WO2017188168A1 - 光学フィルムの製造方法 - Google Patents

光学フィルムの製造方法 Download PDF

Info

Publication number
WO2017188168A1
WO2017188168A1 PCT/JP2017/016140 JP2017016140W WO2017188168A1 WO 2017188168 A1 WO2017188168 A1 WO 2017188168A1 JP 2017016140 W JP2017016140 W JP 2017016140W WO 2017188168 A1 WO2017188168 A1 WO 2017188168A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin layer
laser
layer
optical film
less
Prior art date
Application number
PCT/JP2017/016140
Other languages
English (en)
French (fr)
Inventor
拓也 三浦
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to CN201780023378.5A priority Critical patent/CN109073811B/zh
Priority to US16/092,874 priority patent/US20190202005A1/en
Priority to KR1020187029470A priority patent/KR102394274B1/ko
Priority to JP2018514574A priority patent/JP6922899B2/ja
Publication of WO2017188168A1 publication Critical patent/WO2017188168A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • B23K26/0624Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses using ultrashort pulses, i.e. pulses of 1ns or less
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/18Working by laser beam, e.g. welding, cutting or boring using absorbing layers on the workpiece, e.g. for marking or protecting purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/362Laser etching
    • B23K26/364Laser etching for making a groove or trench, e.g. for scribing a break initiation groove
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • B23K26/402Removing material taking account of the properties of the material involved involving non-metallic material, e.g. isolators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0022Combinations of extrusion moulding with other shaping operations combined with cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/16Articles comprising two or more components, e.g. co-extruded layers
    • B29C48/18Articles comprising two or more components, e.g. co-extruded layers the components being layers
    • B29C48/21Articles comprising two or more components, e.g. co-extruded layers the components being layers the layers being joined at their surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/305Extrusion nozzles or dies having a wide opening, e.g. for forming sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/625Screws characterised by the ratio of the threaded length of the screw to its outside diameter [L/D ratio]
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/003Light absorbing elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/40Semiconductor devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/16Composite materials, e.g. fibre reinforced
    • B23K2103/166Multilayered materials
    • B23K2103/172Multilayered materials wherein at least one of the layers is non-metallic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/30Organic material
    • B23K2103/42Plastics

Definitions

  • the present invention relates to a method for producing an optical film.
  • Display devices such as liquid crystal display devices and organic electroluminescence display devices may be provided with an optical film made of resin.
  • Such an optical film is usually formed as a film having a size larger than that of a film piece as a final product. And such a film is cut
  • Examples of the method of cutting the film into a desired shape include a mechanical cutting method using a knife and a laser cutting method using laser light.
  • the laser cutting method is preferable because cutting residue is not easily generated.
  • the resin film is cut with a laser while the resin film is fixed on a support.
  • a laminated body having a glass support and a resin layer provided thereon is prepared, and the resin layer of the laminated body is cut with a laser beam to obtain an optical film having a desired shape.
  • disconnection for example, patent document 2 and 3.
  • the support can be peeled off from the optical film and reused for the next production, or can be incorporated into the display device together with the optical film as part of the components of the display device.
  • the resin layer When the resin layer is cut by a laser cutting method while being supported by the support, it is required to cut the resin layer without damaging the support. If the output of the laser beam is excessive, the support may be damaged. Therefore, the output of the laser beam is required to be small.
  • Some resin layers are less sensitive to lasers.
  • a resin containing a cyclic olefin polymer is excellent in performance such as transparency, dimensional stability, retardation development, low hygroscopicity, and stretchability at low temperatures, and is suitable as an optical member.
  • a resin containing a cyclic olefin polymer has low sensitivity to laser light often used for cutting the resin layer. When attempting to cut such a resin layer using laser light, cutting with low-power laser light may be insufficient, while increasing the output of the laser light to ensure sufficient cutting may damage the support. It was easy to invite.
  • an object of the present invention is to provide a method for producing an optical film, which can be smoothly cut without damaging the support, even when the resin layer has low sensitivity to laser. There is to do.
  • the present inventor can cut the resin layer satisfactorily without damaging the support by combining the resin layer with a specific laser absorption layer in the laser cutting method. As a result, the present invention has been completed. That is, according to the present invention, the following [1] to [8] are provided.
  • a method for producing an optical film comprising: a cutting step of irradiating a laser beam to a laminate having a resin layer and a laser absorption layer provided on one side of the resin layer, and cutting the resin layer.
  • the average absorption ratio A A light of the laser absorbent 9 ⁇ m least 11 ⁇ m or less in the wavelength region by layer is greater than the average absorptance A R of the light 9 ⁇ m than 11 ⁇ m or less in the wavelength region by the resin layer
  • the relative thickness T R of the resin layer, the ratio T A / T R of the thickness T A of said laser-absorbing layer is 0.8 or more, a manufacturing method of an optical film.
  • the average absorptance A A by the laser absorbing layer is 0.07 or more, a manufacturing method of an optical film of [1].
  • the laser absorption layer is a resin layer containing an ester compound.
  • the cutting step includes forming a support-laminate composite comprising a support, the laser absorption layer, and the resin layer in this order, The optical film according to any one of [1] to [7], wherein the laser light irradiation includes irradiating the laser beam to the resin layer side of the support-laminate composite. Manufacturing method.
  • the resin layer can be smoothly cut without damaging the support, Thereby, a high quality optical film can be manufactured efficiently.
  • FIG. 1 is a side view showing an example of the positional relationship between a support-laminate composite and laser light in a cutting step in the method for producing an optical film of the present invention.
  • FIG. 2 is a graph showing an example of an energy distribution for a laser beam having a flat energy distribution.
  • FIG. 3 is a graph showing an example of an energy distribution of a Gaussian mode laser beam generally used in the past.
  • the direction of the beam or member used in the process is “vertical” or “horizontal” unless otherwise specified, and may include an error within a range that does not impair the effects of the present invention.
  • Such an error may be, for example, an error within a range of typically ⁇ 5 °, preferably ⁇ 2 °, more preferably ⁇ 1 °.
  • (meth) acryl and “(meth) acrylate” mean acrylic, methacrylic, or a combination thereof.
  • (meth) acrylate means any of acrylate, methacrylate, and combinations thereof.
  • (meth) acrylamide means any of acrylamide, methacrylamide, and combinations thereof.
  • the manufacturing method of the optical film of this invention includes the cutting process of irradiating a specific laminated body with a laser beam, and cut
  • the laminated body used for the manufacturing method of the optical film of this invention has a laser absorption layer provided in the single side
  • this specific resin layer may be particularly referred to as “resin layer (R)” for distinction from general resin layers in general.
  • the laminate is subjected to a cutting process as a composite with a support.
  • a support-laminate composite comprising a support, a laser absorbing layer and a resin layer (R) in this order can be subjected to a cutting step.
  • Examples of the material constituting the support include glass, resin, and metal.
  • Specific examples of the glass include soda glass, lead glass, borosilicate glass, alkali-free glass, quartz glass, and chemically strengthened glass.
  • Examples of the resin include a resin having heat resistance such as a polyimide resin and a polyethylene naphthalate resin.
  • Examples of metals include aluminum and stainless steel.
  • the thickness of the support is not particularly limited, and a thickness suitable for carrying out the method of the present invention can be appropriately selected.
  • a thickness suitable for carrying out the method of the present invention can be appropriately selected.
  • a glass support specifically, it may be preferably 0.05 mm or more, more preferably 0.3 mm or more, and preferably 1.3 mm or less, more preferably 1.1 mm or less.
  • a resin support specifically, it may be preferably 0.005 mm or more, more preferably 0.01 mm or more, while preferably 0.2 mm or less, more preferably 0.1 mm or less.
  • a metal support specifically, it may be preferably 0.005 mm or more, more preferably 0.01 mm or more, and preferably 2.0 mm or less, more preferably 1.0 mm or less.
  • a resin layer (R) is a layer which has resin as a main component and becomes the object of cutting in the cutting step of the method for producing an optical film of the present invention.
  • the resin layer (R) may be composed of a single layer or a plurality of layers.
  • the resin layer (R) may be composed of only a transparent resin layer made of a transparent resin, or a plurality of layers including such a transparent resin layer and an arbitrary layer.
  • Transparent resin layer As resin which comprises a transparent resin layer, arbitrary resin which can be used as a material of an optical film can be used. As such a resin, a resin excellent in desired performance such as transparency, mechanical strength, thermal stability, and moisture shielding property can be appropriately selected. Examples of such resins include acetate resins such as triacetyl cellulose, polyester resins, polyethersulfone resins, polycarbonate resins, polyamide resins, polyimide resins, polyolefin resins, cyclic olefin resins, (meth) acrylic resins, and the like. .
  • acetate resins such as triacetyl cellulose, polyester resins, polyethersulfone resins, polycarbonate resins, polyamide resins, polyimide resins, polyolefin resins, cyclic olefin resins, (meth) acrylic resins, and the like.
  • acetate resin, cyclic olefin resin, and (meth) acrylic resin are preferable in terms of low birefringence, and cyclic olefin resin is particularly preferable from the viewpoint of transparency, low moisture absorption, dimensional stability, lightness, and the like.
  • At least one of the transparent resin layers of the resin layer (R) is an olefin resin layer.
  • the olefin resin constituting the olefin resin layer is a thermoplastic resin containing a cyclic olefin polymer.
  • the olefin resin layer is useful in optical applications such as a polarizer protective layer from various viewpoints such as transparency, low hygroscopicity, dimensional stability, and lightness.
  • the olefin resin absorbs less laser light, it is difficult to perform good cutting of the olefin resin layer with the laser light without damaging the support. Therefore, by using the resin layer (R) having an olefin resin layer for the production method of the present invention, it is possible to smoothly perform cutting with good laser light while enjoying useful performance of the olefin resin layer.
  • the cyclic olefin polymer is a polymer in which the structural unit of the polymer has an alicyclic structure.
  • a resin containing such a cyclic olefin polymer is usually excellent in performance such as transparency, dimensional stability, retardation development, and ease of molding at low temperatures.
  • the cyclic olefin polymer includes a polymer having an alicyclic structure in a main chain, a polymer having an alicyclic structure in a side chain, a polymer having an alicyclic structure in a main chain and a side chain, and these 2 It can be set as a mixture of the above arbitrary ratios. Among these, from the viewpoint of mechanical strength and heat resistance, a polymer having an alicyclic structure in the main chain is preferable.
  • alicyclic structure examples include a saturated alicyclic hydrocarbon (cycloalkane) structure and an unsaturated alicyclic hydrocarbon (cycloalkene, cycloalkyne) structure.
