WO2017200095A1 - バーハンドルを有する鞍乗型車両 - Google Patents

バーハンドルを有する鞍乗型車両 Download PDF

Info

Publication number
WO2017200095A1
WO2017200095A1 PCT/JP2017/018869 JP2017018869W WO2017200095A1 WO 2017200095 A1 WO2017200095 A1 WO 2017200095A1 JP 2017018869 W JP2017018869 W JP 2017018869W WO 2017200095 A1 WO2017200095 A1 WO 2017200095A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle speed
steering
vehicle
assist
torque
Prior art date
Application number
PCT/JP2017/018869
Other languages
English (en)
French (fr)
Inventor
剛士 豊田
延男 原
幸英 福原
達矢 長田
Original Assignee
ヤマハ発動機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハ発動機株式会社 filed Critical ヤマハ発動機株式会社
Priority to EP17799519.8A priority Critical patent/EP3446955B1/en
Priority to JP2018518390A priority patent/JP6605133B2/ja
Publication of WO2017200095A1 publication Critical patent/WO2017200095A1/ja
Priority to US16/195,119 priority patent/US11745821B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K21/00Steering devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62JCYCLE SADDLES OR SEATS; AUXILIARY DEVICES OR ACCESSORIES SPECIALLY ADAPTED TO CYCLES AND NOT OTHERWISE PROVIDED FOR, e.g. ARTICLE CARRIERS OR CYCLE PROTECTORS
    • B62J45/00Electrical equipment arrangements specially adapted for use as accessories on cycles, not otherwise provided for
    • B62J45/40Sensor arrangements; Mounting thereof
    • B62J45/41Sensor arrangements; Mounting thereof characterised by the type of sensor
    • B62J45/411Torque sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62JCYCLE SADDLES OR SEATS; AUXILIARY DEVICES OR ACCESSORIES SPECIALLY ADAPTED TO CYCLES AND NOT OTHERWISE PROVIDED FOR, e.g. ARTICLE CARRIERS OR CYCLE PROTECTORS
    • B62J45/00Electrical equipment arrangements specially adapted for use as accessories on cycles, not otherwise provided for
    • B62J45/40Sensor arrangements; Mounting thereof
    • B62J45/42Sensor arrangements; Mounting thereof characterised by mounting
    • B62J45/422Sensor arrangements; Mounting thereof characterised by mounting on the handlebar
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K21/00Steering devices
    • B62K21/18Connections between forks and handlebars or handlebar stems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K21/00Steering devices
    • B62K21/12Handlebars; Handlebar stems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K21/00Steering devices
    • B62K21/26Handlebar grips

