WO2017200073A1 - フルオレン骨格を有するアルコール化合物の製造方法 - Google Patents

フルオレン骨格を有するアルコール化合物の製造方法 Download PDF

Info

Publication number
WO2017200073A1
WO2017200073A1 PCT/JP2017/018786 JP2017018786W WO2017200073A1 WO 2017200073 A1 WO2017200073 A1 WO 2017200073A1 JP 2017018786 W JP2017018786 W JP 2017018786W WO 2017200073 A1 WO2017200073 A1 WO 2017200073A1
Authority
WO
WIPO (PCT)
Prior art keywords
alcohol compound
compound represented
crystal
crystals
weight
Prior art date
Application number
PCT/JP2017/018786
Other languages
English (en)
French (fr)
Inventor
弘行 加藤
有児 西田
崇史 佐伯
Original Assignee
田岡化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=60325349&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2017200073(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 田岡化学工業株式会社 filed Critical 田岡化学工業株式会社
Priority to KR1020187034877A priority Critical patent/KR102335659B1/ko
Priority to CN201780029380.3A priority patent/CN109071391B/zh
Publication of WO2017200073A1 publication Critical patent/WO2017200073A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/34Separation; Purification; Stabilisation; Use of additives
    • C07C41/40Separation; Purification; Stabilisation; Use of additives by change of physical state, e.g. by crystallisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/18Preparation of ethers by reactions not forming ether-oxygen bonds
    • C07C41/30Preparation of ethers by reactions not forming ether-oxygen bonds by increasing the number of carbon atoms, e.g. by oligomerisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/02Ethers
    • C07C43/20Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring
    • C07C43/23Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring containing hydroxy or O-metal groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/04Ortho- or ortho- and peri-condensed systems containing three rings
    • C07C2603/06Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members
    • C07C2603/10Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members containing five-membered rings
    • C07C2603/12Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members containing five-membered rings only one five-membered ring
    • C07C2603/18Fluorenes; Hydrogenated fluorenes