  • cycloalkane saturated alicyclic hydrocarbon
  • cycloalkene unsaturated alicyclic hydrocarbon
  • cycloalkyne unsaturated alicyclic hydrocarbon
  • a cycloalkane structure and a cycloalkene structure are preferable, and a cycloalkane structure is particularly preferable.
  • the number of carbon atoms constituting the alicyclic structure is preferably 4 or more, more preferably 5 or more, preferably 30 or less, more preferably 20 or less, particularly preferably per alicyclic structure. Is 15 or less. When the number of carbon atoms constituting the alicyclic structure is within this range, the mechanical strength, heat resistance and moldability of the cyclic olefin resin are highly balanced.
  • the proportion of structural units having an alicyclic structure can be selected according to the intended use of the product to be obtained.
  • the proportion of the structural unit having an alicyclic structure in the cyclic olefin polymer is preferably 55% by weight or more, more preferably 70% by weight or more, and particularly preferably 90% by weight or more.
  • the proportion of the structural unit having an alicyclic structure in the cyclic olefin polymer is within this range, the transparency and heat resistance of the cyclic olefin resin are improved.
  • a cycloolefin polymer is a polymer having a structure obtained by polymerizing a cycloolefin monomer.
  • the cycloolefin monomer is a compound having a ring structure formed of carbon atoms and having a polymerizable carbon-carbon double bond in the ring structure.
  • Examples of the polymerizable carbon-carbon double bond include a carbon-carbon double bond capable of polymerization such as ring-opening polymerization.
  • Examples of the ring structure of the cycloolefin monomer include monocycles, polycycles, condensed polycycles, bridged rings, and polycycles obtained by combining these.
  • a polycyclic cycloolefin monomer is preferable from the viewpoint of highly balancing the dielectric properties and heat resistance of the resulting polymer.
  • norbornene polymers preferred are norbornene polymers, monocyclic olefin polymers, cyclic conjugated diene polymers, hydrides thereof, and the like.
  • norbornene-based polymers are particularly suitable because of good moldability.
  • Examples of the norbornene polymer include a ring-opening polymer of a monomer having a norbornene structure and a hydride thereof; an addition polymer of a monomer having a norbornene structure and a hydride thereof.
  • Examples of a ring-opening polymer of a monomer having a norbornene structure include a ring-opening homopolymer of one kind of monomer having a norbornene structure and a ring-opening of two or more kinds of monomers having a norbornene structure. Examples thereof include a copolymer and a ring-opening copolymer with a monomer having a norbornene structure and another monomer that can be copolymerized therewith.
  • examples of the addition polymer of a monomer having a norbornene structure include an addition homopolymer of one kind of monomer having a norbornene structure and an addition copolymer of two or more kinds of monomers having a norbornene structure. And addition copolymers with monomers having a norbornene structure and other monomers copolymerizable therewith.
  • a hydride of a ring-opening polymer of a monomer having a norbornene structure is particularly suitable from the viewpoints of moldability, heat resistance, low moisture absorption, dimensional stability, lightness, and the like.
  • Examples of monomers having a norbornene structure include bicyclo [2.2.1] hept-2-ene (common name: norbornene), tricyclo [4.3.0.1 2,5 ] deca-3,7. - diene (common name: dicyclopentadiene), 7,8-tricyclo [4.3.0.1 2, 5] dec-3-ene (common name: methanolate tetrahydrofluorene), tetracyclo [4.4. 0.1 2,5 . 1 7,10 ] dodec-3-ene (common name: tetracyclododecene) and derivatives of these compounds (for example, those having a substituent in the ring).
  • examples of the substituent include an alkyl group, an alkylene group, and a polar group. Moreover, these substituents may be the same or different, and a plurality thereof may be bonded to the ring.
  • One type of monomer having a norbornene structure may be used alone, or two or more types may be used in combination at any ratio.
  • Examples of polar groups include heteroatoms and atomic groups having heteroatoms.
  • Examples of the hetero atom include an oxygen atom, a nitrogen atom, a sulfur atom, a silicon atom, and a halogen atom.
  • Specific examples of polar groups include carboxyl groups, carbonyloxycarbonyl groups, epoxy groups, hydroxyl groups, oxy groups, ester groups, silanol groups, silyl groups, amino groups, amide groups, imide groups, nitrile groups, and sulfonic acid groups. Is mentioned.
  • Examples of monomers capable of ring-opening copolymerization with monomers having a norbornene structure include monocyclic olefins such as cyclohexene, cycloheptene, and cyclooctene and derivatives thereof; cyclic conjugated dienes such as cyclohexadiene and cycloheptadiene; And derivatives thereof.
  • monomers having a norbornene structure and a monomer capable of ring-opening copolymerization one kind may be used alone, or two or more kinds may be used in combination at any ratio.
  • a ring-opening polymer of a monomer having a norbornene structure can be produced, for example, by polymerizing or copolymerizing a monomer in the presence of a ring-opening polymerization catalyst.
  • Examples of monomers that can be copolymerized with a monomer having a norbornene structure include ⁇ -olefins having 2 to 20 carbon atoms such as ethylene, propylene, and 1-butene, and derivatives thereof; cyclobutene, cyclopentene, and cyclohexene. And non-conjugated dienes such as 1,4-hexadiene, 4-methyl-1,4-hexadiene, 5-methyl-1,4-hexadiene, and the like.
  • ⁇ -olefin is preferable, and ethylene is more preferable.
  • the monomer which can carry out addition copolymerization with the monomer which has a norbornene structure may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • An addition polymer of a monomer having a norbornene structure can be produced, for example, by polymerizing or copolymerizing a monomer in the presence of an addition polymerization catalyst.
  • the hydrogenated product of the ring-opening polymer and the addition polymer described above is obtained by, for example, hydrogenating a carbon-carbon unsaturated bond, preferably 90% or more, in a solution of these ring-opening polymer and addition polymer. Can be manufactured. Hydrogenation can be carried out in the presence of a hydrogenation catalyst containing a transition metal such as nickel or palladium.
  • X bicyclo [3.3.0] octane-2,4-diyl-ethylene structure and Y: tricyclo [4.3.0.1 2,5 ] decane- Having a 7,9-diyl-ethylene structure, and the amount of these structural units is 90% by weight or more based on the total structural units of the norbornene polymer, and the ratio of X to Y The ratio is preferably 100: 0 to 40:60 by weight ratio of X: Y.
  • Examples of monocyclic olefin polymers include addition polymers of cyclic olefin monomers having a single ring such as cyclohexene, cycloheptene, and cyclooctene.
  • cyclic conjugated diene polymers include polymers obtained by cyclization of addition polymers of conjugated diene monomers such as 1,3-butadiene, isoprene and chloroprene; cyclic conjugates such as cyclopentadiene and cyclohexadiene. Mention may be made of 1,2- or 1,4-addition polymers of diene monomers; and their hydrides.
  • the molecule of the cyclic olefin polymer does not contain a polar group.
  • a cyclic olefin polymer containing no polar group in the molecule tends to hardly absorb carbon dioxide laser light.
  • such a resin layer (R) containing a cyclic olefin polymer that does not contain a polar group in the molecule can be easily cut with a laser beam.
  • the water absorption of the transparent resin layer in the polarizing plate obtained can be reduced by using the cyclic olefin polymer which does not contain a polar group in a molecule
  • the weight average molecular weight (Mw) of the cyclic olefin polymer can be appropriately selected according to the intended use of the product obtained, and is preferably 10,000 or more, more preferably 15,000 or more, and particularly preferably 20,000 or more. , Preferably 100,000 or less, more preferably 80,000 or less, particularly preferably 50,000 or less. When the weight average molecular weight is in such a range, the mechanical strength and molding processability of the transparent resin layer in the resulting product are highly balanced.
  • the weight average molecular weight is calculated by polyisoprene or polystyrene measured by gel permeation chromatography using cyclohexane as a solvent (however, toluene may be used when the sample does not dissolve in cyclohexane).
  • the molecular weight distribution (weight average molecular weight (Mw) / number average molecular weight (Mn)) of the cyclic olefin polymer is preferably 1.2 or more, more preferably 1.5 or more, particularly preferably 1.8 or more, preferably Is 3.5 or less, more preferably 3.0 or less, and particularly preferably 2.7 or less.
  • productivity of a polymer can be improved and manufacturing cost can be suppressed.
  • the quantity of a low molecular component becomes small by making it into an upper limit or less, relaxation at the time of high temperature exposure can be suppressed and stability of a transparent resin layer can be improved.
  • the ratio of the cyclic olefin polymer in the olefin resin layer is preferably 90% by weight or more, more preferably 92% by weight or more, particularly preferably 95% by weight or more, preferably 99.9% by weight or less, more preferably 99% by weight. % By weight or less, particularly preferably 98% by weight or less.
  • the water absorption of the transparent resin layer can be reduced by setting the ratio of the cyclic olefin polymer to the lower limit value or more of the above range. In addition, by setting it to the upper limit value or less, it is possible to increase the absorptance of light having a wavelength of 9 ⁇ m to 11 ⁇ m and facilitate cutting with carbon dioxide laser light.
  • the olefin resin layer may further contain arbitrary components in addition to the cyclic olefin polymer.
  • Optional components include, for example, colorants such as ester compounds, pigments, and dyes for increasing the sensitivity to laser light; fluorescent brighteners; dispersants; thermal stabilizers; light stabilizers; ultraviolet absorbers; Antioxidants; fine particles; and additives such as surfactants. These components may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the glass transition temperature of the cyclic olefin resin forming the olefin resin layer is preferably 100 ° C. or higher, more preferably 110 ° C. or higher, particularly preferably 120 ° C. or higher, preferably 190 ° C. or lower, more preferably 180 ° C. or lower, Especially preferably, it is 170 degrees C or less.
  • the glass transition temperature is within the above range, a transparent resin layer having excellent durability can be easily produced. Moreover, it can shape
  • the thickness T R of the transparent resin layer is preferably 1 ⁇ m or more, more preferably 5 ⁇ m or more, particularly preferably 10 ⁇ m or more, and preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less, particularly preferably 30 ⁇ m or less.
  • the transparent resin layer can be provided with a property that can efficiently absorb carbon dioxide laser light.
  • the haze of a transparent resin layer can be made low by setting it as an upper limit or less, transparency of a transparent resin layer can be made favorable.
  • the transparent resin layer is “transparent” means having a light transmittance suitable for use in a polarizing plate.
  • the entire transparent resin layer of one or more layers in the resin layer (R) can have a total light transmittance of 80% or more.
  • a laser absorption layer is a layer in which the light absorptance of a specific wavelength is larger than that of the resin layer. That is, the average absorption ratio A A light below a wavelength region 9 ⁇ m least 11 ⁇ m by the laser absorbing layer has an average greater than the absorption rate A R of the light 9 ⁇ m than 11 ⁇ m or less in the wavelength region by the resin layer. Difference A A -A R between the average absorptance A A and A R is preferably 0.02 or more, more preferably 0.03 or more.