Definitions

  • the present invention relates to a straddle-type vehicle having a steering assist device that assists steering of a bar handle.
  • Patent Document 1 describes providing a power assist means for providing an auxiliary steering force by a motor in a steering device for a motorcycle.
  • This motor is controlled by the vehicle speed and the input torque input to the steering wheel.
  • the steering apparatus includes a steering ratio variable unit that arbitrarily changes a steering ratio that is a ratio between the rotation angle of the steering wheel and the steering angle of the front wheels. With this configuration, an optimum steering ratio can be obtained in the entire speed range from low speed to high speed.
  • Patent Document 2 discloses a straddle-type vehicle including a motor that gives an assisting force to an operating force applied to a steering wheel, and a vehicle speed sensor.
  • the vehicle speed sensor detects a state in the vicinity of the vehicle speed zero
  • the auxiliary force provided by the motor is set to a predetermined intermediate value between the maximum value and the minimum value.
  • the assisting force does not become too sensitive to the driver's steering wheel operating force.
  • An object of the present invention is to provide a straddle-type vehicle having a bar handle that can obtain a steering characteristic different from the conventional one.
  • the inventors examined a bar handle steering assist device in a straddle-type vehicle. First, the steering characteristics of the rider and the behavior of the vehicle were carefully observed, and the steering characteristics required for the saddle riding type vehicle were investigated. Both the bar handle and the steering wheel of the saddle-ride type vehicle swing around an axis extending in the vertical direction. The swing range of the bar handle and the steering wheel is narrow. The steering ratio, which is the ratio of the rotation angle of the bar handle and the steering angle of the steered wheels, is close to 1.
  • the magnitude of the steering torque and the steering angle input by the rider are larger when turning in a low speed range than when turning in a high speed range. Therefore, a larger steering assist force is required for turning in the low speed range than for turning in the high speed range.
  • the magnitude of the steering torque and the steering angle input by the rider are smaller when turning in the high speed range than when turning in the low speed range. Therefore, a small steering assist force is required for turning in a high speed range as compared to turning in a low speed range.
  • the inventors examined the control for reducing the assisting force by the operation assisting device as the vehicle speed increased in the saddle riding type vehicle having the bar handle. Through this control, an attempt was made to obtain steering characteristics corresponding to the vehicle speed. The inventors have repeated the test under various conditions, and found that there is a vehicle speed range where the rider feels the force input to the bar handle is heavy when the assist force is reduced as the vehicle speed increases.
  • the rotational moment of the steering wheel increases. This may increase the force input to the bar handle for steering. This is considered to be due to the increase in the rotational moment of the steered wheels accompanying the increase in vehicle speed.
  • the steering ratio which is the ratio of the steering angle of the steered wheel to the rotation angle of the bar handle, is close to 1, this effect is considered to be greater. In such a case, it is preferable to increase the assisting force as the vehicle speed increases.
  • the inventors have found that in a saddle-ride type vehicle having a bar handle, the required auxiliary force decreases as the vehicle speed increases and may increase as the vehicle speed further increases.
  • the inventors reduce the assisting force as the vehicle speed increases in the first vehicle speed region in the entire vehicle speed region, and increases the assisting force as the vehicle speed increases in the second vehicle speed region higher than the first vehicle speed region. I came up with the control to do. By this control, it is possible to provide a straddle-type vehicle having a bar handle that can obtain a steering characteristic different from the conventional one. Based on this knowledge, the inventors have arrived at the following embodiment.
  • the straddle-type vehicle in Configuration 1 includes a body frame, a steering shaft, a bar handle, a steering wheel, and a steering assist device.
  • the steering shaft is supported by the body frame so as to be swingable about an axis extending in the vertical direction of the body frame.
  • the bar handle includes a left grip positioned to the left of the center in the left-right direction of the straddle-type vehicle and a right grip positioned to the right of the center in the left-right direction of the straddle-type vehicle, and is coupled to the steering shaft. Is done.
  • the steering wheel is connected to the steering shaft.
  • the steering assist device applies an assist force in the same direction as the steering torque input by the rider to the bar handle to the steering shaft.
  • the steering assist device decreases the assist force as the speed of the vehicle increases in the first vehicle speed range, and from the first vehicle speed range. In the high second vehicle speed region, the auxiliary force is increased as the vehicle speed increases.
  • the steering assist device for the saddle riding type vehicle applies an assist force in the same direction as the steering torque input by the rider to the bar handle on the steering shaft connected to the bar handle and extending in the vertical direction.
  • the steering assist device decreases the assist force with respect to the input steering torque as the vehicle speed increases in the first vehicle speed region in the entire vehicle speed region.
  • the steering assist device can increase the assist force with respect to the input steering torque as the vehicle speed increases in the second vehicle speed region that is higher than the first vehicle speed region.
  • the steering assist device uses a ratio of a decrease amount of the assist force to a change amount of the vehicle speed in the first vehicle speed region as a change in the vehicle speed in the second vehicle speed region. You may make it larger than the ratio of the increase amount of the said auxiliary power with respect to quantity. Thereby, it is possible to provide a straddle-type vehicle having a bar handle that can obtain a steering characteristic different from the conventional one.
  • the steering assist device is configured to reduce the assist force to a vehicle speed region that is lower than a first vehicle speed region that decreases the assist force as the vehicle speed increases.
  • a low speed auxiliary force constant vehicle speed region in which the auxiliary force is constant may be provided.
  • the steering assist device is adapted to change the vehicle speed in a vehicle speed region higher than a second vehicle speed region in which the assist force is increased as the vehicle speed increases.
  • a high speed auxiliary force constant vehicle speed region in which the auxiliary force is constant may be provided.
  • the first vehicle speed region and the second vehicle speed region may be adjacent to each other. That is, the steering assist device can control the assist force so that the first vehicle speed region and the second vehicle speed region are adjacent to each other. Thereby, it is possible to provide a straddle-type vehicle having a bar handle that can obtain a steering characteristic different from the conventional one.
  • the steering assist device may provide an intermediate assist force constant vehicle speed region in which the assist force is constant with respect to a change in the speed of the vehicle between the first vehicle speed region and the second vehicle speed region. .
  • the steering assist device may provide an intermediate assist force constant vehicle speed region in which the assist force is constant with respect to a change in the speed of the vehicle between the first vehicle speed region and the second vehicle speed region.
  • the steering assist device increases the speed of the vehicle in the first vehicle speed region when the steering torque input to the bar handle by the rider is greater than a first threshold value and constant. Accordingly, the assisting force may be decreased, and the assisting force may be increased as the speed of the vehicle increases in a second vehicle speed region that is higher than the first vehicle speed region. Thereby, it is possible to provide a straddle-type vehicle having a bar handle that can obtain a steering characteristic different from the conventional one.
  • the straddle-type vehicle having the above configurations 1 to 8 can take the following embodiments.
  • the steering assist device according to the embodiment of the present invention is a steering assist device that assists the rotation of the steering system that transmits the rotation of the bar handle of the saddle riding type vehicle to the wheels.
  • the steering assist device includes a drive unit that outputs an assist force that assists rotation of the steering system.
  • the assist of the drive unit with respect to the steering torque of the bar handle increases as the vehicle speed increases (first configuration).
  • requirement is attained in the scene where big steering force is requested
  • the driving unit assists the steering torque. It can be set as the aspect which becomes large (2nd structure).
  • the steering assist when a steering torque greater than the first threshold is input can be increased as the vehicle speed increases.
  • the assist of the driving unit with respect to the steering torque of the bar handle increases as the vehicle speed increases.
  • the steering assist device is detected by a torque detector that detects a steering torque of the bar handle, a vehicle speed sensor that detects the vehicle speed, and the torque detector.
  • a steering torque and an assist control unit that controls the drive unit based on a vehicle speed detected by the vehicle speed sensor can be provided (fourth configuration).
  • the assist by the drive unit can be determined based on the steering torque and the vehicle speed.
  • the assist control unit controls the drive unit so that the assist of the drive unit with respect to the steering torque of the bar handle increases as the vehicle speed increases in at least a part of the entire vehicle speed range of the saddle riding type vehicle. Can do.
  • a straddle-type vehicle including the steering assist device having any one of the first to fourth configurations is also included in the embodiment of the present invention.
  • the steering assist method is a steering assist method that assists the rotation of the transmission unit that transmits the rotation of the bar handle of the saddle riding type vehicle to the wheels.
  • the steering assist method includes a step of detecting a steering torque of the bar handle, a step of detecting a speed of the straddle-type vehicle, and a step of outputting an assisting force that assists rotation of the steering system.
  • the assist of the drive unit with respect to the steering torque increases as the vehicle speed increases.
  • FIG. 1 is a side view of a motorcycle according to an embodiment of the present invention. It is a front view which shows a part of vehicle shown in FIG. It is a top view of a top bridge.
  • FIG. 6 is a sectional view taken along line VI-VI in FIG. 2. It is a top view of the lower member of a handle holder.
  • FIG. 5B is a bb cross-sectional view of FIG. 5A.
  • FIG. 5 is an enlarged view of FIG. 4.
  • It is a functional block diagram which shows the structural example of a steering assistance apparatus.
  • FIG. 3 is a functional block diagram showing a configuration example of a motorcycle including a steering assist device. It is a graph which shows an example of the conditions of the assist increase control accompanying a vehicle speed rise.
  • the arrow F indicates the front direction of the vehicle body frame.
  • An arrow B indicates the rear direction of the vehicle body frame.
  • Arrow U indicates the upward direction of the body frame.
  • An arrow D indicates the downward direction of the body frame.
  • An arrow R indicates the right direction of the body frame.
  • An arrow L indicates the left direction of the body frame. The vertical direction of the body frame in the upright and non-steering state coincides with the vertical direction.
  • the longitudinal direction of the vehicle body frame “the lateral direction of the vehicle body frame”, and “the vertical direction of the vehicle body frame” are the longitudinal direction with respect to the vehicle body frame as viewed from the occupant driving the vehicle, It means the horizontal direction and the vertical direction.
  • extending in the front-rear direction of the body frame includes extending in a direction inclined with respect to the front-rear direction of the body frame.
  • the inclination of the body frame in the extending direction with respect to the front-rear direction is often smaller than the inclination of the body frame with respect to the left-right direction and the vertical direction.
  • “extending in the left-right direction of the body frame” includes extending in a direction inclined with respect to the left-right direction of the body frame.
  • the inclination of the body frame in the extending direction with respect to the left-right direction is often smaller than the inclination of the body frame with respect to the front-rear direction and the up-down direction.
  • “extending in the vertical direction of the vehicle body frame” includes extending in a direction inclined with respect to the vertical direction of the vehicle body frame.
  • the inclination of the body frame in the extending direction with respect to the vertical direction is often smaller than the inclination of the body frame with respect to the front-rear direction and the left-right direction.
  • connection includes, for example, a case where two members are directly connected and a case where two members are indirectly connected via another member.
  • FIG. 20 is a diagram for explaining the configuration of the saddle riding type vehicle in the embodiment of the present invention.
  • the straddle-type vehicle shown in FIG. 20 includes a vehicle body frame 2, a steering shaft 9, a bar handle 8, a steering wheel 4, and a steering assist device 100.
  • the steering shaft 9 is supported by the body frame 2 so as to be swingable about an axis extending in the vertical direction of the body frame 2.
  • the bar handle 8 includes a left grip 8L positioned to the left of the center in the lateral direction of the saddle riding type vehicle and a right grip 8R positioned to the right of the center in the lateral direction of the saddle riding type vehicle. Is done.
  • the swingable range SR around the axis of the steering shaft 9 of the bar handle 8 is 180 degrees (half rotation) or less.
  • the steering wheel 4 is connected to the steering shaft 9.
  • the steering assist device 100 applies an assist force in the same direction as the steering torque input by the rider to the bar handle 8 to the steering shaft 9.
  • the steering assist device 100 decreases the assist force Ta as the vehicle speed increases in the first vehicle speed region VB0, and is higher than the first vehicle speed region VB0.
  • the auxiliary force Ta is increased as the vehicle speed increases.
  • the assisting force applied by the steering assist device 100 to the steering shaft 9 is smaller when the vehicle speed is high than when the vehicle speed is low when the steering torque is the same.
  • the assisting force applied by the steering assist device 100 to the steering shaft 9 is greater when the vehicle speed is high than when the vehicle speed is low, when the steering torque is the same.
  • FIG. 1 is a side view of a motorcycle 1 according to an embodiment of the present invention.
  • the motorcycle 1 includes a bar handle 8, a body frame 2, an engine 3 suspended on the body frame 2, a front wheel 4 attached to a front portion of the body frame 2, and a body frame 2. And a rear wheel 5 attached to the rear portion.
  • the rear wheel 5 is driven by the engine 3.
  • the bar handle 8 is rotatably attached to the body frame 2.
  • the rotation of the bar handle 8 is transmitted to the front wheel 4 which is a steering wheel.
  • the rider steers the motorcycle 1 by operating the bar handle 8.
  • the motorcycle 1 is a vehicle that can turn by tilting the body frame 2 in the left-right direction of the vehicle.
  • the movable range of the bar handle 8 is 180 degrees (half rotation) or less. This movable range is the difference between the rudder angle when the bar handle 8 is fully operated to the left and the rudder angle when the bar handle 8 is fully operated to the right (lock ⁇ ⁇ to lock).
  • a head pipe 10 is integrally formed at the front portion of the body frame 2.
  • a steering shaft 9 passes through the head pipe 10.
  • the steering shaft 9 is rotatably supported by a head pipe 10 that is a part of the vehicle body frame 2.
  • a top bridge 50 is connected to the upper part of the steering shaft 9.
  • a bottom bridge 14 is connected to the lower portion of the steering shaft 9. The top bridge 50 and the bottom bridge 14 are fixed to the steering shaft 9 and rotate together with the steering shaft 9.
  • the transmission member 20 is connected to the top bridge 50.
  • the bar handle 8 is connected to the transmission member 20. That is, the bar handle 8 and the steering shaft 9 are connected via the transmission member 20.
  • the steering shaft 9 rotates according to the rotation of the bar handle 8.
  • the left shock absorber 6 and the right shock absorber 7 are arranged on the left and right sides of the steering shaft 9, respectively.
  • the left shock absorber 6 and the right shock absorber 7 are fixed to the top bridge 50 and the bottom bridge 14.
  • the left shock absorber 6 and the right shock absorber 7 support the front wheel 4 rotatably at the lower end portion.
  • the left shock absorber 6 and the right shock absorber 7 form a front fork.
  • the left shock absorber 6 and the right shock absorber 7 support the front wheel 4 so as to be displaceable in the vertical direction with respect to the vehicle body frame 2.
  • the transmission member 20, the top bridge 50, the bottom bridge 14, the left shock absorber 6, the right shock absorber 7, and the steering shaft 9 are a steering system that transmits the rotation of the bar handle 8 to the front wheels 4. 29 (steering force transmission mechanism).
  • the steering system 29 is provided between the bar handle 8 and the wheel, and transmits the rotation of the bar handle 8 to the wheel by rotating according to the rotation of the bar handle 8.
  • the steering system 29 is rotatably supported with respect to the vehicle body frame 2 (the head pipe 10 in the example of FIG. 1).
  • the motorcycle 1 includes a steering assist device that assists the steering by the bar handle 8.
  • the motorcycle 1 is provided with a motor 70 (an example of a drive unit) that outputs an assist force that assists the rotation of the steering system 29 as a part of the steering assist device.
  • the rotation of the motor 70 is transmitted to the steering shaft 9 via the speed reducer 80.
  • the motor 70 is attached to the head pipe 10 by the attachment portion 85a. Details of the steering assist device will be described later.
  • FIG. 2 is a front view of a part of the motorcycle 1 shown in FIG.
  • the head pipe 10 is disposed between the left shock absorber 6 and the right shock absorber 7 when viewed from the front.
  • the left shock absorber 6 and the right shock absorber 7, the head pipe 10 and the steering shaft 9 are arranged in parallel.
  • the head pipe 10 is a cylindrical member extending in the vertical direction.
  • the steering shaft 9 is rotatably supported inside the head pipe 10.
  • the steering shaft 9 is rotatable around a steering axis A that extends in the vertical direction.
  • the upper part of the steering shaft 9 is fixed to the top bridge 50.
  • the top bridge 50 is connected to the top of the steering shaft 9, the top of the left shock absorber 6, and the top of the right shock absorber 7.
  • the steering shaft 9, the left shock absorber 6, and the right shock absorber 7 are all attached to the top bridge 50 so as not to rotate.
  • the top bridge 50 connects the steering shaft 9, the left shock absorber 6, and the right shock absorber 7.
  • the top bridge 50 is provided above the upper end of the head pipe 10.
  • the top bridge 50 is provided below the bar handle 8.
  • a bottom bridge 14 that connects the left shock absorber 6 and the right shock absorber 7 is provided below the top bridge 50.
  • the left shock absorber 6 and the right shock absorber 7 are fixed to the bottom bridge 14 so as not to rotate.
  • the bottom bridge 14 is provided below the head pipe 10.
  • Below the bottom bridge 14, the front wheel 4 is supported from the left and right by the left shock absorber 6 and the right shock absorber 7. Thereby, the steering shaft 9, the left shock absorber 6, the right shock absorber 7, and the front wheel 4 can rotate integrally around the steering axis A.
  • FIG. 3 is a top view of the top bridge 50. As shown in FIG. 3, a left support hole 51 into which the upper part of the left shock absorber 6 is fitted is provided on the left part of the top bridge 50. A right support hole 52 into which the upper portion of the right shock absorber 7 is fitted is provided on the right portion of the top bridge 50.
  • a rear support hole 53 is provided at the center of the top bridge 50 in the left-right direction and at the rear of the top bridge 50.
  • the upper part of the steering shaft 9 is fitted into the rear support hole 53.
  • a front support hole 54 is provided at the center of the top bridge 50 in the left-right direction and in front of the rear support hole 53.
  • a spline groove is formed on the inner peripheral surface of the front support hole 54.
  • a shaft member 12 (described later) that is a part of the transmission member 20 is fitted into the front support hole 54.
  • the top bridge 50 rotates around the steering axis A (see FIG. 2).
  • the left shock absorber 6 fixed to the left portion of the top bridge 50 and the right shock absorber 7 fixed to the right portion of the top bridge 50 also move around the steering axis A.
  • the front wheel 4 supported by the left shock absorber 6 and the right shock absorber 7 is steered.
  • the rider operates the bar handle 8 in this way, the front wheel 4 is steered in accordance with the operation of the bar handle 8.
  • the transmission member 20 includes a handle holder 21 (an example of the first part) fixed to the bar handle 8, a shaft member 12 (an example of the second part) fixed to the top bridge 50, A torque transmission unit 13.
  • the shaft member 12 is fixed to the top bridge 50 in front of the steering shaft 9.
  • the shaft member 12 is a cylindrical member whose axis extends in the same direction as the steering shaft 9.
  • the lower portion of the shaft member 12 is spline-fitted into the front support hole 54 of the top bridge 50.
  • the shaft member 12 is fixed so as not to rotate relative to the top bridge 50.
  • the shaft member 12 is displaced relative to the handle holder 21 according to the steering force when the steering force is input to the bar handle 8.
  • the handle holder 21 rotates relative to the shaft member 12 around the central axis B of the torque transmission unit 13 according to the steering force.
  • the handle holder 21 is provided above the top bridge 50.
  • the handle holder 21 holds the bar handle 8.
  • the handle holder 21 includes a lower member 30 and an upper member 40.
  • the upper member 40 is fixed to the upper part of the lower member 30.
  • the lower handle receiving portion 31 of the lower member 30 and the upper handle receiving portion 41 of the upper member 40 sandwich the bar handle 8 and fix the bar handle 8.
  • the handle holder 21 has a through hole 32 through which the shaft member 12 is inserted.
  • An upper bearing 17 is provided above the through hole 32.
  • An inner ring of the upper bearing 17 is fixed to the shaft member 12, and an outer ring of the upper bearing 17 is fixed to the handle holder 21.
  • the shaft member 12 is rotatably disposed in the through hole 32 of the handle holder 21.
  • the lower bearing 16 is provided below the handle holder 21.
  • the outer ring of the lower bearing 16 is fixed to the handle holder 21.
  • the inner ring of the lower bearing 16 is fixed to the top bridge 50. Thereby, the handle holder 21 is rotatably supported by the top bridge 50.
  • FIG. 5 is a view showing the lower member 30 of the handle holder 21.
  • 5A is a top view of the lower member 30, and
  • FIG. 5B is a bb cross-sectional view of FIG. 5A.
  • the lower member 30 is provided with a through hole 32 through which the shaft member 12 is inserted.
  • An upper bearing 17 is provided in the through hole 32.
  • the shaft member 12 is fixed to the inner ring 17a of the upper bearing 17 so as not to rotate.
  • a lower handle receiving portion 31 is formed on each of the left and right sides of the through hole 32.
  • a pair of first screw holes 33 are provided on the upper surface of the lower member 30.
  • the pair of first screw holes 33 are disposed before and after the lower handle receiving portion 31.
  • the upper member 40 is positioned with respect to the lower member 30 such that the upper handle receiving portion 41 faces the lower handle receiving portion 31, and the upper member 40 is screwed into the first screw hole 33, whereby the upper member 40 is 30 is fixed.
  • a second screw hole 34 is provided on the lower surface of the lower member 30.
  • the second screw holes 34 are provided on the left and right sides of the through hole 32.
  • the left auxiliary transmission member 19 is screwed into the second screw hole 34 at the left portion of the lower member 30.
  • the right auxiliary transmission member 18 is screwed into the second screw hole 34 on the right side of the lower member 30.
  • the pair of second screw holes 34 are provided at positions corresponding to the left intermediate hole 55 and the right intermediate hole 56 (see FIG. 3) provided in the top bridge 50. Therefore, the left auxiliary transmission member 19 and the right auxiliary transmission member 18 penetrate the left intermediate hole 55 and the right intermediate hole 56 of the top bridge 50, respectively.
  • FIG. 6 is an enlarged view of a part of FIG.
  • a torque transmission unit 13 is provided between the shaft member 12 and the handle holder 21.
  • the torque transmission part 13 is a metal cylindrical member.
  • the inner diameter of the cylindrical torque transmission portion 13 is substantially equal to the outer diameter of the shaft member 12.
  • the inner peripheral surface of the torque transmission unit 13 surrounds the outer peripheral surface of the shaft member 12.
  • the torque transmission unit 13 is disposed outside the shaft member 12 and inside the handle holder 21.
  • the torque transmission unit 13 is partly fixed to the handle holder 21 and the other part is fixed to the shaft member 12.
  • a spline groove is provided on the inner peripheral surface of the lower portion of the torque transmitting portion 13.
  • the lower portion of the torque transmission unit 13 is not fixed to the lower member 30 but is splined to the outer peripheral surface of the shaft member 12.
  • a spline groove is provided on the outer peripheral surface of the upper portion of the torque transmitting portion 13.
  • the upper part of the torque transmission part 13 is not fixed to the shaft member 12 but is splined to the lower member 30.
  • the torque transmission unit 13 When the steering force is applied from the bar handle 8 and the handle holder 21 rotates with respect to the shaft member 12, the torque transmission unit 13 is twisted to transmit the steering force from the lower member 30 to the shaft member 12. That is, the steering force input to the bar handle 8 is transmitted to the top bridge 50 via the torque transmission unit 13.
  • the steering force is transmitted from the bar handle 8 to the top bridge 50 via the right auxiliary transmission member 18 and the left auxiliary transmission member 19 in addition to the torque transmission unit 13.
  • the top bridge 50 is provided with a left intermediate hole 55 between the left support hole 51 and the rear support hole 53 and ahead of the rear support hole 53.
  • a rubber ring 57 is fitted into the inner peripheral surface of the left intermediate hole 55.
  • a right intermediate hole 56 is provided between the right support hole 52 and the rear support hole 53 and in front of the rear support hole 53.
  • a rubber ring 57 is fitted into the inner peripheral surface of the right intermediate hole 56.
  • the left auxiliary transmission member 19 fixed to the lower member 30 passes through the left intermediate hole 55 of the top bridge 50.
  • the right auxiliary transmission member 18 fixed to the lower member 30 passes through the right intermediate hole 56 of the top bridge 50.
  • a rubber ring 57 is provided between the left auxiliary transmission member 19 and the inner peripheral surface of the left intermediate hole 55.
  • a rubber ring 57 is provided between the right auxiliary transmission member 18 and the inner peripheral surface of the right intermediate hole 56.
  • the left auxiliary transmission member 19 and the right auxiliary transmission member 18 transmit the steering force input to the bar handle 8 to the top bridge 50 in an auxiliary manner.
  • the rigidity required for the torque transmission unit 13 is not increased, and the increase in size of the torque transmission unit 13 is suppressed.
  • the torque sensor 90 is a magnetostrictive torque sensor. As shown in FIG. 6, the torque sensor 90 includes a torque transmission part 13 as a detected part and a pickup coil 91 as a detection part.
  • the pickup coil 91 is provided on the outer periphery of the torque transmission unit 13.
  • the pickup coil 91 is fixed to the mounting substrate 92.
  • the mounting board 92 is fixed to the lower member 30 of the handle holder 21 via a bush 93.
  • arrow T indicates a force transmission path.
  • a steering force is input to the bar handle 8
  • this force acts on the handle holder 21.
  • the force input to the lower member 30 of the handle holder 21 is transmitted to the torque transmission unit 13 through a spline groove 13b provided in the upper part of the torque transmission unit 13. Further, this force is transmitted to the shaft member 12 through a spline groove 13 a provided at the lower portion of the torque transmitting portion 13.
  • the shaft member 12 transmits the steering force to the top bridge 50 through the spline groove 12a and the front support hole 54 provided with the spline groove.
  • the torque transmission part 13 has an upper part fixed to the lower member 30 (an example of a cylindrical part) and a lower part fixed to the shaft member 12. For this reason, when a steering force is input to the bar handle 8, the torque transmission unit 13 is twisted. Therefore, the pickup coil 91 detects a change in physical quantity according to the twist amount. This physical quantity is converted into a value indicating the steering force by an electronic circuit electrically connected to the pickup coil 91.
  • the motorcycle 1 includes a first part (for example, the handle holder 21) that is non-rotatably connected to the bar handle 8, and a second part that is non-rotatably connected to the steering shaft 9 ( As an example, a shaft member 12) is provided.
  • the first part and the second part are connected so as to be capable of relative displacement.
  • the torque sensor 90 detects the steering torque of the bar handle 8 by detecting a change in physical quantity based on the relative displacement between the first part and the second part. In the above example, the torque sensor 90 detects the steering torque by measuring the distortion of the torque transmission unit 13 provided between the first part and the second part.
  • the torque sensor 90 is an example of a torque detection unit.
  • the motorcycle 1 As shown in FIG. 4, the motorcycle 1 according to this embodiment includes an assist force applying mechanism 60 at the front portion of the head pipe 10. In the vertical direction of the head pipe 10, the torque sensor 90, the top bridge 50, and the assist force applying mechanism 60 are arranged in this order from top to bottom.
  • the assist force applying mechanism 60 includes a motor 70 and a speed reducer 80.
  • the motor torque generated by the motor 70 acts on the steering shaft 9 via the speed reducer 80.
  • the motor 70 has an output shaft 71.
  • the motor 70 is attached to the head pipe 10 so that the output shaft 71 is parallel to the steering axis A.
  • the output shaft 71 of the motor 70 is provided in front of the steering axis A of the steering shaft 9.
  • the reduction gear 80 has a first gear 82 and a second gear 83 fixed on the intermediate shaft 81.
  • the axis of the intermediate shaft 81 of the reduction gear 80, the axis of the output shaft 71 of the motor 70, and the steering axis A are parallel to each other.
  • the first gear 82 meshes with the output shaft 71 of the motor 70.
  • the second gear 83 of the speed reducer 80 meshes with a third gear 84 that is fixed to the outer peripheral surface of the steering shaft 9.
  • the motor 70 and the speed reducer 80 are provided inside the housing 85.
  • the housing 85 includes a mounting portion 85a at the rear portion.
  • a mounting portion 85 a of the housing 85 is sandwiched between the top bridge 50 and the head pipe 10.
  • the motor torque is transmitted from the output shaft 71 to the first gear 82 of the speed reducer 80. If the 1st gearwheel 82 rotates, the 2nd gearwheel 83 will rotate with this. The rotation of the second gear 83 is transmitted to the third gear 84 of the steering shaft 9. In this way, the motor torque of the motor 70 is transmitted to the steering shaft 9.
  • the assist force applying mechanism 60 includes a motor 70 and a speed reducer 80 that transmits the rotation of the motor to the steering shaft 9.
  • the assist force applying mechanism 60 has a housing 85 that houses the motor 70 and the speed reducer 80.
  • the housing 85 is attached to the head pipe 10 which is a part of the body frame 2 of the motorcycle 1. That is, the motor 70 is attached to the vehicle body frame 2 and is configured to assist the rotation of the steering system (the steering shaft 9 in the above example).
  • FIG. 7 is a functional block diagram illustrating a configuration example of the steering assist device 100.
  • the steering assist device 100 assists the rotation of the steering system 29 that transmits the rotation of the bar handle 8 to the wheels 4.
  • the steering assist device 100 includes a drive unit 70 that outputs an assist force that assists the rotation of the steering system 29.
  • the drive part 70 is comprised with the said motor 70 as an example.
  • the assist of the drive unit 70 increases as the vehicle speed increases with respect to the steering torque of the bar handle 8 in at least a part of the entire vehicle speed range of the vehicle. Thereby, the steering assist according to the vehicle speed becomes possible.
  • the motor 70 which is an example of the drive unit 70, outputs an auxiliary force that assists the rotation of the steering system 29.
  • the rotation of the output shaft 71 of the motor 70 is transmitted to the steering shaft 9 which is a part of the steering system 29. Therefore, the output of the motor 70 determines steering assist.
  • the output of the motor 70 can be determined according to the state of the vehicle including the steering torque and the vehicle speed.
  • the assist by the motor 70 includes a positive direction assist that applies a rotational force in the same direction as the steering torque of the bar handle 8 to the steering system 29, and a negative direction assist that applies a rotational force opposite to the steering torque to the steering system 29. It may be controlled within a range.
  • FIG. 8 is a functional block diagram showing a configuration example of the motorcycle 1 including the steering assist device 100.
  • the steering assist device 100 includes an assist control unit 61 and an assist force applying mechanism 60. That is, the assist force applying mechanism 60 shown in FIG. 4 is a part of the steering assist device.
  • the assist control unit can be configured by a circuit and / or a processor that controls the motor 70.
  • the assist control unit can be provided on a substrate in the housing 85, for example.
  • an electronic control unit Electric Control Unit (ECU) mounted on the motorcycle 1 can be used as an assist control unit.
  • ECU Electronic Control Unit
  • the steering assist device 100 can further include a torque sensor 90 and a vehicle speed sensor 66.
  • the drive control unit 61 controls the motor 70 based on the steering torque detected by the torque sensor 90 and the vehicle speed detected by the vehicle speed sensor 66.
  • the motorcycle 1 may include a steering angle sensor 44.
  • the steering angle sensor 44 detects the steering angle of the bar handle 8.
  • the steering angle sensor 44 may be a sensor that is attached to the steering system 29 (for example, the steering shaft 9, the transmission member 20, or the front fork) and detects rotation of the steering system 29 with respect to the vehicle body frame 2, for example.
  • the assist control unit 61 can capture a signal related to the steering angle detected by the steering angle sensor 44.
  • Assist control unit 61 sends a control signal to driver 72 (drive circuit) of motor 70. Further, the assist control unit 61 can take in a signal indicating the steering torque detected by the torque sensor 90 and a signal related to the steering angle detected by the steering angle sensor.
  • the assist control unit 61 is connected to the steering angle detection unit 43, the torque sensor 90, the vehicle speed sensor 66, and the driver 72 of the motor 70.
  • the assist control unit 61 receives information on the steering angle and the steering angular speed of the bar handle 8 from the steering angle detection unit 43.
  • the assist control unit 61 receives information on the steering torque of the bar handle 8 from the torque sensor 90.
  • the assist control unit 61 receives vehicle speed information of the motorcycle 1 from the vehicle speed sensor 66.
  • the assist control unit 61 calculates a command value for controlling the output of the motor 70 based on the steering torque detected by the torque sensor 90 and the vehicle speed detected by the vehicle speed sensor 66.
  • the assist control unit 61 outputs the calculated command value to the driver 72 of the motor 70.
  • the configuration of the assist control unit 61 is not limited to the example shown in FIG.
  • the assist control unit 61 can accept data other than steering torque, steering angular speed, and vehicle speed.
  • the assist control unit 61 can accept various instruction signals and the like input by a rider operation.
  • the assist control unit 61 may be connected to a display unit including an LED or a display and output information to the rider through the display unit. Further, for example, reception of data from the rudder angle detection unit 43 can be omitted.
  • the rudder angle sensor 44 detects the rotation angle and the rotation direction of the steering system 29.
  • the rudder angle sensor 44 sends data corresponding to the detected rotation angle and rotation direction to the assist control unit 61 as data indicating the rudder angle of the bar handle 8.
  • the data indicating the steering angle of the bar handle 8 may be, for example, a value indicating the rotation angle of the bar handle 8, the rotation angle of the steering shaft 9 or other steering system 29, or the break of the front wheel 4. It may be a value indicating a corner.
  • the rudder angular velocity of the bar handle 8 is the degree of change in the rotation of the bar handle 8. The rudder angular velocity can be obtained by detecting part of the rotation of the bar handle 8 or the steering system 29.
  • the rudder angle detection unit 43 includes a conversion unit 45 that converts the rudder angle detected by the rudder angle sensor 44 into a rudder angular velocity.
  • the conversion part 45 can be set as the structure containing the differentiation circuit which differentiates a steering angle and calculates a steering angular velocity, for example.
  • the assist control unit 61 can also calculate the steering angular velocity using the value of the steering angle received from the steering angle sensor 44. In this case, the rudder angle detection unit 43 may not include the conversion unit 45.
  • the torque sensor 90 includes a magnetostriction unit 94, an amplification unit 95, and a conversion unit 96.
  • the torque sensor 90 detects the steering torque by detecting the torsion of the torque transmission unit 13 that transmits the rotation of the first part (the handle holder 21) to the second part (the shaft member 12). Therefore, the torque transmission unit 13 includes a magnetostriction unit 94.
  • the magnetostrictive portion 94 includes a magnetic material. In the torque transmitting portion 13, the magnetostrictive portion 94 is formed at a portion facing the pickup coil 91 in the radial direction of the shaft member 12.
  • the conversion unit 96 and the amplification unit 95 are mounted on the mounting substrate 92 described above, for example.
  • the magnetic permeability of the magnetostrictive portion 94 changes.
  • An induced voltage is generated in the pickup coil 91 due to a change in the magnetic permeability of the magnetostrictive portion 94.
  • This induced voltage has a value corresponding to the torque applied to the magnetostrictive portion 94.
  • the voltage of the pickup coil 91 is amplified by the amplification unit 95. Further, the amplifying unit 95 may convert the induced voltage into a PWM signal.
