WO2017213180A1 - 表示装置及びその製造方法 - Google Patents

表示装置及びその製造方法 Download PDF

Info

Publication number
WO2017213180A1
WO2017213180A1 PCT/JP2017/021161 JP2017021161W WO2017213180A1 WO 2017213180 A1 WO2017213180 A1 WO 2017213180A1 JP 2017021161 W JP2017021161 W JP 2017021161W WO 2017213180 A1 WO2017213180 A1 WO 2017213180A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
insulating film
metal film
electrode
transparent electrode
Prior art date
Application number
PCT/JP2017/021161
Other languages
English (en)
French (fr)
Inventor
義仁 原
昌紀 前田
冨永 真克
小笠原 功
訓子 前野
晋吾 紙谷
泰裕 三村
智 堀内
芳啓 浅井
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to JP2018521757A priority Critical patent/JP6625212B2/ja
Priority to US16/308,423 priority patent/US10795225B2/en
Priority to CN201780035306.2A priority patent/CN109313371B/zh
Publication of WO2017213180A1 publication Critical patent/WO2017213180A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/13338Input devices, e.g. touch panels
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/13439Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1345Conductors connecting electrodes to cell terminals
    • G02F1/13458Terminal pads
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136259Repairing; Defects
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136286Wiring, e.g. gate line, drain line
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/124Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1255Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs integrated with passive devices, e.g. auxiliary capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136227Through-hole connection of the pixel electrode to the active element through an insulation layer
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136286Wiring, e.g. gate line, drain line
    • G02F1/136295Materials; Compositions; Manufacture processes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices

