WO2017209060A1 - フレキシブル金属張積層板の製造方法 - Google Patents

フレキシブル金属張積層板の製造方法 Download PDF

Info

Publication number
WO2017209060A1
WO2017209060A1 PCT/JP2017/019937 JP2017019937W WO2017209060A1 WO 2017209060 A1 WO2017209060 A1 WO 2017209060A1 JP 2017019937 W JP2017019937 W JP 2017019937W WO 2017209060 A1 WO2017209060 A1 WO 2017209060A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoplastic polyimide
laminate
clad laminate
metal
flexible metal
Prior art date
Application number
PCT/JP2017/019937
Other languages
English (en)
French (fr)
Inventor
孝之 間山
鈴木 直樹
卓 三輪
秀一 藤田
中村 健二
Original Assignee
株式会社有沢製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社有沢製作所 filed Critical 株式会社有沢製作所
Priority to JP2018520900A priority Critical patent/JP6917987B2/ja
Priority to US16/305,891 priority patent/US10751977B2/en
Priority to CN201780033211.7A priority patent/CN109219513B/zh
Priority to KR1020187037044A priority patent/KR102268762B1/ko
Publication of WO2017209060A1 publication Critical patent/WO2017209060A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/088Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • B29C65/4805Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding characterised by the type of adhesives
    • B29C65/481Non-reactive adhesives, e.g. physically hardening adhesives
    • B29C65/4815Hot melt adhesives, e.g. thermoplastic adhesives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/001Joining in special atmospheres
    • B29C66/0012Joining in special atmospheres characterised by the type of environment
    • B29C66/0014Gaseous environments
    • B29C66/00141Protective gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/45Joining of substantially the whole surface of the articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/731General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the intensive physical properties of the material of the parts to be joined
    • B29C66/7311Thermal properties
    • B29C66/73117Tg, i.e. glass transition temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/74Joining plastics material to non-plastics material
    • B29C66/742Joining plastics material to non-plastics material to metals or their alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/919Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
    • B29C66/9192Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams
    • B29C66/91921Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature
    • B29C66/91941Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature in explicit relation to Tg, i.e. the glass transition temperature, of the material of one of the parts to be joined
    • B29C66/91943Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature in explicit relation to Tg, i.e. the glass transition temperature, of the material of one of the parts to be joined higher than said glass transition temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/919Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
    • B29C66/9192Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams
    • B29C66/91921Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature
    • B29C66/91941Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature in explicit relation to Tg, i.e. the glass transition temperature, of the material of one of the parts to be joined
    • B29C66/91945Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature in explicit relation to Tg, i.e. the glass transition temperature, of the material of one of the parts to be joined lower than said glass transition temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/92Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools
    • B29C66/929Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools characterized by specific pressure, force, mechanical power or displacement values or ranges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a non-planar shape
    • B32B1/08Tubular products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/18Layered products comprising a layer of metal comprising iron or steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/16Layered products comprising a layer of synthetic resin specially treated, e.g. irradiated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/281Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/12Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/12Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
    • B32B37/1207Heat-activated adhesive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/0036Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/022Processes for manufacturing precursors of printed circuits, i.e. copper-clad substrates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/386Improvement of the adhesion between the insulating substrate and the metal by the use of an organic polymeric bonding layer, e.g. adhesive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/74Joining plastics material to non-plastics material
    • B29C66/742Joining plastics material to non-plastics material to metals or their alloys
    • B29C66/7422Aluminium or alloys of aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/74Joining plastics material to non-plastics material
    • B29C66/742Joining plastics material to non-plastics material to metals or their alloys
    • B29C66/7428Transition metals or their alloys
    • B29C66/74281Copper or alloys of copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/74Joining plastics material to non-plastics material
    • B29C66/742Joining plastics material to non-plastics material to metals or their alloys
    • B29C66/7428Transition metals or their alloys
    • B29C66/74285Noble metals, e.g. silver, gold, platinum or their alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/94Measuring or controlling the joining process by measuring or controlling the time
    • B29C66/949Measuring or controlling the joining process by measuring or controlling the time characterised by specific time values or ranges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/34Electrical apparatus, e.g. sparking plugs or parts thereof
    • B29L2031/3425Printed circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/12Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
    • B32B37/1207Heat-activated adhesive
    • B32B2037/1215Hot-melt adhesive
    • B32B2037/1223Hot-melt adhesive film-shaped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/022 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/033 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/055 or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/40Symmetrical or sandwich layers, e.g. ABA, ABCBA, ABCCBA
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/06Coating on the layer surface on metal layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/10Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • B32B2255/205Metallic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2266/00Composition of foam
    • B32B2266/04Inorganic
    • B32B2266/045Metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/308Heat stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • B32B2307/734Dimensional stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2309/00Parameters for the laminating or treatment process; Apparatus details
    • B32B2309/02Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2309/00Parameters for the laminating or treatment process; Apparatus details
    • B32B2309/04Time
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2309/00Parameters for the laminating or treatment process; Apparatus details
    • B32B2309/12Pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2309/00Parameters for the laminating or treatment process; Apparatus details
    • B32B2309/60In a particular environment
    • B32B2309/62Inert
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2309/00Parameters for the laminating or treatment process; Apparatus details
    • B32B2309/60In a particular environment
    • B32B2309/68Vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2311/00Metals, their alloys or their compounds
    • B32B2311/12Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2377/00Polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2379/00Other polymers having nitrogen, with or without oxygen or carbon only, in the main chain
    • B32B2379/08Polyimides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0104Properties and characteristics in general
    • H05K2201/0129Thermoplastic polymer, e.g. auto-adhesive layer; Shaping of thermoplastic polymer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0154Polyimide

