WO2017209108A1 - 熱硬化性樹脂組成物、プリプレグ、積層板、プリント配線板及び高速通信対応モジュール - Google Patents

熱硬化性樹脂組成物、プリプレグ、積層板、プリント配線板及び高速通信対応モジュール Download PDF

Info

Publication number
WO2017209108A1
WO2017209108A1 PCT/JP2017/020043 JP2017020043W WO2017209108A1 WO 2017209108 A1 WO2017209108 A1 WO 2017209108A1 JP 2017020043 W JP2017020043 W JP 2017020043W WO 2017209108 A1 WO2017209108 A1 WO 2017209108A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
resin composition
thermosetting resin
mass
structural unit
Prior art date
Application number
PCT/JP2017/020043
Other languages
English (en)
French (fr)
Inventor
駿介 登内
友和 嶌田
和俊 彈正原
富男 福田
垣谷 稔
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to JP2018520919A priority Critical patent/JP6927206B2/ja
Priority to KR1020187034726A priority patent/KR102327243B1/ko
Priority to CN201780033444.7A priority patent/CN109312156B/zh
Priority to US16/305,930 priority patent/US10876000B2/en
Priority to EP17806662.7A priority patent/EP3467038B1/en
Publication of WO2017209108A1 publication Critical patent/WO2017209108A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/02Polyamines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/088Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/14Layered products comprising a layer of metal next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/28Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer impregnated with or embedded in a plastic substance
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/0246Polyamines containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1057Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain
    • C08G73/106Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/12Unsaturated polyimide precursors
    • C08G73/125Unsaturated polyimide precursors the unsaturated precursors containing atoms other than carbon, hydrogen, oxygen or nitrogen in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/244Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using glass fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L15/00Compositions of rubber derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L35/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical, and containing at least one other carboxyl radical in the molecule, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L35/06Copolymers with vinyl aromatic monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08L79/085Unsaturated polyimide precursors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0373Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/0273Polyamines containing heterocyclic moieties in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/028Polyamidoamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/02Polyamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2409/00Characterised by the use of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08J2409/06Copolymers with styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2425/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2425/02Homopolymers or copolymers of hydrocarbons
    • C08J2425/04Homopolymers or copolymers of styrene
    • C08J2425/08Copolymers of styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/04Thermoplastic elastomer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Definitions