Definitions

  • the present invention relates to a display device and a manufacturing method thereof.
  • Japanese Patent Application Laid-Open No. 2015-122057 discloses a display device integrated with a touch screen panel including a panel serving as both a display and a touch screen.
  • a plurality of pixels are formed on the panel, and each pixel is provided with a pixel electrode and a transistor connected to the pixel electrode.
  • a plurality of electrodes are arranged on the panel so as to face the pixel electrodes.
  • the plurality of electrodes function as a common electrode that forms a horizontal electric field (horizontal electric field) with the pixel electrode in the display drive mode, and as a touch electrode that forms a capacitance with a finger or the like in the touch drive mode.
  • At least one signal line substantially parallel to the data line is connected to each of the plurality of electrodes, and a touch drive signal or a common voltage signal is supplied from the touch integrated circuit via the signal line.
  • signal lines connected to a plurality of electrodes functioning as touch electrodes or a common electrode are connected to a touch integrated circuit provided outside the display area.
  • the data line connected to the pixel is connected to the data driver outside the display area where the touch integrated circuit is provided. If each terminal part for connecting to a control circuit such as a touch integrated circuit or data drive part is made with a different film structure, the height of the terminal part is not uniform, and connection failure occurs when the control circuit is crimped to the terminal part. May occur.
  • An object of the present invention is to provide a display device and a manufacturing method thereof that can suppress a connection failure of a terminal portion.
  • a display device is a display device including an active matrix substrate, and the active matrix substrate includes a gate wiring, a data wiring arranged to intersect the gate wiring, a pixel electrode, A counter electrode that forms a capacitance with the pixel electrode, a display driving circuit for supplying a control signal to at least one of the gate line and the data line, and the counter electrode, connected to the counter electrode, A signal line to which a drive signal is supplied; a touch detection drive circuit that supplies the touch detection drive signal; and a plurality of terminals that are respectively connected to the display drive circuit and the touch detection drive circuit; The plurality of terminals have a common layer structure.
  • FIG. 1 is a cross-sectional view of a display device with a touch panel in an embodiment.
  • FIG. 2 is a schematic diagram showing a schematic configuration of the active matrix substrate shown in FIG.
  • FIG. 3 is a schematic diagram showing an example of the arrangement of the counter electrodes formed on the active matrix substrate shown in FIG.
  • FIG. 4 is an enlarged schematic view of a part of the active matrix substrate shown in FIG.
  • FIG. 5 is a cross-sectional view of a region where TFTs are arranged and a signal line connection region in the active matrix substrate shown in FIG.
  • FIG. 6 is a cross-sectional view of the terminal portion in the embodiment.
  • 7A is a cross-sectional view showing a connection portion that connects between the terminal portion shown in FIG. 6 and the signal line shown in FIG. 3.
  • FIG. 7B is a cross-sectional view showing a connection portion for connecting the first metal film and the second metal film of the connection portion shown in FIG. 7A.
  • FIG. 8A is a view for explaining the manufacturing method of the active matrix substrate shown in FIG. 1, and is a cross-sectional view showing a state in which a gate electrode and a first metal film are formed on the substrate.
  • FIG. 8B is a cross-sectional view illustrating a process of forming a gate insulating film on the substrate illustrated in FIG. 8A.
  • 8C is a cross-sectional view illustrating a process of forming a semiconductor film over the gate insulating film illustrated in FIG. 8B and forming an opening in the gate insulating film.
  • FIG. 8D is a cross-sectional view illustrating a process of forming a source electrode, a drain electrode, a second metal film, and an inorganic insulating film from the state illustrated in FIG. 8C.
  • 8E is a cross-sectional view illustrating a process of forming an organic insulating film from the state illustrated in FIG. 8D.
  • FIG. 8F is a cross-sectional view illustrating a process of forming a signal line and a third metal film from the state illustrated in FIG. 8E.
  • FIG. 8G is a cross-sectional view illustrating a process of forming the first insulating film from the state illustrated in FIG. 8F and forming an opening penetrating the first insulating film and the inorganic insulating film.
  • FIG. 8H is a cross-sectional view illustrating a process of forming a pixel electrode and a first transparent electrode film from the state illustrated in FIG. 8G.
  • FIG. 8I is a cross-sectional view illustrating a process of forming the second insulating film from the state illustrated in FIG. 8H.
  • FIG. 8J is a cross-sectional view illustrating a process of forming the counter electrode and the second transparent electrode film from the state illustrated in FIG. 8I.
  • FIG. 9A is a cross-sectional view of a terminal portion in Modification 1-1.
  • FIG. 9B is a view for explaining the method of manufacturing the terminal portion shown in FIG. 9A, and is a cross-sectional view showing a process of forming a third metal film on the first insulating film.
  • FIG. 9C is a cross-sectional view illustrating a process of forming a second insulating film on the third metal film illustrated in FIG. 9B.
  • FIG. 9D is a cross-sectional view illustrating a process of forming a first transparent electrode film on the second insulating film and the third metal film illustrated in FIG. 9C.
  • FIG. 10 is a cross-sectional view of the terminal portion in Modification 1-2.
  • FIG. 11A is a cross-sectional view of a terminal portion in Modification 1-3.
  • FIG. 11B is a view for explaining the method of manufacturing the terminal portion shown in FIG. 11A, and is a cross-sectional view showing a process of forming a gate insulating film on the substrate.
  • FIG. 11C is a cross-sectional view illustrating a process of forming an inorganic insulating film on the gate insulating film illustrated in FIG. 11B.
  • FIG. 11D is a cross-sectional view illustrating a process of forming a third metal film on the inorganic insulating film illustrated in FIG. 11C.
  • FIG. 11E is a cross-sectional view illustrating a process of forming a first insulating film on the third metal film illustrated in FIG. 11D.
  • 11F is a cross-sectional view illustrating a process of forming a first transparent electrode film on the first insulating film and the third metal film illustrated in FIG. 11E.
  • a display device is a display device including an active matrix substrate, and the active matrix substrate includes a gate wiring, a data wiring arranged to intersect the gate wiring, a pixel electrode, A counter electrode that forms a capacitance with the pixel electrode, a display driving circuit for supplying a control signal to at least one of the gate line and the data line, and the counter electrode, connected to the counter electrode, A signal line to which a drive signal is supplied; a touch detection drive circuit that supplies the touch detection drive signal; and a plurality of terminals that are respectively connected to the display drive circuit and the touch detection drive circuit;
  • the plurality of terminals have a common layer structure (first configuration).
  • the plurality of terminal portions include a display driving circuit for supplying a control signal to at least one of the gate wiring and the data wiring, and a touch detection for supplying a driving signal to the signal line.
  • the drive circuit is connected, and the plurality of terminal portions have a common layer structure. Therefore, the height of each terminal part becomes substantially uniform, and the connection failure due to the crimping of the terminal part and the drive circuit can be reduced as compared with the case where the height of the terminal part is not uniform.
  • the layer structure includes a first metal film made of the same material as the gate wiring, a second metal film made of the same material as the data wiring, and a first transparent film made of the same material as the pixel electrode.
  • the terminal portion includes the first metal film, the second metal film, the first transparent electrode film, and the second transparent electrode film. Therefore, the terminal portion can be formed in the step of forming each of the gate wiring, the data wiring, the pixel electrode, and the counter electrode.
  • the first metal film, the second metal film, the first transparent electrode film, and the second transparent electrode film are laminated, so that the resistance of the terminal portion can be reduced and the space can be saved.
  • the layer structure includes a first metal film made of the same material as the gate wiring, a second metal film made of the same material as the data wiring, an insulating film, and the same material as the signal line.
  • a first transparent electrode film made of the same material as the pixel electrode, and a second transparent electrode film made of the same material as the counter electrode, the first metal film, the second metal The film, the insulating film, the third metal film, the first transparent electrode film, and the second transparent electrode film may be sequentially stacked (third configuration).
  • the terminal portion is configured by laminating the first metal film, the second metal film, the insulating film, the third metal film, the first transparent electrode film, and the second transparent electrode film in this order. . Therefore, the terminal portion can be formed in the process of forming each of the gate wiring, the data wiring, the signal line, the pixel electrode, and the counter electrode, so that the resistance of the terminal portion can be reduced and the space can be saved.
  • the layer structure includes a first metal film made of the same material as the gate wiring, a second metal film made of the same material as the data wiring, and a first transparent film made of the same material as the pixel electrode.
  • An electrode film, and the first metal film, the second metal film, and the first transparent electrode film may be sequentially laminated (fourth configuration).
  • the terminal portion is configured by laminating the first metal film, the second metal film, and the first transparent electrode film. Therefore, the terminal portion can be formed in the process of forming each of the gate wiring, the data wiring, and the pixel electrode, and the height of the terminal portion can be made uniform.
  • the layer structure includes a third metal film made of the same material as the signal line, a first transparent electrode film made of the same material as the pixel electrode, and a second material made of the same material as the counter electrode.
  • a transparent electrode film, and the third metal film, the first transparent electrode film, and the second transparent electrode film may be sequentially laminated (fifth configuration).
  • the terminal portion is configured by laminating the third metal film, the first transparent electrode film, and the second transparent electrode film. Therefore, the terminal portion can be formed in the process of forming each of the signal line, the pixel electrode, and the counter electrode, and the height of the terminal portion can be made uniform.
  • the active matrix substrate further includes a first insulating film and a second insulating film between the signal line and the counter electrode, and the layer structure is In addition, a portion where the second insulating film is disposed may be included in an upper layer of the first transparent electrode film (sixth configuration).
  • the resistance of the terminal portion can be reduced.
  • an organic insulating film may be further provided between the pixel electrode and the data line, and the layer structure may not include the organic insulating film (seventh) Configuration).
  • the parasitic capacitance between the pixel electrode and the data wiring can be reduced.
  • any one of the first to seventh configurations further includes a counter substrate including a color filter, and a liquid crystal layer provided between the active matrix substrate and the counter substrate (eighth configuration).
  • the eighth configuration can be applied to a display device using liquid crystal.
  • An active matrix substrate manufacturing method for a display device includes a display control element including a gate electrode, a semiconductor film, a source electrode, and a drain electrode, and an active device including a terminal portion for connecting a drive circuit.
  • a first opening is formed in the insulating film, and a semiconductor is formed so as to overlap the gate electrode through the insulating film in the display control element region.
  • the first insulating film is formed on the inorganic insulating film, and in the display control element region and the terminal portion region, the inorganic insulating film and the first insulation are formed.
  • a first transparent electrode film is formed on the first insulating film, and a second layer is formed on the first insulating film and the first transparent electrode film in the display control element region and the terminal portion region.
  • An insulating film is formed, a third opening is formed in the second insulating film in the terminal area, and a second transparent electrode film is formed on the second insulating film in the display control element area.
  • the counter electrode is formed, and the second transparent electrode film is formed on the second insulating film so as to be in contact with the first transparent electrode film at the third opening in the terminal region (ninth). Configuration).
  • a plurality of terminal portions for connecting a plurality of drive circuits can be formed.
  • the heights of the plurality of terminal portions can be made uniform, it is possible to reduce connection failures caused by crimping the drive circuit to the terminal portions as compared with the case where the heights of the terminal portions are not uniform.
  • the organic insulating film may be removed (tenth configuration).
  • the tenth configuration it is possible to flatten the display control element region and reduce the parasitic capacitance between the pixel electrode and other elements.
  • FIG. 1 is a cross-sectional view of a display device according to this embodiment.
  • the display device 100 according to the present embodiment includes an active matrix substrate 1, a counter substrate 2, and a liquid crystal layer 3 sandwiched between the active matrix substrate 1 and the counter substrate 2.
  • Each of the active matrix substrate 1 and the counter substrate 2 is provided with a glass substrate that is substantially transparent (having high translucency).
  • the counter substrate 2 includes a color filter (not shown).
  • the display device 100 includes a backlight in the surface direction of the active matrix substrate 1 opposite to the liquid crystal layer 3 in FIG.
  • the display device 100 has a function of displaying an image and a function of detecting a position (touch position) where the user touches the displayed image.
  • the display device 100 is a so-called in-cell touch panel display device in which elements necessary for detecting a touch position are provided on the active matrix substrate 1.
  • the driving method of the liquid crystal molecules contained in the liquid crystal layer 3 is a horizontal electric field driving method.
  • a pixel electrode and a counter electrode (common electrode) for forming an electric field are formed on the active matrix substrate 1.
  • FIG. 2 is a schematic configuration diagram of the active matrix substrate 1.
  • the active matrix substrate 1 has a plurality of gate lines 11 and a plurality of source lines 12.
  • the active matrix substrate 1 has a plurality of pixels partitioned by a gate wiring 11 and a source wiring 12, and a region where the plurality of pixels are formed becomes a display region R0 of the active matrix substrate 1.