  • the light absorptance of a layer is the ratio of the intensity attenuated by passing through the layer to the intensity of the incident light when the light incident on the layer is emitted through the layer. It is. In the present application, the ratio is expressed as a relative value where the intensity of incident light is 1.
  • the average absorptance is measured by using, for example, NICOLET iS5 (Thermo Fisher Scientific) as a measuring device, and measuring by a transmission method with a detector DTGS KBr, resolution 4 cm ⁇ 1 , 16 times of integration, and 9 ⁇ m or more. It is obtained by calculating the average value of the absorptance in the wavelength region of 11 ⁇ m or less.
  • the average absorption ratio A A laser absorbing layer is preferably a high value more than a certain degree. Specifically, the average absorption rate can be preferably 0.07 or more, more preferably 0.1 or more. The upper limit is not particularly limited in average absorptance A A laser absorbing layer, for example, it is a 4.0 or less. On the other hand, the average absorption ratio A R of the resin layer (R), for example may be 0.02 to 0.05. In the production method of the present invention, the average absorption ratio A R of the resin layer (R) is even such a low value, it is possible to perform a smooth cutting.
  • the resin layer (R) can be smoothly cut in the cutting step. Specifically, the laser absorption layer absorbs the energy of the laser to generate heat, and the heat is transmitted to the resin layer (R), thereby promoting the cutting of the resin layer (R).
  • the laser absorption layer has a specific thickness relative to the thickness of the resin layer. That is, to the thickness T R of the resin layer, the ratio T A / T R of the thickness T A of the laser absorbing layer is 0.8 or more.
  • the ratio T A / T R is preferably 0.9 or more, more preferably 1.0 or more.
  • the upper limit of the ratio T A / T R is not particularly limited, may be 50 or less.
  • the ratio T A / T R is the lower limit or more, generated laser absorbing layer to sufficient heat, the cleavage of the resin layer (R) can be sufficiently promoted.
  • the ratio T A / T R is the upper limit or less, it is possible to perform the bonding and peeling of the resin layer (R) smoothly.
  • the thickness T A of the laser-absorbing layer is preferably within a specific range. Specifically, T A is preferably 10 ⁇ m or more, more preferably 20 ⁇ m or more, whereas preferably 50 ⁇ m or less, more preferably 40 ⁇ m or less.
  • the laser absorption layer is a resin layer containing an ester compound.
  • An ester compound is a compound having an ester bond in the molecule.
  • the laser absorption layer can efficiently absorb the energy of laser light in a wavelength region of 9 ⁇ m or more and 11 ⁇ m or less.
  • the laser absorption layer is an adhesive layer.
  • the laser absorption layer is an adhesive layer, a support-laminate composite can be easily formed.
  • the resin containing an ester compound in the laser absorption layer is an acrylic adhesive.
  • An acrylic adhesive is an adhesive containing an acrylic polymer.
  • the acrylic polymer include a polymer of an acrylic monomer, and a copolymer of an acrylic monomer and any other monomer.
  • acrylic monomers include alkyl (meth) acrylates, alkoxyalkyl (meth) acrylates, (meth) acrylamides, and combinations thereof.
  • alkyl (meth) acrylates examples include methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, isobutyl (meth) acrylate, hexyl (meth) acrylate , Octyl (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate, and combinations thereof.
  • alkoxyalkyl (meth) acrylates examples include methoxyethyl (meth) acrylate, butoxyethyl (meth) acrylate, and combinations thereof.
  • Examples of (meth) acrylamides include cyclohexyl (meth) acrylate, phenyl (meth) acrylate, benzyl (meth) acrylate, vinyl acetate, (meth) acrylamide, N-methylol (meth) acrylamide, and combinations thereof. It is done.
  • the acrylic polymer may be a copolymer of the acrylic monomer described above and an acrylic monomer having a functional group.
  • acrylic monomers having a functional group include unsaturated acids such as maleic acid, fumaric acid and (meth) acrylic acid; 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2 -Hydroxyhexyl (meth) acrylate, dimethylaminoethyl methacrylate, (meth) acrylamide, N-methylol (meth) acrylamide, glycidyl (meth) acrylate, maleic anhydride and the like.
  • unsaturated acids such as maleic acid, fumaric acid and (meth) acrylic acid
  • the acrylic adhesive may contain a cross-linking agent as necessary.
  • the crosslinking agent is a compound for thermally cross-linking with a functional group present in the copolymer to finally form a layer having a three-dimensional network structure.
  • the adhesion of the protective film to other layers in contact with the acrylic adhesive, the toughness of the protective film, solvent resistance, water resistance, and the like can be improved.
  • the crosslinking agent include isocyanate compounds, melamine compounds, urea compounds, epoxy compounds, amino compounds, amide compounds, aziridine compounds, oxazoline compounds, silane coupling agents, and modified products thereof. .
  • a crosslinking agent may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • an isocyanate compound and a modified product thereof is a compound having two or more isocyanate groups in one molecule, and is roughly classified into an aromatic compound and an aliphatic compound.
  • the aromatic isocyanate compound include tolylene diisocyanate, diphenylmethane diisocyanate, polymethylene polyphenyl polyisocyanate, naphthalene diisocyanate, tolidine diisocyanate, paraphenylene diisocyanate, and the like.
  • Examples of the aliphatic isocyanate compound include hexamethylene diisocyanate, isophorone diisocyanate, dicyclohexylmethane diisocyanate, hydrogenated xylylene diisocyanate, lysine diisocyanate, tetramethylxylene diisocyanate, and xylylene diisocyanate.
  • examples of modified products of these isocyanate compounds include biuret bodies, isocyanurate bodies, and trimethylolpropane adduct bodies of isocyanate compounds.
  • the acrylic adhesive may further contain a cross-linking catalyst such as dibutyltin laurate, for example, in order to promote the cross-linking reaction.
  • a cross-linking catalyst such as dibutyltin laurate
  • the acrylic adhesive may contain a tackifying polymer as necessary.
  • tackifying polymers include aromatic hydrocarbon polymers, aliphatic hydrocarbon polymers, terpene polymers, terpene phenol polymers, aromatic hydrocarbon modified terpene polymers, coumarone-indene polymers, styrene-based polymers
  • examples thereof include a polymer, a rosin polymer, a phenol polymer, and a xylene polymer.
  • an aliphatic hydrocarbon polymer such as low density polyethylene is preferable.
  • the specific type of tackifying polymer is appropriately selected from the viewpoints of compatibility with other polymers, the melting point of the resin, and the adhesive strength of the acrylic adhesive.
  • a tackifying polymer may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the amount of the tackifying polymer is preferably 5 parts by weight or more, preferably 200 parts by weight or less, more preferably 100 parts by weight or less with respect to 100 parts by weight of the acrylic adhesive.
  • the protective film can be prevented from floating or peeling off when it is bonded to the cyclic polyolefin film.
  • the feeding tension of the protective film can be suppressed to prevent wrinkles and scratches at the time of bonding with the cyclic polyolefin film, and to prevent bleeding out of the tackifying polymer.
  • the adhesive strength of the adhesive can be kept high.
  • the acrylic adhesive may contain additives such as a softening agent, an anti-aging agent, a filler, and a colorant (dye or pigment) as necessary.
  • An additive may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.
  • the method for preparing the laminate and the support-laminate composite is not particularly limited, and any method can be adopted.
  • an adhesive capable of forming a laser absorption layer is prepared, and the resin layer (R) and the support are used to bond the support, and the support is provided with a laminate on the support.
  • Laminate composites can be easily prepared.
  • the manufacturing method of the optical film of this invention includes the cutting process which irradiates a laser beam with respect to a laminated body, and cut
  • FIG. 1 is a side view showing an example of the positional relationship between a support-laminate composite and laser light in a cutting step in the method for producing an optical film of the present invention.
  • the support-laminate composite 100 includes a laminate 110 and a support 120, and the laminate 110 includes a resin layer (R) 111 and a laser absorption layer 112.
  • the laser absorption layer 112 functions as an adhesive layer, and bonds the resin layer (R) 111 and the support 120.
  • the support-laminate composite 100 is placed horizontally with its resin layer (R) 111 side surface facing up.
  • the laser beam irradiation apparatus 200 is installed above the support-laminate composite 100 and emits laser light from the laser beam irradiation apparatus 200 in the vertical downward direction indicated by the arrow A20.
  • the surface of the body composite 100 on the resin layer (R) 111 side is irradiated with laser light.
  • the actual cutting process is not limited to this, and the stacked body can be placed in an arbitrary direction, and on the other hand, laser light can be irradiated from an appropriate arbitrary direction.
  • the cutting step it is preferable to irradiate the resin layer (R) side of the support-laminate composite with laser light.
  • the laser light incident on the resin layer (R) sequentially passes through the resin layer (R) and the laser absorption layer, and further passes through the support if the support is light-transmitting.
  • the energy of the laser beam is sequentially absorbed by the resin layer (R) and the laser absorption layer.
  • the energy absorbed in the resin layer (R) is small, since the energy absorbed in the laser absorption layer is large thereafter, a lot of heat is generated in the laser absorption layer, and a part of the energy is absorbed in the resin layer. Conducted in (R).
  • the energy distribution of the laser beam in the cutting process is not particularly limited, and may be a Gaussian mode energy distribution emitted from a general laser light irradiation apparatus or a flat energy distribution. It is preferable that the energy distribution is flat.
  • a beam having a flat energy distribution is also referred to as a “top hat” shaped beam.
  • the energy distribution of the beam can be represented by a graph in which the horizontal axis represents the distance from the optical axis of the beam and the vertical axis represents the amount of energy at the distance.
  • FIG. 2 is a graph showing an example of an energy distribution for a laser beam having a flat energy distribution.
  • the horizontal axis in FIG. 2 indicates the distance from the optical axis of the laser light beam, with a certain azimuth angle being positive and the opposite azimuth angle being negative.
  • the vertical axis in FIG. Indicates the amount of energy.
  • the energy distribution is flat in the width indicated by the arrow A11.
  • Laser light that exhibits such a flat energy distribution in at least one orientation can be used in the cutting process.
  • a beam having a flat energy distribution in all azimuth angles can be used, and the energy distribution is a top hat shape in the long axis direction of the cross section of the beam, A beam having a Gaussian distribution in the minor axis direction can also be used.
  • FIG. 3 is a graph showing an example of an energy distribution for a beam of laser light of a Gaussian mode generally used conventionally.
  • the energy distribution has a shape that does not have a flat portion.