Definitions

  • the present invention relates to a method for producing a flexible metal-clad laminate.
  • resin layers such as polyimide films and polyamide films having electrical insulation properties
  • adhesive layers mainly composed of epoxy resins or polyimide resins, conductive copper foils, silver foils, aluminum foils and other metals
  • Flexible printed wiring board (FPC) materials such as coverlays and flexible metal-clad laminates, which are appropriately combined with foil layers, are used.
  • flexible metal-clad laminates mainly two-layer flexible metal-clad laminates comprising a metal layer and a polyimide resin layer and three-layer flexible metal laminates comprising a metal layer, a polyimide resin layer and an adhesive layer are known. ing.
  • the wiring provided on the board has been miniaturized, and components to be mounted are mounted with miniaturized and high-density components. It has become. Therefore, if a large dimensional change occurs after the formation of fine wiring, the mounting position of the component may deviate from that at the design stage, resulting in a problem that the component and the board cannot be connected well.
  • the lamination pressure, the tension of the adhesive film, and the like have been controlled. However, although the dimensional change is improved to some extent by these means, it is still not sufficient, and further suppression of the dimensional change has been demanded.
  • Patent Document 1 discloses that a laminate in which a protective material and a flexible metal-clad laminate are in close contact after lamination is conveyed in a state in which a specific tension is applied in the MD direction. It is disclosed that dimensional changes can be suppressed.
  • Patent Document 2 discloses that by adjusting the amount of heat of the endothermic peak observed in the glass transition region to a specific range, it is possible to reduce the dimensional change rate and the variation due to thermal shrinkage of the flexible metal foil laminate. It is described that such a laminate can be obtained by heat treatment at a temperature 5 to 50 ° C. lower than the glass transition point Tg of the resin for 8 hours or more.
  • the flexible metal-clad laminate of Patent Document 1 although the dimensional change in a specific region is suppressed, the dimensional change rate varies, and the dimensional change is uniformly suppressed over the entire laminate. That's not true.
  • the flexible printed metal foil laminated body of patent document 2 needs the heat processing for a long time of 8 hours or more, and is inferior to productivity. Also, if the heat treatment is performed at a higher temperature in order to shorten the heat treatment time, the air contained in the laminate expands, causing a problem that the surface is swollen and inferior in appearance.
  • the present invention provides a flexible metal-clad laminate capable of efficiently producing a flexible metal-clad laminate in which dimensional changes are uniformly suppressed over the entire laminate and the surface is not swollen.
  • An object is to provide a manufacturing method.
  • the present inventors bonded a polyimide resin film provided with an adhesive layer containing a thermoplastic polyimide on at least one surface of a non-thermoplastic polyimide layer, and a metal foil. Then, the obtained laminate is heat-treated at a temperature of Tg ⁇ 20 ° C. to Tg + 50 ° C. of the thermoplastic polyimide under an inert gas atmosphere and a pressure of 0.20 to 0.98 MPa.
  • the present invention has been completed.
  • the present invention is as follows.
  • a method for producing a flexible metal-clad laminate (A) A non-thermoplastic polyimide layer and an adhesive layer containing a thermoplastic polyimide, a polyimide resin film provided with the adhesive layer on at least one surface of the non-thermoplastic polyimide layer, and a metal foil A step of obtaining a laminate by combining, (B) The laminate obtained in the step (a) is heat-treated at a temperature of Tg ⁇ 20 ° C. to Tg + 50 ° C. of the thermoplastic polyimide in an inert gas atmosphere and a pressure of 0.20 to 0.98 Mpa. And a process of Manufacturing method.
  • the manufacturing method of the present invention it is possible to efficiently produce a flexible metal-clad laminate in which the dimensional change is uniformly suppressed over the entire laminate and the surface is not swollen.
  • the present embodiment a mode for carrying out the present invention (hereinafter referred to as “the present embodiment”) will be described in detail.
  • this invention is not limited to the following embodiment, It can implement by changing variously within the range of the summary.
  • the manufacturing method of the flexible metal-clad laminate in this embodiment is A method for producing a flexible metal-clad laminate, (A) A non-thermoplastic polyimide layer and an adhesive layer containing a thermoplastic polyimide, a polyimide resin film provided with the adhesive layer on at least one surface of the non-thermoplastic polyimide layer, and a metal foil A step of obtaining a laminate by combining, (B) The laminate obtained in the step (a) is heat-treated at a temperature of Tg ⁇ 20 ° C. to Tg + 50 ° C. of the thermoplastic polyimide in an inert gas atmosphere and a pressure of 0.20 to 0.98 Mpa. And a process of including.
  • the step (a) and the step (b) are also referred to as a “lamination step” and a “heat treatment step”, respectively.
  • Step (a) The step (a) in the production method of the present embodiment comprises a non-thermoplastic polyimide layer and an adhesive layer containing a thermoplastic polyimide, and the polyimide having the adhesive layer provided on at least one surface of the non-thermoplastic polyimide layer. This is a step of obtaining a laminate by bonding a resin film and a metal foil.
  • the non-thermoplastic polyimide used for the non-thermoplastic polyimide layer is obtained, for example, by copolymerizing acid dianhydride and diamine.
  • acid dianhydride and diamine any of an aliphatic compound, an alicyclic compound, and an aromatic compound can be used.
  • the acid dianhydride is an aromatic tetracarboxylic dianhydride.
  • the diamine is preferably an aromatic diamine.
  • Examples of the acid dianhydride constituting the non-thermoplastic polyimide include pyromellitic dianhydride, 2,3,6,7-naphthalenetetracarboxylic dianhydride, 3,3 ′, 4,4′-biphenyl.
  • Tetracarboxylic dianhydride 1,2,5,6-naphthalenetetracarboxylic dianhydride, 2,2 ′, 3,3′-biphenyltetracarboxylic dianhydride, 3,3 ′, 4,4 ′ -Benzophenone tetracarboxylic dianhydride, 4,4'-oxydiphthalic dianhydride, 2,2-bis (3,4-dicarboxyphenyl) propane dianhydride, 3,4,9,10-perylenetetracarboxylic Acid dianhydride, bis (3,4-dicarboxyphenyl) propane dianhydride, 1,1-bis (2,3-dicarboxyphenyl) ethane dianhydride, 1,1-bis (3,4-di Carboxyphenyl Ethane dianhydride, bis (2,3-dicarboxyphenyl) methane dianhydride, bis (3,4-dicarboxyphenyl) ethane dianhydride, bis
  • diamine constituting the non-thermoplastic polyimide examples include 4,4′-diaminodiphenylpropane, 4,4′-diaminodiphenylmethane, benzidine, 3,3′-dichlorobenzidine, 3,3′-dimethylbenzidine, 2, 2'-dimethylbenzidine, 3,3'-dimethoxybenzidine, 2,2'-dimethoxybenzidine, 4,4'-diaminodiphenyl sulfide, 3,3'-diaminodiphenylsulfone, 4,4'-diaminodiphenylsulfone, 4 , 4′-oxydianiline, 3,3′-oxydianiline, 3,4′-oxydianiline, 1,5-diaminonaphthalene, 2,6-diaminonaphthalene, 4,4′-diaminodiphenyldiethylsilane, 4,4'-diaminodiphenylsilane,
  • the glass transition temperature (Tg) of the non-thermoplastic polyimide is not particularly limited because it depends on the use of the flexible metal-clad laminate, but is preferably 290 ° C or higher, more preferably 320 ° C or higher, and further preferably 340. It is above °C. When the Tg of the non-thermoplastic polyimide is 290 ° C. or higher, the heat resistance tends to be good.
  • the glass transition temperature (Tg) can be obtained from the value of the inflection point of the storage elastic modulus measured by a dynamic viscoelasticity measuring device (DMA). It can be measured according to the example method.
  • DMA dynamic viscoelasticity measuring device
  • the adhesive layer in this embodiment is a layer that is provided on at least one surface of the non-thermoplastic polyimide layer and contains thermoplastic polyimide.
