WO2017212739A1 - 力率改善装置 - Google Patents

力率改善装置 Download PDF

Info

Publication number
WO2017212739A1
WO2017212739A1 PCT/JP2017/011363 JP2017011363W WO2017212739A1 WO 2017212739 A1 WO2017212739 A1 WO 2017212739A1 JP 2017011363 W JP2017011363 W JP 2017011363W WO 2017212739 A1 WO2017212739 A1 WO 2017212739A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
switching element
input
current
power factor
Prior art date
Application number
PCT/JP2017/011363
Other languages
English (en)
French (fr)
Inventor
羽田 正二
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016116041A external-priority patent/JP6704299B2/ja
Priority claimed from JP2016116042A external-priority patent/JP2017221075A/ja
Priority claimed from JP2017009178A external-priority patent/JP2018121381A/ja
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Priority to CN201780036029.7A priority Critical patent/CN109314472B/zh
Priority to KR1020187019619A priority patent/KR102320302B1/ko
Priority to US16/308,795 priority patent/US10541600B2/en
Priority to EP17809923.0A priority patent/EP3471257A4/en
Publication of WO2017212739A1 publication Critical patent/WO2017212739A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/084Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters using a control circuit common to several phases of a multi-phase system
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4216Arrangements for improving power factor of AC input operating from a three-phase input voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4258Arrangements for improving power factor of AC input using a single converter stage both for correction of AC input power factor and generation of a regulated and galvanically isolated DC output voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • H02M3/33523Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with galvanic isolation between input and output of both the power stage and the feedback loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • H02M7/08Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode arranged for operation in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/23Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only arranged for operation in parallel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present invention relates to a power factor correction apparatus that converts three-phase alternating current into direct current.
  • Patent Documents 1 to 7 describe devices for boosting and improving the power factor for the three-phase AC output of an AC generator for wind power generation.
  • a control signal having a complicated waveform using PWM processing or the like is generated in switch control, and different control signals are given to a plurality of switching elements, Complex control such as shifting the switch timing is performed.
  • a DC / DC converter for insulation is separately provided on the output side of the boost converter of the power factor improvement device.
  • the switch control of the boost converter in the power factor correction device is particularly complicated in order to extract optimum power. ing. For example, there is a control that constantly monitors the input voltage / current and the output voltage / current so that the output voltage or output power follows a target value, or maximum power point tracking (MPPT) control by a hill-climbing method.
  • MPPT maximum power point tracking
  • the present invention is a power factor correction apparatus to which a three-phase alternating current is input, which can perform reliable power factor improvement and stable power conversion with a simple configuration and control, and at the same time an input side and an output side.
  • the purpose is to allow side insulation.
  • the present invention provides the following configuration.
  • symbol in a parenthesis is a code
  • One aspect of the power factor correction apparatus of the present invention is: (A) first, second and third input terminals (R, S, T) to which three-phase alternating current is input; (B) a positive electrode output terminal (p) and a negative electrode output terminal (n); (C) Each includes a primary coil (Lr1, Ls1, Lt1) and a secondary coil (Lr2, Ls2, Lt2), and one end of each primary coil is connected to the first, second and third input terminals (R, S).
  • T and first, second and third transformers (Tr, Ts, Tt) each connected to the negative output terminal (n) and one end of each secondary coil
  • D A current path between the other end of the primary coil (Lr1, Ls1, Lt1) of each of the first, second and third transformers (Tr, Ts, Tt) and the common potential terminal (e) on the primary side.
  • One or a plurality of switching elements having a control end (G) that is on-off controlled to conduct or shut off;
  • E Connected between the other end of each secondary coil (Lr2, Ls2, Lt2) of each of the first, second and third transformers (Tr, Ts, Tt) and the positive output terminal (p).
  • First, second and third rectifier devices (D1, D2) which respectively conduct current flowing to the positive electrode output when the potential of the other end of the secondary coil is forward biased and cut off when the potential is reverse biased.
  • D3 (F) a smoothing capacitor (C) connected between the positive electrode output terminal (p) and the negative electrode output terminal (n);
  • G) The control terminal (G) of the one or more switching elements is controlled by one control signal having a constant duty ratio.
  • the switching element includes first, second, and third switching elements (Q1, Q2, Q3), and each of the first, second, and third transformers (Tr, Ts, Tt).
  • Each switching element is connected between the other end of the primary coil (Lr1, Ls1, Lt1) and the common potential end (e) on the primary side.
  • the switching element includes one switching element (Q), and each of the primary coils (Lr1, Ls1, Lt1) of the first, second, and third transformers (Tr, Ts, Tt). The switching element is connected between the other end and the common potential end (e) on the primary side.
  • each primary coil (Lr1, Ls1, Lt1) of each of the first, second, and third transformers (Tr, Ts, Tt) from the primary-side common potential end (e) It has 4th, 5th, and 6th rectifier devices (D4, D5, D6) which can conduct the current which circulates to the 1st, 2nd, and 3rd input ends (R, S, T), respectively.
  • fourth and fifth currents allowing direct current to flow directly from the common potential end (e) on the primary side to the first, second, and third input ends (R, S, T) can be conducted.
  • a sixth rectifying device D14, D15, D16).
  • -Another aspect of the power factor correction apparatus of the present invention is: (A) first, second and third input terminals (R, S, T) to which three-phase alternating current is input; (B) a positive electrode output terminal (p) and a negative electrode output terminal (n); (C) Each primary coil comprising a primary coil (Lr1, Ls1, Lt1), a first secondary coil (Lr21, Ls21, Lt21) and a second secondary coil (Lr22, Ls22, Lt22) Are connected to the first, second and third input ends (R, S, T), respectively, and the other end of each of the first secondary coils and one end of the second secondary coil are First, second and third transformers (Tr, Ts, Tt) connected to the negative output terminal (n); (D) A current path between the other end of the primary coil (Lr1, Ls1, Lt1) of each of the first, second and third transformers (Tr, Ts, Tt) and the common potential terminal (e) on the primary side.
  • One or a plurality of switching elements having a control end (G) that is on-off controlled to conduct or shut off;
  • E Between the first secondary coil (Lr21, Ls21, Lt21) of each of the first, second and third transformers (Tr, Ts, Tt) and the positive output terminal (p), respectively.
  • First, second, and third rectifier devices that are connected and that respectively conduct current flowing to the positive electrode output when the potential at one end of the first secondary coil is forward biased, and cut off when the potential is reverse biased (D1, D2, D3)
  • D1, D2, D3 First, second, and third rectifier devices that are connected and that respectively conduct current flowing to the positive electrode output when the potential at one end of the first secondary coil is forward biased, and cut off when the potential is reverse biased
  • D1, D2, D3 Between the other end of the second secondary coil (Lr22, Ls22, Lt22) of each of the first, second and third transformers (Tr, Ts, Tt) and the positive output terminal (p).
  • the fourth, fifth, and sixth are respectively connected, and when the potential at the other end of the second secondary coil is forward biased, the currents that flow to the positive output terminal are respectively conducted and when they are reverse biased, respectively.
  • Rectifier devices D1 ', D2', D3 '
  • G a smoothing capacitor
  • C connected between the positive electrode output terminal (p) and the negative electrode output terminal (n);
  • H The control ends of the one or more switching elements are controlled by one control signal having a constant duty ratio.
  • the switching element includes first, second, and third switching elements (Q1, Q2, Q3), and the first, second, and third transformers (Tr, Ts, Tt) Each switching element is connected between the other end of each primary coil (Lr1, Ls1, Lt1) and the common potential end (e) on the primary side.
  • the switching element comprises one switching element (Q), and each of the primary coils (Lr1, Ls1, Lt1) of the first, second and third transformers (Tr, Ts, Tt) ) And the primary common potential terminal (e), the switching element is connected.
  • each primary coil (Lr1, Ls1, Lt1) of each of the first, second and third transformers (Tr, Ts, Tt) from the common potential end (e) on the primary side 7th, 8th, and 9th rectifier devices (D4, D5, D6) that enable conduction of current flowing back to the first, second, and third input terminals (R, S, T) through It is characterized by.
  • seventh which enables conduction of currents directly returning from the common potential terminal (e) on the primary side to the first, second, and third input terminals (R, S, T), It has 8th and 9th rectifier devices (D14, D15, D16).
  • the magnetic coupling between the primary coil (Lr1, Ls1, Lt1) and the first secondary coil (Lr21, Ls21, Lt21) is loosely coupled, and (Lr1, Ls1, Lt1) ) And the second secondary coil (Lr22, Ls22, Lt22) are tightly coupled.
  • an input voltage detection element that detects a three-phase AC input voltage; And determining a duty ratio corresponding to the detected input voltage and generating the control signal having the determined duty ratio.
  • the correspondence relationship between the input voltage and the duty ratio is preset.
  • a simple configuration and control can be realized in a power factor correction apparatus that receives a three-phase alternating current and performs power factor improvement and power conversion, and can insulate the input side from the output side.
  • FIG. 1 is a diagram schematically showing a circuit configuration of a first embodiment of the power factor correction apparatus of the present invention.
  • FIG. 2 is a diagram schematically showing an example of an operation waveform which is a time change of current or voltage at various points in the circuit configuration shown in FIG.
  • FIG. 3 is a diagram schematically showing an example of an operation waveform that is a time change of current or voltage at various points in the circuit configuration shown in FIG. 4A is a diagram showing a current flow during an ON period in the R mode of the circuit configuration shown in FIG. 4B is a diagram showing a current flow during an OFF period in the R mode of the circuit configuration shown in FIG.
  • FIG. 4C is a diagram schematically showing an example of the waveform of each current in FIGS. 4A and 4B.
  • FIG. 5 is a diagram schematically showing a circuit configuration of the second embodiment of the power factor correction apparatus of the present invention.
  • FIG. 6 is a diagram schematically showing a circuit configuration of the third embodiment of the power factor correction apparatus of the present invention.
  • FIG. 7 is a diagram schematically showing a circuit configuration of the fourth embodiment of the power factor correction apparatus of the present invention.
  • FIG. 8 is a diagram schematically showing a circuit configuration of a fifth embodiment of the power factor correction apparatus of the present invention.
  • FIG. 9A is a diagram showing a current flow during an ON period in the R mode of the circuit configuration shown in FIG.
  • FIG. 9A is a diagram showing a current flow during an OFF period in the R mode of the circuit configuration shown in FIG.
  • FIG. 9A is a diagram showing a current flow during an OFF period in the R mode of the circuit configuration shown in FIG.
  • FIG. 9C is a diagram schematically showing an example of the waveform of each current in FIGS. 9A and 9B.
  • FIG. 10 is a diagram schematically and schematically showing a configuration of a power factor correction apparatus including a basic form of a duty ratio controller for a PWM control IC related to the sixth embodiment.
  • FIG. 11 is a graph schematically showing the relationship between the generator output voltage, which is an input in the duty ratio controller, and the duty ratio control voltage, which is an output.
  • FIG. 12 is a graph schematically showing the relationship between the generator output voltage, which is the input voltage of the power factor correction apparatus, and the output voltage when the first resistance element of the duty ratio controller is adjusted.
  • FIG. 10 is a diagram schematically and schematically showing a configuration of a power factor correction apparatus including a basic form of a duty ratio controller for a PWM control IC related to the sixth embodiment.
  • FIG. 11 is a graph schematically showing the relationship between the generator output voltage, which is an input in the duty ratio controller, and the duty
  • FIG. 13 is a diagram schematically showing a power factor correction apparatus including a configuration example of a duty ratio controller for a PWM control IC related to the sixth embodiment.
  • FIG. 14 is a diagram schematically showing a power factor correction apparatus including another configuration example of a duty ratio controller for a PWM control IC related to the sixth embodiment.
  • FIG. 15 is a circuit diagram schematically illustrating a configuration example of the seventh embodiment.
  • FIGS. 16A and 16B are diagrams schematically showing the potential relationship between the on period and the off period in the circuit shown in FIG.
  • FIG. 17 is a circuit diagram schematically illustrating another configuration example of the seventh embodiment.
  • 18A and 18B are diagrams schematically showing a potential relationship between the on period and the off period in the circuit shown in FIG.
  • the power factor correction apparatus of the present invention operates not only for a three-phase AC input but also for a single-phase AC input and a DC input. Will be explained. In each figure, basically the same or similar components are denoted by the same or similar reference numerals.
  • an AC generator for wind power generation includes a three-phase stator coil Y-connected to a rotor that is a permanent magnet.
  • the shaft of the alternator is connected to the shaft of the wind turbine via an appropriate gear.
  • the rotation speed of the windmill is proportional to the wind speed
  • the rotation speed of the AC generator is proportional to the rotation speed of the windmill.
  • the power factor correction apparatus receives the output of the AC generator as described above and outputs DC to the load.
  • the power factor correction device is also a power conversion device that converts three-phase AC power into DC power.
  • the power factor correction apparatus aims to make the waveform of the input current the same sine wave waveform as the input voltage and to make the power factor 1 by matching the phases.
  • the power factor correction apparatus of the present invention has a function of electrically insulating the input side and the output side.
  • the load connected to the output side of the power factor correction apparatus of the present invention is various devices, inverters (including grid-connected inverters), and the like.
  • FIG. 1 is a diagram schematically showing a circuit configuration of a first embodiment of the power factor correction apparatus of the present invention.
  • the three-phase AC power factor correction apparatus according to the first embodiment is provided with three transformers corresponding to each phase in order to insulate the input side and the output side.
  • Each transformer basically has the same configuration as the flyback converter.
  • the primary side of the transformer which is the input side, has a first input terminal R, a second input terminal S, and a third input terminal T, which are three terminals to which three-phase alternating current is input.
  • Each phase of the three-phase alternating current is input from each input terminal.
  • each phase of the three-phase alternating current is referred to as an R phase, an S phase, and a T phase.
  • the phase of each phase differs by 2 ⁇ / 3 (120 °).
  • the secondary side of the transformer which is the output side, has a positive electrode output terminal p and a negative electrode output terminal n which are two terminals from which direct current is output.
  • An output voltage Vo is applied to a load connected between the positive electrode output terminal p and the negative electrode output terminal n, and an output current Io flows from the positive electrode output terminal p to the negative electrode output terminal n through the load.
  • a resistance load is assumed, but the application target is not limited to the resistance load.
  • the three transformers Tr, Ts, and Tt each have one primary coil and one secondary coil, and preferably have the same configuration, that is, the same electromagnetic characteristics.
  • Symbols Lr1, Ls1, and Lt1 indicate primary coils of the transformers
  • symbols Lr2, Ls2, and Lt2 indicate secondary coils of the transformers.
  • the winding start terminal of each coil is indicated by a black circle (the black circle indicates the polarity of the coil).
  • the term “one end” and “the other end” of the coil refers to “winding start terminal” and “winding end terminal”, and also refers to “winding end terminal” and “winding start terminal”. Both are included (the same applies to other embodiments).
  • each transformer primary coil Lr1, Ls1, Lt1 (winding start terminal in this example) is connected to each input end R, S, T of three-phase AC.
  • one end of each of the three switching elements Q1, Q2, and Q3 is connected to the other end (the winding end terminal in this example) of the primary coils Lr1, Ls1, and Lt1 of each transformer.
  • the other end of each switching element Q1, Q2, Q3 is connected to the primary-side common potential end e.
  • Each switching element Q1, Q2, Q3 is on / off controlled so as to conduct or block a current path between the other end of the primary coils Lr1, Ls1, Lt1 and the common potential end e on the primary side.
  • each switching element Q1, Q2, Q3 is provided with a control terminal G for on / off control, and each control terminal is controlled by one common control signal Vg.
  • the control signal Vg has a pulse waveform having a predetermined frequency and duty ratio. That is, switch control is performed so that the three switching elements Q1, Q2, and Q3 are always turned on and off simultaneously.
  • the switching elements Q1, Q2, and Q3 are n-channel MOSFETs (hereinafter referred to as FETs Q1, Q2, and Q3), one end is a drain, the other end is a source, and the control end is a gate G.
  • the control signal Vg is a voltage signal.
  • the MOSFET may be a p-channel type.
  • rectifier devices D4, D5, and D6 are connected for returning the currents flowing through the switching elements Q1, Q2, and Q3 to the primary-side common potential end e to the input side of the three-phase alternating current.
  • These rectifier devices D4, D5, and D6 are connected to the first, second, and third input terminals R, S, and T through the primary coils Lr1, Ls1, and Lt1, respectively, from the common potential terminal on the primary side. To recirculate the current to the
  • the rectifier devices D4, D5, and D6 can perform the same function by the parasitic diodes of the FETs Q1, Q2, and Q3, which are MOSFETs, there is no need for an external rectifier device. However, even in the case of a MOSFET, it is preferable to provide a preferential current path by externally attaching a rectifying element having a low forward voltage.
  • the switching elements Q1, Q2, and Q3 are other than MOSFETs, for example, in the case of an IGBT or a bipolar transistor, an external rectifier device is essential. The external rectifier device is connected in antiparallel (in parallel with the parasitic diode) to the main current of the switching element.
  • the rectifying devices D4, D5, and D6 are referred to as “freewheeling diodes”.
  • each of the rectifying devices D1, D2, and D3 is connected to the other end of each of the secondary coils Lr2, Ls2, and Lt2 of each transformer, and the other ends of the rectifying devices D1, D2, and D3 are connected to the positive output terminal p. It is connected. Therefore, the potentials of the other ends of the secondary coils Lr2, Ls2, and Lt2 of the transformers are respectively applied to one ends of the rectifying devices D1, D2, and D3.
  • Each rectifying device D1, D2, D3 conducts current flowing from the other end of the secondary coil Lr2, Ls2, Lt2 of each transformer to the positive output terminal p when forward biased, and cuts off when reverse biased. .
  • the rectifying devices D1, D2, and D3 basically correspond to output diodes of the flyback converter. Hereinafter, it is referred to as “output diode”. An output diode that has a small forward voltage drop and that operates at high speed is suitable.
  • One end of each of the secondary coils Lr2, Ls2, and Lt2 of each transformer is connected to a negative output terminal n that is a secondary common potential terminal.
  • the control unit 1 has at least an element that detects a three-phase AC input voltage Vi, and preferably has an element that detects an output voltage Vo for feedback control. Furthermore, it has the element which produces
  • the element that detects the input voltage Vi obtains a current obtained by rectifying an AC input current from each of the first, second, and third input terminals R, S, and T through the rectifier devices D7, D8, and D9, respectively. Then, processing such as averaging them is performed to obtain the input voltage Vi.
  • the input voltage Vi may be any of an effective value, a maximum value, and an average value (absolute value) of the three-phase AC input, and may be any parameter that can evaluate the amplitude of the input voltage.
  • rectifier device includes a rectifier circuit equivalent to a diode in addition to a diode.
  • the element that detects the output voltage Vo acquires the voltage between the positive output terminal p and the negative output terminal n. Since the present invention aims to insulate the input side and output side of the power factor correction apparatus, the feedback signal of the output voltage Vo is electrically insulated via the photocoupler PC and input to the control unit 1. It is preferable.
  • the position of the photocoupler PC is not limited to the example shown in the figure, and may be any one on the path between the output terminals p and n and the control terminal G of the switching element.
  • the element that generates the control signal Vg determines a predetermined duty ratio of the control signal Vg based on the detected input voltage Vi or based on the detected input voltage Vi and output voltage Vo. Further, the control signal Vg is generated based on the determined one duty ratio.
  • a PWM circuit or a PWM element is used. For example, by inputting a DC signal corresponding to one determined duty ratio and a carrier triangular wave signal having a constant frequency to the comparator, a pulsed control signal Vg having a constant duty ratio is output. In the present invention, such a control signal Vg is referred to as a “control signal having a constant duty ratio”.
  • ⁇ Operation of First Embodiment> 2 and 3 are diagrams schematically showing examples of operation waveforms that are changes with time in current or voltage at various points in the circuit configuration shown in FIG.
  • FIG. 2 (a) is a diagram showing the time change of the input voltage of each phase of the three-phase AC.
  • the voltage of each phase is shown by vr, vs, vt.
  • the voltage of each phase indicates a neutral point (center of Y-connection) as a reference potential.
  • the locus of the lowest potential among the potentials of the first, second, and third input terminals R, S, and T is indicated by a thick line in FIG. In this way, the phase having the lowest potential is sequentially changed every 120 °.
  • each mode is referred to as “R mode”, “S mode”, and “T mode” by taking the name of the phase having the lowest potential.
  • the potential of the first input terminal R is the lowest
  • the potential of the second input terminal S is higher than the potential of the third input terminal T in the first half of the R mode
  • the potential of the third input terminal T in the second half of the R mode is higher than the potential of the second input terminal S.
  • FIG. 2B shows an example of the input voltage Vi. For example, a voltage obtained by half-rectifying a three-phase alternating current is averaged.
  • FIG. 2C, 2D, and 2E show voltages v (Lr1), v (Ls1), and v (Lt1) applied to one ends of the primary coils Lr1, Ls1, and Lt1 of each transformer by a three-phase AC input, respectively.
  • FIG. Each voltage in this case shows the locus line of the lowest potential shown in FIG. 2A as a reference potential. Therefore, in the mode in which the connected input terminal is at the lowest potential, the voltage applied to one end of the primary coil is zero. In other modes, the line voltage between the connected input terminal and the input terminal at the lowest potential is Is applied to one end of the primary coil.
  • the voltage v (Lr1) at one end of the primary coil Lr1 of the transformer Tr is zero.
  • a voltage v (Ls1) at one end of the primary coil Ls1 of the transformer Ts is a line voltage vsr between the second input terminal S and the first input terminal R.
  • a voltage v (Lt1) at one end of the primary coil Lt1 of the transformer Tt is a line voltage vtr between the third input terminal T and the first input terminal R.
  • the voltage v (Lr1) at one end of the primary coil Lr1 of the transformer Tr is the line voltage between the first input end R and the second input end S. vrs.
  • the voltage v (Ls1) at one end of the primary coil Ls1 of the transformer Ts is zero.
  • a voltage v (Lt1) at one end of the primary coil Lt1 of the transformer Tt is a line voltage vts between the third input terminal T and the second input terminal S.
  • the voltage v (Lr1) at one end of the primary coil Lr1 of the transformer Tr is the line voltage between the first input terminal R and the third input terminal T.
  • vrt A voltage v (Ls1) at one end of the primary coil Ls1 of the transformer Ts is a line voltage vst between the second input terminal S and the third input terminal T.
  • the voltage v (Lt1) at one end of the primary coil Lt1 of the transformer Tt is zero.
  • FIG. 2 (f) shows an example of the output voltage Vo. It becomes almost direct current by the action of the smoothing capacitor C (ripple is ignored).
  • FIG. 3A shows the control signal Vg transmitted from the control unit 1 to the gate G of each FET.
  • the control signal Vg has a frequency of several kHz to several hundred kHz, and is generated based on a fixed duty ratio determined by the control unit 1. Note that the frequency of the three-phase AC input is sufficiently lower than the control signal Vg. For example, in the case of an AC generator for wind power generation, it is about several Hz to 100 Hz.
  • FIGS. 3B and 3C show current waveforms of the primary coil Lr1 and the secondary coil Lr2 of the transformer Tr
  • FIGS. 3D and 3E show currents of the primary coil Ls1 and the secondary coil Ls2 of the transformer Ts.
  • Waveforms, FIGS. 3F and 3G show current waveforms of the primary coil Lt1 and the secondary coil Lt2 of the transformer Tt.
  • FIG. 3 only the input current on the primary side and the flyback current, which is the main current on the secondary side that flows due to the input current, are shown. That is, in each transformer, current flowing in a mode in which a potential other than the lowest potential is applied to one end of the primary coil is shown. The operation differs in the mode in which one end of the primary coil is at the lowest potential, and will be described in detail later with reference to FIGS. 4A, 4B, and 4C.
  • the FETs Q1, Q2, and Q3 are turned off, and the current paths of the primary coils Lr1, Ls1, and Lt1 of each transformer are cut off, so that the current becomes zero, while the secondary coils Lr2, A counter electromotive force is generated in Ls2 and Lt2, the output diode becomes forward biased, and a flyback current flows.
  • the current waveform flowing through the secondary coils Lr2, Ls2, and Lt2 becomes a sine wave whose phase matches the voltage waveform of the input terminal when following the envelope.
  • FIG. 3 (h) shows an example of the output current Io flowing through the load.
  • the currents flowing through the secondary coils shown in FIGS. 3C, 3E, and 3G are added and output to the positive output terminal. It becomes almost direct current by the action of the smoothing capacitor C (ripple is ignored).
  • FIGS. 4A, 4B, and 4C a part of the circuit configuration of FIG. 1 is omitted.
  • 4A corresponds to the ON period in the R mode (the first input terminal R is the lowest potential)
  • FIG. 4B corresponds to the OFF period in the R mode.
  • FIG. 4C shows an example of a current waveform flowing through the primary coil and the secondary coil in one cycle of the control signal Vg. Since the S mode and the T mode are the same, they are omitted.
  • FIG. 4A shows a current flow in the ON period in the R mode.
  • a dotted line with an arrow indicates the flow of the main current.
  • a two-dot chain line with an arrow indicates a secondary current generated by the reflux current.
