnxO2,0≤x<1式3;LiNixCo1-xO2,0<x<1式4;LiNixMnyCozO2,0≤x,y,z≤1,x+y+z=1式5;xLi2MnO3-(1-x)LiMO2,0≤x≤1,M为Ni、Co或Mn式6;
    所述过渡金属磷酸锂选自以下式7和/或式8所示的结构;
    LiMPO4,M为Fe、Co、Mn或Ni式7;LiFexMn(1-x)PO4,0≤x≤1式8。
  13. 根据权利要求6所述的电池极片,其特征在于,所述聚合物粘合剂选 自偏二氟乙烯-六氟丙烯共聚物、聚偏二氟乙烯、聚丙烯腈、聚甲基丙烯酸甲酯、聚四氟乙烯与基于丁苯橡胶的聚合物中的一种或多种。
  14. 根据权利要求6所述的电池极片,其特征在于,所述电池极片的厚度为20~500μm。
  15. 根据权利要求6所述的电池极片,其特征在于,所述电池极片的厚度为100~500μm。
  16. 一种电池极片的制备方法,其特征在于,包括:
    将权利要求1~4任意一项所述的电池浆料涂布在集流体上,经干燥和辊压后,得到电池极片。
  17. 根据权利要求16所述的制备方法,其特征在于,包括:
    将75~97重量份活性物质、1~10重量份导电剂、1~10重量份聚合物粘结剂、0.1~10重量份氟代磷酸盐与100~200重量份分散溶剂混合,得到电极浆料;
    将所述电极浆料涂布在集流体上,经干燥和辊压后,得到电池极片;
    所述氟代磷酸盐如式(I)所示:
    MZ+[POxFy]Z  (I);
    其中,M为元素周期表I族、II族与XIII族中的一种或Mz+为季鎓阳离子;所述x、y与z均为整数,x≥1,y≥1,z≤3,x+y=4。
  18. 一种锂离子电池,其特征在于,包括权利要求5~15任意一项所述的电池极片或权利要求16或17所制备的电池极片。
PCT/CN2016/096922 2016-06-15 2016-08-26 一种电池浆料、电池极片及其制备方法 WO2017215121A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP16905234.7A EP3474350A4 (en) 2016-06-15 2016-08-26 BATTERY PASTE, BATTERY ELECTRODE PLATE AND MANUFACTURING METHOD THEREFOR
US16/310,355 US10978693B2 (en) 2016-06-15 2016-08-26 Battery paste, battery electrode plate, and preparation method therefor
JP2018566298A JP6713554B2 (ja) 2016-06-15 2016-08-26 電極スラリー、電池極板、およびその製造方法
KR1020197000636A KR102237866B1 (ko) 2016-06-15 2016-08-26 전지 페이스트, 전지 전극판 및 이를 위한 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610427469.2A CN106025175B (zh) 2016-06-15 2016-06-15 一种电池浆料、电池极片及其制备方法
CN201610427469.2 2016-06-15

Publications (1)

Publication Number Publication Date
WO2017215121A1 true WO2017215121A1 (zh) 2017-12-21

Family

ID=57087833

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/096922 WO2017215121A1 (zh) 2016-06-15 2016-08-26 一种电池浆料、电池极片及其制备方法

Country Status (7)

Country Link
US (1) US10978693B2 (zh)
EP (1) EP3474350A4 (zh)
JP (1) JP6713554B2 (zh)
KR (1) KR102237866B1 (zh)
CN (1) CN106025175B (zh)
TW (1) TWI644474B (zh)
WO (1) WO2017215121A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020137367A1 (ja) * 2018-12-25 2020-07-02 ダイキン工業株式会社 リチウムイオン二次電池用電解液、リチウムイオン二次電池及びモジュール
CN111978183A (zh) * 2020-08-17 2020-11-24 常德市大度新材料有限公司 一种二氟磷酸盐及其制备方法和其在非水电解液中的应用