  • the thermoplastic polyimide used for the adhesive layer include thermoplastic polyimide, thermoplastic polyamideimide, thermoplastic polyetherimide, and thermoplastic polyesterimide.
  • thermoplastic polyesterimide is preferable from the viewpoint of low moisture absorption characteristics.
  • a thermoplastic polyimide is obtained by copolymerizing acid dianhydride and diamine, for example.
  • thermoplastic polyimide examples include pyromellitic dianhydride, 2,3,6,7-naphthalenetetracarboxylic dianhydride, 3,3 ′, 4,4′-biphenyltetra.
  • diamine constituting the thermoplastic polyimide examples include 4,4′-diaminodiphenylpropane, 4,4′-diaminodiphenylmethane, benzidine, 3,3′-dichlorobenzidine, 3,3′-dimethylbenzidine, 2,2 '-Dimethylbenzidine, 3,3'-dimethoxybenzidine, 2,2'-dimethoxybenzidine, 4,4'-diaminodiphenyl sulfide, 3,3'-diaminodiphenylsulfone, 4,4'-diaminodiphenylsulfone, 4, 4'-oxydianiline, 3,3'-oxydianiline, 3,4'-oxydianiline, 1,5-diaminonaphthalene, 2,6-diaminonaphthalene, 4,4'-diaminodiphenyldiethylsilane, 4 , 4'-Diaminodiphenylsilane, 4,4'-Dia
  • 2,2-bis [4- (4-aminophenoxy) phenyl] propane is preferable from the viewpoint of adhesiveness and availability.
  • the Tg of the thermoplastic polyimide is not particularly limited because it depends on the use of the flexible metal-clad laminate, but is preferably 240 to 290 ° C, more preferably 260 to 290 ° C, and further preferably 280 to 290 ° C. is there.
  • the Tg of the thermoplastic polyimide is 240 ° C. or higher, the heat resistance tends to be good, and when it is 290 ° C. or lower, the bonding with the metal foil tends to be easy.
  • the thickness of the polyimide resin film comprising the non-thermoplastic polyimide layer and the adhesive layer containing the thermoplastic polyimide is not particularly limited because it depends on the use of the flexible metal-clad laminate, but is preferably 12.5 to 50 ⁇ m. More preferably, it is 12.5 to 25 ⁇ m. When the thickness of the polyimide resin film is less than 12.5 ⁇ m, the insulating properties tend to be inferior, and mechanical properties such as tearing and tearing tend to be lowered. On the other hand, when the thickness of the polyimide resin film exceeds 50 ⁇ m, foaming tends to occur during heat treatment, and flexibility tends to be impaired.
  • polyimide resin film Commercially available products may be used as the polyimide resin film.
  • the product names “Pixio FRS” series, “Pixio FC” series manufactured by Kaneka Corporation, and the product name “UPILEX NVT” series manufactured by Ube Industries, Ltd. are suitable. As mentioned.
  • the metal foil in the present embodiment is not particularly limited, and examples thereof include electrolytic copper foil, rolled copper foil, aluminum foil, stainless steel foil, etc. Among them, from the viewpoint of conductivity and circuit workability, electrolytic copper foil, rolled Copper foil is preferred.
  • the thickness of the metal foil is not particularly limited because it depends on the use of the flexible metal-clad laminate, but is preferably 1 to 35 ⁇ m, more preferably 9 to 18 ⁇ m. If the thickness of the metal foil is less than 1 ⁇ m, it tends to cause circuit loss due to pinholes or tears when the circuit board is produced. If the thickness exceeds 35 ⁇ m, the bonding temperature with the polyimide resin film is high. Productivity tends to decrease. Further, the surface of the metal foil may be subjected to an inorganic surface treatment such as galvanization or chrome plating, or an organic surface treatment using a silane coupling agent or the like.
  • metal foil a commercially available product may be used.
  • a product name “rolled copper foil BHY” manufactured by JX Metals Co., Ltd., a product name “rolled copper foil ROFL” manufactured by Fukuda Metals Co., Ltd., and the like are preferable.
  • a metal foil is bonded to one side or both sides of the non-thermoplastic polyimide layer through an adhesive layer containing thermoplastic polyimide.
  • the bonding procedure include: (i) a method in which an adhesive layer is formed on at least one surface of a non-thermoplastic polyimide layer to obtain a polyimide resin film, and then bonded to a metal foil; (ii) the adhesive layer is formed into a sheet form And after bonding this to the non-thermoplastic polyimide layer to obtain a polyimide resin film, (iii) forming the adhesive layer into a sheet, and then bonding the metal foil to the non-thermoplastic polyimide layer For example, there is a method of sandwiching them together.
  • the polyimide resin film is imidized by, for example, applying a polyamic acid solution, which is a precursor of thermoplastic polyimide, to at least one surface of the non-thermoplastic polyimide layer, heating and drying. Can be obtained.
  • a polyamic acid solution which is a precursor of thermoplastic polyimide
  • the non-thermoplastic polyimide layer may be subjected to various surface treatments such as corona treatment, plasma treatment, and coupling treatment before providing the adhesive layer.
  • the non-thermoplastic polyimide layer and the adhesive layer may contain one or more other components such as organic or inorganic fillers.
  • a press, a laminate, or the like can be used as a method of laminating the polyimide resin film and the metal foil. From the viewpoint of rollability and productivity, it is preferable to use a laminate.
  • Lamination can be performed by, for example, a hot roll laminating apparatus having a pair of metal rolls or a double belt press (DBP). Among them, the hot roll laminating apparatus is simple in configuration and advantageous in terms of maintenance cost. Has the advantage.
  • the “heat roll laminating apparatus having a pair of metal rolls” herein may be an apparatus having a metal roll for heating and pressing a material, and the specific apparatus configuration is not particularly limited.
  • a feeding device for feeding the material to be laminated may be provided before the lamination step, and a winding device for winding the material to be laminated may be provided after the lamination step.
  • a winding device for winding the material to be laminated may be provided after the lamination step.
  • the lamination temperature is preferably a temperature of Tg + 50 ° C. or higher of the thermoplastic polyimide resin, and more preferably Tg + 70 ° C. or higher.
  • Tg + 50 ° C. or higher the adhesion between the polyimide resin film and the metal foil tends to be good.
  • Tg + 70 ° C. or higher the laminating speed is increased to improve the productivity. There is a tendency to be able to.
  • the upper limit of the lamination temperature is not particularly limited, but if it is too high, the resin may be decomposed.
  • the laminating speed in laminating is preferably 0.5 m / min or more, and more preferably 1.0 m / min or more. When it is 0.5 m / min or more, the adhesiveness tends to be good, and when it is 1.0 m / min or more, the productivity tends to be further improved.
  • the laminating pressure is preferably in the range of 500 kg / m to 5000 kg / m, and more preferably in the range of 1000 kg / m to 3000 kg / m.
  • the lamination pressure means a pressure applied to the material by the metal roll.
  • the polyimide resin film tension during lamination is preferably from 0.1 to 20 kg / m, more preferably from 0.2 to 15 kg / m, and even more preferably from 0.5 to 10 kg / m. If the tension is less than 0.1 kg / m, it tends to be difficult to obtain a flexible metal-clad laminate with good appearance, and if it exceeds 20 kg / m, the dimensional stability tends to be inferior.
  • the polyimide resin film tension is a tension applied to the polyimide resin film before lamination.
  • Step (b) In the step (b) in the present embodiment, the laminate obtained in the step (a) is subjected to Tg-20 of the thermoplastic polyimide in an inert gas atmosphere and a pressure of 0.20 to 0.98 MPa. This is a step of heat treatment at a temperature of from 0 ° C. to Tg + 50 ° C.
  • the heat treatment in the step (b) is performed under an inert gas atmosphere and a pressure of 0.20 to 0.98 MPa.
  • an inert gas atmosphere such as nitrogen gas
  • heat-treat a copper-clad laminate in which a copper foil and a resin as a base material are laminated in an inert gas atmosphere such as nitrogen gas, but at a temperature higher than the vicinity of the Tg of the resin.