  • An input current itr1 flows through the primary coil Lt1 of the transformer Tt due to the line voltage vtr.
  • the path of the input current itr1 is the third input terminal T ⁇ the primary coil Lt1 ⁇ the FET Q3 ⁇ the FET Q1 (or the free wheel diode D4) ⁇ the primary coil Lr1 ⁇ the first input terminal R.
  • the input current flowing during this ON period becomes an exciting current, and magnetic energy is accumulated in the transformers Ts and Tt. During this time, a discharge current flows from the smoothing capacitor C to the load. At this point, it is assumed that the smoothing capacitor C is already in a steady state and charged.
  • a reflux current (isr1 + itr1) flows through the primary coil Lr1 of the transformer Tr.
  • the direction of the return current is opposite to the input current. Due to this return current, an electromotive force is generated in the secondary coil Lr2, and the output diode D1 becomes forward biased with respect to the potential at the other end of the secondary coil Lr2.
  • the forward current irr2 flows through the secondary coil Lr2.
  • the power factor correction apparatus of this embodiment is basically a flyback converter, but a secondary forward current also flows in this way. The forward current of the secondary coil flows during the ON period in a mode in which one end of the primary coil is at the lowest potential.
  • FIG. 4B shows a current flow in the off period in the R mode.
  • a dotted line with an arrow indicates the flow of the main current.
  • the output diode D2 Due to the counter electromotive force generated in the secondary coil Ls2 of the transformer Ts, the output diode D2 becomes forward biased with respect to the potential of the other end of the secondary coil Ls2, and the flyback current isr2 flows.
  • the path is secondary coil Ls2 ⁇ output diode D2 ⁇ load (or smoothing capacitor C) ⁇ secondary coil Ls2.
  • the output diode D3 Due to the counter electromotive force generated in the secondary coil Lt2 of the transformer Tt, the output diode D3 becomes forward biased with respect to the potential of the other end of the secondary coil Ls1, and the flyback current itr2 flows.
  • the path is secondary coil Lt2 ⁇ output diode D3 ⁇ load (or smoothing capacitor C) ⁇ secondary coil Lt2.
  • FIG. 4C schematically shows a waveform of one cycle of the control signal Vg in the R mode and waveforms of currents flowing through the primary coils Lr1, Ls1, Lt1 and the secondary coils Lr2, Ls2, Lt2 of each transformer. Although the description is omitted, the same applies to the S mode and the T mode.
  • the duty ratio of the control signal Vg is represented by the ratio of the on-time length Ton to the length T of one cycle.
  • the currents isr1 and itr1 of the primary coils Ls1 and Lt1 of the transformers Ts and Tt increase with time.
  • the currents isr2 and itr2 of the secondary coils Ls2 and Lt2 decrease with time.
  • the average value of the current isr1 of the primary coil Ls1 in one cycle is Isr1
  • the instantaneous value (value at the start of one cycle) of the line voltage vsr is Vsr
  • the inductance of the primary coil Ls1 is L.
  • Isr1 Vsr / L ⁇ ( ⁇ is the frequency of the control signal Vg) It becomes.
  • This equation indicates that the current flowing through the primary coil becomes a sine wave having the same phase as the input voltage.
  • the current flowing through the secondary coil also becomes a sine wave having the same phase as the input voltage. Therefore, the power factor becomes 1 and the power factor is improved.
  • the main output current in the R mode is a flyback current during the off period of the transformers Ts and Tt, and is the sum of the current isr2 and the current itr2 flowing through the secondary coils Ls2 and Lt2.
  • the output current in the R mode is also obtained by a forward current during the on period of the transformer Tr, which is a current irr2 flowing through the secondary coil Lr2. Therefore, in this embodiment, an output current is obtained in both the on period and the off period.
  • FIG. 5 is a diagram schematically showing a circuit configuration of a second embodiment of the power factor correction apparatus of the present invention. Only a configuration different from the above-described first embodiment will be described.
  • the free wheel diodes D14, D15, and D16 are provided instead of the free wheel diodes D4, D5, and D6 in the first embodiment shown in FIG.
  • the anodes of the free-wheeling diodes D14, D15, and D16 are connected to the common potential end e on the primary side, and each cathode is one end of each of the primary coils Lr1, Ls1, and Lt1 of each transformer, that is, the first input end R and the second input.
  • the terminal S is connected to the third input terminal T, respectively.
  • a dotted line with an arrow indicates the current flow during the ON period of the R mode.
  • the return current on the primary side is directly input to the first input end R, the second input end S, and the third input by the return diodes D14, D15, and D16 without passing through the primary coils Lr1, Ls1, and Lt1.
  • the current flowing through the primary coils Lr1, Ls1, and Lt1 is reduced as compared with the first embodiment, so that magnetic saturation is difficult.
  • the forward current during the on period obtained in the first embodiment cannot be obtained.
  • FIG. 6 is a diagram schematically showing a circuit configuration of a third embodiment of the power factor correction apparatus of the present invention. Only a configuration different from the above-described first embodiment will be described.
  • the three switching elements Q1, Q2, and Q3 in the first embodiment of FIG. 1 are combined into one switching element Q.
  • the switch control of the boost converter for each phase of the three-phase AC input is performed by one common control signal, so that the switching elements can be combined into one. Thereby, the cost of a switching element can be reduced.
  • an n-channel MOSFET hereinafter referred to as FETQ
  • a p-channel MOSFET or another switching element may be used.
  • the anodes of the three diodes D17, D18, and D19 are connected to the other ends of the primary coils Lr1, Ls1, and Lt1, respectively, and the cathodes are connected to the drain of the FETQ.
  • the diodes D17, D18, and D19 are connected in the forward direction with respect to the input current during the ON period.
  • the source of the FETQ is connected to the common potential end e on the primary side.
  • the free-wheeling diodes D4, D5, and D6 the anodes are connected to the common potential end e as in the first embodiment, and the cathodes are connected to the other ends of the primary coils Lr1, Ls1, and Lt1, respectively.
  • a dotted line with an arrow indicates the current flow during the ON period of the R mode.
  • the primary side input current flows from the other end of the primary coil to the FET Q through the diodes D17, D18, and D19.
  • the free-wheeling diodes D4, D5, and D6 for each phase are required even for the MOSFET.
  • the forward current irr2 flows to the secondary coil Lr2 as in the first embodiment. , And output through the output diode D1.
  • FIG. 7 is a diagram schematically showing a circuit configuration of a fourth embodiment of the power factor correction apparatus of the present invention.
  • the fourth embodiment employs the freewheeling diodes D14, D15, and D16 shown in the second embodiment in the configuration in which the switching control of the boost converter is performed by the single switching element Q shown in the third embodiment. It is.
  • the cost of the switching element can be reduced.
  • the return current on the primary side is directly applied to the first input end R, the second input end S, and the third input end T by the return diodes D14, D15, and D16 without passing through the primary coils Lr1, Ls1, and Lt1, respectively. Return to the three-phase AC power source. As a result, the current flowing through the primary coils Lr1, Ls1, and Lt1 is reduced as compared with the first embodiment, so that magnetic saturation is difficult.
  • the dotted line with the arrow indicates the current flow during the R mode on period.
  • the forward current during the on period obtained in the first embodiment cannot be obtained.
  • FIG. 8 is a diagram schematically showing a circuit configuration of a fifth embodiment of the power factor correction apparatus of the present invention.
  • the three transformers corresponding to the respective phases have functions of both a forward converter and a flyback converter.
  • the transformer of each phase includes a primary coil L1, a first secondary coil L21, and a second secondary coil L22.
  • the primary coil L1 of each transformer is denoted by Lr1, Ls1, and Lt1
  • the first secondary coil L21 is denoted by Lr21, Ls21, as shown in FIG.
  • the second secondary coil L22 is indicated by Lt21, and Lr22, Ls22, and Lt22.
  • the primary coil L1 and the first secondary coil L21 are preferably loosely coupled, and the primary coil L1 and the second secondary coil L22 are preferably tightly coupled.
  • the coupling coefficient of the magnetic coupling between the two coils wound around the transformer is not 1, and not all the magnetic flux emitted from the primary coil L1 is passed through the secondary coil L2, but a part of the magnetic flux To leak. Therefore, although the voltage ratio due to mutual induction is not determined only by the turn ratio, it is not the essence of the present invention.
  • a gap is provided in the core of the transformer, or the primary coil and the secondary coil are separated and wound.
  • the coupling coefficient of magnetic coupling between two coils wound around a transformer is 1. In order to make the two coils tightly coupled, lap winding is performed so as not to generate leakage magnetic flux.
  • each transformer Tr, Ts, Tt Since the configuration of the primary side of each transformer Tr, Ts, Tt is the same as that of the first embodiment, description thereof is omitted.
  • the primary side configuration of each of the transformers Tr, Ts, and Tt may be the primary side configuration in each of the second, third, and fourth embodiments described above.
  • An output diode D1 is connected between one end of the first secondary coil L21 (in this example, the winding start terminal) and the positive electrode output terminal p.
  • the anode of the output diode D1 is connected to one end of the first secondary coil L21, and the cathode is connected to the positive electrode output terminal p.
  • the other end of the first secondary coil L21 is connected to the negative output end n.
  • the output diode D2 is connected between the other end of the second secondary coil L22 (in this example, the winding end terminal) and the positive output end p.
  • the anode of the output diode D2 is connected to the other end of the second secondary coil L22, and the cathode is connected to the positive electrode output terminal p.
  • One end of the second secondary coil L22 is connected to the negative output end n.
  • the output diodes D1 and D2 are turned on when a forward bias voltage is applied, and are blocked against the reverse bias.
  • a smoothing capacitor C is connected between the positive output terminal p and the negative output terminal n.
  • a load is connected between these output terminals p and n.
  • FIGS. 9A, 9B, and 9C ⁇ Operation of Fifth Embodiment>
  • the operation of the power factor correction apparatus in the circuit configuration of FIG. 8 will be described with reference to FIGS. 9A, 9B, and 9C.
  • 9A and 9B a part of the circuit configuration of FIG. 8 is omitted.
  • 9A corresponds to the ON period in the R mode (the first input terminal R is the lowest potential)
  • FIG. 9B corresponds to the OFF period in the R mode.
  • FIG. 9C shows an example of a current waveform flowing through the primary coil and the secondary coil in one cycle of the control signal. Since the S mode and the T mode are the same, they are omitted. Further, illustration and description of the charging / discharging current of the smoothing capacitor C are omitted.
  • FIG. 9A shows a current flow in the ON period in the R mode.
  • a dotted line with an arrow indicates the flow of the main current.
  • a two-dot chain line with an arrow indicates a secondary current generated by the reflux current.
  • the input current isr1 flows through the primary coil Ls1 of the transformer Ts due to the line voltage vsr.
  • the path of the input current isr1 is the second input terminal S ⁇ the primary coil Ls1 ⁇ the FET Q2 ⁇ the FET Q1 (or the freewheeling diode D4) ⁇ the primary coil Lr1 ⁇ the first input terminal R.
  • An input current itr1 flows through the primary coil Lt1 of the transformer Tt due to the line voltage vtr.
  • the path of the input current itr1 is the third input terminal T ⁇ the primary coil Lt1 ⁇ the FET Q3 ⁇ the FET Q1 (or the free wheel diode D4) ⁇ the primary coil Lr1 ⁇ the first input terminal R.
  • a reflux current (isr1 + itr1) flows through the primary coil Lr1 of the transformer Tr.
  • the direction of the return current is opposite to the input current. Due to this return current, an electromotive force is generated in the second secondary coil Lr22 so that the output diode D1 'is forward biased, so that a secondary forward current irr2 flows in the second secondary coil Lr22.
  • the path of the forward current irr2 is the second secondary coil Lr22 ⁇ the output diode D1 ′ ⁇ the load ⁇ the second secondary coil Lr22.
  • the electromotive force generated in the first secondary coil Lr21 is reverse-biased with respect to the output diode D1, the output diode D1 does not conduct.
  • magnetic energy is accumulated in the transformer Tr by being excited by the reflux current during the ON period.
  • the forward current flows to the secondary side of both the two transformers in which the input current flows during the on period and the one transformer in which the return current flows during the on period.
  • the former two transformers output a forward current from the first secondary coil, but the latter one transformer differs in that a forward current is output from the second secondary coil.
  • FIG. 9B shows a current flow in the off period in the R mode.
  • a dotted line with an arrow indicates the flow of the main current.
  • a two-dot chain line with an arrow indicates a secondary current.
  • the output diode D2 ' is forward biased by the back electromotive force generated in the second secondary coil Ls22 of the transformer Ts, and the flyback current isr2 flows.
  • the path of the flyback current isr2 is second secondary coil Ls22 ⁇ output diode D2 ′ ⁇ load (or smoothing capacitor C) ⁇ second secondary coil Ls22.
  • the output diode D2 does not conduct.
  • the output diode D3 'becomes forward biased by the back electromotive force generated in the second secondary coil Lt22 of the transformer Tt, and the flyback current itr2 flows.
  • the path of the flyback current isr2 is second secondary coil Lt22 ⁇ output diode D3 ′ ⁇ load ⁇ second secondary coil Lt22.
  • the output diode D3 does not conduct.
  • the output diode D1 is forward-biased by the back electromotive force generated in the first secondary coil Lr21 of the transformer Tr, and the flyback current irr2 flows.
  • the path of the flyback current irr2 is first secondary coil Lr21 ⁇ output diode D1 ⁇ load ⁇ first secondary coil Lr21.
  • the output diode D1' does not conduct.
  • flyback current flows through the secondary coil in any transformer during the off period.
  • the flyback current of each transformer in the off period is output from the other secondary coil different from the secondary coil that outputs the forward current in the on period.
  • the secondary forward current and flyback current obtained from the transformer Tr in the R mode are due to the return current flowing on the primary side during the ON period. Therefore, when the second embodiment and the fourth embodiment described above are employed in the configuration on the primary side of the transformer, the secondary current cannot be obtained from the secondary coil because the return current bypasses the primary coil. .
  • FIG. 9C shows the waveform of one cycle of the control signal Vg, and the primary coils Lr1, Ls1, and Lt1 and secondary coils Lr21 and Lr22, secondary coils Ls21 and Ls22, and secondary coils Lt21 and Lt22 in the R mode.
  • the example of the waveform of an electric current is shown typically.
  • the duty ratio of the control signal Vg is represented by the ratio of the on-time length Ton to the length T of one cycle.
  • the currents isr1 and itr1 of the primary coils Ls1 and Lt1 increase with the passage of time.
  • the primary coil Lr1 has the opposite polarity but the absolute value increases.
  • the current irr2 of the secondary coil Lr22 and the currents isr2 and itr2 of the secondary coils Ls21 and Lt21 also increase with time.
  • the current irr2 of the secondary coil Lr21 and the currentsr2 and itr2 of the secondary coils Ls22 and Lt22 decrease with time.
  • the average value of the current isr1 of the primary coil Ls1 in one cycle Isr1
  • the instantaneous value (value at the start of one cycle) of the line voltage vsr is Vsr
  • the inductance of the primary coil Ls1 is L.
  • Isr1 Vsr / L ⁇ ( ⁇ is the frequency of the control signal Vg) It becomes.
  • This equation indicates that the current flowing through the primary coil becomes a sine wave having the same phase as the input voltage.
  • the current flowing through the secondary coil also becomes a sine wave having the same phase as the input voltage. Therefore, the power factor becomes 1 and the power factor is improved.
  • a forward current is output from each transformer during the ON period
  • a flyback current is output from each transformer during the OFF period. The same applies to the S mode and the T mode.
  • Control Method in Power Factor Improvement Device is characterized in that, in the switch control of the boost converter, one having a constant duty ratio with respect to the input voltage of each phase of the three-phase alternating current. Control is performed using only control signals. That is, all phases are turned on and off at the same timing, and the on time and off time are constant. Therefore, the control unit need only determine the duty ratio.
  • the method for determining the duty ratio is not limited to one, and various determination methods are possible depending on the purpose.
  • the parameter detected for determining the duty ratio may be only the input voltage Vi.
  • the output voltage Vo is detected in addition to the input voltage Vi.
  • various controls can be performed based on the detected one or two parameters.
  • the sixth embodiment relates to a duty ratio controller for controlling the duty ratio of the control signal in the power factor correction apparatus described above, that is, the output signal of the PWM control IC.
  • a PWM control IC is used as the control unit of the switching element in the power factor correction apparatus.
  • the input voltage (generator output voltage) vi and the output voltage Vo are proportional to each other, and are expressed by the following equations.
  • the slope, which is a proportional coefficient, is a function having the duty ratio D of the control signal vp as a variable, and is represented by M (D).
  • Vo M (D) ⁇ vi Equation (1)
  • PWM control ICs are well known and various types are commercially available. As a configuration common to general PWM control ICs, a cs terminal to which a duty ratio control voltage Vcs is input, an out terminal that outputs a PWM control signal having a predetermined duty ratio, and an output voltage Vo of the power factor correction device are stabilized. An fb terminal for feedback is provided.
  • duty ratio controller another control unit for generating the duty ratio control voltage Vcs to be input to the PWM control IC.
  • the function f here is used to show that vi and Vcs have a predetermined relationship corresponding to one-to-one.
  • the duty ratio controller also has a function of determining the cut-in voltage.
  • the output fluctuation is large, and therefore complicated control is performed for switch control of the power factor correction device.
  • MPPT maximum power point tracking
  • the duty ratio controller that realizes the above configuration increases the circuit scale. If a duty ratio controller having a large circuit scale is provided together with the power factor correction device, the entire power conversion system of the generator is increased in size and cost. In the case of the table method, data setting performed in advance is extremely complicated. It can be said that a simple configuration and control are desirable for an AC generator power factor correction apparatus in the field of utilizing natural energy.
  • You may want to In this case, according to the above equations (1) to (3), it is necessary to change the function f of Vcs f (vi) in the duty ratio controller.
  • the table method a plurality of tables are required. Adding such a function to the duty ratio controller further complicates the configuration of the duty ratio controller.
  • the sixth embodiment includes a duty ratio controller that can adjust the duty ratio control voltage input to the cs terminal of the PWM control IC combined with the power factor correction apparatus with a simple configuration.
  • the power factor correction apparatus can be realized in a compact and low-cost manner.
  • FIG. 10 schematically illustrates the configuration of a power factor correction apparatus including a basic configuration of a duty ratio controller for a PWM control IC related to the sixth embodiment. It is the figure shown typically.
  • the generator 100 is, for example, an AC generator for wind power generation.
  • the generator output voltage vi is an effective value of a three-phase AC phase voltage or a line voltage or a value proportional to these.
  • the PWM control IC 1 is configured to output from the out terminal a control signal vp having a duty ratio D proportional to the duty ratio control voltage Vcs input to the cs terminal.
  • a control signal vp having a duty ratio D proportional to the duty ratio control voltage Vcs input to the cs terminal.
  • a high frequency carrier triangular wave voltage and a duty ratio control voltage Vcs are input to a comparator, and an output pulse signal of the comparator is obtained as a control signal vp.
  • the relationship between the duty ratio D and the duty ratio control voltage Vcs is as shown in the above equation (2).
  • the power factor correction device is the one shown in each embodiment described above.
  • the load 103 is various devices, inverters (including grid interconnection inverters), and the like.
  • the relationship between the generator output voltage vi, which is the input voltage of the power factor correction apparatus, and the output voltage Vo is expressed by a linear function having a slope M (D), as shown in the above-described equation (1).
  • the slope M (D) changes.
  • the duty ratio controller 7 of the sixth embodiment detects the generator output voltage vi and inputs it, and outputs the duty ratio control voltage Vcs.
  • the duty ratio control voltage Vcs is input to the cs terminal of the PWM control IC.
  • the duty ratio controller 7 has a voltage detection unit 71 that generates a DC detection voltage Vi based on the detected generator output voltage vi.
  • the DC detection voltage Vi is basically generated so as to be proportional to the generator output voltage vi.
  • the duty ratio controller 7 has a current path through which the current i can flow between the DC detection voltage Vi and the ground potential. At least two resistance elements having a substantially serial connection relationship are inserted in the current path. As the DC detection voltage Vi increases or decreases, the current flowing through the current path also increases or decreases. Of the two resistance elements, one is a first resistance element Rv which is a variable resistance element, and the other is a second resistance element Rcs having a constant resistance value. A voltage generated between both ends of the second resistance element Rcs by the current i is given to the cs terminal of the PWM control IC 1 as the duty ratio control voltage Vcs.
  • Vi B ⁇ vi (B is a predetermined proportional coefficient)
  • i Vi / (Rv + Rcs)
  • Vcs i ⁇ Rcs Equation (7)
  • the magnitude of the duty ratio control voltage Vcs that is, the duty ratio D corresponding thereto can be adjusted by adjusting the first resistance element Rv. it can.
  • the slope M (D) of the output voltage Vo with respect to the input voltage (generator output voltage) vi of the power factor correction apparatus can be changed by adjusting the first resistance element Rv.
  • FIG. 11 is a graph schematically showing the relationship between the generator output voltage vi that is the input to the duty ratio controller 7 and the duty ratio control voltage Vcs that is the output based on the equations (5), (6), and (7). is there.
  • the resistance value of the first resistance element Rv is large, the linear function changes along the straight line g1, and when the resistance value is small, the linear function changes along the straight line g2.
  • the generator output voltage vi usually varies greatly. For example, when the generator output voltage vi changes within a range of ⁇ vi, when the first resistance element Rv is large, the duty ratio control voltage Vcs changes within the range of ⁇ Vcs (large), and when the first resistance element Rv is small. The duty ratio control voltage Vcs changes within a range of ⁇ Vcs (small).
  • vcin which is one point of the generator output voltage vi, indicates a cut-in voltage at which power extraction is started in wind power generation (power conversion by the power factor correction device is started). Since power extraction is not performed below the cut-in voltage vcin, the straight lines g1 and g2 are chain lines.
  • the duty ratio controller 7 can be configured to operate only in the range of the cut-in voltage vcin or higher.
  • a specific example of this configuration will be described with the configuration shown in FIGS. 13 and 14 to be described later.
  • FIG. 12 schematically shows the relationship between the generator output voltage vi and the output voltage Vo, which is the input voltage of the power factor correction apparatus, when the first resistance element Rv of the duty ratio controller 7 is adjusted as shown in FIG. It is the graph shown in.
  • the function of the slope M (D) of vi and Vo is set to 1 / (1-D) in order to simplify the explanation.
  • the duty ratio D also changes accordingly.
  • vi and Vo in the boost converter when the duty ratio D is a constant value of 0.25, 0.5, and 0.7 is indicated by a one-dot chain line in the graph of FIG.
  • the relationship between the input voltage vi and the output voltage Vo of the power factor correction device changes along the straight line D1 when the resistance value of the first resistance element Rv shown in FIG. 10 is large and along the straight line D2 when the resistance value is small. Is a linear function.
  • the generator output voltage vi changes in the range of ⁇ vi
  • the output voltage Vo changes in the range of ⁇ Vo: Rv (large) when the first resistance element Rv shown in FIG. 10 is large.
  • the duty ratio D changes in the range of 0.25 to 0.5.
  • the first resistance element Rv is small
  • the output voltage Vo changes in the range of ⁇ Vo: Rv (small).
  • the duty ratio D changes in the range of 0.5 to 0.7.
  • the relationship between the input voltage vi and the output voltage Vo of the power factor correction apparatus can be changed.
  • a complicated and large-scale control unit is required.
  • one variable resistance element is used. Since the adjustment can be performed only by adjusting the distance, it can be realized with a very simple configuration. Although it cannot be set freely, it has sufficient practicality and ease of operation, and the power conversion system can be made compact and low cost.
  • FIG. 13 is a diagram schematically showing a power factor correction apparatus including the duty ratio controller 7A of the first configuration example of the sixth embodiment.
  • the output voltage Vo is fed back to the feedback terminal fb of the PWM control IC1.
  • the output of the generator 1 is a three-phase alternating current.
  • the voltage detector 71 which is the input stage of the duty ratio controller 7A, detects the generator output voltage vi and generates a DC detection voltage Vi that is proportional to the generator output voltage vi.
  • the AC voltage is half-wave rectified from each phase line of three-phase AC via the diodes D4, D5, and D6, respectively, and added to obtain the DC detection voltage Vi.
  • the configuration of the voltage detection unit 71 is not limited to the illustrated example, and any configuration may be used as long as it generates a DC detection voltage Vi that is proportional to the generator output voltage vi.
  • a collector resistor R31 is connected between the cathodes of the diodes D4, D5, and D6 and the collector of the transistor Q31 (n-type), and a bias resistor R33 is connected between the base and the base.
  • An emitter resistor R32 and a capacitor C are connected in parallel between the emitter of the transistor Q31 and the cathode of the Zener diode Z31.
  • the anode of the Zener diode Z31 is set to the ground potential.
  • the base of the transistor Q31 is connected to the anode of the diode D31.
  • the cathode of the diode D31 is connected to the power source Vcc of the duty ratio controller 7.
  • the first variable resistor Rv1 is connected between the emitter of the transistor Q31 and the emitter of the transistor Q32 (p-type).
  • the first variable resistor Rv1 is for adjusting the slope of the input voltage (generator output voltage) vi and the output voltage Vo of the power factor correction apparatus, and is set to a predetermined value.
  • a resistor R34 and a Zener diode Z32 are connected in parallel between the collector of the transistor Q32 and the ground potential.
  • the base of the transistor Q32 is connected to the intermediate terminal of the second variable resistor Rv2.
  • the second variable resistor Rv2 is for setting the cut-in voltage vcin and is set to a predetermined value.
  • a diode D32 is connected between the base and emitter of the transistor Q32.
  • the second variable resistor Rv2 is connected between the power source Vcc and the cathode of the Zener diode Z31.
  • the base of the transistor Q33 (n-type) is connected to the collector of the transistor Q32, and the collector is connected to the power source Vcc.