  • a source driver 21 and a gate driver 22 are connected to terminal portions Ta (Ta1, Ta2) provided in a region (frame region) outside the display region R0.
  • a control circuit 30 for supplying a control signal to the source driver 21 and the gate driver 22 is connected to a terminal portion Ta (Ta3) provided in the frame region.
  • the source driver 21 is connected to each source wiring 12 via the terminal portion Ta1, and supplies a voltage signal (data signal) corresponding to image data to each source wiring 12 based on a control signal from the control circuit 30.
  • the gate driver 22 is connected to each gate line 11 via the terminal portion Ta2, and sequentially supplies a voltage signal (gate signal) to each gate line 11 based on a control signal from the control circuit 30 to connect the gate line 11 to the gate line 11. Scan.
  • FIG. 3 is a schematic diagram showing an example of the arrangement of the counter electrodes 51 formed on the active matrix substrate 1.
  • the counter electrode 51 is formed on the surface of the active matrix substrate 1 on the liquid crystal layer 3 side. As shown in FIG. 3, the counter electrode 51 has a rectangular shape, and a plurality of counter electrodes 51 are arranged in a matrix on the active matrix substrate 1.
  • Each of the counter electrodes 51 is, for example, a substantially square having a side of several mm.
  • the counter electrode 51 is formed with a slit (for example, a width of several ⁇ m) for generating a horizontal electric field with the pixel electrode.
  • a controller 50 is connected to a terminal portion Ta (Ta4) provided in the frame area.
  • the controller 50 performs image display control for displaying an image and performs touch position detection control for detecting a touch position.
  • the controller 50 and each counter electrode 51 are connected by a signal line 52 extending in the Y-axis direction. That is, the same number of signal lines 52 as the number of counter electrodes 51 are formed on the active matrix substrate 1.
  • the counter electrode 51 is paired with the pixel electrode and is used for image display control, and is also used for touch position detection control.
  • the counter electrode 51 has a parasitic capacitance between the adjacent counter electrode 51 and the like, but when a human finger or the like touches the display screen, a capacitance is formed between the human finger or the like.
  • the capacitance increases.
  • the controller 50 supplies a touch drive signal for detecting the touch position to the counter electrode 51 via the signal line 52 and receives the touch detection signal via the signal line 52. Thereby, a change in electrostatic capacitance at the position of the counter electrode 51 is detected, and the touch position is detected. That is, the signal line 52 functions as a line for transmitting and receiving a touch drive signal and a touch detection signal.
  • FIG. 4 is a schematic diagram in which a part of the active matrix substrate 1 is enlarged.
  • the plurality of pixel electrodes 61 are arranged in a matrix.
  • TFTs Thin Film Transistors
  • the counter electrode 51 is provided with a plurality of slits 51a.
  • a gate wiring 11 and a source wiring 12 are provided around the pixel electrode 61.
  • the gate wiring 11 extends in the X-axis direction, and a plurality of gate wirings 11 are provided at predetermined intervals along the Y-axis direction.
  • the source wiring 12 extends in the Y-axis direction, and a plurality of source wirings 12 are provided at predetermined intervals along the X-axis direction. That is, the gate wiring 11 and the source wiring 12 are formed in a lattice shape, and the pixel electrode 61 is provided in a region partitioned by the gate wiring 11 and the source wiring 12.
  • the gate electrode of the TFT is connected to the gate wiring 11, one of the source electrode and drain electrode of the TFT is connected to the source wiring 12, and the other is connected to the pixel electrode 61.
  • the counter substrate 2 (see FIG. 1) is provided with RGB three-color filters so as to correspond to the pixel electrodes 61, respectively. Thereby, each of the pixel electrodes 61 functions as a sub-pixel of any one of RGB.
  • the signal line 52 extending in the Y-axis direction is arranged so as to partially overlap the source line 12 extending in the Y-axis direction in the normal direction of the active matrix substrate 1. Yes. Specifically, the signal line 52 is provided in an upper layer than the source wiring 12, and the signal line 52 and the source wiring 12 partially overlap in plan view.
  • white circles 35 indicate locations where the counter electrode 51 and the signal line 52 are connected.
  • FIG. 5 is a cross-sectional view of the active matrix substrate 1 in a region where TFTs are arranged and in which a signal line 52 is connected to the counter electrode 51 (hereinafter referred to as a signal line connection region).
  • a TFT 42 that is a display control element is provided on the glass substrate 40.
  • the TFT 42 includes a gate electrode 42a, a semiconductor film 42b, a source electrode 42c, and a drain electrode 42d.
  • the gate electrode 42 a of the TFT 42 is formed on the glass substrate 40.
  • the gate electrode 42a is formed of, for example, a laminated film of titanium (Ti) and copper (Cu).
  • the gate insulating film 43 is formed so as to cover the gate electrode 42a.
  • the gate insulating film 43 is made of, for example, silicon nitride (SiNx) or silicon dioxide (SiO 2 ).
  • the semiconductor film 42b is, for example, an oxide semiconductor film, and may include at least one metal element of In, Ga, and Zn.
  • the semiconductor film 42b includes, for example, an In—Ga—Zn—O based semiconductor.
  • the source electrode 42c and the drain electrode 42d are provided on the semiconductor film 42b so as to be separated from each other.
  • the source electrode 42c and the drain electrode 42d are formed of a laminated film of titanium (Ti) and copper (Cu), for example.
  • the inorganic insulating film 44 is formed so as to cover the source electrode 42c and the drain electrode 42d.
  • the inorganic insulating film 44 is made of an inorganic material such as silicon nitride (SiNx) or silicon dioxide (SiO 2 ).
  • An organic insulating film (planarizing film) 45 is formed on the inorganic insulating film 44.
  • the organic insulating film 45 is made of an acrylic organic resin material such as polymethyl methacrylate resin (PMMA).
  • PMMA polymethyl methacrylate resin
  • a signal line 52 is formed on the organic insulating film 45.
  • the signal line 52 is, for example, one of copper (Cu), titanium (Ti), molybdenum (Mo), aluminum (Al), magnesium (Mg), cobalt (Co), chromium (Cr), tungsten (W), or It consists of these mixtures.
  • a first insulating film 461 is formed on the organic insulating film 45.
  • the first insulating film 461 is formed so as to cover a part of the signal line 52.
  • the first insulating film 461 is made of, for example, silicon nitride (SiNx) or silicon dioxide (SiO 2 ).
  • a pixel electrode 61 is formed at a position not overlapping the signal line 52 so as to be in contact with the drain electrode 42d through the opening CH.
  • the pixel electrode 61 is a transparent electrode and is made of, for example, materials such as ITO (IndiumInTin Oxide), ZnO (Zinc Oxide), IZO (Indium Zinc Oxide), IGZO (Indium Gallium Zinc Oxide), ITZO (Indium Tin Zinc Oxide). Become.
  • a second insulating film 462 (second insulating layer) is formed over the first insulating film 461 and the pixel electrode 61.
  • the second insulating film 462 is made of, for example, silicon nitride (SiNx) or silicon dioxide (SiO 2 ).
  • an opening CH0 penetrating the second insulating film 462 and the first insulating film 461 is provided on the signal line 52.
  • the opening CH0 is provided in the first insulating film 461 and the second insulating film 462, but the opening CH0 is not provided in a portion where the signal line 52 and the counter electrode 51 are not connected.
  • the counter electrode 51 is formed on the second insulating film 462 so as to be in contact with the signal line 52 in the opening CH0.
  • the counter electrode 51 is a transparent electrode, and is made of a material such as ITO, ZnO, IZO, IGZO, ITZO, for example.
  • FIG. 6 is a cross-sectional view of the terminal portion Ta in the present embodiment.
  • the structure of the terminal portions Ta (Ta1, Ta2, Ta3, Ta4) to which the source driver 21, the gate driver 22, the control circuit 30, and the controller 50 are connected is common.
  • the terminal portion Ta has a first metal film 71 formed on the glass substrate 40.
  • the first metal film 71 is a metal film used when forming the gate wiring 11 (see FIG. 2) and the gate electrode 42a (see FIG. 5) of the TFT.
  • a gate insulating film 43 is formed on the first metal film 71, and an opening 43a is provided in the gate insulating film 43.
  • a second metal film 72 is formed on the gate insulating film 43 so as to be in contact with the first metal film 71 through the opening 43a.
  • the second metal film 72 is a metal film used when forming the source wiring 12 (see FIG. 2) and the source electrode 42c and the drain electrode 42d of the TFT 42.
  • An inorganic insulating film 44 is formed on the second metal film 72 and the gate insulating film 43, and a first insulating film 461 is formed on the inorganic insulating film 44.
  • An opening CH1 is provided in the inorganic insulating film 44 and the first insulating film 461.
  • a first transparent electrode film 81 is formed on the first insulating film 461 so as to be in contact with the second metal film 72 through the opening CH1.
  • the first transparent electrode film 81 is a transparent electrode film used when forming the pixel electrode 61, but the first transparent electrode film 81 is not electrically connected to the pixel electrode 61.
  • a second insulating film 462 is formed on part of the first transparent electrode film 81 and the first insulating film 461.
  • An opening 462 a is provided in the second insulating film 462.
  • a second transparent electrode film 82 is formed on the second insulating film 462 so as to be in contact with the first transparent electrode film 81 through the opening 462a.
  • the second transparent electrode film 82 is a transparent electrode film used when forming the counter electrode 51, but the second transparent electrode film 82 is not electrically connected to the counter electrode 51.
  • the source driver 21 is connected to the source wiring 12 through the terminal portion Ta1, and the gate driver 22 is connected to the gate wiring 11 through the terminal portion Ta2. Further, the control circuit 30 is connected to the source driver 21 and the gate driver 22 through the terminal portion Ta3, and the controller 50 is connected to the signal line 52 through the terminal portion Ta4. Between the terminal portion Ta1 and the source wiring 12, between the terminal portion Ta2 and the gate wiring 11, between the terminal portion Ta4 and the signal line 52, between the terminal portion Ta4 and the source driver 21 and the gate driver 22, The same metal film as the first metal film or the second metal film 72 in the terminal portion Ta is extended and connected.
  • the gate wiring 11 can be formed of the same material as the first metal film 71 of the terminal portion Ta, and the source wiring 12 can be formed of the same material as the second metal film 72 of the terminal portion Ta.
  • the second metal film 72 made of the same material as the source wiring 12 may be extended to the gate wiring 11 to connect the gate wiring 11 and the second metal film 72.
  • the source wiring 12 and the first metal film 71 may be connected by extending to the source wiring 12 of the first metal film 71 made of the same material as the gate wiring 11. Further, the first metal film 71 or the second metal film 72 in the terminal portion Ta may be extended to the signal line 52 and connected to the signal line 52. Thus, when the metal film connected to the wiring is made of a material different from that of the wiring, a connection portion that connects the metal film and the wiring connected to the metal film is necessary.
  • FIG. 7A is a cross-sectional view showing a connection portion Ca that connects between the second metal film 72 of the terminal portion Ta and the signal line 52.
  • the connection portion Ca in the connection portion Ca, the second metal film 72 is formed on the gate insulating film 43, and the inorganic insulating film 44 is formed on the second metal film 72.
  • An organic insulating film 45 is formed on a part of the inorganic insulating film 44.
  • a third metal film 73 made of the same material as the signal line 52 is formed on the organic insulating film 45.
  • the first insulating film 461 is formed so as to overlap with a part of the inorganic insulating film 44, the organic insulating film 45, and the third metal film 73.
  • An opening CH1 is formed in the first insulating film 461 and the inorganic insulating film 44.
  • an opening 461 a is formed in the first insulating film 461 on the third metal film 73.
  • a first transparent electrode film 81 is formed on the first insulating film 461 so as to be in contact with the second metal film 72 through the opening CH1 and in contact with the third metal film 73 through the opening 461a.
  • a second insulating film 462 is formed on part of the first insulating film 461 and the first transparent electrode film 81.
  • a second transparent electrode film 82 is formed on the second insulating film 462 so as to be in contact with the first transparent electrode film 81 in the opening 462 a provided in the second insulating film 462.
  • the second metal film 72 is connected to the third metal film 73 via the first transparent electrode film 81 and the second transparent electrode film 82. That is, when extending the second metal film 72 of the terminal portion Ta4 to the signal line 52, the signal line 52 (third metal film) is connected to the first transparent electrode film 81 and the second transparent electrode film 82 at the connection portion Ca. And is connected to the second metal film 72. As a result, the signal line 52 is connected to the controller 50 via the connection portion Ca and the terminal portion Ta4.
  • connection part Ca when extending the 1st metal film 71 of terminal part Ta4 to the signal wire
  • FIG. 7B is a cross-sectional view showing a connection portion Cb for connecting the first metal film 71 and the second metal film 72.
  • a first metal film 71 is formed on the glass substrate 40, and a gate insulating film 43 is provided on the first metal film 71.
  • a second metal film 72 is formed on the gate insulating film 43 so as to be in contact with the first metal film 71 through an opening 43 a provided in the gate insulating film 43.
  • the first metal film 71 in the connection portion Cb is connected to the first metal film 71 in the terminal portion Ta.
  • the second metal film 72 in the connection portion Ca and the second metal film 72 in the connection portion Cb are connected, but the second metal film 72 and the second metal film 72 in the terminal portion Ta are electrically connected. It has not been.
  • An inorganic insulating film 44 is formed on the second metal film 72, and an organic insulating film 45 is formed on the inorganic insulating film 44.
  • a first insulating film 461 is formed on the organic insulating film 45, and a second insulating film 462 is formed on the first insulating film 461.
  • the first metal film 71 of the terminal portion Ta4 is extended to the signal line 52, the first metal film 71 is connected to the second metal film 72 at the connection portion Cb, and the second metal film 72 and the second metal film 72 at the connection portion Ca. 3 metal films 73 are connected.
  • the signal line 52 is connected to the controller 50 via the connection portion Cb, the connection portion Ca, and the terminal portion Ta4.
  • the first metal film 71 of the terminal portion Ta1 is extended to the source wiring 12, the first metal film 71 is connected to the second metal film 72 at the connection portion Cb.
  • the second metal film 72 in the connection portion Cb is connected to the source wiring 12, but the second metal film 72 in the terminal portion Ta1 is not connected to the source wiring 12.