  • the present invention relates to a thermosetting resin composition, a prepreg, a laminate, a printed wiring board, and a module for high-speed communication.
  • laminated boards for printed wiring boards include: There is an increasing demand for improved reliability by improving heat resistance. In such applications, particularly semiconductor package substrate applications, it is required to have both excellent heat resistance and low thermal expansion. In addition, as the amount of information communication and speed in network infrastructure equipment, large computers, etc. increase significantly, the semiconductor packages installed in these electronic devices must support higher frequencies, and can reduce transmission loss. There is a need for substrate materials that have a high rate and low dielectric loss tangent.
  • a prepreg containing a resin composition mainly composed of an epoxy resin and glass cloth is cured and integrally formed.
  • Epoxy resins have an excellent balance of insulation, heat resistance, cost, and the like, but further improvements are required to meet the excellent heat resistance and low thermal expansion required in recent semiconductor package substrate applications. Since an epoxy resin has a large coefficient of thermal expansion, low thermal expansion is achieved by selecting an epoxy resin having an aromatic ring and increasing the filling of an inorganic filler such as silica (for example, see Patent Document 1). However, increasing the filling amount of the inorganic filler is known to cause a decrease in insulation reliability due to moisture absorption, insufficient adhesion between the resin and the wiring layer, poor press molding, etc.
  • a modified maleimide resin in which a siloxane skeleton is introduced into a bismaleimide resin has excellent heat resistance and low thermal expansion without excessively increasing the content of the inorganic filler (for example, see Patent Document 2).
  • the modified maleimide resin has a low relative dielectric constant and a low dielectric loss tangent as compared with an epoxy resin, but has not yet achieved the specific dielectric constant and dielectric loss tangent required in recent years.
  • a laminated board to which a polybutadiene resin is added as a thermoplastic elastomer has been studied.
  • the laminate has excellent dielectric properties, but the prepreg is sticky, has low compatibility with other thermosetting resins, has a high shrinkage during curing, copper foil, etc.
  • There are disadvantages such as poor adhesion to the metal foil.
  • a method for improving these a method using a butadiene-vinyl aromatic compound copolymer has been proposed (see, for example, Patent Document 3).
  • vinyl is used in order to obtain sufficient compatibility with other thermosetting resins. It is necessary to increase the copolymerization ratio of the aromatic compound. In this case, there arises a problem that the heat resistance is lowered.
  • the thermoplastic elastomer when a hydrogenated styrene-based elastomer is used as the thermoplastic elastomer, the polarity of the skeleton is very small, so that it exhibits a low relative dielectric constant and a low dielectric loss tangent. Therefore, the combined use of the modified maleimide resin and the hydrogenated styrene-based elastomer makes it possible to achieve both low thermal expansion and excellent dielectric properties (low relative dielectric constant and low dielectric loss tangent).
  • the resin composition in which the modified maleimide resin and the thermoplastic elastomer are used in combination is not problematic in general heat resistance, but under severe conditions associated with recent high-density mounting of printed wiring boards and high multi-layer configurations.
  • heat resistance that is, heat resistance after water absorption was poor. This is thought to be due to insufficient compatibility between the modified maleimide resin and the thermoplastic elastomer according to the study by the present inventors.
  • the problem of the present invention is a thermosetting resin composition having excellent heat resistance, low thermal expansion, low relative dielectric constant and low dielectric loss tangent, a prepreg using the same, a laminate, a printed wiring board, and It is to provide a high-speed communication compatible module.
  • the present inventors have determined that a modified maleimide resin having a specific structure, a thermoplastic elastomer, a copolymer resin using an aromatic vinyl compound and a carboxylic acid anhydride as raw material monomers It was found that the above-mentioned object can be achieved by using, and the present invention has been completed. That is, the present invention relates to the following [1] to [12].
  • thermosetting resin composition according to the above [1], which is a structural unit derived from maleic acid.
  • R C1 represents a hydrogen atom or an aliphatic hydrocarbon group having 1 to 5 carbon atoms
  • R C2 each independently represents an aliphatic hydrocarbon group having 1 to 5 carbon atoms or a C 6-20 carbon atom.
  • x represents an integer of 0 to 3.
  • R C1 in the general formula (C-1) is a hydrogen atom, x is 0, and the structural unit represented by the general formula (C-1) and the general formula The above [1], which contains a copolymer resin having a content ratio [(C-1) / (C-2)] (molar ratio) to the structural unit represented by the formula (C-2) of 5 to 10 Or the thermosetting resin composition as described in [2].
  • the content of the component (B) is 4 to 20 parts by mass with respect to 100 parts by mass of the solid content of the resin component in the thermosetting resin composition
  • the content of the component (C) is The thermosetting resin composition according to any one of the above [1] to [3], which is 2 to 20 parts by mass with respect to 100 parts by mass of the solid content of the resin component in the thermosetting resin composition.
  • [5] The thermosetting resin composition according to any one of [1] to [4], wherein the component (a2) contains a modified siloxane having an amino group at the terminal.
  • thermoplastic elastomer is a hydrogenated styrene thermoplastic elastomer, and the content of the structural unit derived from styrene in the hydrogenated styrene thermoplastic elastomer is 20 to 60% by mass.
  • thermosetting resin composition according to any one of [5].
  • thermosetting resin composition having excellent heat resistance, low thermal expansion, low relative dielectric constant and low dielectric loss tangent, a prepreg, a laminate, a printed wiring board and a high-speed communication module using the same are provided. Can be provided.
  • thermosetting resin composition has (A) a maleimide compound (a1) having at least two N-substituted maleimide groups in one molecule and at least two primary amino groups in one molecule. Addition reaction product (hereinafter also referred to as “(A) modified maleimide resin”) with amine compound (a2), (B) thermoplastic elastomer, (C) aromatic vinyl compound-derived structural unit and carboxylic anhydride
  • a thermosetting resin composition containing a copolymer resin containing a derived structural unit hereinafter also referred to as “(C) copolymer resin”).
  • the modified maleimide resin includes a maleimide compound (a1) having at least two N-substituted maleimide groups in one molecule, and an amine compound (a2) having at least two primary amino groups in one molecule. This is an addition reaction product.
  • the maleimide compound (a1) having at least two N-substituted maleimide groups in one molecule has at least two N-substituted maleimide groups in one molecule.
  • the structure is not particularly limited, but a maleimide compound having two N-substituted maleimide groups in one molecule is preferable, and a compound represented by the following general formula (a1-1) is more preferable.
  • X A1 is a group represented by the following general formula (a1-2), (a1-3), (a1-4) or (a1-5))
  • each R A1 independently represents an aliphatic hydrocarbon group having 1 to 5 carbon atoms.
  • P1 is an integer of 0 to 4.
  • each R A2 independently represents an aliphatic hydrocarbon group having 1 to 5 carbon atoms.
  • X A2 represents an alkylene group having 1 to 5 carbon atoms, an alkylidene group having 2 to 5 carbon atoms, an ether group, A carbooxy group, a keto group, a single bond, or a group represented by the following general formula (a1-3 ′): q1 is each independently an integer of 0 to 4.
  • each R A3 independently represents an aliphatic hydrocarbon group having 1 to 5 carbon atoms.
  • X A3 represents an alkylene group having 1 to 5 carbon atoms, an alkylidene group having 2 to 5 carbon atoms, or an ether group.
  • n1 is an integer of 1 to 10.
  • R A4 each independently represents a hydrogen atom or an aliphatic hydrocarbon group having 1 to 5 carbon atoms.
  • U1 is an integer of 1 to 8)
  • examples of the aliphatic hydrocarbon group represented by R A1 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a t-butyl group, n -Alkyl groups having 1 to 5 carbon atoms such as a pentyl group.
  • examples of the aliphatic hydrocarbon group having 1 to 5 carbon atoms represented by R A2 include the same ones as in R A1 .
  • examples of the alkylene group having 1 to 5 carbon atoms represented by X A2 include a methylene group, 1,2-dimethylene group, 1,3-trimethylene group, 1,4-tetramethylene group, 1,5-pentamethylene group, and the like. It is done.
  • Examples of the alkylidene group having 2 to 5 carbon atoms represented by X A2 include an ethylidene group, a propylidene group, an isopropylidene group, a butylidene group, an isobutylidene group, a pentylidene group, and an isopentylidene group.
  • examples of the aliphatic hydrocarbon group having 1 to 5 carbon atoms represented by R A3 include the same ones as in R A2 .
  • examples of the alkylene group having 1 to 5 carbon atoms and the alkylidene group having 2 to 5 carbon atoms represented by X A3 include the same as the alkylene group having 1 to 5 carbon atoms and the alkylidene group having 2 to 5 carbon atoms represented by X A2. It is done.
  • examples of the aliphatic hydrocarbon group having 1 to 5 carbon atoms represented by R A4 include the same as those in the case of R A1 in the general formula (a1-2).
  • a component may be used independently or may be used in mixture of 2 or more types.
  • a maleimide compound having a phenoxy group is preferable from the viewpoint of excellent solubility in a solvent, and bis (4-maleimidophenyl) methane, 2,2-, from the viewpoint of high reaction rate and higher heat resistance.
  • Bis [4- (4-maleimidophenoxy) phenyl] propane is preferred.
  • the amine compound (a2) having at least two primary amino groups in one molecule (hereinafter also referred to as “component (a2)”) is preferably an amine compound having two primary amino groups in one molecule.
  • a compound represented by the following general formula (a2-1) is more preferable.
  • Y A1 is a group represented by the following general formula (a2-2), (a2-3) or (a2-4))
  • each R A5 is independently an aliphatic hydrocarbon group having 1 to 5 carbon atoms.
  • P2 is an integer of 0 to 4.
  • each R A6 independently represents an aliphatic hydrocarbon group having 1 to 5 carbon atoms.
  • Y A2 represents an alkylene group having 1 to 5 carbon atoms, an alkylidene group having 2 to 5 carbon atoms, or an ether group.
  • each R A7 independently represents an aliphatic hydrocarbon group having 1 to 5 carbon atoms.
  • Y A3 represents an alkylene group having 1 to 5 carbon atoms, an alkylidene group having 2 to 5 carbon atoms, or an ether group.
  • a carbooxy group, a keto group, or a single bond, each s1 is independently an integer of 0 to 4.
  • R A8 is each independently an alkyl group having 1 to 5 carbon atoms, a phenyl group, or a substituted phenyl group.
  • R A9 is each independently a divalent organic group.
  • M2 is 1 An integer of ⁇ 100.
  • the aliphatic hydrocarbon group represented by R A5 includes a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a t-butyl group, n -Alkyl groups having 1 to 5 carbon atoms such as a pentyl group.
  • examples of the aliphatic hydrocarbon group having 1 to 5 carbon atoms represented by R A6 include the same ones as in R A5 .
  • examples of the alkylene group having 1 to 5 carbon atoms represented by Y A2 include a methylene group, 1,2-dimethylene group, 1,3-trimethylene group, 1,4-tetramethylene group, 1,5-pentamethylene group, and the like. It is done.
  • Examples of the alkylidene group having 2 to 5 carbon atoms represented by Y A2 include an ethylidene group, a propylidene group, an isopropylidene group, a butylidene group, an isobutylidene group, a pentylidene group, and an isopentylidene group.
  • examples of the aliphatic hydrocarbon group having 1 to 5 carbon atoms represented by R A7 include the same ones as in R A6 .
  • examples of the alkylene group having 1 to 5 carbon atoms and the alkylidene group having 2 to 5 carbon atoms represented by Y A3 include the same groups as the alkylene group having 1 to 5 carbon atoms and the alkylidene group having 2 to 5 carbon atoms represented by Y A2. It is done.
  • the alkyl group having 1 to 5 carbon atoms represented by R A8 is more preferably an alkyl group having 1 to 3 carbon atoms.
  • the alkyl group represented by R A8 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a t-butyl group, and an n-pentyl group. Groups are preferred.
  • the substituent in the substituted phenyl group represented by R A8 include an alkyl group, an alkenyl group, and an alkynyl group, and among these, an alkyl group is preferable.
  • Examples of the alkyl group include the same alkyl groups as those represented by R A8 .
  • Examples of the divalent organic group represented by R A9 include an alkylene group, an alkylidene group, an alkenylene group, an alkynylene group, an arylene group, —O—, or a divalent linking group in which these are combined. Among these, an alkylene group and an arylene group are preferable.
  • Examples of the alkylene group include a methylene group, an ethylene group, and a propylene group.
  • Examples of the arylene group include a phenylene group and a naphthylene group.
  • component (a2) modified siloxane having an amino group at the terminal, diaminobenzidine, diaminodiphenylmethane, 3,3′-diethyl-4,4′-diaminodiphenylmethane, diaminodiphenyl ether, 3,3′-dimethoxy-4,4 '-Diaminobiphenyl, 3,3'-dimethyl-4,4'-diaminobiphenyl, 1,3'-bis (4-aminophenoxy) benzene, 2,2'-bis [4- (4-aminophenoxy) phenyl ] Propane, 4,4′-bis (4-aminophenoxy) biphenyl, 1,4′-bis (4-aminophenoxy) benzene, 2,2′-dimethyl-4,4′-diaminobiphenyl, 4,4 ′ -Diamino-3,3'-biphenyldiol and the like.
  • a component may be used independently
  • a modified siloxane having an amino group at the terminal is preferable.
  • a commercially available product may be used as the modified siloxane having an amino group at the terminal.
  • the component (a2) contains a modified siloxane having an amino group at the terminal and an amine compound other than the modified siloxane having an amino group at the terminal, from the viewpoint of achieving both low thermal expansion, high elasticity and high heat resistance.
  • it comprises a modified siloxane having an amino group at the terminal, 3,3′-diethyl-4,4′-diaminodiphenylmethane and 2,2′-bis [4- (4-aminophenoxy) phenyl] propane. It is more preferable to use one or more selected from the group in combination.
  • the mass ratio [modified siloxane having an amino group at the end / The amine compound other than the modified siloxane having an amino group] is preferably 3/97 to 90/10, more preferably 10/90 to 80/20, and still more preferably 20/80 to 70/30.
  • the (A) modified maleimide resin that is an addition reaction product of the component (a1) and the component (a2) has, for example, a structural unit represented by the following general formula (A-1).
  • the modified maleimide resin can be produced by subjecting the (a1) component and the (a2) component to an addition reaction.
  • the equivalent of the maleimide group of the component (a1) is equivalent to the primary amino group of the component (a2). It is preferable that the ratio of the equivalent of the maleimide group of the component (a1) to the equivalent of the primary amino group of the component (a2) [component (a1) / component (a2)] is 2 to 15 Preferably, it is preferably 3 to 10.
  • the reaction temperature in the addition reaction is preferably 70 to 150 ° C., more preferably 100 to 130 ° C., from the viewpoint of productivity and uniform reaction.
  • the reaction time is preferably 0.1 to 10 hours, and more preferably 1 to 6 hours.
  • the addition reaction is preferably performed in an organic solvent.
  • organic solvent examples include alcohol solvents such as ethanol, propanol and propylene glycol monomethyl ether; ketone solvents such as methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone; ester solvents such as ethyl acetate; aromatic solvents such as toluene; dimethyl And nitrogen atom-containing solvents such as acetamide and N-methylpyrrolidone.
  • An organic solvent may be used independently or may be used in mixture of 2 or more types.
  • cyclohexanone, propylene glycol monomethyl ether, methyl cellosolve, and ⁇ -butyrolactone are preferable from the viewpoint of solubility
  • cyclohexanone, propylene glycol monomethyl ether from the viewpoint of low toxicity and high volatility and hardly remain as a residual solvent.
  • the amount of the organic solvent used is preferably from 25 to 1,000 parts by weight, preferably from 50 to 500 parts by weight, based on the total of 100 parts by weight of the components (a1) and (a2), from the viewpoints of solubility and reaction rate. More preferred.
  • the content of the (A) modified maleimide resin in the thermosetting resin composition of the present invention is preferably 50 to 95 parts by mass with respect to 100 parts by mass of the solid content of the resin component in the thermosetting resin composition. 60-90 parts by mass is more preferable, and 70-87 parts by mass is even more preferable.
  • the “solid content” is a non-volatile content excluding a volatile substance such as a solvent, and indicates a component that remains without volatilization when the resin composition is dried. Also includes liquid, syrupy and waxy. Here, room temperature in this specification indicates 25 ° C.
  • the “resin component” is a component used for the production of a resin or resin excluding the inorganic filler described later. Specifically, (A) a modified maleimide resin, (B) a thermoplastic elastomer, ( C) Copolymer resin corresponds to the resin component.
  • the content of the (A) modified maleimide resin in the thermosetting resin composition of the present invention is the amount of the (A) modified maleimide resin in the thermosetting resin composition from the viewpoint of elastic modulus and low thermal expansion.
  • the amount of the raw material (a1) component converted from is preferably 30 to 90 parts by weight, preferably 50 to 85 parts by weight with respect to 100 parts by weight of the solid content of the resin component in the thermosetting resin composition. Is more preferred.
  • the content of the (A) modified maleimide resin in the thermosetting resin composition of the present invention is (A) modified in the thermosetting resin composition from the viewpoint of good low thermal expansion and copper foil adhesiveness.
  • the amount of the raw material component (a2) converted from the amount of the maleimide resin is preferably 3 to 50 parts by mass with respect to 100 parts by mass of the solid content of the resin component in the thermosetting resin composition. An amount of ⁇ 40 parts by mass is more preferred.
  • thermoplastic elastomer (B)
  • (B) thermoplastic elastomer (B)
  • (B) component thermoplastic elastomer
  • (B) component thermoplastic elastomer
  • (B) component thermoplastic elastomer
  • the (B) thermoplastic elastomer is defined as not including a copolymer resin containing a structural unit derived from an aromatic vinyl compound (C) and a structural unit derived from a carboxylic acid anhydride, which will be described later.
  • thermoplastic elastomer (B) examples include styrene elastomers, olefin elastomers, urethane elastomers, polyester elastomers, polyamide elastomers, acrylic elastomers, silicone elastomers, and derivatives thereof.
  • a component may be used independently or may be used in mixture of 2 or more types.
  • thermoplastic elastomer what has a reactive functional group in a molecular terminal or a molecular chain can be used.
  • the reactive functional group include an epoxy group, a hydroxyl group, a carboxy group, an amino group, an amide group, an isocyanate group, an acrylic group, a methacryl group, and a vinyl group.
  • the compatibility is improved and the heat resistance of the substrate can be improved.
  • the (B) thermoplastic elastomer is preferably a styrene-butadiene copolymer or a styrene-isoprene copolymer.
  • Hydrogenated styrene-based thermoplastic elastomers such as hydrogenated styrene-butadiene copolymer resins and hydrogenated styrene-isoprene copolymer resins in which the heavy bond portion is hydrogenated are more preferred.
  • the content of structural units derived from styrene in the hydrogenated styrene thermoplastic elastomer is preferably 20 to 60% by mass, and preferably 25 to 55% by mass. It is more preferable.
  • (B) Moisture absorption by using a hydrogenated styrene-based thermoplastic elastomer such as a hydrogenated styrene-butadiene copolymer resin or a hydrogenated styrene-isoprene copolymer resin having a styrene content of 20 to 60% by mass as the thermoplastic elastomer.
  • the appearance of the prepreg after coating is excellent, and a resin with a small amount of powder falling off the prepreg can be achieved.
  • the amount of styrene is 60% by mass or less, in addition to good substrate properties (thermal expansion coefficient, dielectric properties, heat resistance), cracks tend not to occur in the prepreg appearance after coating. This is considered to be derived from the fact that the styrene stacking aggregation is suppressed and the flexibility of the resin is excellent.