Definitions

  • the present invention relates to a method for producing an alcohol compound having a novel fluorene skeleton that is suitable as a monomer for forming a resin (optical resin) constituting an optical member such as an optical lens and an optical film, and has excellent processability and productivity.
  • the alcohol compound having a structure represented by the above is a resin produced from the alcohol compound and derivatives thereof such as optical properties such as refractive index, heat resistance, water resistance, chemical resistance, electrical properties, mechanical properties, solubility, etc. Since it is excellent in various properties, it has been attracting attention as a raw material for optical resins in particular [for example, JP-A-07-149881 (Patent Document 1), JP-A-2001-122828 (Patent Document 2), JP-A-2001-206863. (Patent Document 3), JP-A-2009-256342 (Patent Document 4), and JP-A-2009-173647 (Patent Document 5)].
  • Patent Document 1 JP-A-07-149881
  • Patent Document 2 JP-A-2001-122828
  • Patent Document 3 JP-A-2001-206863.
  • Patent Document 4 JP-A-2009-256342
  • JP-A-2009-173647 Patent Document 5].
  • Patent Document 2 There is known a method of reacting a phenol compound represented by the formula (II) with ethylene oxide (Patent Document 2).
  • the alcohol compound represented by the above formula (1) obtained by this method has low purity, and a large amount of by-product of a compound in which 3 to 4 molecules of ethylene oxide are added (hereinafter sometimes referred to as multimer).
  • multimer a compound in which 3 to 4 molecules of ethylene oxide are added
  • Patent Document 3 A method for obtaining an alcohol compound represented by the above formula (1) by reacting an alcohol compound represented by the formula (9) with 9-fluorenone has been proposed (Patent Document 3). Further, as a technique for improving the coloring problem due to the production method, an alcohol compound represented by the above formula (3) and 9 in the presence of 3 parts by weight or more of thiols with respect to 100 parts by weight of an acid catalyst and 9-fluorenones. A method for obtaining an alcohol compound represented by the above formula (1) by reacting with fluorenone has been proposed (Patent Document 4).
  • An object of the present invention is to produce a crystal of an alcohol compound represented by the above formula (1) in which the residual amount of the solvent used in the reaction or post-treatment after the reaction is greatly reduced.
  • the solvent used in the reaction or the post-treatment after the reaction since the solvent used in the reaction or the post-treatment after the reaction is not included, the residual amount of the solvent in the crystal is greatly reduced. Crystals can be provided.
  • crystallization of the alcohol compound represented by the said Formula (1) obtained by the method of this invention is high purity and there is little coloring
  • various resin materials such as a polycarbonate, polyester, polyacrylate, a polyurethane, an epoxy, are included. It is suitably used as a raw material.
  • the inclusion of the solvent during melting of the crystal is released when the crystal is used as a resin raw material. It may be necessary to safely remove the used solvent out of the system, or the quality of the obtained resin may not be constant due to the influence of the encapsulated solvent. Furthermore, when storing and transporting the alcohol compound represented by the above formula (1) in which the solvent is included, more strict countermeasures for disaster prevention are required as compared to crystals not including the solvent.
  • the crystal of the alcohol compound represented by the above formula (1) can include clathrate by inclusion of various organic compounds including aromatic hydrocarbons, while the solvent is not used in the reaction or after-treatment after the reaction. It is difficult to produce a crystal of an alcohol compound represented by the above formula (1) without using it. Accordingly, when the crystal of the alcohol compound represented by the above formula (1) is produced by a general production method such as the above-described known method, the inclusion in which the solvent used in the reaction or the post-treatment after the reaction is included is included is included. In order to obtain a crystal of the alcohol compound represented by the above formula (1) which is an inclusion body and removes the clathrate from the inclusion body and is not an inclusion body, the crystal is once heated to a melting point or higher to be melted.
  • 2 is an infrared absorption spectrum of the crystal obtained in Example 1.
  • 2 is an infrared absorption spectrum of the crystal obtained in Comparative Example 1.
  • 2 is an infrared absorption spectrum of the crystal obtained in Comparative Example 11.
  • 2 is an infrared absorption spectrum of the crystal obtained in Reference Example 1. It is an infrared absorption spectrum of the crystal obtained in Comparative Example 13.
  • the present invention is characterized in that the following steps (i), (ii), and (iii) are included in this order when the alcohol compound represented by the above formula (1) is produced.
  • Step (i) A step of preparing a solution (crystallization solution) containing the alcohol compound represented by the above formula (1), aromatic hydrocarbons and methanol (hereinafter also referred to as a crystallization solution preparation step).
  • Step (ii) A step of precipitating crystals of the alcohol compound from the solution at 25 ° C. or higher, and separating the precipitated crystals (hereinafter also referred to as a crystallization step).
  • Step (iii) A step of removing methanol from the crystal at 60 ° C. or higher (hereinafter also referred to as a drying step).
  • the steps (i), (ii) and (iii) will be described in detail.
  • the alcohol compound represented by the above formula (1) used as a raw material of the present invention those produced by a known method such as the above-mentioned patent document can be used. From the viewpoint of improvement, it is preferable to produce the alcohol compound represented by the above formula (1) by the method described below. In addition to the feature that the solvent used in the reaction or post-treatment after the reaction is not included by producing the alcohol compound represented by the above formula (1) by the following method, the following (a) and It becomes possible to produce an alcohol compound represented by the above formula (1) having the characteristics of // (b).
  • the HPLC purity determined by the method described later is usually 90% or higher, preferably 95% or higher, more preferably 98% or higher.
  • the YI value measured by the method described later is usually 10 or less, preferably 7 or less.
  • the method for producing an alcohol compound represented by the above formula (1) which is a preferred embodiment of the present invention, is carried out in the presence of at least one compound selected from the group consisting of glycol diethers and cyclic ketones having 5 to 12 carbon atoms.
  • the phenol compound represented by the above formula (2) is reacted with ethylene carbonate.
  • the phenol compound represented by the above formula (2) may be a commercially available product, or can be produced by reacting fluorenone with 2-phenylphenol in the presence of an acid catalyst.
  • the glycol diether used in the present invention has the following formula (4): R 1 —O (CH 2 CH 2 O) n —R 2 (4) (Wherein R 1 and R 2 are the same or different and each represents an optionally branched alkyl group having 1 to 4 carbon atoms, and n represents an integer of 1 to 4) It has the structure represented by these.
  • Such glycol diethers include ethylene glycol dimethyl ether, propylene glycol dimethyl ether, diethylene glycol dimethyl ether, dipropylene glycol dimethyl ether, diethylene glycol ethyl methyl ether, diethylene glycol isopropyl methyl ether, diethylene glycol diethyl ether, diethylene glycol butyl methyl ether, tripropylene glycol dimethyl ether, tripropylene glycol Examples include ethylene glycol dimethyl ether, diethylene glycol dibutyl ether, triethylene glycol butyl methyl ether, and tetraethylene glycol dimethyl ether.
  • Examples of the cyclic ketone having 5 to 12 carbon atoms used in the present invention include cyclopentanone, cyclohexanone, cycloheptanone, cyclooctanone, cyclodecanone, cycloundecanone, etc.
  • cyclic ketones availability and handling From the viewpoint of good properties, cyclopentanone and cyclohexanone are preferably used.
  • Each of the glycol diether and the cyclic ketone may be used alone or in admixture of two or more if necessary, and the amount used is represented by the above formula (2) from the viewpoint of suppression of multimer formation.
  • the amount is usually 0.05 to 3 times, preferably 0.08 to 1 times the weight of the phenol compound.
  • the amount of ethylene carbonate used is usually 2 to 10 mol, preferably 2 to 4 mol, per 1 mol of the phenol compound represented by the above formula (2).
  • a basic compound As necessary.
  • basic compounds include carbonates, bicarbonates, hydroxides, organic bases and the like. More specifically, potassium carbonate, sodium carbonate, lithium carbonate, cesium carbonate, etc. as carbonates, potassium bicarbonate, sodium bicarbonate, lithium bicarbonate, cesium bicarbonate, etc. as hydroxides, as hydroxides
  • organic bases include sodium hydroxide, potassium hydroxide, lithium hydroxide and the like, and triethylamine, dimethylaminopyridine, triphenylphosphine, tetramethylammonium bromide, tetramethylammonium chloride and the like.
  • potassium carbonate, sodium carbonate, and triphenylphosphine are preferably used from the viewpoint of good handleability.
  • the amount used when using these basic compounds is usually 0.01 to 1.0 mol, preferably 0.03 to 0.2 mol per mol of the phenol compound represented by the above formula (2). It is.
  • an inert organic solvent in addition to the glycol diether and the cyclic ketone having 5 to 12 carbon atoms, an inert organic solvent can be used in combination as necessary.
  • inert organic solvents include ketones, aromatic hydrocarbons, halogenated aromatic hydrocarbons, aliphatic hydrocarbons, halogenated aliphatic hydrocarbons, ethers, esters, and aliphatic nitriles. Amides, sulfoxides and the like.
  • halogenated aliphatic hydrocarbons ether Diethyl ether, di-iso-propyl ether, methyl tertiary butyl ether, cyclopentyl methyl ether, diphenyl ether, etc. as esters, ethyl acetate, butyl acetate, etc. as aliphatic nitrates
  • Acetonitrile or the like as Le compound is dimethyl formamide as amides, dimethyl acetamide and the like, dimethyl sulfoxide, and the like as sulfoxides.
  • aromatic hydrocarbons, ketones or ethers having a boiling point of 110 ° C.
  • organic solvents may be used alone or as a mixture of two or more if necessary.
  • the amount used when these organic solvents are used in combination is usually 0.1 to 5 times, preferably 0.5 to 3 times the weight of the phenol compound represented by the above formula (2).
  • the reaction between the phenol compound represented by the above formula (2) and ethylene carbonate is usually carried out at 30 to 150 ° C., preferably 100 to 130 ° C.
  • the reaction solution containing the alcohol compound represented by the above formula (1) thus obtained may be concentrated and dried as it is, and then subjected to a crystallization solution preparation step. Analysis and column purification may be performed. Moreover, after implementing the water washing process and / or concentration process which are mentioned below, it uses for the crystallization solution preparation process of this invention, and improves the purity of the alcohol compound represented by the said Formula (1) made into the objective more. Is preferable in that it is possible. Hereinafter, the water washing step and the concentration step will be described in detail.
  • 0.1 to 10 times by weight, preferably 0.5 to 5 times by weight of water used for the reaction is obtained by adding 1 to 10 times by weight of the phenol compound represented by the above formula (2). And stirring at 60 to 95 ° C., preferably 75 to 90 ° C., followed by standing, and separating the aqueous layer.
  • the washing temperature to 60 ° C. or higher
  • the liquid separation speed at the time of standing is faster
  • by setting it to 95 ° C. or lower the alcohol compound represented by the above formula (1) at the time of washing is decomposed. It becomes possible to suppress.
  • the water washing step may be performed multiple times as necessary. Moreover, when carrying out the water washing step, by-products can be decomposed and removed into an aqueous layer by adding a base or an acid together with water.
  • the concentration process will be described in detail.
  • aromatic hydrocarbons examples include toluene and xylene.
  • methanol 1: 0.3 to 1: 5
  • the alcohol compound represented by the above formula (1) can be easily dissolved, so that the crystallization operation becomes easier, and the purity and hue of the alcohol compound represented by the above formula (1) are improved. It is preferable because it can be easily made.
  • these ratios Prior to the crystallization solution preparation step, these ratios are adjusted by appropriately adding aromatic hydrocarbons and methanol to the above ratio after quantitatively determining the contents of aromatic hydrocarbons and methanol by gas chromatography. can do.
  • the crystallization solution may contain other organic compounds in addition to aromatic hydrocarbons and methanol.
  • organic compounds that may be included include, for example, glycol diethers and / or cyclic ketones having 5 to 12 carbon atoms used in the above reaction, and aliphatic hydrocarbons (eg, pentane, hexane, heptane, etc.) And chain ketones (for example, acetone, methyl ethyl ketone, methyl isobutyl ketone, etc.).
  • the content is usually 0.5 times or less, preferably 0.3 times or less, based on the total amount of aromatic hydrocarbons and methanol in the crystallization solution.
  • the total amount of solvent (aromatic hydrocarbons + methanol + the above-mentioned other organic compounds) contained in the crystallization solution is usually based on 1 weight times the alcohol compound represented by the above formula (1) contained in the crystallization solution. 0.5 to 20 times by weight, preferably 1 to 10 times by weight.
  • the crystalline alcohol compound represented by the above formula (1) may not be obtained. Further, even when a crystalline alcohol compound represented by the above formula (1) is obtained, the purity and hue may not be sufficiently improved, so the water in the crystallization solution is usually 5% by weight or less. Preferably, the content is 1% by weight or less.
  • a method for reducing the water content in the crystallization solution to 5% by weight or less for example, before adding methanol, an aromatic hydrocarbon solvent is added in advance, and azeotropic dehydration with an aromatic hydrocarbon solvent is performed under normal pressure or reduced pressure. After performing operation, the method of adding the methanol which does not contain a water
  • the crystallization solution prepared by the above method is usually heated to a temperature not lower than 40 ° C. and not higher than the boiling point of the crystallization solution to completely dissolve the crystals, and then cooled to 25 ° C. or higher, preferably 25 to 60 ° C.
  • crystals are precipitated at 40 to 50 ° C.
  • the effect of the present invention is not exhibited, and a clathrate partially or entirely clathrates aromatic hydrocarbons.