  • a resistor Rcs is connected between the emitter of the transistor Q33 and the ground potential.
  • the emitter of the transistor Q33 is connected to the cs terminal of the PWM control IC1.
  • a diode D33 is connected between the base and emitter of the transistor Q33.
  • the generator output voltage vi that is, the DC detection voltage Vi is 0 V
  • a current flows through the current path of the power source Vcc ⁇ second variable resistor Rv2 ⁇ zener diode Z31 ⁇ ground.
  • the potential at the point d which is the intermediate terminal of the second variable resistor Rv2 becomes a predetermined potential that is a divided potential of the power source Vcc.
  • the d-point potential is set so as to correspond to the cut-in voltage vcin of the generator output voltage vi.
  • the current Vcc ⁇ the intermediate terminal of the second variable resistor Rv2 (point d) ⁇ the diode D32 ⁇ the first variable resistor Rv1 ⁇ the transistor Q31 emitter (point a) ⁇ the resistor R32 ⁇ the Zener diode Z31 ⁇ the current also flows in the ground current path.
  • the potential at the point a that is the emitter of the transistor Q31 becomes a predetermined divided potential of the power source Vcc.
  • the b-point potential at the base of the transistor Q31 is the DC detection voltage Vi.
  • the level of the potential at each point is as follows.
  • the transistor Q31 is non-conductive because the potential at the point b is lower than the potential at the point a.
  • Transistor Q32 is also non-conductive because the potential at point c is lower than the potential at point d.
  • Transistor Q33 is also non-conductive unless transistor Q32 is conductive.
  • the diode D31 has a reverse bias, the diode D32 has a forward bias, and the Zener diode Z31 has a breakdown voltage. As the DC detection voltage Vi increases from 0V, the potential at the point b increases.
  • transistor Q31 becomes conductive. Accordingly, the current i1 flows through the current path of the resistor R31 ⁇ the transistor Q31 ⁇ the resistor R32 ⁇ the Zener diode Z31 ⁇ the ground by the DC detection voltage Vi.
  • the point a potential is approximately a divided potential determined by the resistor R31, the resistor R32, and the Zener diode Z32 to which the DC detection voltage Vi is applied.
  • the level of the potential at each point at this time is as follows. a point ⁇ b point ⁇ c point ⁇ d point ⁇ Vcc As the DC detection voltage Vi further increases, both the point a potential and the point b potential rise.
  • Transistor Q32 is non-conductive until at least the point a potential and the point c potential are higher than the point d potential.
  • the current i3 flows in the current path of the power source Vcc ⁇ the transistor Q33 ⁇ the resistor Rcs ⁇ the ground.
  • a voltage across the resistor Rcs is generated, and the duty ratio control voltage Vcs is input to the cs terminal of the PWM control IC1.
  • the PWM control IC 1 is started, and power extraction by the power factor correction apparatus is started.
  • the level of the potential at each point at this time is as follows. d point ⁇ c point ⁇ a point ⁇ b point ⁇ Vcc
  • the intermediate terminal of the second variable resistor Rv2, that is, the potential at the point d is set so that the generator output voltage vi when the transistors Q32 and Q33 are turned on corresponds to the cut-in voltage vcin.
  • the generator output voltage vi that is, the DC detection voltage Vi
  • the currents i1, i2, and i3 increase and decrease, respectively. Accordingly, the duty ratio control voltage Vcs is also increased or decreased.
  • Adjustment of Duty Ratio Control Voltage Vcs By adjusting the resistance value of the first variable resistor Rv1, the current i2 flowing through the transistor Q32 can be changed even if the generator output voltage vi is the same. If the resistance value of the first variable resistor Rv1 increases, the current i2 decreases, and if the resistance value decreases, the current i2 increases. As a result, the base current of the transistor Q33 changes and the current i3 flowing through the transistor Q33 changes. As a result, the duty ratio control voltage Vcs changes. Accordingly, as described with reference to FIGS. 11 and 12, the relationship between the input voltage (generator output voltage) vi and the output voltage Vo of the power factor correction apparatus can be changed by adjusting the first variable resistor Rv1. . This change can also be made during power extraction.
  • FIG. 14 is a diagram schematically showing a power factor correction apparatus including the duty ratio controller 7B of the second configuration example of the sixth embodiment.
  • the output of the generator 100 is a three-phase alternating current as in the first configuration example.
  • the voltage detector 71 which is the input stage of the duty ratio controller 7B, detects the generator output voltage vi and generates a DC detection voltage Vi that is proportional thereto.
  • it is composed of a transformer T and a rectifying / smoothing circuit.
  • the primary coil of the transformer T is connected to the two phase wires of the three-phase AC, and the AC voltage stepped down from both ends of the secondary coil is acquired.
  • the primary coil of the transformer T detects a three-phase AC line voltage.
  • the secondary coil of the transformer T is connected to the input end of the rectifying unit.
  • the rectification unit is a bridge rectification circuit as an example, but is not limited thereto.
  • a smoothing capacitor C41 is connected between the positive terminal p and the negative terminal n of the rectifying unit.
  • a voltage between the positive electrode end p and the negative electrode end n is a DC detection voltage Vi.
  • the power source Vcc of the duty ratio controller 7B is connected to the positive terminal p of the voltage detector 71. Therefore, when the DC detection voltage Vi increases, the potential at the negative electrode terminal n drops from the reference potential in the negative direction with the power source Vcc as the reference potential.
  • a resistor R41 is connected between the power source Vcc and the negative terminal n.
  • the base of the transistor Q41 (p-type) is connected to the negative electrode end n via the resistor R42.
  • the emitter of the transistor Q41 is connected to the intermediate terminal of the second variable resistor Rv2 via the first variable resistor Rv1.
  • a resistor Rcs and a capacitor C42 are connected in parallel between the collector of the transistor Q41 and the ground potential.
  • the collector of the transistor Q41 is connected to the cs terminal of the PWM control IC1.
  • the first variable resistor Rv1 is for adjusting the slope of the input voltage (generator output voltage) vi and the output voltage Vo of the power factor correction apparatus, and is set to a predetermined value.
  • the second variable resistor Rv2 and the Zener diode Z are connected in series between the power source Vcc and the ground potential.
  • the second variable resistor Rv2 is for setting the cut-in voltage vcin and is set to a predetermined value.
  • Second Configuration Example> the operation of the duty ratio controller 7B will be described assuming that the generator output voltage vi in wind power generation gradually increases from 0V to about 200 to 300V.
  • the turn ratio of the transformer T is 20: 1 (when the primary side is 200V, the secondary side is 10V), the power supply Vcc is 24V, and the breakdown voltage of the Zener diode Z is 5V.
  • the generator output voltage vi is 0V
  • the voltage across the secondary coil of the transformer T is 0V. Accordingly, since the DC detection voltage Vi that is the output voltage of the rectifying and smoothing circuit is 0 V, the positive terminal p and the negative terminal n are at the same potential and the potential of the power source Vcc. Note that the potential at the positive terminal p is always the same as the power supply Vcc.
  • a current flows in a current path of the power source Vcc ⁇ second variable resistor Rv2 ⁇ zener diode Z ⁇ ground.
  • Zener diode Z has a breakdown voltage.
  • a k-point potential is applied to the h point, which is the emitter of the transistor Q41, an n-point potential is applied to the base, and the transistor Q41 is non-conductive because the h-point potential is lower than the n-point potential.
  • the DC detection voltage Vi increases from 0V, the n-point potential drops from the power supply Vcc that is the reference potential.
  • the intermediate terminal of the second variable resistor Rv2, that is, the k-point potential is set so that the generator output voltage vi at this time corresponds to the cut-in voltage vcin.
  • the generator output voltage vi that is, the DC detection voltage Vi
  • the base current of the transistor Q41 increases or decreases, so that the current i41 increases or decreases. Accordingly, the duty ratio control voltage Vcs is also increased or decreased.
  • Adjustment of Duty Ratio Control Voltage Vcs By adjusting the resistance value of the first variable resistor Rv1, the current i41 flowing through the transistor Q41 can be changed even with the same generator output voltage vi.
  • the resistance value of the first variable resistor Rv1 increases, the current i41 decreases, and when the resistance value decreases, the current i41 increases.
  • the duty ratio control voltage Vcs changes.
  • the relationship between the input voltage (generator output voltage) vi and the output voltage Vo of the power factor correction apparatus can be changed by adjusting the first variable resistor Rv1. This change can also be made during power extraction.
  • the seventh embodiment relates to a configuration for increasing the breakdown voltage of the switching element connected to the primary coil of the transformer in the power factor correction apparatus.
  • this structure is applicable not only to said power factor improvement apparatus but to various switching power supplies which have transformers, such as an AC / DC converter and a DC / DC converter.
  • the input may have a variable voltage / current such as a constant voltage direct current, a pulsating current, or a square wave.
  • on / off control of the switching element connected to the primary coil of the transformer is conducted to turn on or off the direct current or alternating current input to the primary coil, and the desired direct current power is supplied from the secondary coil.
  • the switching element When the switching element is switched from on to off, a spike voltage due to the back electromotive force is generated in the primary coil of the transformer. Since the spike voltage is applied to the switching element, the switching element is required to have a withstand voltage characteristic with respect to the spike voltage. When the withstand voltage characteristic cannot be ensured with only one switching element, two switching elements (hereinafter, each referred to as “sub-switching element”) may be cascade-connected.
  • the circuit for controlling on / off of the second sub-switching element added by the cascade connection in synchronization with the first sub-switching element requires a separate drive power supply, and the number of elements of the drive circuit There was a problem that it became a complicated structure.
  • the switching element has a high breakdown voltage with a simple configuration.
  • the seventh embodiment only the configuration related to one input end among the three input ends of the three-phase AC of the power factor correction apparatus will be described.
  • the other two input terminals are the same and will not be described.
  • the input is assumed to be a high-voltage DC voltage.
  • FIG. 15 is a circuit diagram schematically illustrating a first configuration example of the seventh embodiment.
  • a DC voltage is applied between the input terminal 1 and the input terminal 2.
  • the input terminal 2 is set to a reference potential (corresponding to point e in the power factor correction apparatus of FIG. 1) and the input terminal 1 is set to a positive input potential will be described.
  • This circuit includes a transformer T (corresponding to one of the transformers Tr, Ts, and Tt in the power factor correction apparatus in FIG. 1) having a primary coil L1 and a secondary coil L2.
  • the winding start terminal of each coil is indicated by a black circle.
  • the primary coil L1 and the secondary coil L2 are magnetically coupled and preferably have a coupling coefficient of 1. This is because if the coupling coefficient is less than 1, the spike voltage generated in the primary coil L1 becomes larger, and thus a higher breakdown voltage is required for the switching element.
  • the configuration on the secondary side of the transformer T is a flyback system, the anode of the output diode D is connected to the winding end terminal of the secondary coil L2, the cathode of the output diode D and the winding start terminal of the secondary coil L2 A smoothing capacitor C is connected between the two.
  • the signal is output between the output terminal 3 and the output terminal 4 (corresponding to the positive output terminal p and the negative output terminal n in the power factor correction apparatus in FIG. 1), which are both ends of the smoothing capacitor C, and is supplied to the load.
  • each sub-switching element is an N-channel FET.
  • the source of the first sub-switching element Q11 is connected to the input terminal 2, and the input side reference potential is applied.
  • a control voltage Vg for conducting or blocking a current path between the drain and source of the first switching element Q11 is input to the gate of the first sub-switching element Q11. That is, the first switching element Q11 is driven on and off so as to conduct or block the current flowing through the primary coil L1 due to the input potential.
  • the control voltage Vg is a pulse signal having a predetermined switching frequency and a duty ratio applied between the gate and the source, and is generated by a control unit (not shown). In this case, the first sub-switching element Q11 is turned on when the gate is at a high potential, and is turned off when the gate is at a low potential.
  • the second sub-switching element Q12 is inserted between the first sub-switching element Q11 and the primary coil, the drain is connected to the other end of the primary coil L1, and the source is connected to the drain of the first sub-switching element Q11.
  • a Zener diode ZD is connected between the gate and source of the second sub-switching element Q12.
  • the Zener diode ZD is connected in such a direction as to be reverse-biased with respect to the direction of the on-control voltage between the gate and source of the second sub-switching element Q12. Since the ON control voltage of the second sub-switching element Q12, which is an N-channel FET, is in a direction that makes the gate high potential with respect to the source, the Zener diode ZD has the cathode connected to the gate and the anode connected to the source.
  • the Zener voltage of the Zener diode ZD is set sufficiently higher than the gate threshold voltage of the second sub switching element Q12.
  • the Zener voltage is set sufficiently smaller than the input voltage between the input potential and the input side reference potential.
  • a resistance element R51 is connected between the gate of the second sub-switching element Q12 and one end of the primary coil L1. Accordingly, the input voltage between the input terminal 1 and the input terminal 2 is divided and applied to the resistance element R51, the Zener diode ZD, and the first sub-switching element Q11. It can also be said that the Zener diode ZD is connected in such a direction as to be reverse-biased with respect to this input voltage.
  • the input terminal 1 may be a negative input potential.
  • P-channel FETs are used as switching elements Q11 and Q12 instead of N-channel FETs.
  • the sources and drains of the switching elements Q11 and Q12 are connected in reverse directions, the zener diode ZD is also connected in reverse polarity, and the secondary output diode D is connected to the winding start terminal side of the secondary coil L2.
  • the polarity of the smoothing capacitor C is also reversed.
  • FIG. 16 is a diagram schematically showing a potential relationship for explaining the operation of the circuit shown in FIG. 15.
  • FIG. 16A is a diagram illustrating when the control voltage Vg of the first sub-switching element Q11 is on (in the on period).
  • (B) shows each state when off (immediately after the start of the off period). Description will be made using points a to d shown in the circuit diagram of FIG.
  • the input potential Vin is always applied to point a.
  • the input potential Vin is, for example, about 300 volts with respect to the reference potential at the point d, and is sufficiently larger than the Zener voltage Vz of the Zener diode ZD, for example, 20 volts.
  • the voltage between point a and point d is divided and applied to the resistance element R51 and the Zener diode ZD.
  • the voltage across the Zener diode ZD that is, the gate-source voltage of the second sub-switching element Q12 (voltage between point e and point c) is the zener voltage Vz.
  • the Zener voltage Vz is selected to be sufficiently larger than the gate threshold voltage of the second sub-switching element Q12, that is, the ON voltage.
  • the Zener diode ZD serves to ensure the gate threshold voltage of the second sub-switching element Q12 during the ON period, and serves as a protection diode that prevents an excessive voltage from being applied between the gate and source of the second sub-switching element Q12.
  • an input potential Vin is applied to the winding start terminal of the primary coil L1, and a current flows thereby to generate an electromotive force in the secondary coil L2.
  • the output diode D is reverse-biased, The secondary current does not flow, and magnetic energy is accumulated in the transformer T.
  • the control voltage Vg When the control voltage Vg is turned off, the drain-source current path of the first sub-switching element Q11 is cut off, and a reverse spike voltage is instantaneously generated in the primary coil L1.
  • the spike voltage causes the point b potential at the winding end terminal of the primary coil L1 to be much higher than the input potential Vin, that is, the point a potential, for example, the point a potential or higher when viewed from the reference potential.
  • the potential at the point c which is a connection point between the first sub-switching element Q11 and the second sub-switching element Q12, increases.
  • the anode of the Zener diode ZD is connected to the point c, and the cathode thereof is connected to the input potential Vin through the resistance element R51. Therefore, the point c potential is the input potential Vin, that is, the point a potential. None exceed.
  • the point c potential that is the source of the second sub-switching element Q12 follows the point e potential that is the gate of the second sub-switching element Q12. E potential does not exceed the input potential Vin (point potential). Therefore, the point c potential does not exceed the point a potential.
  • the zener diode ZD plays a role as a protection diode even in the off period.
  • the potentials at the points a, e, and c finally become substantially the same, and the voltage between the gate and the source (the voltage between the points e and c) of the second sub-switching element Q12 is sufficiently higher than the gate threshold voltage.
  • the second sub switching element Q12 is cut off.
  • the voltage between point b and point d is divided and applied to the first sub-switching element Q11 and the second sub-switching element Q12.
  • the potential at the point c which is an intermediate point, is substantially fixed to the potential at the point a, so that it is appropriate without causing a large bias in one of the two sub switching elements Q11 and Q12.
  • the pressure will be divided.
  • the above-described operations at the on time and off time actually occur instantaneously. Therefore, in the circuit of FIG. 15, when the first sub-switching element Q11 is turned on / off by the control voltage Vg, the second sub-switching element Q12 is also turned on / off in synchronization. In addition, the on / off of the second sub-switching element Q12 is realized only by adding one Zener diode ZD and one resistance element R51. According to this circuit, it is not necessary to provide a driving power source for the second sub-switching element Q12 or a complicated driving circuit, and the driving power source can be obtained from the input voltage.
  • FIG. 17 is a circuit diagram schematically illustrating a second configuration example of the seventh embodiment.
  • a DC voltage is applied between the input terminal 1 and the input terminal 2.
  • the input terminal 2 is described as a reference potential
  • the input terminal 1 is described as a positive input potential.
  • the output terminal 3 has a positive output potential
  • the output terminal 4 is a reference potential connected to the input terminal 2 through a common line.
  • This circuit includes a transformer T that constitutes a tapped inductor including a primary coil L1 and a secondary coil L2.
  • the winding start terminal of each coil is indicated by a black circle.
  • the primary coil L1 and the secondary coil L2 are magnetically coupled and preferably have a coupling coefficient of 1.
  • the winding end terminal of the secondary coil L ⁇ b> 2 is connected to the output end 3.
  • a smoothing capacitor C and a load are connected in parallel between the output terminal 3 and the output terminal 4.
  • the intermediate tap of the transformer T which is the connection point between the primary coil L1 and the secondary coil L2, is connected to the cathode of the return diode D, and the anode of the return diode D is connected to the output terminal 4 that is the reference potential.
  • each switching element is a P-channel FET.
  • the source of the first sub-switching element Q11 is connected to the input terminal 1, and an input potential is applied.
  • a resistance element R51 is connected between the source and gate of the first sub-switching element Q11.
  • the gate-source voltage is applied via the resistance element R51.
  • a control voltage Vg for conducting or blocking a current path between the source and drain of the first sub switching element Q11 is input to the gate of the first sub switching element Q11. That is, the first sub-switching element Q11 is driven on / off to conduct or block the current flowing through the primary coil L1 due to the input potential.
  • the control voltage Vg is a pulse signal having a predetermined switching frequency and a duty ratio applied between the gate and the source, and is generated by a control unit (not shown). In this case, the first sub-switching element Q11 is turned on when the gate is at a low potential, and is turned off when the gate is at a high potential.
  • the second sub-switching element Q12 is inserted between the first sub-switching element Q11 and the primary coil L1, its source is connected to the drain of the first sub-switching element Q11, and its drain is connected to one end of the primary coil L1.
  • a Zener diode ZD is connected between the gate and source of the second sub-switching element Q12.
  • the Zener diode ZD is connected in such a direction as to be reverse-biased with respect to the direction of the on-control voltage between the gate and source of the second sub-switching element Q12. Since the ON control voltage of the second sub-switching element Q12 that is a P-channel FET is in a direction in which the gate is at a low potential with respect to the source, the Zener diode ZD has the cathode connected to the source and the anode connected to the gate.
  • the Zener voltage of the Zener diode ZD is set sufficiently higher than the gate threshold voltage of the second sub switching element Q12.
  • the Zener voltage is set sufficiently smaller than the input voltage between the input potential and the reference potential.
  • a resistance element R52 is connected between the gate of the second sub-switching element Q12 and the input terminal 2.
  • the input terminal 1 may be a negative input potential.
  • N-channel FETs are used as switching elements Q11 and Q12 instead of P-channel FETs.
  • the sources and drains of the switching elements Q11 and Q12 are connected in the reverse direction, the zener diode ZD is also connected in the reverse polarity, and the polarities of the freewheeling diode D and the smoothing capacitor C are also reversed.
  • FIG. 18 is a diagram schematically showing a potential relationship for explaining the operation of the circuit shown in FIG. 17, and FIG. 18 (a) is a diagram when the control voltage Vg of the first sub-switching element Q11 is on (in the on period). (B) shows each state when off (immediately after the start of the off period). This will be described using points a to d shown in the circuit diagram of FIG.
  • the input potential Vin is applied to the point a.
  • the input potential Vin with respect to the reference potential at the point d is about 300 volts, for example, and is sufficiently larger than the Zener voltage Vz of the Zener diode ZD, for example, 20 volts.
  • the voltage between the point c and the point d is divided and applied to the Zener diode ZD and the resistance element R52.
  • the voltage across the Zener diode ZD that is, the gate-source voltage of the second sub-switching element Q12 (the voltage between the point c and the point e) is the Zener voltage Vz.
  • the Zener voltage Vz is selected to be sufficiently larger than the gate threshold voltage of the second sub switching element Q12.
  • the Zener diode ZD serves to ensure the gate threshold voltage of the second sub-switching element Q12 during the ON period, and serves as a protection diode that prevents an excessive voltage from being applied between the gate and source of the second sub-switching element Q12.
  • the cathode of the Zener diode ZD is connected to the point c, and the anode thereof is connected to the point d which is the reference potential via the resistance element R52, so that the point c potential is the reference potential, that is, the point d. There is no drop below the potential.
  • the point c potential that is the source of the second sub-switching element Q12 follows the point e potential that is the gate of the second sub-switching element Q12.
  • E-point potential never falls below the reference potential (d-point potential). Accordingly, the c-point potential does not drop below the d-point potential.
  • the zener diode ZD plays a role as a protection diode even in the off period.
  • the potentials at the points d, e, and c finally become substantially the same, and the gate-source voltage (the voltage between the points e and c) of the second sub-switching element Q12 is sufficiently higher than the gate threshold voltage.
  • the second sub switching element Q12 is cut off.
  • the voltage between point a and point b is divided and applied to the first sub-switching element Q11 and the second sub-switching element Q12.
  • the potential at the point c which is an intermediate point, is substantially fixed to the potential at the point d, so that it is appropriate without causing a large bias in one of the two sub-switching elements Q11 and Q12.
  • the pressure will be divided.
  • the above-described operations at the on time and off time actually occur instantaneously. Therefore, in the circuit of FIG. 17, when the first sub-switching element Q11 is turned on / off by the control voltage Vg, the second sub-switching element Q12 is also turned on / off in synchronization. In addition, the on / off of the second sub-switching element Q12 is realized only by adding one Zener diode ZD and one resistance element R52. According to this circuit, it is not necessary to provide a driving power source for the second sub-switching element Q12 or a complicated driving circuit, and the driving power source can be obtained from the input voltage.
  • the secondary coil L2 in the off period has a negative potential at the winding start terminal and a positive potential at the winding end terminal, and the freewheeling diode D is forward biased and a current flows to supply the current to the load and the smoothing capacitor C. Charge. Thereby, the magnetic energy stored in the transformer T is released.
  • the first and second sub-switching elements are cascade-connected, that is, the current paths of each other are connected in series, and the two sub-switching elements are connected to the primary coil. It is possible to share the withstand voltage characteristics with respect to the spike voltage generated in the circuit.
  • the control terminal of the first sub-switching element is driven on / off
  • the second sub-switching element is turned on / off in synchronization with it.
  • the second sub-switching element can be turned on / off via one Zener diode and one resistance element, and a driving power source and a complicated driving circuit for the second sub-switching element are unnecessary. is there. Therefore, in a switching power supply such as a power factor correction apparatus, it is possible to realize a high breakdown voltage of the switching element with an extremely simple configuration.
  • Supplementary information on switching power supplies to which fluctuating voltages and currents are input such as alternating current, pulsating current rectified AC voltage, and square waves, as in power factor correction devices.
  • the same operation as described above is performed in a range where the input voltage is sufficiently larger than the Zener voltage of the Zener diode ZD.
  • the second sub switching element Q12 remains off, and the switching power supply does not function.
  • this period can be ignored.
  • the gate threshold value is set to the gate of the second sub-switching element Q12 during the period (at least the on-period of the first sub-switching element). Another voltage exceeding the voltage may be applied.
  • the Zener voltage is set so that the input voltage is, for example, 10 times or more so as to be sufficiently larger than the Zener voltage.
  • the Zener voltage must be larger than the gate threshold voltage of the second sub-switching element Q12.
  • the first sub-switching element Q11 and the second sub-switching element Q12 may be bipolar transistors or IGBTs. In that case, as shown in the power factor correction apparatus of FIG. 1, a free-wheeling diode is connected in antiparallel to each sub-switching element.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Rectifiers (AREA)
  • Dc-Dc Converters (AREA)