  • the maleimide group of the modified maleimide resin has a structure close to that of styrene compared to butadiene, isoprene, etc., and (B) when the styrene content of the thermoplastic elastomer is 20% by mass or more, (A) It is thought that it originates in the compatibility with modified
  • the content of the (B) thermoplastic elastomer in the thermosetting resin composition is preferably 4 to 20 parts by mass, preferably 6 to 15 parts per 100 parts by mass of the solid content of the resin component in the thermosetting resin composition. Part by mass is more preferable.
  • the content of the thermoplastic elastomer is 4 parts by mass or more, the effect of lowering the dielectric constant is sufficiently obtained, and if it is 20 parts by mass or less, the (B) thermoplastic elastomer is compatibilized so that it is in the resin. It is fully dispersed in and excellent in heat resistance and peel strength.
  • the copolymer resin is a copolymer resin containing a structural unit derived from an aromatic vinyl compound and a structural unit derived from a carboxylic acid anhydride.
  • the thermosetting resin composition of the present invention contains (C) a copolymer resin, an effect of being excellent in heat resistance especially after water absorption is obtained.
  • the reason for such an effect is not clear, but is considered as follows.
  • Conventionally, a method of adding a thermoplastic elastomer to a modified maleimide resin has been used for the purpose of improving dielectric properties.
  • a thermoplastic elastomer has a significantly different structure from that of a modified maleimide resin and is compatible with each other. It was difficult.
  • the (C) copolymer resin contained in the thermosetting resin composition of the present invention contains a structural unit derived from an aromatic vinyl compound and a structural unit derived from a carboxylic anhydride, and is derived from an aromatic vinyl compound.
  • the structural unit is excellent in compatibility with a thermoplastic elastomer (particularly an elastomer containing styrene), and the structural unit derived from a carboxylic acid anhydride is excellent in compatibility with a modified maleimide resin.
  • the (C) copolymer resin functions as a compatibilizer between (A) the modified maleimide resin and (B) the thermoplastic elastomer, and thereby, (A) the modified maleimide resin and (B) the thermoplastic elastomer. It is considered that compatibility was improved and heat resistance was improved. Furthermore, since the (C) copolymer resin itself has excellent dielectric properties, it is considered that excellent heat resistance could be imparted without impairing the dielectric properties.
  • the structural unit derived from the aromatic vinyl compound of the copolymer resin is preferably a structural unit represented by the following general formula (C-1).
  • Examples of the structural unit derived from the carboxylic acid anhydride of the component (C) include a structural unit derived from maleic anhydride, a structural unit derived from phthalic anhydride, and a structural unit derived from succinic anhydride.
  • a maleic anhydride-derived structural unit represented by the following general formula (C-2) having a structure close to a maleimide group is preferable.
  • R C1 represents a hydrogen atom or an aliphatic hydrocarbon group having 1 to 5 carbon atoms
  • R C2 each independently represents an aliphatic hydrocarbon group having 1 to 5 carbon atoms or a C 6-20 carbon atom.
  • x represents an integer of 0 to 3.
  • Examples of the aliphatic hydrocarbon group having 1 to 5 carbon atoms represented by R C1 and R C2 include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, t-butyl group, n- A pentyl group etc. are mentioned. Among these, an aliphatic hydrocarbon group having 1 to 3 carbon atoms is preferable, and a methyl group and an ethyl group are more preferable from the viewpoints of adhesion to copper foil and dielectric properties.
  • Examples of the aromatic hydrocarbon group having 6 to 20 carbon atoms represented by R C2 include a phenyl group, a naphthyl group, an anthryl group, and a biphenylyl group.
  • a structural unit represented by the following formula (C-1 ′) in which R C1 is a hydrogen atom and x is 0 is preferable.
  • (C) Content ratio of the structural unit represented by the general formula (C-1) and the structural unit represented by the general formula (C-2) in the copolymer resin [(C-1) / (C -2)] (molar ratio) is preferably from 2 to 12, more preferably from 5 to 10.
  • the content ratio is 2 or more, the effect of improving the dielectric characteristics and heat resistance tends to be sufficient, and when it is 12 or less, the compatibility tends to be good.
  • the copolymer resin can be produced by copolymerizing an aromatic vinyl compound and a carboxylic acid anhydride.
  • aromatic vinyl compound include styrene, 1-methylstyrene, vinyltoluene and the like. These may be used alone or in combination of two or more.
  • various polymerizable components may be copolymerized. Examples of various polymerizable components include vinyl compounds such as ethylene, propylene, and butadiene.
  • the content of the copolymer resin (C) in the thermosetting resin composition is preferably 2 to 20 parts by mass with respect to 100 parts by mass of the solid content of the resin component in the thermosetting resin composition. Mass parts are more preferred, and 4 to 13 parts by mass are even more preferred.
  • the content of (C) the copolymer resin is 2 parts by mass or more, the effect of reducing the dielectric constant is sufficiently obtained, and when it is 20 parts by mass or less, (C) the copolymer resin is excellent in dispersibility, Excellent heat resistance and peel strength.
  • the thermosetting resin composition of the present invention may further contain (D) a curing accelerator from the viewpoint of promoting the curing reaction.
  • curing accelerators include organic phosphorus compounds such as triphenylphosphine; imidazoles and derivatives thereof; nitrogen-containing compounds such as secondary amines, tertiary amines, and quaternary ammonium salts; dicumyl Peroxide, 2,5-dimethyl-2,5-bis (t-butylperoxy) hexyne-3, 2,5-dimethyl-2,5-bis (t-butylperoxy) hexane, ⁇ , ⁇ '- Organic peroxides such as bis (t-butylperoxy) diisopropylbenzene; organic metal salts such as zinc naphthenate, cobalt naphthenate, tin octylate, and cobalt octylate.
  • thermosetting resin composition of the present invention contains (D) a curing accelerator, its content is 0.1 to 100 parts by mass with respect to 100 parts by mass of the resin component in the thermosetting resin composition. 5 parts by mass is preferable, and 0.3 to 2 parts by mass is more preferable.
  • the thermosetting resin composition of the present invention may further contain (E) an inorganic filler.
  • an inorganic filler silica, alumina, titanium oxide, mica, barium titanate, strontium titanate, aluminum carbonate, magnesium hydroxide, aluminum hydroxide, calcium carbonate silicon nitride, boron nitride, talc, silicon carbide, Examples thereof include quartz powder, short glass fiber, fine glass powder, and hollow glass.
  • Preferred examples of the glass include E glass, T glass, and D glass.
  • An inorganic filler may be used independently or may be used in mixture of 2 or more types.
  • silica is preferable from the viewpoints of dielectric properties, heat resistance, and low thermal expansion.
  • examples of the silica include a precipitated silica produced by a wet method and having a high water content, and a dry method silica produced by a dry method and containing almost no bound water.
  • the dry method silica further includes differences in production methods.
  • fused spherical silica is preferable from the viewpoint of low thermal expansion and fluidity when filled in a resin.
  • the average particle size of the inorganic filler is preferably 0.1 to 10 ⁇ m, more preferably 0.3 to 8 ⁇ m.
  • the average particle size is 0.1 ⁇ m or more, the fluidity when the resin is highly filled can be kept good, and when the average particle size is 10 ⁇ m or less, the mixing probability of coarse particles is reduced, and defects due to coarse particles are reduced. Occurrence can be suppressed.
  • the average particle diameter is a particle diameter at a point corresponding to a volume of 50% when a cumulative frequency distribution curve according to the particle diameter is obtained with the total volume of the particles being 100%, and a laser diffraction scattering method is used. It can be measured with a particle size distribution measuring device.
  • the inorganic filler may have been surface-treated with a coupling agent.
  • the method of surface treatment with a coupling agent may be a method of subjecting the (E) inorganic filler before blending to a dry or wet surface treatment, and the surface untreated (E) inorganic filler
  • a so-called integral blend treatment method in which a silane coupling agent is added to the composition after blended with the components to form a composition may be used.
  • Examples of coupling agents include silane coupling agents, titanate coupling agents, and silicone oligomers.
  • thermosetting resin composition of the present invention contains (E) an inorganic filler
  • the content thereof is 10 to 300 masses with respect to 100 mass parts of the solid content of the resin component in the thermosetting resin composition. Part is preferable, and 50 to 250 parts by weight is more preferable.
  • the content of the inorganic filler is within the above range, the moldability and the low thermal expansion are improved.
  • thermosetting resin composition of the present invention contains (E) an inorganic filler, treatment with a dispersing machine such as a three-roll, bead mill, or nanomizer is performed as necessary, and (E) the inorganic filler It is preferable to improve dispersibility.
  • a dispersing machine such as a three-roll, bead mill, or nanomizer
  • the modified maleimide resin (A) of the present invention is a thermosetting resin and has good thermosetting property alone, but if necessary, it can be used in combination with other thermosetting resins to achieve adhesion, mechanical strength, etc. Can be improved.
  • the thermosetting resin used in combination is not particularly limited, and examples thereof include epoxy resins, phenol resins, cyanate resins, isocyanate resins, benzoxazine resins, allyl resins, dicyclopentadiene resins, silicone resins, and triazine resins. May be used alone or in admixture of two or more. Among these, cyanate resins and benzoxazine resins are preferable from the viewpoints of moldability and electrical insulation.
  • the content is 2 mass% or less in solid content of a thermosetting resin composition.
  • thermosetting resin composition of the present invention optionally contains known organic fillers, flame retardants, ultraviolet absorbers, antioxidants, photopolymerization initiators, fluorescent brighteners, adhesion improvers and the like. Also good.
  • organic filler include a resin filler made of polyethylene, polypropylene resin, and the like, a resin filler having a core-shell structure, and the like.
  • Flame retardants include aromatic phosphate compounds, phosphazene compounds, phosphinic acid esters, metal salts of phosphinic acid compounds, red phosphorus, 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide and their Examples thereof include phosphorus flame retardants such as derivatives; nitrogen flame retardants such as melamine sulfate and melamine polyphosphate; and inorganic flame retardants such as antimony trioxide.
  • Examples of the ultraviolet absorber include benzotriazole-based ultraviolet absorbers.
  • the antioxidant include hindered phenol-based antioxidants and hindered amine-based antioxidants.
  • Examples of the photopolymerization initiator include photopolymerization initiators such as benzophenones, benzyl ketals, and thioxanthones.
  • Examples of the fluorescent whitening agent include a fluorescent whitening agent of a stilbene derivative.
  • Examples of the adhesion improver include urea compounds such as urea silane, the coupling agent, and the like.
  • thermosetting resin composition of the present invention may be in the form of a varnish in which each component is dissolved or dispersed in an organic solvent for use in the production of prepreg and the like.
  • Organic solvents used in the varnish include alcohol solvents such as ethanol, propanol and propylene glycol monomethyl ether; ketone solvents such as methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone; ester solvents such as ethyl acetate; aromatics such as toluene and xylene Group solvents; nitrogen atom-containing solvents such as dimethylacetamide and N-methylpyrrolidone. These organic solvents may be used alone or in combination of two or more.
  • propylene glycol monomethyl ether methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, and toluene are preferable from the viewpoint of solubility, and propylene glycol monomethyl ether, methyl isobutyl ketone, cyclohexanone, and toluene are more preferable from the viewpoint of low toxicity.
  • the solid content concentration of the varnish is preferably 40 to 90% by mass, and more preferably 50 to 80% by mass. When the solid content concentration of the varnish is within the above range, it is possible to maintain good coatability and obtain a prepreg having an appropriate resin composition adhesion amount.
  • the prepreg of the present invention is obtained by impregnating a fiber base material with the thermosetting resin composition of the present invention.
  • the prepreg of the present invention can be produced by impregnating the thermosetting resin composition of the present invention into a fiber substrate and semi-curing (B-stage) by heating or the like.
  • a fiber base material the well-known thing used for the laminated board for various electrical insulation materials can be used. Examples of the material include inorganic fibers such as E glass, S glass, low dielectric glass, and Q glass; organic fibers such as low dielectric glass polyimide, polyester, and tetrafluoroethylene; and mixtures thereof.
  • These fiber base materials have shapes such as woven fabric, non-woven fabric, robink, chopped strand mat, surfacing mat, etc., and the material and shape are selected and necessary depending on the intended use and performance of the molded product. Thus, it is possible to combine a single material or two or more materials and shapes. For example, a fiber base having a thickness of about 0.03 to 0.5 mm can be used. These fiber base materials are preferably surface-treated with a silane coupling agent or the like or mechanically subjected to fiber opening treatment from the viewpoints of heat resistance, moisture resistance, workability, and the like.
  • the fiber base material has an adhesion amount of the thermosetting resin composition to the fiber base material (content of the thermosetting resin composition in the prepreg) of 20 to 90% by mass. After being impregnated, it can usually be obtained by heating and drying at a temperature of 100 to 200 ° C. for 1 to 30 minutes and semi-curing (B-stage).
  • the laminate of the present invention is obtained by laminating the prepreg of the present invention.
  • the laminate of the present invention can be produced by laminating 1 to 20 sheets of the prepreg of the present invention and laminating and forming a metal foil such as copper or aluminum on one or both sides thereof.
  • the metal foil is not particularly limited as long as it is used for electrical insulating material applications.
  • the molding conditions for producing the laminated plate for example, the method of a laminated plate for an electrical insulating material and a multilayer plate can be applied, and a multistage press, a multistage vacuum press, continuous molding, an autoclave molding machine, etc. are used, and the temperature is 100 to 250.
  • Molding can be performed at a temperature of 0 ° C., a pressure of 0.2 to 10 MPa, and a heating time of 0.1 to 5 hours. Further, the prepreg of the present invention and the inner layer wiring board can be combined and laminated to produce a laminated board.
  • the printed wiring board of the present invention is manufactured using the prepreg or laminate of the present invention.
  • the printed wiring board of the present invention can be produced, for example, by forming a circuit on the surface of the laminated board of the present invention.
  • the conductor layer of the laminated board of the present invention is processed by a normal etching method, and a plurality of laminated boards processed by wiring through the prepreg of the present invention are stacked, and then multilayered by heating press processing. You can also. Then, a multilayer printed wiring board can be manufactured through formation of a through hole or blind via hole by drilling or laser processing and formation of an interlayer wiring by plating or conductive paste.
  • the high-speed communication compatible module of the present invention is a high-speed communication compatible module manufactured by using the printed wiring board of the present invention.
  • the high-speed communication compatible module of the present invention is, for example, a communication module in which a semiconductor chip or the like is mounted on the printed wiring board of the present invention, in particular, using a high-frequency signal such as a wireless communication device or a network infrastructure device, It is suitable for applications with a large amount of information communication and high speed.
  • thermosetting resin composition and copper clad laminated board which were obtained in each case.
  • Tg Glass transition temperature
  • Dielectric properties (dielectric constant and dielectric loss tangent) A 100 mm ⁇ 2 mm evaluation board from which the copper foil was removed by immersing the copper clad laminate in a copper etching solution was prepared, and the ratio at a frequency of 10 GHz was obtained using a cavity resonator device (manufactured by Kanto Electronics Co., Ltd.). The dielectric constant and dielectric loss tangent were measured.
  • Production Example 1 [Production of Modified Maleimide Resin (A-1)]
  • a two-liter diamine-modified siloxane (manufactured by Shin-Etsu Chemical Co., Ltd., trade name: X-22-161A) is placed in a reaction vessel with a volume of 2 liters that can be heated and cooled, equipped with a thermometer, a stirrer, and a moisture meter with a reflux condenser.
  • a modified maleimide resin (A-2) was prepared by adding 253.7 g of methane (manufactured by Kei-I Kasei Co., Ltd., trade name: BMI) and 200.0 g of propylene glycol monomethyl ether and reacting at 126 ° C. for 5 hours while refluxing. ) was obtained.
  • Production Example 4 [Production of Modified Maleimide Resin (A-4)]
  • a two-liter diamine-modified siloxane (manufactured by Shin-Etsu Chemical Co., Ltd., trade name: X-22-161A) is placed in a reaction vessel with a volume of 2 liters that can be heated and cooled, equipped with a thermometer, a stirrer, and a moisture meter with a reflux condenser.
  • Example 1 to 10 and Comparative Examples 1 to 5 The composition is blended and mixed according to the blending ratio shown in Table 1 (the numerical values in the table are parts by mass of solids, and in the case of a solution (excluding an organic solvent) or a dispersion in terms of solids), A varnish with a solid concentration of 65% by mass was prepared using methyl ethyl ketone and toluene as a solvent. Next, this varnish was impregnated and applied to an E glass cloth (manufactured by Nitto Boseki Co., Ltd.) having a thickness of 0.1 mm, dried by heating at 160 ° C. for 5 minutes, and the content of the thermosetting resin composition was 46% by mass. Prepreg was obtained.
  • Table 1 the numerical values in the table are parts by mass of solids, and in the case of a solution (excluding an organic solvent) or a dispersion in terms of solids
  • a varnish with a solid concentration of 65% by mass was prepared using methyl ethyl ketone
  • Modified maleimide resin Modified maleimide resin (A-1): Modified maleimide resin (A-1) prepared in Production Example 1
  • Tuftec H1051 Hydrogenated styrene-butadiene copolymer resin (styrene content: 42% by mass) (manufactured by Asahi Kasei Chemicals Corporation)
  • Tuftec H1053 Hydrogenated styrene-butadiene copolymer resin (styrene content: 29% by mass) (manufactured by Asahi Kasei Chemicals Corporation)
  • Tuftec M1913 Carboxylic acid-modified hydrogenated styrene-butadiene copolymer resin (styrene content: 30% by mass) (manufactured by Asahi Kasei Chemicals Corporation)
  • Septon 2002 hydrogenated styrene-isoprene copolymer resin (styrene content: 30% by mass) (manufactured by Kuraray Co., Ltd.) Septon HG252: hydroxyl
  • TPP-MK Tetraphenylphosphonium tetra-p-tolylborate (Hokuko Chemical Co., Ltd.)
  • Perbutyl-P ⁇ , ⁇ '-bis (t-butylperoxy) diisopropylbenzene (manufactured by NOF Corporation)
  • 2E4MZ 2-ethyl-4-methylimidazole (manufactured by Shikoku Chemicals Co., Ltd.)
  • 2E4MZ-A 2,4-diamino-6- [2′-ethyl-4′-methylimidazolyl- (1 ′)]-ethyl-s-triazine (manufactured by Shikoku Kasei Kogyo Co., Ltd.)
  • SC2050-KNK spherical fused silica surface-treated with phenylaminosilane (manufactured by Admatechs Co., Ltd., average particle size: 0.5 ⁇ m)
  • Comparative Examples 1 to 5 are inferior in either dielectric characteristics or solder heat resistance with water-absorbing half copper.
  • the laminates obtained in Examples 1 to 7 had the glass transition temperature, the coefficient of thermal expansion, the dielectric properties, the solder heat resistance with copper, and the solder heat resistance with water absorption half copper. Also, the appearance of the prepreg after coating and the prepreg powder fallability are excellent.
  • the printed wiring board obtained by using the thermosetting resin composition of the present invention has a high glass transition temperature, low thermal expansion, low dielectric properties, and high heat resistance, so that it can be used for highly integrated semiconductor packages and high-speed communication. It is useful as a printed wiring board for electronic equipment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