  • the crystal when the crystal is precipitated at a temperature higher than 60 ° C., it may be a safety problem because it is close to the boiling point of the solvent.
  • the method for precipitating crystals in the above temperature range include a method for maintaining the temperature of the crystallization solution so that the temperature is within the above temperature range until a crystal is precipitated, and a method for inoculating seed crystals within the above temperature range.
  • an operation of growing the crystal by holding it at the same temperature for a certain time may be performed. After crystal precipitation, further cooling is performed as necessary to separate the precipitated crystals.
  • the crystals thus separated contain methanol, but unlike the case of inclusion of aromatic hydrocarbons, methanol can be removed by setting the temperature to 60 ° C. or higher, even if not higher than the crystal melting temperature (melting point). Therefore, it is possible to easily produce crystals that do not contain the solvent used in the reaction or post-treatment after the reaction and are not an inclusion body.
  • the drying step is performed at 60 ° C. or higher and below the melting point of the crystal, preferably 60 ° C. to 110 ° C. When the temperature is lower than 60 ° C., it is difficult to remove methanol. When carrying out the drying step, normal pressure or reduced pressure may be used. However, when industrially carried out, it is preferable to use reduced pressure because methanol can be more efficiently removed.
  • the thus obtained crystals of the alcohol compound represented by the above formula (1) of the present invention can be further purified by carrying out ordinary purification operations such as adsorption, steam distillation and recrystallization, if necessary.
  • the crystals of the alcohol compound represented by the above formula (1) obtained by the method of the present invention have sufficiently high purity without performing such an operation.
  • the solvent used in the reaction or post-treatment after the reaction is not included in the crystal, it can be suitably used as a raw material for resin materials such as polycarbonate, polyester, polyacrylate, polyurethane, and epoxy.
  • it can be suitably used as a raw material (intermediate) for medical and agricultural chemicals, for example, in fields where the encapsulated solvent (organic compound) is a problem.
  • the crystal of the alcohol compound represented by the above formula (1) of the present invention produced by the above method is a solvent used in the reaction or post-treatment after the reaction (normal operating temperature, liquid at 25 ° C.). It is characterized by not including a certain organic compound). Therefore, the content of the organic compound which is liquid at 25 ° C. contained in the alcohol compound crystal represented by the above formula (1) obtained by the above-described method of the present invention is usually 1% by weight or less, preferably 0.5%. % By weight or less, more preferably 0.1% by weight or less.
  • the crystal of the alcohol compound represented by the above formula (1) includes the solvent (organic compound) used in the reaction or post-treatment after the reaction, that is, the alcohol compound represented by the above formula (1)
  • Whether the crystal is an inclusion body can be determined by whether it has 1153 ⁇ 2 (cm ⁇ 1 ), which is a peak characteristic of the inclusion body in the infrared absorption spectrum. If it does not substantially have a peak of 1153 ⁇ 2 (cm ⁇ 1 ), it can be determined that the organic compound is not an inclusion body.
  • “substantially free” means that little or no peak is detected in the range of 1151-1155 (cm ⁇ 1 ).
  • the infrared absorption spectrum can be measured using a Fourier transform infrared spectrophotometer under the conditions described later.
  • TG-DTA Simultaneous differential thermal / thermogravimetric measurement
  • X-ray analysis X-ray analysis
  • NMR analysis NMR analysis
  • weight changes under conditions that exceed the boiling point of the organic compound that appears to contain the resulting crystals.
  • the present invention will be specifically described with reference to examples and the like, but the present invention is not limited in any way.
  • various measurements were performed by the following methods.
  • the production rate (residual rate) and purity of each component described in the following examples, comparative examples, and reference examples are HPLC area percentage values (solvents in the reaction solution and organic compounds included). The peak is the corrected area percentage value), and the yield is apparent when it is assumed that the alcohol represented by the above formula (1) is an inclusion body, but not an inclusion body. Yield.
  • “multimers” in Examples and Comparative Examples indicate compounds obtained by further reacting one or more molecules of ethylene carbonate with the alcohol compound represented by the above formula (1).
  • the residual amount of solvent or the content of the organic compound included in the alcohol compound represented by the above formula (1) is determined by gas chromatography based on the following conditions. Quantification was performed. Equipment: GC-2014 manufactured by Shimadzu Corporation Column: DB-1 (0.25 ⁇ m, 0.25 mm ID ⁇ 30 m), Temperature rise: 40 ° C. (hold for 5 minutes) ⁇ 20 ° C./min ⁇ 250° C.
  • Sample preparation method 100 mg of a sufficiently dried alcohol compound crystal represented by the above formula (1) was weighed into a 10 ml volumetric flask, and an acetonitrile solution of 1,2-dimethoxyethane (1,1, 2 ml of 2-dimethoxyethane dissolved in 200 ml of acetonitrile) was added with a whole pipette, and 5 ml was dissolved in acetonitrile to prepare a sample solution.
  • YI value 12 g of an alcohol compound crystal represented by the above formula (1) was dissolved in 30 ml of N, N-dimethylformamide having a purity of 99% by weight or more, and N, N-dimethyl obtained under the following conditions: The YI value (yellowness) of the formamide solution was measured. Apparatus: Color difference meter (Nippon Denshoku Industries Co., Ltd. SE6000), Cell used: Optical path length 33 mm Quartz cell. In addition, the hue of N, N-dimethylformamide was measured and corrected in advance so that the coloration of N, N-dimethylformamide itself used for the measurement did not affect the measured value (blank measurement). A value obtained by measuring the sample after performing the above-described blank measurement is defined as a YI value in the present invention.
  • Moisture value The moisture value in the crystallization solution was measured by a method (Karl Fischer volumetric titration method) based on JIS-K0068.
  • Example 1 In a glass reactor equipped with a stirrer, a heating / cooling device, and a thermometer, 150 g of 9,9′-bis (4-hydroxy-3-phenylphenyl) fluorene (phenol compound represented by the above formula (2)) (0.298 mol), 3.4 g (0.025 mol) of potassium carbonate, 60.1 g (0.682 mol) of ethylene carbonate, 225 g of toluene, and 15 g of triethylene glycol dimethyl ether, heated to 115 ° C., and at the same temperature After stirring for 8 hours, it was confirmed by HPLC that the raw material peak had disappeared. The production rate of multimers at the end of the reaction was about 1%.
  • crystallization of the alcohol compound represented by the said Formula (1) obtained is as follows.
  • the infrared absorption spectrum is shown in FIG. As shown in FIG. 1, there was a peak at 1148 (cm ⁇ 1 ), but no peak at 1153 ⁇ 2 (cm ⁇ 1 ).
  • Example 2 In a glass reactor equipped with a stirrer, a heating / cooling device, and a thermometer, 150 g (0.298 mol) of 9,9′-bis (4-hydroxy-3-phenylphenyl) fluorene and 3.4 g (0. 025 mol), 60.1 g (0.682 mol) of ethylene carbonate, 225 g of toluene, and 150 g of diethylene glycol dimethyl ether, heated to 115 ° C., stirred at the same temperature for 13 hours, and then the raw material peak disappeared by HPLC. It was confirmed. The production rate of multimers at the end of the reaction was about 0.5%.
  • the obtained crystallization solution was heated to 65 ° C., stirred at the same temperature for 1 hour to completely dissolve the crystals, and then cooled to 0.1 ° C./min to 50 ° C. When 0.01 g of the obtained crystal was added as a seed crystal, a crystal was precipitated. Then, it stirred at the same temperature for 1 hour. After further cooling to 25 ° C., filtration was performed to obtain crystals. The obtained crystals were dried at an internal temperature of 68 ° C. to 73 ° C. for 3 hours under a reduced pressure of 1.1 kPa, and the methanol content was 0.2% by weight.
  • crystallization of the alcohol compound represented by the said Formula (1) obtained is as follows.
  • Infrared absorption spectrum It had a peak at 1148 (cm ⁇ 1 ), but had no peak at 1153 ⁇ 2 (cm ⁇ 1 ).
  • Examples 3 to 6 Reaction and post-treatment were performed in the same manner as in Example 1 to obtain a concentrate.
  • the obtained concentrate was divided into four equal parts, toluene and methanol were added to give the ratios shown in Table 1 below, and crystallization and drying operations were carried out in the same manner as in the method described in Example 1 to obtain the above formula (1).
  • crystallization of the alcohol compound represented by these was obtained.
  • Each analysis value of each crystal is shown in Table 1 below.
  • the amount of toluene / methanol added is the ratio (times by weight) to the alcohol compound represented by the above formula (1) contained in each concentrate.
  • Example 7 A glass reactor equipped with a stirrer, a heating / cooling device, and a thermometer was charged with 30.0 g (0.060 mol) of 9,9′-bis (4-hydroxy-3-phenylphenyl) fluorene, 13.1 g of ethylene carbonate ( 0.149 mol), 0.7 g (0.005 mol) of potassium carbonate, 45.0 g of toluene and 15.0 g of cyclohexanone, stirred for 6 hours at 115 ° C., and confirmed by HPLC that the raw material peak was 1% or less. did. The production rate of multimers at the end of the reaction was about 1.0%.
  • the obtained reaction solution was cooled to 85 ° C., 23 g of water was added, and the mixture was stirred at 80 to 85 ° C. for 30 minutes, allowed to stand, and then the aqueous layer was separated. After repeating the same operation three times, the obtained organic solvent layer was partially concentrated to obtain a solution containing the alcohol compound represented by the above formula (1), toluene and cyclohexanone. To this solution, 21 g of toluene and 38 g of methanol were added to obtain a crystallization solution. The water in the obtained crystallization solution was 0.1% by weight, 38 g of toluene, 38 g of methanol and 11 g of cyclohexanone contained in the solution.
  • the obtained crystallization solution was heated to 65 ° C., stirred at the same temperature for 1 hour to completely dissolve the crystals, and then cooled to 0.1 ° C./min to 50 ° C.
  • 0.01 g of the obtained crystal was added as a seed crystal, a crystal was precipitated. Then, it stirred at the same temperature for 1 hour.
  • the crystals were filtered off by filtration, and the obtained crystals were dried at an internal temperature of 68 ° C. to 73 ° C. under a reduced pressure of 1.3 kPa for 3 hours to obtain the above formula ( A crystal containing the alcohol compound represented by 1) was obtained.
  • crystallization of the alcohol compound represented by the said Formula (1) obtained is as follows. Weight of the obtained crystals: 26 g (yield: 73%) HPLC purity: 98.6% (multimer content: 0.8%), Toluene content: 0.02% by weight, Methanol content: 0.1% by weight, Content of organic compound which is liquid at 25 ° C .: 0.15% by weight, YI value: 1.2. Infrared absorption spectrum: It had a peak at 1148 (cm ⁇ 1 ), but had no peak at 1153 ⁇ 2 (cm ⁇ 1 ).
  • the obtained reaction solution was cooled to 85 ° C., 68 g of water was added, and the mixture was stirred at 80 to 85 ° C. for 30 minutes, allowed to stand, and then the aqueous layer was separated. After repeating the same operation three times, the obtained organic solvent layer was dehydrated under reflux using a Dean-Stark apparatus to obtain a crystallization solution in which the alcohol compound represented by the above formula (1) was dissolved. The water in the crystallization solution was 0.1% by weight. When the obtained crystallization solution was cooled at 0.3 ° C./min, crystals were precipitated at 65 ° C. and stirred at the same temperature for 2 hours. After further cooling to 26 ° C., filtration was performed to obtain crystals.
  • the obtained crystals were dried at an internal temperature of 68 ° C. to 73 ° C. for 3 hours under a reduced pressure of 1.1 kPa, and contained 4% by weight of toluene.
  • the internal temperature was raised to 110 ° C., and further dried for 3 hours at the same temperature, but the toluene content remained at 4% by weight.
  • crystallization of the alcohol compound represented by the said Formula (1) obtained is as follows. Weight of the obtained crystals: 39.3 g (yield: 84%) HPLC purity: 97.5% (multimer content: 2.6%), Toluene content: 4.1% by weight.
  • the infrared absorption spectrum is shown in FIG. As shown in FIG. 2, it had no peak at 1148 ⁇ 2 (cm ⁇ 1 ), while it had a peak at 1153 (cm ⁇ 1 ).
  • the alcohol compound represented by the above formula (1) forms an clathrate with aromatic hydrocarbons, and when xylene is used alone or mixed with a solvent other than methanol for crystallization. It has been found that an inclusion body including an aromatic hydrocarbon can be obtained even if it is used.
  • reaction solution was divided into two, 10 g of methanol was added to one side, 10 g of isopropyl alcohol was added to the other side, the mixture was heated to 60 ° C., and stirring was continued for 1 hour. In each case, 30 g of pure water was added and cooled to 30 ° C., but in both cases, crystals did not precipitate, and tar-like liquids separated from water were obtained.
  • the infrared absorption spectrum is shown in FIG. As shown in FIG. 3, it had no peak at 1148 ⁇ 2 (cm ⁇ 1 ), while it had a peak at 1153 (cm ⁇ 1 ).
  • Example 1 About 5 mg of the crystals obtained in Example 1 were sprinkled with 2 drops of toluene using a Pasteur pipette, and then FT-IR analysis of the crystals was carried out immediately.
  • the infrared absorption spectrum is shown in FIG.
  • FIG. 4 in the case where the alcohol compound crystal represented by the above formula (1) which is not an inclusion body has aromatic hydrocarbons as a solvent residue rather than as a guest molecule of the inclusion compound, It was found that the body-specific peak 1153 ⁇ 2 (cm ⁇ 1 ) has no peak, but has a peak at 1148 (cm ⁇ 1 ).
  • Diethylene glycol content 24.6% by weight
  • Isopropyl alcohol content 42.0% by weight
  • Infrared absorption spectrum No peak at 1148 ⁇ 2 (cm ⁇ 1 ), but a peak at 1153 (cm ⁇ 1 ).
  • Diethylene glycol content 42.4% by weight
  • Isopropyl alcohol content 0.3% by weight.
  • FIG. 5 shows an infrared absorption spectrum of the obtained crystal. As shown in FIG. 5, there was no peak at 1148 ⁇ 2 (cm ⁇ 1 ), but there was a peak at 1153 (cm ⁇ 1 ).
  • the drying temperature was gradually increased under a reduced pressure of 1.1 kPa. As a result, the crystals began to melt at about 100 ° C., and thus the drying operation was terminated.
  • the obtained crystals were dried for 5 hours at an internal temperature of 110 ° C. under a reduced pressure of 1.1 kPa. However, since 14% by weight of cyclohexanone was contained, the drying temperature was gradually increased under a reduced pressure of 1.1 kPa. However, since the crystals began to melt at about 115 ° C., the drying operation was terminated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