  • the conversion unit 96 converts the signal amplified by the amplification unit 95 into a value indicating the steering torque. A value indicating the steering torque is sent to the assist control unit 61.
  • an abnormality occurs in the amplification unit 95, an error signal is sent from the amplification unit 95 to the assist control unit 61.
  • the torque sensor 90 as the magnetostrictive torque sensor, it is possible to reduce the transmission loss of the steering force as compared with the torque sensor using the torsion bar. Further, the torque sensor 90 can be downsized.
  • the assist force applying mechanism 60 includes a driver 72 that drives the motor 70 based on a control signal from the assist control unit 61.
  • the driver 72 includes, for example, a drive circuit such as an inverter that applies an alternating current to the motor 70.
  • the driver 72 receives a current command value as a control signal from the assist control unit 61, generates a PWM signal according to the current command value, and drives the inverter by the PWM signal. Note that a part of the operation of the driver 72 may be executed by the assist control unit 61.
  • the motorcycle 1 includes a current sensor 73 that detects the current of the motor 70.
  • the assist control unit 61 can execute, for example, feedback control using the motor current detected by the current sensor 73.
  • the vehicle speed sensor may be configured to detect the rotational speed of a front wheel or a rear wheel, or may be configured to detect the rotation speed of an engine output sprocket.
  • the vehicle speed sensor may include an engine rotation sensor that detects the engine speed and a gear position sensor that detects a gear position.
  • the vehicle speed sensor 66 detects the rotation of the front wheel 4 and sends a pulse signal corresponding to the rotation of the front wheel 4 to the assist control unit 61.
  • the assist control unit 61 calculates the vehicle speed based on the pulse signal received from the vehicle speed sensor 66.
  • the vehicle speed sensor 66 may be configured to detect the rotation of the rear wheel 5.
  • the assist control unit 61 generates a control signal for the motor 70 according to the steering torque and the vehicle speed, and sends it to the driver 72. Therefore, the assist control unit 61 can include an interface that acquires the steering torque and the vehicle speed, a command value calculation unit that calculates a command value for controlling the motor 70 using the steering torque and the vehicle speed, and an interface that outputs the command value. .
  • the assist control unit 61 calculates a command value indicating the rotational force and the rotational direction of the motor 70. For the calculation of the command value, correspondence data indicating the correspondence between the steering torque and the vehicle speed and the command value can be used.
  • the assist control unit 61 may calculate a command value indicating rotation in the same direction as the steering torque, that is, positive direction assist, or calculate a command value indicating rotation in the opposite direction to the steering torque, that is, negative direction assist. .
  • Whether the command value is a value indicating a positive assist or a value indicating a negative assist may be determined according to a combination of values indicating a vehicle state such as a steering angular speed, a steering torque, and a vehicle speed. it can.
  • the motor 70 generates a rotational force in the same direction as the steering torque input by the bar handle 8 and a rotational force in the opposite direction to the steering torque in accordance with the state of the vehicle such as the steering angular speed, the steering torque, and the vehicle speed. It can be switched and given to the steering system 29. That is, the output of the motor 70 is controlled by the assist control unit 61 so that the plus direction assist and the minus direction assist are switched according to the state of the vehicle.
  • the rotation of the motor 70 is controlled in a range including both rotation in the same direction as the steering torque and rotation in the opposite direction to the steering torque.
  • the motor 70 can realize both functions of the power steering that increases the steering force and the steering damper that attenuates the rotation of the steering system 29. Further, by adopting the control by the motor 70, it becomes possible to quickly and smoothly execute the switching between the power steering and the steering damper.
  • the assist control unit 61 controls the motor 70 so that the assist amount in the positive direction with respect to the steering torque of the bar handle 8 increases as the vehicle speed increases in a part of the vehicle speed range VB1 of the entire vehicle speed range.
  • the assist control unit 61 determines the assist according to the steering torque input to the bar handle 8 and the vehicle speed when the steering torque is input. In the vehicle speed range VB1, the assist when a certain steering torque is input is determined to increase as the vehicle speed increases.
  • This embodiment includes a mode in which the assist with respect to the steering torque increases as the vehicle speed increases.
  • the assist with respect to the steering torque is the magnitude of the assist of the drive unit (motor 70) with respect to the magnitude of the steering torque. That is, the assist with respect to the steering torque indicates the degree of assist with respect to the steering torque. For example, when the input steering torque is the same, the assist torque when the vehicle speed is high is larger than the assist torque when the vehicle speed is low. That is, the degree of assist according to the assist steering torque with respect to the steering torque increases as the vehicle speed increases.
  • the assist said here shall be the assist of the same direction as steering torque, ie, a plus direction.
  • the inventors have noticed that the faster the vehicle speed, the greater the force required to operate the bar handle 8 when turning. This is considered to be due to the fact that the gyro effect of the steered wheels increases when the vehicle speed is high. That is, it is considered that the gyro moment of the steering wheel when the vehicle body is rotated in the roll direction during traveling is reflected in the steering torque. When the vehicle speed is high, the gyro moment during turning increases. As the gyro moment increases, the steering torque required for turning increases.
  • the degree of assist with respect to the steering torque can be increased as the vehicle speed increases.
  • the steering assist at the time of turning can be increased according to the increase in the vehicle speed. Therefore, steering assist according to the vehicle speed becomes possible.
  • the assist control unit 61 can control the motor 70 in the vehicle speed range VB1 so that the assist amount with respect to the steering torque increases as the vehicle speed increases when the steering torque is greater than the first threshold Th1.
  • the assist when a steering torque larger than the first threshold Th1 is input can be increased in accordance with the increase in the vehicle speed.
  • the first threshold Th1 is a steering torque required to change the steering angle by operating the bar handle while the motorcycle 1 (saddle-ride type vehicle) is stopped (hereinafter referred to as a steering torque when the vehicle is stopped). ) Of 40 to 60% (for example, about 50%). It can be said that the steering torque when the vehicle is stopped is the operation torque when the vehicle is stationary. The steering torque when the vehicle is stopped is determined by, for example, the weight of the vehicle, the structure of the steering transmission mechanism, and the like. By setting the first threshold Th1 to about 50% of the steering torque when the vehicle is stopped, assist according to the vehicle speed becomes possible.
  • the aspect in which the first threshold Th1 is set to 50% of the steering torque when the vehicle is stopped is not limited to the case where the first threshold Th1 exactly matches 50% of the steering torque when the vehicle is stopped. Including the case where there is. That is, the first threshold value Th1 can be set to be approximately the same as 50% of the steering torque when the vehicle is stopped.
  • the steering torque when the vehicle is stopped is a steering torque necessary for changing the rudder angle in a state where the saddle riding type vehicle is stopped on the dry paved road surface.
  • the vehicle speed range VB1 can be a predetermined vehicle speed range.
  • the vehicle speed range VB1 may be fixed or may vary depending on the state of the vehicle.
  • the vehicle speed range VB1 is set to a part of the entire vehicle speed range.
  • the entire vehicle speed range is a range of vehicle speeds that the motorcycle 1 (saddle-riding vehicle) can output.
  • the vehicle speed range VB1 is determined according to, for example, vehicle characteristics.
  • the steering assist according to the vehicle speed can be performed by performing the assist increase control accompanying the increase in the vehicle speed.
  • FIG. 9 is a graph showing an example of conditions for performing the assist increase control accompanying the increase in the vehicle speed.
  • the vertical axis represents the steering torque Ts
  • the horizontal axis represents the vehicle speed Vv.
  • the steering torque Ts is greater than the first threshold Th1 (Th1 ⁇ Ts)
  • the vehicle speed Vv is between the second threshold Th2 and the third threshold Th3 (Th2 ⁇ Vv ⁇ Th3).
  • the motor 70 is controlled so that the assist with respect to the steering torque increases as the vehicle speed increases. That is, when the steering torque Ts and the vehicle speed Vv are included in the region A1 of the graph shown in FIG. 9, assist increase control is performed as the vehicle speed increases.
  • the assist with respect to the steering torque not less than the first threshold Th1 increases as the vehicle speed Vv increases.
  • the second threshold Th2 and the third threshold Th3 that determine the upper and lower limits of the vehicle speed range VB1 are both greater than 0 (Th2> 0, Th3> 0). That is, the vehicle speed region VB1 is an intermediate portion in the entire vehicle speed region.
  • the lower limit of the vehicle speed range VB1 can be set to 0, and the upper limit can be set to the second threshold Th2 or the third threshold Th3 (0 ⁇ Vv ⁇ Th2 or 0 ⁇ Vv ⁇ Th3). That is, the vehicle speed region VB1 can be a portion including the vehicle speed 0 in the entire vehicle speed region.
  • the vehicle speed range VB1 can be set to Th3 ⁇ Vv. Further, in the entire vehicle speed region, two or more sections separated from each other can be set as the vehicle speed region VB1. How to set the vehicle speed range VB1 can be determined by the type or characteristics of the motorcycle 1.
  • the steering torque Ts is included in the condition for performing the assist increase control accompanying the increase in the vehicle speed, but other values may be included in this condition.
  • the rudder angular velocity Vr may be included in the condition.
  • the assist for the steering torque can be increased as the vehicle speed increases. That is, when the rudder angular velocity Vr exceeds the threshold Th4, the assist can be prevented from increasing according to the increase in the vehicle speed.
  • rotation of the steering system 29 due to a sudden operation of the rider's bar handle 8 can be suppressed.
  • rotation of the steering system 29 due to disturbance such as kickback can be suppressed.
  • the steering angular velocity Vr may be included in the above condition instead of the steering torque Ts, or both the steering torque Ts and the steering angular velocity Vr may be included in the above condition.
  • the above-described threshold values Th1 to Th4 are determined, for example, by data recorded in the assist control unit 61 in advance.
  • the assist control unit 61 includes a recording unit such as a memory for recording the threshold values Th1 to Th4.
  • Threshold values Th1 to Th4 may not be fixed values.
  • the threshold values Th1 to Th4 can be values determined according to vehicle conditions such as steering torque, steering angular speed, vehicle speed, and vehicle acceleration.
  • the assist control unit 61 can determine the thresholds Th1 to Th4 according to the state of the vehicle with reference to the data indicating the correspondence between the values indicating the state of the vehicle and the thresholds Th1 to Th4.
  • FIG. 10 is a diagram illustrating an example of the processing flow of the assist control unit 61.
  • the assist control unit 61 calculates an assist command value Ia using the steering torque Ts received from the torque sensor 90 and the vehicle speed Vv received from the vehicle speed sensor 66 (step S1).
  • the assist command value Ia can be a value for causing the motor 70 to generate torque in the same direction as the steering torque applied to the steering system 29.
  • the assist command value Ia is a current command value. Assume that the assist command value Ia for generating torque in the same direction as the steering torque is positive (Ia> 0).
  • step S1 the assist control unit 61 refers to data indicating a correspondence relationship between the steering torque, the vehicle speed, and the assist command value, and determines an assist command value Ia corresponding to the input steering torque Ts and the vehicle speed Vv.
  • the assist control unit 61 can determine the assist command value Ia corresponding to the input steering torque Ts and the vehicle speed Vv by map calculation using map data as data indicating the correspondence.
  • FIG. 11 is a graph showing an example of a correspondence relationship between the steering torque, the vehicle speed, and the assist command value.
  • the correspondence relationship between the steering torque and the assist command value is set for a plurality of vehicle speeds. That is, the correspondence between the steering torque and the assist command value is set so as to differ depending on the vehicle speed.
  • a correspondence relationship is set in which the positive assist command value increases as the steering torque increases.
  • the method of increasing the assist command value with respect to the increase of the steering torque differs depending on the vehicle speed.
  • V1 and V2 are non-zero vehicle speed values. As an example, 0 ⁇ V1 ⁇ V2.
  • V1 and V2 may be a vehicle speed range.
  • the correspondence relationship between the steering torque and the assist command value is not limited to the example shown in FIG.
  • This correspondence can be recorded as map data in the assist control unit 61, for example, but the format of the data indicating the correspondence is not limited to map data.
  • data such as a function for calculating a corresponding assist command value using given steering torque and vehicle speed values as well as table format data can be used as data indicating the correspondence.
  • the assist control unit 61 calculates the viscosity compensation command value In using the steering angular velocity Vr and the vehicle speed Vv received from the steering angle detection unit 43 (step S2).
  • the viscosity compensation command value In can be a value for causing the motor 70 to generate a torque in a direction opposite to the steering torque applied to the steering system 29, for example.
  • the viscosity compensation command value In is a current command value.
  • the assist command value Ia for generating torque in the direction opposite to the steering torque is negative (Ia ⁇ 0).
  • step S2 the assist control unit 61 refers to data indicating the correspondence relationship between the steering angular velocity and the vehicle speed and the viscosity compensation command value, and determines the viscosity compensation command value In corresponding to the input steering angular velocity Vr and the vehicle speed Vv. .
  • the assist control unit 61 can determine the viscosity compensation command value In corresponding to the set of the steering rudder angular velocity Vr and the vehicle speed Vv by map calculation using map data as data indicating the correspondence.
  • FIG. 12 is a graph showing an example of a correspondence relationship between the steering angular speed and the vehicle speed indicated by the map data, and the viscosity compensation command value.
  • the correspondence relationship between the steering angular velocity and the viscosity compensation command value is set for a plurality of vehicle speeds. That is, the correspondence relationship between the steering angular velocity and the viscosity compensation command value is set so as to vary depending on the vehicle speed.
  • the correspondence relationship illustrated in FIG. 12 includes a correspondence relationship in which the negative viscosity compensation command value decreases as the steering angular speed increases. The method of changing the viscosity compensation command value with respect to the increase in the steering angular speed differs depending on the vehicle speed.
  • the correspondence relationship between the steering angular velocity and the viscosity compensation command value is not limited to the example shown in FIG.
  • This correspondence can be recorded as map data in the assist control unit 61, for example, but the format of the data indicating the correspondence is not limited to map data.
  • data such as a function for calculating a corresponding viscosity compensation command value by using given steering angular velocity and vehicle speed values in addition to table format data can be used as data indicating a correspondence relationship.
  • the assist control unit 61 adds the assist command value Ia calculated in step S1 and the viscosity compensation command value In calculated in step S2 (step S3).
  • the sum Ia + In of the assist command value Ia and the viscosity compensation command value In is calculated as the output command value I.
  • the assist control unit 61 outputs the command value I to be output to the motor 70 based on the command value Ia determined according to the steering torque Ts and the command value In determined according to the steering angular velocity Vr. Has been decided.
  • the assist command value Ia and the viscosity compensation command value In are added.
  • other command values can be added.
  • a static friction compensation command value Is indicating the degree of assist in the plus direction determined according to the differential value of the steering torque Ts
  • Assist control unit 61 executes current feedback processing using motor current Im detected by motor 70 and output command value I (step S4). For example, the assist control unit 61 can compare the motor current Im detected by the motor 70 with the output command value I, generate a control signal that reduces the difference therebetween, and output the control signal to the motor 70. . Note that the feedback process may be executed by the driver 72.
  • In (1) and In (2) are both 0.
  • the output command value I is the sum of the assist command value Ia and the viscosity compensation command value In. Therefore, Ia (1) + Ib (1), Ia (2) + Ib (2), and Ia (3) + Ib (3) are calculated as the output command value I.
  • the output command value I calculated from the assist command values Ia (1), Ia (2), Ia (3) and the viscosity compensation command values In (1), In (2), In (3) is, for example, V1 In the vehicle speed range of ⁇ Vv ⁇ V2, the vehicle speed Vv increases as the vehicle speed Vv increases.
  • the output torque of the motor 70 increases as the vehicle speed Vv increases.
  • the torque in the same direction as the steering torque applied from the motor 70 to the steering system 29 increases as the vehicle speed Vv increases.
  • the output command value I is constant.
  • a vehicle speed range (V1 ⁇ Vv ⁇ V2) in which the output command value I increases when the vehicle speed Vv is increased in a state where the steering torque Ts and the steering angular velocity Vr satisfy predetermined conditions.
  • the assist for the steering torque Ts increases as the vehicle speed Vv increases.
  • Such an assist enables an assist according to the vehicle speed. For example, even if the vehicle speed increases, the rider is less likely to feel that the load on the bar handle 8 during turning is heavy.
  • FIG. 13 and 14 are graphs showing examples of assist control.
  • the vertical axis indicates the magnitude of torque, that is, assist (assisting force) that the motor 70 applies to the steering system 29, and the horizontal axis indicates the vehicle speed.
  • These graphs show torque transitions when the vehicle speed changes under the condition that the steering torque Ts is constant and Ts> Th1.
  • the assist direction is the opposite direction to the steering torque, that is, the minus direction.
  • the assist in the positive direction increases as the vehicle speed Vv increases. Therefore, in the vehicle speed range VB1, the assist direction is changed from the minus direction to the plus direction.
  • the assist direction is a plus direction.
  • the vehicle speed region VB1 where the assist increases as the vehicle speed Vv increases may include a vehicle speed region in which the assist direction is negative.
  • the positive direction assist decreases as the vehicle speed Vv increases.
  • the steering assist device 100 decreases the assist as the vehicle speed Vv increases in the vehicle speed range VB0, and increases the vehicle speed Vv in the vehicle speed range VB1 higher than the vehicle speed range VB0.
  • the assist may be increased accordingly.
  • the vehicle speed range VB0 is an example of the first vehicle speed range.
  • the vehicle speed region VB1 is an example of the second vehicle speed region.
  • the change of the assist with respect to the change of the vehicle speed Vv in the vehicle speed range VB1 is not linear.
  • the steering assist device 100 reduces the assist as the vehicle speed Vv increases in the vehicle speed range VB0 when the steering torque Ts is constant, and in the vehicle speed range VB1 higher than the vehicle speed range VB0.
  • the assist is increased as the vehicle speed Vv increases.
  • the change in assist with respect to the change in the vehicle speed Vv in the vehicle speed range VB0 and the vehicle speed device VB1 may be curvilinear or stepwise in addition to being linear.
  • the assist decrease amount D1 that decreases as the vehicle degree Vv increases in the vehicle speed range VB0 is larger than the assist increase amount that increases as the vehicle speed Vv increases in the vehicle speed region VB1.
  • the ratio of the assist decrease amount to the vehicle speed change amount in the vehicle speed range VB0 is larger than the ratio of the assist increase amount to the vehicle speed change amount in the vehicle speed range VB1.
  • the low assist force constant vehicle speed region LVB where the assist is constant with respect to the change in the vehicle speed Vv in a vehicle speed region lower than the vehicle speed region VB0 where the assist is decreased as the vehicle degree Vv increases.
  • a high-speed assist force constant vehicle speed region HVB in which the assist is constant with respect to a change in the vehicle speed in a vehicle speed region higher than the vehicle speed region VB1 in which the assist is increased as the vehicle speed Vv increases.
  • the applied torque Ta is the magnitude of torque in the same direction as the steering torque that the steering assist device 100 applies to the steering shaft.
  • the applied torque Ta is a value indicating the magnitude of the applied torque with respect to the input steering torque.
  • the applied torque Ta in FIG. 13 and the steering torque Ts input to the bar handle by the rider are as shown in the graph in FIG.
  • the change by the vehicle speed of the provision torque by the steering assistance apparatus 100 is not restricted to the example shown in FIG.13 and FIG.14.
  • the maximum value of the applied torque Ta with respect to the steering torque in the vehicle speed range VB0 is larger than the maximum value of the applied torque Ta with respect to the steering torque in the vehicle speed range VB1.
  • the maximum value of the applied torque Ta with respect to the steering torque in the vehicle speed range VB0 may be the same as or smaller than the maximum value of the applied torque Ta with respect to the steering torque in the vehicle speed range VB1. Further, in FIG.
  • the ratio of the assist decrease amount to the vehicle speed change amount in the vehicle speed range VB0 may be the same as or smaller than the ratio of the assist increase amount to the vehicle speed change amount in the vehicle speed range VB1. Further, in the entire vehicle speed range, a plurality of sets of a vehicle speed range in which the assist is decreased as the vehicle speed Vv increases and a vehicle speed range in which the assist is increased as the vehicle speed Vv is increased may be included.
  • the vehicle speed range VB0 and the vehicle speed range VB1 are adjacent to each other. That is, the upper limit value of the vehicle speed range VB0 matches the lower limit value of the vehicle speed range VB1. In the region lower than the vehicle speed that is the boundary between the vehicle speed region VB0 and the vehicle speed region VB1, the assist decreases as the vehicle speed Vv increases. In the region that is higher than the vehicle speed that is the boundary between the vehicle speed region VB0 and the vehicle speed region VB1, the vehicle speed Vv increases. As the number of assists increases. On the other hand, there may be an intermediate assist force constant vehicle speed region in which the assist is constant with respect to a change in the vehicle speed between the vehicle speed region VB0 and the vehicle speed region VB1.
  • the mode in which the steering assist device 100 decreases or increases the applied torque Ta as the vehicle speed Vv increases is not limited to the mode in which the applied torque Ta is linearly changed with respect to the change in the vehicle speed Vv.
  • the steering assist device 100 may change the applied torque Ta in a curvilinear or stepwise manner with respect to a change in the vehicle speed Vv.
  • FIG. 16 to 19 are graphs showing other examples of the applied torque control by the steering assist device 100.
  • FIG. These graphs show the transition of applied torque that the steering assist device 100 applies to the steering shaft 9 when the vehicle speed changes under the condition that the steering torque Ts is constant and Ts> Th1.
  • the steering assist device 100 in the vehicle speed range VB0, gradually decreases the applied torque Ta over a plurality of stages as the vehicle speed Vv increases. In the vehicle speed range VB1, the steering assist device 100 increases the applied torque Ta stepwise over a plurality of steps as the vehicle speed Vv increases. Between the vehicle speed range VB0 and the vehicle speed range VB1, there is a vehicle speed region where the intermediate assist force is constant and the applied torque Ta is constant with respect to changes in the vehicle speed.
  • the steering assist device 100 decreases the applied torque Ta in one step at the vehicle speed Vv1.
  • the vehicle speed Vv1 is set to the vehicle speed range VB0.
  • the steering assist device 100 increases the applied torque Ta in one step at the vehicle speed Vv2.
  • the vehicle speed Vv2 is set to the vehicle speed range VB1.
  • the steering assist device 100 changes the applied torque Ta linearly with respect to the change in the vehicle speed Vv in the vehicle speed range VB0 and the vehicle speed VB1. Between the vehicle speed range VB0 and the vehicle speed range VB1, the steering assist device 100 does not change the applied torque Ta with respect to the change in the vehicle speed Vv. That is, between the vehicle speed range VB0 and the vehicle speed range VB1, there is an intermediate assist force constant vehicle speed region MVB in which the applied torque Ta is constant with respect to changes in the vehicle speed Vv. Note that, in at least one of the vehicle speed range VB0 and the vehicle speed range VB1, the applied torque Ta may change in a curvilinear or stepwise manner with respect to the change in the vehicle speed Vv.
  • the example shown in FIG. 19 includes a plurality of sets of a vehicle speed range in which the assist is decreased as the vehicle speed Vv is increased and a vehicle speed range in which the assist is increased as the vehicle speed Vv is increased in the entire vehicle speed range.
  • the steering assist device 100 decreases the applied torque Ta as the vehicle speed Vv increases in the vehicle speed range VB0, and applies the applied torque Ta as the vehicle speed Vv increases in the vehicle speed range VB1 higher than the vehicle speed range VB0.
  • the steering assist device 100 decreases the applied torque Ta as the vehicle speed Vv increases in the vehicle speed range VB2 higher than the vehicle speed range VB1, and applies the applied torque Ta as the vehicle speed Vv increases in the vehicle speed range VB3 higher than the vehicle speed range VB2. Increase.
  • the applied torque Ta may change in a curvilinear or stepwise manner with respect to the change in the vehicle speed Vv. Further, in at least one vehicle speed region between the vehicle speed region VB0 and the vehicle speed region VB1, between the vehicle speed region VB1 and the vehicle speed region VB2, and between the vehicle speed region VB2 and the vehicle speed region VB3, the applied torque with respect to the change in the vehicle speed Vv. There may be an intermediate auxiliary force constant vehicle speed region in which Ta is constant.
  • the configuration of the assist force applying mechanism 60 is not limited to the example shown in FIG. A configuration in which the rotation of the motor 70 is transmitted to a portion of the steering system 29 other than the steering shaft 9 may be employed.
  • the rotation of the motor 70 can be transmitted to any one of the top bridge 50, the bottom bridge 14, the left shock absorber 6, and the right shock absorber 7.
  • the drive unit is the motor 70, but the drive unit may be an actuator other than the motor 70.
  • a hydraulic actuator may be used as the drive unit.
  • the steering system 29 includes the transmission member 20, the top bridge 50, the bottom bridge 14, the left shock absorber 6, the right shock absorber 7, and the steering shaft 9.
  • the steering system 29 is included in this example. Not limited.
  • the steering system 29 can take an arbitrary configuration for turning the steered wheels.
  • the transmission member 20 may be omitted.
  • the bar handle 8 can be connected to the steering shaft 9 so as not to rotate.
  • the transmission member 20 and the top bridge 50 can be omitted.
  • the shock absorber may not be included in the steering system 29.
  • the straddle-type vehicle can include a link mechanism including an arm that is provided between the pair of wheel bodies and the frame and is rotatably supported with respect to the body frame.
  • the arm of the link mechanism can be part of a steering system that transmits the steering force of the bar handle to the pair of wheels.
  • step S1 and step S2 the command values Ia and In can be calculated using function data instead of using map data as data indicating the correspondence.
  • the torque detector is not limited to the torque sensor 90 having the above configuration.
  • the torque detection unit may be configured to calculate the operation torque based on the current of the motor 70.
  • the torque sensor 90 may be configured to detect the torque of the rotating shaft of the steering shaft 9 or the speed reducer 80.
  • other types of torque sensors can be used instead of the magnetostrictive torque sensor. Other methods include, for example, a torsion bar type that detects torsion of a torsion bar, or a method that detects torque using a strain gauge.
  • the torque sensor 90 is provided in a part of the steering system 29, and the change in the physical quantity based on the deformation of the easily deformable portion (torque transmitting portion 13) that deforms according to the torque input to the steering system 29. It is the structure which detects.
  • the configuration of the easily deformable portion is not limited to the above example.
  • An easily deformable portion for detecting the steering torque can be provided at any position of the steering system 29.
  • an easily deformable portion may be provided between the steering shaft 9 and the head pipe 10 or the bar handle 8.
  • the output of the torque sensor 90 can also be used for any other control for assisting the steering force.
  • the output of the torque sensor 90 can be used for traction control and / or control of ABS (Anti-lock Brake System).
  • ABS Anti-lock Brake System
  • the outputs of the rudder angle sensor 44 and the vehicle speed sensor 66 can be used for any other control.
  • the steering angle detection unit 43 is not limited to the configuration shown in FIG.
  • the rudder angle detection unit may be configured to calculate the rudder angular velocity based on the current of the motor 70.
  • the bar handle includes a bar that extends in the left-right direction of the saddle riding type vehicle and is fixed to the steering shaft. There may be one bar handle bar, or two left and right bars connected to each other.
  • the left and right bars of the bar handle may be composed of independent parts. That is, the bar handle may be a separate handle.
  • a left grip is provided at the left end of the bar handle bar.
  • a right grip is provided at the right end of the bar.
  • the range in which the bar handle can swing is 180 degrees (half rotation) or less. This swingable range is the difference (lock to lock) between the steering angle when the bar handle is fully operated to the left and the steering angle when the bar handle is fully operated to the right.
  • the steering shaft swings about an axis extending in the vertical direction of the body frame, that is, a swing shaft.
  • the form in which the swing shaft of the steering shaft extends in the vertical direction of the body frame includes a case where the swing shaft is inclined with respect to the vertical direction of the body frame.
  • the inclination with respect to the vertical direction of the vehicle body frame in the direction in which the swing shaft extends is smaller than the inclination with respect to the horizontal direction and the front-rear direction of the vehicle body frame.
  • the extending direction of the swing axis of the bar handle and the extending direction of the swing shaft of the steering shaft may be the same or different.
  • the steering assist device applies the assisting force to the steering shaft
  • the power of the driving source such as the motor is transmitted to the steering shaft via the transmission member such as the speed reducer as in the above example.
  • the steering assist device may apply the assist force by transmitting the power of the drive source to the steering shaft via another member such as a shock absorber, a front fork, or a link mechanism, for example.
  • the first vehicle speed region is a vehicle speed region that is slower than the second vehicle speed region.
  • the steering assist device decreases the auxiliary force as the vehicle speed increases in the first vehicle speed range. In the second vehicle speed region that is higher than the vehicle speed region, the assist force can be increased as the vehicle speed increases.
  • the steering assist device reduces the assist force as the vehicle speed increases in the first vehicle speed region and the vehicle in the second vehicle speed region when the steering torque and the steering angular velocity input by the rider to the bar handle are constant. As the speed increases, the assisting force may be increased.
  • the steering assist device decreases the assist force as the vehicle speed increases in the first vehicle speed region when the steering torque input by the rider to the bar handle is constant and the steering angular speed is greater than a predetermined value, In the second vehicle speed region, the assist force may be increased as the vehicle speed increases.
  • the steering assist device may include a torque detector that detects the steering torque of the bar handle and a vehicle speed sensor that detects the speed of the vehicle.
  • the steering assist device controls the drive unit based on the steering torque detected by the torque detection unit and the vehicle speed detected by the vehicle speed sensor, and applies an assist force in the same direction as the steering torque to the steering shaft.
  • the torque detector is not limited to the torque sensor of the above example, and the torque detector is a sensor that detects a physical quantity related to the steering torque input by the rider to the bar handle.
  • the physical quantity related to the steering torque can be, for example, the steering torque, the time variation of the steering torque, that is, the differentiation of the steering torque, or the second derivative of the steering torque.
  • the steering assist device controls the assist force applied to the steering shaft based on the output signal of the sensor of the torque detector and the output signal of the vehicle speed sensor.
  • the manner in which the rider inputs the steering torque includes the case where the steerer tries to rotate due to disturbance and the rider holds the bar handle to prevent it from moving.
  • the steering assist device decreases the assist force as the vehicle speed increases in the first vehicle speed region.
  • the auxiliary force in the same direction as the steering torque applied to the steering shaft by the steering assist device when the steering torque Ts11 that maintains the vehicle speed Vv11 in the first vehicle speed region is input to the bar handle is the same in the first vehicle speed region. This is larger than the assist force when the same steering torque Ts11 is input to the bar handle while maintaining the vehicle speed Vv12 (Vv11 ⁇ Vv12) higher than the vehicle speed Vv11.
  • the steering assist device increases the assist force as the vehicle speed increases in the second vehicle speed region.
  • the assist force in the same direction as the steering torque that the steering assist device applies to the steering shaft is In the two vehicle speed region, the vehicle speed Vv22 (Vv21 ⁇ Vv22) higher than the vehicle speed Vv21 is maintained, and the assist force becomes smaller than the assist force when the same steering torque Ts22 is input to the bar handle.
  • the maximum value of the assisting force applied to the steering shaft by the steering assist device in the first vehicle speed region may be larger than the maximum value of the assisting force in the second vehicle speed region.
  • the maximum value of the assist force applied to the steering shaft by the steering assist device in the first vehicle speed region may be the same as or smaller than the maximum value of the assist force in the second vehicle speed region.
  • the amount of decrease in the assisting force that the steering assist device decreases as the vehicle speed increases in the first vehicle speed region is smaller than the amount of increase in the assisting force that increases as the vehicle speed increases in the second vehicle speed region. May be.
  • the ratio of the reduction amount of the assisting force to the change amount of the vehicle speed in the first vehicle speed region may be smaller than the ratio of the increase amount of the assisting force to the change amount of the vehicle speed in the second vehicle speed region.
  • a plurality of pairs of a first vehicle speed region in which the assist force is decreased as the vehicle speed increases and a second vehicle speed region in which the assist force is increased as the vehicle speed is increased are included in all vehicle speed ranges. Good.
  • the steering assist device may increase the assist force as the vehicle speed increases in a vehicle speed region lower than the first vehicle speed region.
  • the assist force for the steering torque in the extremely low speed region (the vehicle speed is close to 0) may be set to a value smaller than the maximum value in the entire vehicle speed region.
  • the positive / negative (plus / minus) of the assist force is positive (plus) in the same direction as the steering torque, and negative (minus) in the opposite direction to the steering torque.
  • the increase in the assist force is a change in the assist force in the positive direction.
  • the reduction in the assist force is a change in the assist force in the negative direction.
  • the assisting force that the steering assist device increases or decreases as the vehicle speed changes is an assisting force in the same direction as the steering torque.
  • the steering assist device may apply an assist force in a direction opposite to the steering torque to the steering shaft.
  • the vehicle body frame is a member that receives stress applied to the lean vehicle during traveling.
  • a monocoque stressed skin structure
  • a semi-monocoque or a structure in which a vehicle part also serves as a member that receives stress is also included in the example of the body frame.
  • parts such as an engine and an air cleaner may be a part of the body frame.
  • the steering shaft and the steering wheel may be connected via other transmission members such as a shock absorber, a front fork or a link mechanism. Further, the steering shaft and the bar handle may be coupled via another transmission member.
  • the present invention can be applied to any straddle-type vehicle other than the motorcycle 1.
  • the present invention can be applied to a motor tricycle, ATV, snowmobile, bicycle and the like.
  • the steering wheel may be two wheels arranged side by side in the left-right direction of the saddle riding type vehicle.
  • the saddle riding type vehicle refers to all vehicles that ride in a state in which an occupant straddles a saddle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Steering Devices For Bicycles And Motorcycles (AREA)