(A)1分子中に少なくとも2個のN-置換マレイミド基を有するマレイミド化合物(a1)と、1分子中に少なくとも2個の1級アミノ基を有するアミン化合物(a2)との付加反応物と、(B)熱可塑性エラストマーと、(C)芳香族ビニル化合物由来の構造単位とカルボン酸無水物由来の構造単位とを含有する共重合樹脂と、を含有する熱硬化性樹脂組成物。

Description

熱硬化性樹脂組成物、プリプレグ、積層板、プリント配線板及び高速通信対応モジュール
 本発明は、熱硬化性樹脂組成物、プリプレグ、積層板、プリント配線板及び高速通信対応モジュールに関する。
 近年の電子機器の小型化及び高性能化の流れに伴い、プリント配線板では配線密度の高度化及び高集積化が進展しており、これに伴って、プリント配線板用の積層板には、耐熱性の向上等による信頼性向上の要求が強まっている。このような用途、特に半導体パッケージ基板用途においては、優れた耐熱性及び低熱膨張性を兼備することが要求される。また、ネットワークインフラ機器、大型コンピュータ等における情報通信量、速度の著しい向上に伴い、これらの電子機器に搭載される半導体パッケージには高周波化対応が必要となり、伝送損失の低減を可能とする低誘電率及び低誘電正接を有する基板材料が求められている。
 プリント配線板用の積層板としては、エポキシ樹脂を主剤とした樹脂組成物とガラスクロスとを含むプリプレグを硬化及び一体成形化したものが一般的である。
 エポキシ樹脂は、絶縁性、耐熱性、コスト等のバランスに優れるが、近年の半導体パッケージ基板用途において求められる、優れた耐熱性及び低熱膨張性に対応するには、さらなる改良が必要となる。エポキシ樹脂は熱膨張率が大きいため、芳香環を有するエポキシ樹脂の選択及びシリカ等の無機充填材の高充填化によって低熱膨張性化を図っている(例えば、特許文献1参照)。しかし、無機充填材の充填量を増やすことは、吸湿による絶縁信頼性の低下、樹脂と配線層との密着不足、プレス成形不良等を起こすことが知られており、無機充填材の高充填化のみによる低熱膨張性化には限界があった。さらに、エポキシ樹脂を用いた場合、良好な比誘電率及び誘電正接を有する樹脂硬化物は得ることが困難であり、高速通信用材料としては、誘電特性の改善が求められていた。
 ビスマレイミド樹脂にシロキサン骨格を導入した変性マレイミド樹脂が、無機充填材の含有量を過剰に増やすことなく、優れた耐熱性と低熱膨張性を有することが知られている(例えば、特許文献2参照)。また、該変性マレイミド樹脂は、エポキシ樹脂と比較すると低比誘電率及び低誘電正接を有するが、近年求められる比誘電率及び誘電正接を達成するには至っていない。
 誘電特性を向上させることを目的として、熱可塑性エラストマーとしてポリブタジエン樹脂を添加した積層板が検討されている。該積層板は、優れた誘電特性を有するが、プリプレグが粘着性を有してしまうこと、他の熱硬化性樹脂との相溶性が低いこと、硬化時の収縮率が大きいこと、銅箔等の金属箔への接着性が悪いこと等の欠点がある。
 これらを改良する方法として、ブタジエン-ビニル芳香族化合物コポリマーを用いる方法が提案されているが(例えば、特許文献3参照)、他の熱硬化性樹脂との十分な相溶性を得るためにはビニル芳香族化合物の共重合比率を高める必要があり、その場合、耐熱性が低下するという問題が生じる。
 また、近年、半導体用パッケージ基板でチップと基板との熱膨張率の差、及び基板の硬化収縮に起因する反りが課題とされている。反りを改善する手法として、基材の熱膨張率の低減、樹脂の硬化収縮率を低減する方法が検討されている。アプローチ例として、変性マレイミド樹脂と熱可塑性エラストマーとを併用する方法が提案されている(例えば、特許文献4参照)。特許文献4では、熱可塑性エラストマーは樹脂の硬化収縮率低減を目的として適用している。ここで、熱可塑性エラストマーとして水添スチレン系エラストマーを使用した際に、骨格の極性が非常に小さいことから低比誘電率及び低誘電正接を示す。そのため、変性マレイミド樹脂と水添スチレン系エラストマーを併用することで、低熱膨張性と優れた誘電特性(低比誘電率及び低誘電正接)とを両立させることができる。
特開平5-148343号公報 国際公開第2012-099133号 特開昭61-233060号公報 特開2014-24926号公報
 しかしながら、上記の変性マレイミド樹脂と熱可塑性エラストマーとを併用した樹脂組成物は、一般的な耐熱性は問題ないものの、近年のプリント配線板の高密度実装及び高多層化構成に伴う厳しい条件下における耐熱性、すなわち、吸水後の耐熱性に劣るという問題があった。これは、本発明者等の検討によると、変性マレイミド樹脂と熱可塑性エラストマーの相溶性が不十分であったためと考えられる。
 本発明の課題は、こうした現状に鑑み、優れた耐熱性、低熱膨張性、低比誘電率及び低誘電正接を有する熱硬化性樹脂組成物、これを用いたプリプレグ、積層板、プリント配線板及び高速通信対応モジュールを提供することにある。
 本発明者らは、前記目的を達成するために鋭意研究を重ねた結果、特定の構造を有する変性マレイミド樹脂、熱可塑性エラストマー、芳香族ビニル化合物とカルボン酸無水物を原料モノマーとする共重合樹脂を用いることで、上記の目的を達成し得ることを見出し、本発明を完成するに至った。
 すなわち、本発明は、以下の[1]~[12]に関する。
[1](A)1分子中に少なくとも2個のN-置換マレイミド基を有するマレイミド化合物(a1)と、1分子中に少なくとも2個の1級アミノ基を有するアミン化合物(a2)との付加反応物と、
 (B)熱可塑性エラストマーと、
 (C)芳香族ビニル化合物由来の構造単位とカルボン酸無水物由来の構造単位とを含有する共重合樹脂と、
 を含有する熱硬化性樹脂組成物。
[2]前記芳香族ビニル化合物由来の構造単位が、下記一般式(C-1)で表され、前記カルボン酸無水物由来の構造単位が、下記一般式(C-2)で表される無水マレイン酸由来の構造単位である、上記[1]に記載の熱硬化性樹脂組成物。
Figure JPOXMLDOC01-appb-C000002

(式中、RC1は、水素原子又は炭素数1~5の脂肪族炭化水素基を示し、RC2は、各々独立に、炭素数1~5の脂肪族炭化水素基又は炭素数6~20の芳香族炭化水素基を示し、xは、0~3の整数を示す。)
[3]前記(C)成分として、前記一般式(C-1)中のRC1が水素原子、xが0であり、かつ前記一般式(C-1)で表される構造単位と前記一般式(C-2)で表される構造単位との含有比率[(C-1)/(C-2)](モル比)が5~10である共重合樹脂を含有する、上記[1]又は[2]に記載の熱硬化性樹脂組成物。
[4]前記(B)成分の含有量が、熱硬化性樹脂組成物中の樹脂成分の固形分100質量部に対して、4~20質量部であり、前記(C)成分の含有量が、熱硬化性樹脂組成物中の樹脂成分の固形分100質量部に対して、2~20質量部である、上記[1]~[3]のいずれかに記載の熱硬化性樹脂組成物。
[5]前記(a2)成分が、末端にアミノ基を有する変性シロキサンを含有する、上記[1]~[4]のいずれかに記載の熱硬化性樹脂組成物。
[6](B)熱可塑性エラストマーが、水添スチレン系熱可塑性エラストマーであり、該水添スチレン系熱可塑性エラストマー中のスチレン由来の構造単位の含有量が、20~60質量%である上記[1]~[5]のいずれかに記載の熱硬化性樹脂組成物。
[7]さらに、(D)硬化促進剤を含有する、上記[1]~[6]のいずれかに記載の熱硬化性樹脂組成物。
[8]さらに、(E)無機充填材を含有する、上記[1]~[7]のいずれかに記載の熱硬化性樹脂組成物。
[9]上記[1]~[8]のいずれかに記載の熱硬化性樹脂組成物を繊維基材に含浸させてなるプリプレグ。
[10]上記[9]に記載のプリプレグを積層成形して得られる積層板。
[11]上記[9]に記載のプリプレグ又は上記[10]に記載の積層板を用いて製造されるプリント配線板。
[12]上記[11]に記載のプリント配線板を用いて製造される高速通信対応モジュール。
 本発明によれば、優れた耐熱性、低熱膨張性、低比誘電率及び低誘電正接を有する熱硬化性樹脂組成物、これを用いたプリプレグ、積層板、プリント配線板及び高速通信対応モジュールを提供することができる。
[熱硬化性樹脂組成物]
 本発明の熱硬化性樹脂組成物は、(A)1分子中に少なくとも2個のN-置換マレイミド基を有するマレイミド化合物(a1)と、1分子中に少なくとも2個の1級アミノ基を有するアミン化合物(a2)との付加反応物(以下、「(A)変性マレイミド樹脂」ともいう)と、(B)熱可塑性エラストマーと、(C)芳香族ビニル化合物由来の構造単位とカルボン酸無水物由来の構造単位とを含有する共重合樹脂(以下、「(C)共重合樹脂」ともいう)と、を含有する熱硬化性樹脂組成物である。
<(A)変性マレイミド樹脂>
 (A)変性マレイミド樹脂は、1分子中に少なくとも2個のN-置換マレイミド基を有するマレイミド化合物(a1)と、1分子中に少なくとも2個の1級アミノ基を有するアミン化合物(a2)との付加反応物である。
(1分子中に少なくとも2個のN-置換マレイミド基を有するマレイミド化合物(a1))
 1分子中に少なくとも2個のN-置換マレイミド基を有するマレイミド化合物(a1)(以下、「(a1)成分」ともいう)は、1分子中に少なくとも2個のN-置換マレイミド基を有している構造であれば、特に限定はされないが、1分子中に2個のN-置換マレイミド基を有するマレイミド化合物が好ましく、下記一般式(a1-1)で表される化合物がより好ましい。
Figure JPOXMLDOC01-appb-C000003

(式中、XA1は、下記一般式(a1-2)、(a1-3)、(a1-4)又は(a1-5)で表される基である。)
Figure JPOXMLDOC01-appb-C000004

(式中、RA1は、各々独立に、炭素数1~5の脂肪族炭化水素基である。p1は、0~4の整数である。)
Figure JPOXMLDOC01-appb-C000005

(式中、RA2は、各々独立に、炭素数1~5の脂肪族炭化水素基ある。XA2は、炭素数1~5のアルキレン基、炭素数2~5のアルキリデン基、エーテル基、カルボオキシ基、ケト基、単結合又は下記一般式(a1-3’)で表される基である。q1は、各々独立に、0~4の整数である。)
Figure JPOXMLDOC01-appb-C000006

(式中、RA3は、各々独立に、炭素数1~5の脂肪族炭化水素基である。XA3は、炭素数1~5のアルキレン基、炭素数2~5のアルキリデン基、エーテル基、カルボオキシ基、ケト基又は単結合である。r1は、各々独立に、0~4の整数である。)
Figure JPOXMLDOC01-appb-C000007

(式中、n1は、1~10の整数である。)
Figure JPOXMLDOC01-appb-C000008

(式中、RA4は、各々独立に、水素原子又は炭素数1~5の脂肪族炭化水素基である。u1は、1~8の整数である。)
 前記一般式(a1-2)中、RA1が表す脂肪族炭化水素基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基等の炭素数1~5のアルキル基などが挙げられる。
 前記一般式(a1-3)中、RA2が表す炭素数1~5の脂肪族炭化水素基としては、RA1の場合と同じものが挙げられる。
 XA2が表す炭素数1~5のアルキレン基としては、メチレン基、1,2-ジメチレン基、1,3-トリメチレン基、1,4-テトラメチレン基、1,5-ペンタメチレン基等が挙げられる。
 XA2が表す炭素数2~5のアルキリデン基としては、エチリデン基、プロピリデン基、イソプロピリデン基、ブチリデン基、イソブチリデン基、ペンチリデン基、イソペンチリデン基等が挙げられる。
 前記一般式(a1-3’)中、RA3が表す炭素数1~5の脂肪族炭化水素基としては、RA2の場合と同じものが挙げられる。
 XA3が表す炭素数1~5のアルキレン基、炭素数2~5のアルキリデン基としては、XA2が表す炭素数1~5のアルキレン基、炭素数2~5のアルキリデン基と同じものが挙げられる。
 前記一般式(a1-5)中、RA4が表す炭素数1~5の脂肪族炭化水素基としては、前記一般式(a1-2)中のRA1の場合と同じものが挙げられる。
 (a1)成分としては、N,N’-エチレンビスマレイミド、N,N’-ヘキサメチレンビスマレイミド、N,N’-(1,3-フェニレン)ビスマレイミド、N,N’-[1,3-(2-メチルフェニレン)]ビスマレイミド、N,N’-[1,3-(4-メチルフェニレン)]ビスマレイミド、N,N’-(1,4-フェニレン)ビスマレイミド、ビス(4-マレイミドフェニル)メタン、ビス(3-メチル-4-マレイミドフェニル)メタン、3,3’-ジメチル-5,5’-ジエチル-4,4’-ジフェニルメタンビスマレイミド、ビス(4-マレイミドフェニル)エーテル、ビス(4-マレイミドフェニル)ケトン、ビス(4-マレイミドシクロヘキシル)メタン、1,4-ビス(4-マレイミドフェニル)シクロヘキサン、1,4-ビス(マレイミドメチル)シクロヘキサン、1,4-ビス(マレイミドメチル)ベンゼン、1,3-ビス(4-マレイミドフェノキシ)ベンゼン、1,3-ビス(3-マレイミドフェノキシ)ベンゼン、ビス[4-(3-マレイミドフェノキシ)フェニル]メタン、ビス[4-(4-マレイミドフェノキシ)フェニル]メタン、1,1-ビス[4-(3-マレイミドフェノキシ)フェニル]エタン、1,1-ビス[4-(4-マレイミドフェノキシ)フェニル]エタン、1,2-ビス[4-(3-マレイミドフェノキシ)フェニル]エタン、1,2-ビス[4-(4-マレイミドフェノキシ)フェニル]エタン、2,2-ビス[4-(3-マレイミドフェノキシ)フェニル]プロパン、2,2-ビス[4-(4-マレイミドフェノキシ)フェニル]プロパン、2,2-ビス[4-(3-マレイミドフェノキシ)フェニル]ブタン、2,2-ビス[4-(4-マレイミドフェノキシ)フェニル]ブタン、4,4-ビス(3-マレイミドフェノキシ)ビフェニル、4,4-ビス(4-マレイミドフェノキシ)ビフェニル、ビス[4-(3-マレイミドフェノキシ)フェニル]ケトン、ビス[4-(4-マレイミドフェノキシ)フェニル]ケトン、ビス[4-(3-マレイミドフェノキシ)フェニル]エーテル、ビス[4-(4-マレイミドフェノキシ)フェニル]エーテル等が挙げられる。(a1)成分は、単独で用いても2種類以上を混合して用いてもよい。
 これらの中でも、溶媒への溶解性が優れる観点から、フェノキシ基を有するマレイミド化合物が好ましく、反応率が高く、より高耐熱性化できる観点から、ビス(4-マレイミドフェニル)メタン、2,2-ビス[4-(4-マレイミドフェノキシ)フェニル]プロパンが好ましい。
(1分子中に少なくとも2個の1級アミノ基を有するアミン化合物(a2))
 1分子中に少なくとも2個の1級アミノ基を有するアミン化合物(a2)(以下、「(a2)成分」ともいう)は、1分子中に2個の1級アミノ基を有するアミン化合物が好ましく、下記一般式(a2-1)で表される化合物がより好ましい。
Figure JPOXMLDOC01-appb-C000009