式(1)で表されるアルコール化合物の製造方法であって、式(1)で表されるアルコール化合物、芳香族炭化水素類及びメタノールを含む溶液を調製する工程(i)と、該溶液から25℃以上で上記アルコール化合物の結晶を析出させ、析出した結晶を分離取得する工程(ii)と、60℃以上で、上記結晶からメタノールを除去する工程(iii)とをこの順で含む製造方法、並びに式(1)で表されるアルコール化合物の結晶であって、赤外線吸収スペクトルにおいて、1153±2(cm-1)のピークを実質的に有さない結晶が提供される。

Description

フルオレン骨格を有するアルコール化合物の製造方法
 本発明は、光学レンズ、光学フィルム等の光学部材を構成する樹脂(光学樹脂)を形成するモノマーとして好適で、加工性、生産性に優れた新規なフルオレン骨格を有するアルコール化合物の製造方法に関する。
 フルオレン骨格を有するアルコール化合物を原料モノマーとするポリカーボネート、ポリエステル、ポリアクリレート、ポリウレタン、エポキシなどの樹脂材料は、光学特性、耐熱性等に優れることから、近年、光学レンズや光学シートなどの新たな光学材料として注目されている。中でも下記式(1):
Figure JPOXMLDOC01-appb-C000006
で表される構造を有するアルコール化合物は、該アルコール化合物及びその誘導体から製造される樹脂が屈折率等の光学特性、耐熱性、耐水性、耐薬品性、電気特性、機械特性、溶解性等の諸特性に優れることから、特に光学樹脂の原材料として着目されている〔例えば特開平07―149881号公報(特許文献1)、特開2001-122828号公報(特許文献2)、特開2001-206863号公報(特許文献3)、特開2009-256342号公報(特許文献4)、及び特開2009-173647号公報(特許文献5)〕。
上記式(1)で表されるアルコール化合物の製造方法としては、塩基触媒存在下、下記式(2):
Figure JPOXMLDOC01-appb-C000007
で表されるフェノール化合物とエチレンオキサイドとを反応させる方法が知られている(特許文献2)。しかしながら、該方法で得られる上記式(1)で表されるアルコール化合物はその純度が低く、エチレンオキサイドが3~4分子付加した化合物(以下、多量体と称することもある)が多量に副生し、目的とする上記式(1)で表されるアルコール化合物を高純度で得ることは困難である。
 一方、上記式(1)で表されるアルコール化合物の改良製法として、酸触媒及びチオール類存在下、下記式(3):
Figure JPOXMLDOC01-appb-C000008
で表されるアルコール化合物と9-フルオレノンとを反応させることによって上記式(1)で表されるアルコール化合物を得る方法が提案されている(特許文献3)。また、該製法による着色の問題を改善する手法として、酸触媒及び9―フルオレノン類100重量部に対して3重量部以上のチオール類存在下、上記式(3)で表されるアルコール化合物と9―フルオレノンとを反応させることによって上記式(1)で表されるアルコール化合物を得る方法が提案されている(特許文献4)。
 しかしながら、特許文献4に記載の方法でもその着色改善は十分ではなく、また、反応時に多量のチオール類を必要とすることから、生成物からチオール類を完全に除去することが困難であり、得られたアルコール化合物から樹脂を製造する際、チオール類に由来する硫黄分が樹脂のさらなる着色を引き起こすといった問題がある。さらに、本願発明者らが上記特許文献2及び4に記載される方法を追試したところ、得られる結晶状の上記式(1)で表されるアルコール化合物は、反応や反応後の取り出し操作(晶析操作)で使用した溶媒(芳香族炭化水素類)が取り込まれた、包接体となることが判明した。
 また、特開2009-173647号公報(特許文献5)の合成例2には、ジエチレングリコールを溶媒として用い、上記式(2)で表されるフェノール化合物とエチレンカーボネートとを反応させ、反応終了後イソプロピルアルコールを添加し、10℃まで冷却することにより上記式(1)で表されるアルコール化合物の結晶を得た旨が記載されている。そこで、本願発明者らが該方法を追試し、得られた結晶を分析したところ、特許文献2及び4と同様、反応及び晶析で用いた溶媒が多量に残存した結晶が得られることが判明した。
特開平07-149881号公報 特開2001-122828号公報 特開2001-206863号公報 特開2009-256342号公報 特開2009-173647号公報
 本発明の目的は、反応、或いは反応後の後処理で使用した溶媒の残存量が大幅に低減された、上記式(1)で表されるアルコール化合物の結晶を製造することにある。
 本発明者らは、上記の課題を解決すべく鋭意研究を重ねた結果、上記式(1)で表されるアルコール化合物を特定条件下で晶析させることにより、反応、或いは反応後の後処理で使用した溶媒を包接していない、上記式(1)で表されるアルコール化合物の結晶が製造可能であることを見出した。具体的には以下の発明を含む。
[1]
下記式(1):
Figure JPOXMLDOC01-appb-C000009
で表されるアルコール化合物の製造方法であって、
 前記式(1)で表されるアルコール化合物、芳香族炭化水素類及びメタノールを含む溶液を調製する工程(i)と、
 前記溶液から25℃以上で前記アルコール化合物の結晶を析出させ、析出した結晶を分離取得する工程(ii)と、
60℃以上で、前記結晶からメタノールを除去する工程(iii)と、
をこの順で含む、製造方法。
[2]
 芳香族炭化水素類とメタノールとの比率が、重量基準で1:0.3~1:5である、[1]に記載の製造方法。
[3]
 前記工程(i)の前に、グリコールジエーテル及び炭素数5~12の環状ケトンからなる群より選ばれる少なくとも1種の化合物存在下、下記式(2):
Figure JPOXMLDOC01-appb-C000010
で表されるフェノール化合物とエチレンカーボネートとを反応させて、前記式(1)で表されるアルコール化合物を製造する工程をさらに含む、[1]又は[2]に記載の製造方法。
[4]
 下記式(1):
Figure JPOXMLDOC01-appb-C000011
で表されるアルコール化合物の結晶であって、
 赤外線吸収スペクトルにおいて、1153±2(cm-1)のピークを実質的に有さない、結晶。
[5]
 下記式(1):
Figure JPOXMLDOC01-appb-C000012
で表されるアルコール化合物の結晶であって、
 25℃で液状である有機化合物の含量が1重量%以下である、結晶。
[6]
 下記式(1):
Figure JPOXMLDOC01-appb-C000013
で表されるアルコール化合物の結晶であって、
赤外線吸収スペクトルにおいて、1153±2(cm-1)のピークを実質的に有さず、かつ、25℃で液状である有機化合物の含量が1重量%以下である、結晶。
[7]
 前記式(1)で表されるアルコール化合物12gを、純度99重量%以上のN,N-ジメチルホルムアミド30mLに溶解させて得られる溶液の黄色度(YI値)が10以下である、[4]又は[5]に記載の結晶。
 本発明によれば、反応、或いは反応後の後処理で使用した溶媒を包接していないため、結晶中の溶媒の残存量が大幅に低減された上記式(1)で表されるアルコール化合物の結晶が提供可能となる。
 さらには、本発明の方法で得られる上記式(1)で表されるアルコール化合物の結晶は高純度で、かつ着色が少ないので、ポリカーボネート、ポリエステル、ポリアクリレート、ポリウレタン、エポキシなど、各種樹脂材料の原料として好適に用いられる。
 特に結晶が反応、或いは反応後の後処理で使用した溶媒を包接している場合、該結晶を樹脂原料として使用すると、該結晶の溶融中に包接されていた溶媒が放出されるため、放出された溶媒を安全に系外へと除去する必要があったり、包接されている溶媒の影響で、得られる樹脂の品質が一定とならなかったりする等の問題を引き起こすことがある。さらには、溶媒を包接した上記式(1)で表されるアルコール化合物を保管や輸送する際、溶媒を包接していない結晶に比べ、より厳密な防災上の対策も必要となる。
 しかしながら、上記式(1)で表されるアルコール化合物の結晶は、芳香族炭化水素類をはじめとして様々な有機化合物を包接して包接体となり得る一方、反応或いは反応後の後処理で溶媒を使用せず上記式(1)で表されるアルコール化合物の結晶を製造することは困難である。従って、上述した公知の方法等、一般的な製造法により上記式(1)で表されるアルコール化合物の結晶を製造すると、自ずと反応、或いは反応後の後処理で使用した溶媒を包接した包接体となり、該包接体から包接された溶媒を除去し包接体でない上記式(1)で表されるアルコール化合物の結晶を得るためには、一旦結晶を融点以上に加熱し溶融させた後に除去する等、工業的な実施が容易でない煩雑な操作が必要となる。ところが、本願発明に係る製造方法によれば、反応、或いは反応後の後処理で使用した溶媒を包接していない、上記式(1)で表されるアルコール化合物の結晶が容易に製造可能となることから、特に工業的規模で上記式(1)で表されるアルコール化合物の結晶を製造、使用するにあたり、非常に意義のある発明であるといえる。
実施例1で得られた結晶の赤外線吸収スペクトルである。 比較例1で得られた結晶の赤外線吸収スペクトルである。 比較例11で得られた結晶の赤外線吸収スペクトルである。 参考例1で得られた結晶の赤外線吸収スペクトルである。 比較例13で得られた結晶の赤外線吸収スペクトルである。
 前述の通り、本発明は、上記式(1)で表されるアルコール化合物の製造に際し、以下工程(i)、(ii)及び(iii)をこの順で含むことを特徴とする。
工程(i)
上記式(1)で表されるアルコール化合物、芳香族炭化水素類及びメタノールを含む溶液(晶析溶液)を調製する工程(以下、晶析溶液調製工程と称することもある)。
工程(ii)
前記溶液から25℃以上で上記アルコール化合物の結晶を析出させ、析出した結晶を分離する工程(以下、晶析工程と称することもある)。
工程(iii)
60℃以上で、前記結晶からメタノールを除去する工程(以下、乾燥工程と称することもある)。
 以下、工程(i)、(ii)及び(iii)について詳述する。
 本発明の原料として使用される、上記式(1)で表されるアルコール化合物は、前述した特許文献等、公知の方法で製造したものを用いることもできるが、多量体副生の抑制や色相向上の観点から、下記する方法にて上記式(1)で表されるアルコール化合物を製造することが好ましい。下記する方法にて上記式(1)で表されるアルコール化合物を製造することにより、反応、或いは反応後の後処理で使用した溶媒を包接していないとの特徴の他、以下(a)及び/又は(b)の特徴を兼ね備える、上記式(1)で表されるアルコール化合物が製造可能となる。
(a)後述する方法により決定されるHPLC純度が通常90%以上、好ましくは95%以上、より好ましくは98%以上。
(b)後述する方法で測定するYI値が通常10以下、好ましくは7以下。
本発明の好ましい実施形態である、上記式(1)で表されるアルコール化合物の製造方法は、グリコールジエーテル及び炭素数5~12の環状ケトンからなる群より選ばれる少なくとも1種の化合物存在下、上記式(2)で表されるフェノール化合物とエチレンカーボネートとを反応させることを特徴とする。
 上記式(2)で表されるフェノール化合物は市販品を用いてもよく、また、酸触媒存在下、フルオレノンと2-フェニルフェノールとを反応させて製造することもできる。
 本発明で使用されるグリコールジエーテルは、下記式(4):