Abstract

三相交流が入力される力率改善装置において、簡易な構成と制御により確実な力率改善と安定した電力変換を行う。 三相交流が入力される第1、第2及び第3入力端(R,S,T)にそれぞれ一次コイルの一端が接続された3つのトランス(Tr,Ts,Tt)と、各一次コイルの他端の電圧が一端に印加され一次側の共通電位端に他端が接続されかつ制御端(G)を具備する1又は複数のスイッチング素子(Q1,Q2,Q3)と、3つのトランス(Tr,Ts,Tt)の各々の二次コイルの他端の電圧が一端に印加されかつ正極出力端(p)へ流れる電流をそれぞれ導通可能とする第1、第2及び第3整流デバイス(D1,D2,D3)と、正極出力端(p)と負極出力端(n)の間に接続された平滑コンデンサ(C)と、を有し、スイッチング素子(Q1,Q2,Q3)の制御端(G)が一定のデューティ比をもつ1つの制御信号(Vg)により制御される。

Description

力率改善装置
 本発明は、三相交流を直流に変換する力率改善装置に関する。
 従来、交流を直流に変換するコンバータにおいて、入力電圧を昇圧しかつ入力電流を入力電圧と同じ正弦波形とすることで力率改善を行う昇圧コンバータを用いた力率改善装置(PFCとも称される)が知られている。様々な方式が提示されているが、単相及び三相に限らず、概ね交流電圧を整流回路により整流した後に昇圧コンバータが配置されている(特許文献1~7)。特許文献6、7には、風力発電の交流発電機の三相交流出力に対して昇圧と力率改善を行う装置が記載されている。
 従来の昇圧コンバータ型の力率改善装置においては、スイッチ制御においてPWM処理等を用いた複雑な波形の制御信号が生成されており、複数のスイッチング素子に異なる制御信号を与えたり、各スイッチング素子のスイッチタイミングをずらしたりするなど、複雑な制御が行われている。
 また力率改善装置の入力側と出力側を絶縁するタイプの場合、力率改善装置の昇圧コンバータの出力側に別途、絶縁用のDC/DCコンバータを設けていた。
特開平7-31150号公報 特開平8-331860号公報 特開2002-10632号公報 特開2005-218224号公報 特開2007-37297号公報 特開2013-128379号公報 特開2014-23286号公報 特開2003-199344号公報
 自然エネルギーを利用した風力発電等の交流発電機は出力変動が大きいこともあって、その力率改善装置における昇圧コンバータのスイッチ制御においては、最適な電力を取り出すために特に複雑な制御が行われている。例えば、入力電圧・電流及び出力電圧・電流を常時モニタリングすることにより出力電圧や出力電力を目標値に追随させる制御や、山登り法による最大電力点追従(MPPT)制御等がある。
 しかしながら、出力変動の大きい交流発電機に対して複雑な制御を含む力率改善装置を適用することは、動作の安定性や信頼性が保証され難くなる。従って、特に自然エネルギー利用分野における交流発電機の力率改善装置においては、簡易な構成と制御が望ましいといえる。
 また力率改善装置の昇圧コンバータの出力側に別の絶縁用のDC/DCコンバータを設けることはさらに制御及び構成が複雑となりコスト高となる。
 以上の問題点に鑑み本発明は、三相交流が入力される力率改善装置において、簡易な構成と制御により確実な力率改善と安定した電力変換を行うことができると同時に入力側と出力側の絶縁を可能とすることを目的とする。
 上記の目的を達成するべく、本発明は、以下の構成を提供する。なお、括弧内の符号は後述する図面中の符号であり、参考のために付するものである。
・ 本発明の力率改善装置の一態様は、
 (a)三相交流が入力される第1、第2及び第3入力端(R,S,T)と、
 (b)正極出力端(p)及び負極出力端(n)と、
 (c)各々が一次コイル(Lr1,Ls1,Lt1)と二次コイル(Lr2,Ls2,Lt2)を具備し各々の一次コイルの一端が前記第1、第2及び第3入力端(R,S,T)にそれぞれ接続されかつ各々の二次コイルの一端が前記負極出力端(n)に接続された第1、第2及び第3トランス(Tr,Ts,Tt)と、
 (d)前記第1、第2及び第3トランス(Tr,Ts,Tt)の各々の一次コイル(Lr1,Ls1,Lt1)の他端と一次側の共通電位端(e)の間の電流路を導通又は遮断するべくオンオフ制御される、制御端(G)を具備する1又は複数のスイッチング素子と、
 (e)前記第1、第2及び第3トランス(Tr,Ts,Tt)の各々の二次コイル(Lr2,Ls2,Lt2)の他端と前記正極出力端(p)の間にそれぞれ接続され、該二次コイルの他端の電位が順バイアスであるとき該正極出力端へ流れる電流をそれぞれ導通させかつ逆バイアスであるときそれぞれ遮断する第1、第2及び第3整流デバイス(D1,D2,D3)と、
 (f)前記正極出力端(p)と前記負極出力端(n)の間に接続された平滑コンデンサ(C)と、を有し、
 (g)前記1又は複数のスイッチング素子の制御端(G)が一定のデューティ比をもつ1つの制御信号により制御されることを特徴とする。
・ 上記態様において、前記スイッチング素子が、第1、第2及び第3スイッチング素子(Q1,Q2,Q3)からなり、前記第1、第2及び第3トランス(Tr,Ts,Tt)の各々の一次コイル(Lr1,Ls1,Lt1)の他端と一次側の共通電位端(e)の間に各スイッチング素子がそれぞれ接続されることを特徴とする。
・ 上記態様において、前記スイッチング素子が、1つのスイッチング素子(Q)からなり、前記第1、第2及び第3トランス(Tr,Ts,Tt)の各々の一次コイル(Lr1,Ls1,Lt1)の他端と一次側の共通電位端(e)の間に該スイッチング素子が接続されることを特徴とする。
・ 上記態様において、前記一次側の共通電位端(e)から前記第1、第2及び第3トランス(Tr,Ts,Tt)の各々の一次コイル(Lr1,Ls1,Lt1)の各々を介して前記第1、第2及び第3入力端(R,S,T)へ還流する電流をそれぞれ導通可能とする第4、第5及び第6整流デバイス(D4,D5,D6)を有することを特徴とする。
・ 上記態様において、前記一次側の共通電位端(e)から前記第1、第2及び第3入力端(R,S,T)へ直接還流する電流をそれぞれ導通可能とする第4、第5及び第6整流デバイス(D14,D15,D16)を有することを特徴とする。
・ 本発明の力率改善装置の別の態様は、
 (a)三相交流が入力される第1、第2及び第3入力端(R,S,T)と、
 (b)正極出力端(p)及び負極出力端(n)と、
 (c)各々が一次コイル(Lr1,Ls1,Lt1)と第1の二次コイル(Lr21,Ls21,Lt21)と第2の二次コイル(Lr22,Ls22,Lt22)とを具備し各々の一次コイルの一端が前記第1、第2及び第3入力端(R,S,T)にそれぞれ接続されかつ各々の該第1の二次コイルの他端及び該第2の二次コイルの一端が前記負極出力端(n)に接続された第1、第2及び第3トランス(Tr,Ts,Tt)と、
 (d)前記第1、第2及び第3トランス(Tr,Ts,Tt)の各々の一次コイル(Lr1,Ls1,Lt1)の他端と一次側の共通電位端(e)の間の電流路を導通又は遮断するべくオンオフ制御される、制御端(G)を具備する1又は複数のスイッチング素子と、
 (e)前記第1、第2及び第3トランス(Tr,Ts,Tt)の各々の第1の二次コイル(Lr21,Ls21,Lt21)の一端と前記正極出力端(p)の間にそれぞれ接続され、該第1の二次コイルの一端の電位が順バイアスであるとき該正極出力端へ流れる電流をそれぞれ導通させかつ逆バイアスであるときそれぞれ遮断する第1、第2及び第3整流デバイス(D1,D2,D3)と、
 (f)前記第1、第2及び第3トランス(Tr,Ts,Tt)の各々の第2の二次コイル(Lr22,Ls22,Lt22)の他端と前記正極出力端(p)の間にそれぞれ接続され、該第2の二次コイルの他端の電位が順バイアスであるとき該正極出力端へ流れる電流をそれぞれ導通させかつ逆バイアスであるときそれぞれ遮断する第4、第5及び第6整流デバイス(D1',D2',D3')と、
 (g)前記正極出力端(p)と前記負極出力端(n)の間に接続された平滑コンデンサ(C)と、を有し、
 (h)前記1又は複数のスイッチング素子の制御端が一定のデューティ比をもつ1つの制御信号により制御されることを特徴とする。
・ 上記別の態様において、前記スイッチング素子が、第1、第2及び第3スイッチング素子(Q1,Q2,Q3)からなり、前記第1、第2及び第3トランス(Tr,Ts,Tt)の各々の一次コイル(Lr1,Ls1,Lt1)の他端と一次側の共通電位端(e)の間に各スイッチング素子がそれぞれ接続されることを特徴とする。
・ 上記別の態様において、前記スイッチング素子が、1つのスイッチング素子(Q)からなり、前記第1、第2及び第3トランス(Tr,Ts,Tt)の各々の一次コイル(Lr1,Ls1,Lt1)の他端と一次側の共通電位端(e)の間に該スイッチング素子が接続されることを特徴とする。
・ 上記別の態様において、前記一次側の共通電位端(e)から前記第1、第2及び第3トランス(Tr,Ts,Tt)の各々の一次コイル(Lr1,Ls1,Lt1)の各々を介して前記第1、第2及び第3入力端(R,S,T)へ還流する電流をそれぞれ導通可能とする第7、第8及び第9整流デバイス(D4,D5,D6)を有することを特徴とする。
・ 上記別の態様において、前記一次側の共通電位端(e)から前記第1、第2及び第3入力端(R,S,T)へ直接還流する電流をそれぞれ導通可能とする第7、第8及び第9整流デバイス(D14,D15,D16)を有することを特徴とする。
・ 上記別の態様において、前記一次コイル(Lr1,Ls1,Lt1)と前記第1の二次コイル(Lr21,Ls21,Lt21)の磁気結合が疎結合であり、かつ、前記(Lr1,Ls1,Lt1)と前記第2の二次コイル(Lr22,Ls22,Lt22)の磁気結合が密結合であることを特徴とする。
・ 上記いずれかの態様において、三相交流の入力電圧を検出する入力電圧検出要素と、
 検出された前記入力電圧に対応する1つのデューティ比を決定し、決定したデューティ比をもつ前記制御信号を生成する要素と、を有することを特徴とする。
・ 上記いずれかの態様において、前記入力電圧と前記デューティ比の対応関係が予め設定されていることを特徴とする。
 本発明により、三相交流を入力され力率改善と電力変換を行う力率改善装置において、簡易な構成と制御を実現することができると共に、入力側と出力側を絶縁することができる。
図1は、本発明の力率改善装置の第1の実施形態の回路構成を概略的に示した図である。 図2は、図1に示した回路構成の各所の電流又は電圧の時間変化である動作波形の例を模式的に示す図である。 図3は、図1に示した回路構成の各所の電流又は電圧の時間変化である動作波形の例を模式的に示す図である。 図4Aは、図1に示した回路構成のRモードにおけるオン期間の電流の流れを示す図である。 図4Bは、図1に示した回路構成のRモードにおけるオフ期間の電流の流れを示す図である。 図4Cは、図4A及び図4Bにおける各電流の波形の例を概略的に示す図である。 図5は、本発明の力率改善装置の第2の実施形態の回路構成を概略的に示した図である。 図6は、本発明の力率改善装置の第3の実施形態の回路構成を概略的に示した図である。 図7は、本発明の力率改善装置の第4の実施形態の回路構成を概略的に示した図である。 図8は、本発明の力率改善装置の第5の実施形態の回路構成を概略的に示した図である。 図9Aは、図8に示した回路構成のRモードにおけるオン期間の電流の流れを示す図である。 図9Aは、図8に示した回路構成のRモードにおけるオフ期間の電流の流れを示す図である。 図9Cは、図9A及び図9Bにおける各電流の波形の例を概略的に示す図である。 図10は、第6の実施形態に関係する、PWM制御IC用のデューティ比コントローラの基本形態を含む、力率改善装置の構成を概略的かつ模式的に示した図である。 図11は、デューティ比コントローラにおける入力である発電機出力電圧と、出力であるデューティ比制御電圧の関係を模式的に示したグラフである。 図12は、デューティ比コントローラの第1抵抗素子を調整した場合における、力率改善装置の入力電圧である発電機出力電圧と、出力電圧の関係を模式的に示したグラフである。 図13は、第6の実施形態に関係するPWM制御IC用デューティ比コントローラの構成例を含む力率改善装置を概略的に示した図である。 図14は、第6の実施形態に関係するPWM制御IC用デューティ比コントローラの別の構成例を含む力率改善装置を概略的に示した図である。 図15は、第7の実施形態の構成例を概略的に示す回路図である。 図16(a)(b)は、図15に示した回路におけるオン期間及びオフ期間の電位関係を模式的に示した図である。 図17は、第7の実施形態の別の構成例を概略的に示す回路図である。 図18(a)(b)は、図17に示した回路におけるオン期間及びオフ期間の電位関係を模式的に示した図である。
 以下、図面を参照しつつ、本発明による力率改善装置の実施形態について説明する。本発明の力率改善装置は、三相交流入力のみでなく、単相交流入力及び直流入力に対しても動作するが、以下では、好適である三相交流入力を例として本発明の実施形態を説明する。各図において、基本的に同一又は類似の構成要素については同一又は類似の符号で示している。
 例えば風力発電の交流発電機は、永久磁石であるロータとY結線された三相のステータコイルを備えている。交流発電機の軸は風車の軸と適宜のギアを介して連結されている。風車の回転数は風速に比例し、交流発電機の回転数は風車の回転数に比例する。風車が回転し交流発電機の軸が回転すると、三相のステータコイルから三相交流が出力される。交流発電機の出力電圧は、発電機回転数に比例する。
 本発明の力率改善装置は、上記のような交流発電機の出力を入力とし、負荷に対して直流を出力するものである。力率改善装置は、三相交流電力を直流電力に変換する電力変換装置でもある。力率改善装置は、入力電流の波形を入力電圧と同じ正弦波の波形としかつ位相を一致させて力率を1とすることを目的とする。
 さらに本発明の力率改善装置は、入力側と出力側を電気的に絶縁する機能を備えている。本発明の力率改善装置の出力側に接続される負荷は、各種機器、インバータ(系統連系インバータを含む)等である。
[1]第1の実施形態
 <第1の実施形態の構成>
 図1は、本発明の力率改善装置の第1の実施形態の回路構成を概略的に示した図である。
第1の実施形態による三相交流の力率改善装置は、入力側と出力側を絶縁するために各相に対応する3つのトランスを設けている。各トランスは基本的にフライバックコンバータと同様の構成を有する。
 入力側であるトランスの一次側には、三相交流が入力される3つの端子である第1入力端R、第2入力端S及び第3入力端Tがある。三相交流の各相が各入力端からそれぞれ入力される。本明細書では、三相交流の各相をR相、S相、T相と称する。各相の位相は2π/3(120°)ずつ異なっている。
 出力側であるトランスの二次側には、直流が出力される2つの端子である正極出力端pと負極出力端nがある。正極出力端pと負極出力端nの間に接続された負荷に出力電圧Voが印加され、正極出力端pから負極出力端nへと負荷を通して出力電流Ioが流れる。説明を簡単とするために抵抗負荷を想定するが、適用対象は抵抗負荷に限られない。
 3つのトランスTr、Ts、Ttはそれぞれ1つの一次コイルと1つの二次コイルを具備し、好適には同じ構成のものすなわち電気磁気特性が等しいものを用いる。符号Lr1、Ls1、Lt1は各トランスの一次コイルを示し、符号Lr2、Ls2、Lt2は各トランスの二次コイルを示す。各コイルの巻き始め端子を黒丸で示している(黒丸はコイルの極性を示す)。本明細書でコイルについて「一端」と「他端」という場合は、「巻き始め端子」と「巻き終わり端子」をいう場合も、「巻き終わり端子」と「巻き始め端子」をいう場合も、いずれも含むものとする(他の実施形態でも同様)。
 各トランスの一次コイルLr1、Ls1、Lt1の一端(本例では巻き始め端子)が、それぞれ三相交流の各入力端R、S、Tに接続される。また、各トランスの一次コイルLr1、Ls1、Lt1の他端(本例では巻き終わり端子)には、3つのスイッチング素子Q1、Q2、Q3の各々の一端が接続されている。各スイッチング素子Q1、Q2、Q3の他端は、一次側の共通電位端eに接続されている。各スイッチング素子Q1、Q2、Q3は、一次コイルLr1、Ls1、Lt1の他端と一次側の共通電位端eの間の電流路を導通又は遮断するようにオンオフ制御される。
 さらに各スイッチング素子Q1、Q2、Q3は、オンオフ制御するための制御端Gをそれぞれ具備し、各制御端は共通する1つの制御信号Vgにより制御される。制御信号Vgは、所定の周波数及びデューティ比をもつパルス波形を有する。すなわち、3つのスイッチング素子Q1、Q2、Q3に対しては、常に同時にオンオフするようにスイッチ制御が行われる。図示の例では、スイッチング素子Q1、Q2、Q3がnチャネル形MOSFET(以下FETQ1、Q2、Q3と称する)であり、一端がドレイン、他端がソース、制御端がゲートGである。この場合、制御信号Vgは電圧信号である。MOSFETはpチャネル形でもよい。
 さらに各スイッチング素子Q1、Q2、Q3を通って一次側の共通電位端eへとそれぞれ流れる電流を、三相交流の入力側へ還流させるための整流デバイスD4、D5、D6が接続されている。これらの整流デバイスD4、D5、D6は、一次側の共通電位端から各トランスの一次コイルLr1、Ls1、Lt1の各々を介して第1、第2及び第3入力端R、S、Tの各々へと電流を還流させるためのものである。
 整流デバイスD4、D5、D6は、MOSFETであるFETQ1、Q2、Q3の各々の寄生ダイオードによっても同じ機能を果たすことができるので、この場合は外付けの整流デバイスが無くてもよい。しかしながら、MOSFETであっても、順方向電圧の低い整流素子を外付けして優先的な電流路を設けることが好適である。なお、スイッチング素子Q1、Q2、Q3がMOSFET以外である場合、例えばIGBTやバイポーラトランジスタの場合は、外付けの整流デバイスは必須である。外付けの整流デバイスは、スイッチング素子の主電流に対して逆並列(寄生ダイオードと並列)に接続する。以下、整流デバイスD4、D5、D6を「還流ダイオード」と称する。
 各トランスの二次コイルLr2、Ls2、Lt2の他端には、それぞれ整流デバイスD1、D2、D3の各々の一端が接続され、各整流デバイスD1、D2、D3の他端は正極出力端pに接続されている。従って、各整流デバイスD1、D2、D3の一端には各トランスの二次コイルLr2、Ls2、Lt2の他端の電位がそれぞれ印加される。各整流デバイスD1、D2、D3は、順バイアスのときに各トランスの二次コイルLr2、Ls2、Lt2の他端から正極出力端pへそれぞれ流れる電流を導通させ、逆バイアスのときはそれぞれ遮断する。
 整流デバイスD1、D2、D3は、基本的にフライバックコンバータの出力ダイオードに相当する。以下、「出力ダイオード」と称する。出力ダイオードは、順方向電圧降下が小さくかつ高速動作を行うものが好適である。
 各トランスの二次コイルLr2、Ls2、Lt2の一端は、二次側の共通電位端である負極出力端nに接続されている。
 さらに、正極出力端pと負極出力端nの間に接続された平滑コンデンサCを有する。
 さらに、制御部1を有する。制御部1は、三相交流の入力電圧Viを検出する要素を少なくとも有し、好適にはフィードバック制御のために出力電圧Voを検出する要素を有する。さらに、検出されたそれらの電圧を基に対応する制御信号Vgを生成する要素を有する。
 入力電圧Viを検出する要素は、一例として、第1、第2及び第3入力端R、S、Tの各々から整流デバイスD7、D8、D9をそれぞれ介して交流入力電流を整流した電流を取得し、それらを平均化する等の処理を行い、入力電圧Viとする。入力電圧Viは、三相交流入力の実効値、最大値、平均値(絶対値)のいずれでもよく、入力電圧の振幅を評価できるパラメータであればよい。
 本明細書における「整流デバイス」には、ダイオードの他に、ダイオードと等価の整流回路も含むものとする。
 出力電圧Voを検出する要素は、正極出力端pと負極出力端nの間の電圧を取得する。本発明は、力率改善装置の入力側と出力側を絶縁することを目的とするので、出力電圧Voのフィードバック信号は、フォトカプラPCを介して電気的に絶縁されて制御部1に入力されることが好ましい。フォトカプラPCの位置は図示の例に限られず、出力端p、nとスイッチング素子の制御端Gの間の経路上のいずれかにあればよい。
 制御信号Vgを生成する要素は、検出された入力電圧Viに基づいて、又は、検出された入力電圧Vi及び出力電圧Voに基づいて、制御信号Vgの所定のデューティ比を決定する。さらに、決定された1つのデューティ比を基に制御信号Vgを生成する。一般的にはPWM回路又はPWM素子が用いられる。例えば決定された1つのデューティ比に対応する直流信号と一定の周波数をもつ搬送三角波信号を比較器に入力することにより一定のデューティ比をもつパルス状の制御信号Vgを出力する。本発明では、このような制御信号Vgを「一定のデューティ比をもつ」制御信号と称している。
 <第1の実施形態の動作>
 図2及び図3は、図1に示した回路構成の各所の電流又は電圧の時間変化である動作波形の例を模式的に示した図である。
 図2(a)は三相交流の各相の入力電圧の時間変化を示す図である。各相の電圧をvr、vs、vtで示す。各相の電圧は中性点(Y字結線の中心)を基準電位として示している。第1、第2、第3入力端R、S、Tの電位のうち最低電位の軌跡を図2(a)に太線で示す。このように120°毎に最低電位となる相が順に入れ替わっている。以下、最低電位となる相の名称をとって各モードを「Rモード」、「Sモード」、「Tモード」と称する。例えばRモードでは、第1入力端Rの電位が最も低く、Rモードの前半では第2入力端Sの電位が第3入力端Tの電位より高く、Rモードの後半では第3入力端Tの電位が第2入力端Sの電位より高くなる。
 図2(b)は、入力電圧Viの一例を示したものである。例えば、三相交流を半端整流した電圧を平均化したものである。
 図2(c)(d)(e)は、三相交流入力により各トランスの一次コイルLr1、Ls1、Lt1の一端にそれぞれ印加される電圧v(Lr1)、v(Ls1)、v(Lt1)を示した図である。この場合の各電圧は、図2(a)に示した最低電位の軌跡ラインを基準電位として示している。従って、接続された入力端が最低電位となるモードでは一次コイルの一端に印加される電圧が零となり、それ以外のモードでは、接続された入力端と最低電位の入力端の間の線間電圧が一次コイルの一端に印加されることになる。
 図2(c)(d)(e)において、Rモードの区間では、トランスTrの一次コイルLr1の一端の電圧v(Lr1)は、零である。トランスTsの一次コイルLs1の一端の電圧v(Ls1)は、第2入力端Sと第1入力端Rの線間電圧vsrである。トランスTtの一次コイルLt1の一端の電圧v(Lt1)は、第3入力端Tと第1入力端Rの線間電圧vtrである。
 図2(c)(d)(e)において、Sモードの区間では、トランスTrの一次コイルLr1の一端の電圧v(Lr1)は、第1入力端Rと第2入力端Sの線間電圧vrsである。トランスTsの一次コイルLs1の一端の電圧v(Ls1)は、零である。トランスTtの一次コイルLt1の一端の電圧v(Lt1)は、第3入力端Tと第2入力端Sの線間電圧vtsである。