(式中、YA1は、下記一般式(a2-2)、(a2-3)又は(a2-4)で表される基である。)
Figure JPOXMLDOC01-appb-C000010

(式中、RA5は、各々独立に、炭素数1~5の脂肪族炭化水素基である。p2は、0~4の整数である。)
Figure JPOXMLDOC01-appb-C000011

(式中、RA6は、各々独立に、炭素数1~5の脂肪族炭化水素基である。YA2は、炭素数1~5のアルキレン基、炭素数2~5のアルキリデン基、エーテル基、カルボオキシ基、ケト基、単結合又は下記一般式(a2-3’)で表される基である。q2は、各々独立に、0~4の整数である。)
Figure JPOXMLDOC01-appb-C000012

(式中、RA7は、各々独立に、炭素数1~5の脂肪族炭化水素基である。YA3は、炭素数1~5のアルキレン基、炭素数2~5のアルキリデン基、エーテル基、カルボオキシ基、ケト基又は単結合である。s1は、各々独立に、0~4の整数である。)
Figure JPOXMLDOC01-appb-C000013

(式中、RA8は、各々独立に、炭素数1~5のアルキル基、フェニル基又は置換フェニル基である。RA9は、各々独立に、2価の有機基である。m2は、1~100の整数である。)
 前記一般式(a2-2)中、RA5が表す脂肪族炭化水素基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基等の炭素数1~5のアルキル基などが挙げられる。
 前記一般式(a2-3)中、RA6が表す炭素数1~5の脂肪族炭化水素基としては、RA5の場合と同じものが挙げられる。
 YA2が表す炭素数1~5のアルキレン基としては、メチレン基、1,2-ジメチレン基、1,3-トリメチレン基、1,4-テトラメチレン基、1,5-ペンタメチレン基等が挙げられる。
 YA2が表す炭素数2~5のアルキリデン基としては、エチリデン基、プロピリデン基、イソプロピリデン基、ブチリデン基、イソブチリデン基、ペンチリデン基、イソペンチリデン基等が挙げられる。
 前記一般式(a2-3’)中、RA7が表す炭素数1~5の脂肪族炭化水素基としては、RA6の場合と同じものが挙げられる。
 YA3が表す炭素数1~5のアルキレン基、炭素数2~5のアルキリデン基としては、YA2が表す炭素数1~5のアルキレン基、炭素数2~5のアルキリデン基と同じものが挙げられる。
 前記一般式(a2-4)中、RA8が表す炭素数1~5のアルキル基としては、炭素数1~3のアルキル基がより好ましい。RA8が表すアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基等が挙げられ、これらの中でも、メチル基が好ましい。
 RA8が表す置換フェニル基における置換基としては、アルキル基、アルケニル基、アルキニル基等が挙げられ、これらの中でも、アルキル基が好ましい。アルキル基としては、RA8が表すアルキル基と同様のものが挙げられる。
 RA9が表す2価の有機基としては、アルキレン基、アルキリデン基、アルケニレン基、アルキニレン基、アリーレン基、-O-又はこれらが組み合わされた2価の連結基等が挙げられる。これらの中でも、アルキレン基、アリーレン基が好ましい。アルキレン基としては、メチレン基、エチレン基、プロピレン基等が挙げられる。アリーレン基としては、フェニレン基、ナフチレン基等が挙げられる。
 (a2)成分としては、末端にアミノ基を有する変性シロキサン、ジアミノベンジジン、ジアミノジフェニルメタン、3,3’-ジエチル-4,4’-ジアミノジフェニルメタン、ジアミノジフェニルエーテル、3,3’-ジメトキシ-4,4’-ジアミノビフェニル、3,3’-ジメチル-4,4’-ジアミノビフェニル、1,3’-ビス(4-アミノフェノキシ)ベンゼン、2,2’-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、1,4’-ビス(4-アミノフェノキシ)ベンゼン、2,2’-ジメチル-4,4’-ジアミノビフェニル、4,4’-ジアミノ-3,3’-ビフェニルジオール等が挙げられる。(a2)成分は、単独で用いても2種類以上を混合して用いてもよい。
 これらの中でも、高弾性及び高耐熱性が得られる観点からは、3,3’-ジエチル-4,4’-ジアミノジフェニルメタン、2,2’-ビス[4-(4-アミノフェノキシ)フェニル]プロパンが好ましい。
 また、低熱膨張性の観点からは、末端にアミノ基を有する変性シロキサンが好ましい。末端にアミノ基を有する変性シロキサンは、市販品を用いてもよく、市販品としては、両末端にアミノ基を有する、「X-22-161A」(官能基当量800g/mol)、「X-22-161B」(官能基当量1,500g/mol)(以上、信越化学工業株式会社製)、「BY16-853U」(官能基当量460g/mol)(以上、東レ・ダウコーニング株式会社製)、「XF42-C5379」(官能基当量750g/mol)(以上、モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社製)等が挙げられる。
 また、(a2)成分は、低熱膨張性、高弾性及び高耐熱性を両立させる観点から、末端にアミノ基を有する変性シロキサンと、末端にアミノ基を有する変性シロキサン以外のアミン化合物と、を含有することが好ましく、末端にアミノ基を有する変性シロキサンと、3,3’-ジエチル-4,4’-ジアミノジフェニルメタン及び2,2’-ビス[4-(4-アミノフェノキシ)フェニル]プロパンからなる群から選ばれる1種以上と、を併用することがより好ましい。
 (a2)成分として、末端にアミノ基を有する変性シロキサンと、末端にアミノ基を有する変性シロキサン以外のアミン化合物と、を併用する場合、その質量比〔末端にアミノ基を有する変性シロキサン/末端にアミノ基を有する変性シロキサン以外のアミン化合物〕は、3/97~90/10が好ましく、10/90~80/20がより好ましく、20/80~70/30がさらに好ましい。
 前記(a1)成分と前記(a2)成分との付加反応物である(A)変性マレイミド樹脂は、例えば、下記一般式(A-1)で表される構造単位を有するものである。
Figure JPOXMLDOC01-appb-C000014

(式中、XA1は、前記一般式(a1-1)におけるXA1と同様であり、YA1は、前記一般式(a2-1)におけるYA1と同様である。)
((A)変性マレイミド樹脂の製造方法)
 (A)変性マレイミド樹脂は、(a1)成分と(a2)成分とを付加反応させることにより製造することができる。
 前記付加反応における(a1)成分と(a2)成分の配合量としては、ゲル化防止及び耐熱性の観点から、(a1)成分のマレイミド基の当量が、(a2)成分の一級アミノ基の当量を超える範囲であることが好ましく、(a1)成分のマレイミド基の当量と、(a2)成分の一級アミノ基の当量との比[(a1)成分/(a2)成分]が、2~15であることが好ましく、3~10であることがより好ましい。
 前記付加反応における反応温度は、生産性及び均一に反応を進行させる観点から、70~150℃が好ましく、100~130℃がより好ましい。また、反応時間は、0.1~10時間が好ましく、1~6時間がより好ましい。
 前記付加反応は、有機溶媒中で行うことが好ましい。有機溶媒としては、エタノール、プロパノール、プロピレングリコールモノメチルエーテル等のアルコール系溶媒;メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶媒;酢酸エチルエステル等のエステル系溶媒;トルエン等の芳香族系溶媒;ジメチルアセトアミド、N-メチルピロリドン等の窒素原子含有溶媒などが挙げられる。有機溶媒は、単独で用いても2種類以上を混合して用いてもよい。
 これらの中でも、溶解性の観点から、シクロヘキサノン、プロピレングリコールモノメチルエーテル、メチルセロソルブ、γ-ブチロラクトンが好ましく、低毒性であること及び揮発性が高く残溶媒として残りにくい観点から、シクロヘキサノン、プロピレングリコールモノメチルエーテルが好ましい。
 有機溶媒の使用量は、溶解性及び反応速度の観点から、(a1)成分と(a2)成分との合計100質量部に対し、25~1,000質量部が好ましく、50~500質量部がより好ましい。
 本発明の熱硬化性樹脂組成物中における(A)変性マレイミド樹脂の含有量は、熱硬化性樹脂組成物中の樹脂成分の固形分100質量部に対して、50~95質量部が好ましく、60~90質量部がより好ましく、70~87質量部がさらに好ましい。
 本明細書において、「固形分」とは、溶媒等の揮発する物質を除いた不揮発分のことであり、該樹脂組成物を乾燥させた際に、揮発せずに残る成分を示し、室温で液状、水飴状及びワックス状のものも含む。ここで、本明細書において室温とは25℃を示す。
 また、「樹脂成分」とは、後述する無機充填材を除く、樹脂又は樹脂の製造に使用される成分であり、具体的には、(A)変性マレイミド樹脂、(B)熱可塑性エラストマー、(C)共重合樹脂等が樹脂成分に該当する。
 また、本発明の熱硬化性樹脂組成物中における(A)変性マレイミド樹脂の含有量は、弾性率及び低熱膨張性の観点から、熱硬化性樹脂組成物中の(A)変性マレイミド樹脂の量から換算される原料の(a1)成分の量が、熱硬化性樹脂組成物中の樹脂成分の固形分100質量部に対して、30~90質量部となる量が好ましく、50~85質量部となる量がより好ましい。
 また、本発明の熱硬化性樹脂組成物中における(A)変性マレイミド樹脂の含有量は、良好な低熱膨張性及び銅箔接着性の観点から、熱硬化性樹脂組成物中の(A)変性マレイミド樹脂の量から換算される原料の(a2)成分の量が、熱硬化性樹脂組成物中の樹脂成分の固形分100質量部に対して、3~50質量部となる量が好ましく、5~40質量部となる量がより好ましい。
<(B)熱可塑性エラストマー>
 (B)熱可塑性エラストマー(以下、「(B)成分」ともいう)としては、特に制限はなく、従来公知の熱可塑性エラストマーの中から、適宜選択することができる。但し、本発明において、(B)熱可塑性エラストマーは、後述する(C)芳香族ビニル化合物由来の構造単位とカルボン酸無水物由来の構造単位とを含有する共重合樹脂を含まないものと定義される。
 (B)熱可塑性エラストマーとしては、スチレン系エラストマー、オレフィン系エラストマー、ウレタン系エラストマー、ポリエステル系エラストマー、ポリアミド系エラストマー、アクリル系エラストマー、シリコーン系エラストマー、これらの誘導体等が挙げられる。(B)成分は、単独で用いても2種類以上を混合して用いてもよい。
 また、(B)熱可塑性エラストマーとしては、分子末端又は分子鎖中に反応性官能基を有するものを用いることができる。反応性官能基としては、エポキシ基、水酸基、カルボキシ基、アミノ基、アミド基、イソシアナート基、アクリル基、メタクリル基、ビニル基等が挙げられる。これらの反応性官能基を分子末端又は分子鎖中に有することにより、相溶性が向上し、基板の耐熱性を向上させることが可能となる。
 これらの反応性官能基の中でも、金属箔との密着性の観点から、耐熱性及び絶縁信頼性の観点から、カルボキシ基、アミノ基、水酸基を有することがより好ましい。
 また、変性ポリイミド樹脂との相溶性の観点から、(B)熱可塑性エラストマーは、スチレン-ブタジエン共重合体、スチレン-イソプレン共重合体が好ましく、誘電特性の観点から、これらの共重合体の二重結合部分を水素添加した、水添スチレン-ブタジエン共重合樹脂、水添スチレン-イソプレン共重合樹脂等の水添スチレン系熱可塑性エラストマーがより好ましい。
 さらに、該水添スチレン系熱可塑性エラストマー中のスチレン由来の構造単位の含有量(以下、「スチレン量」ともいう)は、20~60%質量であることが好ましく、25~55質量%であることがより好ましい。(B)熱可塑性エラストマーとして、スチレン量が20~60質量%である水添スチレン-ブタジエン共重合樹脂、水添スチレン-イソプレン共重合樹脂等の水添スチレン系熱可塑性エラストマーを用いることで、吸湿耐熱性に優れることに加え、塗工後のプリプレグの外観が優れ、プリプレグの粉落ち量が少ない樹脂を達成できる。スチレン量が60質量%以下であると、基材特性(熱膨張率、誘電特性、耐熱性)が良好であることに加え、塗工後のプリプレグ外観でひび割れが生じ難い傾向にある。これは、スチレンのスタッキング凝集を抑制し、樹脂の柔軟性が優れることに由来すると考えられる。スチレン量が20質量%以上であると、基材特性(熱膨張率、誘電特性、耐熱性)が良好であることに加え、(A)変性マレイミド樹脂と(B)熱可塑性エラストマーの相溶性に優れ、樹脂の粉落ち量が少なく、取り扱い性に優れる傾向にある。これは、(A)変性マレイミド樹脂が有するマレイミド基は、ブタジエン、イソプレン等と比較してスチレンと構造が近いことから、(B)熱可塑性エラストマーのスチレン量が20質量%以上である場合に、(A)変性マレイミド樹脂とスチレン系の骨格との相溶性が優れることに由来すると考えられる。
 スチレン系エラストマーとしては、市販品を用いてもよく、市販品としては、「タフテック(登録商標)H1051」、「タフテック(登録商標)H1053」、「タフテック(登録商標)M1911」、「タフテック(登録商標)M1913」(以上、旭化成ケミカルズ株式会社製)、「セプトン(登録商標)2002」、「セプトン(登録商標)HG252」(株式会社クラレ製)等が挙げられる。
 熱硬化性樹脂組成物中の(B)熱可塑性エラストマーの含有量は、熱硬化性樹脂組成物中の樹脂成分の固形分100質量部に対して、4~20質量部が好ましく、6~15質量部がより好ましい。(B)熱可塑性エラストマーの含有量が、4質量部以上であると低誘電率化の効果が十分得られ、20質量部以下であると、(B)熱可塑性エラストマーが相溶化するため樹脂中に十分に分散し、耐熱性及びピール強度に優れる。
<(C)共重合樹脂>
 (C)共重合樹脂は、芳香族ビニル化合物由来の構造単位とカルボン酸無水物由来の構造単位とを含有する共重合樹脂である。
 本発明の熱硬化性樹脂組成物は、(C)共重合樹脂を含有することにより、特に吸水後の耐熱性に優れるという効果が得られる。このような効果を奏する理由は定かではないが、次のように考えられる。
 従来、誘電特性を向上させることを目的として、熱可塑性エラストマーを変性マレイミド樹脂に添加する手法が用いられていたが、熱可塑性エラストマーは変性マレイミド樹脂と骨格の構造が大きく異なるため、互いに相溶し難い状態であった。そのため、単に変性マレイミド樹脂と熱可塑性エラストマーとを配合すると、近年要求される厳しい条件下(例えば、プレッシャークッカーによる吸湿処理後)での耐熱性に問題があった。
 本発明の熱硬化性樹脂組成物が含有する(C)共重合樹脂は、芳香族ビニル化合物由来の構造単位とカルボン酸無水物由来の構造単位とを含有しており、芳香族ビニル化合物由来の構造単位が、熱可塑性エラストマー(特にスチレンを含有するエラストマー)との相溶性に優れ、カルボン酸無水物由来の構造単位が変性マレイミド樹脂との相溶性に優れる。したがって、(C)共重合樹脂は、(A)変性マレイミド樹脂と(B)熱可塑性エラストマーとの相溶化剤として機能し、これにより、(A)変性マレイミド樹脂と(B)熱可塑性エラストマーとの相溶性が向上し、耐熱性が向上したと考えられる。さらには、(C)共重合樹脂自体も、優れた誘電特性を有することから、誘電特性を損なうことなく、優れた耐熱性を付与することができたと考えられる。
 (C)共重合樹脂の芳香族ビニル化合物由来の構造単位としては、下記一般式(C-1)で表される構造単位が好ましい。また、前記(C)成分のカルボン酸無水物由来の構造単位としては、無水マレイン酸由来の構造単位、無水フタル酸由来の構造単位、無水コハク酸由来の構造単位等が挙げられるが、特に(A)変性マレイミド樹脂との相溶性の観点から、マレイミド基に近い構造を有する下記一般式(C-2)で表される無水マレイン酸由来の構造単位が好ましい。
Figure JPOXMLDOC01-appb-C000015