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107565135A (zh) * 2016-06-30 2018-01-09 江苏国泰超威新材料有限公司 一种氟代磷酸盐在制备锂离子电池电极中的应用、锂离子电池电极、其制备方法和应用
CN109428081A (zh) * 2017-08-31 2019-03-05 宁德时代新能源科技股份有限公司 一种电池、正极浆料及极片以及清除杂质锂的方法
CN108682786A (zh) * 2018-06-11 2018-10-19 北京理工大学 一种富锂锰基正极用磷酸盐类添加剂、制备方法及正极
CN109950540A (zh) * 2019-03-27 2019-06-28 中国科学院宁波材料技术与工程研究所 一种硅碳负极浆料、其制备方法及其应用
CN111048741A (zh) * 2019-12-12 2020-04-21 芜湖天弋能源科技有限公司 一种锂离子电池极片结构及其制备方法和锂离子电池
CN111193023B (zh) * 2020-01-08 2023-03-10 甘肃大象能源科技有限公司 一种纳米高镍三元锂正极陶瓷材料及其制备方法
CN112331856B (zh) * 2020-11-03 2022-06-07 华东理工大学华昌聚合物有限公司 锂离子电池电极粘结剂及其制备方法和应用
CN113845103B (zh) * 2021-09-24 2022-06-17 珠海市赛纬电子材料股份有限公司 用于水性负极浆料的二氟磷酸铯的制备方法,负极浆料、负极极片及二次电池
CN114039022A (zh) * 2021-10-13 2022-02-11 东莞维科电池有限公司 改善高电压锂电池循环性能的负极极片及制备方法和应用
CN114566625B (zh) * 2022-03-02 2023-06-20 重庆理英新能源科技有限公司 一种具有低压降性能的富锂锰基正极材料及其制备方法和应用
CN116487594B (zh) * 2023-06-14 2024-01-23 深圳海辰储能控制技术有限公司 正极极片及其制备方法、储能装置、用电设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103346347A (zh) * 2013-07-04 2013-10-09 厦门大学 高电压锂离子电池
CN105470473A (zh) * 2014-07-08 2016-04-06 宁德时代新能源科技股份有限公司 正极活性材料及二次电池

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU1271602A (en) * 2000-11-17 2002-05-27 Kansai Res Inst Inc Nonaqueous lithium secondary cell
KR20160011227A (ko) * 2006-12-06 2016-01-29 미쓰비시 가가꾸 가부시키가이샤 비수계 전해액 및 비수계 전해액 이차 전지
JP5277686B2 (ja) 2007-03-29 2013-08-28 三菱化学株式会社 リチウム二次電池及びそれに使用されるリチウム二次電池用正極
CN101651233A (zh) 2008-08-14 2010-02-17 比亚迪股份有限公司 一种锂离子二次电池及其制备方法
JP2011249152A (ja) * 2010-05-27 2011-12-08 Japan Carlit Co Ltd リチウム電池用電極活物質組成物およびリチウム電池
CN101867037B (zh) 2010-06-23 2012-11-07 深圳清华大学研究院 磷酸铁锂锂离子电池正极片及其制备方法
CN102738446B (zh) 2011-04-15 2015-07-22 比克国际(天津)有限公司 锂离子电池浆料及其制备方法,及锂离子电池
EP2830143B1 (en) * 2012-03-19 2019-05-22 Mitsubishi Chemical Corporation Nonaqueous electrolyte solution and nonaqueous electrolyte battery
JP5678936B2 (ja) 2012-09-07 2015-03-04 トヨタ自動車株式会社 リチウムイオン二次電池の製造方法
JP5854279B2 (ja) * 2012-09-07 2016-02-09 トヨタ自動車株式会社 非水電解液二次電池の製造方法
WO2014155989A1 (ja) * 2013-03-26 2014-10-02 三洋電機株式会社 非水電解質二次電池
KR102188818B1 (ko) * 2013-03-27 2020-12-09 미쯔비시 케미컬 주식회사 비수계 전해액 및 그것을 사용한 비수계 전해액 전지
JP6428631B2 (ja) 2013-09-24 2018-11-28 Agc株式会社 二次電池用非水電解液及びリチウムイオン二次電池
JP2015122264A (ja) * 2013-12-25 2015-07-02 トヨタ自動車株式会社 非水電解液二次電池の製造方法
JP2015176744A (ja) * 2014-03-14 2015-10-05 トヨタ自動車株式会社 二次電池の製造方法
CN104810550A (zh) * 2014-06-13 2015-07-29 万向A一二三系统有限公司 一种含功能添加剂的锂离子电池的制备方法
CN104445133B (zh) 2014-10-13 2016-04-27 浙江凯圣氟化学有限公司 一种二氟磷酸锂的制备方法及其锂离子电池非水电解液
CN104538640A (zh) * 2015-01-04 2015-04-22 合肥国轩高科动力能源股份公司 一种锂离子电池正极浆料及其制备方法
CN105322177A (zh) 2015-11-16 2016-02-10 深圳市沃特玛电池有限公司 一种锂离子电池极片及其制备方法和锂离子电池