  • the source line 12 is connected to the source driver 21 via the connection portion Cb and the terminal portion Ta1.
  • the second metal film 72 of the terminal portion Ta2 is extended to the gate wiring 11, the second metal film 72 is connected to the first metal film 71 at the connection portion Cb.
  • the first metal film 71 in the connection portion Cb is connected to the gate wiring 11, but the first metal film 71 in the terminal portion Ta is not connected to the gate wiring 11.
  • the gate wiring 11 is connected to the gate driver 22 via the connection part Cb and the terminal part Ta2.
  • FIGS. 8A to 8J are views for explaining a manufacturing process of the active matrix substrate 1 in the present embodiment. Specifically, FIGS. 8A to 8J show a region A including a region where the TFT 42 is formed and a signal line connection region, and regions B to D where the connection portions Ca and Cb and the terminal portion Ta are formed, respectively. Sectional drawing of the active matrix substrate 1 in each manufacturing process is shown. Hereinafter, each manufacturing process will be described.
  • a first metal film containing copper is formed on the glass substrate 40, and the first metal film is patterned by photolithography, wet etching, and resist stripping. Thereby, the gate electrode 42a made of the first metal film is formed in the region A, and the first metal film 71 is formed in the region B and the region D (see FIG. 8A).
  • a gate insulating film 43 is formed so as to cover the gate electrode 42 a and the first metal film 71.
  • a semiconductor film containing, for example, In, Ga, Zn, and oxygen is formed so as to overlap with the gate electrode 42a with the gate insulating film 43 interposed therebetween.
  • photolithography and wet etching are performed to pattern the semiconductor film.
  • the semiconductor film 42b is formed on the gate insulating film 43 (see FIG. 8B).
  • the gate insulating film 43 is patterned by using a photolithography method and dry etching. As a result, openings 43a are formed in the gate insulating film 43 in the regions B and D (see FIG. 8C).
  • the second metal film 72 is formed so as to be in contact with the first metal film 71 in the opening 43 a, and the inorganic insulating film 44 is formed on the second metal film 72.
  • the second metal film 72 is formed on the gate insulating film 43, and the inorganic insulating film 44 is formed so as to cover the second metal film 72 (see FIG. 8D).
  • the organic insulating film is patterned on the inorganic insulating film 44 using photolithography and baked.
  • the organic insulating film 45 is formed on the inorganic insulating film 44 so as to be separated from each other in the regions A and C, and the organic insulating film 45 is formed so as to overlap the inorganic insulating film 44 in the region B (FIG. 8E). reference).
  • a third metal film containing, for example, copper is formed on the organic insulating film 45, and the third metal film is patterned by performing photolithography, wet etching, and resist stripping. As a result, a signal line 52 is formed on the organic insulating film 45 in the region A. In the region C, the third metal film 73 is formed on the organic insulating film 45 (see FIG. 8F).
  • a first insulating film is formed on the organic insulating film 45 in the regions A to C and on the inorganic insulating film 44 in the region D, and photolithography, dry etching, and resist peeling are performed.
  • the insulating film is patterned.
  • the first insulating film 461 is formed on the organic insulating film 45, the opening CH penetrating the first insulating film 461 and the inorganic insulating film 44 is formed, and the drain electrode 42d A part of the surface is exposed.
  • a first insulating film 461 is formed so as to overlap the organic insulating film 45.
  • a first insulating film 461 is formed on the organic insulating film 45, an opening CH 1 that penetrates the first insulating film 461 and the inorganic insulating film 44, and an opening 461 a of the first insulating film 461. And a part of the surface of the second metal film 72 and the third metal film 73 is exposed.
  • the first insulating film 461 is formed on the inorganic insulating film 44, the opening CH2 penetrating the first insulating film 461 and the inorganic insulating film 44 is formed, and the second metal film A part of the surface of 72 is exposed (see FIG. 8G).
  • a transparent electrode film such as ITO is formed on the first insulating film 461, and the transparent electrode film is patterned by performing photolithography, wet etching, and resist stripping.
  • the pixel electrode 61 is formed in the region A so as to be in contact with the drain electrode 42d through the opening CH.
  • the first transparent electrode film 81 is formed so as to be in contact with the second metal film 72 through the opening CH1 and in contact with the third metal film 73 through the opening 461a.
  • the first transparent electrode film 81 is formed on the inorganic insulating film 44 so as to be in contact with the second metal film 72 through the opening CH2 (see FIG. 8H).
  • a second insulating film is formed on the first insulating film 461, and photolithography, dry etching, and resist stripping are performed to pattern the second insulating film.
  • the second insulating film 462 is formed on the first insulating film 461 and the first transparent electrode film 81, and the first insulating film 461 and the second insulating film 462 are formed on the signal line 52.
  • An opening CH0 penetrating through the insulating film 462 is formed.
  • a second insulating film 462 is formed so as to overlap with the first insulating film 461.
  • a second insulating film 462 is formed on part of the first transparent electrode film 81 and the first insulating film 461, and an opening 462 a is formed in the second insulating film 462. (See FIG. 8I).
  • a transparent electrode film such as ITO is formed on the second insulating film 462, and photolithography, wet etching, and resist stripping are performed to pattern the transparent electrode film.
  • the counter electrode 51 is formed on the second insulating film 462 so as to be in contact with the signal line 52 through the opening CH0.
  • the second transparent electrode film 82 is formed on the second insulating film 462 so as to be in contact with the first transparent electrode film 81 in the opening 462a (see FIG. 8J).
  • the terminal portions Ta (Ta1 to Ta4) to which a plurality of drive circuits such as the source driver 21, the gate driver 22, the control circuit 30, and the controller 50 are respectively connected have a common layer structure. Therefore, compared with the case where the layer structure of a terminal part differs, the height of a terminal part can be made substantially uniform. As a result, even if these drive circuits are pressure-bonded to each terminal portion Ta, it is possible to make it difficult to cause a connection failure between the terminal portion Ta and the drive circuit.
  • the terminal portion Ta has the first metal film 71, the second metal film 72, the first transparent electrode film 81, and the second transparent electrode film 82 overlapped with each other, the resistance of the terminal portion Ta is reduced. In addition, the space for forming the terminal portion Ta can be reduced.
  • the display device according to the present invention is not limited to the configuration of the above-described embodiment, and may be variously modified configurations. Hereinafter, the modification is demonstrated.
  • the terminal portion Ta according to the above-described embodiment has been described as an example in which the first metal film 71, the second metal film 72, the first transparent electrode film 81, and the second transparent electrode film 82 are sequentially stacked.
  • the structure of the terminal portion is not limited to this.
  • a configuration example of another terminal portion different from the above-described embodiment will be described.
  • FIG. 9A is a cross-sectional view showing an example of a terminal portion of this modification.
  • the same reference numerals as those in the embodiment are given to the same configurations as those in the embodiment.
  • a different part from the terminal part Ta of embodiment is mainly demonstrated.
  • the inorganic insulating film 44 is formed in the terminal portion Tb so as to cover the second metal film 72.
  • a third metal film 73 is formed on the inorganic insulating film 44 so as to overlap the second metal film 72 with the inorganic insulating film 44 interposed therebetween.
  • a first insulating film 461 is formed so as to cover a part of the inorganic insulating film 44 and the third metal film 73, and is formed on a part of the first insulating film 461 so as to be in contact with the third metal film 73.
  • a first transparent electrode film 81 is formed.
  • a second insulating film 462 is formed on the first insulating film 461 and a part of the first transparent electrode film 81, and a part of the second insulating film 462 is in contact with the first transparent electrode film 81.
  • a second transparent electrode film 82 is formed thereon. That is, the terminal portion Tb has a structure in which the first metal film 71, the second metal film 72, the third metal film 73, the first transparent electrode film 81, and the second transparent electrode film 82 are sequentially stacked.
  • the terminal portion Ta is different from the terminal portion Ta in that the third metal film 73 is provided.
  • the terminal portion Tb is formed by the following process.
  • processes different from the processes of the embodiment will be mainly described.
  • 8A to 8D of the terminal portion Ta described above in the step of FIG. 8E, a third metal film is formed on the inorganic insulating film 44 in the region D, and photolithography, wet etching, and resist stripping are performed. Then, the third metal film is patterned. As a result, the third metal film 73 is formed on the inorganic insulating film 44 in the region D (see FIG. 9B).
  • a first insulating film is formed on the third metal film 73 in the region D, and the first insulating film is patterned by performing photolithography, dry etching, and resist stripping. As a result, a first insulating film 461 is formed in the region D so as to be spaced apart from the third metal film 73 (see FIG. 9C).
  • a first transparent electrode film is formed on the first insulating film 461 in the region D, and photolithography, wet etching, and resist removal are performed. 1 The transparent electrode film is patterned. Thereby, in the region D, the first transparent electrode film 81 in contact with the third metal film 73 is formed (see FIG. 9D). Then, the terminal part Tb is formed by performing the process of FIG. 8I and 8J mentioned above (refer FIG. 9A).
  • FIG. 10 is a cross-sectional view showing an example of another terminal portion different from FIG. 9A.
  • the same reference numerals as those in the first embodiment are assigned to the same configurations as those in the first embodiment.
  • the part different from the terminal part Ta in the embodiment will be mainly described.
  • the terminal portion Tc is different from the terminal portion Ta in that the second transparent electrode film 82 is not provided on the second insulating film 462 so as to be in contact with the first transparent electrode film 81. . Accordingly, the terminal portion Tc can be formed by the steps shown in FIGS. 8A to 8I.
  • the resistance of the terminal portion Tc cannot be reduced as compared with the terminal portion Ta, but each of the terminals for connecting to a plurality of drive circuits such as the cosource driver 21, the gate driver 22, the control circuit 30, and the controller 50 is provided. Terminals can be unified into a common structure. Therefore, similarly to the terminal portion Ta, it is possible to suppress poor connection when a plurality of drive circuits and each terminal portion Tc are crimped.
  • FIG. 11A is a cross-sectional view showing another example of a terminal portion different from those in FIGS. 9A and 10.
  • the same reference numerals as those in the first embodiment are assigned to the same components as those in the first embodiment.
  • the parts different from the terminal part Ta of the first embodiment will be mainly described.
  • the terminal portion Td is formed on the glass substrate 40 by overlapping the gate insulating film 43 and the inorganic insulating film 44.
  • a third metal film 73 is formed on the inorganic insulating film 44, and a first insulating film 461 is formed so as to overlap with the inorganic insulating film 44 and a part of the third metal film 73.
  • the first transparent electrode film 81 is formed on the first insulating film 461 so as to be in contact with the third metal film 73, and overlaps the first insulating film 461 and a part of the first transparent electrode film 81.
  • a second insulating film 462 is formed.
  • a second transparent electrode film 82 is formed on part of the second insulating film 462 so as to be in contact with the first transparent electrode film 81.
  • the terminal portion Td is different from the terminal portion Ta in that the third metal film 73 in contact with the first transparent electrode film 81 is provided and the first metal film 71 and the second metal film 72 are not provided.
  • the resistance of the terminal portion Tc cannot be reduced as compared with the terminal portion Ta, but each terminal for connecting to the controller 50, the source driver 21, and the gate driver 22 can be unified in a common structure. Therefore, similarly to the terminal portion Ta, poor connection when a plurality of drive circuits and each terminal portion Td are pressure-bonded can be suppressed.
  • the terminal portion Td is formed by the following process.
  • the first metal film is not formed in the region D
  • the gate insulating film 43 is formed on the glass substrate 40 in the region D (see FIG. 11B).
  • the opening 43a is not formed in the gate insulating film 43 in the region D
  • the inorganic insulating film 44 is formed on the gate insulating film 43 in the region D in the step of FIG. 8D (FIG. 11C). reference).
  • a third metal film is formed on the inorganic insulating film 44 in the region D, and the third metal film is patterned by photolithography, wet etching, and resist stripping. Thereby, the third metal film 73 is formed on the inorganic insulating film 44 in the region D (see FIG. 11D).
  • a first insulating film is formed on the third metal film 73, and the first insulating film is patterned by photolithography, dry etching, and resist stripping. As a result, a first insulating film 461 is formed in the region D so as to be spaced apart from the third metal film 73 (see FIG. 11E).
  • a first transparent electrode film is formed on the first insulating film 461, and photolithography, wet etching, and resist stripping are performed to perform the first transparent electrode. Pattern the film. As a result, a first transparent electrode film 81 in contact with the third metal film 73 is formed in the region D (see FIG. 11F). Then, the terminal part Td is formed by performing the process of FIG. 8I and 8J mentioned above (refer FIG. 11A).
  • an etch stopper layer may be provided between the source electrode 42c and the drain electrode 42d of the TFT 42.
  • the bottom gate type TFT has been described as an example, but a top gate type TFT may be used.
  • the semiconductor film 42b is not limited to an oxide semiconductor film but may be an amorphous silicon film.
  • the display device with a touch panel including an active matrix substrate having an image display function and a touch position detection function has been described as an example.
  • the active matrix substrate has only an image display function. May be.
  • the signal line 52 for detecting the touch position and the connection portion Ca for connecting the terminal portion Ta and the signal line 52 may not be formed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Nonlinear Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Human Computer Interaction (AREA)
  • Mathematical Physics (AREA)
  • Optics & Photonics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