(式中、RC1は、水素原子又は炭素数1~5の脂肪族炭化水素基を示し、RC2は、各々独立に、炭素数1~5の脂肪族炭化水素基又は炭素数6~20の芳香族炭化水素基を示し、xは、0~3の整数を示す。)
 RC1及びRC2が示す炭素数1~5の脂肪族炭化水素基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基等が挙げられる。これらの中でも、銅箔との接着性及び誘電特性の観点から、炭素数1~3の脂肪族炭化水素基が好ましく、メチル基、エチル基がより好ましい。
 RC2が示す炭素数6~20の芳香族炭化水素基としては、フェニル基、ナフチル基、アントリル基、ビフェニリル基等が挙げられる。
 前記一般式(C-1)で表される構造単位おいては、RC1が水素原子であり、且つxが0である下記式(C-1’)で表される構造単位が好ましい。
Figure JPOXMLDOC01-appb-C000016
 (C)共重合樹脂中における、一般式(C-1)で表される構造単位と、一般式(C-2)で表される構造単位との含有比率[(C-1)/(C-2)](モル比)は、2~12が好ましく、5~10がより好ましい。当該含有比率が2以上であると、誘電特性及び耐熱性の改善効果が十分となる傾向にあり、12以下であると、相溶性が良好となる傾向にある。さらに、[(C-1)/(C-2)](モル比)が5~10であると、良好な基材特性を有することに加え、(B)熱可塑性エラストマーとの相溶性に優れるスチレン由来の構造単位の含有量が好ましい範囲となることから、(A)変性マレイミド樹脂と(B)熱可塑性エラストマーとの相溶性がより向上し、プリプレグの粉落ち性も良好となる。
 (C)共重合樹脂中における、一般式(C-1)で表される構造単位と一般式(C-2)で表される構造単位との合計含有量は、50質量%以上が好ましく、70質量%以上がより好ましく、90質量%以上がさらに好ましく、実質的に100質量%が特に好ましい。
 (C)共重合樹脂は、芳香族ビニル化合物とカルボン酸無水物とを共重合することにより製造することができる。
 芳香族ビニル化合物としては、スチレン、1-メチルスチレン、ビニルトルエン等が挙げられる。これらは単独で用いても2種類以上を混合して用いてもよい。
 さらに、芳香族ビニル化合物及びカルボン酸無水物以外にも、各種の重合可能な成分を共重合させてもよい。各種の重合可能な成分としては、エチレン、プロピレン、ブタジエン等のビニル化合物などが挙げられる。
 (C)共重合樹脂としては、市販品を用いることもでき、市販品としては、「SMA(登録商標)EF30」(スチレン/無水マレイン酸(モル比)=3、Mw=9,500)、「SMA(登録商標)EF40」(スチレン/無水マレイン酸(モル比)=4、Mw=11,000)、「SMA(登録商標)EF60」(スチレン/無水マレイン酸(モル比)=6、Mw=11,500)、「SMA(登録商標)EF80」(スチレン/無水マレイン酸(モル比)=8、Mw=14,400)(以上、サートマー社製)等が挙げられる。これらの中でも、「SMA(登録商標)EF60」、「SMA-EF80」が好ましい。
 熱硬化性樹脂組成物中の(C)共重合樹脂の含有量は、熱硬化性樹脂組成物中の樹脂成分の固形分100質量部に対して、2~20質量部が好ましく、3~15質量部がより好ましく、4~13質量部がさらに好ましい。(C)共重合樹脂の含有量が、2質量部以上であると、低誘電率化の効果が十分得られ、20質量部以下であると、(C)共重合樹脂の分散性に優れ、耐熱性及びピール強度が優れる。
<(D)硬化促進剤>
 本発明の熱硬化性樹脂組成物は、硬化反応を促進する観点から、更に、(D)硬化促進剤を含有していてもよい。
 (D)硬化促進剤としては、トリフェニルホスフィン等の有機リン系化合物;イミダゾール類及びその誘導体;第二級アミン類、第三級アミン類、第四級アンモニウム塩等の含窒素化合物;ジクミルパーオキサイド、2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)ヘキシン-3、2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)ヘキサン、α,α’-ビス(t-ブチルパーオキシ)ジイソプロピルベンゼン等の有機過酸化物;ナフテン酸亜鉛、ナフテン酸コバルト、オクチル酸錫、オクチル酸コバルト等の有機金属塩などが挙げられる。(D)硬化促進剤は、単独で用いても2種類以上を混合して用いてもよい。
 本発明の熱硬化性樹脂組成物が(D)硬化促進剤を含有する場合、その含有量は、熱硬化性樹脂組成物中の樹脂成分の固形分100質量部に対して、0.1~5質量部が好ましく、0.3~2質量部がより好ましい。
<(E)無機充填材>
 本発明の熱硬化性樹脂組成物は、更に、(E)無機充填材を含有していてもよい。
 (E)無機充填材としては、シリカ、アルミナ、酸化チタン、マイカ、チタン酸バリウム、チタン酸ストロンチウム、炭酸アルミニウム、水酸化マグネシウム、水酸化アルミニウム、炭酸カルシウム窒化ケイ素、窒化ホウ素、タルク、炭化ケイ素、石英粉末、ガラス短繊維、ガラス微粉末、中空ガラス等が挙げられる。ガラスとしては、Eガラス、Tガラス、Dガラス等が好ましく挙げられる。(E)無機充填材は、単独で用いても2種類以上を混合して用いてもよい。
 これらの中でも、誘電特性、耐熱性及び低熱膨張性の観点から、シリカが好ましい。シリカとしては、例えば、湿式法で製造され含水率の高い沈降シリカと、乾式法で製造され結合水等をほとんど含まない乾式法シリカが挙げられ、乾式法シリカとしてはさらに、製造法の違いにより、破砕シリカ、フュームドシリカ、溶融球状シリカ等に分類される。これらの中でも、低熱膨張性及び樹脂に充填した際の流動性の観点から、溶融球状シリカが好ましい。
 (E)無機充填材の平均粒子径は、0.1~10μmが好ましく、0.3~8μmがより好ましい。平均粒子径が0.1μm以上であると、樹脂に高充填した際の流動性を良好に保つことができ、10μm以下であると、粗大粒子の混入確率を低減し、粗大粒子起因の不良の発生を抑えることができる。ここで、平均粒子径とは、粒子の全体積を100%として粒子径による累積度数分布曲線を求めたとき、体積50%に相当する点の粒子径のことであり、レーザ回折散乱法を用いた粒度分布測定装置等で測定することができる。
 (E)無機充填材は、カップリング剤で表面処理されたものであってもよい。カップリング剤による表面処理の方式は、配合前の(E)無機充填材に対して乾式又は湿式で表面処理する方式であってもよく、表面未処理の(E)無機充填材を、他の成分に配合して組成物とした後、該組成物にシランカップリング剤を添加する、いわゆるインテグラルブレンド処理方式であってもよい。
 カップリング剤としては、シラン系カップリング剤、チタネート系カップリング剤、シリコーンオリゴマー等が挙げられる。
 本発明の熱硬化性樹脂組成物が(E)無機充填材を含有する場合、その含有量は、熱硬化性樹脂組成物中の樹脂成分の固形分100質量部に対して、10~300質量部が好ましく、50~250質量部がより好ましい。(E)無機充填材の含有量が前記範囲内であると、成形性及び低熱膨張性が良好となる。
 本発明の熱硬化性樹脂組成物が(E)無機充填材を含有する場合、必要に応じて、三本ロール、ビーズミル、ナノマイザー等の分散機で処理を行って、(E)無機充填材の分散性を改善することが好ましい。
<その他の成分>
 本発明の(A)変性マレイミド樹脂は、熱硬化性樹脂であり、単独で良好な熱硬化性を有するが、必要により、他の熱硬化性樹脂と併用することで、接着性、機械強度等を向上させることができる。
 併用する熱硬化性樹脂は、特に制限されないが、例えば、エポキシ樹脂、フェノール樹脂、シアネート樹脂、イソシアネート樹脂、ベンゾオキサジン樹脂、アリル樹脂、ジシクロペンタジエン樹脂、シリコーン樹脂、トリアジン樹脂等が挙げられ、これらは単独で、あるいは2種類以上混合して使用してもよい。これらの中でも、成形性及び電気絶縁性の観点から、シアネート樹脂、ベンゾオキサジン樹脂が好ましい。
 また、エポキシ樹脂を含有することで良好な接着性を有することができるが、その含有量は熱硬化性樹脂組成物の固形分中、2質量%以下であることが好ましい。エポキシ樹脂の含有量を2質量%以下とすることで、誘電特性及び保存安定性を優れたものとすることができる。
 本発明の熱硬化性樹脂組成物は、任意に公知の有機充填材、難燃剤、紫外線吸収剤、酸化防止剤、光重合開始剤、蛍光増白剤、接着性向上剤等を含有していてもよい。
 有機充填材としては、ポリエチレン、ポリプロピレン樹脂等からなる樹脂フィラー、コアシェル構造の樹脂フィラーなどが挙げられる。
 難燃剤としては、芳香族リン酸エステル化合物、ホスファゼン化合物、ホスフィン酸エステル、ホスフィン酸化合物の金属塩、赤リン、9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキシド及びその誘導体等のリン系難燃剤;硫酸メラミン、ポリリン酸メラミン等の窒素系難燃剤;三酸化アンチモン等の無機系難燃剤などが挙げられる。
 紫外線吸収剤としては、ベンゾトリアゾール系紫外線吸収剤が挙げられる。
 酸化防止剤としては、ヒンダードフェノール系酸化防止剤、ヒンダードアミン系酸化防止剤等が挙げられる。
 光重合開始剤としては、ベンゾフェノン類、ベンジルケタール類、チオキサントン系等の光重合開始剤が挙げられる。
 蛍光増白剤としては、スチルベン誘導体の蛍光増白剤等が挙げられる。
 接着性向上剤としては、尿素シラン等の尿素化合物、前記カップリング剤などが挙げられる。
 本発明の熱硬化性樹脂組成物は、プリプレグ等の製造に用いるために、各成分が有機溶媒中に溶解又は分散されたワニスの状態としてもよい。
 ワニスに用いる有機溶媒としては、エタノール、プロパノール、プロピレングリコールモノメチルエーテル等のアルコール系溶媒;メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶媒;酢酸エチルエステル等のエステル系溶媒;トルエン、キシレン等の芳香族系溶媒;ジメチルアセトアミド、N-メチルピロリドン等の窒素原子含有溶媒などが挙げられる。これらの有機溶媒は、単独で用いても2種類以上を混合して用いてもよい。
 これらの中でも、溶解性の観点から、プロピレングリコールモノメチルエーテルメチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、トルエンが好ましく、低毒性である点から、プロピレングリコールモノメチルエーテル、メチルイソブチルケトン、シクロヘキサノン、トルエンがより好ましい。
 ワニスの固形分濃度は、40~90質量%が好ましく、50~80質量%がより好ましい。ワニスの固形分濃度が前記範囲内であると、塗工性を良好に保ち、適切な樹脂組成物付着量のプリプレグを得ることができる。
[プリプレグ]
 本発明のプリプレグは、本発明の熱硬化性樹脂組成物を繊維基材に含浸させてなるものである。
 本発明のプリプレグは、本発明の熱硬化性樹脂組成物を、繊維基材に含浸し、加熱等により半硬化(Bステージ化)して製造することができる。
 繊維基材としては、各種の電気絶縁材料用積層板に用いられている周知のものが使用できる。その材質の例としては、Eガラス、Sガラス、低誘電ガラス、Qガラス等の無機物繊維;低誘電ガラスポリイミド、ポリエステル、テトラフルオロエチレン等の有機繊維;並びにそれらの混合物などが挙げられる。
 これらの繊維基材は、例えば、織布、不織布、ロービンク、チョップドストランドマット、サーフェシングマット等の形状を有するが、材質及び形状は、目的とする成形物の用途、性能等により選択され、必要により、単独又は2種類以上の材質及び形状を組み合わせることができる。繊維基材の厚さは、例えば、約0.03~0.5mmのものを使用することができる。これらの繊維基材は、シランカップリング剤等で表面処理したもの又は機械的に開繊処理を施したものが、耐熱性、耐湿性、加工性等の面から好適である。