 図2(c)(d)(e)において、Tモードの区間では、トランスTrの一次コイルLr1の一端の電圧v(Lr1)は、第1入力端Rと第3入力端Tの線間電圧vrtである。トランスTsの一次コイルLs1の一端の電圧v(Ls1)は、第2入力端Sと第3入力端Tの線間電圧vstである。トランスTtの一次コイルLt1の一端の電圧v(Lt1)は、零である。
 図2(f)は、出力電圧Voの一例を示したものである。平滑コンデンサCの作用によりほぼ直流となる(リップルは無視している)。
 図3(a)は、制御部1から各FETのゲートGに送信される制御信号Vgを示している。制御信号Vgは、周波数が数kHz~数百kHzであり、制御部1において一定のデューティ比が決定され、それを基に生成されたものである。なお、三相交流入力の周波数は、制御信号Vgに比べて十分に低く、例えば風力発電の交流発電機の場合、数Hz~100Hz程度である。
 図3(b)と(c)は、トランスTrの一次コイルLr1と二次コイルLr2の電流波形、図3(d)と(e)は、トランスTsの一次コイルLs1と二次コイルLs2の電流波形、図3(f)と(g)は、トランスTtの一次コイルLt1と二次コイルLt2の電流波形を示している。
 なお、図3では、一次側の入力電流とそれに起因して流れる二次側の主電流であるフライバック電流のみを示している。すなわち各トランスにおいて、一次コイルの一端に最低電位以外の電位が印加されるモードにおいて流れる電流を示している。なお、一次コイルの一端が最低電位となるモードでは動作が異なるので、後に図4A、図4B、図4Cを参照して詳細に説明する。
 本例では制御信号VgがオンになるとFETQ1、Q2、Q3がオンになり、各トランスの一次コイルLr1、Ls1、Lt1には、各入力端から印加される電圧に応じて励磁電流が流れ磁気エネルギーが蓄積される。一方、二次コイルLr2、Ls2、Lt2は出力ダイオードが逆バイアスとなるので電流は流れない。
 本例では制御信号VgがオフになるとFETQ1、Q2、Q3がオフになり、各トランスの一次コイルLr1、Ls1、Lt1は電流路が遮断されるので電流は零となる一方、二次コイルLr2、Ls2、Lt2には逆起電力が生じて出力ダイオードが順バイアスとなりフライバック電流が流れる。二次コイルLr2、Ls2、Lt2に流れる電流波形は、包絡線を辿ると入力端の電圧波形と位相が一致した正弦波となる。図示の例では便宜上、電流の連続モードで動作する場合を示しているが、臨界モード又は不連続モードとなる場合も本発明に含まれる。これにより力率が1となり力率改善される。
 図3(h)は、負荷に流れる出力電流Ioの一例を示したものである。図3(c)(e)(g)に示す二次コイルに流れる電流が加算されて正極出力端に出力される。平滑コンデンサCの作用によりほぼ直流となる(リップルは無視している)。
 以下、図4A、図4B及び図4Cを参照して図1の回路構成における力率改善装置の動作についてさらに詳細に説明する。図4A及び図4Bでは、図1の回路構成の一部を省略して示している。図4AはRモード(第1入力端Rが最低電位)におけるオン期間に対応し、図4BはRモードにおけるオフ期間に対応する。図4Cは制御信号Vgの一周期における一次コイル及び二次コイルを流れる電流波形の例を示している。Sモード及びTモードについては同様であるので省略する。
 ・オン期間の動作
 図4Aは、Rモードにおけるオン期間の電流の流れを示している。矢印付きの点線は主電流の流れを示している。矢印付き2点鎖線は還流電流により生じる副次的電流を示している。
 制御信号Vgがオンになると、FETQ1、FETQ2、FETQ3がいずれもオンとなりスイッチが閉じる。トランスTsの一次コイルLs1には線間電圧vsrにより入力電流isr1が流れる。入力電流isr1の経路は、第2入力端S→一次コイルLs1→FETQ2→FETQ1(又は還流ダイオードD4)→一次コイルLr1→第1入力端Rである。
 トランスTtの一次コイルLt1には線間電圧vtrにより入力電流itr1が流れる。入力電流itr1の経路は、第3入力端T→一次コイルLt1→FETQ3→FETQ1(又は還流ダイオードD4)→一次コイルLr1→第1入力端Rである。
 このオン期間に流れる入力電流が励磁電流となりトランスTs、Ttに磁気エネルギーが蓄積される。この間、負荷には平滑コンデンサCから放電電流が流れる。なおこの時点では、平滑コンデンサCは既に定常状態にあり充電されているものとする。
 またオン期間には、トランスTrの一次コイルLr1には還流電流(isr1+itr1)が流れる。還流電流の向きは入力電流とは逆方向である。この還流電流により、二次コイルLr2に起電力が生じ、二次コイルLr2の他端の電位に対して出力ダイオードD1が順バイアスとなる。この結果、二次コイルLr2にフォワード電流irr2が流れる。本実施形態の力率改善装置は、基本的にフライバックコンバータであるが、このように副次的なフォワード電流も流れる。二次コイルのフォワード電流は、一次コイルの一端が最低電位となるモードにおけるオン期間に流れることになる。
 ・オフ期間の動作
 図4Bは、Rモードにおけるオフ期間の電流の流れを示している。矢印付きの点線は主電流の流れを示している。制御信号Vgがオフになると、FETQ1、FETQ2、FETQ3がいずれもオフとなりスイッチが開く。一次コイルLr1、Ls1、Lt1の各電流路は遮断され、電流が零となる。これにより各コイルに逆起電力が生じる。
 トランスTsの二次コイルLs2に生じた逆起電力により、二次コイルLs2の他端の電位に対し出力ダイオードD2が順バイアスとなり、フライバック電流isr2が流れる。その経路は、二次コイルLs2→出力ダイオードD2→負荷(又は平滑コンデンサC)→二次コイルLs2である。
 トランスTtの二次コイルLt2に生じた逆起電力により、二次コイルLs1の他端の電位に対し出力ダイオードD3が順バイアスとなり、フライバック電流itr2が流れる。その経路は、二次コイルLt2→出力ダイオードD3→負荷(又は平滑コンデンサC)→二次コイルLt2である。
 オフ期間にフライバック電流が流れることにより、トランスTs、Ttに蓄積された磁気エネルギーは放出される。なお、オフ期間のフライバック電流の一部は平滑コンデンサCに充電電流として流れる。
 トランスTrの二次コイルLr2に生じた逆起電力により出力ダイオードD1が逆バイアスとなるので、二次コイルLr2には電流は流れない。
 [制御信号の一周期の電流波形]
 図4Cは、Rモードにおける制御信号Vgの一周期の波形と、各トランスの一次コイルLr1、Ls1、Lt1及び二次コイルLr2、Ls2、Lt2に流れる電流の波形を模式的に示している。説明を省略するが、Sモード及びTモードにおいても同様である。制御信号Vgのデューティ比は、一周期の長さTに対するオン時間の長さTonの比で表される。
 オン期間において、トランスTs、Ttの一次コイルLs1、Lt1の電流isr1、itr1は時間の経過と共に増加する。オフ期間において、二次コイルLs2、Lt2の電流isr2、itr2は時間の経過と共に減少していく。
 一周期における一次コイルLs1の電流isr1の平均値をIsr1とし、線間電圧vsrの瞬時値(一周期の開始時の値)をVsrとし、一次コイルLs1のインダクタンスをLとすると、
   Isr1=Vsr/Lω  (ωは制御信号Vgの周波数)
となる。この式は、一次コイルに流れる電流が入力電圧と同位相の正弦波となることを示している。これにより二次コイルに流れる電流もまた、入力電圧と同位相の正弦波となる。よって、力率は1となり力率改善される。
 Rモードにおける主要な出力電流は、トランスTsとTtのオフ期間のフライバック電流であり、二次コイルLs2とLt2を流れる電流isr2と電流itr2の和である。
 また、Rモードにおける出力電流は、トランスTrのオン期間のフォワード電流によっても得られ、これは二次コイルLr2を流れる電流irr2である。よって、本実施形態ではオン期間とオフ期間の双方において出力電流が得られることになる。
[2]第2の実施形態
 図5は、本発明の力率改善装置の第2の実施形態の回路構成を概略的に示した図である。
 上述した第1の実施形態と異なる構成についてのみ説明する。
 第2の実施形態では、図1の第1の実施形態における還流ダイオードD4、D5、D6に替えて還流ダイオードD14、D15、D16を有する。還流ダイオードD14、D15、D16は、アノードが一次側の共通電位端eに接続され、各々のカソードが各トランスの一次コイルLr1、Ls1、Lt1の各々の一端すなわち第1入力端R、第2入力端S、第3入力端Tにそれぞれ接続されている。
 図5中に矢印付きの点線でRモードのオン期間の電流の流れを示している。第2の実施形態では、一次側の還流電流は、一次コイルLr1、Ls1、Lt1を介さずに還流ダイオードD14、D15、D16により直接、第1入力端R、第2入力端S、第3入力端Tにそれぞれ流れ、三相交流電源に戻される。これにより、第1の実施形態に比べて一次コイルLr1、Ls1、Lt1に流れる電流が減少するので磁気飽和し難くなる。
 なお、第2の実施形態では、オン期間において一次コイルLr1、Ls1、Lt1に還流電流が流れないので、第1の実施形態で得られるオン期間のフォワード電流は得られない。
[3]第3の実施形態
 図6は、本発明の力率改善装置の第3の実施形態の回路構成を概略的に示した図である。
 上述した第1の実施形態と異なる構成についてのみ説明する。
 第3の実施形態では、図1の第1の実施形態における3つのスイッチング素子Q1、Q2、Q3が1つのスイッチング素子Qにまとめられている。本発明では、三相交流入力の各相に対する昇圧コンバータのスイッチ制御が、共通する1つの制御信号により行われるので、スイッチング素子を1つにまとめることができる。これによりスイッチング素子のコストを低減できる。図示の例では、nチャネル形MOSFET(以下、FETQと称する)を用いているが、pチャネル形でもよく、他のスイッチング素子でもよい。
 各トランスの一次コイルLr1、Ls1、Lt1の各々の他端に対して3つのダイオードD17、D18、D19のアノードをそれぞれ接続し、カソードをFETQのドレインに接続している。ダイオードD17、D18、D19は、オン期間の入力電流に対して順方向に接続されている。FETQのソースは、一次側の共通電位端eに接続されている。還流ダイオードD4、D5、D6は、第1の実施形態と同様にアノードが共通電位端eに接続され、各々のカソードは一次コイルLr1、Ls1、Lt1の他端にそれぞれ接続されている。
 図6中に矢印付きの点線でRモードのオン期間の電流の流れを示している。第3の実施形態では、一次側の入力電流は、一次コイルの他端からダイオードD17、D18、D19を通してFETQに流れる。第3の実施形態では、FETQを共有しているので、MOSFETであっても各相の還流ダイオードD4、D5、D6が必要となる。
 なお、第3の実施形態では、図6に示すようにオン期間に還流ダイオードD4から一次コイルLr1に還流電流が流れるので、第1の実施形態と同様に二次コイルLr2にフォワード電流irr2が流れ、出力ダイオードD1を通して出力される。
[4]第4の実施形態
 図7は、本発明の力率改善装置の第4の実施形態の回路構成を概略的に示した図である。
 第4の実施形態は、第3の実施形態に示した1つのスイッチング素子Qにより昇圧コンバータのスイッチ制御を行う構成において、第2の実施形態に示した還流ダイオードD14、D15、D16を採用した形態である。
 第4の実施形態では、スイッチング素子のコストを低減できる。加えて、一次側の還流電流は、一次コイルLr1、Ls1、Lt1を介さずに還流ダイオードD14、D15、D16により直接、第1入力端R、第2入力端S、第3入力端Tにそれぞれ流れ、三相交流電源に戻される。これにより、第1の実施形態に比べて一次コイルLr1、Ls1、Lt1に流れる電流が減少するので磁気飽和し難くなる。
 図7中に矢印付きの点線でRモードのオン期間の電流の流れを示している。第4の実施形態では、オン期間において一次コイルLr1、Ls1、Lt1に還流電流が流れないので、第1の実施形態で得られるオン期間のフォワード電流は得られない。
[5]第5の実施形態
 <第5の実施形態の構成>
  図8は、本発明の力率改善装置の第5の実施形態の回路構成を概略的に示した図である。
 第5の実施形態による三相交流の力率改善装置は、各相に対応する3つのトランスがそれぞれフォワードコンバータとフライバックコンバータの双方の機能を有している。このために、第5の実施形態では、各相のトランスが、一次コイルL1と、第1の二次コイルL21と、第2の二次コイルL22とを具備する。
 以下、各相に対応するトランスを区別して説明する際には、図8に示すように各トランスの一次コイルL1をLr1、Ls1、Lt1で示し、第1の二次コイルL21をLr21、Ls21、Lt21で示し、第2の二次コイルL22をLr22、Ls22、Lt22で示す。
 一次コイルL1と第1の二次コイルL21は疎結合とすることが好適であり、一次コイルL1と第2の二次コイルL22は密結合とすることが好適である。「疎結合」では、トランスに巻回された2つのコイルの磁気結合の結合係数が1ではなく、一次コイルL1から出た磁束の全てを二次コイルL2に通過させるのではなく一部の磁束を漏洩させるようにしている。従って、相互誘導による電圧比が巻数比のみによっては決定されないことになるが本発明の本質ではない。2つのコイルを疎結合とするためには、トランスのコアにギャップを設けたり、一次コイルと二次コイルを離隔して巻回したりする。また、「密結合」では、トランスに巻回された2つのコイルの磁気結合の結合係数が1である。2つのコイルを密結合とするためには、漏れ磁束を生じないように重ね巻きをしたりする。
 各トランスTr、Ts、Ttの一次側の構成は、第1の実施形態と同じであるので説明を省略する。なお、各トランスTr、Ts、Ttの一次側の構成は、上述した第2、第3、第4の実施形態の各々における一次側の構成を採用してもよい。
 次に、各トランスTr、Ts、Ttの二次側の構成について説明する。第1の二次コイルL21の一端(本例では巻き始め端子)と正極出力端pの間には出力ダイオードD1が接続されている。出力ダイオードD1のアノードが第1の二次コイルL21の一端に、カソードが正極出力端pに接続されている。第1の二次コイルL21の他端は、負極出力端nに接続されている。
 第2の二次コイルL22の他端(本例では巻き終わり端子)と正極出力端pの間には出力ダイオードD2が接続されている。出力ダイオードD2のアノードが第2の二次コイルL22の他端に、カソードが正極出力端pに接続されている。第2の二次コイルL22の一端は、負極出力端nに接続されている。
 出力ダイオードD1、D2は、順バイアスの電圧が印加されると導通し、逆バイアスに対して遮断される。正極出力端pと負極出力端nの間には平滑コンデンサCが接続されている。これらの出力端p、nの間には負荷が接続されている。
 <第5の実施形態の動作>
 図9A、図9B及び図9Cを参照して図8の回路構成における力率改善装置の動作について説明する。図9A及び図9Bでは、図8の回路構成の一部を省略して示している。図9AはRモード(第1入力端Rが最低電位)におけるオン期間に対応し、図9BはRモードにおけるオフ期間に対応する。図9Cは制御信号の一周期における一次コイル及び二次コイルを流れる電流波形の例を示している。Sモード及びTモードについては同様であるので省略する。また、平滑コンデンサCの充放電電流については図示及び説明を省略する。
 ・オン期間の動作
 図9Aは、Rモードにおけるオン期間の電流の流れを示している。矢印付きの点線は主電流の流れを示している。矢印付き2点鎖線は還流電流により生じる副次的電流を示している。
 制御信号Vgがオンになると、FETQ1、FETQ2、FETQ3がいずれもオンとなりスイッチが閉じる。
 トランスTsの一次コイルLs1には線間電圧vsrにより入力電流isr1が流れる。入力電流isr1の経路は、第2入力端S→一次コイルLs1→FETQ2→FETQ1(又は還流ダイオードD4)→一次コイルLr1→第1入力端Rである。
 トランスTsの一次コイルLs1に入力電流isr1が流れることにより第1の二次コイルLs21に相互誘導による起電力が生じ、第1の二次コイルLs21の一端の電位に対し出力ダイオードD2が順バイアスとなって導通し、フォワード電流isr2が流れる。フォワード電流isr2の経路は、第1の二次コイルLs21→出力ダイオードD2→負荷→第1の二次コイルLs21である。第2の二次コイルLs22に生じる起電力は出力ダイオードD2’に対し逆バイアスとなるので出力ダイオードD2’は導通しない。また、オン期間には入力電流isr1に含まれる励磁電流によりトランスTsに磁気エネルギーが蓄積される。
 トランスTtの一次コイルLt1には線間電圧vtrにより入力電流itr1が流れる。入力電流itr1の経路は、第3入力端T→一次コイルLt1→FETQ3→FETQ1(又は還流ダイオードD4)→一次コイルLr1→第1入力端Rである。
 トランスTtの一次コイルLt1に入力電流itr1が流れることにより第1の二次コイルLt21に相互誘導による起電力が生じ、第1の二次コイルLt21の一端の電位に対し出力ダイオードD3が順バイアスとなって導通し、フォワード電流itr2が流れる。フォワード電流itr2の経路は、第1の二次コイルLt21→出力ダイオードD3→負荷→第1の二次コイルLt21である。第2の二次コイルLt22に生じる起電力は出力ダイオードD3’に対し逆バイアスとなるので出力ダイオードD3’は導通しない。また、オン期間には入力電流itr1に含まれる励磁電流によりトランスTtに磁気エネルギーが蓄積される。
 オン期間には、トランスTrの一次コイルLr1には還流電流(isr1+itr1)が流れる。還流電流の向きは入力電流とは逆方向である。この還流電流により、第2の二次コイルLr22には出力ダイオードD1’が順バイアスとなる起電力が生じるため、第2の二次コイルLr22に副次的なフォワード電流irr2が流れる。フォワード電流irr2の経路は、第2の二次コイルLr22→出力ダイオードD1’→負荷→第2の二次コイルLr22である。一方、第1の二次コイルLr21に生じる起電力は出力ダイオードD1に対し逆バイアスとなるので出力ダイオードD1は導通しない。また、オン期間には還流電流により励磁されてトランスTrに磁気エネルギーが蓄積される。
 本実施形態の力率改善装置においては、オン期間に入力電流が流れる2つのトランス及びオン期間に還流電流が流れる1つのトランスのいずれも二次側にフォワード電流が流れる。但し、前者の2つのトランスにおいては第1の二次コイルからフォワード電流が出力されるが、後者の1つのトランスにおいては第2の二次コイルからフォワード電流が出力される点で異なる。
 ・オフ期間の動作
 図9Bは、Rモードにおけるオフ期間の電流の流れを示している。矢印付きの点線は主電流の流れを示している。矢印付き2点鎖線は副次的電流を示している。
 制御信号Vgがオフになると、FETQ1、FETQ2、FETQ3がいずれもオフとなりスイッチが開く。一次コイルLr1、Ls1、Lt1の各電流路は遮断され、電流が零となる。これにより各コイルに逆起電力が生じる。
 トランスTsの第2の二次コイルLs22に生じた逆起電力により出力ダイオードD2’が順バイアスとなり、フライバック電流isr2が流れる。フライバック電流isr2の経路は、第2の二次コイルLs22→出力ダイオードD2’→負荷(又は平滑コンデンサC)→第2の二次コイルLs22である。一方、第1の二次コイルLs21に生じる逆起電力は出力ダイオードD2に対し逆バイアスとなるので出力ダイオードD2は導通しない。オフ期間にフライバック電流isr2が流れることにより、トランスTsに蓄積された磁気エネルギーは放出される。
 トランスTtの第2の二次コイルLt22に生じた逆起電力により出力ダイオードD3’が順バイアスとなり、フライバック電流itr2が流れる。フライバック電流isr2の経路は、第2の二次コイルLt22→出力ダイオードD3’→負荷→第2の二次コイルLt22である。一方、第1の二次コイルLt21に生じる逆起電力は出力ダイオードD3に対し逆バイアスとなるので出力ダイオードD3は導通しない。オフ期間にフライバック電流itr2が流れることにより、トランスTtに蓄積された磁気エネルギーは放出される。
 トランスTrの第1の二次コイルLr21に生じた逆起電力により出力ダイオードD1が順バイアスとなり、フライバック電流irr2が流れる。フライバック電流irr2の経路は、第1の二次コイルLr21→出力ダイオードD1→負荷→第1の二次コイルLr21である。一方、第2の二次コイルLr22に生じる逆起電力は出力ダイオードD1’に対し逆バイアスとなるので出力ダイオードD1’は導通しない。オフ期間にフライバック電流irr2が流れることにより、トランスTrに蓄積された磁気エネルギーは放出される。
 本実施形態の力率改善装置においては、オフ期間にはいずれのトランスも二次コイルにフライバック電流が流れる。オフ期間における各トランスのフライバック電流は、オン期間にフォワード電流を出力した二次コイルとは異なるもう一方の二次コイルから出力される。
 なお、RモードにおいてトランスTrから得られる副次的なフォワード電流及びフライバック電流は、オン期間に一次側に還流電流が流れることによる。従って、トランスの一次側の構成に、上述した第2の実施形態及び第4の実施形態を採用した場合は、還流電流が一次コイルをバイパスするので二次コイルから副次的電流は得られない。
 [一周期の電流波形]
 図9Cは、制御信号Vgの一周期の波形と、Rモードにおける各トランスの一次コイルLr1、Ls1、Lt1及び二次コイルLr21とLr22、二次コイルLs21とLs22、二次コイルLt21とLt22に流れる電流の波形の例を模式的に示している。制御信号Vgのデューティ比は、一周期の長さTに対するオン時間の長さTonの比で表される。
 オン期間において、一次コイルLs1、Lt1の電流isr1、itr1は時間の経過と共に増加する。一次コイルLr1は極性は逆であるが絶対値は増加する。二次コイルLr22の電流irr2及び二次コイルLs21、Lt21の電流isr2、itr2も時間の経過と共に増加する。
 オフ期間において、二次コイルLr21の電流irr2及び二次コイルLs22、Lt22の電流isr2、itr2は時間の経過と共に減少する。
 例えば一周期における一次コイルLs1の電流isr1の平均値をIsr1とし、線間電圧vsrの瞬時値(一周期の開始時の値)をVsrとし、一次コイルLs1のインダクタンスをLとすると、
   Isr1=Vsr/Lω  (ωは制御信号Vgの周波数)
となる。この式は、一次コイルに流れる電流が入力電圧と同位相の正弦波となることを示している。これにより二次コイルに流れる電流もまた、入力電圧と同位相の正弦波となる。よって、力率は1となり力率改善される。
 図9A、図9B及び図9Cに示したように、Rモードにおいてオン期間には各トランスからフォワード電流が出力され、オフ期間には各トランスからフライバック電流が出力される。Sモード、Tモードについても同様である。
[6]力率改善装置における制御方法