  • the variation in energy amount in the flat region is preferably ⁇ 10%, more preferably ⁇ 7%, even more than the average energy amount in the flat region. Preferably, it is within a range of ⁇ 6%.
  • a beam having such a flat energy distribution can be obtained by arranging a beam shaper in the path of a general beam emitted in a Gaussian mode or a mode close thereto and converting the energy distribution.
  • a beam shaper is a shaper that shapes an incident beam by refraction, diffraction, reflection, and a combination thereof, and redistributes the energy distribution in the beam. More specific examples of the beam shaper include known ones, for example, those described in Patent Documents 2 and 3.
  • As another example of the beam shaper there is a commercially available shaper (for example, a top hat module manufactured by Daiko Manufacturing Co., Ltd.) that converts a Gaussian beam into a beam having a flat energy distribution in at least one direction.
  • a laser device As the laser device used in the cutting process, various types of devices that can be used for film processing can be used.
  • An example of a laser device that can be used is a carbon dioxide laser device.
  • the carbon dioxide laser device is preferable because it is relatively inexpensive among various laser devices and can efficiently obtain a wavelength and output suitable for film processing.
  • the wavelength of the laser light emitted from the laser device in the cutting step can be 9 ⁇ m or more and 11 ⁇ m or less.
  • laser beams having wavelengths near 9.4 ⁇ m (9.1 to 9.7 ⁇ m) and 10.6 ⁇ m (10.1 to 11.0 ⁇ m) are stable when a carbon dioxide laser device is used as the laser device. Can be output. Therefore, when a laser beam having such a wavelength is employed, the production method of the present invention can be performed particularly well.
  • the output P of the laser beam is preferably 1 W or more, more preferably 5 W or more, further preferably 15 W or more, preferably 400 W or less, more preferably 350 W or less, still more preferably 300 W or less, even more preferably 250 W or less, Especially preferably, it is 120 W or less.
  • the laser beam may be a continuous laser beam or a pulsed laser beam.
  • pulsed laser light is preferable. By using pulsed laser light, processing can be performed while suppressing generation of heat.
  • the frequency of the laser beam is preferably 10 kHz or more, more preferably 15 kHz or more, particularly preferably 20 kHz or more, preferably 300 kHz or less, more preferably 200 kHz or less, even more preferably 150 kHz or less, Especially preferably, it is 80 kHz or less.
  • the range of the pulse width is preferably 10 nanoseconds or more, more preferably 12 nanoseconds or more, particularly preferably 15 nanoseconds or more, preferably 30 nanoseconds or less, more preferably 28 nanoseconds. 2 seconds or less, particularly preferably 25 nanoseconds or less.
  • the resin layer (R) is usually irradiated with a laser beam so that the laser beam scans the surface of the resin layer (R) along a desired line.
  • the resin layer (R) can be cut into a shape to be cut.
  • the laser beam irradiation device may be moved, the resin layer (R) may be moved, and the laser beam and the resin layer (R) may be moved. ) May be moved.
  • the scanning speed that is, the moving speed when the point where the laser beam hits the resin layer (R) moves on the surface of the resin layer (R) depends on conditions such as the output P of the laser beam and the thickness of the resin layer (R). Can be set appropriately.
  • the specific range of the scanning speed V is preferably 5 mm / s or more, more preferably 10 mm / s or more, particularly preferably 20 mm / s or more, preferably 4000 mm / s or less, more preferably 3000 mm / s or less, Still more preferably, it is 2000 mm / s or less, Most preferably, it is 1500 mm / s or less.
  • the scanning speed V By setting the scanning speed V to be equal to or higher than the lower limit value of the above range, the generated heat can be suppressed and a good cut surface can be obtained. Further, by setting the value to the upper limit value or less, it is possible to reduce the number of times of laser beam scanning and to perform efficient cutting.
  • the laser light irradiation is preferably performed so that the ratio P / V of the laser light output P (unit: W) and the scanning speed V (unit: mm / s) is in a specific range.
  • the value of P / V is 0.10 or more, preferably 0.15 or more, while 0.25 or less, preferably 0.20 or less.
  • the number of scans of the laser beam along the line may be one time or two or more times.
  • the time required for the cutting process can be shortened.
  • produces in the resin layer (R) by irradiation of the laser beam per time can be made small by setting it twice or more, the width
  • laser light that shows a flat energy distribution in only one direction
  • scanning the laser light in a direction perpendicular to the direction during the cutting process can result in a precisely controlled cutting surface. It is preferable because it can be obtained.
  • the optical film obtained by the manufacturing method of this invention can be set as arbitrary optical members, such as a polarizing plate.
  • this optical film may be used independently and may be used in combination with another arbitrary member.
  • the display device may be incorporated into a display device such as a liquid crystal display device, an organic electroluminescence display device, a plasma display device, an FED (field emission) display device, or an SED (surface electric field) display device.
  • an optical film of a film piece obtained by the method for producing an optical film of the present invention may be used as a protective film for a polarizer, and further bonded to another polarizer layer to constitute a polarizing plate.
  • a brightness enhancement film may be obtained by combining the obtained film piece as a retardation film and a circularly polarizing film.
  • Sample 1 was prepared by providing an adhesive layer having the same material and thickness as the adhesive layer used in each of the Examples and Comparative Examples on one surface of Sample 1. For these samples 1 and 2, the average absorptance was measured. Using NICOLET iS5 (Thermo Fisher Scientific) as a measuring device, the transmission method is used to measure with a detector DTGS KBr, resolution 4 cm ⁇ 1 , 16 times of integration, and a wavelength region of 9 ⁇ m to 11 ⁇ m. The average value of the absorptance was obtained to obtain the average absorptance.
  • NICOLET iS5 Thermo Fisher Scientific
  • the average absorption rate of the sample 1 was defined as an average absorptance A R.
  • the average absorption ratio A R of Examples and Comparative Examples were as shown in Table 1 and Table 2. On the other hand, it was confirmed that the average absorption rate A A was much higher than 0.07.
  • Example 1 (1-1. Cyclic olefin resin film) The reactor was replaced with nitrogen, tricyclo [4.3.0.1 2, 5] dec-3-ene (hereinafter referred to as "DCP”) and tetracyclo [4.4.0.1 2, 5. 1 7,10] dodeca-3-ene (hereinafter referred to as "TCD”) and tetracyclo [9.2.1.0 2,10.
  • DCP tricyclo [4.3.0.1 2, 5] dec-3-ene
  • TCD tetracyclo
  • MTF tetradeca-3,5,7,12-tetraene
  • the obtained ring-opening polymerization reaction liquid was transferred to a pressure-resistant hydrogenation reactor, and diatomaceous earth-supported nickel catalyst (manufactured by JGC Chemical Co., Ltd., product name “T8400RL”, nickel support rate 57%) 1.4 parts and cyclohexane 167 Part was added and reacted at 180 ° C. and hydrogen pressure 4.6 MPa for 6 hours.
  • This reaction solution was filtered under pressure at a pressure of 0.25 MPa using Radiolite # 500 as a filter bed (product name “Hundaback filter” manufactured by Ishikawajima-Harima Heavy Industries Co., Ltd.) to remove the hydrogenation catalyst, and a colorless transparent solution Got.
  • antioxidant per 100 parts of the hydrogenated product: pentaerythritol tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] (manufactured by Ciba Specialty Chemicals, The product name “Irganox 1010”) was added to the resulting solution and dissolved. Next, it is sequentially filtered through a Zeta Plus filter 30H (Cuneau filter, pore size 0.5 to 1 ⁇ m), and further filtered through another metal fiber filter (pore size 0.4 ⁇ m, manufactured by Nichidai Corp.). Minutes removed. In the solution after filtration, the hydrogenation rate of the ring-opening polymer hydrogenated product was 99.9%.
  • cyclohexane and other volatile components as solvents were removed from the solution at a temperature of 270 ° C. and a pressure of 1 kPa or less using a cylindrical concentrating dryer (manufactured by Hitachi, Ltd.).
  • the residue after removal of the volatile components was extruded into a strand form in a molten state from a die directly connected to a concentrator, and after cooling, pellets of a virgin material of a ring-opened polymer hydrogenated product were obtained.
  • the glass transition temperature of the pellets was 123 ° C., and the melt flow rate was 15.0.
  • the above pellets were heated and melted using the film melt extrusion molding machine to form a film, and a 13 ⁇ m thick cyclic olefin resin film was obtained.
  • the resin film obtained in (1-1) was bonded to one surface of a glass plate (thickness 0.7 mm) as a support using an adhesive.
  • an acrylic adhesive (trade name “CS9621” manufactured by Nitto Denko Corporation) was used.
  • This product is a double-sided pressure-sensitive adhesive sheet having an adhesive layer with a thickness of 25 ⁇ m provided between two release sheets. The release sheet is appropriately peeled off and the adhesive layer is transferred onto a support. Used. As a result, a support-laminate composite having a layer structure of (resin film layer) / (adhesive layer) / (glass plate) was obtained.
  • the resin film layer corresponds to the resin layer (R)
  • the adhesive layer corresponds to the laser absorption layer
  • the resin film layer and the adhesive layer correspond to the laminate.
  • the thickness T A of the adhesive layer is 25 [mu] m
  • the result is the thickness ratio T A / T R becomes 1.9.
  • a carbon dioxide gas laser beam having a wavelength of 9.4 ⁇ m is applied to the resin film side surface of the support-laminate composite obtained in (1-2) using a laser beam irradiation device (DIAMMOND E-250i (manufactured by Coherent)). Were vertically irradiated to cut the resin layer (R) to obtain an optical film including the cut resin layer (R) and the adhesive layer. The adjustment of the output P of the laser beam was 100W. At the time of irradiation, the laser beam was a pulsed laser beam that repeats irradiation and stop at a frequency of 20 kHz.
  • DIAMMOND E-250i manufactured by Coherent
  • a laser beam which is a parallel light beam having a Gaussian distribution irradiated from an irradiation device, is shaped by a beam shaper equipped with a DOE (diffractive optical element), so that the energy distribution of the laser beam is a surface perpendicular to the optical axis. It was made into a substantially uniform flat shape in the direction.
  • the scanning resin layer (R) was cut by moving the irradiation position of the laser beam on the surface of the resin layer (R).
  • the scanning speed V was 500 mm / s and the number of scans was one.
  • Examples 2 to 4 and Comparative Examples 1 to 4 The thickness of the cyclic olefin resin film was changed to the values shown in Table 1 and Table 2 by changing the melt extrusion molding conditions of the film in (1-1). Furthermore, the thickness of the adhesive layer was changed to the values shown in Table 1.
  • the adhesive layer having a thickness of 50 ⁇ m was formed by stacking two adhesive layers used in Example 1. Except for these matters, in the same manner as in Example 1, the cutting process was performed to obtain an optical film, and the state of cutting by the cutting process was observed and evaluated.