 本発明のプリプレグは、例えば、繊維基材に対する熱硬化性樹脂組成物の付着量(プリプレグ中の熱硬化性樹脂組成物の含有量)が、20~90質量%となるように、繊維基材に含浸した後、通常、100~200℃の温度で1~30分間加熱乾燥し、半硬化(Bステージ化)させて得ることができる。
[積層板]
 本発明の積層板は、本発明のプリプレグを積層成形して得られるものである。
 本発明の積層板は、本発明のプリプレグを、例えば、1~20枚重ね、その片面又は両面に、銅、アルミニウム等の金属箔を配置した構成で積層成形することにより製造することができる。金属箔は、電気絶縁材料用途で用いるものであれば特に制限されない。
 積層板を製造する際の成形条件は、例えば、電気絶縁材料用積層板及び多層板の手法が適用でき、多段プレス、多段真空プレス、連続成形、オートクレーブ成形機等を使用し、温度100~250℃、圧力0.2~10MPa、加熱時間0.1~5時間の範囲で成形することができる。また、本発明のプリプレグと内層用配線板とを組合せ、積層成形して、積層板を製造することもできる。
[プリント配線板]
 本発明のプリント配線板は、本発明のプリプレグ又は積層板を用いて製造されたものである。
 本発明のプリント配線板は、例えば、本発明の積層板の表面に回路を形成して製造することができる。また、本発明の積層板の導体層を通常のエッチング法によって配線加工し、本発明のプリプレグを介して配線加工した積層板を複数積層し、加熱プレス加工することによって一括して多層化することもできる。その後、ドリル加工又はレーザ加工によるスルーホール又はブラインドビアホールの形成と、メッキ又は導電性ペーストによる層間配線の形成を経て多層プリント配線板を製造することができる。
[高速通信対応モジュール]
 本発明の高速通信対応モジュールは、本発明のプリント配線板を用いて製造される高速通信対応モジュールである。
 本発明の高速通信対応モジュールは、例えば、本発明のプリント配線板に半導体チップ等を実装してなる通信モジュール等であり、特にワイヤレス通信機器、ネットワークインフラ機器等の高周波域の信号を利用し、情報通信量及び速度が大きい用途に好適である。
 次に、下記の実施例により本発明を更に詳しく説明するが、これらの実施例は本発明を制限するものではない。
 なお、各例で得られた熱硬化性樹脂組成物及び銅張積層板について以下の評価を行った。
(1)ガラス転移温度(Tg)
 銅張積層板を銅エッチング液に浸漬することにより銅箔を取り除いた5mm角の評価基板を作製し、TMA試験装置(TAインスツルメント社製、商品名:Q400)を用いて圧縮法で熱機械分析を行った。評価基板を前記装置にX方向に装着後、荷重5g、昇温速度10℃/分の測定条件にて連続して2回測定した。2回目の測定における熱膨張曲線の異なる接線の交点で示される点を求め、これをガラス転移温度(Tg)とした。
(2)熱膨張率
 銅張積層板を銅エッチング液に浸漬することにより銅箔を取り除いた5mm角の評価基板を作製し、TMA試験装置(TAインスツルメント社製、商品名:Q400)を用いて圧縮法で熱機械分析を行った。評価基板を前記装置にX方向に装着後、荷重5g、昇温速度10℃/分の測定条件にて連続して2回測定した。2回目の測定における30℃から100℃までの平均熱膨張率を算出し、これを熱膨張率の値とした。
(3)誘電特性(比誘電率及び誘電正接)
 銅張積層板を銅エッチング液に浸漬することにより銅箔を取り除いた100mm×2mmの評価基板を作製し、空洞共振機装置(株式会社関東電子応用開発製)を用いて、周波数10GHzでの比誘電率及び誘電正接を測定した。
(4)銅付きはんだ耐熱性
 銅張積層板を25mm角の大きさに切り出した評価基板を作製し、該評価基板を温度288℃のはんだ浴に、最大で60分間フロートしながら、外観を観察することにより、膨れが発生するまでの時間を測定した。評価結果は、60分間フロートした時点で膨れが確認されなかったものを「>60」として表1に記載した。
(5)吸水半銅付はんだ耐熱性
 銅張積層板を50mm角の大きさに切断し、一方の表面のみ半面銅を残し、他方の表面については銅エッチング液に浸漬して全面銅を除去することにより50mm角の半銅付評価基板を作製した。プレッシャークッカーテスト(PCT)用装置(株式会社平山製作所製)(条件:121℃、2.2気圧)中で5時間処理した後の半銅付評価基板を、288℃のはんだ浴にそれぞれ20秒間浸漬後、外観を目視で観察することにより吸水半銅付はんだ耐熱性を評価した。評価結果は、膨れが確認されなかったものを「A」、膨れが確認されたものを「B」として表1に記載した。
(6)塗工後プリプレグ外観
 製造したワニスをガラスクロスに含浸塗工し、160℃で5分間加熱乾燥し得たプリプレグの外観にヒビ割れが生じているかを観察した。ヒビ割れは明確な凹凸1mm幅以上の有無で判断した。評価結果は、ヒビ割れが確認されなかったものを「A」、ヒビ割れが観察されたものを「B」として表1に記載した。
(7)プリプレグ粉落ち性
 プリプレグを250mm角サイズに切り出し、対角線が重なるように180°に折り曲げ、元に戻した。評価結果は、本作業において樹脂粉落ちが目視で観察されなかったものを「A」、樹脂粉落ちが目視で観察されたものを「B」として表1に記載した。
製造例1:〔変性マレイミド樹脂(A-1)の製造〕
 温度計、攪拌装置及び還流冷却管付き水分定量器の付いた加熱及び冷却可能な容積2リットルの反応容器に、両末端ジアミン変性シロキサン(信越化学工業株式会社製、商品名:X-22-161A)15.9gと、3,3’-ジエチル-4,4’-ジアミノジフェニルメタン(日本化薬株式会社製、商品名:KAYAHARD(登録商標)A-A)28.6gと、ビス(4-マレイミドフェニル)メタン(ケイ・アイ化成株式会社製、商品名:BMI)280.5gと、プロピレングリコールモノメチルエーテル200.0gと、を入れ、126℃で還流させながら5時間反応させて変性マレイミド樹脂(A-1)の溶液を得た。
製造例2:〔変性マレイミド樹脂(A-2)の製造〕
 温度計、攪拌装置及び還流冷却管付き水分定量器の付いた加熱及び冷却可能な容積2リットルの反応容器に、両末端ジアミン変性シロキサン(信越化学工業株式会社製、商品名:X-22-161B)14.4gと、2,2’―ビス[4-(4-アミノフェノキシ)フェニル]プロパン(和歌山精化工業株式会社製、商品名:BAPP)56.9gと、ビス(4-マレイミドフェニル)メタン(ケイ・アイ化成株式会社製、商品名:BMI)253.7gと、プロピレングリコールモノメチルエーテル200.0gと、を入れ、126℃で還流させながら5時間反応させて変性マレイミド樹脂(A-2)の溶液を得た。
製造例3:〔変性マレイミド樹脂(A-3)の製造〕
 温度計、攪拌装置及び還流冷却管付き水分定量器の付いた加熱及び冷却可能な容積2リットルの反応容器に、両末端ジアミン変性シロキサン(信越化学工業株式会社製、商品名:X-22-161B)15.6gと、3,3’-ジエチル-4,4’-ジアミノジフェニルメタン(日本化薬株式会社製、商品名:KAYAHARD(登録商標)A-A)21.8gと、2,2-ビス[4-(4-マレイミドフェノキシ)フェニル]プロパン(大和化成工業株式会社製、商品名:BMI-4000)274.2gと、プロピレングリコールモノメチルエーテル:200.0gと、を入れ、120℃で4時間反応させて変性マレイミド樹脂(A-3)の溶液を得た。
製造例4:〔変性マレイミド樹脂(A-4)の製造〕
 温度計、攪拌装置及び還流冷却管付き水分定量器の付いた加熱及び冷却可能な容積2リットルの反応容器に、両末端ジアミン変性シロキサン(信越化学工業株式会社製、商品名:X-22-161A)16.6gと、2,2’―ビス[4-(4-アミノフェノキシ)フェニル]プロパン(和歌山精化工業株式会社製、商品名:BAPP)25.5gと、2,2-ビス[4-(4-マレイミドフェノキシ)フェニル]プロパン(大和化成工業株式会社製、商品名:BMI-4000)292.6gと、プロピレングリコールモノメチルエーテル200.0gと、を入れ、126℃で還流させながら6時間反応させて変性マレイミド樹脂(A-4)の溶液を得た。
実施例1~10及び比較例1~5
 表1に示す配合割合(表中の数値は固形分の質量部であり、溶液(有機溶媒を除く)又は分散液の場合は固形分換算量である。)に従って組成物を配合及び混合し、溶媒にメチルエチルケトン及びトルエンを用いて固形分濃度65質量%のワニスを作製した。
 次に、このワニスを厚さ0.1mmのEガラスクロス(日東紡績株式会社製)に含浸塗工し、160℃で5分間加熱乾燥し、熱硬化性樹脂組成物の含有量が46質量%のプリプレグを得た。
 このプリプレグを4枚重ね、12μmの電解銅箔を上下に配置し、圧力2.5MPa、温度200℃で90分間プレスを行って、銅張積層板を得た。得られた銅張積層板の評価結果を表1に示す。
 配合に用いた各成分について以下に示す。
[(A)変性マレイミド樹脂]
 変性マレイミド樹脂(A-1):製造例1で調製した変性マレイミド樹脂(A-1)
 変性マレイミド樹脂(A-2):製造例2で調製した変性マレイミド樹脂(A-2)
 変性マレイミド樹脂(A-3):製造例3で調製した変性マレイミド樹脂(A-3)
 変性マレイミド樹脂(A-4):製造例4で調製した変性マレイミド樹脂(A-4)
[(B)熱可塑性エラストマー]
・タフテックH1051:水添スチレン-ブタジエン共重合樹脂(スチレン量:42質量%)(旭化成ケミカルズ株式会社製)
・タフテックH1053:水添スチレン-ブタジエン共重合樹脂(スチレン量:29質量%)(旭化成ケミカルズ株式会社製)
・タフテックM1913:カルボン酸変性水添スチレン-ブタジエン共重合樹脂(スチレン量:30質量%)(旭化成ケミカルズ株式会社製)
・セプトン2002:水添スチレン-イソプレン共重合樹脂(スチレン量:30質量%)(株式会社クラレ製)
・セプトンHG252:水酸基変性水添スチレン-イソプレン共重合樹脂(スチレン量:28質量%)(株式会社クラレ製)
・セプトン2063:水添スチレン-イソプレン共重合樹脂(スチレン量:13質量%)(株式会社クラレ製)
・タフテックH1043:水添スチレン-ブタジエン共重合樹脂(スチレン量:67質量%)(旭化成ケミカルズ株式会社製)
[(C)芳香族ビニル化合物由来の構造単位とカルボン酸無水物由来の構造単位とを含有する共重合樹脂]
・SMA-EF80:スチレンと無水マレイン酸との共重合体(スチレン/無水マレイン酸(モル比)=8)(サートマー社製)
・SMA-EF40:スチレンと無水マレイン酸との共重合体(スチレン/無水マレイン酸(モル比)=4)(サートマー社製)
[(D)硬化促進剤]
・TPP-MK:テトラフェニルホスホニウムテトラ-p-トリルボレート(北興化学工業株式会社製)
・パーブチル-P:α,α’-ビス(t-ブチルパーオキシ)ジイソプロピルベンゼン(日油株式会社製)
・2E4MZ:2-エチル-4-メチルイミダゾール(四国化成工業株式会社製)
・2E4MZ-A:2,4-ジアミノ-6-[2’-エチル-4’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン(四国化成工業株式会社製)
[(E)無機充填材]
・SC2050-KNK:フェニルアミノシランで表面処理された球状溶融シリカ(株式会社アドマテックス製、平均粒子径:0.5μm)
Figure JPOXMLDOC01-appb-T000017
 表1から明らかなように、実施例1~10で得られた積層板は、ガラス転移温度、熱膨張率、誘電特性、銅付はんだ耐熱性、吸水半銅付はんだ耐熱性の全てに優れている。一方、比較例1~5は、誘電特性又は吸水半銅付はんだ耐熱性いずれかの特性に劣っている。
 さらに、表1から明らかなように、実施例1~7で得られた積層板は、ガラス転移温度、熱膨張率、誘電特性、銅付はんだ耐熱性、吸水半銅付はんだ耐熱性に加えて、塗工後プリプレグ外観、プリプレグ粉落ち性についても優れている。
 本発明の熱硬化性樹脂組成物を用いて得られるプリント配線板は、高ガラス転移温度、低熱膨張性、低誘電特性、高耐熱性を有するため、高集積化された半導体パッケージ及び高速通信に対応した電子機器用プリント配線板として有用である。
 