  • an inert gas atmosphere such as nitrogen gas
  • the present inventors provided an adhesive layer containing a thermoplastic polyimide between the metal foil and the base resin, and the obtained laminate was subjected to an inert gas atmosphere and a pressure of 0.20 to 0.98 MPa. It has been found that the heat treatment enables the heat treatment to be performed at a higher temperature than before, and the productivity of the flexible metal-clad laminate having excellent quality can be remarkably improved.
  • the heat treatment step in this embodiment is performed in an inert gas atmosphere.
  • the inert gas is not particularly limited, and examples thereof include nitrogen gas and argon gas. Among them, nitrogen gas is preferable from the viewpoint of availability and economy.
  • the pressure in the heat treatment step is 0.20 to 0.98 MPa, preferably 0.50 to 0.98 MPa, more preferably 0.70 to 0.98 MPa, and further preferably 0.90 to 0.8. 98 MPa. If the pressure in the heat treatment step is less than 0.20 MPa, the surface of the laminate is swollen when the heat treatment is performed at a high temperature. On the other hand, if the pressure exceeds 0.98 MPa, the equipment structure becomes complicated. Arise. The pressure in the heat treatment step can be measured with a general pressure gauge.
  • the heat treatment temperature in the heat treatment step is Tg-20 ° C to Tg + 50 ° C of the thermoplastic polyimide, preferably Tg-20 ° C to Tg + 30 ° C, more preferably Tg-10 ° C to Tg + 30 ° C.
  • Tg ⁇ 20 ° C. the productivity of the flexible metal-clad laminate is deteriorated, and when it exceeds Tg + 50 ° C., the risk of occurrence of blistering and resin decomposition increases.
  • the heat treatment time in the heat treatment step is not particularly limited because it depends on the type of thermoplastic polyimide and the use of the flexible metal-clad laminate, but is usually 60 to 420 minutes, preferably 90 to 300 minutes, more preferably 120 to 240. Minutes.
  • the heat treatment time is 60 minutes or more, dimensional change tends to be suppressed uniformly over the entire flexible metal laminate, and when it is 420 minutes or less, the productivity of the flexible metal laminate tends to be improved. .
  • the laminate subjected to the heat treatment may be a roll-like laminate after being wound by a winding device or a flat sheet-like laminate after the roll is unwound, From the viewpoint, it is preferable to heat-treat the roll-shaped laminate.
  • the heat treatment step is particularly preferably performed in an autoclave.
  • an autoclave By using an autoclave, it becomes easy to perform heat treatment under an inert gas atmosphere and a pressure of 0.20 to 0.98 MPa, and the productivity of the flexible metal-clad laminate tends to be further improved. .
  • the flexible metal laminate obtained by the production method of the present invention is one in which the dimensional change is uniformly suppressed over the entire laminate, but this effect can be achieved by considering the linear expansion coefficient of each material. Becomes even more prominent.
  • the linear expansion coefficient of non-thermoplastic polyimide is usually equal to or less than that of metal foil, and the linear expansion coefficient of thermoplastic polyimide is larger than that of metal foil. Therefore, by making a polyimide resin film in combination with a thermoplastic polyimide having a particularly large linear expansion coefficient and a non-thermoplastic polyimide having a small linear expansion coefficient, the difference between the linear expansion coefficient of the metal foil to be bonded to this is reduced, As a result, the variation in dimensional change tends to be further reduced.
  • the linear expansion coefficient of the thermoplastic polyimide is preferably 20 to 100 ppm, more preferably 30 to 70 ppm, and further preferably 40 to 60 ppm. Further, the linear expansion coefficient of the non-thermoplastic polyimide is preferably 20 ppm or less, more preferably 18 ppm or less, and further preferably 16 ppm or less.
  • the linear expansion coefficient can be measured by TMA (for example, trade name “TMA-60” manufactured by Shimadzu Corporation), and the temperature rise rate is 10 ° C./min. Obtained from the measured values obtained in
  • an adhesive layer containing thermoplastic polyimide is provided on at least one surface of the non-thermoplastic polyimide layer.
  • the resulting flexible metal-clad laminate is a single-sided metal-clad laminate having a three-layer structure of non-thermoplastic polyimide layer-adhesive layer-metal foil.
  • a double-sided metal-clad laminate having a three-layer (five-layer) structure of metal foil-adhesive layer-non-thermoplastic polyimide layer-adhesive layer-metal foil .
  • a laminate having a four-layer structure of adhesive layer-non-thermoplastic polyimide layer-adhesive layer-metal foil is also included in the single-sided metal-clad laminate.
  • the etched surface obtained by etching the metal layer of the flexible metal-clad laminate in this embodiment into a predetermined shape can be covered with a cover lay for covering a metal foil circuit to obtain a flexible printed wiring board.
  • the coverlay is not particularly limited as long as it covers the metal foil circuit, and a coverlay obtained by applying an adhesive to a film such as polyimide, a liquid resist, a dry film resist, or the like can be used.
  • the flexible printed wiring board is preferably used as a so-called chip-on flexible printed wiring board for mounting an IC chip, for example.
  • Tg Glass transition temperature
  • [Dimensional change rate] Measured according to 9.6 of JIS C 6471. Specifically, it measured as follows. Two samples in the width direction were cut out from the width of the flexible metal-clad laminate 500 mm, and the lengths of MD-L1, L2, L3 and L4 were measured as shown in FIG. 1 (initial length). After etching the copper foil, it was allowed to stand for 12 hours or more in a standard state, and then the lengths of MD-L1, L2, L3, and L4 were measured again (length after etching). The dimensional change rates of MD-L1, L2, L3, and L4 were calculated according to the following formula.
  • Dimensional change rate (%) (Length after etching ⁇ Initial length) / Initial length ⁇ 100
  • the difference between the maximum value and the minimum value of the dimensional change rate of MD-L1, L2, L3, and L4 is obtained, and when the difference is within 0.05%, it is evaluated as “ ⁇ ”, The case where it exceeded was evaluated as "x”.
  • Example 1 The polyimide resin film A having an adhesive layer on both sides and a copper foil were bonded together by a thermal laminator having a pair of metal rolls (trade name “high temperature laminator for flexible printed circuit board” manufactured by Yuri Roll). The obtained laminate was placed in an autoclave in a nitrogen gas atmosphere and heat-treated at a temperature of 270 ° C. and a pressure of 0.9 MPa for 120 minutes to obtain a double-sided flexible copper-clad laminate having a five-layer structure. The resulting flexible copper clad laminate was used to evaluate the dimensional change rate and appearance, and the results are shown in Table 1.
  • Example 2 to 6 and Comparative Examples 1 to 5 A flexible copper clad laminate was obtained by the same method as in Example 1 except that the heat treatment temperature and pressure were changed, and the dimensional change rate and appearance were evaluated. The results are shown in Table 1.
  • Example 7 to 10 Comparative Examples 6 to 8
  • a polyimide resin film B was used instead of the polyimide resin film A, and a double-sided flexible copper-clad laminate was obtained by the same method as in Example 1 except that the heat treatment temperature and pressure were changed, and the dimensional change rate and appearance were evaluated. went. The results are shown in Table 2.
  • the metal-clad laminate obtained by the production method of the present invention has industrial applicability as a member used for a flexible printed wiring board.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Manufacturing & Machinery (AREA)
  • Laminated Bodies (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