  • Example 5 (5-1. Preparation of acrylic resin solution) A reactor equipped with a thermometer, a stirrer, a dropping funnel and a reflux condenser was charged with 28 parts of methyl ethyl ketone and 8 parts of toluene, and the temperature was raised while stirring. After reaching 90 ° C., 70 parts of benzyl acrylate, 2-hydroxy A mixture in which 0.16 part of azobisisobutyronitrile (AIBN) as a polymerization initiator was dissolved in 15 parts of ethyl acrylate and 15 parts of butyl acrylate was dropped over 2 hours.
  • AIBN azobisisobutyronitrile
  • polymerization was carried out for 7 hours while successively adding a polymerization catalyst solution in which 0.06 part of AIBN was dissolved in 2 parts of ethyl acetate, and an acrylic resin solution (solid content concentration 65.1%, viscosity 1300 mPa ⁇ s (25 ° C), a weight average molecular weight of 105,000, a number average molecular weight of 36,000, a dispersity of 2.92, and a glass transition temperature of -8.3 ° C.
  • a polyester release sheet is bonded to the adhesive layer side surface of the multilayer, and the layer structure of (release sheet) / (adhesive layer) / (release sheet) is 3 layers.
  • a multilayer was obtained. This was aged at 40 ° C. for 10 days to obtain a double-sided PSA sheet.
  • Example 6 The film extrusion extrusion conditions in (1-1) were changed, and the thickness of the cyclic olefin resin film was changed to the values shown in Table 1. Furthermore, the laser beam used in the cutting process was changed to a carbon dioxide laser beam having a wavelength of 10.6 ⁇ m. Except for these matters, in the same manner as in Example 1, the cutting process was performed to obtain an optical film, and the state of cutting by the cutting process was observed and evaluated.
  • Support-laminate composite 110 Laminate 111: Resin layer (R) 112: Laser absorption layer 120: Support 200: Laser light irradiation device

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Laser Beam Processing (AREA)
  • Laminated Bodies (AREA)
  • Polarising Elements (AREA)

Abstract

樹脂層、及び前記樹脂層の片面に設けられたレーザー吸収層を有する積層体に対して、レーザー光を照射し、前記樹脂層を切断する切断工程を含む、光学フィルムの製造方法であって、前記レーザー吸収層による9μm以上11μm以下の波長領域の光の平均吸収率Aは、前記樹脂層による9μm以上11μm以下の波長領域の光の平均吸収率Aより大きく、前記樹脂層の厚みTに対する、前記レーザー吸収層の厚みTの比率T/Tが、0.8以上である、光学フィルムの製造方法。

Description

光学フィルムの製造方法
 本発明は、光学フィルムの製造方法に関する。
 液晶表示装置及び有機エレクトロルミネッセンス表示装置等の表示装置には、樹脂によって形成された光学フィルムが設けられることがある。このような光学フィルムは、通常、最終的な製品としてのフィルム片の寸法よりも大きい寸法のフィルムとして形成される。そして、このようなフィルムは、表示装置の形状に適合した所望の形状に切断され、表示装置における光学フィルムとして用いられる。
 フィルムを所望の形状に切り出す方法としては、例えば、ナイフを用いた機械的切断方法、及び、レーザー光を用いたレーザー切断方法が挙げられる。これらの中でも、レーザー切断方法は、切断カスが発生し難いことから、好ましい。
 レーザーによる樹脂フィルムの切断は、多くの場合、樹脂フィルムを支持体の上に固定して行われる。例えば、ガラス製の支持体及びその上に設けられた樹脂層等を有する積層体を調製し、かかる積層体の樹脂層をレーザー光により切断し、所望の形状の光学フィルムとすることが行われている(例えば特許文献1)。またそのような切断に用いるレーザー光として、種々の態様のものが知られている(例えば特許文献2及び3)。支持体は、光学フィルムから剥離して、次の製造に再び利用することもでき、光学フィルムと共に表示装置の構成要素の一部として表示装置に組み込むこともできる。
特開2011-53673号公報 特開2004-42140号公報 特表2012-521890号公報(対応外国公報:米国特許第8350187号明細書)
 樹脂層を、支持体によって支持された状態でレーザー切断方法により切断する場合、樹脂層を、支持体の破損を伴わずに切断することが求められる。レーザー光の出力が過大であると支持体が破損する可能性があるので、レーザー光の出力は小さいことが求められる。
 樹脂層の中には、レーザーに対する感受性が低いものがある。例えば、環状オレフィン重合体を含む樹脂は、透明性、寸法安定性、位相差発現性、低吸湿性、及び低温での延伸性等の性能に優れ、光学部材として適している。その反面、環状オレフィン重合体を含む樹脂は、樹脂層の切断に多く用いられるレーザー光に対する感受性が低い。そのような樹脂層をレーザー光を用いて切断しようとする場合、低出力のレーザー光では切断が不十分となり得、一方切断が十分となるようレーザー光の出力を高めると、支持体の破損を招き易かった。
 従って、本発明の目的は、樹脂層がレーザーに対する感受性が低いものである場合であっても、支持体にダメージを与えることなく、円滑に切断を行なうことができる、光学フィルムの製造方法を提供することにある。
 本発明者は前記の課題を解決するべく検討した結果、レーザー切断方法において、樹脂層を、特定のレーザー吸収層と組み合わせることにより支持体にダメージを与えることなく、樹脂層を良好に切断しうることを見出し、本発明を完成した。
 すなわち、本発明によれば、下記〔1〕~〔8〕が提供される。
 〔1〕 樹脂層、及び前記樹脂層の片面に設けられたレーザー吸収層を有する積層体に対して、レーザー光を照射し、前記樹脂層を切断する切断工程を含む、光学フィルムの製造方法であって、
 前記レーザー吸収層による9μm以上11μm以下の波長領域の光の平均吸収率Aは、前記樹脂層による9μm以上11μm以下の波長領域の光の平均吸収率Aより大きく、
 前記樹脂層の厚みTに対する、前記レーザー吸収層の厚みTの比率T/Tが、0.8以上である、光学フィルムの製造方法。
 〔2〕 前記レーザー吸収層による前記平均吸収率Aが、0.07以上である、〔1〕に記載の光学フィルムの製造方法。
 〔3〕 前記レーザー光の照射を、前記レーザー光のビームのエネルギー分布が平坦状となるように行う、〔1〕又は〔2〕に記載の光学フィルムの製造方法。
 〔4〕 前記樹脂層が、環状オレフィン重合体を含む熱可塑性樹脂の層である、〔1〕~〔3〕のいずれか1項に記載の光学フィルムの製造方法。
 〔5〕 前記レーザー吸収層が、エステル化合物を含む樹脂の層である、〔1〕~〔4〕のいずれか1項に記載の光学フィルムの製造方法。
 〔6〕 前記エステル化合物を含む樹脂が、アクリル系接着剤である、〔5〕に記載の光学フィルムの製造方法。
 〔7〕 前記レーザー光の波長が9μm以上11μm以下である、〔1〕~〔6〕のいずれか1項に記載の光学フィルムの製造方法。
 〔8〕 前記切断工程が、支持体、前記レーザー吸収層及び前記樹脂層をこの順に備える支持体-積層体複合物を形成することを含み、
 前記レーザー光の照射が、前記支持体-積層体複合物の、前記樹脂層側に、前記レーザー光を照射することを含む、〔1〕~〔7〕のいずれか1項に記載の光学フィルムの製造方法。
 本発明の光学フィルムの製造方法によれば、樹脂層がレーザーに対する感受性が低いものである場合であっても、支持体にダメージを与えることなく、樹脂層の切断を円滑に行なうことができ、それにより、高品質の光学フィルムを効率的に製造することができる。
図1は、本発明の光学フィルムの製造方法における切断工程での、支持体-積層体複合物及びレーザー光の位置関係の一例を示す側面図である。 図2は、平坦状のエネルギー分布を有するあるレーザー光のビームについての、エネルギー分布の一例を示すグラフである。 図3は、従来一般的に用いられるガウシアンモードのレーザー光のビームについてのエネルギー分布の一例を示すグラフである。
 以下、本発明について実施形態および例示物等を示して詳細に説明するが、本発明は以下に示す実施形態および例示物等に限定されるものではなく、本発明の請求の範囲およびその均等の範囲を逸脱しない範囲において任意に変更して実施しうる。
 本願において、工程において使用されるビームや部材の方向が「垂直」又は「水平」とは、特に断らない限り、本発明の効果を損ねない範囲内での誤差を含んでいてもよい。かかる誤差は、例えば、通常±5°、好ましくは±2°、より好ましくは±1°の範囲内の誤差としうる。
 本願において、「(メタ)アクリル」「(メタ)アクリレート」といった表現は、アクリル、メタクリル又はこれらの組み合わせを意味する。例えば、(メタ)アクリレートとは、アクリレート、メタクリレート、及びこれらの組み合わせのいずれかであることを意味する。また例えば、(メタ)アクリルアミドとは、アクリルアミド、メタクリルアミド、及びこれらの組み合わせのいずれかであることを意味する。