端子部の接続不良を抑制し得る表示装置とその製造方法とを提供すること。表示装置のアクティブマトリクス基板1は、ゲート配線と、ゲート配線と交差して配置されたデータ配線と、画素電極と、画素電極との間で容量を形成する対向電極と、対向電極と接続され、タッチ検出用の駆動信号が供給される信号線とを備える。また、ゲート配線とデータ配線の少なくとも一方に制御信号を供給するための表示用駆動回路と、タッチ検出用の駆動信号を供給するタッチ検出用駆動回路と、表示用駆動回路とタッチ検出用駆動回路とを備える。また、アクティブマトリクス基板1は、表示用駆動回路とタッチ検出用駆動回路とが接続される複数の端子部Taを有し、端子部Taは共通の層構造を有する。

Description

表示装置及びその製造方法
 本発明は、表示装置及びその製造方法に関する。
 特開2015-122057号公報には、ディスプレイ用とタッチスクリーン用の両方の役割を果たすパネルを備えるタッチスクリーンパネル一体型表示装置が開示されている。パネルには、複数の画素が形成され、各画素には、画素電極、及び画素電極に接続されたトランジスタとが設けられる。また、パネルには、画素電極に対向して複数の電極が離間して配置される。複数の電極は、ディスプレイ駆動モードでは画素電極との間に横電界(水平電界)を形成する共通電極として機能し、タッチ駆動モードでは、指等との間に静電容量を形成するタッチ電極として機能する。複数の電極にはそれぞれ、データ線と略平行な少なくとも1つの信号ラインが接続され、タッチ集積回路からタッチ駆動信号又は共通電圧信号が信号ラインを介して供給される。
 特開2015-122057号公報において、タッチ電極又は共通電極として機能する複数の電極と接続された信号ラインは、表示領域外に設けられたタッチ集積回路と接続されている。また、画素に接続されたデータラインは、タッチ集積回路が設けられた表示領域外においてデータ駆動部と接続されている。タッチ集積回路やデータ駆動部等の制御回路と接続するための各端子部を別の膜構成で作製すると、端子部の高さが統一されず、端子部に制御回路を圧着する際に接続不良が生じる場合がある。
 本発明は、端子部の接続不良を抑制し得る表示装置及びその製造方法とを提供することを目的とする。
 本発明の一実施形態における表示装置は、アクティブマトリクス基板を備える表示装置であって、前記アクティブマトリクス基板は、ゲート配線と、前記ゲート配線と交差して配置されたデータ配線と、画素電極と、前記画素電極との間で容量を形成する対向電極と、前記ゲート配線と前記データ配線の少なくとも一方に制御信号を供給するための表示用駆動回路と、前記対向電極と接続され、タッチ検出用の駆動信号が供給される信号線と、前記タッチ検出用の駆動信号を供給するタッチ検出用駆動回路と、前記表示用駆動回路と前記タッチ検出用駆動回路とにそれぞれ接続される複数の端子と、を備え、前記複数の端子は、共通の層構造を有する。
 本発明によれば、端子部の接続不良を抑制することができる。
図1は、実施形態におけるタッチパネル付き表示装置の断面図である。 図2は、図1に示すアクティブマトリクス基板の概略構成を示す模式図である。 図3は、図1に示すアクティブマトリクス基板に形成されている対向電極の配置の一例を示す模式図である。 図4は、図1に示すアクティブマトリクス基板の一部を拡大した模式図である。 図5は、図1に示すアクティブマトリクス基板においてTFTが配置された領域と信号線接続領域における断面図である。 図6は、実施形態における端子部の断面図である。 図7Aは、図6に示す端子部と図3に示す信号線との間を接続する接続部を示す断面図である。 図7Bは、第1金属膜と図7Aに示す接続部の第2金属膜とを接続するための接続部を示す断面図である。 図8Aは、図1に示すアクティブマトリクス基板の製造方法を説明する図であって、基板上にゲート電極と第1金属膜とが形成された状態を示す断面図である。 図8Bは、図8Aに示す基板上にゲート絶縁膜を形成する工程を表す断面図である。 図8Cは、図8Bに示すゲート絶縁膜上に半導体膜を形成し、ゲート絶縁膜に開口を形成する工程を表す断面図である。 図8Dは、図8Cに示す状態からソース電極、ドレイン電極、第2金属膜、及び無機絶縁膜を形成する工程を表す断面図である。 図8Eは、図8Dに示す状態から有機絶縁膜を形成する工程を表す断面図である。 図8Fは、図8Eに示す状態から信号線及び第3金属膜を形成する工程を表す断面図である。 図8Gは、図8Fに示す状態から第1の絶縁膜を形成し、第1の絶縁膜と無機絶縁膜とを貫通する開口を形成する工程を表す断面図である。 図8Hは、図8Gに示す状態から画素電極及び第1透明電極膜を形成する工程を表す断面図である。 図8Iは、図8Hに示す状態から第2の絶縁膜を形成する工程を表す断面図である。 図8Jは、図8Iに示す状態から対向電極及び第2透明電極膜を形成する工程を表す断面図である。 図9Aは、変形例1-1における端子部の断面図である。 図9Bは、図9Aに示す端子部の製造方法を説明する図であって、第1の絶縁膜の上に第3金属膜を形成する工程を表す断面図である。 図9Cは、図9Bに示す第3金属膜の上に第2の絶縁膜を形成する工程を表す断面図である。 図9Dは、図9Cに示す第2の絶縁膜と第3金属膜の上に第1透明電極膜を形成する工程を表す断面図である。 図10は、変形例1-2における端子部の断面図である。 図11Aは、変形例1-3における端子部の断面図である。 図11Bは、図11Aに示す端子部の製造方法を説明する図であって、基板上にゲート絶縁膜を形成する工程を表す断面図である。 図11Cは、図11Bに示すゲート絶縁膜の上に無機絶縁膜を形成する工程を表す断面図である。 図11Dは、図11Cに示す無機絶縁膜の上に第3金属膜を形成する工程を表す断面図である。 図11Eは、図11Dに示す第3金属膜の上に第1の絶縁膜を形成する工程を表す断面図である。 図11Fは、図11Eに示す第1の絶縁膜と第3金属膜の上に第1透明電極膜を形成する工程を表す断面図である。
 本発明の一実施形態における表示装置は、アクティブマトリクス基板を備える表示装置であって、前記アクティブマトリクス基板は、ゲート配線と、前記ゲート配線と交差して配置されたデータ配線と、画素電極と、前記画素電極との間で容量を形成する対向電極と、前記ゲート配線と前記データ配線の少なくとも一方に制御信号を供給するための表示用駆動回路と、前記対向電極と接続され、タッチ検出用の駆動信号が供給される信号線と、前記タッチ検出用の駆動信号を供給するタッチ検出用駆動回路と、前記表示用駆動回路と前記タッチ検出用駆動回路とにそれぞれ接続される複数の端子と、を備え、前記複数の端子は、共通の層構造を有する(第1の構成)。
 第1の構成によれば、複数の端子部には、ゲート配線とデータ配線の少なくとも一方に制御信号を供給するための表示用駆動回路と、信号線に駆動信号を供給するためのタッチ検出用駆動回路とが接続され、複数の端子部は共通の層構造を有する。そのため、各端子部の高さは略均一となり、端子部の高さが均一でない場合と比べ、端子部と駆動回路との圧着による接続不良を軽減することができる。
 第1の構成において、前記層構造は、前記ゲート配線と同じ材料からなる第1金属膜と、前記データ配線と同じ材料からなる第2金属膜と、前記画素電極と同じ材料からなる第1透明電極膜と、前記対向電極と同じ材料からなる第2透明電極膜と、を備え、前記第1金属膜、前記第2金属膜、前記第1透明電極膜、及び前記第2透明電極膜が順に積層されていることとしてもよい(第2の構成)。
 第2の構成によれば、端子部は、第1金属膜、第2金属膜、第1透明電極膜、及び第2透明電極膜を備える。そのため、ゲート配線、データ配線、画素電極、及び対向電極のそれぞれを形成する工程において端子部を形成することができる。また、第1金属膜、第2金属膜、第1透明電極膜、及び第2透明電極膜が積層されることにより、端子部の低抵抗化及び省スペース化を図ることができる。
 第1の構成において、前記層構造は、前記ゲート配線と同じ材料からなる第1金属膜と、前記データ配線と同じ材料からなる第2金属膜と、絶縁膜と、前記信号線と同じ材料からなる第3金属膜と、前記画素電極と同じ材料からなる第1透明電極膜と、前記対向電極と同じ材料からなる第2透明電極膜と、を備え、前記第1金属膜、前記第2金属膜、前記絶縁膜、前記第3金属膜、前記第1透明電極膜、及び前記第2透明電極膜が順に積層されていることとしてもよい(第3の構成)。
 第3の構成によれば、端子部は、第1金属膜、第2金属膜、絶縁膜、第3金属膜、第1透明電極膜、及び第2透明電極膜の順に積層されて構成される。そのため、ゲート配線、データ配線、信号線、画素電極、及び対向電極のそれぞれを形成する工程において端子部を形成することができ、端子部の低抵抗化及び省スペース化を図ることができる。
 第1の構成において、前記層構造は、前記ゲート配線と同じ材料からなる第1金属膜と、前記データ配線と同じ材料からなる第2金属膜と、前記画素電極と同じ材料からなる第1透明電極膜と、を備え、前記第1金属膜、前記第2金属膜、及び前記第1透明電極膜が順に積層されていることとしてもよい(第4の構成)。
 第4の構成によれば、端子部は、第1金属膜、第2金属膜、及び第1透明電極膜が積層されて構成される。そのため、ゲート配線、データ配線、及び画素電極のそれぞれを形成する工程において端子部を形成することができ、端子部の高さを均一にすることができる。
 第1の構成において、前記層構造は、前記信号線と同じ材料からなる第3金属膜と、前記画素電極と同じ材料からなる第1透明電極膜と、前記対向電極と同じ材料からなる第2透明電極膜と、を備え、前記第3金属膜、前記第1透明電極膜、及び第2透明電極膜が順に積層されていることとしてもよい(第5の構成)。
 第5の構成によれば、端子部は、第3金属膜、第1透明電極膜、及び第2透明電極膜が積層されて構成される。そのため、信号線、画素電極、及び対向電極のそれぞれを形成する工程において端子部を形成することができ、端子部の高さを均一にすることができる。
 第2から第5のいずれかの構成において、前記アクティブマトリクス基板は、前記信号線と前記対向電極との間に、第1の絶縁膜と第2の絶縁膜とをさらに備え、前記層構造は、前記第1透明電極膜の上層に前記第2の絶縁膜が配置される部分を含むこととしてもよい(第6の構成)。
 第6の構成によれば、端子部の低抵抗化を図ることができる。
 第1から第6のいずれかの構成において、前記画素電極と前記データ配線との間に有機絶縁膜をさらに備え、前記層構造に、前記有機絶縁膜が含まれないこととしてもよい(第7の構成)。
 第7の構成によれば、画素電極とデータ配線との間の寄生容量を低減することができる。
 第1から第7のいずれかの構成において、さらに、カラーフィルタを備える対向基板と、前記アクティブマトリクス基板と前記対向基板との間に設けられた液晶層と、を備える(第8の構成)。
 第8の構成によれば、液晶を用いた表示装置に適用することができる。
 本発明の一実施形態における表示装置のアクティブマトリクス基板の製造方法は、ゲート電極、半導体膜、ソース電極、及びドレイン電極を含む表示制御素子と、駆動回路を接続するための端子部とを備えるアクティブマトリクス基板の製造方法であって、前記アクティブマトリクス基板において、前記表示制御素子を形成する表示制御素子領域に第1金属膜からなる前記ゲート電極を形成するとともに、前記端子部を形成する端子部領域に前記第1金属膜を成膜し、前記表示制御素子領域と前記端子部領域において、前記ゲート電極及び前記第1金属膜を覆うように絶縁膜を成膜し、前記第1金属膜の上において、前記絶縁膜に第1開口部を形成し、前記表示制御素子領域において前記絶縁膜を介して前記ゲート電極と重なるように半導体膜を形成し、前記表示制御素子領域における前記半導体膜の上に第2金属膜からなるソース電極及びドレイン電極を形成するとともに、前記端子部領域の前記第1開口部において前記第1金属膜と接するように前記第2金属膜を成膜し、前記表示制御素子領域における前記ソース電極及び前記ドレイン電極と、前記端子部領域における前記第2金属膜の上に無機絶縁膜を成膜し、前記表示制御素子領域及び前記端子部領域において、前記無機絶縁膜の上に前記第1の絶縁膜を成膜し、前記表示制御素子領域と前記端子部領域において前記無機絶縁膜と前記第1の絶縁膜とを貫通する第2開口部を形成し、前記端子部領域の前記第2開口部において前記ドレイン電極と接し、前記端子部領域の前記第2開口部において前記第2金属膜と接するように、前記第1の絶縁膜の上に第1透明電極膜を形成し、前記表示制御素子領域と前記端子部領域において前記第1の絶縁膜と前記第1透明電極膜の上に第2の絶縁膜を成膜し、前記端子部領域における前記第2の絶縁膜に第3開口部を形成し、前記表示制御素子領域における前記第2の絶縁膜の上に、第2透明電極膜からなる対向電極を形成するとともに、前記端子部領域における前記第3開口部において前記第1透明電極膜と接するように、前記第2透明電極膜を前記第2の絶縁膜の上に形成する(第9の構成)。
 第9の構成によれば、表示制御素子を形成する工程において、複数の駆動回路を接続するための複数の端子部を形成することができる。また、複数の端子部の高さを均一にすることができるため、端子部の高さが均一でない場合と比べ、端子部に駆動回路を圧着することによる接続不良を軽減することができる。
 第9の構成において、前記表示制御素子領域及び前記端子部領域に前記無機絶縁膜を成膜した後、さらに、前記無機絶縁膜の上に有機絶縁膜を成膜し、前記端子部領域において前記有機絶縁膜を除去することとしてもよい(第10の構成)。
 第10の構成によれば、表示制御素子領域を平坦化し、画素電極と他の素子との間の寄生容量を低減できる。
 [第1実施形態]
 以下、図面を参照し、本発明の実施の形態を詳しく説明する。図中同一または相当部分には同一符号を付してその説明は繰り返さない。なお、説明を分かりやすくするために、以下で参照する図面においては、構成が簡略化または模式化して示されたり、一部の構成部材が省略されたりしている。また、各図に示された構成部材間の寸法比は、必ずしも実際の寸法比を示すものではない。
 図1は、本実施形態における表示装置の断面図である。本実施形態における表示装置100は、アクティブマトリクス基板1と、対向基板2と、アクティブマトリクス基板1と対向基板2との間に挟持された液晶層3とを備える。アクティブマトリクス基板1及び対向基板2はそれぞれ、ほぼ透明な(高い透光性を有する)ガラス基板を備えている。対向基板2は、図示しないカラーフィルタを備えている。また、図示は省略するが、この表示装置100は、図1において、液晶層3と反対側のアクティブマトリクス基板1の面方向にバックライトを備えている。
 表示装置100は、画像を表示する機能を有するとともに、その表示される画像の上を使用者がタッチした位置(タッチ位置)を検出する機能を有する。この表示装置100は、タッチ位置を検出するために必要な素子がアクティブマトリクス基板1に設けられた、いわゆるインセル型タッチパネル表示装置である。
 また、表示装置100は、液晶層3に含まれる液晶分子の駆動方式が横電界駆動方式である。横電界駆動方式を実現するため、電界を形成するための画素電極及び対向電極(共通電極)は、アクティブマトリクス基板1に形成されている。
 図2は、アクティブマトリクス基板1の概略構成図である。アクティブマトリクス基板1は、複数のゲート配線11と複数のソース配線12とを有する。アクティブマトリクス基板1は、ゲート配線11とソース配線12とで区画された複数の画素を有し、複数の画素が形成された領域は、アクティブマトリクス基板1の表示領域R0となる。