フレキシブル金属張積層板の製造方法であって、 (a)非熱可塑性ポリイミド層と、熱可塑性ポリイミドを含有する接着層とからなり、前記非熱可塑性ポリイミド層の少なくとも片面に前記接着層が設けられたポリイミド樹脂フィルムと、金属箔と、を貼り合わせることにより積層体を得る工程と、 (b)前記工程(a)で得られた積層体を、不活性ガス雰囲気、且つ、0.20~0.98Mpaの圧力下、前記熱可塑性ポリイミドのTg-20℃~Tg+50℃の温度で熱処理する工程と、 を含む、製造方法。

Description

フレキシブル金属張積層板の製造方法
 本発明は、フレキシブル金属張積層板の製造方法に関する。
 従来、電子材料分野では、電気絶縁性を有するポリイミドフィルムやポリアミドフィルムなどの樹脂層、エポキシ樹脂又はポリイミド樹脂を主成分とする接着剤層、導電性を有する銅箔、銀箔、アルミ箔などの金属箔層、などを適宜組み合わせた、カバーレイやフレキシブル金属張積層板などのフレキシブルプリント配線板(FPC)用材料が用いられている。フレキシブル金属張積層板としては、主に、金属層とポリイミド樹脂層とからなる2層フレキシブル金属張積層板と、金属層とポリイミド樹脂層と接着層とからなる3層フレキシブル金属積層板が知られている。
 近年、電子機器の更なる小型化や軽量化を達成するために、基板に設けられる配線の微細化が進んでおり、実装する部品も小型化、高密度化されたものが搭載されるようになっている。そのため、微細な配線を形成した後に大きな寸法変化が生じると、部品の搭載位置が設計段階のものからずれて、部品と基板とが良好に接続されなくなるという問題が起こり得る。これまで、寸法変化を抑える試みとして、ラミネート圧力を制御したり、接着フィルムの張力を制御すること等が行われている。しかしながら、これらの手段により寸法変化はある程度改善されるものの、未だ充分ではなく、更なる寸法変化の抑制が求められていた。
 上記問題点を解決する手段として、特許文献1には、ラミネート後に保護材料とフレキシブル金属張積層板が密着している積層体を、MD方向に特定の張力をかけた状態で搬送することで、寸法変化を抑制できることが開示されている。
 また、特許文献2には、ガラス転移領域で観察される吸熱ピークの熱量を特定の範囲に調節することにより、フレキシブル金属箔積層体の熱収縮による寸法変化率およびそのバラツキを小さくできることが開示されており、そのような積層体は、樹脂のガラス転移点Tgよりも5~50℃低い温度で8時間以上熱処理することにより得られることが記載されている。
特開2015-51636号公報 特開2005-119178号公報
 しかしながら、特許文献1のフレキシブル金属張積層板は、ある特定の領域での寸法変化は抑制されるものの、寸法変化率にバラツキがあり、積層板全体に亘って寸法変化が均一に抑制されているとはいえない。
 また、特許文献2のフレキシブルプリント金属箔積層体は、8時間以上という長時間の熱処理が必要であり、生産性に劣る。また、仮に、熱処理の時間を短くするために、より高温で熱処理を行った場合、積層体中に含まれる空気が膨張することにより表面に膨れが発生し、外観に劣るという問題が生じる。
 上記事情に鑑み、本発明は、積層体全体に亘って寸法変化が均一に抑制され、且つ、表面に膨れのないフレキシブル金属張積層板を効率良く生産することのできる、フレキシブル金属張積層板の製造方法を提供することを目的とする。
 本発明者らは、上記課題を解決するために鋭意検討した結果、非熱可塑性ポリイミド層の少なくとも片面に熱可塑性ポリイミドを含有する接着層を設けたポリイミド樹脂フィルムと、金属箔と、を貼り合わせた後、得られた積層体を、不活性ガス雰囲気、且つ、0.20~0.98MPaの圧力下、前記熱可塑性ポリイミドのTg-20℃~Tg+50℃の温度で熱処理することにより、上記課題を解決できることを見出し、本発明を完成させた。
 即ち、本発明は以下のとおりである。
[1]
 フレキシブル金属張積層板の製造方法であって、
 (a)非熱可塑性ポリイミド層と、熱可塑性ポリイミドを含有する接着層とからなり、前記非熱可塑性ポリイミド層の少なくとも片面に前記接着層が設けられたポリイミド樹脂フィルムと、金属箔と、を貼り合わせることにより積層体を得る工程と、
 (b)前記工程(a)で得られた積層体を、不活性ガス雰囲気、且つ、0.20~0.98Mpaの圧力下、前記熱可塑性ポリイミドのTg-20℃~Tg+50℃の温度で熱処理する工程と、
を含む、製造方法。
[2]
 前記工程(a)において、ポリイミド樹脂フィルムと金属箔とをラミネートにより貼り合わせる、上記[1]記載の製造方法。
[3]
 前記工程(b)において、前記熱可塑性ポリイミドのTg-10℃~Tg+30℃の温度で熱処理する、上記[1]又は[2]記載の製造方法。
[4]
 前記工程(b)における熱処理時間が60~420分である、上記[1]~[3]のいずれか記載の製造方法。
[5]
 前記工程(b)において積層体がロール状である、上記[1]~[4]のいずれか記載の製造方法。
[6]
 前記工程(b)をオートクレーブ内で行う、上記[1]~[5]のいずれか記載の製造方法。
[7]
 前記熱可塑性ポリイミドのTgが240~290℃である、上記[1]~[6]のいずれか記載の製造方法。
[8]
 前記フレキシブル金属張積層板が片面金属張積層板である、上記[1]~[7]のいずれか記載の製造方法。
[9]
 前記フレキシブル金属張積層板が両面金属張積層板である、上記[1]~[7]のいずれか記載の製造方法。
 本発明の製造方法によれば、積層体全体に亘って寸法変化が均一に抑制され、且つ、表面に膨れのないフレキシブル金属張積層板を、短時間で効率良く生産することができる。
寸法変化率の測定に用いたサンプルの模式図を示す。
 以下、本発明を実施するための形態(以下、「本実施形態」という。)について詳細に記載する。なお、本発明は以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。
 本実施形態におけるフレキシブル金属張積層板の製造方法は、
 フレキシブル金属張積層板の製造方法であって、
 (a)非熱可塑性ポリイミド層と、熱可塑性ポリイミドを含有する接着層とからなり、前記非熱可塑性ポリイミド層の少なくとも片面に前記接着層が設けられたポリイミド樹脂フィルムと、金属箔と、を貼り合わせることにより積層体を得る工程と、
 (b)前記工程(a)で得られた積層体を、不活性ガス雰囲気、且つ、0.20~0.98Mpaの圧力下、前記熱可塑性ポリイミドのTg-20℃~Tg+50℃の温度で熱処理する工程と、
を含む。
 以下、上記工程(a)及び工程(b)を、それぞれ「積層工程」及び「熱処理工程」ともいう。
[工程(a)]
 本実施形態の製造方法における工程(a)は、非熱可塑性ポリイミド層と、熱可塑性ポリイミドを含有する接着層とからなり、前記非熱可塑性ポリイミド層の少なくとも片面に前記接着層が設けられたポリイミド樹脂フィルムと、金属箔と、を貼り合わせることにより積層体を得る工程である。
 非熱可塑性ポリイミド層に用いられる非熱可塑性ポリイミドは、例えば、酸二無水物とジアミンを共重合することによって得られる。酸二無水物及びジアミンとしては、脂肪族化合物、脂環式化合物、芳香族化合物のいずれも用いることができるが、耐熱性の観点からは、酸二無水物としては芳香族テトラカルボン酸二無水物が好ましく、ジアミンとしては芳香族ジアミンが好ましい。
 非熱可塑性ポリイミドを構成する酸二無水物としては、例えば、ピロメリット酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、1,2,5,6-ナフタレンテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、4,4’-オキシジフタル酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、3,4,9,10-ペリレンテトラカルボン酸二無水物、ビス(3,4-ジカルボキシフェニル)プロパン二無水物、1,1-ビス(2,3-ジカルボキシフェニル)エタン二無水物、1,1-ビス(3,4-ジカルボキシフェニル)エタン二無水物、ビス(2,3-ジカルボキシフェニル)メタン二無水物、ビス(3,4-ジカルボキシフェニル)エタン二無水物、ビス(3,4-ジカルボキシフェニル)スルホン二無水物、p-フェニレンビス(トリメリット酸モノエステル酸無水物)、エチレンビス(トリメリット酸モノエステル酸無水物)、ビスフェノールAビス(トリメリット酸モノエステル酸無水物)からなる群より選ばれる少なくとも1種の酸二無水物が挙げられ、上記の中でも、耐熱性、寸法安定性の観点から、ピロメリット酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、からなる群より選ばれる少なくとも1種の酸二無水物が好ましい。
 非熱可塑性ポリイミドを構成するジアミンとしては、例えば、4,4’-ジアミノジフェニルプロパン、4,4’-ジアミノジフェニルメタン、ベンジジン、3,3’-ジクロロベンジジン、3,3’-ジメチルベンジジン、2,2’-ジメチルベンジジン、3,3’-ジメトキシベンジジン、2,2’-ジメトキシベンジジン、4,4’-ジアミノジフェニルスルフィド、3,3’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルホン、4,4’-オキシジアニリン、3,3’-オキシジアニリン、3,4’-オキシジアニリン、1,5-ジアミノナフタレン、2,6-ジアミノナフタレン、4,4’-ジアミノジフェニルジエチルシラン、4,4’-ジアミノジフェニルシラン、4,4’-ジアミノジフェニルエチルホスフィンオキシド、4,4’-ジアミノジフェニルN-メチルアミン、4,4’-ジアミノジフェニルN-フェニルアミン、1,4-ジアミノベンゼン(p-フェニレンジアミン)、1,3-ジアミノベンゼン、1,2-ジアミノベンゼン、ビス{4-(4-アミノフェノキシ)フェニル}スルホン、ビス{4-(3-アミノフェノキシ)フェニル}スルホン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、4,4’-ビス(3-アミノフェノキシ)ビフェニル、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、3,3’-ジアミノベンゾフェノン、4,4'-ジアミノベンゾフェノン、2,2-ビス[4-(4-アミノフェノキシ)フェニル)]プロパンからなる群より選ばれる少なくとも1種のジアミンが挙げられ、上記の中でも、耐熱性、寸法安定性の観点から、3,3’-ジメチルベンジジン、2,2’-ジメチルベンジジン、3,3’-ジメトキシベンジジン、2,2’-ジメトキシベンジジン、1,5-ジアミノナフタレン、1,4-ジアミノベンゼン(p-フェニレンジアミン)からなる群より選ばれる少なくとも1種のジアミンを含有することが好ましい。