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103346347A (zh) * 2013-07-04 2013-10-09 厦门大学 高电压锂离子电池
CN105470473A (zh) * 2014-07-08 2016-04-06 宁德时代新能源科技股份有限公司 正极活性材料及二次电池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3474350A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020137367A1 (ja) * 2018-12-25 2020-07-02 ダイキン工業株式会社 リチウムイオン二次電池用電解液、リチウムイオン二次電池及びモジュール
JP2020102415A (ja) * 2018-12-25 2020-07-02 ダイキン工業株式会社 リチウムイオン二次電池用電解液、リチウムイオン二次電池及びモジュール
JP7277701B2 (ja) 2018-12-25 2023-05-19 ダイキン工業株式会社 リチウムイオン二次電池用電解液、リチウムイオン二次電池及びモジュール
CN111978183A (zh) * 2020-08-17 2020-11-24 常德市大度新材料有限公司 一种二氟磷酸盐及其制备方法和其在非水电解液中的应用
CN111978183B (zh) * 2020-08-17 2023-06-20 常德市大度新材料有限公司 一种二氟磷酸盐及其制备方法和其在非水电解液中的应用

Also Published As

Publication number Publication date
EP3474350A4 (en) 2020-01-15
CN106025175A (zh) 2016-10-12
US10978693B2 (en) 2021-04-13
EP3474350A1 (en) 2019-04-24
TW201801378A (zh) 2018-01-01
KR102237866B1 (ko) 2021-04-12
JP6713554B2 (ja) 2020-06-24
CN106025175B (zh) 2020-07-24
US20190157661A1 (en) 2019-05-23
JP2019518315A (ja) 2019-06-27
KR20190016092A (ko) 2019-02-15
TWI644474B (zh) 2018-12-11

Similar Documents

Publication Publication Date Title
WO2017215121A1 (zh) 一种电池浆料、电池极片及其制备方法
JP5255143B2 (ja) 正極材料、これを用いたリチウムイオン二次電池、及び正極材料の製造方法
JP6156939B2 (ja) リチウムイオン二次電池
KR102511721B1 (ko) 리튬 이차전지용 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2018001274A1 (zh) 一种氟代磷酸盐在制备锂离子电池电极中的应用、锂离子电池电极、其制备方法和应用
Yang et al. Ionic liquid enhanced composite solid electrolyte for high-temperature/long-life/dendrite-free lithium metal batteries
TWI794224B (zh) 電化學裝置用電極及其製造方法、電化學裝置、以及聚合物電解質組成物
JP7269571B2 (ja) 全固体電池の製造方法
JPWO2016098708A1 (ja) リチウムイオン二次電池
EP3510654B1 (en) Porous silicon materials and conductive polymer binder electrodes
Jiang et al. Flexible, nonflammable and Li-dendrite resistant Na2Ti3O7 nanobelt-based separators for advanced Li storage
KR20200092310A (ko) 전기 화학 소자용 도전재 페이스트, 전기 화학 소자 정극용 슬러리 조성물 및 그 제조 방법, 전기 화학 소자용 정극, 그리고 전기 화학 소자
JP6966188B2 (ja) 二次電池用電解質、及びそれを含む二次電池
JP2014007117A (ja) Li系二次電池
EP3451437B1 (en) Lithium ion secondary cell charging method, lithium ion secondary cell system, and power storage device
US20130252102A1 (en) Nonaqueous Electrolyte Rechargeable Battery Having Electrode Containing Conductive Polymer
KR20180087169A (ko) 리튬 이차전지용 음극, 이를 포함하는 리튬 이차전지, 및 이의 제조 방법
JP2002367675A (ja) 非水電解質電池
JP2019129119A (ja) イオン伝導性セパレータ及び電気化学デバイス
WO2020255489A1 (ja) 負極材、負極、電池セル
KR102567962B1 (ko) 리튬 이차전지용 바나듐 양극의 전기화학적 전처리 방법 및 이에 의해 전처리된 리튬 이차전지용 바나듐 양극
JP6966149B2 (ja) 水系電解液およびこれを含むエネルギー貯蔵装置
KR102501232B1 (ko) 산화물계 고체 전해질 시트, 그 제조방법, 상기 산화물계 고체 전해질 시트를 포함하는 전고체 전지 및 상기 전고체 전지의 제조방법
WO2024070450A1 (ja) 固体電解質材料、非水電解質二次電池、及び固体電解質材料の製造方法
JP2022063855A (ja) 全固体電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16905234

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018566298

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197000636

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2016905234

Country of ref document: EP

Effective date: 20190115