 本発明の力率改善装置における制御方法の特徴は、昇圧コンバータのスイッチ制御において、三相交流の各相の入力電圧に対し一定のデューティ比をもつ1つの制御信号のみを用いて制御することである。すなわち、全ての相に対し同じタイミングでオンオフを行い、オン時間とオフ時間が一定ということである。従って、制御部は、デューティ比のみを決定すればよい。
 従来の三相交流に対する力率改善装置の昇圧コンバータにおいては、PWM処理によりデューティ比が変化する制御信号を与えたり、各相に対して異なるタイミングでスイッチ制御を行ったりするものが多かった。本発明の制御方法は、これらに比べて極めて簡易である。
 また、デューティ比を決定する方法は、1つに限られず目的に応じて多様な決定方法が可能である。また、デューティ比を決定するために検出するパラメータは、入力電圧Viのみでもよい。別の例では、入力電圧Viに加えて出力電圧Voを検出する。本発明の力率改善装置では、検出された1つ又は2つのパラメータを基に多様な制御を行うことができる。
[7]第6の実施形態
 第6の実施形態は、上述した力率改善装置における制御信号すなわちPWM制御ICの出力信号のデューティ比を制御するためのデューティ比コントローラに関係する。
 力率改善装置におけるスイッチング素子の制御部には、一般的にPWM制御ICが用いられる。力率改善装置では、入力電圧(発電機出力電圧)viと出力電圧Voとが比例しており、以下の式で示される。比例係数である傾きは、制御信号vpのデューティ比Dを変数とする関数であるのでM(D)で表す。
  Vo=M(D)・vi          式(1)
 PWM制御ICは周知であり、種々のものが市販されている。一般的なPWM制御ICに共通する構成として、デューティ比制御電圧Vcsが入力されるcs端子、所定のデューティ比をもつPWM制御信号を出力するout端子、及び力率改善装置の出力電圧Voを安定化するためのフィードバック用のfb端子を備えている。PWM制御ICは、以下の式で示されるようにデューティ比制御電圧Vcsと制御信号vpのデューティ比Dとが比例するように構成されている。
  D=A・Vcs  (Aは所定の比例係数)式(2)
 通常、PWM制御ICに入力するデューティ比制御電圧Vcsを生成するための別の制御部(「デューティ比コントローラ」と称する)が設けられている。デューティ比コントローラでは、発電機出力電圧viを検出し、その振幅に基づいて最適なデューティ比を決定し、決定したデューティ比に対応するデューティ比制御電圧VcsをPWM制御ICに送る。従って、デューティ比コントローラでは、以下の式のように、発電機出力電圧viを変数とする所定の関数fにより、デューティ比制御電圧Vcsを生成していることになる。
  Vcs=f(vi)           式(3)
 ここでの関数fは、viとVcsが1対1に対応する所定の関係を有することを示すために用いている。
 また、風力発電における発電機の場合、通常、始動してから発電機出力電圧がカットイン電圧未満の間は電力を取り出さず、カットイン電圧となったときに電力の取得を開始する、すなわち力率改善装置の稼動を開始する。従って、デューティ比コントローラは、カットイン電圧を判別する機能も備えている。
 特に自然エネルギーを利用した風力発電等の交流発電機の場合、その出力変動が大きいことから、力率改善装置のスイッチ制御のために複雑な制御が行われている。上述したデューティ比コントローラにおけるVcs=f(vi)の関数fの具体的構成としては、力率改善装置の入出力電力を検知し山登り法による最大電力点追従(MPPT)制御を行ってデューティ比を決定する構成、又は、発電機出力電圧viと力率改善装置の出力電圧Voの対応テーブルを予め記憶しておきそれに基づいてデューティ比を決定する構成のいずれかの手法が一般的である。
 しかしながら、上記のような構成を実現するデューティ比コントローラは回路規模が大きくなる。回路規模の大きいデューティ比コントローラを力率改善装置と共に設けると、発電機の電力変換システム全体が大型化し、コスト高となっていた。また、テーブル方式の場合は予め行うデータ設定が極めて煩雑である。自然エネルギー利用分野における交流発電機の力率改善装置においては、簡易な構成と制御が望ましいといえる。
 さらに、力率改善装置におけるVo=M(D)・viの関係式で決まる発電機出力電圧viと力率改善装置の出力電圧Voの比例係数すなわち傾きM(D)を、必要に応じて調整したい場合がある。この場合、上式(1)~(3)によれば、デューティ比コントローラにおけるVcs=f(vi)の関数fを変更する必要がある。テーブル方式であれば複数のテーブルが必要となる。このような機能をデューティ比コントローラに追加することは、デューティ比コントローラの構成をさらに複雑化することとなる。
 第6の実施形態は、力率改善装置と組み合わせられるPWM制御ICのcs端子に入力されるデューティ比制御電圧を、簡易な構成により調整することができるデューティ比コントローラを備えている。
 第6の実施形態により、PWM制御ICのcs端子に入力されるデューティ比制御電圧を、簡易な構成により調整することができるので、力率改善装置をコンパクトかつ低コストで実現できる。
(7-1)第6の実施形態の基本構成
 図10は、第6の実施形態に関係する、PWM制御IC用のデューティ比コントローラの基本形態を含む、力率改善装置の構成を概略的かつ模式的に示した図である。
 発電機100は、例えば風力発電の交流発電機である。発電機出力電圧viは、三相交流の相電圧若しくは線間電圧の実効値又はこれらに比例する値である。
 PWM制御IC1は、cs端子に入力されたデューティ比制御電圧Vcsに比例するデューティ比Dをもつ制御信号vpをout端子から出力するように構成されている。一般的な三角波比較方式では、高周波搬送三角波電圧とデューティ比制御電圧Vcsを比較器に入力し、比較器の出力パルス信号を制御信号vpとして得る。デューティ比Dとデューティ比制御電圧Vcsの関係は、上述した式(2)の通りである。
 制御信号vpは、数kHz~数百kHzの高周波のパルス信号であり、一周期をTとし、オン期間をTonとすると、デューティ比Dは以下の式で表される。
  D=Ton/T             式(4)
 力率改善装置(PFC)は、上述した各実施形態に示したものである。負荷等103は、各種機器、インバータ(系統連系インバータを含む)等である。
 力率改善装置の入力電圧である発電機出力電圧viと出力電圧Voの関係は、傾きM(D)をもつ一次関数で表され、上述した式(1)の通りである。デューティ比Dが変化すると、傾きM(D)が変化する。
 第6の実施形態のデューティ比コントローラ7は、発電機出力電圧viを検出して入力とし、デューティ比制御電圧Vcsを出力する。デューティ比制御電圧Vcsは、PWM制御ICのcs端子に入力される。
 デューティ比コントローラ7は、検出した発電機出力電圧viを基に直流検出電圧Viを生成する電圧検出部71を有する。直流検出電圧Viは、基本的に発電機出力電圧viに比例するように生成される。
 さらにデューティ比コントローラ7は、直流検出電圧Viを印加されて接地電位との間で電流iが流れることができる電流路を有する。この電流路には、実質的に直列の接続関係にある2つの抵抗素子が少なくとも挿入されている。直流検出電圧Viの増減に従って電流路を流れる電流も増減する。2つの抵抗素子のうち、1つは可変抵抗素子である第1抵抗素子Rvであり、もう1つは一定の抵抗値をもつ第2抵抗素子Rcsである。電流iにより第2抵抗素子Rcsの両端間に発生する電圧がデューティ比制御電圧Vcsとして、PWM制御IC1のcs端子に与えられる。これらの関係は、以下のように表すことができる。
  Vi=B・vi         (Bは所定の比例係数)式(5)
  i  =Vi/(Rv+Rcs)            式(6)
  Vcs=i・Rcs                   式(7)
 上式(5)(6)(7)から、第1及び第2抵抗素子Rv、Rcsの値が一定のとき、発電機出力電圧viが増減すると、デューティ比制御電圧Vcsも増減することが示される。
 また上式(5)(6)(7)から、発電機出力電圧viが一定のとき、第1抵抗素子Rvの値を変更すると、電流iが変化し、デューティ比制御電圧Vcsが変化することが示される。
 これを利用すると、発電機出力電圧viが同じ値であっても、第1抵抗素子Rvを調整することによりデューティ比制御電圧Vcsの大きさ、すなわちこれに対応するデューティ比Dを調整することができる。このことは、力率改善装置の入力電圧(発電機出力電圧)viに対する出力電圧Voの傾きM(D)を、第1抵抗素子Rvを調整することにより変更できることを意味する。
 図11は、式(5)(6)(7)を基に、デューティ比コントローラ7における入力である発電機出力電圧viと出力であるデューティ比制御電圧Vcsの関係を模式的に示したグラフである。第1抵抗素子Rvの抵抗値が大きいときは直線g1、抵抗値が小さいときは直線g2に沿って変化する一次関数となる。
 風力発電においては、通常、発電機出力電圧viが大きく変動する。例えば、発電機出力電圧viがΔviの範囲で変化する場合、第1抵抗素子Rvが大きいときはデューティ比制御電圧VcsはΔVcs(大)の範囲で変化し、第1抵抗素子Rvが小さいときはデューティ比制御電圧VcsはΔVcs(小)の範囲で変化することとなる。
 なお、図11のグラフ中、発電機出力電圧viの一点であるvcinは、風力発電において電力取り出しを開始(力率改善装置による電力変換を開始)するカットイン電圧を示している。カットイン電圧vcin未満では電力取り出しを行わないので直線g1、g2を鎖線としている。
 図10には示さないが、第6の実施形態のデューティ比コントローラ7では、カットイン電圧vcin以上の範囲でのみ稼動する構成を付加することができる。この構成の具体例については、後述する図13及び図14に示す構成で説明する。
 図12は、図10に示したようにデューティ比コントローラ7の第1抵抗素子Rvを調整した場合における、力率改善装置の入力電圧である発電機出力電圧viと出力電圧Voの関係を模式的に示したグラフである。
 この例では、説明を簡単とするために、viとVoの傾きM(D)の関数を1/(1-D)としている。第6の実施形態のデューティ比コントローラ7とPWM制御IC1を用いて力率改善装置を制御した場合、発電機出力電圧viが変動するとデューティ比Dもそれに従って変動する。参考のために、図12のグラフ中にデューティ比Dが0.25、0.5、0.7の各一定値の場合の昇圧コンバータにおけるviとVoの関係を一点鎖線で示している。
 力率改善装置の入力電圧viと出力電圧Voの関係は、例えば、図10に示した第1抵抗素子Rvの抵抗値が大きいときは直線D1、抵抗値が小さいときは直線D2に沿って変化する一次関数となる。
 例えば、発電機出力電圧viがΔviの範囲で変化する場合、図10に示した第1抵抗素子Rvが大きいときは出力電圧VoはΔVo:Rv(大)の範囲で変化する。図示の例ではデューティ比Dが0.25~0.5の範囲で変化することになる。また、第1抵抗素子Rvが小さいときは出力電圧VoはΔVo:Rv(小)の範囲で変化する。図示の例では、デューティ比Dが0.5~0.7の範囲で変化することになる。
 このように、デューティ比コントローラ7の第1抵抗素子Rvの抵抗値を調整することにより、力率改善装置の入力電圧viと出力電圧Voの関係を変更することができる。従来は、力率改善装置の入力電圧viと出力電圧Voの関係を変更しようとすると、複雑かつ大規模の制御部が必要であったが、第6の実施形態によれば1つの可変抵抗素子の調整のみにより行うことができるので極めて簡易な構成で実現できる。自在な設定はできないが十分な実用性と操作容易性があり、かつ電力変換システムをコンパクトで低コストとすることができる。
(7-2)第6の実施形態の第1の構成例
 <第1の構成例の回路構成>
 図13は、第6の実施形態の第1の構成例のデューティ比コントローラ7Aを含む力率改善装置を概略的に示した図である。出力電圧VoはPWM制御IC1のフィードバック端子fbに帰還されている。
 発電機1の出力は三相交流である。デューティ比コントローラ7Aの入力段である電圧検出部71は、発電機出力電圧viを検出し、これに比例する直流検出電圧Viを生成する。本例では、三相交流の各相線からダイオードD4、D5、D6をそれぞれ介して交流電圧を半波整流し、それらを加算して直流検出電圧Viを得ている。電圧検出部71の構成は図示の例に限られず、発電機出力電圧viを基にこれに比例する直流検出電圧Viを生成する構成であればよい。
 ダイオードD4、D5、D6のカソードとトランジスタQ31(n型)のコレクタの間にコレクタ抵抗R31が接続され、ベースとの間にバイアス抵抗R33が接続されている。トランジスタQ31のエミッタとツェナーダイオードZ31のカソードの間にエミッタ抵抗R32及びコンデンサCが並列接続されている。ツェナーダイオードZ31のアノードは接地電位とされている。
 トランジスタQ31のベースは、ダイオードD31のアノードに接続されている。ダイオードD31のカソードは、デューティ比コントローラ7の電源Vccに接続されている。
 トランジスタQ31のエミッタとトランジスタQ32(p型)のエミッタの間に第1可変抵抗Rv1が接続されている。第1可変抵抗Rv1は、力率改善装置の入力電圧(発電機出力電圧)viと出力電圧Voの傾きを調整するためのものであり、所定の値に設定される。
 トランジスタQ32のコレクタと接地電位の間には抵抗R34とツェナーダイオードZ32が並列接続されている。トランジスタQ32のベースは、第2可変抵抗Rv2の中間端子に接続されている。第2可変抵抗Rv2は、カットイン電圧vcinを設定するためのものであり、所定の値に設定される。トランジスタQ32のベースエミッタ間にはダイオードD32が接続されている。第2可変抵抗Rv2は、電源VccととツェナーダイオードZ31のカソードの間に接続されている。
 トランジスタQ33(n型)のベースはトランジスタQ32のコレクタと接続され、コレクタは電源Vccに接続されている。トランジスタQ33のエミッタと接地電位の間には抵抗Rcsが接続されている。トランジスタQ33のエミッタはPWM制御IC1のcs端子と接続されている。トランジスタQ33のベースエミッタ間にはダイオードD33が接続されている。
 <第1の構成例の回路動作>
 一例として、風力発電において発電機出力電圧viが0Vから次第に増大し200~300V程度になるまでを想定して、デューティ比コントローラ7Aの動作を説明する。一例として、電源Vccは24V、ツェナーダイオードZ31、Z32の降伏電圧は5Vである。
・発電開始時
 発電機出力電圧viすなわち直流検出電圧Viが0Vの時点では、電源Vcc→第2可変抵抗Rv2→ツェナーダイオードZ31→接地の電流路に電流が流れる。この電流により、第2可変抵抗Rv2の中間端子であるd点の電位は、電源Vccの分圧電位である所定の電位となる。d点電位は、発電機出力電圧viのカットイン電圧vcinに対応するように設定されている。
 また、電源Vcc→第2可変抵抗Rv2の中間端子(d点)→ダイオードD32→第1可変抵抗Rv1→トランジスタQ31エミッタ(a点)→抵抗R32→ツェナーダイオードZ31→接地の電流路にも電流が流れ、トランジスタQ31のエミッタであるa点の電位は、電源Vccの所定の分圧電位となる。トランジスタQ31のベースのb点電位は、直流検出電圧Viである。各点の電位の高低は次のようになっている。
  b点<a点<c点<d点<Vcc
 直流検出電圧Viが0Vのときは、b点電位がa点電位よりも低いためトランジスタQ31は非導通である。トランジスタQ32もc点電位がd点電位より低いために非導通である。トランジスタQ33もトランジスタQ32が導通しない限り非導通である。ダイオードD31は逆バイアス、ダイオードD32は順バイアス、ツェナーダイオードZ31は降伏電圧となっている。直流検出電圧Viが0Vから増大していくとb点電位が上昇していく。
・トランジスタQ31の導通
 b点電位がa点電位より高くなりベース電流が流れるとトランジスタQ31が導通する。従って、直流検出電圧Viにより抵抗R31→トランジスタQ31→抵抗R32→ツェナーダイオードZ31→接地の電流路に電流i1が流れる。a点電位は、大凡、直流検出電圧Viを印加される抵抗R31、抵抗R32及びツェナーダイオードZ32により決まる分圧電位となる。この時点の各点の電位の高低は次のようになる。
 a点<b点<c点<d点<Vcc
 直流検出電圧Viがさらに増大するとa点電位とb点電位はともに上昇していく。トランジスタQ32は、少なくともa点電位及びc点電位がd点電位より高くなるまでは非導通である。
・トランジスタQ32及びQ33の導通:カットイン
 直流検出電圧Viがさらに増大するとa点、b点及びc点電位がd点電位より高くなり、ベース電流が流れるとトランジスタQ32が導通する。従って、直流検出電圧ViによりトランジスタQ31→第1可変抵抗Rv1→トランジスタQ32→抵抗R34→接地の電流路に電流i2が流れる。ダイオードD32は非導通となる。電流i2が流れることにより、e点電位がf点電位より高くなりベース電流が流れトランジスタQ33が導通する。これにより電源Vcc→トランジスタQ33→抵抗Rcs→接地の電流路に電流i3が流れる。この結果、抵抗Rcsの両端電圧が発生し、PWM制御IC1のcs端子にデューティ比制御電圧Vcsが入力される。これによりPWM制御IC1が始動し、力率改善装置による電力取り出しが開始される。この時点の各点の電位の高低は次のようになる。
 d点<c点<a点<b点<Vcc
 トランジスタQ32及びQ33が導通する時点の発電機出力電圧viがカットイン電圧vcinに対応するように、第2可変抵抗Rv2の中間端子すなわちd点電位を設定しておく。
 直流検出電圧Viがさらに増大すると、a点及びb点の電位は電源Vccよりも高くなる。これによりダイオードD31が順バイアスとなり導通する。直流検出電圧Viによる電流を、抵抗R33及びダイオードD31を介してバイパスさせることによりトランジスタQ31に大電流が流れることを回避している。
 電力取り出し中、発電機出力電圧viすなわち直流検出電圧Viが増減すると、電流i1、i2、i3がそれぞれ増減する。それに従ってデューティ比制御電圧Vcsも増減する。
・デューティ比制御電圧Vcsの調整
 第1可変抵抗Rv1の抵抗値を調整することにより、発電機出力電圧viが同じであってもトランジスタQ32を流れる電流i2を変化させることができる。第1可変抵抗Rv1の抵抗値が大きくなれば電流i2は減り、抵抗値が小さくなれば電流i2は増える。これによりトランジスタQ33のベース電流が変化し、トランジスタQ33を流れる電流i3が変化する結果、デューティ比制御電圧Vcsが変化することとなる。従って、図11及び図12で説明したように、第1可変抵抗Rv1を調整することにより、力率改善装置の入力電圧(発電機出力電圧)viと出力電圧Voの関係を変更することができる。この変更は、電力取り出し中にも行うことができる。
(7-3)第6の実施形態の第2の構成例
 <際2の構成例の回路構成>
 図14は、第6の実施形態の第2の構成例のデューティ比コントローラ7Bを含む力率改善装置を概略的に示した図である。
 発電機100の出力は第1の構成例と同じく三相交流である。デューティ比コントローラ7Bの入力段である電圧検出部71は、発電機出力電圧viを検出し、これに比例する直流検出電圧Viを生成する。本例では、トランスTと整流平滑回路から構成されている。三相交流の2つの相線にトランスTの一次コイルを接続し、二次コイルの両端から降圧された交流電圧を取得している。トランスTの一次コイルは、三相交流の線間電圧を検出することになる。トランスTの二次コイルは、整流部の入力端に接続される。整流部は一例としてブリッジ整流回路であるが、これに限られない。整流部の正極端pと負極端nの間に平滑コンデンサC41が接続されている。正極端pと負極端nの間の電圧が、直流検出電圧Viである。
 デューティ比コントローラ7Bの電源Vccは、電圧検出部71の正極端pに接続されている。従って、直流検出電圧Viが増加するとき、電源Vccを基準電位として、負極端nの電位は、基準電位から負方向に降下していくことになる。
 電源Vccと負極端nの間に抵抗R41が接続されている。トランジスタQ41(p型)のベースは、抵抗R42を介して負極端nに接続されている。トランジスタQ41のエミッタは、第1可変抵抗Rv1を介して第2可変抵抗Rv2の中間端子と接続されている。トランジスタQ41のコレクタと接地電位の間には、抵抗RcsとコンデンサC42が並列接続されている。トランジスタQ41のコレクタは、PWM制御IC1のcs端子と接続されている。第1可変抵抗Rv1は、力率改善装置の入力電圧(発電機出力電圧)viと出力電圧Voの傾きを調整するためのものであり、所定の値に設定される。
 第2可変抵抗Rv2とツェナーダイオードZは、電源Vccと接地電位の間に直列接続された構成となっている。第2可変抵抗Rv2は、カットイン電圧vcinを設定するためのものであり、所定の値に設定される。
 <第2の構成例の回路動作>
 一例として、風力発電において発電機出力電圧viが0Vから次第に増大し200~300V程度になるまでを想定して、デューティ比コントローラ7Bの動作を説明する。一例として、トランスTの巻き数比は20:1(一次側が200Vのとき二次側は10V)、電源Vccは24V、ツェナーダイオードZの降伏電圧は5Vである。
・発電開始時
 発電機出力電圧viが0Vの時点では、トランスTの二次コイルの両端電圧は0Vである。従って、整流平滑回路の出力電圧である直流検出電圧Viは0Vであるので、正極端pと負極端nは同電位であり電源Vccの電位である。なお、正極端pの電位は常に電源Vccと同電位である。
 また、電源Vcc→第2可変抵抗Rv2→ツェナーダイオードZ→接地の電流路に電流が流れる。ツェナーダイオードZは降伏電圧となっている。この電流により、第2可変抵抗Rv2の中間端子であるk点の電位が、電源Vccの分圧電位である所定の電位となる。k点電位は、発電機出力電圧viのカットイン電圧vcinに対応するように設定されている。この時点の各点の電位の高低は次のようになっている。
  k点<n点=p点=Vcc
 トランジスタQ41のエミッタであるh点にはk点電位が印加され、ベースにはn点電位が印加され、h点電位がn点電位より低いのでトランジスタQ41は非導通である。直流検出電圧Viが0Vから増大していくと、n点電位は、基準電位である電源Vccから降下していく。
・トランジスタQ41の導通:カットイン
 n点電位がh点電位より低くなりベース電流が流れるとトランジスタQ41が導通する。これにより、電源Vcc→第2可変抵抗Rv2中間端子(k点)→第1可変抵抗Rv1→トランジスタQ41→抵抗Rcsの電流路に電流i41が流れる。この結果、抵抗Rcsの両端電圧が発生し、PWM制御IC1のcs端子にデューティ比制御電圧Vcsが入力される。これによりPWM制御IC1が始動し、力率改善装置による電力取り出しが開始される。この時点の各点の電位の高低は次のようになる。
  j点<n点<h点<k点<p点=Vcc
 この時点の発電機出力電圧viがカットイン電圧vcinに対応するように、第2可変抵抗Rv2の中間端子すなわちk点電位を設定しておく。