 〔1.光学フィルムの製造方法:概要〕
 本発明の光学フィルムの製造方法は、特定の積層体に対して、レーザー光を照射し、積層体の樹脂層を切断する切断工程を含む。
 〔2.積層体、及び支持体-積層体複合物〕
 本発明の光学フィルムの製造方法に用いる積層体は、樹脂層、及び樹脂層の片面に設けられたレーザー吸収層を有する。以下の説明においては、この特定の樹脂層を、一般的な樹脂の層全般との区別のため特に「樹脂層(R)」という場合がある。
 好ましい例において、積層体は、支持体との複合物として、切断工程に供される。具体的には、支持体、レーザー吸収層及び樹脂層(R)をこの順に設けてなる支持体-積層体複合物を、切断工程に供しうる。
 〔2.1.支持体〕
 支持体を構成する材料の例としては、ガラス、樹脂及び金属が挙げられる。ガラスの具体的な例としては、ソーダガラス、鉛ガラス、ホウケイ酸ガラス、無アルカリガラス、石英ガラス、及び化学強化ガラスが挙げられる。また、樹脂の例としては、ポリイミド樹脂、ポリエチレンナフタレート樹脂等の、耐熱性を有しうる樹脂が挙げられる。金属の例としては、アルミニウムやステンレス鋼等が挙げられる。
 支持体の厚みは、特に限定されず、本発明の方法を実施するのに適した厚みを適宜選択しうる。例えばガラスの支持体の場合、具体的には、好ましくは0.05mm以上、より好ましくは0.3mm以上、一方好ましくは1.3mm以下、より好ましくは1.1mm以下としうる。樹脂の支持体の場合、具体的には、好ましくは0.005mm以上、より好ましくは0.01mm以上、一方好ましくは0.2mm以下、より好ましくは0.1mm以下としうる。金属の支持体の場合、具体的には、好ましくは0.005mm以上、より好ましくは0.01mm以上、一方好ましくは2.0mm以下、より好ましくは1.0mm以下としうる。
 〔2.2.樹脂層(R)〕
 樹脂層(R)は、樹脂を主成分とし、本発明の光学フィルムの製造方法の切断工程において、切断の対象となる層である。樹脂層(R)は、単独の層からなってもよく、複数の層からなってもよい。好ましい態様において、樹脂層(R)は、透明な樹脂からなる透明樹脂層のみからなるか、又はかかる透明樹脂層及び任意の層を含む複数の層からなるものとしうる。
 〔2.2.1.透明樹脂層〕
 透明樹脂層を構成する樹脂としては、光学フィルムの材料として用いうる任意の樹脂を用いうる。かかる樹脂としては、透明性、機械的強度、熱安定性、水分遮蔽性等の所望の性能に優れる樹脂を適宜選択しうる。そのような樹脂の例としては、トリアセチルセルロース等のアセテート樹脂、ポリエステル樹脂、ポリエーテルスルホン樹脂、ポリカーボネート樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリオレフィン樹脂、環状オレフィン樹脂、(メタ)アクリル樹脂等が挙げられる。中でも、複屈折が小さい点でアセテート樹脂、環状オレフィン樹脂、(メタ)アクリル樹脂が好ましく、透明性、低吸湿性、寸法安定性、軽量性などの観点から、環状オレフィン樹脂が特に好ましい。
 〔2.2.2.オレフィン樹脂層〕
 好ましい態様において、樹脂層(R)が有する透明樹脂層のうちの1層以上は、オレフィン樹脂層である。オレフィン樹脂層を構成するオレフィン樹脂は、環状オレフィン重合体を含む熱可塑性樹脂である。オレフィン樹脂層は、透明性、低吸湿性、寸法安定性、軽量性等の種々の観点から、偏光子保護層等の光学用途において有用である。しかしながら、オレフィン樹脂は、レーザー光の吸収が少ないため、支持体にダメージを与えることなくレーザー光によるオレフィン樹脂層の良好な切断を行うことが困難である。そこで、オレフィン樹脂層を有する樹脂層(R)を本発明の製造方法に供することにより、オレフィン樹脂層の有用な性能を享受しながら、良好なレーザー光による切断を円滑に行うことができる。
 〔2.2.3.環状オレフィン重合体〕
 環状オレフィン重合体は、その重合体の構造単位が脂環式構造を有する重合体である。このような環状オレフィン重合体を含む樹脂は、通常、透明性、寸法安定性、位相差発現性、及び低温での成形の容易性等の性能に優れる。
 環状オレフィン重合体は、主鎖に脂環式構造を有する重合体、側鎖に脂環式構造を有する重合体、主鎖及び側鎖に脂環式構造を有する重合体、並びに、これらの2以上の任意の比率の混合物としうる。中でも、機械的強度及び耐熱性の観点から、主鎖に脂環式構造を有する重合体が好ましい。
 脂環式構造の例としては、飽和脂環式炭化水素(シクロアルカン)構造、及び不飽和脂環式炭化水素(シクロアルケン、シクロアルキン)構造が挙げられる。中でも、機械強度及び耐熱性の観点から、シクロアルカン構造及びシクロアルケン構造が好ましく、中でもシクロアルカン構造が特に好ましい。
 脂環式構造を構成する炭素原子数は、一つの脂環式構造あたり、好ましくは4個以上、より好ましくは5個以上であり、好ましくは30個以下、より好ましくは20個以下、特に好ましくは15個以下である。脂環式構造を構成する炭素原子数がこの範囲であると、環状オレフィン樹脂の機械強度、耐熱性及び成形性が高度にバランスされる。
 環状オレフィン重合体において、脂環式構造を有する構造単位の割合は、得られる製品の使用目的に応じて選択しうる。環状オレフィン重合体における脂環式構造を有する構造単位の割合は、好ましくは55重量%以上、さらに好ましくは70重量%以上、特に好ましくは90重量%以上である。環状オレフィン重合体における脂環式構造を有する構造単位の割合がこの範囲にあると、環状オレフィン樹脂の透明性及び耐熱性が良好となる。
 環状オレフィン重合体の中でも、シクロオレフィン重合体が好ましい。シクロオレフィン重合体とは、シクロオレフィン単量体を重合して得られる構造を有する重合体である。また、シクロオレフィン単量体は、炭素原子で形成される環構造を有し、かつ該環構造中に重合性の炭素-炭素二重結合を有する化合物である。重合性の炭素-炭素二重結合の例としては、開環重合等の重合が可能な炭素-炭素二重結合が挙げられる。また、シクロオレフィン単量体の環構造の例としては、単環、多環、縮合多環、橋かけ環及びこれらを組み合わせた多環等が挙げられる。中でも、得られる重合体の誘電特性及び耐熱性等の特性を高度にバランスさせる観点から、多環のシクロオレフィン単量体が好ましい。
 上記のシクロオレフィン重合体の中でも好ましいものとしては、ノルボルネン系重合体、単環の環状オレフィン系重合体、環状共役ジエン系重合体、及び、これらの水素化物等が挙げられる。これらの中でも、ノルボルネン系重合体は、成形性が良好なため、特に好適である。
 ノルボルネン系重合体の例としては、ノルボルネン構造を有する単量体の開環重合体及びその水素化物;ノルボルネン構造を有する単量体の付加重合体及びその水素化物が挙げられる。また、ノルボルネン構造を有する単量体の開環重合体の例としては、ノルボルネン構造を有する1種類の単量体の開環単独重合体、ノルボルネン構造を有する2種類以上の単量体の開環共重合体、並びに、ノルボルネン構造を有する単量体及びこれと共重合しうる他の単量体との開環共重合体が挙げられる。さらに、ノルボルネン構造を有する単量体の付加重合体の例としては、ノルボルネン構造を有する1種類の単量体の付加単独重合体、ノルボルネン構造を有する2種類以上の単量体の付加共重合体、並びに、ノルボルネン構造を有する単量体及びこれと共重合しうる他の単量体との付加共重合体が挙げられる。これらの中で、ノルボルネン構造を有する単量体の開環重合体の水素化物は、成形性、耐熱性、低吸湿性、寸法安定性、軽量性などの観点から、特に好適である。
 ノルボルネン構造を有する単量体の例としては、ビシクロ[2.2.1]ヘプト-2-エン(慣用名:ノルボルネン)、トリシクロ[4.3.0.12,5]デカ-3,7-ジエン(慣用名:ジシクロペンタジエン)、7,8-ベンゾトリシクロ[4.3.0.12,5]デカ-3-エン(慣用名:メタノテトラヒドロフルオレン)、テトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン(慣用名:テトラシクロドデセン)、およびこれらの化合物の誘導体(例えば、環に置換基を有するもの)を挙げることができる。ここで、置換基の例としては、アルキル基、アルキレン基、及び極性基を挙げることができる。また、これらの置換基は、同一または相異なって、複数個が環に結合していてもよい。ノルボルネン構造を有する単量体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 極性基の例としては、ヘテロ原子、及びヘテロ原子を有する原子団が挙げられる。ヘテロ原子の例としては、酸素原子、窒素原子、硫黄原子、ケイ素原子、及びハロゲン原子が挙げられる。極性基の具体例としては、カルボキシル基、カルボニルオキシカルボニル基、エポキシ基、ヒドロキシル基、オキシ基、エステル基、シラノール基、シリル基、アミノ基、アミド基、イミド基、ニトリル基、及びスルホン酸基が挙げられる。
 ノルボルネン構造を有する単量体と開環共重合可能な単量体の例としては、シクロヘキセン、シクロヘプテン、シクロオクテンなどのモノ環状オレフィン類およびその誘導体;シクロヘキサジエン、シクロヘプタジエンなどの環状共役ジエンおよびその誘導体が挙げられる。ノルボルネン構造を有する単量体と開環共重合可能な単量体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 ノルボルネン構造を有する単量体の開環重合体は、例えば、単量体を開環重合触媒の存在下に重合又は共重合することにより製造しうる。
 ノルボルネン構造を有する単量体と付加共重合可能な単量体の例としては、エチレン、プロピレン、1-ブテンなどの炭素原子数2~20のα-オレフィンおよびこれらの誘導体;シクロブテン、シクロペンテン、シクロヘキセンなどのシクロオレフィンおよびこれらの誘導体;並びに1,4-ヘキサジエン、4-メチル-1,4-ヘキサジエン、5-メチル-1,4-ヘキサジエンなどの非共役ジエンが挙げられる。これらの中でも、α-オレフィンが好ましく、エチレンがより好ましい。また、ノルボルネン構造を有する単量体と付加共重合可能な単量体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 ノルボルネン構造を有する単量体の付加重合体は、例えば、単量体を付加重合触媒の存在下に重合又は共重合することにより製造しうる。
 上述した開環重合体及び付加重合体の水素添加物は、例えば、これらの開環重合体及び付加重合体の溶液において、炭素-炭素不飽和結合を、好ましくは90%以上水素添加することによって製造しうる。水素添加は、ニッケル、パラジウム等の遷移金属を含む水素添加触媒の存在下で行いうる。
 ノルボルネン系重合体の中でも、構造単位として、X:ビシクロ[3.3.0]オクタン-2,4-ジイル-エチレン構造と、Y:トリシクロ[4.3.0.12,5]デカン-7,9-ジイル-エチレン構造とを有し、これらの構造単位の量が、ノルボルネン系重合体の構造単位全体に対して90重量%以上であり、かつ、Xの割合とYの割合との比が、X:Yの重量比で100:0~40:60であるものが好ましい。このような重合体を用いることにより、当該ノルボルネン系重合体を含むオレフィン樹脂層を、長期的に寸法変化がなく、光学特性の安定性に優れるものにできる。