 R-O(CHCHO)-R     (4)
(式中、R及びRはそれぞれ同一又は異なって、分岐を有してもよい炭素数1~4のアルキル基を表し、nは1~4の整数を表す。)
で表される構造を有する。このようなグリコールジエーテルとしては、エチレングリコールジメチルエーテル、プロピレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、ジプロピレングリコールジメチルエーテル、ジエチレングリコールエチルメチルエーテル、ジエチレングリコールイソプロピルメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールブチルメチルエーテル、トリプロピレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル、ジエチレングリコールジブチルエーテル、トリエチレングリコールブチルメチルエーテル、テトラエチレングリコールジメチルエーテル等が例示される。
 本発明で使用される炭素数5~12の環状ケトンとしては、シクロペンタノン、シクロヘキサノン、シクロヘプタノン、シクロオクタノン、シクロデカノン、シクロウンデカノン等が例示され、これら環状ケトンの中でも入手性や取扱性の良さから、シクロペンタノン、シクロヘキサノンが好適に用いられる。
 グリコールジエーテル及び環状ケトンはそれぞれ1種、あるいは必要に応じて2種以上混合して使用してもよく、その使用量は、多量体生成抑制の観点から、上記式(2)で表されるフェノール化合物1重量倍に対し通常、0.05~3重量倍、好ましくは0.08~1重量倍である。
 エチレンカーボネートの使用量は、上記式(2)で表されるフェノール化合物1モルに対し通常、2~10モル、好ましくは2~4モルである。
 上記式(2)で表されるフェノール化合物とエチレンカーボネートとを反応させるに際し、必要に応じ塩基性化合物存在下にて反応を行う。かかる塩基性化合物としては、炭酸塩類、炭酸水素塩類、水酸化物類、有機塩基類等が例示される。より具体的には、炭酸塩類として炭酸カリウム、炭酸ナトリウム、炭酸リチウム、炭酸セシウム等が、炭酸水素塩類として炭酸水素カリウム、炭酸水素ナトリウム、炭酸水素リチウム、炭酸水素セシウム等が、水酸化物類として水酸化ナトリウム、水酸化カリウム、水酸化リチウム等が、有機塩基類としてトリエチルアミン、ジメチルアミノピリジン、トリフェニルホスフィン、テトラメチルアンモニウムブロミド、テトラメチルアンモニウムクロリド等が例示される。これら塩基性化合物の中でも取扱性の良さの点から炭酸カリウム、炭酸ナトリウム、トリフェニルホスフィンが好適に使用される。これら塩基性化合物を使用する際の使用量は、上記式(2)で表されるフェノール化合物1モルに対し、通常0.01~1.0モル、好ましくは0.03~0.2倍モルである。
 本発明において、上記のグリコールジエーテル、炭素数5~12の環状ケトンの他、必要に応じ不活性な有機溶媒を併用することができる。かかる不活性な有機溶媒としては、ケトン類、芳香族炭化水素類、ハロゲン化芳香族炭化水素類、脂肪族炭化水素類、ハロゲン化脂肪族炭化水素類、エーテル類、エステル類、脂肪族ニトリル類、アミド類、スルホキシド類等が例示される。より具体的には、ケトン類としてアセトン、メチルエチルケトン、ブチルメチルケトン、ジイソブチルケトン、メチルイソブチルケトン、メチルイソアミルケトン、2-ヘプタノン、2-オクタノン、シクロヘキサノン等が、芳香族炭化水素類としてトルエン、キシレン、メシチレン等が、ハロゲン化芳香族炭化水素としてクロロベンゼン、ジクロロベンゼン等が、脂肪族炭化水素としてペンタン、ヘキサン、ヘプタン等が、ハロゲン化脂肪族炭化水素類としてジクロロメタン、1,2-ジクロロエタン等が、エーテル類としてジエチルエーテル、ジ-イソ-プロピルエーテル、メチル-ターシャリー-ブチルエーテル、シクロペンチルメチルエーテル、ジフェニルエーテル等が、エステル類として酢酸エチル、酢酸ブチル等が、脂肪族ニトリル類としてアセトニトリル等が、アミド類としてジメチルホルムアミド、ジメチルアセトアミド等が、スルホキシド類としてジメチルスルホキシド等が例示される。これら不活性な有機溶媒の中でも入手性や取扱性の良さから、沸点が110℃以上の芳香族炭化水素類、ケトン類又はエーテル類が好適に用いられる。これら有機溶媒は1種類、あるいは必要に応じ2種類以上混合して使用してもよい。これら有機溶媒を併用する際の使用量は、上記式(2)で表されるフェノール化合物1重量倍に対し、通常0.1~5重量倍、好ましくは0.5~3重量倍である。
 上記式(2)で表されるフェノール化合物とエチレンカーボネートとの反応は、通常30~150℃、好ましくは100~130℃で実施される。
 こうして得られた上記式(1)で表されるアルコール化合物を含む反応液は、そのまま濃縮乾固した後、晶析溶液調製工程に供してもよく、水洗・吸着処理等の後処理や、晶析・カラム精製等を実施してもよい。また、下記する水洗工程及び/又は濃縮工程を実施した後、本発明の晶析溶液調製工程に供することが、目的とする上記式(1)で表されるアルコール化合物の純度をより向上させることが可能である点で好ましい。以下、水洗工程及び濃縮工程について詳述する。
 水洗工程は得られた反応液に、反応で使用した、上記式(2)で表されるフェノール化合物1重量倍に対し0.1~10重量倍、好ましくは0.5~5重量倍の水を添加し、60~95℃、好ましくは75~90℃で撹拌し、その後静置、水層を分離することによって実施される。また、水洗温度は60℃以上とすることにより、静置時の分液速度がより速くなり、95℃以下とすることにより、水洗時の上記式(1)で表されるアルコール化合物の分解を抑制することが可能となる。
 水洗工程は必要に応じて複数回実施してもよい。また、水洗工程実施に際し、水と併せて塩基や酸を添加することにより、副生物を分解し、水層へと除去することもできる。
 続いて濃縮工程について詳述する。濃縮工程は、水洗工程終了後、あるいは水洗工程を実施していない反応液を常圧、あるいは減圧下にて、上記反応工程で使用したグリコールジエーテルや炭素数5~12の環状ケトン、あるいは、さらに不活性な有機溶媒の一部又は全部を系外へと除去することにより実施される。
 <晶析溶液調製工程>
 本発明においては、芳香族炭化水素類とメタノールとを併用する必要がある。芳香族炭化水素類を使用しない場合、上記式(1)で表されるアルコール化合物の結晶を完溶させることができない。また、メタノールを使用せず、芳香族炭化水素類のみを用いて晶析を行った場合、芳香族炭化水素類を包接した上記式(1)で表されるアルコール化合物の結晶が得られる。なお、メタノールを使用せず、メタノール以外のアルコール、或いは他の有機化合物と芳香族炭化水素類とを併用して晶析を行った場合、本発明の効果は発現せず、芳香族炭化水素類を包接した上記式(1)で表されるアルコール化合物の結晶が得られる。
 本発明において使用可能な芳香族炭化水素類としてはトルエン、キシレン等が例示される。晶析溶液中の芳香族炭化水素類とメタノールの比率は、例えば、重量基準で、芳香族炭化水素類:メタノール=1:0.3~1:5、好ましくは1:0.5~1:3である。メタノールの比率を芳香族炭化水素類に対し0.3重量倍以上とすることにより、より確実に芳香族炭化水素類を含む包接体となることを抑制することが可能となり、5重量倍以下とすることにより、上記式(1)で表されるアルコール化合物を溶解しやすくなることから晶析操作がより容易となり、また、上記式(1)で表されるアルコール化合物の純度や色相を改善させやすいことから好ましい。これら比率は、晶析溶液調製工程に先立ち、芳香族炭化水素類やメタノールの含量をガスクロマトグラフィーで定量した後、上記比率となるように芳香族炭化水素類及びメタノールを適宜添加することにより調整することができる。
 晶析溶液中には、芳香族炭化水素類、メタノール以外に他の有機化合物が含まれていてもよい。含まれていてもよい他の有機化合物として例えば、上述した反応で使用したグリコールジエーテル及び/又は炭素数5~12の環状ケトンの他、脂肪族炭化水素類(例えばペンタン、ヘキサン、ヘプタン等)、鎖状ケトン類(例えばアセトン、メチルエチルケトン、メチルイソブチルケトン等)等が挙げられる。他の有機化合物を含む場合、その含有量は、晶析溶液中の芳香族炭化水素類とメタノールとの合計量に対し通常0.5重量倍以下、好ましくは0.3重量倍以下である。他の有機化合物を含んでいても他の有機化合物を包接した包接化合物とならない理由は定かではないが、芳香族炭化水素類及びメタノール存在下に晶析することによって、他の有機化合物が上記式(1)で表されるアルコール化合物に取り込まれることが阻害され、結果として包接体でない、上記式(1)で表されるアルコール化合物となるものと推定される。
 晶析溶液に含まれる溶媒(芳香族炭化水素類+メタノール+上述した他の有機化合物)の総量は、晶析溶液に含まれる上記式(1)で表されるアルコール化合物1重量倍に対し通常0.5~20重量倍、好ましくは1~10重量倍である。
 晶析溶液中の水分量によっては、晶析溶液に含まれる不純物の含量にもよるが、結晶状の上記式(1)で表されるアルコール化合物が得られない場合がある。また、結晶状の上記式(1)で表されるアルコール化合物が得られる場合であっても、純度や色相が十分に向上しない場合があるため、晶析溶液中の水分は通常5重量%以下、好ましくは1重量%以下とする。晶析溶液中の水分を5重量%以下とする方法として例えば、予め、メタノールを添加する前に、芳香族炭化水素溶媒を添加し、常圧あるいは減圧下、芳香族炭化水素溶媒による共沸脱水操作を実施した後、水分を含まないメタノールを添加する方法が挙げられる。
 <晶析工程>
 次いで晶析工程について詳述する。上記の方法により調製された晶析溶液は通常、40℃以上、晶析溶液の沸点以下の温度まで加熱し結晶を完溶させた後冷却し、25℃以上、好ましくは25~60℃、さらに好ましくは40~50℃で結晶を析出させる。25℃より低い温度で結晶を析出させた場合、本発明の効果が発現せず、一部又は全部が芳香族炭化水素類を包接した包接体となる。また、60℃より高い温度で結晶を析出させる場合、溶媒の沸点に近いことから、安全面で問題となる場合が生じる。上記温度範囲で結晶を析出させる方法として、結晶が析出するまで上記温度範囲となるよう晶析溶液の温度を保持する方法、上記温度範囲で種晶を接種する方法等が例示される。また、結晶析出後、一定時間同温度で保持し結晶を成長させる操作を実施してもよい。結晶析出後、必要に応じさらに冷却を行い、析出した結晶を分離する。
 こうして分離した結晶はメタノールを含んでいるが、芳香族炭化水素類を包接した場合とは異なり、結晶溶融温度(融点)以上としなくとも、60℃以上とすることによってメタノールを除去することが可能であることから、反応、或いは反応後の後処理で使用した溶媒を含まない、包接体でない結晶が容易に製造可能となる。
 <乾燥工程>
 乾燥工程は、60℃以上、結晶の融点以下、好ましくは60℃~110℃で実施される。60℃より低い場合、メタノールの除去が困難である。乾燥工程を実施する際は常圧でも減圧下でもよいが、工業的に実施する際は減圧下とする方がより効率的にメタノールを除去できることから好ましい。