Abstract

鞍乗型車両は、車体フレーム2と、車体フレーム2に支持されるステアリングシャフト9と、左グリップ8Lと右グリップ8Rとを含み、ステアリングシャフト9に連結されるバーハンドル8と、操舵輪4と、ライダーがバーハンドル8に入力した操舵トルクと同じ方向の補助力をステアリングシャフト9に付与する操舵補助装置100とを備える。操舵補助装置100は、第1車速領域VB0において、車両の速度の上昇に伴って補助力Taを減少させ、第1車速領域VB0より高い第2車速領域VB1において、車両の速度の上昇に伴って補助力Taを増加させる。

Description

バーハンドルを有する鞍乗型車両
 本発明は、バーハンドルの操舵を補助する操舵補助装置を有する鞍乗型車両に関する。
 従来、操舵アシスト装置を備える自動二輪車が提案されている。例えば、下記特許第5405969号公報(特許文献1)には、自動二輪車の操舵装置において、モータによる補助操舵力を与えるパワーアシスト手段を設けることが記載されている。このモータは、車速、及び、ハンドルに入力される入力トルクによって制御される。また、この操舵装置は、ハンドルの回転角度と前輪の操舵角度との比率である操舵比を任意に変更する操舵比可変手段を備える。この構成により、低速から高速までの全速度域において最適な操舵比を得ることができる。
 また、特許第5475603号公報(下記特許文献2)には、ハンドルに加えられる操作力に補助力を与えるモータと、車速センサを備える鞍乗型車両が開示されている。この鞍乗型車両では、車速センサが車速ゼロ近傍の状態を検出しているときは、モータが与える補助力が、最大値と最小値との間の所定の中間値に設定される。これにより、車速がゼロ近傍の状態では、運転者のハンドルの操作力に対して補助力が過敏になり過ぎないようになる。
特許第5405969号公報 特許第5475603号公報
 本発明は、従来とは異なる操舵特性が得られるバーハンドルを有する鞍乗型車両を提供することを目的とする。
課題を解決するための手段及び発明の効果
 発明者らは、鞍乗型車両において、バーハンドル操舵補助装置について検討した。まず、ライダーの操舵と車両の挙動を注意深く観察し、鞍乗型車両に求められる操舵特性について調べた。鞍乗型車両のバーハンドルと操舵輪は、いずれも上下方向に延びる軸を中心に揺動する。バーハンドルと操舵輪の揺動範囲が狭い。また、バーハンドルの回転角度と操舵輪の操舵角度の比率である操舵比は、1に近い。
 また、バーハンドルを有する鞍乗型車両では、低速域での旋回時は、高速域での旋回時に比べて、ライダーが入力する操舵トルクの大きさ及び舵角の大きさが大きくなる。そのため、低速域での旋回では、高速域での旋回に比べて、大きな操舵補助力が求められる。これに対して、高速域での旋回時は、低速域での旋回時に比べて、ライダーが入力する操舵トルクの大きさ及び舵角の大きさが小さくなる。そのため、高速域での旋回では、低速域での旋回に比べて、小さな操舵補助力が求められる。
 そこで、発明者らは、バーハンドルを有する鞍乗型車両において、車速が上昇するにつれて操作補助装置による補助力を減らす制御を検討した。この制御により、車速に応じた操舵特性を得ることを試みた。発明者らは、様々な条件で試験を繰り返したところ、車速の上昇に伴って補助力を減少させると、ライダーが、バーハンドルに入力する力が重く感じる車速域があることを見出した。
 例えば、車速が高くなると操舵輪の回転モーメントが大きくなる。これにより、操舵のために、バーハンドルに入力する力が大きくなる場合がある。これは車速の上昇に伴う操舵輪の回転モーメントの増加の影響が大きくなるためと考えられる。また、バーハンドルの回転角度に対する操舵輪の操舵角度の比率である操舵比が1に近い場合は、この影響がより大きくなると考えられる。このような場合、車速の上昇に伴って、補助力を大きくすることが好ましい。
 すなわち、発明者らは、バーハンドルを有する鞍乗型車両では、求められる補助力が、車速が上昇するにつれて減少し、さらなる車速の上昇に伴って増加する場合があることを見出した。そして、発明者らは、全車速域のうち第1車速領域において、車速が上昇するにつれて補助力を減少させ、第1車速領域より高い第2車速領域において、車速が上昇するにつれて補助力を大きくする制御に想到した。この制御により、従来とは異なる操舵特性が得られる、バーハンドルを有する鞍乗型車両を提供できる。この知見に基づいて、発明者らは、下記実施形態に想到した。
 (構成1)
 構成1における鞍乗型車両は、車体フレームと、ステアリングシャフトと、バーハンドルと、操舵輪と、操舵補助装置とを備える。前記ステアリングシャフトは、前記車体フレームに、前記車体フレームの上下方向に延びる軸周りに揺動可能に支持される。前記バーハンドルは、前記鞍乗型車両の左右方向において中央より左に位置する左グリップと、前記鞍乗型車両の左右方向において中央より右に位置する右グリップとを含み、前記ステアリングシャフトに連結される。前記操舵輪は、前記ステアリングシャフトに連結される。前記操舵補助装置は、ライダーが前記バーハンドルに入力した操舵トルクと同じ方向の補助力を前記ステアリングシャフトに付与する。前記操舵補助装置は、前記ライダーが前記バーハンドルに入力した操舵トルクが一定の場合、第1車速領域において、前記車両の速度の上昇に伴って前記補助力を減少させ、前記第1車速領域より高い第2車速領域において、前記車両の速度の上昇に伴って前記補助力を増加させる。
 上記構成1によれば、鞍乗型車両の操舵補助装置は、バーハンドルに連結され上下方向に延びるステアリングシャフトに、ライダーがバーハンドルに入力した操舵トルクと同じ方向の補助力を付与する。操舵補助装置は、全車速域のうち第1車速領域において、車両の速度が上昇するにつれて、入力された操舵トルクに対する補助力を減少させる。さらに、操舵補助装置は、第1車速領域より高い第2車速領域において、車両の速度が上昇するにつれて、入力された操舵トルクに対する補助力を大きくすることができる。これにより、従来とは異なる操舵特性が得られる、バーハンドルを有する鞍乗型車両を提供できる。なお、車両の速度は、車両の進行方向における速度である。
 (構成2)
 上記構成1において、前記操舵補助装置が前記第1車速領域において前記車両の速度の上昇に伴って減少する前記補助力の減少量は、前記第2車速領域において前記車両の速度の上昇に伴って増加する前記補助力の増加量より大きくすることができる。これにより、従来とは異なる操舵特性が得られる、バーハンドルを有する鞍乗型車両を提供できる。
 (構成3)
 上記構成1又は構成2において、前記操舵補助装置は、前記第1車速領域における前記車両の速度の変化量に対する前記補助力の減少量の比率を、前記第2車速領域における前記車両の速度の変化量に対する前記補助力の増加量の比率より大きくしてもよい。これにより、従来とは異なる操舵特性が得られる、バーハンドルを有する鞍乗型車両を提供できる。
 (構成4)
 上記構成1~3のいずれにおいて、前記操舵補助装置は、前記車両の速度の上昇に伴って前記補助力を減少させる第1車速領域より低い車速領域に、前記車両の速度の変化に対して前記補助力が一定となる低速補助力一定車速領域を設けてもよい。これにより、従来とは異なる操舵特性が得られる、バーハンドルを有する鞍乗型車両を提供できる。
 (構成5)
 上記構成1~4のいずれにおいて、前記操舵補助装置は、前記車両の速度の上昇に伴って前記補助力を増加させる第2車速領域より高い車速領域に、前記車両の速度の変化に対して前記補助力が一定となる高速補助力一定車速領域を設けてもよい。これにより、従来とは異なる操舵特性が得られる、バーハンドルを有する鞍乗型車両を提供できる。
 (構成6)
 上記構成1~5のいずれにおいて、前記第1車速領域と前記第2車速領域が隣接していてもよい。すなわち、前記操舵補助装置は、前記第1車速領域と前記第2車速領域が隣接するように、前記補助力を制御することができる。これにより、従来とは異なる操舵特性が得られる、バーハンドルを有する鞍乗型車両を提供できる。
 (構成7)
 上記構成1~5のいずれにおいて、前記第1車速領域と前記第2車速領域の間に、前記車両の速度の変化に対して前記補助力が一定となる中間補助力一定車速領域があってもよい。すなわち、前記操舵補助装置は、前記第1車速領域と前記第2車速領域の間に、前記車両の速度の変化に対して前記補助力が一定となる中間補助力一定車速領域を設けてもよい。これにより、従来とは異なる操舵特性が得られる、バーハンドルを有する鞍乗型車両を提供できる。
 (構成8)
 上記構成1~7のいずれにおいて、前記操舵補助装置は、前記ライダーが前記バーハンドルに入力した操舵トルクが第1閾値より大きく、かつ一定の場合、第1車速領域において、前記車両の速度の上昇に伴って前記補助力を減少させ、前記第1車速領域より高い第2車速領域において、前記車両の速度の上昇に伴って前記補助力を増加させてもよい。これにより、従来とは異なる操舵特性が得られる、バーハンドルを有する鞍乗型車両を提供できる。
 上記構成1~8の鞍乗型車両は、次のような実施形態をとり得る。本発明の実施形態における操舵補助装置は、鞍乗型車両のバーハンドルの回転を車輪に伝達する操舵系の回転をアシストする操舵補助装置である。前記操舵補助装置は、前記操舵系の回転をアシストする補助力を出力する駆動部を備える。前記鞍乗型車両の全車速域の少なくとも一部において、前記バーハンドルの操舵トルクに対する前記駆動部のアシストが、車速が上昇するにつれて大きくなる(第1の構成)。
 上記第1の構成において、全車速域において、車速が上昇するにつれて操舵トルクに対するアシストが大きくなる車速域が存在する。これにより、車速に応じて大きな操舵力が要求となる場面で、要求に応じたアシストが可能になる。
 上記第1の構成において、前記鞍乗型車両の全車速域の少なくとも一部において、前記操舵トルクが第1閾値より大きいときに、前記車速が上昇すると、前記操舵トルクに対する前記駆動部のアシストが大きくなる態様とすることができる(第2の構成)。上記第2の構成により、第1閾値より大きい操舵トルクが入力された際の操舵アシストを、車速が上昇するにつれて大きくすることができる。
 上記第1又は第2の構成において、前記車速が、所定の車速域内である場合に、前記バーハンドルの操舵トルクに対する前記駆動部のアシストが、車速が上昇するにつれて大きくなる態様とすることができる(第3の構成)。
 上記第1~第3のいずれかの構成において、前記操舵補助装置は、前記バーハンドルの操舵トルクを検出するトルク検出部と、前記車速を検出する車速センサと、前記トルク検出部で検出された操舵トルクと、前記車速センサで検出された車速に基づいて前記駆動部を制御するアシスト制御部とを備えることができる(第4の構成)。
 上記第4の構成により、操舵トルク及び車速に基づいて駆動部によるアシストを決定することができる。アシスト制御部は、前記鞍乗型車両の全車速域の少なくとも一部において、前記バーハンドルの操舵トルクに対する前記駆動部のアシストが、車速が上昇するにつれて大きくなるよう、前記駆動部を制御することができる。
 上記第1~第4のいずれかの構成の操舵補助装置を備える鞍乗型車両も、本発明の実施形態に含まれる。
 本発明の実施形態における操舵補助方法は、鞍乗型車両のバーハンドルの回転を車輪に伝達する伝達部の回転をアシストする操舵補助方法である。前記操舵補助方法は、前記バーハンドルの操舵トルクを検出する工程と、前記鞍乗型車両の速度を検出する工程と、駆動部が、前記操舵系の回転をアシストする補助力を出力する工程とを有する。前記鞍乗型車両の全車速域の少なくとも一部において、前記操舵トルクに対する前記駆動部のアシストが、前記車速が上昇するにつれて大きくなる。
本発明の一実施形態に係る自動二輪車の側面図である。 図1に示した車両の一部を示す正面図である。 トップブリッジの上面図である。 図2のVI-VI線断面図である。 ハンドルホルダのロア部材の上面図である。 図5Aのb-b断面図である。 図4の拡大図である。 操舵補助装置の構成例を示す機能ブロック図である。 操舵補助装置を含む自動二輪車の構成例を示す機能ブロック図である。 車速上昇に伴うアシスト増加制御の条件の一例を示すグラフである。 アシスト制御部の処理の流れの一例を示す図である。 操舵トルクとアシスト指令値との対応関係の一例を示すグラフである。 舵角速度と粘性補償指令値の対応関係の一例を示すグラフである。 アシスト制御の変形例を示すグラフである。 アシスト制御の変形例を示すグラフである。 図13における付与トルクTaと操舵トルクTsを示すグラフである。 操舵補助装置による付与トルク制御の他の例を示すグラフである。 操舵補助装置による付与トルク制御の他の例を示すグラフである。 操舵補助装置による付与トルク制御の他の例を示すグラフである。 操舵補助装置による付与トルク制御の他の例を示すグラフである。 本発明の実施形態における鞍乗型車両の構成を説明するための図である。
 以下、図面を参照しつつ、本発明の実施形態を詳細に説明する。
 図面において、矢印Fは、車体フレームの前方向を示している。矢印Bは、車体フレームの後方向を示している。矢印Uは、車体フレームの上方向を示している。矢印Dは、車体フレームの下方向を示している。矢印Rは、車体フレームの右方向を示している。矢印Lは、車体フレームの左方向を示している。直立し無転舵状態の車体フレームの上下方向は、鉛直方向と一致する。
 本明細書において、「車体フレームの前後方向」、「車体フレームの左右方向」、および「車体フレームの上下方向」とは、車両を運転する乗員から見て、車体フレームを基準とした前後方向、左右方向、および上下方向を意味する。
 本明細書において、「車体フレームの前後方向に延びる」とは、車体フレームの前後方向に対して傾いた方向に延びることを含む。この場合、延びる方向の車体フレームの前後方向に対する傾きは、車体フレームの左右方向および上下方向に対する傾きより小さくなることが多い。
 本明細書において、「車体フレームの左右方向に延びる」とは、車体フレームの左右方向に対して傾いた方向に延びることを含む。この場合、延びる方向の車体フレームの左右方向に対する傾きは、車体フレームの前後方向および上下方向に対する傾きより小さくなることが多い。
 本明細書において、「車体フレームの上下方向に延びる」とは、車体フレームの上下方向に対して傾いた方向に延びることを含む。この場合、延びる方向の車体フレームの上下方向に対する傾きは、車体フレームの前後方向および左右方向に対する傾きより小さくなることが多い。
 本明細書において、「連結」は、例えば、2つの部材が直接連結される場合と、2つの部材が、他の部材を介して間接的に連結される場合を含む。
 図20は、本発明の実施形態における鞍乗型車両の構成を説明するための図である。図20に示す鞍乗型車両は、車体フレーム2と、ステアリングシャフト9と、バーハンドル8と、操舵輪4と、操舵補助装置100とを備える。ステアリングシャフト9は、車体フレーム2に、車体フレーム2の上下方向に延びる軸周りに揺動可能に支持される。バーハンドル8は、鞍乗型車両の左右方向において中央より左に位置する左グリップ8Lと、鞍乗型車両の左右方向において中央より右に位置する右グリップ8Rとを含み、ステアリングシャフト9に連結される。バーハンドル8のステアリングシャフト9の軸周りの揺動可能な範囲SRは、180度(二分の一回転)以下である。操舵輪4は、ステアリングシャフト9に連結される。操舵補助装置100は、ライダーがバーハンドル8に入力した操舵トルクと同じ方向の補助力をステアリングシャフト9に付与する。操舵補助装置100は、ライダーがバーハンドル8に入力した操舵トルクが一定の場合、第1車速領域VB0において、車両の速度の上昇に伴って補助力Taを減少させ、第1車速領域VB0より高い第2車速領域VB1において、車両の速度の上昇に伴って補助力Taを増加させる。第1車速領域VB0において操舵補助装置100がステアリングシャフト9に付与する補助力は、操舵トルクが同じである場合は、車両の速度が低い時より、車両の速度が高い時の方が小さくなる。第2車速領域VB1において操舵補助装置100がステアリングシャフト9に付与する補助力は、操舵トルクが同じである場合は、車両の速度が低い時より、車両の速度が高い時の方が大きくなる。
 図1は、本発明の一実施形態に係る自動二輪車1の側面図である。図1に示すように、自動二輪車1は、バーハンドル8と、車体フレーム2と、車体フレーム2に懸架されるエンジン3と、車体フレーム2の前部に取り付けられる前輪4と、車体フレーム2の後部に取り付けられる後輪5とを備えている。エンジン3により後輪5が駆動される。バーハンドル8は、車体フレーム2に対して回転可能に取り付けられる。バーハンドル8の回転は、操舵輪である前輪4へ伝達される。ライダーはバーハンドル8を操作することで、自動二輪車1を操舵する。自動二輪車1は、車体フレーム2を車両の左右方向に傾けて旋回可能な車両である。バーハンドル8の可動範囲は、180度(二分の一回転)以下である。この可動範囲は、バーハンドル8を左に最大限操作したときの舵角と、右に最大限操作したときの舵角との差(lock to lock)とする。
 自動二輪車1では、車体フレーム2の前部にヘッドパイプ10が一体的に形成される。ヘッドパイプ10にはステアリングシャフト9が貫通している。ステアリングシャフト9は、車体フレーム2の一部であるヘッドパイプ10に回転可能に支持される。ステアリングシャフト9の上部にトップブリッジ50が接続される。ステアリングシャフト9の下部にボトムブリッジ14が接続される。トップブリッジ50及びボトムブリッジ14は、ステアリングシャフト9に固定され、ステアリングシャフト9とともに回転する。
 トップブリッジ50には、伝達部材20が接続される。伝達部材20に、バーハンドル8が接続される。すなわち、バーハンドル8とステアリングシャフト9は、伝達部材20を介して接続される。ステアリングシャフト9は、バーハンドル8の回転に応じて回転する。
 ステアリングシャフト9の左右には、それぞれ左緩衝器6及び右緩衝器7が配置される。左緩衝器6及び右緩衝器7は、トップブリッジ50及びボトムブリッジ14に固定される。左緩衝器6及び右緩衝器7は、下端部で、前輪4を回転自在に支持する。左緩衝器6及び右緩衝器7は、フロントフォークを形成する。左緩衝器6および右緩衝器7は、前輪4を車体フレーム2に対して上下方向に変位可能に支持する。
 図1に示す自動二輪車1において、伝達部材20、トップブリッジ50、ボトムブリッジ14、左緩衝器6、右緩衝器7、及びステアリングシャフト9は、バーハンドル8の回転を前輪4に伝達する操舵系29(操舵力伝達機構)の一例である。操舵系29は、バーハンドル8と車輪の間に設けられ、バーハンドル8の回転に応じて回転することで、車輪にバーハンドル8の回転を伝達する。操舵系29は、車体フレーム2(図1の例では、ヘッドパイプ10)に対して回転可能に支持される。
 自動二輪車1は、バーハンドル8による操舵をアシストする操舵補助装置を備える。自動二輪車1には、操舵補助装置の一部として、操舵系29の回転をアシストする補助力を出力するモータ70(駆動部の一例)が設けられる。モータ70の回転は、減速機80を介してステアリングシャフト9に伝達される。モータ70は、取付部85aによって、ヘッドパイプ10に取り付けられる。操舵補助装置の詳細については、後述する。
 図2は、図1に示した自動二輪車1の一部の正面図である。図2に示すように、正面から見て、左緩衝器6及び右緩衝器7の間に、ヘッドパイプ10が配置される。左緩衝器6及び右緩衝器7、ヘッドパイプ10及びステアリングシャフト9は、平行に配置される。
 ヘッドパイプ10は上下方向に延びる筒状の部材である。ステアリングシャフト9は、ヘッドパイプ10の内部に回転可能に支持されている。ステアリングシャフト9は、上下方向に延びる操舵軸線A回りに回転可能である。ステアリングシャフト9の上部は、トップブリッジ50に固定されている。
 トップブリッジ50には、ステアリングシャフト9の上部と、左緩衝器6の上部と、右緩衝器7の上部とが接続される。ステアリングシャフト9、左緩衝器6、及び右緩衝器7は、いずれも、トップブリッジ50に対して回転不能に取り付けられる。トップブリッジ50は、ステアリングシャフト9、左緩衝器6、及び右緩衝器7を連結する。トップブリッジ50は、ヘッドパイプ10の上端よりも上方に設けられている。また、トップブリッジ50は、バーハンドル8より下方に設けられている。
 トップブリッジ50よりも下方において、左緩衝器6と右緩衝器7を連結するボトムブリッジ14が設けられる。左緩衝器6及び右緩衝器7をボトムブリッジ14に対して回転不能に固定される。このボトムブリッジ14は、ヘッドパイプ10よりも下方に設けられている。ボトムブリッジ14の下方において、前輪4が、左緩衝器6及び右緩衝器7によって左右から支持される。これにより、ステアリングシャフト9、左緩衝器6、右緩衝器7、及び前輪4は、操舵軸線A回りに一体的に回転可能である。
 図3は、トップブリッジ50の上面図である。図3に示すように、トップブリッジ50の左部に、左緩衝器6の上部が嵌め込まれる左支持孔51が設けられている。トップブリッジ50の右部に、右緩衝器7の上部が嵌め込まれる右支持孔52が設けられている。
 トップブリッジ50の左右方向の中央部であってトップブリッジ50の後部には、後支持孔53が設けられている。後支持孔53には、ステアリングシャフト9の上部が嵌め込まれる。トップブリッジ50の左右方向の中央部であって後支持孔53の前方には、前支持孔54が設けられている。前支持孔54の内周面にはスプライン溝が形成されている。前支持孔54には、伝達部材20の一部である軸部材12(後述)が嵌め込まれる。
 バーハンドル8が回転すると、トップブリッジ50が操舵軸線A(図2参照)回りに回転する。トップブリッジ50が回転すると、トップブリッジ50の左部に固定された左緩衝器6とトップブリッジ50の右部に固定された右緩衝器7も操舵軸線A回りに移動する。これにより、左緩衝器6および右緩衝器7に支持された前輪4が転舵される。このようにしてライダーがバーハンドル8を操作すると、このバーハンドル8の操作に応じて前輪4が転舵される。
 (伝達部材20)
 次に、図4を用いて、バーハンドル8に入力された操舵力が伝達部材20を介してトップブリッジ50に伝達される様子を説明する。図4は、図2のVI-VI断面図である。
 図4に示す例では、伝達部材20は、バーハンドル8に固定されたハンドルホルダ21(第一部の一例)と、トップブリッジ50に固定された軸部材12(第二部の一例)と、トルク伝達部13とを備えている。
 軸部材12は、ステアリングシャフト9よりも前方でトップブリッジ50に固定されている。軸部材12は、その軸線がステアリングシャフト9と同じ方向に延びる筒状の部材である。軸部材12の下部は、トップブリッジ50の前支持孔54にスプライン嵌合されている。軸部材12はトップブリッジ50に対して相対回転不可能に固定されている。
 軸部材12は、バーハンドル8に操舵力が入力されたときに、操舵力に応じてハンドルホルダ21に対して相対変位する。本実施形態では、バーハンドル8に操舵力が入力されたときに、操舵力に応じてハンドルホルダ21が軸部材12に対してトルク伝達部13の中心軸線B回りに相対回転する。