Claims (12)

  1.  (A)1分子中に少なくとも2個のN-置換マレイミド基を有するマレイミド化合物(a1)と、1分子中に少なくとも2個の1級アミノ基を有するアミン化合物(a2)との付加反応物と、
     (B)熱可塑性エラストマーと、
     (C)芳香族ビニル化合物由来の構造単位とカルボン酸無水物由来の構造単位とを含有する共重合樹脂と、
     を含有する熱硬化性樹脂組成物。
  2.  前記芳香族ビニル化合物由来の構造単位が、下記一般式(C-1)で表され、前記カルボン酸無水物由来の構造単位が、下記一般式(C-2)で表される無水マレイン酸由来の構造単位である、請求項1に記載の熱硬化性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001

    (式中、RC1は、水素原子又は炭素数1~5の脂肪族炭化水素基を示し、RC2は、各々独立に、炭素数1~5の脂肪族炭化水素基又は炭素数6~20の芳香族炭化水素基を示し、xは、0~3の整数を示す。)
  3.  前記(C)成分として、前記一般式(C-1)中のRC1が水素原子、xが0であり、かつ前記一般式(C-1)で表される構造単位と前記一般式(C-2)で表される構造単位との含有比率[(C-1)/(C-2)](モル比)が5~10である共重合樹脂を含有する、請求項2に記載の熱硬化性樹脂組成物。
  4.  前記(B)成分の含有量が、熱硬化性樹脂組成物中の樹脂成分の固形分100質量部に対して、4~20質量部であり、前記(C)成分の含有量が、熱硬化性樹脂組成物中の樹脂成分の固形分100質量部に対して、2~20質量部である、請求項1~3のいずれか1項に記載の熱硬化性樹脂組成物。
  5.  前記(a2)成分が、末端にアミノ基を有する変性シロキサンを含有する、請求項1~4のいずれか1項に記載の熱硬化性樹脂組成物。
  6.  前記(B)成分が、水添スチレン系熱可塑性エラストマーであり、該水添スチレン系熱可塑性エラストマー中のスチレン由来の構造単位の含有量が、20~60質量%である請求項1~5のいずれか1項に記載の熱硬化性樹脂組成物。
  7.  さらに、(D)硬化促進剤を含有する、請求項1~6のいずれか1項に記載の熱硬化性樹脂組成物。
  8.  さらに、(E)無機充填材を含有する、請求項1~7のいずれか1項に記載の熱硬化性樹脂組成物。
  9.  請求項1~8のいずれか1項に記載の熱硬化性樹脂組成物を繊維基材に含浸させてなるプリプレグ。
  10.  請求項9に記載のプリプレグを積層成形して得られる積層板。
  11.  請求項9に記載のプリプレグ又は請求項10に記載の積層板を用いて製造されるプリント配線板。
  12.  請求項11に記載のプリント配線板を用いて製造される高速通信対応モジュール。
     
PCT/JP2017/020043 2016-06-02 2017-05-30 熱硬化性樹脂組成物、プリプレグ、積層板、プリント配線板及び高速通信対応モジュール WO2017209108A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2018520919A JP6927206B2 (ja) 2016-06-02 2017-05-30 熱硬化性樹脂組成物、プリプレグ、積層板、プリント配線板及び高速通信対応モジュール
KR1020187034726A KR102327243B1 (ko) 2016-06-02 2017-05-30 열경화성 수지 조성물, 프리프레그, 적층판, 프린트 배선판 및 고속 통신 대응 모듈
CN201780033444.7A CN109312156B (zh) 2016-06-02 2017-05-30 热固化性树脂组合物、预浸渍体、层叠板、印刷线路板和高速通信应对模块
US16/305,930 US10876000B2 (en) 2016-06-02 2017-05-30 Thermosetting resin composition, prepreg, laminated board, printed wiring board, and high speed communication-compatible module
EP17806662.7A EP3467038B1 (en) 2016-06-02 2017-05-30 Thermosetting resin compositin, prepreg, laminated board, printed wiring board, and high-speed communication-compatible module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-110868 2016-06-02
JP2016110868 2016-06-02

Publications (1)

Publication Number Publication Date
WO2017209108A1 true WO2017209108A1 (ja) 2017-12-07

Family

ID=60477917

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/020043 WO2017209108A1 (ja) 2016-06-02 2017-05-30 熱硬化性樹脂組成物、プリプレグ、積層板、プリント配線板及び高速通信対応モジュール

Country Status (7)

Country Link
US (1) US10876000B2 (ja)
EP (1) EP3467038B1 (ja)
JP (2) JP6927206B2 (ja)
KR (1) KR102327243B1 (ja)
CN (1) CN109312156B (ja)
TW (1) TWI751169B (ja)
WO (1) WO2017209108A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019137813A (ja) * 2018-02-14 2019-08-22 日立化成株式会社 熱硬化性樹脂組成物、プリプレグ、積層板、プリント配線板及び高速通信対応モジュール
EP3467028A4 (en) * 2016-05-31 2020-03-04 Mitsubishi Gas Chemical Company, Inc. RESIN COMPOSITION, LAMINATE, SEMICONDUCTOR WAFER WITH RESIN COMPOSITION LAYER, SEMICONDUCTOR MOUNTING SUBSTRATE WITH RESIN COMPOSITION LAYER, AND SEMICONDUCTOR DEVICE
CN112105677A (zh) * 2018-04-26 2020-12-18 琳得科株式会社 树脂组合物、树脂片及层叠体
EP3805293A4 (en) * 2018-06-01 2022-03-16 Mitsubishi Gas Chemical Company, Inc. COMPOSITION OF RESIN, PREPREG, LAMINATE SHEET REINFORCED WITH METALLIC FOIL, RESIN SHEET AND PRINTED CIRCUIT BOARD
JP7409568B2 (ja) 2021-07-09 2024-01-09 東洋紡エムシー株式会社 接着剤組成物、接着シート、電磁波シールド材、積層体およびプリント配線板

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220259363A1 (en) * 2019-07-17 2022-08-18 Panasonic Intellectual Property Management Co., Ltd. Resin composition, prepreg, film with resin, metal foil with resin, metal-clad laminate, and wiring board
EP3896043A1 (en) * 2020-04-17 2021-10-20 Depco-Trh Pty Ltd High opacity laminate surface
CN115806737B (zh) * 2021-09-13 2024-05-14 中山台光电子材料有限公司 树脂组合物及其制品

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50153098A (ja) * 1974-06-03 1975-12-09
JP2014024926A (ja) * 2012-07-25 2014-02-06 Hitachi Chemical Co Ltd 熱硬化性樹脂組成物、これを用いたプリプレグ、積層板及び多層プリント配線板

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61233060A (ja) 1985-04-09 1986-10-17 Mitsubishi Gas Chem Co Inc 硬化性樹脂組成物
JP2740990B2 (ja) 1991-11-26 1998-04-15 株式会社日立製作所 低熱膨張性加圧成形用樹脂組成物
US5856425A (en) * 1997-10-10 1999-01-05 Occidental Chemical Corporation Dispensable resin paste
JP3694789B2 (ja) 2001-09-18 2005-09-14 Jsr株式会社 熱可塑性エラストマー組成物および成形品
JP5320699B2 (ja) * 2006-10-03 2013-10-23 日立化成株式会社 熱硬化性樹脂組成物並びにこれを用いたプリプレグ及び積層板
JP2011043805A (ja) * 2009-07-22 2011-03-03 Chisso Corp 新規組成物およびその製造方法
KR101927723B1 (ko) 2011-01-18 2019-03-12 히타치가세이가부시끼가이샤 변성 실리콘 화합물, 이것을 이용한 열 경화성 수지 조성물, 프리프레그, 적층판 및 인쇄 배선판
JP2012180482A (ja) * 2011-03-02 2012-09-20 Jnc Corp マレイミド系高分子を含有する組成物、およびマレイミド系高分子共重合体の製造方法
WO2014084310A1 (ja) * 2012-11-28 2014-06-05 日立化成株式会社 アミノ変性シロキサン化合物、変性イミド樹脂、熱硬化性樹脂組成物、プリプレグ、樹脂付フィルム、積層板、多層プリント配線板、及び半導体パッケージ
TWI491671B (zh) 2013-05-21 2015-07-11 Elite Material Co Ltd Low dielectric halogen-free resin compositions and circuit boards for which they are used
US9668941B2 (en) * 2013-08-13 2017-06-06 Next Paradigm Inc. Method of using an electronic pill box prefill system which uses a blister pack
JP6379675B2 (ja) * 2014-05-28 2018-08-29 日立化成株式会社 熱硬化性樹脂組成物、プリプレグ、樹脂付フィルム、積層板、多層プリント配線板及び半導体パッケージ
JP6384711B2 (ja) * 2014-06-23 2018-09-05 日立化成株式会社 絶縁性樹脂組成物及びこれを用いたプリプレグ、プリント配線板用積層板
CN105542457B (zh) * 2014-10-30 2017-12-15 台光电子材料(昆山)有限公司 一种低介电耗损树脂组成物及其制品

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50153098A (ja) * 1974-06-03 1975-12-09
JP2014024926A (ja) * 2012-07-25 2014-02-06 Hitachi Chemical Co Ltd 熱硬化性樹脂組成物、これを用いたプリプレグ、積層板及び多層プリント配線板

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3467028A4 (en) * 2016-05-31 2020-03-04 Mitsubishi Gas Chemical Company, Inc. RESIN COMPOSITION, LAMINATE, SEMICONDUCTOR WAFER WITH RESIN COMPOSITION LAYER, SEMICONDUCTOR MOUNTING SUBSTRATE WITH RESIN COMPOSITION LAYER, AND SEMICONDUCTOR DEVICE
JP2019137813A (ja) * 2018-02-14 2019-08-22 日立化成株式会社 熱硬化性樹脂組成物、プリプレグ、積層板、プリント配線板及び高速通信対応モジュール
JP7056201B2 (ja) 2018-02-14 2022-04-19 昭和電工マテリアルズ株式会社 熱硬化性樹脂組成物、プリプレグ、積層板、プリント配線板及び高速通信対応モジュール
CN112105677A (zh) * 2018-04-26 2020-12-18 琳得科株式会社 树脂组合物、树脂片及层叠体
CN112105677B (zh) * 2018-04-26 2023-03-28 琳得科株式会社 树脂组合物、树脂片及层叠体
EP3805293A4 (en) * 2018-06-01 2022-03-16 Mitsubishi Gas Chemical Company, Inc. COMPOSITION OF RESIN, PREPREG, LAMINATE SHEET REINFORCED WITH METALLIC FOIL, RESIN SHEET AND PRINTED CIRCUIT BOARD
JP7409568B2 (ja) 2021-07-09 2024-01-09 東洋紡エムシー株式会社 接着剤組成物、接着シート、電磁波シールド材、積層体およびプリント配線板

Also Published As

Publication number Publication date
EP3467038A1 (en) 2019-04-10
JPWO2017209108A1 (ja) 2019-03-28
KR20190013797A (ko) 2019-02-11
JP7151834B2 (ja) 2022-10-12
US10876000B2 (en) 2020-12-29
EP3467038B1 (en) 2023-09-06
TW201821538A (zh) 2018-06-16
CN109312156B (zh) 2022-02-22
KR102327243B1 (ko) 2021-11-16
EP3467038A4 (en) 2020-03-11
CN109312156A (zh) 2019-02-05
US20190169432A1 (en) 2019-06-06
JP6927206B2 (ja) 2021-08-25
TWI751169B (zh) 2022-01-01
JP2021183696A (ja) 2021-12-02

Similar Documents

Publication Publication Date Title
JP7151834B2 (ja) 熱硬化性樹脂組成物、プリプレグ、積層板、プリント配線板及び高速通信対応モジュール
JP6079930B2 (ja) N−置換マレイミド基を有するポリフェニレンエーテル誘導体、並びにそれを用いた熱硬化性樹脂組成物、樹脂ワニス、プリプレグ、金属張積層板、及び多層プリント配線板
KR102466877B1 (ko) 열경화성 수지 조성물, 프리프레그, 적층판 및 다층 프린트 배선판
JP5614048B2 (ja) 熱硬化性絶縁樹脂組成物、並びにこれを用いたプリプレグ、積層板及び多層プリント配線板
JP6606882B2 (ja) 熱硬化性樹脂組成物、プリプレグ、積層板及び多層プリント配線板
JP7100799B2 (ja) 熱硬化性樹脂組成物、プリプレグ、積層板、プリント配線板及び高速通信対応モジュール
JP6519128B2 (ja) 熱硬化性樹脂組成物及びその製造方法、並びにこれを用いたプリプレグ、積層板及びプリント配線板
JP5895342B2 (ja) 熱硬化性樹脂組成物及びこれを用いたプリプレグ、積層板並びにプリント配線板
JP7106819B2 (ja) 樹脂ワニス、樹脂組成物、プリプレグ、積層板、多層プリント配線板及び樹脂ワニスの保存方法
JP7081127B2 (ja) 熱硬化性樹脂組成物、プリプレグ、積層板、プリント配線板及び高速通信対応モジュール
JP5914988B2 (ja) 熱硬化性樹脂組成物を用いたプリプレグ、積層板、及びプリント配線板
JP2019099710A (ja) 熱硬化性樹脂組成物、プリプレグ、積層板、プリント配線板及び高速通信対応モジュール
WO2018181516A1 (ja) コアレス基板用プリプレグ、コアレス基板、コアレス基板の製造方法及び半導体パッケージ
JP6848215B2 (ja) 熱硬化性樹脂組成物、プリプレグ、積層板及びプリント配線板
JP2012236920A (ja) 熱硬化性樹脂組成物、これを用いたプリプレグ、積層板及びプリント配線板
JP7176186B2 (ja) 熱硬化性樹脂組成物、プリプレグ、積層板、プリント配線板及び高速通信対応モジュール
JP6152246B2 (ja) プリント配線板用プリプレグ、積層板及びプリント配線板
JP7371628B2 (ja) 銅箔の処理方法、銅箔、積層体、銅張積層板、プリント配線板及び高速通信対応モジュール
JP2019011415A (ja) 熱硬化性樹脂組成物、プリプレグ、積層板、プリント配線板及び高速通信対応モジュール
JP7274114B2 (ja) 熱硬化性樹脂組成物、プリプレグ、積層板、プリント配線板及び高速通信対応モジュール
JP2020200406A (ja) 熱硬化性樹脂組成物、プリプレグ、積層板、プリント配線板及び高速通信対応モジュール
JP2021031504A (ja) 熱硬化性樹脂組成物、プリプレグ、積層板、プリント配線板及び高速通信対応モジュール
JP2019137813A (ja) 熱硬化性樹脂組成物、プリプレグ、積層板、プリント配線板及び高速通信対応モジュール
JP2015063613A (ja) プリプレグ及び、それを用いた積層板、プリント配線板

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018520919

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17806662

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187034726

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017806662

Country of ref document: EP

Effective date: 20190102