 こうして得られた本発明の上記式(1)で表されるアルコール化合物の結晶は必要に応じ、吸着、水蒸気蒸留、再結晶などの通常の精製操作を行うことにより、さらに精製することができるが、本発明の方法により得られる上記式(1)で表されるアルコール化合物の結晶は、このような操作を実施しなくとも十分に高純度である。また、結晶中に反応、或いは反応後の後処理で使用した溶媒を包接していないため、ポリカーボネート、ポリエステル、ポリアクリレート、ポリウレタン、エポキシなどの樹脂材料の原料として好適に用いられることは勿論のこと、包接されている溶媒(有機化合物)が問題となる分野、例えば医農薬用の原料(中間体)としても好適に用いることができる。
 <本発明の方法で得られる結晶>
 上記の方法で製造される、本発明の上記式(1)で表されるアルコール化合物の結晶は反応、或いは反応後の後処理で使用した溶媒(通常の操作温度である、25℃で液状である有機化合物)を包接しないとの特徴を有する。従って、上述した本発明の方法で得られる上記式(1)で表されるアルコール化合物の結晶に含まれる、25℃で液状である有機化合物の含量は通常1重量%以下、好ましくは0.5重量%以下、さらに好ましくは0.1重量%以下となる。
 上記式(1)で表されるアルコール化合物の結晶が反応、或いは反応後の後処理で使用した溶媒(有機化合物)を包接しているか否か、即ち上記式(1)で表されるアルコール化合物の結晶が包接体であるか否かは、赤外線吸収スペクトルにおいて包接体特有のピークである、1153±2(cm-1)を有するか否かで判断することができる。1153±2(cm-1)のピークを実質的に有していなければ、有機化合物を包接する包接体でないと判断することができる。なお、本発明における「実質的に含まない」とは、1151~1155(cm-1)の範囲にピークを殆ど、又は全く検出されないことを意味する。一方、有機化合物を包接する包接体でなければ、前述した範囲のピークの代わりに1148±2(cm-1)の範囲にピークを有する。赤外線吸収スペクトルは、後述する条件にてフーリエ変換赤外分光光度計を用いて測定することが可能である。
 さらには、TG-DTA(示差熱・熱重量同時測定)分析、X線解析、NMR分析、或いは、得られた結晶を包接していると思われる有機化合物の沸点以上となる条件で重量変化がない程度に十分に乾燥させた後、得られた結晶をガスクロマトグラフィーや高速液体クロマトグラフィーを用いて分析し、包接している有機化合物に相当するピークがあるか否かを確認する等の方法により、上記式(1)で表されるアルコール化合物の結晶が有機化合物を包接しているか否かを判断することも可能である。
 以下に実施例等を挙げて本発明を具体的に説明するが、本発明は何ら限定されるものではない。なお、例中、各種測定は下記の方法で実施した。また、以下実施例・比較例・参考例に記載した各成分の生成率(残存率)及び純度は下記条件で測定したHPLCの面積百分率値(反応液中の溶媒及び包接されている有機化合物のピークは除いた修正面積百分率値)であり、収率は、得られた上記式(1)で表されるアルコールが包接体であっても、包接体でないと仮定した場合の見掛収率である。また、実施例・比較例における「多量体」とは上記式(1)で表されるアルコール化合物にエチレンカーボネートがさらに1分子以上反応した化合物類のことを示す。
 (1)HPLC純度
 装置 :島津製作所製 LC-2010A、
 カラム:SUMIPAX ODS A-211(5μm、4.6mmφ×250mm)、
 移動相:純水/アセトニトリル(アセトニトリル30%→100%)、
 流量 :1.0ml/min、カラム温度:40℃、検出波長:UV 254nm。
 (2)残存溶媒量、包接化合物含量の分析
 溶媒の残存量、又は上記式(1)で表されるアルコール化合物に包接されている有機化合物の含量については下記条件に基づくガスクロマトグラフィーにより定量を行った。
 装置 :島津製作所製 GC-2014、
 カラム:DB-1(0.25μm、0.25mmID×30m)、
 昇温:40℃(5分保持)→20℃/min→250℃(10分保持)、
 Inj温度:250℃、Det温度:300℃、スプリット比 1:10、
 キャリアー:窒素54.4kPa(一定)、
 サンプル調製方法:十分に乾燥させた上記式(1)で表されるアルコール化合物の結晶100mgを10mlメスフラスコに量り取り、そこへあらかじめ調製していた1,2-ジメトキシエタンのアセトニトリル溶液(1,2-ジメトキシエタン400mgをアセトニトリル200mlに溶解したもの)をホールピペットで5ml加え、アセトニトリルでメスアップさせ溶解したものを試料溶液とした。
 一方、残存量(包接量)を測定したい化合物10mgを10mlメスフラスコに量り取り、上述と同量の1,2-ジメトキシエタンのアセトニトリル溶液を加え、アセトニトリルでメスアップさせ溶解したものを標準溶液とした。
 試料溶液及び標準溶液を上述の条件にて分析し、得られた各成分のピーク面積をデータ処理装置で求め、各成分の含量(%)を算出した(内部標準法)。
 なお、イソプロパノールを含むサンプルについては、試料溶液及び標準溶液の調製に用いる溶媒をアセトニトリルからトリグライムへ変更して実施した。
 (3)赤外線吸収スペクトル測定
 上記式(1)で表されるアルコール化合物の結晶を、1回反射型全反射測定装置((株)島津製作所 デュラサンプラーII)を搭載したフーリエ変換赤外分光光度計((株)島津製作所 IRtracer-100)を用い、下記条件にて測定した。
 (条件)
 分解能:4cm-1
 積算回数:16回。
 (4)YI値
 上記式(1)で表されるアルコール化合物の結晶12gを、純度99重量%以上のN,N-ジメチルホルムアミド30mlに溶解させ、以下の条件で得られたN,N―ジメチルホルムアミド溶液のYI値(黄色度)を測定した。
 装置  :色差計(日本電色工業社製,SE6000)、
 使用セル:光路長33mm 石英セル。
 なお、測定に使用するN,N-ジメチルホルムアミド自身の着色が測定値に影響を与えないよう、事前にN,N-ジメチルホルムアミドの色相を測定して補正した(ブランク測定)。
 上述のブランク測定を実施したうえで、サンプルを測定した値を本発明におけるYI値とする。
 (5)水分値
 晶析溶液中の水分値はJIS-K0068に準拠した方法(カールフィッシャー容量滴定法)にて測定した。
 <実施例1>
 攪拌器、加熱冷却器、及び温度計を備えたガラス製反応器に、9,9’-ビス(4-ヒドロキシ-3-フェニルフェニル)フルオレン(上記式(2)で表されるフェノール化合物)150g(0.298mol)、炭酸カリウム3.4g(0.025mol)、エチレンカーボネート60.1g(0.682mol)、トルエン225g、及びトリエチレングリコールジメチルエーテル15gを仕込み、115℃まで昇温し、同温度で8時間撹拌後、HPLCにて原料ピークが消失していることを確認した。反応終了時点の多量体の生成率は約1%であった。
 得られた反応液を90℃まで冷却した後、水225gを加え、80~85℃で30分撹拌し、静置後、水層を分離した。同じ操作を3回繰り返した後、得られた有機溶媒層を濃縮することにより溶媒を除去し、濃縮物を得た。得られた濃縮物にトルエン49g、メタノール188gを添加し晶析溶液を得た。得られた晶析溶液中の水分は0.1重量%であった。
 得られた晶析溶液を65℃まで昇温し、同温度で1時間撹拌して結晶を完溶させた後、0.1℃/分で冷却することにより45℃で結晶を析出させ、同温度で2時間撹拌した。さらに22℃まで冷却した後、濾過し結晶を得た。
 得られた結晶を内圧1.3kPaの減圧下、内温55~59℃で3時間乾燥し、結晶の一部をガスクロマトグラフィーで分析したところ、メタノールを4重量%含有していることを確認した。さらに同条件で3時間乾燥を継続し分析しても、メタノールの含有量は4重量%であり変化がなかった。次いで、内圧1.3kPaの減圧下、内温を68℃~73℃に昇温しさらに3時間乾燥することにより、メタノールの含有量が0.2重量%となった。
 得られた上記式(1)で表されるアルコール化合物の結晶の各分析値は以下の通り。
 得られた結晶の重さ:139g(収率:79%)、
 HPLC純度:98.5%(多量体含量:1.1%)、
 トルエン含量:0.03重量%、
 メタノール含量:0.2重量%、
 25℃で液状である有機化合物の含有量:0.25重量%、
 YI値:0.7。
 赤外線吸収スペクトルを図1に示す。図1に示す通り、1148(cm-1)にピークを有する一方、1153±2(cm-1)にはピークを有さなかった。
 <実施例2>
 攪拌器、加熱冷却器、及び温度計を備えたガラス製反応器に9,9’-ビス(4-ヒドロキシ-3-フェニルフェニル)フルオレン150g(0.298mol)、炭酸カリウム3.4g(0.025mol)、エチレンカーボネート60.1g(0.682mol)、トルエン225g、及びジエチレングリコールジメチルエーテル150gを仕込み、115℃まで昇温し、同温度で13時間撹拌後、HPLCにて原料ピークが消失していることを確認した。反応終了時点の多量体の生成率は約0.5%であった。
 得られた反応液を85℃まで冷却した後、水225gを加え、80~85℃で30分撹拌し、静置後、水層を分離した。同じ操作を3回繰り返した後、得られた有機溶媒層を一部濃縮し、上記式(1)で表されるアルコール化合物、トルエン及びジエチレングリコールジメチルエーテルを含む溶液を得た。
 該溶液にトルエン54g、メタノール84gを添加し晶析溶液を得た。得られた晶析溶液中の水分は0.1重量%であり、該溶液中に含まれるトルエンは173g、メタノールは84g、ジエチレングリコールジメチルエーテルは61gであった。
 得られた晶析溶液を65℃まで昇温し、同温度で1時間撹拌して結晶を完溶させた後、0.1℃/分で冷却し50℃とした時点で、実施例1で得られた結晶0.01gを種晶として添加したところ、結晶が析出した。その後、同温度で1時間撹拌した。さらに25℃まで冷却した後、濾過し、結晶を得た。
 得られた結晶を内圧1.1kPaの減圧下、内温を68℃~73℃で3時間乾燥したところ、メタノールの含有量は0.2重量%であった。
 得られた上記式(1)で表されるアルコール化合物の結晶の各分析値は以下の通り。
 得られた結晶の重さ:123g(収率:70%)、
 HPLC純度:98.0%(多量体含量:0.10%)、
 トルエン含量:0.05重量%、
 25℃で液状である有機化合物の含有量:0.26重量%、
 YI値:0.7。
 赤外線吸収スペクトル:1148(cm-1)にピークを有する一方、1153±2(cm-1)にはピークを有さなかった。
 <実施例3~6>
 実施例1と同様に反応、後処理を行って濃縮物を得た。得られた濃縮物を4等分し、下記表1に示す比率となるようトルエン、メタノールをそれぞれ添加し、実施例1記載の方法と同様に晶析・乾燥操作を行い、上記式(1)で表されるアルコール化合物の結晶を得た。各結晶の各分析値を以下表1に示す。なお、表1におけるトルエン・メタノールの添加量はそれぞれの濃縮物に含まれる上記式(1)で表されるアルコール化合物に対する比率(重量倍)である。
Figure JPOXMLDOC01-appb-T000014
 <実施例7>
 攪拌器、加熱冷却器、及び温度計を備えたガラス製反応器に9,9’-ビス(4-ヒドロキシ-3-フェニルフェニル)フルオレン30.0g(0.060mol)、エチレンカーボネート13.1g(0.149mol)、炭酸カリウム0.7g(0.005mol)、トルエン45.0g及びシクロヘキサノン15.0gを仕込み、115℃で6時間撹拌し、HPLCにて原料ピークが1%以下であることを確認した。反応終了時点の多量体の生成率は約1.0%であった。