 単環の環状オレフィン系重合体の例としては、シクロヘキセン、シクロヘプテン、シクロオクテン等の単環を有する環状オレフィン系モノマーの付加重合体を挙げることができる。
 環状共役ジエン系重合体の例としては、1,3-ブタジエン、イソプレン、クロロプレン等の共役ジエン系モノマーの付加重合体を環化反応して得られる重合体;シクロペンタジエン、シクロヘキサジエン等の環状共役ジエン系モノマーの1,2-または1,4-付加重合体;およびこれらの水素化物を挙げることができる。
 さらに、上述した環状オレフィン重合体は、当該環状オレフィン重合体の分子が極性基を含まないことが好ましい。分子中に極性基を含まない環状オレフィン重合体は、一般に、炭酸ガスレーザー光を特に吸収し難い傾向がある。しかし、本発明の製造方法によれば、このような分子中に極性基を含まない環状オレフィン重合体を含む樹脂層(R)をも、レーザー光により容易に切断できる。また、分子中に極性基を含まない環状オレフィン重合体を用いることにより、得られる偏光板における透明樹脂層の吸水性を低減できる。
 環状オレフィン重合体の重量平均分子量(Mw)は、得られる製品の使用目的に応じて適宜選定でき、好ましくは10,000以上、より好ましくは15,000以上、特に好ましくは20,000以上であり、好ましくは100,000以下、より好ましくは80,000以下、特に好ましくは50,000以下である。重量平均分子量がこのような範囲にあるときに、得られる製品中の透明樹脂層の機械的強度および成型加工性が高度にバランスされる。ここで、前記の重量平均分子量は、溶媒としてシクロヘキサンを用いて(但し、試料がシクロヘキサンに溶解しない場合にはトルエンを用いてもよい)ゲル・パーミエーション・クロマトグラフィーで測定したポリイソプレン又はポリスチレン換算の重量平均分子量である。
 環状オレフィン重合体の分子量分布(重量平均分子量(Mw)/数平均分子量(Mn))は、好ましくは1.2以上、より好ましくは1.5以上、特に好ましくは1.8以上であり、好ましくは3.5以下、より好ましくは3.0以下、特に好ましくは2.7以下である。分子量分布を前記下限値以上にすることにより、重合体の生産性を高め、製造コストを抑制できる。また、上限値以下にすることにより、低分子成分の量が小さくなるので、高温曝露時の緩和を抑制して、透明樹脂層の安定性を高めることができる。
 オレフィン樹脂層における環状オレフィン重合体の割合は、好ましくは90重量%以上、より好ましくは92重量%以上、特に好ましくは95重量%以上であり、好ましくは99.9重量%以下、より好ましくは99重量%以下、特に好ましくは98重量%以下である。環状オレフィン重合体の割合を前記範囲の下限値以上にすることにより、透明樹脂層の吸水性を低減できる。また、上限値以下にすることにより、9μm~11μmの波長の光の吸収率を高め、炭酸ガスレーザー光で切断しやすくすることができる。
 オレフィン樹脂層は、環状オレフィン重合体に加えて、更に任意の成分を含みうる。任意の成分としては、例えば、レーザー光に対する感受性を高めるためのエステル化合物、顔料、染料等の着色剤;蛍光増白剤;分散剤;熱安定剤;光安定剤;紫外線吸収剤;帯電防止剤;酸化防止剤;微粒子;界面活性剤等の添加剤が挙げられる。これらの成分は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 オレフィン樹脂層を形成する環状オレフィン樹脂のガラス転移温度は、好ましくは100℃以上、より好ましくは110℃以上、特に好ましくは120℃以上であり、好ましくは190℃以下、より好ましくは180℃以下、特に好ましくは170℃以下である。ガラス転移温度が前記範囲内であることにより、耐久性に優れる透明樹脂層を容易に製造することができる。また、上限値以下にすることにより、成形を容易に行える。
 〔2.2.4.透明樹脂層の厚み、性質等〕
 透明樹脂層の厚みTは、好ましくは1μm以上、より好ましくは5μm以上、特に好ましくは10μm以上であり、また、好ましくは100μm以下、より好ましくは50μm以下、特に好ましくは30μm以下である。透明樹脂層の厚みを前記範囲の下限値以上にすることにより、透明樹脂層に、炭酸ガスレーザー光を効率良く吸収できる性質を付与することができる。また、上限値以下にすることにより、透明樹脂層のヘイズを低くできるので、透明樹脂層の透明性を良好にすることができる。
 透明樹脂層が「透明」であるとは、偏光板に用いるのに適した程度の光線透過率を有する意味である。本発明においては、樹脂層(R)における1層以上の透明樹脂層全体として、80%以上の全光線透過率を有するものとすることができる。
 〔2.3.レーザー吸収層〕
 レーザー吸収層は、特定の波長の光の吸収率が、樹脂層の吸収率より大きい層である。即ち、レーザー吸収層による9μm以上11μm以下の波長領域の光の平均吸収率Aは、樹脂層による9μm以上11μm以下の波長領域の光の平均吸収率Aより大きい。平均吸収率AとAとの差A-Aは、好ましくは0.02以上、より好ましくは0.03以上である。
 本願において、ある層の光の吸収率とは、当該層に入射した光が当該層を通過して出射した場合における、入射した光の強度に対する、当該層を通過することにより減衰した強度の割合である。本願では、当該割合は、入射した光の強度を1とした相対値で表す。平均吸収率は、例えば測定装置としてNICOLET iS5(サーモフィッシャサイエンティフィック社)を用いて、透過法にて、検出器DTGS KBr、分解能4cm-1、積算回数16回にて測定を行い、9μm以上11μm以下の波長領域の吸収率の平均値を求めることにより得られる。
 レーザー吸収層の平均吸収率Aは、ある程度以上高い値であることが好ましい。具体的には、平均吸収率は好ましくは0.07以上、より好ましくは0.1以上としうる。レーザー吸収層の平均吸収率Aの上限は特に限定されないが、例えば4.0以下としうる。一方、樹脂層(R)の平均吸収率Aは、例えば0.02~0.05としうる。本発明の製造方法では、樹脂層(R)の平均吸収率Aがこのように低い値であっても、円滑な切断を行うことができる。
 レーザー吸収層が、上に述べた吸収率を有することにより、切断工程において、樹脂層(R)の切断を円滑に行うことができる。具体的には、レーザー吸収層がレーザーのエネルギーを吸収することにより熱を生じ、かかる熱が樹脂層(R)に伝達することにより、樹脂層(R)の切断が促進される。
 レーザー吸収層は、樹脂層の厚みに対して特定の比率の厚みを有する。即ち、樹脂層の厚みTに対する、レーザー吸収層の厚みTの比率T/Tは、0.8以上である。比率T/Tは、好ましくは0.9以上、より好ましくは1.0以上である。一方比率T/Tの上限は特に限定されないが、50以下としうる。比率T/Tが前記下限以上であることにより、レーザー吸収層が十分な熱を発生し、樹脂層(R)の切断を十分に促進することができる。一方、比率T/Tが前記上限以下であることにより、樹脂層(R)の貼合及び剥離を円滑に行うことができる。
 また、良好な接着力及び切断を促進する能力を賦与する観点から、レーザー吸収層の厚みTは、特定の範囲内であることが好ましい。具体的にはTは好ましくは10μm以上、より好ましくは20μm以上であり、一方好ましくは50μm以下、より好ましくは40μm以下である。
 好ましくは、レーザー吸収層は、エステル化合物を含む樹脂の層である。エステル化合物とは、分子中にエステル結合を有する化合物である。エステル化合物を含むことにより、レーザー吸収層は、9μm以上11μm以下の波長領域のレーザー光のエネルギーを効率的に吸収することができる。
 好ましくは、レーザー吸収層は、接着剤層である。レーザー吸収層が接着剤層であることにより、支持体-積層体複合物を、容易に形成することができる。
 より好ましくは、レーザー吸収層におけるエステル化合物を含む樹脂は、アクリル系接着剤である。アクリル系接着剤は、アクリル系重合体を含む接着剤である。アクリル系重合体の例としては、アクリル系単量体の重合体、及びアクリル系単量体及びその他の任意の単量体の共重合体が挙げられる。
 アクリル系単量体の例としては、アルキル(メタ)アクリレート類、アルコキシアルキル(メタ)アクリレート類、(メタ)アクリルアミド類、及びこれらの組み合わせが挙げられる。アルキル(メタ)アクリレート類の例としては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、イソブチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、オクチル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、及びこれらの組み合わせが挙げられる。
 アルコキシアルキル(メタ)アクリレート類の例としては、メトキシエチル(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、及びこれらの組み合わせが挙げられる。
 (メタ)アクリルアミド類の例としては、シクロヘキシル(メタ)アクリレート、フェニル(メタ)アクリレート、ベンジル(メタ)アクリレート、ビニルアセテート、(メタ)アクリルアミド、N-メチロール(メタ)アクリルアミド、及びこれらの組み合わせが挙げられる。
 アクリル系重合体は、上に述べたアクリル系単量体と、官能基を有するアクリル系単量体との共重合体であってもよい。官能基を有するアクリル系単量体の例としては、マレイン酸、フマル酸、(メタ)アクリル酸等の不飽和酸類;2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシヘキシル(メタ)アクリレート、ジメチルアミノエチルメタクリレート、(メタ)アクリルアミド、N-メチロール(メタ)アクリルアミド、グリシジル(メタ)アクリレート、無水マレイン酸などを挙げることができる。官能基を有するアクリル系単量体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 アクリル系接着剤は、必要に応じて架橋剤を含みうる。架橋剤は、共重合体に存在する官能基と熱架橋反応し、最終的には三次元網状構造を有する層を形成するための化合物である。架橋剤を含ませることにより、保護フィルムにおいてアクリル系接着剤と接する他の層との密着性、保護フィルムの強靱性、耐溶剤性、耐水性等を向上させることができる。架橋剤の例としては、イソシアネート系化合物、メラミン系化合物、尿素系化合物、エポキシ系化合物、アミノ系化合物、アミド系化合物、アジリジン化合物、オキサゾリン化合物、シランカップリング剤、及びそれらの変性体が挙げられる。架橋剤は1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 接着剤層の架橋性及び強靱性等の観点から、架橋剤としては、イソシアネート系化合物及びその変性体を使用することが好ましい。イソシアネート系化合物とは、1分子中にイソシアネート基を2個以上有する化合物であり、芳香族系と脂肪族系の化合物に大別される。芳香族系のイソシアネート系化合物としては、例えば、トリレンジイソシアネート、ジフェニルメタンジイソシアネート、ポリメチレンポリフェニルポリイソシアネート、ナフタリンジイソシアネート、トリジンジイソシアネート、パラフェニレンジイソシアネート等が挙げられる。また、脂肪族系のイソシアネート系化合物としては、例えば、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、水添キシリレンジイソシアネート、リジンジイソシアネート、テトラメチルキシレンジイソシアネート、キシリレンジイソシアネート等が挙げられる。さらに、これらのイソシアネート系化合物の変性体としては、例えば、イソシアネート系化合物のビゥレット体、イソシアヌレート体、トリメチロールプロパンアダクト体等が挙げられる。