 電力取り出し中、発電機出力電圧viすなわち直流検出電圧Viが増減すると、トランジスタQ41のベース電流が増減するので、電流i41が増減する。それに従ってデューティ比制御電圧Vcsも増減する。
・デューティ比制御電圧Vcsの調整
 第1可変抵抗Rv1の抵抗値を調整することにより、同じ発電機出力電圧viであってもトランジスタQ41を流れる電流i41を変化させることができる。第1可変抵抗Rv1の抵抗値が大きくなれば電流i41は減り、抵抗値が小さくなれば電流i41は増える。これにより、デューティ比制御電圧Vcsが変化する。図11及び図12で説明したように、第1可変抵抗Rv1を調整することにより、力率改善装置の入力電圧(発電機出力電圧)viと出力電圧Voの関係を変更することができる。この変更は、電力取り出し中にも行うことができる。
[8]第7の実施形態
 第7の実施形態は、上記の力率改善装置におけるトランスの一次コイルに接続されたスイッチング素子の高耐圧化のための構成に関する。
 なお、この構成は、上記の力率改善装置に限らず、AC/DCコンバータ、DC/DCコンバータ等、トランスを有する多様なスイッチング電源に適用可能である。また、入力は、正弦波の他、一定電圧の直流、脈流や方形波等の変動する電圧・電流をもつものでもよい。このようなスイッチング電源では、トランスの一次コイルに接続されたスイッチング素子をオンオフ制御することにより、一次コイルに入力される直流又は交流の電流を導通又は遮断し、二次コイルから所望する直流電力を取り出す。
 スイッチング素子がオンからオフに切り替わったとき、トランスの一次コイルには逆起電力によるスパイク電圧が発生する。このスパイク電圧がスイッチング素子に印加されるため、スイッチング素子はこのスパイク電圧に対する耐圧特性が要求される。1つのスイッチング素子のみでは耐圧特性を確保することができない場合、2つのスイッチング素子(以下、各々を「サブスイッチング素子」と称する)をカスケード接続する場合がある。
 2つのサブスイッチング素子をカスケード接続した場合、これらのサブスイッチング素子を同時にオンオフ制御する必要がある。例えば特許文献8では、第1のサブスイッチング素子の制御端子(FETの場合はゲート端子)を所定のスイッチング周波数でオンオフ駆動すると共に、カスケード接続された第2のサブスイッチング素子も同期してオンオフ動作を行うように構成されている。
 しかしながら、カスケード接続により追加された第2のサブスイッチング素子を、第1のサブスイッチング素子と同期させてオンオフ制御するための回路は、別途駆動電源を必要とすることに加え、駆動回路の素子数も多く複雑な構成となるという問題があった。この問題点に鑑み、第7の実施形態では、簡易な構成によりスイッチング素子の高耐圧化を実現する。
 以下の第7の実施形態の説明においては、上記の力率改善装置の三相交流の3つの入力端のうち、1つの入力端に関係する構成のみを記載する。他の2つの入力端については、同様であるので説明を省略する。また、説明を簡単とするために、入力を高圧の直流電圧と想定して説明する。上記の三相交流が入力される場合は、交流電圧が高電圧となる領域において全く同様に機能する。
(8-1)第7の実施形態の第1の構成例(昇圧型スイッチング電源)
 <第1の構成例の回路構成>
 図15は、第7の実施形態の第1の構成例を概略的に示す回路図である。本回路では、入力端1と入力端2の間に直流電圧が印加される。本例では、入力端2を基準電位(図1の力率改善装置ではe点に対応する)とし、入力端1を正の入力電位とする場合について説明する。
 本回路は、一次コイルL1及び二次コイルL2を具備するトランスT(図1の力率改善装置ではトランスTr、Ts、Ttのうちのいずれかに対応する)を有する。各コイルの巻き始め端子を黒丸で示している。一次コイルL1と二次コイルL2は、磁気結合されており、結合係数1であることが好適である。結合係数が1未満であると、一次コイルL1に発生するスパイク電圧がより大きくなるため、スイッチング素子に対してより高耐圧が要求されるためである。
 トランスTの二次側の構成は、フライバック方式となっており、二次コイルL2の巻き終わり端子に出力ダイオードDのアノードが接続され、出力ダイオードDのカソードと二次コイルL2の巻き始め端子の間に平滑コンデンサCが接続されている。平滑コンデンサCの両端である出力端3と出力端4(図1の力率改善装置では正極出力端pと負極出力端nに対応する)の間に出力され、負荷に電力供給される。
 一次コイルL1の一端は入力端1に接続されており、入力電位が印加される。一次コイルL1の他端と入力端2の間には、第1サブスイッチング素子Q11と第2サブスイッチング素子Q12がカスケード接続、すなわち各サブスイッチング素子の互いの電流路が直列となるように接続されている。本例では、各サブスイッチング素子はNチャネルFETである。
 第1サブスイッチング素子Q11のソースは入力端2に接続されており、入力側基準電位が印加される。第1サブスイッチング素子Q11のゲートには、第1スイッチング素子Q11のドレインソース間の電流路を導通又は遮断するための制御電圧Vgが入力される。すなわち、第1スイッチング素子Q11は、入力電位に起因して一次コイルL1に流れる電流を導通又は遮断するべくオンオフ駆動される。制御電圧Vgは、ゲートソース間に印加される所定のスイッチング周波数とデューティ比をもつパルス信号であり、図示しない制御部により生成される。この場合、第1サブスイッチング素子Q11は、ゲートが高電位のときにオンとなり、低電位のときにオフとなる。
 第2サブスイッチング素子Q12は、第1サブスイッチング素子Q11と一次コイルの間に挿入され、そのドレインが一次コイルL1の他端に、ソースが第1サブスイッチング素子Q11のドレインに接続されている。
 さらに、第2サブスイッチング素子Q12のゲートソース間にはツェナーダイオードZDが接続される。ツェナーダイオードZDは、第2サブスイッチング素子Q12のゲートソース間のオン制御電圧の向きに対して逆バイアスとなるような向きで接続されている。NチャネルFETである第2サブスイッチング素子Q12のオン制御電圧は、ソースに対してゲート高電位となる向きであるので、ツェナーダイオードZDは、カソードがゲートに、アノードがソースに接続される。
 ツェナーダイオードZDのツェナー電圧は、第2サブスイッチング素子Q12のゲート閾値電圧よりも十分に大きく設定する。また、ツェナー電圧は、入力電位と入力側基準電位の間の入力電圧よりも十分に小さく設定する。
 さらに、第2サブスイッチング素子Q12のゲートと一次コイルL1の一端との間に抵抗素子R51が接続されている。従って、入力端1と入力端2の間の入力電圧は、抵抗素子R51、ツェナーダイオードZD及び第1サブスイッチング素子Q11に分圧されて印加されることになる。ツェナーダイオードZDは、この入力電圧に対して逆バイアスとなるような向きで接続されているということもできる。
 別の例として、入力端1は負の入力電位であってもよい。入力電圧が負電圧の場合は、スイッチング素子Q11、Q12として、NチャネルFETに替えてPチャネルFETを用いる。その場合、スイッチング素子Q11、Q12のソースとドレインを逆向きに、ツェナーダイオードZDも極性を逆向きに接続され、また二次側の出力ダイオードDは二次コイルL2の巻き始め端子側に接続され、平滑コンデンサCの極性も逆向きとなる。
 <第1の構成例の回路動作>
 図16は、図15に示した回路の動作を説明するために電位関係を模式的に示した図であり、(a)は第1サブスイッチング素子Q11の制御電圧Vgのオン時(オン期間の開始直後)であり、(b)はオフ時(オフ期間の開始直後)の各状態を示す。図15の回路図に示したa点~d点を用いて説明する。
・オン時の動作
 制御電圧Vgがオン電圧になると、第1サブスイッチング素子Q11が導通し、第1サブスイッチング素子Q11のドレインソース間電圧(c点-d点間電圧)は短絡により零となる。よって、c点電位=d点電位=入力側基準電位である。
 a点には常に入力電位Vinが印加されている。入力電位Vinはd点の基準電位に対して例えば300ボルト程度であり、ツェナーダイオードZDの、例えば20ボルトであるツェナー電圧Vzより十分に大きいものとする。a点-d点間電圧は、抵抗素子R51とツェナーダイオードZDに分圧されてそれぞれに印加されることになる。ツェナーダイオードZDの両端間電圧すなわち第2サブスイッチング素子Q12のゲートソース間電圧(e点-c点間電圧)は、ツェナー電圧Vzとなる。ツェナー電圧Vzは、第2サブスイッチング素子Q12のゲート閾値電圧すなわちオン電圧より十分に大きく選択されている。この結果、第2サブスイッチング素子Q12が導通し、第2サブスイッチング素子Q12のドレインソース間電圧(b点-c点間電圧)は短絡により零となる。よって、b点電位=c点電位=d点電位=入力側基準電位である。
 ツェナーダイオードZDは、オン期間の第2サブスイッチング素子Q12のゲート閾値電圧を確保する役割と、第2サブスイッチング素子Q12のゲートソース間に過大な電圧が負荷されることを防ぐ保護ダイオードとしての役割を有する。
 トランスTにおいては、一次コイルL1の巻き始め端子に入力電位Vinが印加され、それによる電流が流れることにより、二次コイルL2に起電力が発生するが、出力ダイオードDは逆バイアスであるので二次電流は流れず、トランスTに磁気エネルギーが蓄積される。
・オフ時の動作
 制御電圧Vgがオフになると、第1サブスイッチング素子Q11のドレインソース電流路が遮断され、一次コイルL1には逆方向のスパイク電圧が瞬間的に発生する。スパイク電圧により、一次コイルL1の巻き終わり端子のb点電位は、入力電位Vinすなわちa点電位よりも遙かに高く、例えば基準電位からみてa点電位又はそれ以上となる。これにより、第1サブスイッチング素子Q11と第2サブスイッチング素子Q12の接続点であるc点電位が上昇していく。
 ここで、c点には、ツェナーダイオードZDのアノードが接続されており、そのカソードは抵抗素子R51を介して入力電位Vinに接続されているので、c点電位は入力電位Vinすなわちa点電位を超えることはない。
 言い換えると、第2サブスイッチング素子Q12がソースフォロア回路を構成していることにより、第2サブスイッチング素子Q12のソースであるc点電位は、第2サブスイッチング素子Q12のゲートであるe点電位に従い、e点電位は入力電位Vin(a点電位)を超えることはない。従って、c点電位もa点電位を超えることはない。
 ツェナーダイオードZDは、オフ期間にも保護ダイオードとしての役割を果たしていることになる。このようにして、a点、e点、c点の電位は最終的にほぼ同程度となり、第2サブスイッチング素子Q12のゲートソース間電圧(e点-c点間電圧)がゲート閾値電圧より十分に小さくなる結果、第2サブスイッチング素子Q12は遮断される。この結果、b点-d点間電圧は、第1サブスイッチング素子Q11と第2サブスイッチング素子Q12に分圧されて印加されることとなる。このb点-d点間電圧の分圧においては、中間点であるc点電位がほぼa点電位に固定されるので、2つのサブスイッチング素子Q11、Q12の一方に大きな偏りを生じることなく適切に分圧されることになる。
 以上に説明したオン時及びオフ時の各動作は、実際には瞬間的に生じる。よって、図15の回路では、第1サブスイッチング素子Q11を制御電圧Vgによりオンオフ駆動することにより、第2サブスイッチング素子Q12も同期してオンオフされることになる。加えて、第2サブスイッチング素子Q12のオンオフは、1つのツェナーダイオードZDと1つの抵抗素子R51を付加するのみで実現される。本回路によれば、第2サブスイッチング素子Q12のための駆動電源や複雑な駆動回路を設ける必要がなく、入力電圧から駆動電源を得ることができる。
 なお、二次コイルL2は、オフ時に巻き終わり端子が正電位となり、出力ダイオードDが順バイアスとなるので、負荷へ電流を供給すると共に平滑コンデンサCを充電する。これによりトランスTに蓄積された磁気エネルギーが放出される。
(8-2)第2の構成例(降圧型スイッチング電源)
 <第2の構成例の回路構成>
 図17は、第7の実施形態の第2の構成例を概略的に示す回路図である。
 本回路は、入力端1と入力端2の間に直流電圧が印加される。本例では、入力端2を基準電位とし、入力端1を正の入力電位として説明する。この場合、出力端3が正の出力電位となり、出力端4は、入力端2と共通ラインで接続された基準電位である。
 本回路は、一次コイルL1と二次コイルL2を具備するタップドインダクタを構成するトランスTを有する。各コイルの巻き始め端子を黒丸で示している。上述した第1の実施形態と同様に、一次コイルL1と二次コイルL2は、磁気結合されており、結合係数1であることが好適である。二次コイルL2の巻き終わり端子は、出力端3に接続されている。出力端3と出力端4の間には、平滑コンデンサCと負荷が並列接続されている。
 一次コイルL1と二次コイルL2の接続点であるトランスTの中間タップには、還流ダイオードDのカソードが接続され、還流ダイオードDのアノードは、基準電位である出力端4に接続されている。
 入力端1と一次コイルL1の一端との間には、第1サブスイッチング素子Q11と第2サブスイッチング素子Q12がカスケード接続、すなわち各スイッチング素子の電流路が直列となるように接続されている。本例では、各スイッチング素子はPチャネルFETである。
 第1サブスイッチング素子Q11のソースは入力端1に接続されており、入力電位が印加される。第1サブスイッチング素子Q11のソースとゲート間には抵抗素子R51が接続されている。ゲートソース間電圧は抵抗素子R51を介して印加される。第1サブスイッチング素子Q11のゲートには、第1サブスイッチング素子Q11のソースドレイン間の電流路を導通又は遮断するための制御電圧Vgが入力される。すなわち、第1サブスイッチング素子Q11は、入力電位に起因して一次コイルL1に流れる電流を導通又は遮断するべくオンオフ駆動される。制御電圧Vgは、ゲートソース間に印加される所定のスイッチング周波数とデューティ比をもつパルス信号であり、図示しない制御部により生成される。この場合、第1サブスイッチング素子Q11は、ゲートが低電位のときにがオンとなり、高電位のときにオフとなる。
 第2サブスイッチング素子Q12は、第1サブスイッチング素子Q11と一次コイルL1の間に挿入され、そのソースが第1サブスイッチング素子Q11のドレインに、ドレインが一次コイルL1の一端に接続されている。
 さらに、第2サブスイッチング素子Q12のゲートソース間にはツェナーダイオードZDが接続される。ツェナーダイオードZDは、第2サブスイッチング素子Q12のゲートソース間のオン制御電圧の向きに対して逆バイアスとなるような向きで接続されている。PチャネルFETである第2サブスイッチング素子Q12のオン制御電圧は、ソースに対してゲートが低電位となる向きであるので、ツェナーダイオードZDは、カソードがソースに、アノードがゲートに接続される。
 ツェナーダイオードZDのツェナー電圧は、第2サブスイッチング素子Q12のゲート閾値電圧よりも十分に大きく設定する。また、ツェナー電圧は、入力電位と基準電位の間の入力電圧よりも十分に小さく設定する。
 さらに、第2サブスイッチング素子Q12のゲートと入力端2との間に抵抗素子R52が接続されている。
 別の例として、入力端1は負の入力電位であってもよい。入力電圧が負電圧の場合は、スイッチング素子Q11、Q12として、PチャネルFETに替えてNチャネルFETを用いる。その場合、スイッチング素子Q11、Q12のソースとドレインを逆向きに、ツェナーダイオードZDも極性を逆向きに接続され、また還流ダイオードD及び平滑コンデンサCの極性も逆向きとなる。
 <第2の構成例の回路動作>
 図18は、図17に示した回路の動作を説明するために電位関係を模式的に示した図であり、(a)は第1サブスイッチング素子Q11の制御電圧Vgのオン時(オン期間の開始直後)であり、(b)はオフ時(オフ期間の開始直後)の各状態を示す。図17の回路図に示したa点~d点を用いて説明する。
・オン時の動作
 制御電圧Vgがオンになると、第1サブスイッチング素子Q11が導通し、第1サブスイッチング素子Q11のソースドレイン間電圧(a点-c点間電圧)は短絡により零となる。よって、a点電位=c点電位=入力電位である。
 このとき、a点には入力電位Vinが印加されている。d点の基準電位に対する入力電位Vinは例えば300ボルト程度であり、ツェナーダイオードZDの、例えば20ボルトであるツェナー電圧Vzより十分に大きいものとする。c点-d点間電圧は、ツェナーダイオードZDと抵抗素子R52に分圧されてそれぞれに印加されることになる。ツェナーダイオードZDの両端間電圧すなわち第2サブスイッチング素子Q12のゲートソース間電圧(c点-e点間電圧)は、ツェナー電圧Vzとなる。ツェナー電圧Vzは、第2サブスイッチング素子Q12のゲート閾値電圧より十分に大きく選択されている。この結果、第2サブスイッチング素子Q12が導通し、第2サブスイッチング素子Q12のソースドレイン間電圧(c点-b点間電圧)は短絡により零となる。よって、a点電位=c点電位=b電位=入力電位である。
 ツェナーダイオードZDは、オン期間の第2サブスイッチング素子Q12のゲート閾値電圧を確保する役割と、第2サブスイッチング素子Q12のゲートソース間に過大な電圧が負荷されることを防ぐ保護ダイオードとしての役割を有する。
 この結果、一次コイルL1の巻き始め端子b点に入力電位Vinが印加されることにより一次コイルL1及び二次コイルL2に電流が流れ、負荷に供給されると共に平滑コンデンサCを充電する。この電流は励磁電流にもなり、トランスTに磁気エネルギーが蓄積される。
・オフ時の動作
 制御電圧Vgがオフになると、第1サブスイッチング素子Q11のソースドレイン間電流路が遮断され、一次コイルL1には逆方向のスパイク電圧が瞬間的に発生する。スパイク電圧により、一次コイルL1の巻き初め端子の電位(b点電位)は、入力電位Vinすなわちa点電位よりも遙かに降下し、d点の基準電位よりも低い負電位となる。例えば、a点-b点間電圧は、a点-d点間電圧又はそれ以上となる。これにより、第1サブスイッチング素子Q11と第2サブスイッチング素子Q12の接続点であるc点電位が降下していく。
 ここで、c点には、ツェナーダイオードZDのカソードが接続されており、そのアノードは抵抗素子R52を介して基準電位であるd点に接続されているので、c点電位は基準電位すなわちd点電位より降下することはない。
 言い換えると、第2サブスイッチング素子Q12がソースフォロア回路を構成していることにより、第2サブスイッチング素子Q12のソースであるc点電位は、第2サブスイッチング素子Q12のゲートであるe点電位に従い、e点電位は基準電位(d点電位)より降下することはない。従って、c点電位もd点電位より降下することはない。
 ツェナーダイオードZDは、オフ期間にも保護ダイオードとしての役割を果たしていることになる。このようにして、d点、e点、c点の電位は最終的にほぼ同程度となり、第2サブスイッチング素子Q12のゲートソース間電圧(e点-c点間電圧)がゲート閾値電圧より十分に小さくなる結果、第2サブスイッチング素子Q12は遮断される。この結果、a点-b点間電圧は、第1サブスイッチング素子Q11と第2サブスイッチング素子Q12に分圧されて印加されることとなる。このa点-b点間電圧の分圧においては、中間点であるc点電位がほぼd点電位に固定されるので、2つのサブスイッチング素子Q11、Q12の一方に大きな偏りを生じることなく適切に分圧されることになる。
 以上に説明したオン時及びオフ時の各動作は、実際には瞬間的に生じる。よって、図17の回路では、第1サブスイッチング素子Q11を制御電圧Vgによりオンオフ駆動することにより、第2サブスイッチング素子Q12も同期してオンオフされることになる。加えて、第2サブスイッチング素子Q12のオンオフは、1つのツェナーダイオードZDと1つの抵抗素子R52を付加するのみで実現される。本回路によれば、第2サブスイッチング素子Q12のための駆動電源や複雑な駆動回路を設ける必要がなく、入力電圧から駆動電源を得ることができる。
 なお、オフ期間における二次コイルL2は、巻き始め端子が負電位となり巻き終わり端子が正電位となり、還流ダイオードDが順バイアスとなって電流が流れ、負荷へ電流を供給すると共に平滑コンデンサCを充電する。これによりトランスTに蓄積された磁気エネルギーが放出される。
(8-3)その他
 力率改善装置の第7の実施形態では、第1と第2のサブスイッチング素子がカスケード接続すなわち互いの電流路を直列に接続され、2つのサブスイッチング素子は、一次コイルに発生するスパイク電圧に対する耐圧特性を分担することができる。この場合、第1サブスイッチング素子の制御端がオンオフ駆動されると、それと同期して第2サブスイッチング素子がオンオフするように構成されている。この構成において、第2サブスイッチング素子のオンオフは、1つのツェナーダイオードと1つの抵抗素子を介して行うことが可能であり、第2サブスイッチング素子のための駆動電源や複雑な駆動回路は不要である。従って、力率改善装置等のスイッチング電源において、極めて簡易な構成によりスイッチング素子の高耐圧化を実現できる。
 力率改善装置のように、例えば、交流、交流電圧を整流した脈流や、方形波など、変動する電圧・電流が入力されるスイッチング電源について補足する。その場合、入力電圧がツェナーダイオードZDのツェナー電圧より十分に大きい範囲では、上記と同じ動作となる。一方、入力電圧がツェナー電圧より低い範囲では第2サブスイッチング素子Q12はオフのままとなり、スイッチング電源が機能しない。しかしながら、入力電圧がツェナー電圧より低くなる期間が十分に短ければ、この期間は無視できる。別の例として、第2サブスイッチング素子Q12がオフのままとなる期間がある場合、当該期間(少なくとも第1サブスイッチング素子のオン期間)には、第2サブスイッチング素子Q12のゲートに、ゲート閾値電圧を超える別の電圧が印加されるように構成してもよい。
 好適には、入力電圧は、ツェナー電圧より十分に大きくなるように例えば10倍以上であるようにツェナー電圧を設定する。その一方でツェナー電圧は、第2サブスイッチング素子Q12のゲート閾値電圧よりも大きくなければならない。
 別の例として、第1サブスイッチング素子Q11及び第2サブスイッチング素子Q12をバイポーラトランジスタ又はIGBTとしてもよい。その場合、図1の力率改善装置に示すように、各サブスイッチング素子に還流ダイオードを逆並列に接続する。
 R、S、T 入力端
 p 正極出力端
 n 負極出力端
 Tr、Ts、Tt トランス
 Lr1、Ls1、Lt1 一次コイル
 Lr2、Ls2、Lt2 二次コイル
 Lr21、Ls21、Lt21 第1の二次コイル
 Lr22、Ls22、Lt22 第2の二次コイル
 Q1、Q2、Q3、Q スイッチング素子(FET)
 D1、D2、D3 整流デバイス(出力ダイオード)
 D1’、D2’、D3’整流デバイス(出力ダイオード)
 D4、D5、D6、D14、D15、D16 整流デバイス(還流ダイオード)
 D17、D18、D19 整流デバイス
 C 平滑コンデンサ