 非熱可塑性ポリイミドのガラス転移温度(Tg)は、フレキシブル金属張積層板の用途に依存するため特に限定されないが、好ましくは290℃以上であり、より好ましくは320℃以上であり、さらに好ましくは340℃以上である。非熱可塑性ポリイミドのTgが290℃以上であると、耐熱性が良好となる傾向にある。
 なお、本明細書において、ガラス転移温度(Tg)は、動的粘弾性測定装置(DMA)により測定した貯蔵弾性率の変曲点の値により求めることができ、具体的には、後述する実施例の方法に従って測定することができる。
 本実施形態における接着層は、非熱可塑性ポリイミド層の少なくとも片面に設けられ、熱可塑性ポリイミドを含有する層である。接着層に用いられる熱可塑性ポリイミドとしては、熱可塑性ポリイミド、熱可塑性ポリアミドイミド、熱可塑性ポリエーテルイミド、熱可塑性ポリエステルイミド等が挙げられる。中でも、低吸湿特性の観点から、熱可塑性ポリエステルイミドが好ましい。熱可塑性ポリイミドは、例えば、酸二無水物とジアミンを共重合することによって得られる。
 熱可塑性ポリイミドを構成する酸二水物としては、例えば、ピロメリット酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、1,2,5,6-ナフタレンテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、4,4’-オキシジフタル酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、3,4,9,10-ペリレンテトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、1,1-ビス(2,3-ジカルボキシフェニル)エタン二無水物、1,1-ビス(3,4-ジカルボキシフェニル)エタン二無水物、ビス(2,3-ジカルボキシフェニル)メタン二無水物、1,2-ビス(3,4-ジカルボキシフェニル)エタン二無水物、、ビス(3,4-ジカルボキシフェニル)スルホン二無水物、p-フェニレンビス(トリメリット酸モノエステル酸無水物)、エチレンビス(トリメリット酸モノエステル酸無水物)、ビスフェノールAビス(トリメリット酸モノエステル酸無水物)からなる群より選ばれる少なくとも1種が挙げられ、上記の中でも、接着性、入手容易性の観点から、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、4,4’-オキシジフタル酸二無水物からなる群より選ばれる少なくとも1種が好ましい。
 熱可塑性ポリイミドを構成するジアミンとしては、例えば、4,4’-ジアミノジフェニルプロパン、4,4’-ジアミノジフェニルメタン、ベンジジン、3,3’-ジクロロベンジジン、3,3’-ジメチルベンジジン、2,2’-ジメチルベンジジン、3,3’-ジメトキシベンジジン、2,2’-ジメトキシベンジジン、4,4’-ジアミノジフェニルスルフィド、3,3’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルホン、4,4’-オキシジアニリン、3,3’-オキシジアニリン、3,4’-オキシジアニリン、1,5-ジアミノナフタレン、2,6-ジアミノナフタレン、4,4’-ジアミノジフェニルジエチルシラン、4,4’-ジアミノジフェニルシラン、4,4’-ジアミノジフェニルエチルホスフィンオキシド、4,4’-ジアミノジフェニルN-メチルアミン、4,4’-ジアミノジフェニルN-フェニルアミン、1,4-ジアミノベンゼン(p-フェニレンジアミン)、1,3-ジアミノベンゼン、1,2-ジアミノベンゼン、ビス{4-(4-アミノフェノキシ)フェニル}スルホン、ビス{4-(3-アミノフェノキシ)フェニル}スルホン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、4,4’-ビス(3-アミノフェノキシ)ビフェニル、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン、3,3’-ジアミノベンゾフェノン、4,4’-ジアミノベンゾフェノン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパンからなる群より選ばれる少なくとも1種が挙げられ、上記の中でも、接着性、入手容易性の観点から、2,2-ビス-[4-(4-アミノフェノキシ)フェニル]プロパン、4,4’-オキシジアニリン、4,4’-ジアミノジフェニルメタン、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、からなる群より選ばれる少なくとも1種が好ましい。
 熱可塑性ポリイミドのTgは、フレキシブル金属張積層板の用途に依存するため特に限定されないが、好ましくは240~290℃であり、より好ましくは260~290℃であり、さらに好ましくは280~290℃である。熱可塑性ポリイミドのTgが240℃以上であると、耐熱性が良好となる傾向にあり、290℃以下であると、金属箔との貼り合わせが容易となる傾向にある。
 非熱可塑性ポリイミド層と、熱可塑性ポリイミドを含む接着層とからなるポリイミド樹脂フィルムの厚さは、フレキシブル金属張積層板の用途に依存するため特に限定されないが、好ましくは12.5~50μmであり、より好ましくは12.5~25μmである。ポリイミド樹脂フィルムの厚さが12.5μm未満であると、絶縁性に劣る傾向にあり、また引裂け・破れ等の機械的特性が低くなる傾向にある。一方、ポリイミド樹脂フィルムの厚さが50μmを超えると、熱処理の際に発泡を生じ易くなったり、柔軟性が損なわれる傾向にある。
 ポリイミド樹脂フィルムとしては、市販品を用いてもよく、例えば、カネカ社製 商品名「ピクシオ FRS」シリーズ、「ピクシオ FC」シリーズや、宇部興産社製 商品名「ユーピレックス NVT」シリーズ等が好適なものとして挙げられる。
 本実施形態における金属箔としては、特に限定されず、電解銅箔、圧延銅箔、アルミニウム箔、ステンレス鋼箔等が挙げられ、中でも、導電性、回路加工性の観点から、電解銅箔、圧延銅箔が好ましい。金属箔の厚さは、フレキシブル金属張積層板の用途に依存するため特に限定されないが、好ましくは1~35μmであり、より好ましくは9~18μmである。金属箔の厚さが1μm未満であると、回路基板を作製した際にピンホールや破れ等で回路欠損を引き起こしやすくなる傾向にあり、35μmを超えると、ポリイミド樹脂フィルムとの貼り合せ温度が高くなり生産性が低下する傾向にある。また、金属箔の表面には、亜鉛メッキ、クロムメッキ等による無機表面処理、シランカップリング剤等による有機表面処理を施してもよい。
 金属箔としては、市販品を用いてもよく、例えば、JX金属社製 商品名「圧延銅箔BHY」、福田金属社製 商品名「圧延銅箔ROFL」等が好適なものとして挙げられる。
 積層工程においては、非熱可塑性ポリイミド層の片面または両面に、熱可塑性ポリイミドを含有する接着層を介して金属箔を貼り合わせる。貼り合わせの手順としては、例えば、(i)非熱可塑性ポリイミド層の少なくとも片面に接着層を形成してポリイミド樹脂フィルムを得た後、金属箔と貼り合わせる方法、(ii)接着層をシート状に成形し、これを非熱可塑性ポリイミド層に貼り合わせてポリイミド樹脂フィルムを得た後、金属箔と貼り合わせる方法、(iii)接着層をシート状に成形し、金属箔と非熱可塑性ポリイミド層の間に挟んで貼り合わせる方法等が挙げられる。
 上記(i)の方法の場合、ポリイミド樹脂フィルムは、例えば、非熱可塑性ポリイミド層の少なくとも片面に、熱可塑性ポリイミドの前駆体であるポリアミック酸溶液を塗布し、加熱、乾燥してイミド化することにより得ることができる。
 非熱可塑性ポリイミド層には、必要に応じて、接着層を設ける前にコロナ処理、プラズマ処理、カップリング処理等の各種表面処理を施してもよい。また、非熱可塑性ポリイミド層および接着層には、有機又は無機フィラー等のその他の成分が1種以上含まれていてもよい。
 積層工程において、ポリイミド樹脂フィルムと金属箔とを貼り合わせる方法としては、プレス、ラミネート等を用いることができるが、ロール化や生産性の観点から、ラミネートを用いることが好ましい。ラミネートは、例えば、一対以上の金属ロールを有する熱ロールラミネート装置やダブルベルトプレス(DBP)により行うことができ、中でも、熱ロールラミネート装置は、構成が単純であり保守コストの面で有利であるという利点を有する。ここでいう「一対以上の金属ロールを有する熱ロールラミネート装置」とは、材料を加熱加圧するための金属ロールを有している装置であればよく、その具体的な装置構成は特に限定されない。
 また、積層工程の前に、被積層材料を送り出す送出装置を設けてもよく、積層工程の後に、被積層材料を巻き取る巻取装置を設けてもよい。これらの装置を設けることで、フレキシブル金属張積層板の生産性をより一層向上させることができる。送出装置および巻取装置の具体的な構成は特に限定されるものではなく、例えば、ポリイミド樹脂フィルムや金属箔、あるいは得られる積層体を巻き取ることのできる公知のロール状巻取機等が挙げられる。
 積層工程をラミネートにより行う場合のラミネート温度は、熱可塑性ポリイミド樹脂のTg+50℃以上の温度であることが好ましく、Tg+70℃以上であることがより好ましい。Tg+50℃以上の温度である場合、ポリイミド樹脂フィルムと金属箔との接着性が良好となる傾向にあり、Tg+70℃以上の温度である場合、ラミネート速度を上昇させてその生産性をより向上させることができる傾向にある。ラミネート温度の上限としては特に限定されないが、高すぎると樹脂が分解するおそれがある。
 ラミネートにおけるラミネート速度は、0.5m/分以上であることが好ましく、1.0m/分以上であることがより好ましい。0.5m/分以上である場合、接着性が良好となる傾向にあり、1.0m/分以上である場合、生産性がより一層向上する傾向にある。
 ラミネート圧力は、高ければ高いほどラミネート温度を低く、かつラミネート速度を速くすることができる利点があるが、一般にラミネート圧力が高すぎると得られる金属張積層板の寸法変化が悪化する傾向にある。また、逆に、ラミネート圧力が低すぎると得られる積層板の接着性が劣る傾向にある。したがって、ラミネート圧力は、500kg/m~5000kg/mの範囲内であることが好ましく、1000kg/m~3000kg/mの範囲内であることがより好ましい。ここで、ラミネート圧力とは金属ロールが材料に与える圧力を意味する。