 (ハンドルホルダ21)
 ハンドルホルダ21は、トップブリッジ50より上方に設けられている。ハンドルホルダ21はバーハンドル8を保持している。ハンドルホルダ21は、ロア部材30とアッパー部材40を備えている。アッパー部材40はロア部材30の上部に固定されている。ロア部材30のロアハンドル受け部31と、アッパー部材40のアッパーハンドル受け部41が、バーハンドル8を挟み込み、バーハンドル8を固定している。
 ハンドルホルダ21は、軸部材12が挿通される貫通孔32を有する。貫通孔32の上部には、上軸受17が設けられる。上軸受17の内輪は、軸部材12に固定され、上軸受17の外輪は、ハンドルホルダ21に固定される。これにより、軸部材12は、ハンドルホルダ21の貫通孔32に、回転可能に配置される。
 ハンドルホルダ21の下部には、下軸受16が設けられる。下軸受16の外輪は、ハンドルホルダ21に固定される。下軸受16の内輪は、トップブリッジ50に固定される。これにより、ハンドルホルダ21は、トップブリッジ50に回転可能に支持される。
 図5はハンドルホルダ21のロア部材30を示す図である。図5Aはロア部材30の上面図、図5Bは図5Aのb-b断面図である。図5Aに示すように、ロア部材30には、軸部材12が挿通される貫通孔32が設けられている。この貫通孔32に上軸受17が設けられている。この上軸受17の内輪17aは、前述したように軸部材12が回転不可能に固定される。この貫通孔32の左右それぞれに、ロアハンドル受け部31が形成される。
 ロア部材30の上面に、一対の第一ねじ穴33が設けられている。一対の第一ねじ穴33は、ロアハンドル受け部31の前後に配置されている。アッパー部材40を、アッパーハンドル受け部41がロアハンドル受け部31に対向するように、ロア部材30に対して位置合わせし、第一ねじ穴33にねじをねじ込むことにより、アッパー部材40がロア部材30に固定される。
 図5Bに示すように、ロア部材30の下面に、第二ねじ穴34が設けられている。第二ねじ穴34は、貫通孔32の左右に設けられる。ロア部材30の左部の第二ねじ穴34に、左補助伝達部材19が、ねじ込まれている。ロア部材30の右部の第二ねじ穴34に、右補助伝達部材18が、ねじ込まれている。一対の第二ねじ穴34はそれぞれ、トップブリッジ50に設けられた左中間孔55および右中間孔56(図3参照)と対応する位置に設けられている。そのため、左補助伝達部材19及び右補助伝達部材18は、トップブリッジ50の左中間孔55及び右中間孔56を、それぞれ貫通する。
 (トルク伝達部13)
 図6は、図4の一部の拡大図である。図6に示すように、軸部材12とハンドルホルダ21との間にトルク伝達部13が設けられている。トルク伝達部13は金属製の円筒部材である。円筒状のトルク伝達部13の内径は軸部材12の外径とほぼ等しい。トルク伝達部13の内周面は、軸部材12の外周面を囲んでいる。トルク伝達部13は、軸部材12の外側かつハンドルホルダ21の内側に配置される。トルク伝達部13は、一部においてハンドルホルダ21に固定され、他の一部において軸部材12に固定される。
 具体的には、トルク伝達部13の下部の内周面にはスプライン溝が設けられている。トルク伝達部13の下部は、ロア部材30に固定されず、軸部材12の外周面にスプライン嵌合されている。トルク伝達部13の上部の外周面にはスプライン溝が設けられている。トルク伝達部13の上部は、軸部材12に固定されず、ロア部材30にスプライン嵌合されている。
 バーハンドル8から操舵力が作用してハンドルホルダ21が軸部材12に対して回転すると、トルク伝達部13が捻れてロア部材30から軸部材12へ操舵力を伝達する。つまり、バーハンドル8に入力された操舵力は、トルク伝達部13を介してトップブリッジ50に伝達される。
 (補助伝達部材18、19)
 なお、本実施形態においては、操舵力は、トルク伝達部13の他に、右補助伝達部材18および左補助伝達部材19を介して、バーハンドル8からトップブリッジ50に伝達される。
 図3に示すように、トップブリッジ50には、左支持孔51と後支持孔53の間であって後支持孔53よりも前方に、左中間孔55が設けられている。この左中間孔55の内周面にゴムリング57が嵌め込まれている。また、右支持孔52と後支持孔53の間であって、後支持孔53よりも前方に、右中間孔56が設けられている。この右中間孔56の内周面にゴムリング57が嵌め込まれている。
 ロア部材30に固定された左補助伝達部材19はトップブリッジ50の左中間孔55を貫通する。ロア部材30に固定された右補助伝達部材18はトップブリッジ50の右中間孔56を貫通している。
 図3に示したように、左補助伝達部材19と左中間孔55の内周面との間にはゴムリング57が設けられている。右補助伝達部材18と右中間孔56の内周面との間にはゴムリング57が設けられている。ライダーがバーハンドル8に操舵力を作用させると、トルク伝達部13が捩じられた後に、ゴムリング57が弾性変形し、ゴムリング57を介して左補助伝達部材19が左中間孔55の内壁に操舵力を作用させる。また、トルク伝達部13が捩じられた後に、ゴムリング57が弾性変形し、ゴムリング57を介して、右補助伝達部材18が右中間孔56の内壁に操舵力を作用させる。
 つまり、左補助伝達部材19および右補助伝達部材18が、補助的に、バーハンドル8に入力された操舵力をトップブリッジ50に伝達する。このように、トルク伝達部13のみに操舵力が作用しないので、トルク伝達部13に要求される剛性が大きくならず、トルク伝達部13の大型化が抑制されている。
 (トルクセンサ90)
 本実施形態において、トルクセンサ90は、磁歪型のトルクセンサである。図6に示すように、トルクセンサ90は、被検出部としてのトルク伝達部13と、検出部としてのピックアップコイル91を備えている。ピックアップコイル91は、トルク伝達部13の外周に設けられている。ピックアップコイル91は、搭載基板92に固定されている。この搭載基板92はハンドルホルダ21のロア部材30にブッシュ93を介して固定されている。
 図6において、矢視Tは力の伝達経路を示す。矢視Tで示したように、バーハンドル8に操舵力が入力されると、この力はハンドルホルダ21に作用する。ハンドルホルダ21のロア部材30に入力された力は、トルク伝達部13の上部に設けられたスプライン溝13bを介してトルク伝達部13に伝達される。さらにこの力は、トルク伝達部13の下部に設けられたスプライン溝13aを介して軸部材12に伝達される。軸部材12は、スプライン溝12aおよびスプライン溝が設けられた前支持孔54を介してトップブリッジ50に該操舵力を伝達する。
 トルク伝達部13は、上部がロア部材30(筒状部の一例)に固定され、下部が軸部材12に固定されている。このため、バーハンドル8に操舵力が入力されると、トルク伝達部13は捩じられる。そこで、ピックアップコイル91がこの捩じれ量に応じた物理量の変化を検出する。ピックアップコイル91に電気的に接続された電子回路により、この物理量が操舵力を示す値に変換される。
 上記の構成では、自動二輪車1は、バーハンドル8に対して回転不能に連結された第一部(一例としてハンドルホルダ21)と、ステアリングシャフト9に対して回転不能に連結された第二部(一例として軸部材12)とを備える。第一部と第二部は、相対変位可能に接続されている。トルクセンサ90は、これら第一部と第二部の相対変位に基づく物理量の変化を検出することにより、バーハンドル8の操舵トルクを検出する。上記例では、トルクセンサ90は、第一部と第二部との間に設けられるトルク伝達部13の歪みを測定することで、操舵トルクを検出する。トルクセンサ90は、トルク検出部の一例である。
 (アシスト力付与機構60)
 図4に示すように、本実施形態に係る自動二輪車1は、ヘッドパイプ10の前部にアシスト力付与機構60を備えている。ヘッドパイプ10の上下方向において、上から下に向かって、トルクセンサ90、トップブリッジ50、アシスト力付与機構60がこの順に並んでいる。
 アシスト力付与機構60は、モータ70と、減速機80を備えている。モータ70により発生したモータトルクは、減速機80を介して、ステアリングシャフト9に作用する。
 モータ70は出力軸71を有している。出力軸71が操舵軸線Aと平行となるように、モータ70がヘッドパイプ10に取り付けられている。モータ70の出力軸71は、ステアリングシャフト9の操舵軸線Aより前方に設けられている。
 減速機80は、中間軸81上に固定された第一歯車82と第二歯車83を有している。減速機80の中間軸81の軸線と、モータ70の出力軸71の軸線と、操舵軸線Aは互いに平行である。第一歯車82は、モータ70の出力軸71と噛み合っている。減速機80の第二歯車83は、ステアリングシャフト9の外周面に固定された第三歯車84と噛み合っている。
 モータ70および減速機80は、ハウジング85の内部に設けられている。ハウジング85は、後部に取付部85aを備えている。このハウジング85の取付部85aは、トップブリッジ50とヘッドパイプ10に挟まれている。
 モータ70が駆動されて出力軸71が回転すると、出力軸71から減速機80の第一歯車82にモータトルクが伝達される。第一歯車82が回転されると、これとともに第二歯車83が回転する。第二歯車83の回転は、ステアリングシャフト9の第三歯車84に伝達される。このようにして、モータ70のモータトルクがステアリングシャフト9に伝達される。
 アシスト力付与機構60は、モータ70と、モータの回転をステアリングシャフト9に伝達する減速機80を有する。また、アシスト力付与機構60は、モータ70と減速機80を収容するハウジング85を有する。ハウジング85は、自動二輪車1の車体フレーム2の一部であるヘッドパイプ10に取り付けられる。すなわち、モータ70は、車体フレーム2に取り付けられ、操舵系(上記例ではステアリングシャフト9)の回転をアシストする構成である。
 (操舵補助装置)
 図7は、操舵補助装置100の構成例を示す機能ブロック図である。操舵補助装置100は、バーハンドル8の回転を車輪4に伝達する操舵系29の回転をアシストする。操舵補助装置100は、操舵系29の回転をアシストする補助力を出力する駆動部70を備える。本実施形態では、駆動部70は、一例として、上記モータ70で構成される。駆動部70のアシストは、車両の全車速域の少なくとも一部において、バーハンドル8の操舵トルクに対する、車速が上昇するにつれて大きくなる。これにより、車速に応じた操舵アシストが可能になる。
 駆動部70の一例であるモータ70は、操舵系29の回転をアシストする補助力を出力する。モータ70の出力軸71の回転は、操舵系29の一部であるステアリングシャフト9に伝達される。そのため、モータ70の出力が、操舵のアシストを決定する。モータ70の出力は、操舵トルクと車速を含む車両の状態に応じて決定することができる。モータ70によるアシストは、バーハンドル8の操舵トルクと同じ方向の回転力を操舵系29に付与するプラス方向アシスト、及び、操舵トルクと反対方向の回転力を操舵系29に付与するマイナス方向アシストを含む範囲で制御されてもよい。
 (操舵補助装置の構成例)
 図8は、操舵補助装置100を含む自動二輪車1の構成例を示す機能ブロック図である。図8において、操舵補助装置100は、アシスト制御部61と、アシスト力付与機構60で構成される。すなわち、図4に示したアシスト力付与機構60は、操舵補助装置の一部である。
 アシスト制御部は、モータ70を制御する回路及び/又はプロセッサで構成することができる。アシスト制御部は、例えば、ハウジング85内の基板に設けることができる。或いは、自動二輪車1に搭載された電子制御ユニット(Electronic Control Unit(ECU))をアシスト制御部とすることができる。
 操舵補助装置100は、さらに、トルクセンサ90及び車速センサ66を含むことができる。駆動制御部61は、トルクセンサ90で検出された操舵トルクと、車速センサ66で検出された車速に基づいてモータ70を制御する。
 また、自動二輪車1は、舵角センサ44を備えてもよい。舵角センサ44は、バーハンドル8の舵角を検出する。舵角センサ44は、例えば、操舵系29(例えば、ステアリングシャフト9、伝達部材20又はフロントフォーク等)に取り付けられ、車体フレーム2に対する操舵系29の回転を検出するセンサとすることができる。アシスト制御部61は、舵角センサ44で検出された舵角に関する信号を取り込むことができる。
 アシスト制御部61は、モータ70のドライバ72(駆動回路)に対して制御信号を送る。また、アシスト制御部61は、トルクセンサ90で検出された操舵トルクを示す信号及び舵角センサで検出された舵角に関する信号を取り込むことができる。
 アシスト制御部61は、舵角検出部43、トルクセンサ90、車速センサ66及びモータ70のドライバ72に接続される。アシスト制御部61は、舵角検出部43からバーハンドル8の舵角及び舵角速度の情報を受け付ける。アシスト制御部61は、トルクセンサ90からバーハンドル8の操舵トルクの情報を受け付ける。アシスト制御部61は、車速センサ66から、自動二輪車1の車速の情報を受け付ける。アシスト制御部61は、トルクセンサ90で検出された操舵トルク及び車速センサ66で検出された車速に基づいて、モータ70の出力を制御する指令値を計算する。アシスト制御部61は、計算した指令値を、モータ70のドライバ72に出力する。
 アシスト制御部61の構成は、図8に示す例に限られない。例えば、アシスト制御部61は、操舵トルク、舵角速度、車速以外のデータを受け付けることができる。一例として、アシスト制御部61は、ライダー操作で入力された各種指示信号等を受け付けることができる。また、アシスト制御部61は、LED又はディスプレイを含む表示部に接続され、表示部を通じてライダーへ情報を出力する構成であってもよい。また、例えば、舵角検出部43からのデータの受け付けを省略することもできる。
 <舵角センサ>
 図8に示す例では、舵角センサ44は、操舵系29の回転角及び回転の向きを検出する。舵角センサ44は、検出した回転角及び回転の向きに応じたデータを、バーハンドル8の舵角を示すデータとして、アシスト制御部61へ送る。ここで、バーハンドル8の舵角を示すデータは、例えば、バーハンドル8の回転角を示す値であってもよいし、ステアリングシャフト9又はその他操舵系29の回転角、若しくは、前輪4の切れ角を示す値であってもよい。バーハンドル8の舵角速度は、バーハンドル8の回転の変化の度合いである。舵角速度は、バーハンドル8又は操舵系29のうち一部の回転を検出することにより得ることができる。
 舵角検出部43は、舵角センサ44が検出した舵角を舵角速度に変換する変換部45を有する。変換部45は、例えば、舵角を微分して舵角速度を演算する微分回路を含む構成とすることができる。なお、アシスト制御部61が、舵角センサ44から受け取った舵角の値を用いて舵角速度を演算することもできる。この場合、舵角検出部43は、変換部45を備えなくてもよい。
 <トルクセンサ>
 トルクセンサ90は、磁歪部94、増幅部95、及び変換部96を含む。トルクセンサ90は、上述したように、第一部(ハンドルホルダ21)の回転を第二部(軸部材12)に伝達するトルク伝達部13の捩れを検出することで、操舵トルクを検出する。そのため、トルク伝達部13は、磁歪部94を含む。磁歪部94は磁性体を含む。トルク伝達部13において、磁歪部94は、ピックアップコイル91と、軸部材12の径方向において対向する部分に形成される。変換部96及び増幅部95は、例えば、上記の搭載基板92に搭載される。
 バーハンドル8の回転によるトルクで磁歪部94が歪むと、磁歪部94の透磁率が変化する。磁歪部94の透磁率変化により、ピックアップコイル91に誘導電圧が発生する。この誘導電圧は、磁歪部94にかかるトルクに応じた値になる。ピックアップコイル91の電圧は、増幅部95で増幅される。また、増幅部95は、誘導電圧をPWM信号に変換してもよい。変換部96は、増幅部95で増幅された信号を、操舵トルクを示す値に変換する。操舵トルクを示す値は、アシスト制御部61へ送られる。増幅部95で、異常が発生した場合は、増幅部95からアシスト制御部61にエラー信号が送られる。
 このように、トルクセンサ90を磁歪側のトルクセンサとすることで、トーションバーを用いたトルクセンサに比べて、操舵力の伝達ロスを少なくすることができる。また、トルクセンサ90の小型化が可能になる。
 <アシスト力付与機構>
 アシスト力付与機構60は、上記のモータ70及び減速機80に加え、アシスト制御部61の制御信号に基づいてモータ70を駆動するドライバ72を有する。ドライバ72は、例えば、モータ70に交流電流を印加するインバータ等の駆動回路を含む。ドライバ72は、アシスト制御部61から、制御信号として電流指令値を受け取り、電流指令値に応じてPWM信号を生成し、PWM信号によりインバータを駆動する。なお、上記のドライバ72の動作の一部は、アシスト制御部61で実行されてもよい。
 図8に示す例では、自動二輪車1は、モータ70の電流を検出する電流センサ73を備える。アシスト制御部61は、電流センサ73で検出されたモータ電流を用いて、例えば、フィードバック制御を実行することができる。
 <車速検出部65>
 例えば、車速センサは、前輪又は後輪の回転速度を検出する構成であってもよいし、エンジンの出力スプロケットの回転数を検出する構成であってもよい。又は、車速センサは、エンジンの回転数を検出するエンジン回転センサ及びギヤポジションを検出するギヤポジションセンサで構成されてもよい。
 本例では、車速センサ66は、前輪4の回転を検出し、前輪4の回転に応じたパルス信号をアシスト制御部61に送る。アシスト制御部61は、車速センサ66から受け取ったパルス信号により車速を算出する。なお、車速センサ66は後輪5の回転を検出する構成であってもよい。
 <アシスト制御部61>
 アシスト制御部61は、操舵トルク及び車速に応じたモータ70の制御信号を生成しドライバ72へ送る。そのため、アシスト制御部61は、操舵トルク及び車速を取得するインタフェース、操舵トルク及び車速を用いてモータ70制御の指令値を計算する指令値算出部及び、指令値を出力するインタフェースを有することができる。アシスト制御部61は、モータ70の回転力と回転方向を示す指令値を計算する。指令値の計算には、操舵トルク及び車速と指令値との対応を示す対応データを用いることができる。
 アシスト制御部61は、操舵トルクと同じ方向の回転すなわちプラス方向のアシストを示す指令値を計算する場合と、操舵トルクと反対方向の回転すなわちマイナス方向のアシストを示す指令値を計算する場合がある。指令値を、プラス方向のアシストを示す値とするかマイナス方向のアシストを示す値とするかは、舵角速度、操舵トルク及び車速等の車両の状態を示す値の組み合わせに応じて決定することができる。
 これにより、モータ70は、バーハンドル8で入力された操舵トルクと同じ方向の回転力と、操舵トルクと反対方向の回転力とを、舵角速度、操舵トルク及び車速等の車両の状態に応じて切り替えて、操舵系29に付与することができる。すなわち、アシスト制御部61により、プラス方向アシストと、マイナス方向アシストとを、車両の状態に応じて切り替わるように、モータ70の出力が制御される。
 このように、モータ70の回転は、操舵トルクと同じ方向の回転と、操舵トルクと反対方向の回転の双方を含むレンジで制御される。これにより、操舵力を増やすパワーステアリングと、操舵系29の回転を減衰させるステアリングダンパの双方の機能をモータ70により実現できる。また、モータ70による制御を採用することで、パワーステアリングとステアリングダンパの切り替えを迅速且つスムーズに実行することが可能になる。
 アシスト制御部61は、全車速域の一部の車速域VB1において、バーハンドル8の操舵トルクに対するプラス方向のアシスト量が、車速が上昇するにつれて大きくなるよう、モータ70を制御する。アシスト制御部61は、バーハンドル8に入力された操舵トルク及び、その操舵トルクが入力された時の車速に応じてアシストを決定する。車速域VB1において、ある操舵トルクが入力された場合のアシストは、車速が速い程、大きくなるよう決定される。
 本実施形態は、操舵トルクに対するアシストが、車速が上昇するにつれて大きくなる態様を含む。本実施形態で、操舵トルクに対するアシストは、操舵トルクの大きさに対する、駆動部(モータ70)のアシストの大きさとする。すなわち、操舵トルクに対するアシストは、操舵トルクに対するアシストの度合いを示す。例えば、入力される操舵トルクが同じである場合、車速が速いときのアシストトルクの方が、車速が遅いときのアシストトルクより、大きくなる。すなわち、操舵トルクに対するアシスト操舵トルクに応じたアシストの度合いが、車速が上昇するにつれて大きくなる。なお、ここで言うアシストは、操舵トルクと同じ方向すなわちプラス方向のアシストとする。
 発明者らは、車速が速い程、旋回時のバーハンドル8の操作に要する力が大きくなる場合があることに気付いた。これは、車速が速いと、操舵輪のジャイロ効果が大きくなることに起因すると考えられる。すなわち、走行中に車体をロール方向に回転させたときの操舵輪のジャイロモーメントが、操舵トルクに反映されるためと考えられる。車速が速いと、旋回時のジャイロモーメントが大きくなる。ジャイロモーメントが大きくなると、旋回時に必要な操舵トルクが大きくなる。
 そこで、本実施形態のように、全車速域の一部の車速域VB1において、車速の上昇に伴って操舵トルクに対するアシストの度合いを大きくすることができる。これにより、旋回時の操舵アシストを車速の上昇に応じて増やすことができる。そのため、車速に応じた操舵アシストが可能になる。
 アシスト制御部61は、車速域VB1において、操舵トルクが第1閾値Th1より大きいときに車速が上昇すると、操舵トルクに対するアシスト量が大きくなるよう、モータ70を制御することができる。すなわち、第1閾値Th1より大きな操舵トルクが入力された際のアシストを、車速の上昇に応じて増やす構成とすることができる。これにより、例えば、ライダーがある程度の力でバーハンドル8を操作した際に、車速に応じた操舵アシストをすることができる。
 上記の第1閾値Th1は、自動二輪車1(鞍乗型車両)が停止している状態でバーハンドルの操作により舵角を変化させるのに必要な操舵トルク(以下、停車時の操舵トルクと称する)の40~60%(例えば、50%程度)の値とすることができる。停車時の操舵トルクは、据え切り時の操作トルクと言うこともできる。停車時の操舵トルクは、例えば、車両の重量、操舵伝達機構の構造等によって決まる。第1閾値Th1を、停車時の操舵トルクの50%程度とすることで、車速に応じたアシストが可能になる。ここで、第1閾値Th1を停車時の操舵トルクの50%とする態様は、第1閾値Th1が厳密に停車時の操舵トルクの50%に一致する場合に限られず、一致すると見なせる程度の誤差がある場合も含む。すなわち、第1閾値Th1を、停車時の操舵トルクの50%と略同じ程度に設定することができる。ここで、停車時の操舵トルクは、乾いた舗装路面に鞍乗型車両が停止した状態で舵角を変化させるのに必要な操舵トルクとする。