 アクティブマトリクス基板1において、表示領域R0の外側の領域(額縁領域)に設けられた端子部Ta(Ta1、Ta2)に、ソースドライバ21及びゲートドライバ22がそれぞれ接続されている。また、アクティブマトリクス基板1において、額縁領域に設けられた端子部Ta(Ta3)に、ソースドライバ21及びゲートドライバ22に制御信号を供給するための制御回路30が接続されている。
 ソースドライバ21は、端子部Ta1を介して各ソース配線12と接続され、制御回路30からの制御信号に基づいて、各ソース配線12に画像データに応じた電圧信号(データ信号)を供給する。ゲートドライバ22は、端子部Ta2を介して各ゲート配線11と接続され、制御回路30からの制御信号に基づいて、各ゲート配線11に電圧信号(ゲート信号)を順次供給してゲート配線11を走査する。
 図3は、アクティブマトリクス基板1に形成されている対向電極51の配置の一例を示す模式図である。対向電極51は、アクティブマトリクス基板1の液晶層3側の面に形成されている。図3に示すように、対向電極51は矩形形状であり、アクティブマトリクス基板1上に、マトリクス状に複数配置されている。対向電極51はそれぞれ、例えば1辺が数mmの略正方形である。なお、この図では図示を省略するが、対向電極51には、画素電極との間で横電界を生じさせるためのスリット(例えば数μm幅)が形成されている。
 アクティブマトリクス基板1において、額縁領域に設けられた端子部Ta(Ta4)にコントローラ50が接続されている。コントローラ50は、画像を表示するための画像表示制御を行うとともに、タッチ位置を検出するためのタッチ位置検出制御を行う。
 コントローラ50と、各対向電極51との間は、Y軸方向に延びる信号線52によって接続されている。すなわち、対向電極51の数と同じ数の信号線52がアクティブマトリクス基板1上に形成されている。
 対向電極51は、画素電極と対になって、画像表示制御の際に用いられるとともに、タッチ位置検出制御の際にも用いられる。
 対向電極51は、隣接する対向電極51等との間に寄生容量が形成されているが、人の指等が表示画面に触れると、人の指等との間で容量が形成されるため、静電容量が増加する。タッチ位置検出制御の際、コントローラ50は、信号線52を介して、タッチ位置を検出するためのタッチ駆動信号を対向電極51に供給し、信号線52を介してタッチ検出信号を受信する。これにより、対向電極51の位置における静電容量の変化を検出して、タッチ位置を検出する。すなわち、信号線52は、タッチ駆動信号及びタッチ検出信号の送受信用の線として機能する。
 図4は、アクティブマトリクス基板1の一部の領域を拡大した模式図である。図4に示すように、複数の画素電極61は、マトリクス状に配置されている。また、図4では省略しているが、表示制御素子(スイッチング素子)である、TFT(Thin Film Transistor:薄膜トランジスタ)が、画素電極61と対応してマトリクス状に配置されている。なお、対向電極51には、複数のスリット51aが設けられている。
 画素電極61の周りには、ゲート配線11及びソース配線12が設けられている。ゲート配線11は、X軸方向に延びており、Y軸方向に沿って所定の間隔で複数設けられている。ソース配線12は、Y軸方向に延びており、X軸方向に沿って所定の間隔で複数設けられている。すなわち、ゲート配線11及びソース配線12は格子状に形成されており、ゲート配線11及びソース配線12によって区画された領域に画素電極61が設けられている。TFTのゲート電極はゲート配線11に接続されており、TFTのソース電極とドレイン電極の一方はソース配線12に接続されており、他方は画素電極61に接続されている。
 対向基板2(図1参照)には、画素電極61のそれぞれに対応するように、RGBの三色のカラーフィルタが設けられている。これにより、画素電極61のそれぞれは、RGBのいずれか一色のサブ画素として機能する。
 図4に示すように、Y軸方向に延びている信号線52は、アクティブマトリクス基板1の法線方向において、Y軸方向に延びているソース配線12と一部が重畳するように配置されている。具体的には、信号線52は、ソース配線12よりも上層に設けられており、平面視で信号線52とソース配線12は一部が重畳している。
 なお、図4において、白丸35は、対向電極51と信号線52とが接続されている箇所を示している。
 図5は、TFTが配置された領域であって、信号線52が対向電極51と接続されている領域(以下、信号線接続領域)におけるアクティブマトリクス基板1の断面図である。図5に示すように、ガラス基板40の上には、表示制御素子であるTFT42が設けられている。TFT42は、ゲート電極42a、半導体膜42b、ソース電極42c、及びドレイン電極42dを含む。
 TFT42のゲート電極42aは、ガラス基板40上に形成されている。ゲート電極42aは、例えばチタン(Ti)及び銅(Cu)の積層膜により形成されている。ゲート絶縁膜43は、ゲート電極42aを覆うように形成されている。ゲート絶縁膜43は、例えば窒化ケイ素(SiNx)や二酸化ケイ素(SiO)からなる。
 ゲート絶縁膜43の上には、半導体膜42bが形成されている。半導体膜42bは、例えば酸化物半導体膜であり、In、Ga及びZnのうち少なくとも1種の金属元素を含んでもよい。本実施形態では、半導体膜42bは、例えば、In-Ga-Zn-O系の半導体を含む。ここで、In-Ga-Zn-O系の半導体は、In(インジウム)、Ga(ガリウム)、Zn(亜鉛)の三元系酸化物であって、In、Ga及びZnの割合(組成比)は特に限定されず、例えばIn:Ga:Zn=2:2:1、In:Ga:Zn=1:1:1、In:Ga:Zn=1:1:2等を含む。
 ソース電極42c及びドレイン電極42dは、半導体膜42bの上に、互いに離間するように設けられている。ソース電極42c及びドレイン電極42dは、例えばチタン(Ti)及び銅(Cu)の積層膜により形成されている。
 無機絶縁膜44は、ソース電極42c及びドレイン電極42dを覆うように形成されている。無機絶縁膜44は、例えば窒化ケイ素(SiNx)や二酸化ケイ素(SiO)等の無機材料からなる。
 無機絶縁膜44の上には、有機絶縁膜(平坦化膜)45が形成されている。有機絶縁膜45は、例えばポリメタクリル酸メチル樹脂(PMMA)などのアクリル系有機樹脂材料などからなる。有機絶縁膜(平坦化膜)45を形成することで、TFT部分の凹凸に起因して生じる液晶分子の配向乱れを抑制できる。また、ゲート配線11やソース配線12と画素電極61との間の寄生容量を低減できる。なお、有機絶縁膜45は省略することもできる。
 有機絶縁膜45の上には、信号線52が形成されている。信号線52は、例えば銅(Cu)、チタン(Ti)、モリブデン(Mo)、アルミニウム(Al)、マグネシウム(Mg)、コバルト(Co)、クロム(Cr)、タングステン(W)のいずれか、またはこれらの混合物からなる。
 また、有機絶縁膜45の上には、第1の絶縁膜461が形成されている。第1の絶縁膜461は、信号線52の一部を覆うように形成されている。第1の絶縁膜461は、例えば窒化ケイ素(SiNx)や二酸化ケイ素(SiO)からなる。
 ドレイン電極42dの上において、第1の絶縁膜461と無機絶縁膜44を貫通する開口CHが形成されている。第1の絶縁膜461の上には、信号線52と重ならない位置に、開口CHを介してドレイン電極42dと接するように画素電極61が形成されている。画素電極61は透明電極であって、例えばITO(Indium Tin Oxide)、ZnO(Zinc Oxide)、IZO(Indium Zinc Oxide)、IGZO(Indium Gallium Zinc Oxide)、ITZO(Indium Tin Zinc Oxide)等の材料からなる。
 また、第1の絶縁膜461と画素電極61の上には、第2の絶縁膜462(第2の絶縁層)が形成されている。第2の絶縁膜462は、例えば窒化ケイ素(SiNx)や二酸化ケイ素(SiO)からなる。信号線52の上において、第2の絶縁膜462と第1の絶縁膜461とを貫通する開口CH0が設けられている。信号線接続領域では、第1の絶縁膜461と第2の絶縁膜462に開口CH0が設けられるが、信号線52と対向電極51とが接続されない部分には開口CH0は設けられていない。
 第2の絶縁膜462の上には、開口CH0において信号線52と接するように対向電極51が形成されている。対向電極51は透明電極であって、例えばITO、ZnO、IZO、IGZO、ITZO等の材料からなる。
 図6は、本実施形態における端子部Taの断面図である。本実施形態において、ソースドライバ21、ゲートドライバ22、制御回路30、及びコントローラ50のそれぞれが接続される端子部Ta(Ta1、Ta2、Ta3、Ta4)の構造は共通である。
 図6に示すように、端子部Taは、ガラス基板40の上に第1金属膜71が形成されている。第1金属膜71は、ゲート配線11(図2参照)やTFT42のゲート電極42a(図5参照)を形成する際に用いられる金属膜である。
 第1金属膜71の上にはゲート絶縁膜43が形成され、ゲート絶縁膜43には開口43aが設けられている。
 開口43aを介して第1金属膜71と接するように、ゲート絶縁膜43の上に第2金属膜72が形成されている。第2金属膜72は、ソース配線12(図2参照)やTFT42のソース電極42c及びドレイン電極42dを形成する際に用いられる金属膜である。
 第2金属膜72とゲート絶縁膜43の上には無機絶縁膜44が形成され、無機絶縁膜44の上には第1の絶縁膜461が形成されている。無機絶縁膜44と第1の絶縁膜461には開口CH1が設けられている。
 開口CH1を介して第2金属膜72と接するように、第1の絶縁膜461の上に第1透明電極膜81が形成されている。第1透明電極膜81は、画素電極61を形成する際に用いられる透明電極膜であるが、第1透明電極膜81は画素電極61と電気的に接続されていない。
 第1透明電極膜81の一部と第1の絶縁膜461の上に第2の絶縁膜462が形成されている。第2の絶縁膜462には開口462aが設けられている。
 開口462aを介して第1の透明電極膜81と接するように、第2の絶縁膜462の上に第2の透明電極膜82が形成されている。第2透明電極膜82は、対向電極51を形成する際に用いられる透明電極膜であるが、第2透明電極膜82は対向電極51と電気的に接続されていない。
 上述したように、ソースドライバ21は端子部Ta1を介してソース配線12と接続され、ゲートドライバ22は端子部Ta2を介してゲート配線11と接続される。また、制御回路30は、端子部Ta3を介してソースドライバ21及びゲートドライバ22と接続され、コントローラ50は、端子部Ta4を介して信号線52と接続される。端子部Ta1とソース配線12との間、端子部Ta2とゲート配線11との間、端子部Ta4と信号線52との間、端子部Ta4とソースドライバ21及びゲートドライバ22との間は、各端子部Taにおける第1金属膜又は第2金属膜72と同じ金属膜を延長して接続する。
 ゲート配線11を端子部Taの第1金属膜71と同じ材料で形成したり、ソース配線12を端子部Taの第2金属膜72と同じ材料で形成することもできる。しかしながら、配線と同じ材料からなる金属膜を端子部Taから配線の位置まで延長する場合、配線数が多くなるほど配線の配置が制限され、膜の高さが均一になりにくいため、配線と異なる金属膜を用いる方が配置の自由度が向上する。例えば、ソース配線12と同じ材料からなる第2金属膜72をゲート配線11まで延長し、ゲート配線11と第2金属膜72とを接続してもよい。また、ゲート配線11と同じ材料からなる第1金属膜71ソース配線12まで延長し、ソース配線12と第1金属膜71とを接続してもよい。また、端子部Taにおける第1金属膜71又は第2金属膜72を信号線52まで延長して信号線52と接続してもよい。このように、配線と接続される金属膜が、配線と異なる材料で構成される場合には、金属膜と、金属膜と接続される配線との間を接続する接続部が必要となる。
 図7Aは、端子部Taの第2金属膜72と、信号線52との間を接続する接続部Caを示す断面図である。図7Aに示すように、接続部Caは、ゲート絶縁膜43の上に第2金属膜72が形成され、第2金属膜72の上には無機絶縁膜44が形成されている。
 無機絶縁膜44の一部の上には有機絶縁膜45が形成されている。有機絶縁膜45の上には、信号線52と同じ材料からなる第3金属膜73が形成されている。なお、接続部Caが、端子部Taの第2金属膜72を信号線52まで延長して信号線52と接続する接続部である場合、第3金属膜73は信号線52と接続されている。
 また、無機絶縁膜44、有機絶縁膜45、第3金属膜73の一部と重なるように第1の絶縁膜461が形成されている。
 第1の絶縁膜461と無機絶縁膜44には、開口CH1が形成されている。また、第3金属膜73の上において、第1の絶縁膜461には開口461aが形成されている。開口CH1を介して第2金属膜72と接し、開口461aを介して第3金属膜73と接するように、第1の絶縁膜461の上に第1透明電極膜81が形成されている。
 さらに、第1の絶縁膜461と第1透明電極膜81の一部の上に、第2の絶縁膜462が形成されている。そして、第2の絶縁膜462に設けられた開口462aにおいて、第1透明電極膜81と接するように、第2透明電極膜82が第2の絶縁膜462の上に形成されている。
 このように、接続部Caにおいて、第2金属膜72は、第1透明電極膜81と第2透明電極膜82とを介して第3金属膜73と接続されている。つまり、端子部Ta4の第2金属膜72を信号線52まで延長する場合、信号線52(第3金属膜)は、接続部Caにおいて、第1透明電極膜81と第2透明電極膜82とを介して第2金属膜72と接続される。これにより、信号線52は、接続部Caと端子部Ta4とを介してコントローラ50と接続される。
 なお、端子部Ta4の第1金属膜71を信号線52まで延長する場合、接続部Caに加えて、第1金属膜71と、接続部Caの第2金属膜72とを接続するための接続部が必要となる。
 図7Bは、第1金属膜71と第2金属膜72とを接続するための接続部Cbを示す断面図である。図7Bに示すように、接続部Cbにおいては、ガラス基板40の上に第1金属膜71が形成され、第1金属膜71の上にゲート絶縁膜43が設けられている。ゲート絶縁膜43に設けられた開口43aを介して第1金属膜71と接するように、ゲート絶縁膜43の上に第2金属膜72が形成されている。なお、接続部Cbにおける第1金属膜71は端子部Taにおける第1金属膜71と接続されている。また、接続部Caにおける第2金属膜72と接続部Cbにおける第2金属膜72は接続されているが、これら第2金属膜72と端子部Taにおける第2金属膜72とは電気的に接続されていない。
 第2金属膜72の上には無機絶縁膜44が形成され、無機絶縁膜44の上には有機絶縁膜45が形成されている。また、有機絶縁膜45の上には第1の絶縁膜461が形成され、第1の絶縁膜461の上には第2の絶縁膜462が形成されている。
 したがって、端子部Ta4の第1金属膜71を信号線52まで延長する場合、第1金属膜71は接続部Cbにおいて第2金属膜72と接続され、接続部Caにおいて第2金属膜72と第3金属膜73とが接続される。これにより、信号線52は、接続部Cbと、接続部Caと、端子部Ta4とを介してコントローラ50と接続される。