 ラミネート時のポリイミド樹脂フィルム張力は、0.1~20kg/mであることが好ましく、より好ましくは0.2~15kg/mであり、さらに好ましくは0.5~10kg/mである。張力が0.1kg/m未満であると、外観の良好なフレキシブル金属張積層板を得ることが困難となる傾向にあり、20kg/mを超えると寸法安定性が劣る傾向にある。ここで、ポリイミド樹脂フィルム張力とは、ラミネート前のポリイミド樹脂フィルムに与えられる張力である。
[工程(b)]
 本実施形態における工程(b)は、前記工程(a)で得られた積層体を、不活性ガス雰囲気、且つ、0.20~0.98MPaの圧力下で、前記熱可塑性ポリイミドのTg-20℃~Tg+50℃の温度で熱処理する工程である。
 工程(b)における熱処理は、不活性ガス雰囲気、且つ、0.20~0.98MPaの圧力下で行う。従来、銅箔と基材となる樹脂とが積層された銅張積層板を、窒素ガス等の不活性ガス雰囲気下で熱処理することは知られていたが、樹脂のTg付近よりも高い温度で熱処理を行った場合、積層体中に含まれる空気が膨張して表面に膨れが発生し、また、樹脂が熱分解するリスクがある。従って、例えば、特許文献2に記載されているように、樹脂のTgよりも低い温度で長時間熱処理しなければならず、フレキシブル金属張積層板の生産性が良好であるとはいえない。
 本発明者らは、金属箔と基材樹脂との間に熱可塑性ポリイミドを含む接着層を設け、得られた積層体を不活性ガス雰囲気、且つ、0.20~0.98MPaの圧力下で熱処理することで、従来よりも高温で熱処理を実施することが可能となり、品質に優れたフレキシブル金属張積層板の生産性を著しく向上させることができることを見出した。
 本実施形態における熱処理工程は、不活性ガス雰囲気下で行う。熱処理工程を大気中で行った場合、高温での熱処理の際に金属箔が酸化してしまうという問題が生じ、真空中で行った場合、積層体中に含まれる空気が膨張して表面に膨れが発生する。不活性ガスとしては、特に限定されず、例えば、窒素ガス、アルゴンガス等が挙げられ、中でも、入手性・経済性の観点から、窒素ガスが好ましい。
 熱処理工程における圧力は、0.20~0.98MPaであり、好ましくは0.50~0.98MPaであり、より好ましくは0.70~0.98MPaであり、さらに好ましくは0.90~0.98MPaである。熱処理工程における圧力が0.20MPa未満であると、高温で熱処理を行った場合に積層板表面に膨れが発生し、一方、圧力が0.98MPaを超えると、設備構造が複雑になるという問題が生じる。
 熱処理工程における圧力は、一般的な圧力計により測定することができる。
 熱処理工程における熱処理温度は、熱可塑性ポリイミドのTg-20℃~Tg+50℃であり、好ましくはTg-20℃~Tg+30℃、より好ましくはTg-10℃~Tg+30℃である。熱処理温度がTg-20℃未満であると、フレキシブル金属張積層板の生産性が悪化し、Tg+50℃を超えると、膨れの発生や樹脂の分解が起こるリスクが高まる。
 熱処理工程における熱処理時間は、熱可塑性ポリイミドの種類や、フレキシブル金属張積層板の用途に依存するため特に限定されないが、通常、60~420分、好ましくは90~300分、より好ましくは120~240分である。熱処理時間が60分以上であると、フレキシブル金属積層板全体に亘って寸法変化が均一に抑制される傾向にあり、420分以下であると、フレキシブル金属積層板の生産性が向上する傾向にある。
 熱処理を施す積層体は、巻取装置によって巻き取られた後のロール状の積層体であっても、ロールを解いた後のフラットなシート状の積層体であってもよいが、生産性の観点からは、ロール状の積層体に熱処理を施すことが好ましい。
 熱処理工程は、特に、オートクレーブ内で行うことが好ましい。オートクレーブを用いることで、不活性ガス雰囲気、且つ、0.20~0.98MPaの圧力下という条件で熱処理を行うことが容易となり、フレキシブル金属張積層板の生産性がより一層向上する傾向にある。
 本発明の製造方法により得られたフレキシブル金属積層板は、積層体全体に亘って寸法変化が均一に抑制されたものであるであるが、各材料の線膨張係数を考慮することで、この効果がさらに顕著となる。具体的には、非熱可塑性ポリイミドの線膨張係数は、通常、金属箔の線膨張係数と同等またはそれ以下であり、熱可塑性ポリイミドの線膨張係数は、金属箔よりも大きくなる。したがって、特に線膨張係数の大きい熱可塑性ポリイミドと線膨張係数の小さい非熱可塑性ポリイミドと組み合わせてポリイミド樹脂フィルムを作製することで、これと貼り合わせる金属箔の線膨張係数との差が小さくなり、その結果、寸法変化のバラツキがより低減する傾向にある。
 熱可塑性ポリイミドの線膨張係数は、好ましくは20~100ppmであり、より好ましくは30~70ppmであり、さらに好ましくは40~60ppmである。また、非熱可塑性ポリイミドの線膨張係数は、好ましくは20ppm以下であり、より好ましくは18ppm以下であり、さらに好ましくは16ppm以下である。
 ここで、線膨張係数は、TMA(例えば、(株)島津製作所社製 商品名「TMA-60」)により測定することができ、昇温速度10℃/分で、100℃から150℃の範囲に得られた測定値より求める。
 本実施形態の製造方法においては、非熱可塑性ポリイミド層の少なくとも片面に熱可塑性ポリイミドを含有する接着層を設ける。ここで、非熱可塑性ポリイミド層の片面のみに接着層を設ける場合、得られるフレキシブル金属張積層板は、非熱可塑性ポリイミド層-接着層-金属箔の3層構造を有する片面金属張積層板となり、非熱可塑性ポリイミド層の両面に接着層を設ける場合、金属箔-接着層-非熱可塑性ポリイミド層-接着層-金属箔の両面3層(5層)構造を有する両面金属張積層板となる。なお、接着層-非熱可塑性ポリイミド層-接着層-金属箔の4層構造を有する積層板も片面金属張積層板に含まれる。
 本実施形態におけるフレキシブル金属張積層板の金属層を所定形状にエッチングして得られたエッチング面を金属箔回路被覆用のカバーレイで被覆してフレキシブルプリント配線板を得ることができる。カバーレイとしては、金属箔回路を被覆するものであれば、特に限定するものではなく、ポリイミド等のフィルムに接着剤を塗布したカバーレイ、液状レジスト、ドライフィルムレジスト等を用いることができる。フレキシブルプリント配線板は、例えば、ICチップ実装用の所謂チップオンフレキシブルプリント配線板として好適に用いられる。
 なお、本明細書中の各物性は、特に明記しない限り、以下の実施例に記載された方法に準じて測定することができる。
 以下、本発明を実施例及び比較例によってさらに具体的に説明するが、本発明はこれらの実施例のみに限定されるものではない。
 実施例及び比較例において用いた各成分・材料は以下のとおりである。
(ポリイミド樹脂フィルム)
(1)ポリイミド樹脂フィルムA
カネカ社製 商品名「FRS-142#SW」 厚さ25μm
熱可塑性ポリイミドのTg=290℃
(2)ポリイミド樹脂フィルムB
カネカ社製 商品名「FC-142」 厚さ25μm
熱可塑性ポリイミドのTg=240℃
(銅箔)
JX金属社製 商品名「圧延銅箔BHY」 厚さ12μm
 各評価方法及び測定方法は以下のとおりである。
[ガラス転移温度(Tg)]
 Tgの測定においては、フレキシブル銅張積層板の銅箔部分をエッチングにより除去し、乾燥させたものをサンプルとした。測定装置としてはTA Instruments社製 商品名「RSA-G2」を用い、昇温温度10℃/分で測定を行い、得られたtanδのピークをTg(℃)とした。
[寸法変化率]
 JIS C 6471の9.6項に準拠して測定した。具体的には以下のとおりに測定した。
 フレキシブル金属張積層板500mm幅から幅方向に2枚サンプルを切り出し、図1に示すとおり、MD-L1、L2、L3、L4の長さを測定した(初期長さ)。銅箔エッチング後、標準状態で12時間以上放置した後、再びMD-L1、L2、L3、L4の長さを測定した(エッチング後長さ)。MD-L1、L2、L3、L4の寸法変化率を下記式に従って算出した。
 寸法変化率(%)=(エッチング後長さ-初期長さ)/初期長さ×100
 次いで、MD-L1、L2、L3、L4の寸法変化率の最大値と最小値の差を求め、その差が0.05%以内である場合を「○」と評価し、0.05%を超える場合を「×」と評価した。
[外観(膨れ)]
 フレキシブル金属張積層板の表面を目視により観察し、熱処理前後で膨れの個数に変化がなかった場合を「○」と評価し、熱処理後に膨れの個数が増えた場合を「×」と評価した。
[判定]
 寸法変化率、外観の評価が共に「○」であったものを「○」と評価し、どちらか一方、或いは両方の評価が「×」であったものを「×」と評価した。
[実施例1]
 両面に接着層を有するポリイミド樹脂フィルムAと、銅箔とを、一対の金属ロールを有する熱ラミネート装置(由利ロール社製 商品名「フレキシブルプリント基板用高温ラミネーター」)により貼り合わせた。得られた積層体を、窒素ガス雰囲気のオートクレーブ内に入れ、温度270℃、圧力0.9MPaで120分熱処理を行うことにより、5層構造を有する両面フレキシブル銅張積層板を得た。
 得られたフレキシブル銅張積層板を用いて寸法変化率、外観の評価を行い、結果を表1に示した。
[実施例2~6及び比較例1~5]
 熱処理温度および圧力を変えたこと以外は実施例1と同様の方法によりフレキシブル銅張積層板を得て、寸法変化率、外観の評価を行った。結果を表1に示す。
[実施例7~10、比較例6~8]
 ポリイミド樹脂フィルムAの代わりにポリイミド樹脂フィルムBを用い、熱処理温度、圧力を代えたこと以外は実施例1と同様の方法により両面フレキシブル銅張積層板を得て、寸法変化率、外観の評価を行った。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1及び表2に示した結果から、熱可塑性ポリイミドを含有する接着層を設けたポリイミド樹脂フィルムと、金属箔と、を貼り合わせて得られた積層体を、不活性ガス雰囲気、且つ、特定の温度および圧力下で熱処理することにより、積層体全体に亘って寸法変化が均一に抑制され、且つ、表面に膨れのないフレキシブル金属張積層板を、短時間で効率良く生産することができることが分かる。
 本出願は、2016年6月3日に日本国特許庁へ出願された日本特許出願(特願2016-111447号)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明の製造方法により得られる金属張積層板は、フレキシブルプリント配線板に用いられる部材としての産業上利用可能性を有する。