 得られた反応液を85℃まで冷却した後、水23gを加え、80~85℃で30分撹拌し、静置後、水層を分離した。同じ操作を3回繰り返した後、得られた有機溶媒層を一部濃縮し、上記式(1)で表されるアルコール化合物、トルエン及びシクロヘキサノンを含む溶液を得た。
 該溶液にトルエン21g、メタノール38gを添加し晶析溶液を得た。得られた晶析溶液中の水分は0.1重量%であり、該溶液中に含まれるトルエンは38g、メタノールは38g、シクロヘキサノンは11gであった。
 得られた晶析溶液を65℃まで昇温し、同温度で1時間撹拌して結晶を完溶させた後、0.1℃/分で冷却し50℃とした時点で、実施例1で得られた結晶0.01gを種晶として添加したところ、結晶が析出した。その後、同温度で1時間撹拌した。さらに20℃まで冷却した後、濾過することで結晶をろ別し、得られた結晶を内圧1.3kPaの減圧下、内温を68℃~73℃で3時間乾燥することで、上記式(1)で表されるアルコール化合物を含む結晶を得た。
 得られた上記式(1)で表されるアルコール化合物の結晶の各分析値は以下の通り。
 得られた結晶の重さ:26g(収率:73%)、
 HPLC純度:98.6%(多量体含量:0.8%)、
 トルエン含量:0.02重量%、
 メタノール含量:0.1重量%、
 25℃で液状である有機化合物の含有量:0.15重量%、
 YI値:1.2。
 赤外線吸収スペクトル:1148(cm-1)にピークを有する一方、1153±2(cm-1)にはピークを有さなかった。
 <比較例1>
 攪拌器、加熱冷却器、及び温度計を備えたガラス製反応器に、9,9’-ビス(4-ヒドロキシ-3-フェニルフェニル)フルオレン40.0g(0.080mol)、エチレンカーボネート16.1g(0.183mol)、炭酸カリウム0.8g(0.006mol)及びトルエン40.0gを仕込み、110℃で11時間撹拌し、HPLCにて原料ピークが1%以下であることを確認した。また、反応液中には、多量体が約3%副生していることを確認した。
 得られた反応液を85℃まで冷却した後、水68gを加え、80~85℃で30分撹拌し、静置後、水層を分離した。同じ操作を3回繰り返した後、得られた有機溶媒層をディーンスターク装置を用いて還流下で脱水し、上記式(1)で表されるアルコール化合物が溶解した晶析溶液を得た。該晶析溶液中の水分は0.1重量%であった。
 得られた晶析溶液を0.3℃/分で冷却したところ、65℃で結晶が析出し、同温度で2時間撹拌した。さらに26℃まで冷却した後、濾過し、結晶を得た。
 得られた結晶を内圧1.1kPaの減圧下、内温を68℃~73℃で3時間乾燥したが、トルエンが4重量%含まれていた。内温を110℃まで昇温し、同温度でさらに3時間乾燥したが、トルエンの含量は4重量%のままであった。
 得られた上記式(1)で表されるアルコール化合物の結晶の各分析値は以下の通り。
 得られた結晶の重さ:39.3g(収率:84%)、
 HPLC純度:97.5%(多量体含量:2.6%)、
 トルエン含量:4.1重量%。
 赤外線吸収スペクトルを図2に示す。図2に示す通り、1148±2(cm-1)にピークを有さない一方、1153(cm-1)にピークを有した。
 <比較例2>
 晶析工程においてメタノールの代わりにエタノールを使用し、最終乾燥温度を90℃とする以外は実施例1と同様の操作を行い、上記式(1)で表されるアルコール化合物の結晶を得た。得られた結晶の各分析値は以下の通り。
 得られた結晶の重さ:127g(収率:72%)、
 HPLC純度:98.0%(多量体含量:0.8%)、
 トルエン含量:4.1重量%、
 赤外線吸収スペクトル:1148±2(cm-1)にピークを有さない一方、1153(cm-1)にピークを有した。
 <比較例3~6>
 実施例1と同様に反応、後処理を行って濃縮物を得た。得られた濃縮物を4等分し、下記表2に示す比率となるよう各溶媒をそれぞれ添加し、最終乾燥温度を90℃とする以外は実施例1記載の方法と同様に晶析・乾燥操作を行い、上記式(1)で表されるアルコール化合物の結晶を得た。各結晶の各分析値を以下表2に示す。なお、表2における各溶媒の添加量はそれぞれの濃縮物に含まれる上記式(1)で表されるアルコール化合物に対する比率(重量倍)である。
Figure JPOXMLDOC01-appb-T000015
 上記表2に示す通り、上記式(1)で表されるアルコール化合物は芳香族炭化水素類と包接体を形成し、キシレンを単独で用いた場合や、メタノール以外の溶媒を混合し晶析させても芳香族炭化水素類を包接した包接体が得られることが判明した。
 <比較例7>
 実施例2と同様に反応、後処理を行った後、溶媒を除去することで濃縮物171gを得た。得られた濃縮物にトルエン228g、メタノール114gを添加後65℃まで昇温し、同温度で1時間撹拌することにより結晶を完溶させた。その後、1.5℃/分で冷却することにより21℃で結晶を析出させ、同温度で2時間撹拌した。その後、濾過し、上記式(1)で表されるアルコール化合物を含む結晶を得た。
 得られた結晶を内圧1.1kPaの減圧下、内温を68℃~73℃で3時間乾燥したが、トルエンが4重量%含まれていた。内温を110℃まで昇温し、同温度でさらに3時間乾燥したが、トルエンの含量は4重量%のままであった。
 <比較例8>
 反応スケールを10分の1とする以外は特開2001-206863号 実施例6に記載されている方法にて仕込・反応を行い、65℃で1時間撹拌した段階で反応液を高速液体クロマトグラフィーで分析したが、上記式(1)で表されるアルコール化合物は殆ど生成しておらず、原料の9-フルオレノンが98%残存していた。そこでさらに同温度で7時間撹拌を継続し、反応液を高速液体クロマトグラフィーで分析したが同様に反応は殆ど進行しておらず、原料の9-フルオレノンが97%残存していた。
 そこで特開2001-206863号〔0019〕の記載に基づき、反応温度を65℃から100℃へと変更し同温度で撹拌を継続したところ、原料である9-フルオレノンの消失までに73時間必要であった。
 該文献記載に基づく後処理を実施するため、得られた反応液を2分割し、一方にメタノール10g、もう片方にイソプロピルアルコール10gを加え60℃まで加温し、1時間撹拌を継続した後、それぞれ純水30gを加え、30℃まで冷却したが両方とも結晶は析出せず、それぞれ水と分離したタール状の液体が得られた。
 <比較例9>
 9-フルオレノンの使用量を18gとして特開2009-256342号 実施例1記載の方法を追試したところ、上記式(1)で表されるアルコール化合物34.2g(収率58%、純度85.1%)を得た。得られた上記式(1)で表されるアルコール化合物の結晶の各分析値は以下の通り。
 キシレン含量:4.8重量%、
 YI値:51、
 赤外線吸収スペクトル:1148±2(cm-1)にピークを有さない一方、1153(cm-1)にピークを有した。
 <比較例10>
 9-フルオレノンの使用量を9gとして特開2009-256342号 実施例2記載の方法を追試したところ、上記式(1)で表されるアルコール化合物13.5g(収率46%、純度74.7%)を得た。得られた上記式(1)で表されるアルコール化合物の結晶の各分析値は以下の通り。
 トルエン含量:3.0重量%
 YI値:83
 赤外線吸収スペクトル:1148±2(cm-1)にピークを有さない一方、1153(cm-1)にピークを有した。
 <比較例11>
 9-フルオレノンの使用量を18gとして特開2009-256342号 実施例3記載の方法を追試したところ、上記式(1)で表されるアルコール化合物23.6g(収率40%、純度91.2%)を得た。得られた上記式(1)で表されるアルコール化合物の結晶の各分析値は以下の通り。
 キシレン含量:5.0重量%
 YI値:18
 赤外線吸収スペクトルを図3に示す。図3に示す通り、1148±2(cm-1)にピークを有さない一方、1153(cm-1)にピークを有した。
 <比較例12>
 9-フルオレノンの使用量を18gとして特開2009-256342号 実施例4記載の方法を追試したところ、上記式(1)で表されるアルコール化合物20.7g(収率35%、純度88.6%)を得た。得られた上記式(1)で表されるアルコール化合物の結晶の各分析値は以下の通り。
 キシレン含量:5.2重量%、
 YI値:46、
 赤外線吸収スペクトル:1148±2(cm-1)にピークを有さない一方、1152(cm-1)にピークを有した。
 <参考例>
 実施例1で得られた結晶約5mgに、パスツールピペットを用いてトルエンを2滴振りかけた後、速やかに該結晶のFT-IR分析を実施した。赤外線吸収スペクトルを図4に示す。図4に示す通り、包接体でない上記式(1)で表されるアルコール化合物の結晶中に、包接化合物のゲスト分子としてでなく、溶媒残として芳香族炭化水素類を有する場合、包接体特有のピークである1153±2(cm-1)にはピークを有さず、1148(cm-1)にピークを有することが判明した。
 <比較例13>
 9,9-ビス(4-ヒドロキシ-3-フェニルフェニル)フルオレンの使用量を50.2gとする以外は特開2009-173647号合成例2記載の方法を追試し、上記式(1)で表されるアルコール化合物45.1g(純度93.8%)を得た。得られた上記式(1)で表されるアルコール化合物の結晶の各分析値は以下の通り。
 ジエチレングリコール含量:24.6重量%
 イソプロピルアルコール含量:42.0重量%
 赤外線吸収スペクトル:1148±2(cm-1)にピークを有さない一方、1153(cm-1)にピークを有した。
 上記追試にて得られた結晶が溶媒で濡れた状態であったため、さらに、該結晶を内圧1.1kPaの減圧下、90℃で8時間乾燥することで、さらさらとした上記式(1)で表されるアルコール化合物の結晶26.2g(純度94.2%)を得た。得られた結晶の各分析値は以下の通り。
 ジエチレングリコール含量:42.4重量%、
 イソプロピルアルコール含量:0.3重量%。
 また、得られた結晶の赤外線吸収スペクトルを図5に示す。図5に示す通り、1148±2(cm-1)にピークを有さない一方、1153(cm-1)にピークを有した。
 上記の通りジエチレングリコールの含量が殆ど減少していなかったため、内圧1.1kPaの減圧下、乾燥温度を徐々に上昇させたところ、約100℃で結晶が溶融しはじめたため、乾燥操作を終了した。
 <比較例14>
 攪拌器、加熱冷却器、及び温度計を備えたガラス製反応器に、9,9’-ビス(4-ヒドロキシ-3-フェニルフェニル)フルオレン30.0g(0.060mol)、エチレンカーボネート12.0g(0.136mol)、炭酸カリウム0.7g(0.005mol)、及びシクロヘキサノン30.0gを仕込み、140℃で7時間撹拌し、HPLCにて原料ピークが1%以下であることを確認した。反応終了時点の多量体の生成率は約1.2%であった。
 得られた反応液を90℃まで冷却した後、シクロヘキサノン23g、ノルマルヘプタン27gを加え、有機溶媒層を90℃に保ちながら洗浄水が中性となるまで水洗を行った。水洗後、得られた有機溶媒層をディーンスターク装置を用いて還流下で脱水し、上記式(1)で表されるフルオレン骨格を有するアルコールが溶解した晶析溶液を得た。該晶析溶液中の水分は0.1重量%であった。
 その後、70℃まで冷却し、70℃で1時間保温することで結晶を析出させた後、同温度で2時間撹拌した。撹拌後、さらに19℃まで冷却し、濾過し、結晶を得た。
 得られた結晶を内圧1.1kPaの減圧下、内温110℃で5時間乾燥したが、シクロヘキサノンが14重量%含まれていたため、内圧1.1kPaの減圧下、乾燥温度を徐々に上昇させたところ、約115℃で結晶が溶融しはじめたため、乾燥操作を終了した。