Claims (15)

  1.  (a)三相交流が入力される第1、第2及び第3入力端(R,S,T)と、
     (b)正極出力端(p)及び負極出力端(n)と、
     (c)各々が一次コイル(Lr1,Ls1,Lt1)と二次コイル(Lr2,Ls2,Lt2)を具備し各々の一次コイルの一端が前記第1、第2及び第3入力端(R,S,T)にそれぞれ接続されかつ各々の二次コイルの一端が前記負極出力端(n)に接続された第1、第2及び第3トランス(Tr,Ts,Tt)と、
     (d)前記第1、第2及び第3トランス(Tr,Ts,Tt)の各々の一次コイル(Lr1,Ls1,Lt1)の他端と一次側の共通電位端(e)の間の電流路を導通又は遮断するべくオンオフ制御される、制御端(G)を具備する1又は複数のスイッチング素子と、
     (e)前記第1、第2及び第3トランス(Tr,Ts,Tt)の各々の二次コイル(Lr2,Ls2,Lt2)の他端と前記正極出力端(p)の間にそれぞれ接続され、該二次コイルの他端の電位が順バイアスであるとき該正極出力端へ流れる電流をそれぞれ導通させかつ逆バイアスであるときそれぞれ遮断する第1、第2及び第3整流デバイス(D1,D2,D3)と、
     (f)前記正極出力端(p)と前記負極出力端(n)の間に接続された平滑コンデンサ(C)と、を有し、
     (g)前記1又は複数のスイッチング素子の制御端(G)が一定のデューティ比をもつ1つの制御信号により制御されることを特徴とする力率改善装置。
  2.  前記スイッチング素子が、第1、第2及び第3スイッチング素子(Q1,Q2,Q3)からなり、前記第1、第2及び第3トランス(Tr,Ts,Tt)の各々の一次コイル(Lr1,Ls1,Lt1)の他端と一次側の共通電位端(e)の間に各スイッチング素子がそれぞれ接続されることを特徴とする請求項1に記載の力率改善装置。
  3.  前記スイッチング素子が、1つのスイッチング素子(Q)からなり、前記第1、第2及び第3トランス(Tr,Ts,Tt)の各々の一次コイル(Lr1,Ls1,Lt1)の他端と一次側の共通電位端(e)の間に該スイッチング素子が接続されることを特徴とする請求項1に記載の力率改善装置。
  4.  前記一次側の共通電位端(e)から前記第1、第2及び第3トランス(Tr,Ts,Tt)の各々の一次コイル(Lr1,Ls1,Lt1)の各々を介して前記第1、第2及び第3入力端(R,S,T)へ還流する電流をそれぞれ導通可能とする第4、第5及び第6整流デバイス(D4,D5,D6)を有することを特徴とする請求項1~3のいずれかに記載の力率改善装置。
  5.  前記一次側の共通電位端(e)から前記第1、第2及び第3入力端(R,S,T)へ直接還流する電流をそれぞれ導通可能とする第4、第5及び第6整流デバイス(D14,D15,D16)を有することを特徴とする請求項1~3のいずれかに記載の力率改善装置。
  6.  (a)三相交流が入力される第1、第2及び第3入力端(R,S,T)と、
     (b)正極出力端(p)及び負極出力端(n)と、
     (c)各々が一次コイル(Lr1,Ls1,Lt1)と第1の二次コイル(Lr21,Ls21,Lt21)と第2の二次コイル(Lr22,Ls22,Lt22)とを具備し各々の一次コイルの一端が前記第1、第2及び第3入力端(R,S,T)にそれぞれ接続されかつ各々の該第1の二次コイルの他端及び該第2の二次コイルの一端が前記負極出力端(n)に接続された第1、第2及び第3トランス(Tr,Ts,Tt)と、
     (d)前記第1、第2及び第3トランス(Tr,Ts,Tt)の各々の一次コイル(Lr1,Ls1,Lt1)の他端と一次側の共通電位端(e)の間の電流路を導通又は遮断するべくオンオフ制御される、制御端(G)を具備する1又は複数のスイッチング素子と、
     (e)前記第1、第2及び第3トランス(Tr,Ts,Tt)の各々の第1の二次コイル(Lr21,Ls21,Lt21)の一端と前記正極出力端(p)の間にそれぞれ接続され、該第1の二次コイルの一端の電位が順バイアスであるとき該正極出力端へ流れる電流をそれぞれ導通させかつ逆バイアスであるときそれぞれ遮断する第1、第2及び第3整流デバイス(D1,D2,D3)と、
     (f)前記第1、第2及び第3トランス(Tr,Ts,Tt)の各々の第2の二次コイル(Lr22,Ls22,Lt22)の他端と前記正極出力端(p)の間にそれぞれ接続され、該第2の二次コイルの他端の電位が順バイアスであるとき該正極出力端へ流れる電流をそれぞれ導通させかつ逆バイアスであるときそれぞれ遮断する第4、第5及び第6整流デバイス(D1',D2',D3')と、
     (g)前記正極出力端(p)と前記負極出力端(n)の間に接続された平滑コンデンサ(C)と、を有し、
     (h)前記1又は複数のスイッチング素子の制御端が一定のデューティ比をもつ1つの制御信号により制御されることを特徴とする力率改善装置。
  7.  前記スイッチング素子が、第1、第2及び第3スイッチング素子(Q1,Q2,Q3)からなり、前記第1、第2及び第3トランス(Tr,Ts,Tt)の各々の一次コイル(Lr1,Ls1,Lt1)の他端と一次側の共通電位端(e)の間に各スイッチング素子がそれぞれ接続されることを特徴とする請求項6に記載の力率改善装置。
  8.  前記スイッチング素子が、1つのスイッチング素子(Q)からなり、前記第1、第2及び第3トランス(Tr,Ts,Tt)の各々の一次コイル(Lr1,Ls1,Lt1)の他端と一次側の共通電位端(e)の間に該スイッチング素子が接続されることを特徴とする請求項6に記載の力率改善装置。
  9.  前記一次側の共通電位端(e)から前記第1、第2及び第3トランス(Tr,Ts,Tt)の各々の一次コイル(Lr1,Ls1,Lt1)の各々を介して前記第1、第2及び第3入力端(R,S,T)へ還流する電流をそれぞれ導通可能とする第7、第8及び第9整流デバイス(D4,D5,D6)を有することを特徴とする請求項6~8のいずれかに記載の力率改善装置。
  10.  前記一次側の共通電位端(e)から前記第1、第2及び第3入力端(R,S,T)へ直接還流する電流をそれぞれ導通可能とする第7、第8及び第9整流デバイス(D14,D15,D16)を有することを特徴とする請求項6~8のいずれかに記載の力率改善装置。
  11.  前記一次コイル(Lr1,Ls1,Lt1)と前記第1の二次コイル(Lr21,Ls21,Lt21)の磁気結合が疎結合であり、かつ、前記(Lr1,Ls1,Lt1)と前記第2の二次コイル(Lr22,Ls22,Lt22)の磁気結合が密結合であることを特徴とする請求項6~10のいずれかに記載の力率改善装置。
  12.  三相交流の入力電圧を検出する入力電圧検出要素と、
     検出された前記入力電圧に対応する1つのデューティ比を決定し、決定したデューティ比をもつ前記制御信号を生成する要素と、を有することを特徴とする
     請求項1~11のいずれかに記載の力率改善装置。
  13.  前記入力電圧と前記デューティ比の対応関係が予め設定されていることを特徴とする請求項12に記載の力率改善装置。
  14.  前記制御信号を出力する出力端子(out)と該制御信号のデューティ比(D)を制御するためのデューティ比制御電圧(Vcs)が入力される制御端子(cs)とを具備するPWM制御IC(1)のためのデューティ比コントローラ(7)を有し、
     前記デューティ比コントローラ(7)が、
     前記力率改善装置に入力される交流入力電圧(vi)を検出し該交流入力電圧(vi)に比例する直流検出電圧(Vi)を生成する電圧検出部(71)と、
     生成された前記直流検出電圧(Vi)の増減に従って増減する電流が流れることが可能な電流路と、
     前記電流路に直列に挿入された可変抵抗素子である第1抵抗素子(Rv1)及び一定の抵抗値をもつ第2抵抗素子(Rcs)と、を有し、
     前記第1抵抗素子(Rv1)の抵抗値の調整により前記第2抵抗素子(Rcs)を流れる電流を調整可能であり、該第2抵抗素子(Rcs)の両端間電圧を前記デューティ比制御電圧(Vcs)として前記PWM制御IC(1)に対し出力することを特徴とする
     請求項1~13のいずれかに記載の力率改善装置。
  15.  1つの前記スイッチング素子が、カスケード接続された第1サブスイッチング素子(Q11)と第2サブスイッチング素子(Q12)により構成されており、
     前記第1サブスイッチング素子(Q11)は前記一次側の共通電位端(e)に電流路の一端が接続されかつ1つの前記一次コイルに流れる電流を導通又は遮断するべくオンオフ駆動される制御端を具備し、
     前記第2サブスイッチング素子(Q12)は前記第1サブスイッチング素子(Q11)と前記一次コイル(L1)の間に挿入され該第1サブスイッチング素子(Q11)の電流路と直列接続された電流路と、制御端とを具備し、
     前記第1サブスイッチング素子(Q11)と前記第2サブスイッチング素子(Q12)の接続点と該第2サブスイッチング素子(Q12)の制御端との間に接続されたツェナーダイオード(ZD)と、
     1つの前記入力端と前記第2サブスイッチング素子(Q12)の制御端との間に接続された抵抗素子(R51)と、を有し、
     前記ツェナーダイオード(ZD)は前記入力端と前記一次側の共通電位端(e)間の電圧に対して逆バイアスとなる向きに接続されていることを特徴とする
     請求項1~14のいずれかに記載の力率改善装置。
PCT/JP2017/011363 2016-06-10 2017-03-22 力率改善装置 WO2017212739A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780036029.7A CN109314472B (zh) 2016-06-10 2017-03-22 功率因数改善装置
KR1020187019619A KR102320302B1 (ko) 2016-06-10 2017-03-22 역률 개선 장치
US16/308,795 US10541600B2 (en) 2016-06-10 2017-03-22 Power factor improvement device
EP17809923.0A EP3471257A4 (en) 2016-06-10 2017-03-22 DEVICE FOR IMPROVING THE POWER FACTOR

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2016116041A JP6704299B2 (ja) 2016-06-10 2016-06-10 力率改善装置
JP2016-116042 2016-06-10
JP2016116042A JP2017221075A (ja) 2016-06-10 2016-06-10 Pwm制御ic用デューティ比コントローラ
JP2016-116041 2016-06-10
JP2017-009178 2017-01-23
JP2017009178A JP2018121381A (ja) 2017-01-23 2017-01-23 スイッチング電源

Publications (1)

Publication Number Publication Date
WO2017212739A1 true WO2017212739A1 (ja) 2017-12-14

Family

ID=60577651

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/011363 WO2017212739A1 (ja) 2016-06-10 2017-03-22 力率改善装置

Country Status (5)

Country Link
US (1) US10541600B2 (ja)
EP (1) EP3471257A4 (ja)
KR (1) KR102320302B1 (ja)
CN (1) CN109314472B (ja)
WO (1) WO2017212739A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019135390A1 (ja) * 2018-01-04 2019-07-11 Ntn株式会社 三相交流用スイッチング電源

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6840030B2 (ja) * 2017-05-19 2021-03-10 Ntn株式会社 三相交流用絶縁型スイッチング電源
JP6817894B2 (ja) * 2017-05-19 2021-01-20 Ntn株式会社 三相交流用絶縁型スイッチング電源
JP6800098B2 (ja) * 2017-06-23 2020-12-16 Ntn株式会社 三相交流用絶縁型スイッチング電源
US11418125B2 (en) 2019-10-25 2022-08-16 The Research Foundation For The State University Of New York Three phase bidirectional AC-DC converter with bipolar voltage fed resonant stages
WO2021154356A1 (en) * 2020-01-30 2021-08-05 The Board Of Trustees Of The University Of Illinois Three phase ac/dc converter consisting of three single phase synchronous cuk converters

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0731150A (ja) 1993-07-09 1995-01-31 Shindengen Electric Mfg Co Ltd スイッチング電源装置
JPH07250471A (ja) * 1994-03-09 1995-09-26 Isao Takahashi 三相正弦波入力スイッチング電源回路
JPH08331860A (ja) 1995-05-31 1996-12-13 Okuma Mach Works Ltd 電力変換装置
JPH1141938A (ja) * 1997-07-23 1999-02-12 Daihen Corp 直流電源装置
JP2002010632A (ja) 2000-06-16 2002-01-11 Origin Electric Co Ltd Ac/dcコンバータ及びdc−dcコンバータ
JP2003199344A (ja) 2001-12-28 2003-07-11 Sony Corp スイッチ回路
JP2005218224A (ja) 2004-01-29 2005-08-11 Sanken Electric Co Ltd 力率改善回路
JP2007037297A (ja) 2005-07-27 2007-02-08 Sanken Electric Co Ltd 力率改善回路
JP2008113537A (ja) * 2006-10-30 2008-05-15 Ohira Electronics Co Ltd 3相交流力率改善回路
JP2011147325A (ja) * 2010-01-18 2011-07-28 Ohira Electronics Co Ltd 3相力率改善回路
JP2013128379A (ja) 2011-12-19 2013-06-27 Ohatsu Co Ltd 電力変換装置およびそれを備える風力発電システム
JP2014023286A (ja) 2012-07-18 2014-02-03 Sky Denshi:Kk 交流発電機の直流平滑化装置

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4513361A (en) * 1983-02-15 1985-04-23 Hughes Aircraft Company Multi-phase DC-to-AC and DC-to-DC boost converter
GB8415638D0 (en) 1984-06-19 1984-07-25 Telephone Cables Ltd Optical fibre cables
US4814965A (en) * 1987-09-30 1989-03-21 Spectra Physics High power flyback, variable output voltage, variable input voltage, decoupled power supply
US5019954A (en) * 1989-06-23 1991-05-28 Allied-Signal Inc. AC/DC conversion with reduced supply waveform distortion
JPH07222443A (ja) 1994-02-01 1995-08-18 Nippondenso Co Ltd Dc−dcコンバータ
US5619400A (en) 1995-07-18 1997-04-08 Lucent Technologies Inc. Magnetic core structures and construction techniques therefor
US5731969A (en) * 1996-07-29 1998-03-24 Small; Kenneth T. Three-phase AC power converter with power factor correction
JP2003017136A (ja) 2001-06-27 2003-01-17 Matsushita Electric Ind Co Ltd 鉛蓄電池の充電方法
JP4701749B2 (ja) * 2005-02-25 2011-06-15 サンケン電気株式会社 直流変換装置
JP2007097297A (ja) 2005-09-28 2007-04-12 Ntt Data Ex Techno Corp スイッチング電源回路
US8125205B2 (en) 2006-08-31 2012-02-28 Flextronics International Usa, Inc. Power converter employing regulators with a coupled inductor
JP4878562B2 (ja) 2007-02-06 2012-02-15 本田技研工業株式会社 複合型トランスおよびそれを用いた昇降圧回路
US7639520B1 (en) * 2007-02-26 2009-12-29 Network Appliance, Inc. Efficient power supply
TWI364906B (en) 2008-12-02 2012-05-21 Delta Electronics Inc Multi-output power converting circuit
CN102315758A (zh) * 2010-07-07 2012-01-11 英飞特电子(杭州)有限公司 一种提高器件耐压的电路
CN202076926U (zh) * 2011-05-31 2011-12-14 凌太先 全电压高功率因数pfc电路
US9019732B2 (en) * 2011-07-04 2015-04-28 Abb Technology Ag High voltage DC/DC converter
JP2013090491A (ja) 2011-10-20 2013-05-13 Ntt Data Intellilink Corp フォワード・フライバック電源回路
JP2013158168A (ja) 2012-01-31 2013-08-15 Toyota Central R&D Labs Inc 共振型コンバータ
JP5880099B2 (ja) 2012-02-09 2016-03-08 トヨタ自動車株式会社 ハイブリッド車両の制御装置
US9013239B2 (en) * 2012-05-15 2015-04-21 Crestron Electronics Inc. Audio amplifier power supply with inherent power factor correction
US9106130B2 (en) 2012-07-16 2015-08-11 Power Systems Technologies, Inc. Magnetic device and power converter employing the same
JP6016595B2 (ja) 2012-12-03 2016-10-26 Asti株式会社 充電器
WO2014141371A1 (ja) 2013-03-12 2014-09-18 三菱電機株式会社 電圧変換回路
CA2929041C (en) * 2013-10-29 2018-02-27 Mitsubishi Electric Corporation Dc power-supply device and refrigeration cycle device
US9647533B2 (en) * 2013-11-08 2017-05-09 One More Time Llc PFC circuits with very low THD
US9413221B1 (en) * 2013-12-04 2016-08-09 Google Inc. Power conversion using a series of power converters
JP2016039742A (ja) 2014-08-11 2016-03-22 Ntn株式会社 充電装置
JP6357976B2 (ja) * 2014-08-26 2018-07-18 富士電機株式会社 直流電源装置
TWI543505B (zh) * 2014-09-05 2016-07-21 Richtek Technology Corp Application of the input voltage detection circuit with parameter setting function in the power converter and its parameter setting and circuit protection method
JP6400407B2 (ja) 2014-09-18 2018-10-03 Ntn株式会社 充電装置
US9923448B2 (en) * 2015-04-03 2018-03-20 Avatekh, Inc. Method and apparatus for regulated three-phase AC-to-DC conversion with high power factor and low harmonic distortions
US10033196B2 (en) * 2015-08-10 2018-07-24 Google Llc Converting alternating current power to direct current power

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0731150A (ja) 1993-07-09 1995-01-31 Shindengen Electric Mfg Co Ltd スイッチング電源装置
JPH07250471A (ja) * 1994-03-09 1995-09-26 Isao Takahashi 三相正弦波入力スイッチング電源回路
JPH08331860A (ja) 1995-05-31 1996-12-13 Okuma Mach Works Ltd 電力変換装置
JPH1141938A (ja) * 1997-07-23 1999-02-12 Daihen Corp 直流電源装置
JP2002010632A (ja) 2000-06-16 2002-01-11 Origin Electric Co Ltd Ac/dcコンバータ及びdc−dcコンバータ
JP2003199344A (ja) 2001-12-28 2003-07-11 Sony Corp スイッチ回路
JP2005218224A (ja) 2004-01-29 2005-08-11 Sanken Electric Co Ltd 力率改善回路
JP2007037297A (ja) 2005-07-27 2007-02-08 Sanken Electric Co Ltd 力率改善回路
JP2008113537A (ja) * 2006-10-30 2008-05-15 Ohira Electronics Co Ltd 3相交流力率改善回路
JP2011147325A (ja) * 2010-01-18 2011-07-28 Ohira Electronics Co Ltd 3相力率改善回路
JP2013128379A (ja) 2011-12-19 2013-06-27 Ohatsu Co Ltd 電力変換装置およびそれを備える風力発電システム
JP2014023286A (ja) 2012-07-18 2014-02-03 Sky Denshi:Kk 交流発電機の直流平滑化装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3471257A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019135390A1 (ja) * 2018-01-04 2019-07-11 Ntn株式会社 三相交流用スイッチング電源

Also Published As

Publication number Publication date
EP3471257A1 (en) 2019-04-17
KR20190016480A (ko) 2019-02-18
CN109314472B (zh) 2021-10-26
US10541600B2 (en) 2020-01-21
KR102320302B1 (ko) 2021-11-01
CN109314472A (zh) 2019-02-05
EP3471257A4 (en) 2020-04-01
US20190149038A1 (en) 2019-05-16

Similar Documents

Publication Publication Date Title
WO2017212739A1 (ja) 力率改善装置
EP1748539A2 (en) Switching power supply with surge voltage suppression
JPH05316721A (ja) 並列制御型dc/dcコンバータ
US20120014149A1 (en) Power conversion apparatus and method
US7940533B2 (en) Step-down voltage converter
US11451161B2 (en) Power switcher, power rectifier, and power converter including cascode-connected transistors
WO2017164021A1 (ja) 力率改善装置
JP2007060890A (ja) スイッチング電源装置
KR102472262B1 (ko) 3상 교류용 절연형 스위칭 전원
JP6704299B2 (ja) 力率改善装置
KR102472259B1 (ko) 3상 교류용 절연형 스위칭 전원
Syrigos et al. An alternative universal motor drive with unity power factor operating in DC and AC modes
KR102472258B1 (ko) 3상 교류용 절연형 스위칭 전원
US11258353B2 (en) Power converter
JP2017175694A (ja) 力率改善装置
JP7160719B2 (ja) ワンコンバータ方式の絶縁型スイッチング電源
JP7129927B2 (ja) 絶縁型スイッチング電源
KR102069067B1 (ko) 리플 저감 정류부를 포함하는 전력 변환 장치 및 이를 포함하는 공기 조화기
JP2017221075A (ja) Pwm制御ic用デューティ比コントローラ
JP2020145876A (ja) スイッチング電源装置
KR20210043555A (ko) 전력 변환 장치 및 이를 포함하는 공기 조화기

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20187019619

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17809923

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017809923

Country of ref document: EP

Effective date: 20190110