 また、端子部Ta1の第1金属膜71をソース配線12まで延長する場合、第1金属膜71は、接続部Cbにおいて第2金属膜72と接続される。なお、この場合、接続部Cbにおける第2金属膜72はソース配線12と接続されるが、端子部Ta1における第2金属膜72はソース配線12と接続されていない。これにより、ソース配線12は、接続部Cbと端子部Ta1とを介してソースドライバ21と接続される。
 また、端子部Ta2の第2金属膜72をゲート配線11まで延長する場合、第2金属膜72は、接続部Cbにおいて第1金属膜71と接続される。なお、この場合、接続部Cbにおける第1金属膜71はゲート配線11と接続されているが、端子部Taにおける第1金属膜71はゲート配線11と接続されていない。これにより、ゲート配線11は、接続部Cbと端子部Ta2とを介してゲートドライバ22と接続される。
 (製造工程)
 図8A~8Jは、本実施形態におけるアクティブマトリクス基板1の製造工程を説明するための図である。具体的には、図8A~8Jは、TFT42が形成された領域と信号線接続領域とを含む領域Aと、上述の接続部Ca、Cb、及び端子部Taがそれぞれ形成される領域B~Dの各製造工程におけるアクティブマトリクス基板1の断面図を示している。以下、各製造工程について説明する。
 まず、ガラス基板40上に、例えば、銅を含む第1金属膜を成膜し、フォトリソグラフィ、ウェットエッチング、及びレジスト剥離を行い第1金属膜をパターニングする。これにより、領域Aには第1金属膜からなるゲート電極42aが形成され、領域B及び領域Dには、第1金属膜71が形成される(図8A参照)。
 次に、ゲート電極42aと、第1金属膜71とを覆うようにゲート絶縁膜43を成膜す
 る。そして、領域Aにおいて、ゲート絶縁膜43を介してゲート電極42aと重なるように、例えばIn、Ga、Zn及び酸素を含む半導体膜を成膜する。そして、フォトリソグラフィ及びウェットエッチングを行い半導体膜をパターニングする。これにより、領域Aにおいて、ゲート絶縁膜43上に半導体膜42bが形成される(図8B参照)
 次に、領域Bと領域Dにおいて、フォトリソグラフィ法及びドライエッチングを用いてゲート絶縁膜43をパターニングする。これにより、領域Bと領域Dにおいてゲート絶縁膜43に開口43aが形成される(図8C参照)。
 そして、領域A~Dにおいて、ゲート絶縁膜43の上に、例えば銅を含む第2金属膜を成膜し、フォトリソグラフィ、ウェットエッチング、及びレジスト剥離を行って第2金属膜をパターニングし、その後、無機絶縁膜を成膜する。これにより、領域Aには、半導体膜42bの上に離間して形成されたソース電極42cとドレイン電極42dとが形成され、ソース電極42c及びドレイン電極42dを覆うように無機絶縁膜44が形成される。また、領域B及びDには、開口43aにおいて、第1金属膜71と接触するように第2金属膜72が形成され、第2金属膜72の上に無機絶縁膜44が形成される。また、領域Cには、ゲート絶縁膜43の上に第2金属膜72が形成され、第2金属膜72を覆うように無機絶縁膜44が形成される(図8D参照)。
 次に、無機絶縁膜44の上にフォトリソグラフィを用いて有機絶縁膜をパターニングしてベーク処理する。これにより、領域A及びCにおいて、無機絶縁膜44の上に有機絶縁膜45が離間して形成され、領域Bにおいて、無機絶縁膜44と重なるように有機絶縁膜45が形成される(図8E参照)。
 続いて、有機絶縁膜45の上に、例えば銅を含む第3金属膜を成膜し、フォトリソグラフィ、ウェットエッチング、及びレジスト剥離を行って第3金属膜をパターニングする。これにより、領域Aにおいて、有機絶縁膜45の上に信号線52が形成される。また、領域Cには、有機絶縁膜45の上に第3金属膜73が形成される(図8F参照)。
 次に、領域A~Cにおける有機絶縁膜45の上、及び領域Dにおける無機絶縁膜44の上に第1の絶縁膜を成膜し、フォトリソグラフィ、ドライエッチング、及びレジスト剥離を行い、第1の絶縁膜をパターニングする。
 これにより、領域Aには、有機絶縁膜45の上に第1の絶縁膜461が形成され、第1の絶縁膜461と無機絶縁膜44とを貫通する開口CHが形成され、ドレイン電極42dの表面の一部が露出する。領域Bには、有機絶縁膜45と重なるように第1の絶縁膜461が形成される。領域Cには、有機絶縁膜45の上に第1の絶縁膜461が形成され、第1の絶縁膜461と無機絶縁膜44とを貫通する開口CH1と、第1の絶縁膜461の開口461aとが形成され、第2金属膜72と第3金属膜73の表面の一部が露出する。また、領域Dには、無機絶縁膜44の上に、第1の絶縁膜461が形成され、第1の絶縁膜461と無機絶縁膜44とを貫通する開口CH2が形成され、第2金属膜72の表面の一部が露出する(図8G参照)。
 次に、第1の絶縁膜461の上に、例えばITO等の透明電極膜を成膜し、フォトリソグラフィ、ウェットエッチング、及びレジスト剥離を行い、透明電極膜をパターニングする。これにより、領域Aには、開口CHを介してドレイン電極42dと接するように画素電極61が形成される。また、領域Cには、開口CH1を介して第2金属膜72と接し、開口461aを介して第3金属膜73と接するように、第1透明電極膜81が形成される。また、領域Dには、開口CH2を介して第2金属膜72と接するように無機絶縁膜44の上に第1透明電極膜81が形成される(図8H参照)。
 次に、領域A~Dにおいて、第1の絶縁膜461の上に第2の絶縁膜を成膜し、フォトリソグラフィ、ドライエッチング、及びレジスト剥離を行い、第2の絶縁膜をパターニングする。これにより、領域Aには、第1の絶縁膜461と第1透明電極膜81の上に第2の絶縁膜462が形成され、信号線52の上において、第1の絶縁膜461と第2の絶縁膜462とを貫通する開口CH0が形成される。領域Bには、第1の絶縁膜461と重なるように第2の絶縁膜462が形成される。また、領域C、Dには、第1透明電極膜81と第1の絶縁膜461の一部の上に第2の絶縁膜462が形成され、第2の絶縁膜462に開口462aが形成される(図8I参照)。
 次に、領域A~Dにおいて、第2の絶縁膜462の上に例えばITO等の透明電極膜を成膜し、フォトリソグラフィ、ウェットエッチング、及びレジスト剥離を行い、透明電極膜をパターニングする。これにより、領域Aには、第2の絶縁膜462の上に、開口CH0を介して信号線52と接するように対向電極51が形成される。また、領域C及びDには、開口462aにおいて、第1透明電極膜81と接するように第2の絶縁膜462の上に第2透明電極膜82が形成される(図8J参照)。
 上述した実施形態において、ソースドライバ21、ゲートドライバ22、制御回路30、及びコントローラ50等の複数の駆動回路がそれぞれ接続される各端子部Ta(Ta1~Ta4)は共通の層構造を有する。そのため、端子部の層構造が各々異なる場合と比べ、端子部の高さを略均一にすることができる。その結果、各端子部Taにこれら駆動回路を圧着させても、端子部Taと駆動回路との間に接続不良を生じにくくすることができる。また、端子部Taは、第1金属膜71、第2金属膜72、第1透明電極膜81、及び第2透明電極膜82が重ねて配置されるため、端子部Taの低抵抗化を図るとともに、端子部Taを形成するためのスペースを小さくすることができる。
 以上、本発明に係る表示装置の一例について説明したが、本発明に係る表示装置は、上述した実施形態の構成に限定されず、様々な変形構成とすることができる。以下、その変形例について説明する。
 [変形例1]
 上述した実施形態の端子部Taは、第1金属膜71、第2金属膜72、第1透明電極膜81、及び第2透明電極膜82が順に重ねて配置される構造を有する例を説明したが、端子部の構造はこれに限定されない。以下、上述した実施形態とは異なる他の端子部の構成例について説明する。
 (変形例1-1)
 図9Aは、本変形例の端子部の一例を示す断面図である。なお、図9Aにおいて、実施形態と同様の構成には実施形態と同じ符号を付している。以下、実施形態の端子部Taと異なる部分を主に説明する。
 図9Aに示すように、端子部Tbは、第2金属膜72を覆うように無機絶縁膜44が形成されている。無機絶縁膜44の上には、無機絶縁膜44を介して第2金属膜72と重なるように第3金属膜73が形成されている。また、無機絶縁膜44と第3金属膜73の一部を覆うように第1の絶縁膜461が形成され、第3金属膜73と接するように第1の絶縁膜461の一部の上に第1透明電極膜81が形成されている。そして、第1の絶縁膜461と第1透明電極膜81の一部の上に第2の絶縁膜462が形成され、第1透明電極膜81と接するように第2の絶縁膜462の一部の上に第2透明電極膜82が形成されている。つまり、端子部Tbは、第1金属膜71、第2金属膜72、第3金属膜73、第1透明電極膜81、及び第2透明電極膜82が順に重ねて配置される構造を有し、第3金属膜73を備える点で端子部Taと異なる。
 このように構成することで、端子部Taと同様、ソースドライバ21、ゲートドライバ22、制御回路30、及びコントローラ50等の複数の駆動回路と端子部Tbとを圧着した際の接続不良を抑制することができ、また、端子部Tbの低抵抗化を図ることができる。
 なお、端子部Tbは以下の工程により形成される。以下、実施形態の各工程と異なる工程を主に説明する。上述した端子部Taの図8A~8Dの工程の後、図8Eの工程において、領域Dにおける無機絶縁膜44の上に第3金属膜を成膜し、フォトリソグラフィ、ウェットエッチング、及びレジスト剥離を行って第3金属膜をパターニングする。これにより、領域Dにおいて無機絶縁膜44の上に第3金属膜73が形成される(図9B参照)。
 その後、図8Fの工程において、領域Dにおける第3金属膜73の上に第1の絶縁膜を成膜し、フォトリソグラフィ、ドライエッチング、及びレジスト剥離を行って第1の絶縁膜をパターニングする。これにより、領域Dにおいて第3金属膜73の上に離間して配置された第1の絶縁膜461が形成される(図9C参照)。
 続いて、図8Gの工程後、図8Hの工程において、領域Dにおける第1の絶縁膜461の上に第1透明電極膜を成膜し、フォトリソグラフィ、ウェットエッチング、及びレジスト剥離を行って第1透明電極膜をパターニングする。これにより、領域Dにおいて、第3金属膜73と接する第1透明電極膜81が形成される(図9D参照)。その後、上述した図8I及び8Jの工程を行うことにより、端子部Tbが形成される(図9A参照)。
 (変形例1-2)
 図10は、図9Aとは異なる他の端子部の例を示す断面図である。なお、図10において、実施形態と同様の構成には第1実施形態と同じ符号を付している。以下、実施形態における端子部Taと異なる部分を主に説明する。
 図10に示すように、端子部Tcは、第2の絶縁膜462の上において、第1透明電極膜81と接するように第2透明電極膜82が設けられていない点で端子部Taと異なる。したがって、端子部Tcは、上述した図8A~8Iまでの各工程によって形成することができる。
 この場合、端子部Taと比べて端子部Tcの抵抗を小さくすることができないが、コソースドライバ21、ゲートドライバ22、制御回路30、及びコントローラ50等の複数の駆動回路と接続するための各端子を共通の構造に統一することができる。そのため、端子部Taと同様、複数の駆動回路と、各端子部Tcとを圧着した際の接続不良を抑制することができる。
 (変形例1-3)
 図11Aは、図9A及び図10とは異なる端子部の他の例を示す断面図である。なお、図11Aにおいて、第1実施形態と同様の構成には第1実施形態と同じ符号を付している。以下、第1実施形態の端子部Taと異なる部分を主に説明する。
 図11Aに示すように、端子部Tdは、ガラス基板40の上にゲート絶縁膜43と無機絶縁膜44とが重なって形成されている。また、無機絶縁膜44の上には、第3金属膜73が形成され、無機絶縁膜44と第3金属膜73の一部と重なるように第1の絶縁膜461が形成されている。そして、第3金属膜73と接するように第1の絶縁膜461の上に第1透明電極膜81が形成され、第1の絶縁膜461と第1透明電極膜81の一部と重なるように第2の絶縁膜462が形成されている。また、第1透明電極膜81と接するように、第2の絶縁膜462の一部の上に第2透明電極膜82が形成されている。このように、端子部Tdは、第1透明電極膜81と接する第3金属膜73が設けられ、第1金属膜71及び第2金属膜72を備えていない点で端子部Taと異なる。
 この場合、端子部Taと比べて端子部Tcの抵抗を小さくすることができないが、コントローラ50、ソースドライバ21、ゲートドライバ22と接続するための各端子を共通の構造に統一することができる。そのため、端子部Taと同様、複数の駆動回路と、各端子部Tdとを圧着した際の接続不良を抑制することができる。
 なお、端子部Tdは以下の工程により形成される。以下、実施形態の各工程と異なる工程を主に説明する。上述した図8Aの工程において、領域Dには第1金属膜を形成せず、図8Bの工程において、領域Dには、ガラス基板40の上にゲート絶縁膜43を成膜する(図11B参照)。続いて、図8Cの工程では、領域Dにおけるゲート絶縁膜43に開口43aを形成せず、図8Dの工程において、領域Dにおけるゲート絶縁膜43の上に無機絶縁膜44を形成する(図11C参照)。
 次に、図8Eの工程において、領域Dにおける無機絶縁膜44の上に第3金属膜を成膜し、フォトリソグラフィ、ウェットエッチング、及びレジスト剥離を行って第3金属膜をパターニングする。これにより、領域Dには、無機絶縁膜44の上に第3金属膜73が形成される(図11D参照)。
 そして、図8Fの工程において、第3金属膜73の上に第1の絶縁膜を成膜し、フォトリソグラフィ、ドライエッチング、及びレジスト剥離を行って第1の絶縁膜をパターニングする。これにより、領域Dには、第3金属膜73の上に離間して配置された第1の絶縁膜461が形成される(図11E参照)。
 次に、図8Gの工程後、図8Hの工程において、第1の絶縁膜461の上に第1透明電極膜を成膜し、フォトリソグラフィ、ウェットエッチング、及びレジスト剥離を行って第1透明電極膜をパターニングする。これにより、領域Dには、第3金属膜73と接する第1透明電極膜81が形成される(図11F参照)。その後、上述した図8I及び8Jの工程を行うことにより、端子部Tdが形成される(図11A参照)。
 [変形例2]
 上述した実施形態及び変形例において、TFT42のソース電極42cとドレイン電極42dとの間にエッチストッパ層が設けられていてもよい。この構成により、ソース電極42cやドレイン電極42dを形成する際のエッチングによって、半導体膜42bがダメージを受けることを防止できる。
 [変形例3]
 また、上述した実施形態及び変形例では、ボトムゲート型のTFTを例に説明したが、トップゲート型でもよい。また、半導体膜42bは酸化物半導体膜に限らず、アモルファスシリコン膜であってもよい。
 [変形例4]
 上述した実施形態及び変形例では、画像表示機能とタッチ位置検出機能とを有するアクティブマトリクス基板を備えたタッチパネル付き表示装置を例に説明したが、アクティブマトリクス基板は画像表示機能のみを備えるものであってもよい。この場合、タッチ位置を検出するための信号線52と、端子部Taと信号線52とを接続するための接続部Caは形成されなくてもよい。