Claims (7)

  1.  下記式(1):
    Figure JPOXMLDOC01-appb-C000001

    で表されるアルコール化合物の製造方法であって、
     前記式(1)で表されるアルコール化合物、芳香族炭化水素類及びメタノールを含む溶液を調製する工程(i)と、
     前記溶液から25℃以上で前記アルコール化合物の結晶を析出させ、析出した結晶を分離取得する工程(ii)と、
     60℃以上で、前記結晶からメタノールを除去する工程(iii)と、
    をこの順で含む、製造方法。
  2.  芳香族炭化水素類とメタノールとの比率が、重量基準で1:0.3~1:5である、請求項1に記載の製造方法。
  3.  前記工程(i)の前に、グリコールジエーテル及び炭素数5~12の環状ケトンからなる群より選ばれる少なくとも1種の化合物存在下、下記式(2):
    Figure JPOXMLDOC01-appb-C000002

    で表されるフェノール化合物とエチレンカーボネートとを反応させて、前記式(1)で表されるアルコール化合物を製造する工程をさらに含む、請求項1又は2に記載の製造方法。
  4.  下記式(1):
    Figure JPOXMLDOC01-appb-C000003

    で表されるアルコール化合物の結晶であって、
     赤外線吸収スペクトルにおいて、1153±2(cm-1)のピークを実質的に有さない、結晶。
  5.  下記式(1):
    Figure JPOXMLDOC01-appb-C000004

    で表されるアルコール化合物の結晶であって、
     25℃で液状である有機化合物の含量が1重量%以下である、結晶。
  6.  下記式(1):
    Figure JPOXMLDOC01-appb-C000005

    で表されるアルコール化合物の結晶であって、
    赤外線吸収スペクトルにおいて、1153±2(cm-1)のピークを実質的に有さず、かつ、25℃で液状である有機化合物の含量が1重量%以下である、結晶。
  7.  前記式(1)で表されるアルコール化合物12gを、純度99重量%以上のN,N-ジメチルホルムアミド30mLに溶解させて得られる溶液の黄色度(YI値)が10以下である、請求項4又は5に記載の結晶。
PCT/JP2017/018786 2016-05-19 2017-05-19 フルオレン骨格を有するアルコール化合物の製造方法 WO2017200073A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020187034877A KR102335659B1 (ko) 2016-05-19 2017-05-19 플루오렌 골격을 갖는 알코올 화합물의 제조 방법
CN201780029380.3A CN109071391B (zh) 2016-05-19 2017-05-19 具有芴骨架的醇化合物的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016100032 2016-05-19
JP2016-100032 2016-05-19

Publications (1)

Publication Number Publication Date
WO2017200073A1 true WO2017200073A1 (ja) 2017-11-23

Family

ID=60325349

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/018786 WO2017200073A1 (ja) 2016-05-19 2017-05-19 フルオレン骨格を有するアルコール化合物の製造方法

Country Status (5)

Country Link
JP (2) JP6241977B2 (ja)
KR (1) KR102335659B1 (ja)
CN (1) CN109071391B (ja)
TW (1) TWI740943B (ja)
WO (1) WO2017200073A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114216977A (zh) * 2021-12-07 2022-03-22 广电计量检测(天津)有限公司 一种四乙二醇二甲醚的气质联用测定方法及其应用

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020004207A1 (ja) * 2018-06-27 2020-01-02 本州化学工業株式会社 9,9-ビス(4-ヒドロキシフェニル)-2,3-ベンゾフルオレンの結晶体
JP7146345B2 (ja) * 2018-09-06 2022-10-04 田岡化学工業株式会社 フルオレン骨格を有するアルコール化合物を含む樹脂原料用組成物

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008099765A1 (ja) * 2007-02-15 2008-08-21 Taoka Chemical Co., Ltd. フルオレン誘導体の結晶多形体およびその製造方法
JP2009173647A (ja) * 2007-12-26 2009-08-06 Osaka Gas Co Ltd フルオレン骨格を有する二官能性(メタ)アクリレート
JP2015110555A (ja) * 2013-11-11 2015-06-18 田岡化学工業株式会社 フルオレン構造を含む樹脂からビスフェノールフルオレン類を回収する方法
JP2015196676A (ja) * 2014-04-03 2015-11-09 田岡化学工業株式会社 フルオレン構造を有するポリエステル樹脂からビスフェノールフルオレン類を回収する方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2977714B2 (ja) 1993-10-04 1999-11-15 鐘紡株式会社 ポリエステル成形体
JP2559332B2 (ja) * 1993-12-10 1996-12-04 大阪瓦斯株式会社 フルオレン誘導品の製造方法及びその精製方法
JPH1045655A (ja) * 1996-07-30 1998-02-17 Taoka Chem Co Ltd フルオレン誘導体の製造方法
JP2001122828A (ja) 1999-10-27 2001-05-08 Shinnakamura Kagaku Kogyo Kk 2官能(メタ)アクリル酸エステル組成物とそのための2価アルコール
JP2001206863A (ja) 2000-01-25 2001-07-31 Osaka Gas Co Ltd フルオレン化合物及びその製造方法
JP4219643B2 (ja) * 2002-09-02 2009-02-04 Jfeケミカル株式会社 ビスフェノールフルオレン類の回収方法
JP5325627B2 (ja) * 2008-03-27 2013-10-23 大阪瓦斯株式会社 フルオレン骨格を有するアルコールの製造方法
JP2010024248A (ja) * 2009-11-02 2010-02-04 Osaka Gas Co Ltd フルオレン誘導体
JP5437106B2 (ja) * 2010-02-19 2014-03-12 大阪ガスケミカル株式会社 フルオレン骨格を有するポリエステル樹脂
JP5501790B2 (ja) * 2010-02-19 2014-05-28 大阪ガスケミカル株式会社 フルオレン骨格を有するポリエステル樹脂
KR20160083738A (ko) * 2015-01-02 2016-07-12 삼성전자주식회사 표시 장치용 윈도우 및 이를 포함하는 표시 장치
JP7274257B2 (ja) * 2016-02-09 2023-05-16 大阪ガスケミカル株式会社 9,9-ビス[4-(2-ヒドロキシエトキシ)-3-フェニルフェニル]フルオレンの多形体及びその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008099765A1 (ja) * 2007-02-15 2008-08-21 Taoka Chemical Co., Ltd. フルオレン誘導体の結晶多形体およびその製造方法
JP2009173647A (ja) * 2007-12-26 2009-08-06 Osaka Gas Co Ltd フルオレン骨格を有する二官能性(メタ)アクリレート
JP2015110555A (ja) * 2013-11-11 2015-06-18 田岡化学工業株式会社 フルオレン構造を含む樹脂からビスフェノールフルオレン類を回収する方法
JP2015196676A (ja) * 2014-04-03 2015-11-09 田岡化学工業株式会社 フルオレン構造を有するポリエステル樹脂からビスフェノールフルオレン類を回収する方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114216977A (zh) * 2021-12-07 2022-03-22 广电计量检测(天津)有限公司 一种四乙二醇二甲醚的气质联用测定方法及其应用
CN114216977B (zh) * 2021-12-07 2024-05-31 广电计量检测(天津)有限公司 一种四乙二醇二甲醚的气质联用测定方法及其应用

Also Published As

Publication number Publication date
KR102335659B1 (ko) 2021-12-03
JP2017210471A (ja) 2017-11-30
JP2018009037A (ja) 2018-01-18
CN109071391B (zh) 2022-02-15
CN109071391A (zh) 2018-12-21
TW201808870A (zh) 2018-03-16
KR20190009309A (ko) 2019-01-28
TWI740943B (zh) 2021-10-01
JP6241977B2 (ja) 2017-12-06

Similar Documents

Publication Publication Date Title
JP6083901B2 (ja) ビナフタレン化合物の製造方法
JP6739136B2 (ja) フルオレン骨格を有するアルコールの結晶およびその製造方法
JP6083900B2 (ja) ビナフタレン化合物の製造方法
WO2017014141A1 (ja) フルオレン骨格を有するアルコールの結晶およびその製造方法
JP6241977B2 (ja) フルオレン骨格を有するアルコール化合物の製造方法
JP6830304B2 (ja) フルオレン骨格を有するジヒドロキシ化合物の精製方法
JP6931984B2 (ja) フルオレン骨格を有するアルコール化合物の結晶およびその製造方法
JP7290908B2 (ja) フルオレン骨格を有するアルコール類の製造方法
JP6994299B2 (ja) フルオレン骨格を有するジヒドロキシ化合物の精製方法
JP2017025024A (ja) フルオレン骨格を有するアルコール類を用いた包接化合物
JP2019108408A (ja) フルオレン骨格を有するアルコール化合物の結晶およびその製造方法
WO2023176687A1 (ja) ビフェナントレン化合物又はそのアルカリ金属塩
JP7170374B2 (ja) フルオレン骨格を有するビスフェノール化合物の製造方法
KR20240158905A (ko) 비페난트렌 화합물 또는 그의 알칼리 금속염
JP2021024788A (ja) ビナフタレン骨格を有する化合物の製造方法およびビナフタレン骨格を有する化合物
JP2015101572A (ja) N−ビニルカルバゾールの製造方法

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17799497

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187034877

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17799497

Country of ref document: EP

Kind code of ref document: A1