 上記の車速域VB1は、予め決められた車速の範囲とすることができる。車速域VB1は、固定であってもよいし、車両の状態に応じて変化してもよい。車速域VB1は、全車速域の一部に設定される。ここで、全車速域は、自動二輪車1(鞍乗型車両)が出すことができる車速の範囲とする。車速域VB1は、例えば、車両特性等に応じて決められる。全車速域の一部の車速域VB1において、車速上昇に伴うアシスト増加制御をすることで、車速に応じた操舵アシストが可能になる。
 図9は、車速上昇に伴うアシスト増加制御をする条件の一例を示すグラフである。図9に示すグラフにおいて、縦軸は操舵トルクTs、横軸は車速Vvを示す。図9に示す例では、操舵トルクTsが、第1閾値Th1より大きく(Th1<Ts)、かつ、車速Vvが、第2閾値Th2と第3閾値Th3の間である場合(Th2<Vv<Th3)に、車速が上昇するにつれて操舵トルクに対するアシストが増加するよう、モータ70は制御される。すなわち、操舵トルクTsと車速Vvが、図9に示すグラフの領域A1内に含まれる場合に、車速の上昇に伴うアシスト増加制御が行われる。車両が、Th2<Vv<Th3で走行している時は、第1閾値Th1以上の操舵トルクに対するアシストは、車速Vvが速い程、大きくなる。
 図9に示す例では、車速域VB1の上限と下限を決める第2閾値Th2、第3閾値Th3がともに0より大きい(Th2>0、Th3>0)。すなわち、車速域VB1は、全車速領域における中間の部分となっている。これに対して、車速域VB1の下限を0とし、上限を第2閾値Th2又は第3閾値Th3とすることもできる(0<Vv<Th2 or 0<Vv<Th3)。すなわち、車速域VB1を、全車速領域のうち車速0を含む部分とすることができる。或いは、車速域VB1を、Th3<Vvとすることができる。また、全車速領域において、互いに離れた2つ以上の区間を、車速域VB1とすることもできる。車速域VB1をどのように設定するかは、自動二輪車1の種類又は特性等によって決めることができる。
 なお、図9に示す例では、車速上昇に伴うアシスト増加制御をする条件に、操舵トルクTsが含まれるが、他の値をこの条件に含めてもよい。例えば、舵角速度Vrを条件に含めてもよい。この場合、舵角速度Vrが第4閾値Th4より小さいときに、車速が上昇するにつれて操舵トルクに対するアシストを大きくすることができる。すなわち、舵角速度Vrが閾値Th4を越えた場合は、アシストを車速上昇に応じて大きくしないようにできる。これにより、ライダーのバーハンドル8の急操作による操舵系29の回転を抑えることができる。また、キックバックなどの外乱による操舵系29の回転も抑えることができる。なお、操舵トルクTsの代わりに舵角速度Vrを上記条件に含めてもよいし、操舵トルクTsと舵角速度Vrの両方を上記条件に含めてもよい。
 上記の閾値Th1~Th4は、例えば、予めアシスト制御部61に記録されたデータによって決められる。この場合、アシスト制御部61は、閾値Th1~Th4を記録するためのメモリなどの記録部を有する。
 閾値Th1~Th4は、固定値でなくてもよい。例えば、閾値Th1~Th4は、操舵トルク、舵角速度、車速、車両加速度等の車両状態に応じて決まる値とすることができる。一例として、アシスト制御部61は、車両の状態を示す値と閾値Th1~Th4との対応を示すデータを参照して、車両の状態に応じた閾値Th1~Th4を決定することができる。
 <動作例>
 図10は、アシスト制御部61の処理の流れの一例を示す図である。図10に示す例では、アシスト制御部61は、トルクセンサ90から受け取った操舵トルクTs及び車速センサ66から受け取った車速Vvを用いて、アシスト指令値Iaを算出する(ステップS1)。アシスト指令値Iaは、例えば、操舵系29に付与する操舵トルクと同じ方向のトルクをモータ70に発生させるための値とすることができる。ここでは、一例として、アシスト指令値Iaは、電流指令値とする。操舵トルクと同じ方向のトルクを発生させるためのアシスト指令値Iaは、正(Ia>0)とする。
 ステップS1において、アシスト制御部61は、操舵トルク、車速及びアシスト指令値の対応関係を示すデータを参照し、入力された操舵トルクTs及び車速Vvに対応するアシスト指令値Iaを決定する。例えば、アシスト制御部61は、対応関係を示すデータとしてマップデータを用いて、マップ演算により、入力された操舵トルクTs及び車速Vvに対応するアシスト指令値Iaを決定することができる。
 図11は、操舵トルク及び車速とアシスト指令値との対応関係の一例を示すグラフである。図11に示す例では、操舵トルクとアシスト指令値との対応関係が、複数の車速について示す設定される。すなわち、操舵トルクとアシスト指令値との対応関係は、車速によって異なるように設定される。図11に示す対応関係では、操舵トルクの増加に伴って正のアシスト指令値が増加する対応関係が設定される。操舵トルクの増加に対するアシスト指令値の増加の仕方が、車速によって異なる。図11において、V1、V2は、0でない車速の値である。一例として、0<V1<V2とする。なお、V1、V2は、車速域であってもよい。
 操舵トルクとアシスト指令値の対応関係は、図11に示す例に限られない。この対応関係は、例えば、マップデータとしてアシスト制御部61に記録することができるが、対応関係を示すデータの形式はマップデータに限定されない。例えば、テーブル形式のデータの他、与えられた操舵トルク及び車速の値を用いて、対応するアシスト指令値を計算するための関数等のデータを、対応関係を示すデータとすることができる。
 再び、図10を参照して、アシスト制御部61は、舵角検出部43から受け取った舵角速度Vr及び車速Vvを用いて、粘性補償指令値Inを算出する(ステップS2)。粘性補償指令値Inは、例えば、操舵系29に付与する操舵トルクと反対方向のトルクをモータ70に発生させるための値とすることができる。ここでは、一例として、粘性補償指令値Inは、電流の指令値とする。操舵トルクと反対方向のトルクを発生させるためのアシスト指令値Iaは、負(Ia<0)とする。
 ステップS2において、アシスト制御部61は、舵角速度及び車速と粘性補償指令値との対応関係を示すデータを参照し、入力された舵角速度Vr及び車速Vvに対応する粘性補償指令値Inを決定する。例えば、アシスト制御部61は、対応関係を示すデータとしてマップデータを用いて、マップ演算により、入力された舵角速度Vr及び車速Vvの組に対応する粘性補償指令値Inを決定することができる。
 図12は、マップデータの示す舵角速度及び車速と、粘性補償指令値との対応関係の一例を示すグラフである。図12に示す例では、舵角速度と粘性補償指令値との対応関係が、複数の車速について設定される。すなわち、舵角速度と粘性補償指令値との対応関係は、車速によって異なるように設定される。図12に示す対応関係には、舵角速度の増加に伴って負の粘性補償指令値が小さくなる対応関係が含まれる。舵角速度の増加に対する粘性補償指令値の変化の仕方が、車速によって異なる。車速Vvが、Vv=V1の時は、舵角速度に依らず粘性補償指令値は、一定(0)である。Vv=V2の時は、舵角速度の増加に伴って負の粘性補償指令値が小さくなり、舵角速度が所定値以上となると粘性補償指令値は一定となる。
 舵角速度と粘性補償指令値の対応関係は、図12に示す例に限られない。この対応関係は、例えば、マップデータとしてアシスト制御部61に記録することができるが、対応関係を示すデータの形式はマップデータに限定されない。例えば、テーブル形式のデータの他、与えられた舵角速度及び車速の値を用いて、対応する粘性補償指令値を計算するための関数等のデータを、対応関係を示すデータとすることができる。
 再び、図10を参照して、アシスト制御部61は、ステップS1で算出したアシスト指令値Iaと、ステップS2で算出した粘性補償指令値Inを加算する(ステップS3)。アシスト指令値Iaと粘性補償指令値Inの和Ia+Inが、出力指令値Iとして算出される。すなわち、この例では、アシスト制御部61は、操舵トルクTsに応じて決められる指令値Iaと、舵角速度Vrに応じて決められる指令値Inとに基づいて、モータ70に出力する指令値Iを決定している。
 なお、図10に示す例では、アシスト指令値Iaと粘性補償指令値Inを加算する処理であるが、さらに他の指令値を加算することもできる。一例として、操舵トルクTsの微分値に応じて決定されるプラス方向のアシスト度合いを示す静止摩擦補償指令値Is、及び、舵角速度に応じて決定されるプラス方向のアシスト度合いを示す動摩擦補償指令値Id等を、アシスト指令値Iaと粘性補償指令値Inに加えてさらに加算することができる。すなわち、ステップS3において、出力指令値Iを、I=アシスト指令値Ia+静止摩擦補償指令値Is+粘性補償指令値In+動摩擦補償指令値Idで算出することができる。
 アシスト制御部61は、モータ70で検出されたモータ電流Imと、出力指令値Iを用いて電流フィードバック処理を実行する(ステップS4)。例えば、アシスト制御部61は、モータ70で検出されたモータ電流Imと、出力指令値Iとを比較し、それらの差を小さくするような制御信号を生成してモータ70に出力することができる。なお、フィードバック処理は、ドライバ72が実行してもよい。
 ここで、入力される操舵トルク及び舵角速度が一定で、車速が変化した場合のアシスト制御部61の動作の一例を説明する。例えば、入力される操舵トルクTsがTs=Ts1で一定であり、入力される舵角速度VrがVr=Vr1である場合について説明する。
 ここで、入力される操舵トルクTs及び舵角速度Vrが略一定(Ts=Ts1、Vr=Vr1)の条件下で、入力される車速Vvが、V1、V2、V3(V1<V2<V3)と段階的に上昇した場合について説明する。この場合、アシスト制御部61は、例えば、図11に示す対応関係を示すようなマップデータを参照し、Ts=Ts1、及び、Vv=V1、V2、V3に対応するアシスト指令値Ia(1)、Ia(2)、Ia(3)を、それぞれ算出する
 アシスト制御部61は、例えば、図12に示す対応関係を示すマップデータを参照し、Vr=Vr及び、Vv=V1、V2、V3に対応する粘性補償指令値In(1)、In(2)、In(3)を決定する。図12に示す対応関係を用いると、In(1)、In(2)はいずれも0となる。
 出力指令値Iは、アシスト指令値Iaと粘性補償指令値Inの和となる。そのため、出力指令値Iとして、Ia(1)+Ib(1)、Ia(2)+Ib(2)、Ia(3)+Ib(3)が計算される。
 アシスト指令値Ia(1)、Ia(2)、Ia(3)と上記粘性補償指令値In(1)、In(2)、In(3)から算出される出力指令値Iは、例えば、V1≦Vv≦V2の車速域では、車速Vvが上昇するにつれて、大きくなる。これにより、入力される操舵トルク及び舵角速度が一定の場合に、モータ70の出力トルクは、車速Vvが上昇するにつれて大きくなる。その結果、モータ70から操舵系29に付与される操舵トルクと同じ方向のトルクが、車速Vvが上昇するにつれて大きくなる。車速VvがV2より大きい領域では、出力指令値Iは一定となる。
 この例では、操舵トルクTs及び舵角速度Vrが所定の条件を満たす状態で、車速Vvを上昇させると、出力指令値Iが増大する車速域(V1≦Vv≦V2)が存在する。この車速域では、操舵トルクTsに対するアシストが、車速Vvの上昇に伴って増大する。このようなアシストにより、車速に応じたアシストが可能になる。例えば、ライダーは、車速が上昇しても、旋回時のバーハンドル8の荷重が重くなったと感じにくくなる。
 図13及び図14は、アシスト制御の例を示すグラフである。図13及び図14に示すグラフでは、縦軸は、モータ70が操舵系29に付与するトルクすなわちアシスト(補助力)の大きさを示し、横軸は車速を示す。これらのグラフは、操舵トルクTsが一定かつTs>Th1である条件下で、車速が変化した場合のトルクの遷移を示している。
 図13に示す例では、車速Vvが第2閾値Th2の時は、アシスト方向が操舵トルクとは反対の方向すなわちマイナス方向となっている。車速域VB1において、車速Vvが上昇するにつれてプラス方向のアシストが増大している。そのため、車速域VB1において、アシストの方向が、マイナス方向からプラス方向へ転じている。車速Vvが第3閾値Th3の時は、アシスト方向がプラス方向である。このように、車速Vvが上昇するにつれてアシストが増加する車速域VB1は、アシスト方向がマイナスとなる車速域が含まれてよい。
 図13に示す例では、車速域VB1より低い車速域VB0において、車速Vvが上昇するにつれてプラス方向のアシストが減少している。このように、操舵補助装置100は、操舵トルクTsが一定の場合に、車速域VB0において車速Vvの上昇に伴ってアシストを減少させ、車速域VB0より高い車速域VB1において、車速Vvの上昇に伴ってアシストを増加させてもよい。車速域VB0は、第1車速領域の例である。車速域VB1は、第2車速領域の例である。
 図14に示す例では、車速域VB1における車速Vvの変化に対するアシストの変化は線形でない。このように車速Vv上昇に伴うアシストの増加が線形でない場合も、本発明の実施形態に含まれる。また、図14に示す例では、操舵補助装置100は、操舵トルクTsが一定の場合に、車速域VB0において車速Vvの上昇に伴ってアシストを減少させ、車速域VB0より高い車速域VB1において、車速Vvの上昇に伴ってアシストを増加させる。車速域VB0及び車速器VB1における車速Vvの変化に対するアシストの変化は、直線的である場合の他、曲線的、又は、段階的であってもよい。
 図13及び図14に示す例では、車速域VB0において車度Vvの上昇に伴って減少するアシストの減少量D1は、車速域VB1において車速Vvの上昇に伴って増加するアシストの増加量より大きい。また、車速域VB0における車速の変化量に対するアシストの減少量の比率は、車速域VB1における車速の変化量に対するアシストの増加量の比率より大きい。
 図13及び図14に示す例では、車度Vvの上昇に伴ってアシストを減少させる車速域VB0より低い車速域に、車速Vvの変化に対してアシストが一定となる低速補助力一定車速領域LVBがある。車速Vvの上昇に伴ってアシストを増加させる車速域VB1より高い車速域に、車速の変化に対してアシストが一定となる高速補助力一定車速領域HVBがある。
 図13及び図14に示すグラフは、バーハンドルに入力される操舵トルクが一定の場合の付与トルクTaを示す。付与トルクTaは、操舵補助装置100がステアリングシャフトに付与する操舵トルクと同じ方向のトルクの大きさである。付与トルクTaは、入力される操舵トルクに対する付与トルクの大きさを示す値である。例えば、図13における付与トルクTaと、ライダーによりバーハンドルに入力される操舵トルクTsは、図15に示すグラフのようになる。
 なお、操舵補助装置100による付与トルクの車速による変化は、図13及び図14に示す例に限られない。例えば、低速補助力一定車速領域LVB及び高速補助力一定車速領域HVBのうち少なくともいずれかがない態様であってもよい。図13及び図14では、車速域VB0における操舵トルクに対する付与トルクTaの最大値は、車速域VB1における操舵トルクに対する付与トルクTaの最大値より大きい。これに対して、車速域VB0における操舵トルクに対する付与トルクTaの最大値は、車速域VB1における操舵トルクに対する付与トルクTaの最大値と同じか又は小さくてもよい。また、図13及び図14では、D1>D2であるが、D1≦D2であってもよい。また、車速域VB0における車速の変化量に対するアシストの減少量の比率は、車速域VB1における車速の変化量に対するアシストの増加量の比率と同じか又は小さくてもよい。また、全車速域において、車速Vvの上昇に伴ってアシストを減少させる車速域と車速Vvの上昇に伴ってアシストを増加させる車速域の組が複数含まれてもよい。
 図13及び図14に示す例では、車速域VB0と車速域VB1が隣接している。すなわち、車速域VB0の上限値と車速域VB1の下限値が一致している。車速域VB0と車速域VB1の境となる車速より低い領域では、車速Vvの上昇に伴ってアシストが減少し、車速域VB0と車速域VB1の境となる車速より高い領域では、車速Vvの上昇に伴ってアシストが増加している。これに対して、車速域VB0と車速域VB1の間に、車速の変化に対してアシストが一定となる中間補助力一定車速領域があってもよい。
 操舵補助装置100が、車速Vvの上昇に伴って付与トルクTaを減少又は増加する態様は、車速Vvの変化に対して直線的に付与トルクTaを変化させる態様に限られない。操舵補助装置100は、例えば、車速Vvの変化に対して、付与トルクTaを、曲線的、又は、段階的に変化させてもよい。
 図16~図19は、操舵補助装置100による付与トルク制御の他の例を示すグラフである。これらのグラフは、操舵トルクTsが一定かつTs>Th1である条件下で、車速が変化した場合における操舵補助装置100がステアリングシャフト9に付与する付与トルクの遷移を示している。
 図16に示す例では、車速域VB0において、操舵補助装置100は、車速Vvの上昇に伴って付与トルクTaを複数段階にわたって段階的に減少させる。車速域VB1において、操舵補助装置100は、車速Vvの上昇に伴って付与トルクTaを複数段階にわたって段階的に増加させる。車速域VB0と車速域VB1の間に、車速の変化に対して付与トルクTaが一定となる中間補助力一定車速領域がある。
 図17に示す例では、操舵補助装置100は、車速Vv1において付与トルクTaを1段階で減少させる。この場合、車速Vv1を車速域VB0とする。操舵補助装置100は、車速Vv2において付与トルクTaを1段階で増加させる。この場合、この場合、車速Vv2を車速域VB1とする。
 図18に示す例では、操舵補助装置100は、車速域VB0及び車速VB1において、車速Vvの変化に対して直線的に付与トルクTaを変化させる。車速域VB0と車速域VB1の間において、操舵補助装置100は、車速Vvの変化に対して付与トルクTaを変化させない。すなわち、車速域VB0と車速域VB1の間に、車速Vvの変化に対して付与トルクTaが一定となる中間補助力一定車速領域MVBがある。なお、車速域VB0と車速域VB1の少なくともいずれかにおいて、車速Vvの変化に対して付与トルクTaが曲線的又は段階的に変化してもよい。
 図19に示す例では、全車速域において、車速Vvの上昇に伴ってアシストを減少させる車速域と車速Vvの上昇に伴ってアシストを増加させる車速域の組が複数含まれる。具体的には、操舵補助装置100は、車速域VB0において、車速Vvの上昇に伴って付与トルクTaを減少させ、車速域VB0より高い車速域VB1において、車速Vvの上昇に伴って付与トルクTaを増加させる。操舵補助装置100は、車速域VB1より高い車速域VB2において、車速Vvの上昇に伴って付与トルクTaを減少させ、車速域VB2より高い車速域VB3において、車速Vvの上昇に伴って付与トルクTaを増加させる。車速域VB0~VB3のうち少なくとも1つの車速域において、車速Vvの変化に対して付与トルクTaが曲線的又は段階的に変化してもよい。また、車速域VB0と車速域VB1の間、車速域VB1と車速域VB2の間、及び、車速域VB2と車速域VB3の間の少なくとも1つの車速域において、車速Vvの変化に対して付与トルクTaが一定となる中間補助力一定車速領域があってもよい。
 (変形例)
 以上、操舵補助装置の実施形態を説明したが、本発明の操舵補助装置の実施形態は、上記例に限られない。
 例えば、アシスト力付与機構60の構成は、図4に示す例に限られない。モータ70の回転を、ステアリングシャフト9以外の操舵系29の部分に伝達する構成であってもよい。例えば、トップブリッジ50、ボトムブリッジ14、左緩衝器6、又は右緩衝器7のいずれかにモータ70の回転を伝達する構成とすることができる。
 上記例では、駆動部がモータ70であるが、駆動部は、モータ70以外のアクチュエータであってもよい。例えば、油圧アクチュエータを駆動部としてもよい。
 また、図1の例では、操舵系29は、伝達部材20、トップブリッジ50、ボトムブリッジ14、左緩衝器6、右緩衝器7、及びステアリングシャフト9を含むが、操舵系29はこの例に限られない。操舵系29は、操舵輪を転舵させるための任意の構成を採ることができる。例えば、伝達部材20を省略してもよい。この場合、バーハンドル8がステアリングシャフト9に対して回転不能に連結される構成とすることができる。また、伝達部材20及びトップブリッジ50を省略することもできる。また、緩衝器が、操舵系29に含まれない構成とすることもできる。
 上記例では、操舵輪である前輪4が1つであるが、操舵輪は、左右に並べて配置された一対の車輪であってもよい。この場合、鞍乗型車両は、一対の車輪車体とフレームとの間に設けられ、車体フレームに対して回転可能に支持されるアームを含むリンク機構を備えることができる。アームが車体フレームに対して回転することにより、一対の車輪の車体フレームに対する上下方向の相対位置が変更する。これにより、車体フレームが、鉛直方向に対して傾斜する。この構成では、リンク機構のアームを、バーハンドルの操舵力を一対の車輪へ伝達する操舵系の一部とすることができる。
 また、アシスト制御部61の動作も上記例に限られない。例えば、ステップS1及びステップS2において、対応関係を示すデータとして、マップデータを用いる代わりに、関数データを用いて、指令値Ia、Inを演算することもできる。
 上記実施形態では、閾値と車両の状態を示す検出値との比較する処理として、閾値と検出値とが同じある場合を含まない判定(例えば、Ts>Th1等)の例を示している。これを、閾値=検出値を含むような判定(例えば、Ts>=Th1)とした場合も、技術的意義は同じである。
 トルク検出部も、上記構成のトルクセンサ90に限られない。例えば、トルク検出部は、モータ70の電流に基づいて、操作トルクを計算する構成であってもよい。或いは、トルクセンサ90は、ステアリングシャフト9又は減速機80の回転軸のトルクを検出する構成であってもよい。また、磁歪式トルクセンサの代わりに、その他の方式のトルクセンサを用いることもできる。他の方式として、例えば、トーションバーの捩れを検出するトーションバー式、又は、ひずみゲージによりトルクを検出する方式等が挙げられる。
 また、上記例では、トルクセンサ90は、操舵系29の一部に設けられ、操舵系29に入力されるトルクに応じて変形する変形容易部(トルク伝達部13)の変形に基づく物理量の変化を検出する構成である。変形容易部の構成は、上記例に限られない。操舵トルクを検出するための変形容易部を、操舵系29の任意の位置に設けることができる。例えば、ステアリングシャフト9とヘッドパイプ10の間、又は、バーハンドル8に変形容易部を設けてもよい。
 トルクセンサ90の出力は、操舵力のアシストの他の任意の制御に用いることもできる。例えば、トルクセンサ90の出力を、トラクションコントロール、及び/又は、ABS(Anti-lock Brake System)の制御に用いることができる。同様に、舵角センサ44、及び、車速センサ66の出力も、他の任意の制御に用いることができる。
 舵角検出部43も、図8に示す構成に限られない。例えば、舵角検出部は、モータ70の電流に基づいて、舵角速度を計算する構成であってもよい。