Claims (9)

  1.  フレキシブル金属張積層板の製造方法であって、
     (a)非熱可塑性ポリイミド層と、熱可塑性ポリイミドを含有する接着層とからなり、前記非熱可塑性ポリイミド層の少なくとも片面に前記接着層が設けられたポリイミド樹脂フィルムと、金属箔と、を貼り合わせることにより積層体を得る工程と、
     (b)前記工程(a)で得られた積層体を、不活性ガス雰囲気、且つ、0.20~0.98Mpaの圧力下、前記熱可塑性ポリイミドのTg-20℃~Tg+50℃の温度で熱処理する工程と、
    を含む、製造方法。
  2.  前記工程(a)において、ポリイミド樹脂フィルムと金属箔とをラミネートにより貼り合わせる、請求項1記載の製造方法。
  3.  前記工程(b)において、前記熱可塑性ポリイミドのTg-10℃~Tg+30℃の温度で熱処理する、請求項1又は2記載の製造方法。
  4.  前記工程(b)における熱処理時間が60~420分である、請求項1~3のいずれか1項記載の製造方法。
  5.  前記工程(b)において積層体がロール状である、請求項1~4のいずれか1項記載の製造方法。
  6.  前記工程(b)をオートクレーブ内で行う、請求項1~5のいずれか1項記載の製造方法。
  7.  前記熱可塑性ポリイミドのTgが240~290℃である、請求項1~6のいずれか1項記載の製造方法。
  8.  前記フレキシブル金属張積層板が片面金属張積層板である、請求項1~7のいずれか1項記載の製造方法。
  9.  前記フレキシブル金属張積層板が両面金属張積層板である、請求項1~7のいずれか1項記載の製造方法。
PCT/JP2017/019937 2016-06-03 2017-05-29 フレキシブル金属張積層板の製造方法 WO2017209060A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018520900A JP6917987B2 (ja) 2016-06-03 2017-05-29 フレキシブル金属張積層板の製造方法
US16/305,891 US10751977B2 (en) 2016-06-03 2017-05-29 Method for manufacturing flexible metal-clad laminated plate
CN201780033211.7A CN109219513B (zh) 2016-06-03 2017-05-29 柔性金属包覆层合板的制造方法
KR1020187037044A KR102268762B1 (ko) 2016-06-03 2017-05-29 플렉시블 금속 피복 적층판의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-111447 2016-06-03
JP2016111447 2016-06-03

Publications (1)

Publication Number Publication Date
WO2017209060A1 true WO2017209060A1 (ja) 2017-12-07

Family

ID=60477906

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/019937 WO2017209060A1 (ja) 2016-06-03 2017-05-29 フレキシブル金属張積層板の製造方法

Country Status (6)

Country Link
US (1) US10751977B2 (ja)
JP (2) JP6917987B2 (ja)
KR (1) KR102268762B1 (ja)
CN (1) CN109219513B (ja)
TW (1) TWI784955B (ja)
WO (1) WO2017209060A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022504391A (ja) * 2018-10-09 2022-01-13 デュポン エレクトロニクス インコーポレイテッド 熱基材

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112600050B (zh) * 2020-10-20 2022-04-22 陕西斯瑞新材料股份有限公司 一种高抗撕裂性能铜箔软连接金属辅助加工工艺

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004090247A (ja) * 2002-08-29 2004-03-25 Mitsui Chemicals Inc フレキシブル両面金属積層板の製造方法
JP2006306973A (ja) * 2005-04-27 2006-11-09 Kaneka Corp 新規なポリイミドフィルム並びにそれを用いて得られる接着フィルム、フレキシブル金属張積層板
JP2007223205A (ja) * 2006-02-24 2007-09-06 Shin Etsu Chem Co Ltd フレキシブル積層板及びその製造方法
JP2010053322A (ja) * 2008-08-29 2010-03-11 Arisawa Mfg Co Ltd ポリアミック酸及び非熱可塑性ポリイミド樹脂
JP2010125793A (ja) * 2008-11-28 2010-06-10 Arisawa Mfg Co Ltd 2層両面フレキシブル金属積層板及びその製造方法
WO2016031960A1 (ja) * 2014-08-28 2016-03-03 株式会社有沢製作所 3層フレキシブル金属張積層板及び両面3層フレキシブル金属張積層板

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002210903A (ja) * 2001-01-19 2002-07-31 Kanegafuchi Chem Ind Co Ltd ボンディングシート
WO2004050352A1 (ja) * 2002-12-05 2004-06-17 Kaneka Corporation 積層体、プリント配線板およびそれらの製造方法
JP4731107B2 (ja) 2003-10-17 2011-07-20 日本メクトロン株式会社 フレキシブル金属箔積層体
JP4271563B2 (ja) 2003-12-26 2009-06-03 株式会社カネカ フレキシブル金属張積層板の製造方法
JP4410021B2 (ja) * 2004-04-19 2010-02-03 株式会社カネカ 生産性が向上されたフレキシブル金属張積層板の製造方法ならびにそれにより得られるフレキシブル金属張積層板
US8426548B2 (en) * 2004-09-24 2013-04-23 Kaneka Corporation Polyimide film and adhesive film and flexible metal-clad laminate both obtained with the same
KR20100048474A (ko) * 2008-10-31 2010-05-11 에스케이에너지 주식회사 연성금속박적층체 및 이의 제조방법
JP5364414B2 (ja) * 2009-03-30 2013-12-11 三井化学株式会社 ポリイミド樹脂組成物、それを用いた金属積層体
KR101416782B1 (ko) * 2012-04-24 2014-07-08 에스케이이노베이션 주식회사 연성 금속박 적층체
JP5918822B2 (ja) 2014-09-18 2016-05-18 株式会社カネカ 寸法安定性を向上させたフレキシブル金属張積層板の製造方法ならびにそれにより得られるフレキシブル金属張積層板

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004090247A (ja) * 2002-08-29 2004-03-25 Mitsui Chemicals Inc フレキシブル両面金属積層板の製造方法
JP2006306973A (ja) * 2005-04-27 2006-11-09 Kaneka Corp 新規なポリイミドフィルム並びにそれを用いて得られる接着フィルム、フレキシブル金属張積層板
JP2007223205A (ja) * 2006-02-24 2007-09-06 Shin Etsu Chem Co Ltd フレキシブル積層板及びその製造方法
JP2010053322A (ja) * 2008-08-29 2010-03-11 Arisawa Mfg Co Ltd ポリアミック酸及び非熱可塑性ポリイミド樹脂
JP2010125793A (ja) * 2008-11-28 2010-06-10 Arisawa Mfg Co Ltd 2層両面フレキシブル金属積層板及びその製造方法
WO2016031960A1 (ja) * 2014-08-28 2016-03-03 株式会社有沢製作所 3層フレキシブル金属張積層板及び両面3層フレキシブル金属張積層板

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022504391A (ja) * 2018-10-09 2022-01-13 デュポン エレクトロニクス インコーポレイテッド 熱基材

Also Published As

Publication number Publication date
US20190184680A1 (en) 2019-06-20
JPWO2017209060A1 (ja) 2019-02-21
CN109219513A (zh) 2019-01-15
CN109219513B (zh) 2021-03-09
TW201819179A (zh) 2018-06-01
TWI784955B (zh) 2022-12-01
JP2020104517A (ja) 2020-07-09
KR20190009796A (ko) 2019-01-29
US10751977B2 (en) 2020-08-25
JP6917987B2 (ja) 2021-08-11
KR102268762B1 (ko) 2021-06-25
JP6948418B2 (ja) 2021-10-13

Similar Documents

Publication Publication Date Title
US9232660B2 (en) Flexible metal clad laminate and manufacturing method thereof
KR101076505B1 (ko) 접착 필름 및 그의 이용
JP2017144730A (ja) 多層ポリイミドフィルム、およびフレキシブル金属張積層板
KR102423692B1 (ko) 폴리이미드 필름
JP2017145325A (ja) ポリイミドフィルム、多層ポリイミドフィルム、カバーレイ、及びフレキシブルプリント配線板
JP6948418B2 (ja) フレキシブル金属張積層板の製造方法
JP2008091463A (ja) 両面フレキシブル銅張積層基板及びキャリア付両面フレキシブル銅張積層基板の製造方法
KR100620474B1 (ko) 내열성 플랙서블 적층판의 제조 방법 및 그에 따라제조되는 내열성 플랙서블 적층판
JP4757645B2 (ja) 両面金属張積層板の製造方法
JP6412012B2 (ja) 多層フレキシブル金属張積層体及びその製造方法
KR100728150B1 (ko) 본딩 시트 및 한면 금속 클래드 적층판
JP2007055165A (ja) フレキシブル銅張積層板及びその製造方法
WO2021024988A1 (ja) 積層体の製造方法
KR101546393B1 (ko) 플렉시블 금속장 적층판 및 그 제조 방법
JP6603021B2 (ja) ポリイミドフィルム
WO2023145135A1 (ja) 積層体、及び該積層体を有する金属張積層板
JP2018126887A (ja) 多層ポリイミドフィルムの製造方法
JP2018126886A (ja) 多層ポリイミドフィルムの製造方法
KR20230021705A (ko) 적층체, 편면 금속 피복 적층판 및 다층 프린트 배선판
JP2023130713A (ja) 金属箔積層板の製造方法
JP2023130712A (ja) 金属箔積層板の製造方法
JP2005153244A (ja) 積層性に優れたボンディングシートおよび片面金属張積層板
JP2005166849A (ja) 寸法安定性を向上させたフレキシブル金属張積層板の製造方法ならびにそれにより得られるフレキシブル金属張積層板
JP2018126888A (ja) 多層ポリイミドフィルムの製造方法
JP2013075254A (ja) 接着剤付きポリイミドフィルムの製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018520900

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17806615

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187037044

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17806615

Country of ref document: EP

Kind code of ref document: A1