Claims (10)

  1.  アクティブマトリクス基板を備える表示装置であって、
     前記アクティブマトリクス基板は、
     ゲート配線と、
     前記ゲート配線と交差して配置されたデータ配線と、
     画素電極と、
     前記画素電極との間で容量を形成する対向電極と、
     前記ゲート配線と前記データ配線の少なくとも一方に制御信号を供給するための表示用駆動回路と、
     前記対向電極と接続され、タッチ検出用の駆動信号が供給される信号線と、
     前記タッチ検出用の駆動信号を供給するタッチ検出用駆動回路と、
     前記表示用駆動回路と前記タッチ検出用駆動回路とにそれぞれ接続される複数の端子と、を備え、
     前記複数の端子は、共通の層構造を有する、表示装置。
  2.  前記層構造は、
     前記ゲート配線と同じ材料からなる第1金属膜と、
     前記データ配線と同じ材料からなる第2金属膜と、
     前記画素電極と同じ材料からなる第1透明電極膜と、
     前記対向電極と同じ材料からなる第2透明電極膜と、を備え、
     前記第1金属膜、前記第2金属膜、前記第1透明電極膜、及び前記第2透明電極膜が順に積層されている、請求項1に記載の表示装置。
  3.  前記層構造は、
     前記ゲート配線と同じ材料からなる第1金属膜と、
     前記データ配線と同じ材料からなる第2金属膜と、
     絶縁膜と、
     前記信号線と同じ材料からなる第3金属膜と、
     前記画素電極と同じ材料からなる第1透明電極膜と、
     前記対向電極と同じ材料からなる第2透明電極膜と、を備え、
     前記第1金属膜、前記第2金属膜、前記絶縁膜、前記第3金属膜、前記第1透明電極膜、及び前記第2透明電極膜が順に積層されている、請求項1に記載の表示装置。
  4.  前記層構造は、
     前記ゲート配線と同じ材料からなる第1金属膜と、
     前記データ配線と同じ材料からなる第2金属膜と、
     前記画素電極と同じ材料からなる第1透明電極膜と、を備え、
     前記第1金属膜、前記第2金属膜、及び前記第1透明電極膜が順に積層されている、請求項1に記載の表示装置。
  5.  前記層構造は、
     前記信号線と同じ材料からなる第3金属膜と、
     前記画素電極と同じ材料からなる第1透明電極膜と、
     前記対向電極と同じ材料からなる第2透明電極膜と、を備え、
     前記第3金属膜、前記第1透明電極膜、及び第2透明電極膜が順に積層されている、請求項1に記載の表示装置。
  6.  前記アクティブマトリクス基板は、前記信号線と前記対向電極との間に、第1の絶縁膜と第2の絶縁膜とをさらに備え、
     前記層構造は、前記第1透明電極膜の上層に前記第2の絶縁膜が配置される部分を含む、請求項2から5のいずれか一項に記載の表示装置。
  7.  前記画素電極と前記データ配線との間に有機絶縁膜をさらに備え、
     前記層構造に、前記有機絶縁膜が含まれない、請求項1から6のいずれか一項に記載の表示装置。
  8.  さらに、
     カラーフィルタを備える対向基板と、
     前記アクティブマトリクス基板と前記対向基板との間に設けられた液晶層と、
     を備える請求項1から7のいずれか一項に記載の表示装置。
  9.  ゲート電極、半導体膜、ソース電極、及びドレイン電極を含む表示制御素子と、駆動回路を接続するための端子部とを備えるアクティブマトリクス基板の製造方法であって、
     前記アクティブマトリクス基板において、前記表示制御素子を形成する表示制御素子領域に第1金属膜からなる前記ゲート電極を形成するとともに、前記端子部を形成する端子部領域に前記第1金属膜を成膜し、
     前記表示制御素子領域と前記端子部領域において、前記ゲート電極及び前記第1金属膜を覆うように絶縁膜を成膜し、前記第1金属膜の上において、前記絶縁膜に第1開口部を形成し、
     前記表示制御素子領域において前記絶縁膜を介して前記ゲート電極と重なるように半導体膜を形成し、
     前記表示制御素子領域における前記半導体膜の上に第2金属膜からなるソース電極及びドレイン電極を形成するとともに、前記端子部領域の前記第1開口部において前記第1金属膜と接するように前記第2金属膜を成膜し、
     前記表示制御素子領域における前記ソース電極及び前記ドレイン電極と、前記端子部領域における前記第2金属膜の上に無機絶縁膜を成膜し、
     前記表示制御素子領域及び前記端子部領域において、前記無機絶縁膜の上に前記第1の絶縁膜を成膜し、
     前記表示制御素子領域と前記端子部領域において前記無機絶縁膜と前記第1の絶縁膜とを貫通する第2開口部を形成し、
     前記端子部領域の前記第2開口部において前記ドレイン電極と接し、前記端子部領域の前記第2開口部において前記第2金属膜と接するように、前記第1の絶縁膜の上に第1透明電極膜を形成し、
     前記表示制御素子領域と前記端子部領域において前記第1の絶縁膜と前記第1透明電極膜の上に第2の絶縁膜を成膜し、前記端子部領域における前記第2の絶縁膜に第3開口部を形成し、
     前記表示制御素子領域における前記第2の絶縁膜の上に、第2透明電極膜からなる対向電極を形成するとともに、前記端子部領域における前記第3開口部において前記第1透明電極膜と接するように、前記第2透明電極膜を前記第2の絶縁膜の上に形成する、
     製造方法。
  10.  前記表示制御素子領域及び前記端子部領域において前記無機絶縁膜を成膜した後、さらに、前記無機絶縁膜の上に有機絶縁膜を成膜し、前記端子部領域において前記有機絶縁膜を除去する、請求項9に記載の製造方法。
     
PCT/JP2017/021161 2016-06-09 2017-06-07 表示装置及びその製造方法 WO2017213180A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018521757A JP6625212B2 (ja) 2016-06-09 2017-06-07 表示装置及びその製造方法
US16/308,423 US10795225B2 (en) 2016-06-09 2017-06-07 Display device and method for producing same
CN201780035306.2A CN109313371B (zh) 2016-06-09 2017-06-07 显示装置及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016115588 2016-06-09
JP2016-115588 2016-06-09

Publications (1)

Publication Number Publication Date
WO2017213180A1 true WO2017213180A1 (ja) 2017-12-14

Family

ID=60579031

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/021161 WO2017213180A1 (ja) 2016-06-09 2017-06-07 表示装置及びその製造方法

Country Status (4)

Country Link
US (1) US10795225B2 (ja)
JP (1) JP6625212B2 (ja)
CN (1) CN109313371B (ja)
WO (1) WO2017213180A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020144997A1 (ja) * 2019-01-08 2020-07-16 株式会社ジャパンディスプレイ 表示装置
US11287709B2 (en) 2019-02-28 2022-03-29 Panasonic Liquid Crystal Display Co., Ltd. Active matrix substrate and liquid crystal display device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7229789B2 (ja) * 2019-01-22 2023-02-28 株式会社ジャパンディスプレイ 表示装置、及び、表示装置を組み込んだ電子機器
CN111599823B (zh) * 2020-05-29 2024-01-05 京东方科技集团股份有限公司 阵列基板及显示装置
CN113066796B (zh) * 2021-03-02 2023-02-28 武汉华星光电半导体显示技术有限公司 显示面板、显示面板的制备方法及显示装置
CN114236922B (zh) * 2021-12-06 2024-01-16 昆山龙腾光电股份有限公司 反射式阵列基板及制作方法、反射式显示面板

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013122752A (ja) * 2011-12-09 2013-06-20 Lg Display Co Ltd タッチスクリーン一体型表示装置
US20150091014A1 (en) * 2013-09-27 2015-04-02 Lg Display Co., Ltd. Display Device and Method of Manufacturing the Same
JP2015108732A (ja) * 2013-12-05 2015-06-11 三菱電機株式会社 薄膜トランジスタ基板およびその製造方法
JP2015114460A (ja) * 2013-12-11 2015-06-22 三菱電機株式会社 アクティブマトリックス基板およびその製造方法
US20150364507A1 (en) * 2014-06-13 2015-12-17 Lg Display Co., Ltd. Display device integrated with touch screen panel and method of fabricating the same

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100443831B1 (ko) * 2001-12-20 2004-08-09 엘지.필립스 엘시디 주식회사 액정표시소자의 제조 방법
KR101359921B1 (ko) * 2007-03-02 2014-02-07 삼성디스플레이 주식회사 표시 장치
JP5235363B2 (ja) 2007-09-04 2013-07-10 株式会社ジャパンディスプレイイースト 液晶表示装置
US9030427B2 (en) * 2009-11-20 2015-05-12 Sharp Kabushiki Kaisha Flexible display panel with touch sensor function
KR101841770B1 (ko) * 2011-09-02 2018-03-26 엘지디스플레이 주식회사 산화물 박막 트랜지스터를 구비한 평판 표시장치 및 그의 제조방법
KR101524449B1 (ko) * 2011-12-22 2015-06-02 엘지디스플레이 주식회사 액정표시장치 및 그 제조방법
JP6045924B2 (ja) * 2013-01-28 2016-12-14 シナプティクス・ジャパン合同会社 タッチパネル表示装置及びタッチパネルコントローラ
JP5626739B2 (ja) 2013-03-25 2014-11-19 株式会社ジャパンディスプレイ 液晶表示装置
CN105452949B (zh) * 2013-08-07 2019-02-19 夏普株式会社 半导体装置、显示装置和半导体装置的制造方法
KR101633654B1 (ko) 2013-12-20 2016-06-27 엘지디스플레이 주식회사 터치스크린 패널 일체형 표시장치, 터치스크린 패널 일체형 표시패널, 데이터 구동 집적회로, 게이트 구동 집적회로 및 터치스크린 패널 일체형 표시장치의 구동 방법
US9098161B2 (en) 2013-12-20 2015-08-04 Lg Display Co., Ltd. Display device integrated with touch screen panel and method of driving the same
KR102124970B1 (ko) 2013-12-26 2020-06-19 엘지디스플레이 주식회사 터치센서 일체형 표시장치
CN103728804B (zh) * 2013-12-27 2016-02-24 京东方科技集团股份有限公司 一种母板、阵列基板及制备方法、显示装置
JP6205312B2 (ja) * 2014-06-18 2017-09-27 株式会社ジャパンディスプレイ 液晶表示装置
US9703439B2 (en) * 2014-12-26 2017-07-11 Lg Display Co., Ltd. Touch sensor integrated type display device
TWI803287B (zh) * 2015-03-27 2023-05-21 日商半導體能源研究所股份有限公司 觸控面板
TWI739796B (zh) * 2016-02-12 2021-09-21 日商半導體能源硏究所股份有限公司 半導體裝置及電子裝置及半導體晶圓

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013122752A (ja) * 2011-12-09 2013-06-20 Lg Display Co Ltd タッチスクリーン一体型表示装置
US20150091014A1 (en) * 2013-09-27 2015-04-02 Lg Display Co., Ltd. Display Device and Method of Manufacturing the Same
JP2015108732A (ja) * 2013-12-05 2015-06-11 三菱電機株式会社 薄膜トランジスタ基板およびその製造方法
JP2015114460A (ja) * 2013-12-11 2015-06-22 三菱電機株式会社 アクティブマトリックス基板およびその製造方法
US20150364507A1 (en) * 2014-06-13 2015-12-17 Lg Display Co., Ltd. Display device integrated with touch screen panel and method of fabricating the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020144997A1 (ja) * 2019-01-08 2020-07-16 株式会社ジャパンディスプレイ 表示装置
US11287709B2 (en) 2019-02-28 2022-03-29 Panasonic Liquid Crystal Display Co., Ltd. Active matrix substrate and liquid crystal display device

Also Published As

Publication number Publication date
JP6625212B2 (ja) 2019-12-25
US10795225B2 (en) 2020-10-06
CN109313371A (zh) 2019-02-05
JPWO2017213180A1 (ja) 2018-12-27
US20190258105A1 (en) 2019-08-22
CN109313371B (zh) 2021-09-14

Similar Documents

Publication Publication Date Title
US10289243B2 (en) Touch control display device and manufacturing method thereof
WO2017213180A1 (ja) 表示装置及びその製造方法
CN109117016B (zh) 显示面板与其制造方法
US9753590B2 (en) Display device integrated with touch screen panel and method of fabricating the same
TW514755B (en) Active-matrix type liquid crystal display device and method of compensating for defective pixel
WO2011030583A1 (ja) 液晶表示装置及びその製造方法
JP2015049426A (ja) 液晶表示装置
JP6513197B2 (ja) タッチパネル付き表示装置及びタッチパネル付き表示装置の製造方法
WO2009081633A1 (ja) アクティブマトリクス基板、これを備えた液晶表示装置、及びアクティブマトリクス基板の製造方法
US10775660B2 (en) Touch-panel-equipped display device and method for producing touch-panel-equipped display device
WO2017030080A1 (ja) タッチパネル付き表示装置及びタッチパネル付き表示装置の製造方法
JP2019028095A (ja) 表示装置
CN109416492B (zh) 液晶显示装置
JP6605146B2 (ja) タッチパネル付き表示装置
JP2018045590A (ja) 表示装置及びその製造方法
JP2009271105A (ja) 液晶表示装置の製造方法
JP5582800B2 (ja) 液晶表示装置及びその製造方法
CN111580315B (zh) 有源矩阵基板和具备其的液晶显示装置
JP7431793B2 (ja) アクティブマトリクス基板、および表示パネル
KR20070088044A (ko) 액정표시장치의 어레이 기판 및 그 제조방법
KR101697272B1 (ko) 액정표시장치용 어레이 기판 및 이의 제조 방법
TWI551931B (zh) 顯示器面板
JP2008102230A (ja) 電気光学装置
JP2009003328A (ja) 表示装置及びその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018521757

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17810354

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17810354

Country of ref document: EP

Kind code of ref document: A1