 バーハンドルは、鞍乗型車両の左右方向に延び、ステアリングシャフトに対して固定された棒を含む。バーハンドルの棒は、1本でもよいし、互いに連結された左右2本の棒であってもよい。例えば、バーハンドルの左右の棒が独立した部品で構成されてもよい。すなわち、バーハンドルはセパレートハンドルであってもよい。バーハンドルの棒の左端に左グリップが設けられる。棒の右端に右グリップが設けられる。 

 バーハンドルの揺動可能な範囲は、180度(二分の一回転)以下である。この揺動可能な範囲は、バーハンドルを左に最大限操作したときの舵角と、右に最大限操作したときの舵角との差(lock to lock)とする。 

 ステアリングシャフトは、車体フレームの上下方向に延びる軸すなわち揺動軸を中心に揺動する。ここで、ステアリングシャフトの揺動軸が車体フレームの上下方向に延びる形態には、揺動軸が、車体フレームの上下方向に対して傾いている場合も含む。この場合、揺動軸の延びる方向の車体フレームの上下方向に対する傾きは、車体フレームの左右方向および前後方向に対する傾きより小さくなる。 

 バーハンドルの揺動軸の延びる方向と、ステアリングシャフトの揺動軸の延びる方向は、同じであってもよいし、異なっていてもよい。 

 また、操舵補助装置が、ステアリングシャフトに補助力を付与する形態には、上記例のように、モータ等の駆動源の動力を、減速機等の伝達部材を介して、ステアリングシャフトに伝達する形態が含まれる。また、操舵補助装置は、例えば、駆動源の動力を、緩衝装置、フロントフォーク又はリンク機構等の他の部材を介して、ステアリングシャフトに伝達することで、補助力を付与してもよい。 
 鞍乗型車両の全車速領域において、操舵補助装置により付与される補助力が車両の速度の上昇に伴って減少する第1車速領域と、操舵補助装置により付与される補助力が車両の速度の上昇に伴って増加する第2車速領域が存在する。第1車速領域は、第2車速領域より低速の車速領域である。

 操舵補助装置は、バーハンドルの舵角速度に関わらずライダーがバーハンドルに入力した操舵トルクが一定の場合に、第1車速領域において、車両の速度の上昇に伴って補助力を減少させ、第1車速領域より高い第2車速領域において、車両の速度の上昇に伴って補助力を増加させることができる。或いは、操舵補助装置は、ライダーがバーハンドルに入力した操舵トルク及び舵角速度が一定の場合に、第1車速領域において車両の速度の上昇に伴って補助力を減少させ、第2車速領域において車両の速度の上昇に伴って補助力を増加させてもよい。或いは、操舵補助装置は、ライダーがバーハンドルに入力した操舵トルクが一定、かつ、舵角速度が所定値より大きい場合に、第1車速領域において車両の速度の上昇に伴って補助力を減少させ、第2車速領域において車両の速度の上昇に伴って補助力を増加させてもよい。
 操舵補助装置は、バーハンドルの操舵トルクを検出するトルク検出部と、車両の速度を検出する車速センサを備えてもよい。操舵補助装置は、トルク検出部で検出された操舵トルクと、車速センサで検出された車両の速度に基づいて駆動部を制御して、操舵トルクと同じ方向の補助力をステアリングシャフトに付与することができる。トルク検出部は、上記例のトルクセンサに限られず、トルク検出部は、ライダーが前記バーハンドルに入力した操舵トルクに関する物理量を検知するセンサである。操舵トルクに関する物理量は、例えば、操舵トルク、操舵トルクの時間変化すなわち操舵トルクの微分、又は、操舵トルクの2回微分等とすることができる。操舵補助装置は、トルク検出部のセンサの出力信号と車速センサの出力信号に基づいて、ステアリングシャフトに付与する補助力を制御する。
 なお、ライダーが操舵トルクを入力する態様には、外乱で操舵輪が回転しようとするのに対して、ライダーがバーハンドルを抑えて動かないようにする場合も含まれる。
操舵補助装置は、ライダーがバーハンドルに入力した操舵トルクが一定の場合、第1車速領域において、車速の上昇に伴って補助力を減少させる。これにより、第1車速領域においてある車速Vv11を保ってある操舵トルクTs11をバーハンドルに入力した時に操舵補助装置がステアリングシャフトに付与する操舵トルクと同じ方向の補助力が、第1車速領域においてその車速Vv11より高い車速Vv12(Vv11<Vv12)を保って同じ大きさの操舵トルクTs11をバーハンドルに入力した時の補助力より大きくなる。操舵補助装置は、ライダーがバーハンドルに入力した操舵トルクが一定の場合、第2車速領域において、車速の上昇に伴って補助力を増加させる。これにより、第2車速領域においてある車速Vv21(Vv12<Vv21)を保ってある操舵トルクTs22をバーハンドルに入力した時に操舵補助装置がステアリングシャフトに付与する操舵トルクと同じ方向の補助力が、第2車速領域においてその車速Vv21より高い車速Vv22(Vv21<Vv22)を保って同じ操舵トルクTs22をバーハンドルに入力した時の補助力より小さくなる。
操舵トルクが一定の場合において、第1車速領域における操舵補助装置がステアリングシャフトに付与する補助力の最大値は、第2車速領域における補助力の最大値より大きくてもよい。或いは、操舵トルクが一定の場合において、第1車速領域における操舵補助装置がステアリングシャフトに付与する補助力の最大値は、第2車速領域における補助力の最大値と同じか又は小さくてもよい。
また、操舵補助装置が第1車速領域において車両の速度の上昇に伴って減少する補助力の減少量は、第2車速領域において車両の速度の上昇に伴って増加する補助力の増加量より小さくてもよい。また、第1車速領域における車両の速度の変化量に対する補助力の減少量の比率は、第2車速領域における車両の速度の変化量に対する補助力の増加量の比率より小さくてもよい。また、全車速域において、車両の速度の上昇に伴って補助力を減少させる第1車速領域と車両の速度の上昇に伴って補助力を増加させる第2車速領域の組が複数含まれてもよい。
 操舵補助装置は、第1車速領域より低い車速領域において、車両の速度の上昇に伴って補助力を増加させてもよい。例えば、極低速領域(車両の速度は0に近い領域)における操舵トルクに対する補助力は、全車速領域における最大値より小さい値に設定してもよい。
 本発明において、補助力の正負(プラスマイナス)は、操舵トルクと同じ方向を正(プラス)、操舵トルクと反対方向を負(マイナス)とする。補助力の増加は、補助力が正の方向に変化することである。補助力の減少は、補助力が負の方向に変化することである。本明細書において、操舵補助装置が、車両の速度の変化に伴って増加また減少させる補助力は、操舵トルクと同じ方向の補助力であるとして説明している。操舵補助装置は、操舵トルクと反対方向の補助力をステアリングシャフトに付与してもよい。

 車体フレームは、走行中にリーン車両にかかる応力を受ける部材である。例えば、モノコック(応力外皮構造)、セミモノコック、又は、車両部品が応力を受ける部材を兼ねている構造のものも、車体フレームの例に含まれる。例えば、エンジン、エアクリーナ等の部品が車体フレームの一部となる場合があってもよい。 
 ステアリングシャフトと操舵輪は、緩衝装置、フロントフォーク又はリンク機構等の他の伝達部材を介して連結されてもよい。また、ステアリングシャフトとバーハンドルは、他の伝達部材を介して連結されてもよい。
 本発明は、自動二輪車1以外の任意の鞍乗型車両に適用することができる。例えば、自動三輪車、ATV、スノーモービル、自転車等に本発明を適用することができる。例えば、操舵輪は、鞍乗型車両の左右方向に並んで配置された2つの車輪であってもよい。なお、鞍乗型車両とは、乗員が鞍にまたがるような状態で乗車する車両全般を指している。
 本発明の図示実施形態を幾つかここに記載した。本発明は、ここに記載した各種の好ましい実施形態に限定されるものではない。本発明は、この開示に基づいて当業者によって認識され得る、均等な要素、修正、削除、組み合わせ(例えば、各種実施形態に跨る特徴の組み合わせ)、改良及び/又は変更を含むあらゆる実施形態をも包含する。クレームの限定事項はそのクレームで用いられた用語に基づいて広く解釈されるべきであり、本明細書あるいは本願のプロセキューション中に記載された実施形態に限定されるべきではない。そのような実施形態は非排他的であると解釈されるべきである。

Claims (8)

  1.  鞍乗型車両であって、
     車体フレームと、
     前記車体フレームに、前記車体フレームの上下方向に延びる軸周りに揺動可能に支持されるステアリングシャフトと、
     前記鞍乗型車両の左右方向において中央より左に位置する左グリップと、前記鞍乗型車両の左右方向において中央より右に位置する右グリップとを含み、前記ステアリングシャフトに連結されるバーハンドルと、
     前記ステアリングシャフトに連結される操舵輪と、 ライダーが前記バーハンドルに入力した操舵トルクと同じ方向の補助力を前記ステアリングシャフトに付与する操舵補助装置とを備え、
     前記操舵補助装置は、前記ライダーが前記バーハンドルに入力した操舵トルクが一定の場合、第1車速領域において、前記車両の速度の上昇に伴って前記補助力を減少させ、前記第1車速領域より高い第2車速領域において、前記車両の速度の上昇に伴って前記補助力を増加させる、鞍乗型車両。
  2.  請求項1に記載の鞍乗型車両であって、
     前記操舵補助装置が前記第1車速領域において前記車両の速度の上昇に伴って減少する前記補助力の減少量は、前記第2車速領域において前記車両の速度の上昇に伴って増加する前記補助力の増加量より大きい、鞍乗型車両。
  3.  請求項1又は2に記載の鞍乗型車両であって、
     前記第1車速領域における前記車両の速度の変化量に対する前記補助力の減少量の比率は、前記第2車速領域における前記車両の速度の変化量に対する前記補助力の増加量の比率より大きい、鞍乗型車両。
  4.  請求項1~3のいずれか1項に記載の鞍乗型車両であって、
     前記車両の速度の上昇に伴って前記補助力を減少させる第1車速領域より低い車速領域に、前記車両の速度の変化に対して前記補助力が一定となる低速補助力一定車速領域がある、鞍乗型車両。
  5.  請求項1~4のいずれか1項に記載の鞍乗型車両であって、
     前記車両の速度の上昇に伴って前記補助力を増加させる第2車速領域より高い車速領域に、前記車両の速度の変化に対して前記補助力が一定となる高速補助力一定車速領域がある、鞍乗型車両。
  6.  請求項1~5のいずれか1項に記載の鞍乗型車両であって、
     前記第1車速領域と前記第2車速領域が隣接している、鞍乗型車両。
  7.  請求項1~5のいずれか1項に記載の鞍乗型車両であって、
     前記第1車速領域と前記第2車速領域の間に、前記車両の速度の変化に対して前記補助力が一定となる中間補助力一定車速領域がある、鞍乗型車両。
  8.  請求項1~7のいずれか1項に記載の鞍乗型車両であって、
     前記操舵補助装置は、前記ライダーが前記バーハンドルに入力した操舵トルクが第1閾値より大きく、かつ一定の場合、第1車速領域において、前記車両の速度の上昇に伴って前記補助力を減少させ、前記第1車速領域より高い第2車速領域において、前記車両の速度の上昇に伴って前記補助力を増加させる、鞍乗型車両。
PCT/JP2017/018869 2016-05-19 2017-05-19 バーハンドルを有する鞍乗型車両 WO2017200095A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP17799519.8A EP3446955B1 (en) 2016-05-19 2017-05-19 Straddled vehicle having handlebar
JP2018518390A JP6605133B2 (ja) 2016-05-19 2017-05-19 バーハンドルを有する鞍乗型車両
US16/195,119 US11745821B2 (en) 2016-05-19 2018-11-19 Straddled vehicle having handlebar

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016100836 2016-05-19
JP2016-100836 2016-05-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/195,119 Continuation-In-Part US11745821B2 (en) 2016-05-19 2018-11-19 Straddled vehicle having handlebar

Publications (1)

Publication Number Publication Date
WO2017200095A1 true WO2017200095A1 (ja) 2017-11-23

Family

ID=60326586

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/018869 WO2017200095A1 (ja) 2016-05-19 2017-05-19 バーハンドルを有する鞍乗型車両

Country Status (4)

Country Link
US (1) US11745821B2 (ja)
EP (1) EP3446955B1 (ja)
JP (1) JP6605133B2 (ja)
WO (1) WO2017200095A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019087578A1 (ja) * 2017-11-01 2019-05-09 ヤマハ発動機株式会社 リーン車両
TWI735321B (zh) * 2020-08-27 2021-08-01 台灣制動股份有限公司 電動自行車防鎖死煞車系統(abs)之車首集成套件
KR20220073515A (ko) * 2020-11-26 2022-06-03 현대자동차주식회사 퍼스널 모빌리티 및 그 제어방법
EP4269221A4 (en) * 2021-02-10 2024-03-20 Yamaha Motor Co Ltd HANDLE BAR ASSEMBLY AND STRETCH SEAT VEHICLE

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS545969B2 (ja) 1973-02-08 1979-03-23
JP2009083578A (ja) * 2007-09-28 2009-04-23 Honda Motor Co Ltd ステアリング補助システム及びステアリング補助方法
JP2009132271A (ja) * 2007-11-30 2009-06-18 Honda Motor Co Ltd 自動二輪車のステアリング補助システム
JP2011073624A (ja) * 2009-09-30 2011-04-14 Honda Motor Co Ltd 自動二輪車の操舵装置
JP2012076490A (ja) * 2010-09-30 2012-04-19 Honda Motor Co Ltd 鞍乗型車両の操舵装置及びこれを搭載した自動二輪車

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57198169A (en) * 1981-05-29 1982-12-04 Tokai T R W Kk Motor-driven oil pressure power steering unit
JPS58177775A (ja) * 1982-04-14 1983-10-18 Tokai T R W Kk パワ−ステアリング装置
JPS59130780A (ja) * 1983-01-17 1984-07-27 Aisin Seiki Co Ltd 電動パワ−ステアリング装置
JPS6082482A (ja) * 1983-10-14 1985-05-10 Nissan Motor Co Ltd パワ−ステアリングの流量制御装置
JPS6124375U (ja) * 1984-07-19 1986-02-13 トヨタ自動車株式会社 ラツクアンドピニオン式ステアリング装置
US4650213A (en) * 1984-11-28 1987-03-17 Honda Giken Kogyo Kabushiki Kaisha Vehicle body inclining apparatus of vehicle
FR2577878B1 (fr) * 1985-02-26 1989-03-31 Honda Motor Co Ltd Dispositif de direction assiste par un moteur
JPH0741842B2 (ja) * 1985-10-18 1995-05-10 東海テイ−ア−ルダブリユ−株式会社 車速感応式パワ−ステアリング装置
JP2582378Y2 (ja) * 1992-02-04 1998-09-30 株式会社ユニシアジェックス 電動パワーステアリング装置
JP2950096B2 (ja) * 1993-06-01 1999-09-20 三菱自動車工業株式会社 電子制御式パワーステアリング装置
JP3011905B2 (ja) * 1997-07-14 2000-02-21 本田技研工業株式会社 電動パワーステアリング装置
JP3412579B2 (ja) * 1999-10-19 2003-06-03 トヨタ自動車株式会社 車両の電動パワーステアリング装置
JP3689046B2 (ja) * 2002-01-25 2005-08-31 カヤバ工業株式会社 パワーステアリング装置
US20070007071A1 (en) * 2005-07-06 2007-01-11 Plourde Aime Power steering system for ATV
JP4852964B2 (ja) * 2005-10-14 2012-01-11 日本精工株式会社 電動パワーステアリング装置の制御装置
JP2007125917A (ja) * 2005-11-01 2007-05-24 Yamaha Motor Co Ltd 制御システムおよびそれを備えた自動二輪車
WO2008056771A1 (fr) * 2006-11-10 2008-05-15 Jtekt Corporation Dispositif de direction assistée électrique
JP5124832B2 (ja) * 2008-01-31 2013-01-23 本田技研工業株式会社 車両の操舵装置
WO2009113642A1 (ja) * 2008-03-12 2009-09-17 本田技研工業株式会社 車両のトー角制御装置
CN102421655A (zh) * 2009-05-13 2012-04-18 丰田自动车株式会社 规格信息推定装置及车辆
JP5131324B2 (ja) * 2010-07-09 2013-01-30 トヨタ自動車株式会社 車両用操舵装置
JP5466126B2 (ja) * 2010-09-30 2014-04-09 本田技研工業株式会社 自動二輪車の姿勢制御装置及び自動二輪車
DE102011082413A1 (de) * 2011-09-09 2013-03-14 Robert Bosch Gmbh Lenkunterstützungssystem für ein Zweirad sowie Steuerung für ein solches Lenkunterstützungssystem
JP5962312B2 (ja) * 2012-08-03 2016-08-03 株式会社デンソー 電動パワーステアリング制御装置
CN203111409U (zh) * 2013-02-22 2013-08-07 浙江大学 一种用于电动自行车的电动助力转向控制系统
JP5985045B2 (ja) * 2013-04-08 2016-09-06 三菱電機株式会社 操舵制御装置および操舵制御方法
US9199665B2 (en) * 2013-05-15 2015-12-01 Jtekt Corporation Electric power steering system
CN104290806B (zh) * 2013-07-16 2016-10-05 本田技研工业株式会社 车辆用转向装置
JP6220687B2 (ja) * 2014-02-04 2017-10-25 Kyb株式会社 電動パワーステアリング装置
US20150360717A1 (en) * 2014-06-13 2015-12-17 Hyundai Motor Company Steering system for vehicle and control method thereof
JP6379907B2 (ja) * 2014-09-16 2018-08-29 株式会社ジェイテクト 電動パワーステアリング装置
JP6375545B2 (ja) * 2014-09-24 2018-08-22 日立オートモティブシステムズ株式会社 パワーステアリング装置およびパワーステアリング装置の制御回路
JP2016172459A (ja) * 2015-03-16 2016-09-29 株式会社ジェイテクト ステアリング装置
JP6650714B2 (ja) * 2015-09-28 2020-02-19 ヤンマー株式会社 乗用車両
US10065674B2 (en) * 2015-11-27 2018-09-04 Jtekt Corporation Steering control device
JP6652742B2 (ja) * 2016-01-14 2020-02-26 三菱自動車工業株式会社 電動パワーステアリング装置
US9796410B2 (en) * 2016-01-28 2017-10-24 Denso Corporation Motor controller
KR102503307B1 (ko) * 2016-07-11 2023-02-27 현대모비스 주식회사 전동식 동력 조향장치의 조향복원 제어장치 및 방법
KR102262132B1 (ko) * 2017-03-27 2021-06-10 현대자동차주식회사 차량용 조향 제어방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS545969B2 (ja) 1973-02-08 1979-03-23
JP2009083578A (ja) * 2007-09-28 2009-04-23 Honda Motor Co Ltd ステアリング補助システム及びステアリング補助方法
JP2009132271A (ja) * 2007-11-30 2009-06-18 Honda Motor Co Ltd 自動二輪車のステアリング補助システム
JP2011073624A (ja) * 2009-09-30 2011-04-14 Honda Motor Co Ltd 自動二輪車の操舵装置
JP2012076490A (ja) * 2010-09-30 2012-04-19 Honda Motor Co Ltd 鞍乗型車両の操舵装置及びこれを搭載した自動二輪車
JP5475603B2 (ja) 2010-09-30 2014-04-16 本田技研工業株式会社 鞍乗型車両の操舵装置及びこれを搭載した自動二輪車

Also Published As

Publication number Publication date
JPWO2017200095A1 (ja) 2019-03-14
US11745821B2 (en) 2023-09-05
EP3446955A4 (en) 2019-05-01
EP3446955B1 (en) 2020-08-12
EP3446955A1 (en) 2019-02-27
JP6605133B2 (ja) 2019-11-13
US20190084639A1 (en) 2019-03-21

Similar Documents

Publication Publication Date Title
US11745821B2 (en) Straddled vehicle having handlebar
JP6476235B2 (ja) 三輪自動車のための操舵および制御システム
JP2017206169A (ja) 操舵補助装置、鞍乗型車両及び操舵補助方法
US7233850B2 (en) Vehicle steering apparatus
US7257474B2 (en) Steering system for vehicle
JP5255329B2 (ja) ステアリングダンパシステム及びそれを備えた鞍乗り型車両
TWI603883B (zh) Tiltable vehicles
US20060191739A1 (en) Motor-driven steering assist apparatus
EP3508409B1 (en) Motor vehicle
US9233729B2 (en) Steering damper control apparatus, and a saddle riding type vehicle having the same
WO2018173305A1 (ja) 路面判定装置、サスペンション制御装置、および、サスペンション装置
WO2019130600A1 (ja) 車両制御装置、および、車両
WO2018173304A1 (ja) サスペンション制御装置、および、サスペンション装置
JP2005193788A (ja) 雪上車の電動パワーステアリング装置
JP2017206168A (ja) 操舵補助装置、鞍乗型車両及び操舵補助方法
JP2017206170A (ja) 回転補助装置、鞍乗型車両及び回転補助方法
JP2010234935A (ja) 車両の後輪トー角制御装置
JP2005053423A (ja) 路面状態判定方法および路面状態判定装置
EP3889022B1 (en) Leaning vehicle with a left- right pair of wheels
TWI836580B (zh) 用於向雙輪轉向機構提供轉向扭矩的裝置
CN116113573A (zh) 用于鞍座式机动车辆的平衡支撑系统
JP5255331B2 (ja) ステアリングダンパシステム及びそれを備えた鞍乗り型車両
WO2024048533A1 (ja) リーン車両
EP3354547A1 (en) Two-wheeled vehicle
JP2023043177A (ja) 二輪車操舵機構に操舵トルクを提供するための装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018518390

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2017799519

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017799519

Country of ref document: EP

Effective date: 20181119

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17799519

Country of ref document: EP

Kind code of ref document: A1