 アクリル系接着剤が架橋剤を含む場合、アクリル系接着剤はさらに、架橋反応を促進させるために、例えば、ジブチルスズラウレート等の架橋触媒を含みうる。
 アクリル系接着剤は、必要に応じて粘着付与性重合体を含みうる。粘着付与性重合体の例としては、芳香族炭化水素重合体、脂肪族炭化水素重合体、テルペン重合体、テルペンフェノール重合体、芳香族炭化水素変性テルペン重合体、クマロン・インデン重合体、スチレン系重合体、ロジン系重合体、フェノール系重合体、キシレン重合体等が挙げられ、中でも低密度ポリエチレン等の脂肪族炭化水素重合体が好ましい。ただし、具体的な粘着付与性重合体の種類は、他の重合体との相溶性、樹脂の融点、及びアクリル系接着剤の粘着力の点から、適宜選択される。また、粘着付与性重合体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 粘着付与性重合体の量は、アクリル系接着剤100重量部に対して、好ましくは5重量部以上であり、好ましくは200重量部以下、より好ましくは100重量部以下である。粘着付与性重合体の量を前記範囲の下限値以上とすることにより環状ポリオレフィンフィルムと貼り合わせた場合に保護フィルムが浮いたり剥がれたりしないようにできる。また、上限値以下とすることにより、保護フィルムの繰り出し張力を抑制して、環状ポリオレフィンフィルムとの貼り合わせの際のシワ及び傷を防止したり、粘着付与性重合体のブリードアウトを防いでアクリル系接着剤の粘着力を高く維持したりできる。
 アクリル系接着剤は、必要に応じて、例えば軟化剤、老化防止剤、充填剤、着色剤(染料又は顔料など)などの添加剤を含みうる。添加剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 〔2.4.積層体及び支持体-積層体複合物の調製方法〕
 積層体、及び支持体-積層体複合物を調製する方法は特に限定されず、任意の方法を採用しうる。好ましい例において、レーザー吸収層を形成しうる接着剤を用意し、これを用いて樹脂層(R)と支持体とを貼合することにより、支持体上に積層体が設けられた支持体-積層体複合物を容易に調製しうる。
 〔3.切断工程〕
 本発明の光学フィルムの製造方法は、積層体に対してレーザー光を照射し、積層体の樹脂層(R)を切断する切断工程を含む。
 本発明における切断工程を、図面を参照して説明する。図1は、本発明の光学フィルムの製造方法における切断工程での、支持体-積層体複合物及びレーザー光の位置関係の一例を示す側面図である。この例では、支持体-積層体複合物100は、積層体110及び支持体120を含み、積層体110は樹脂層(R)111及びレーザー吸収層112を含む。レーザー吸収層112は、接着剤層として機能し、樹脂層(R)111と支持体120とを貼合している。
 この例では、支持体-積層体複合物100は、その樹脂層(R)111側の面を上側にして水平に載置される。レーザー光照射装置200は、支持体-積層体複合物100の上方に設置され、レーザー光照射装置200から、矢印A20で示す垂直下方の方向にレーザー光を出射し、それにより、支持体-積層体複合物100の樹脂層(R)111側の面にレーザー光を照射する。但し、実際の切断工程はこれに限られず、積層体を任意の向きに載置し、これに対して、レーザー光を、適切な任意の方向から照射して実施しうる。
 切断工程においては、図1の例に示す通り、支持体-積層体複合物の樹脂層(R)側にレーザー光を照射することが好ましい。これにより、樹脂層(R)に入射したレーザー光は、樹脂層(R)及びレーザー吸収層を順次透過し、支持体が光透過性のものであればさらに支持体を透過する。この際、レーザー光のエネルギーは、樹脂層(R)及びレーザー吸収層に順次吸収される。ここで、樹脂層(R)に吸収されるエネルギーが小さいものであっても、その後レーザー吸収層において吸収されるエネルギーが大きいため、レーザー吸収層において熱が多く発生し、その一部は樹脂層(R)に伝導する。これにより、樹脂層(R)がレーザーに対する感受性が低いものである場合であっても、比較的低いレーザー光の出力により、樹脂層(R)の切断を達成することができる。さらに、樹脂層(R)に対しレーザー吸収層が両面に配置した場合であっても、樹脂層(R)の切断を達成することができる。したがって、支持体にダメージを与えることなく、円滑に樹脂層(R)の切断を行なうことができる。
 切断工程におけるレーザー光のビームのエネルギー分布は、特に限定されず、一般的なレーザー光照射装置から出射されるガウシアンモードのエネルギー分布であってもよく、平坦状のエネルギー分布であってもよいが、平坦状のエネルギー分布であることが好ましい。平坦状のエネルギー分布を有するビームは、「トップハット」形状のビームとも呼ばれる。
 ビームのエネルギー分布は、ビームの光軸からの距離を横軸に取り、当該距離の位置におけるエネルギー量を縦軸に取ったグラフにより表現しうる。平坦状のエネルギー分布の例を、図2を参照して説明する。図2は、平坦状のエネルギー分布を有するあるレーザー光のビームについての、エネルギー分布の一例を示すグラフである。図2の横軸は、レーザー光のビームの光軸からの距離を、ある方位角を正、その反対の方位角を負として示し、図2の縦軸は、当該距離の位置におけるレーザー光のエネルギー量を示している。図2に示す例では、エネルギー分布は、矢印A11で示す幅において、平坦状となっている。少なくとも一の方位において、このような平坦状のエネルギー分布を示すレーザー光を、切断工程において使用することができる。例えば、ビームの光軸に垂直な断面において、全ての方位角において平坦状のエネルギー分布を有するビームを用いることもでき、また、ビームの断面の長軸方向においてエネルギー分布がトップハット状であり、短軸方向においてガウシアン分布であるビームを用いることもできる。
 一方図3は、従来一般的に用いられるガウシアンモードのレーザー光のビームについてのエネルギー分布の一例を示すグラフである。図3に示す例では、エネルギー分布は、平坦な部分を有しない形状となっている。
 好ましい例において、平坦な領域におけるエネルギー量のバラツキ(図2の矢印A12に対応)は、平坦な領域の平均のエネルギー量に対して、好ましくは±10%、より好ましくは±7%、さらにより好ましくは±6%の範囲内である。このようなエネルギー分布を有するレーザー光を用いることにより、支持体へのダメージをさらに低減しながら、より確実に樹脂層(R)を切断することができる。また、レーザー吸収層が比較的薄い場合であっても、支持体へのダメージをさらに低減し、且つさらに円滑に切断を行うことができる。
 このような、平坦状のエネルギー分布を有するビームは、ガウシアンモード又はそれに近いモードで出射された一般的なビームの経路内にビーム整形器を配置し、エネルギー分布を変換することにより得うる。ビーム整形器の例としては、入射したビームを屈折、回折、反射、及びこれらの組み合わせによって整形し、ビーム内のエネルギー分布を再配分する整形器が挙げられる。ビーム整形器のより具体的な例としては、既知のもの、例えば特許文献2及び3に記載されるものが挙げられる。ビーム整形器の他の例としては、ガウシアンビームを、少なくとも一の方位において平坦なエネルギー分布を有するビームに変換する市販の整形器(例えば、株式会社大興製作所製のトップハットモジュール)が挙げられる。
 切断工程に用いるレーザー装置としては、フィルムの加工に用いうる各種の形式のものを用いることができる。用いうるレーザー装置の例としては、炭酸ガスレーザー装置が挙げられる。炭酸ガスレーザー装置は、各種のレーザー装置の中でも比較的安価であり、且つフィルムの加工に適した波長及び出力が効率的に得られるため好ましい。
 切断工程においてレーザー装置から出射するレーザー光の波長は、9μm以上11μm以下の波長としうる。特に、9.4μm付近(9.1~9.7μm)及び10.6μm付近(10.1~11.0μm)の波長のレーザー光は、レーザー装置として炭酸ガスレーザー装置を用いる場合に安定して出力することができる。したがって、そのような波長のレーザー光を採用した場合、本発明の製造方法を特に良好に行うことができる。
 レーザー光の出力Pは、好ましくは1W以上、より好ましくは5W以上、さらに好ましくは15W以上であり、好ましくは400W以下、より好ましくは350W以下、さらに好ましくは300W以下、さらにより好ましくは250W以下、特に好ましくは120W以下である。レーザー光の出力Pを前記範囲の下限値以上にすることにより、レーザー光の照射量が不足するのを防止して、切断工程を安定して行うことができる。また、レーザー光の出力Pを前記範囲の上限値以下とすることにより、フィルムの不所望な変形や、支持体へのダメージを抑制できる。
 レーザー光は、連続レーザー光でもよく、パルスレーザー光でもよい。中でも、パルスレーザー光が好ましい。パルスレーザー光を用いることにより、熱の発生を抑えて加工することができる。
 パルスレーザー光を用いる場合、レーザー光の周波数は、好ましくは10kHz以上、より好ましくは15kHz以上、特に好ましくは20kHz以上であり、好ましくは300kHz以下、より好ましくは200kHz以下、さらにより好ましくは150kHz以下、特に好ましくは80kHz以下である。パルスレーザー光の周波数を前記範囲の下限値以上にすることにより、加工速度を速めることができる。また、上限値以下にすることにより、より熱の影響を抑えた加工ができる。
 パルスレーザー光を用いる場合、パルス幅の範囲は、好ましくは10ナノ秒以上、より好ましくは12ナノ秒以上、特に好ましくは15ナノ秒以上であり、好ましくは30ナノ秒以下、より好ましくは28ナノ秒以下、特に好ましくは25ナノ秒以下である。パルスレーザー光のパルス幅を前記範囲の下限値以上にすることにより、加工速度を速めることができる。また、上限値以下にすることにより、より熱の影響を抑えた加工ができる。
 切断工程においては、通常は、レーザー光が樹脂層(R)の表面を所望の線に沿って走査するように、レーザー光を樹脂層(R)に照射する。これにより、樹脂層(R)にレーザー光が当たる点が、樹脂層(R)の表面を所望の線に沿って移動するので、切断したい形状に樹脂層(R)を切断できる。この際、レーザー光に樹脂層(R)の表面を走査させるために、レーザー光の照射装置を移動させてもよく、樹脂層(R)を移動させてもよく、レーザー光と樹脂層(R)の両方を移動させてもよい。
 走査速度、即ち樹脂層(R)にレーザー光が当たる点が樹脂層(R)の表面を移動する際の移動速度は、レーザー光の出力P、樹脂層(R)の厚み等の条件に応じて、適切に設定しうる。走査速度Vの具体的な範囲は、好ましくは5mm/s以上、より好ましくは10mm/s以上、特に好ましくは20mm/s以上であり、好ましくは4000mm/s以下、より好ましくは3000mm/s以下、さらにより好ましくは2000mm/s以下、特に好ましくは1500mm/s以下である。走査速度Vを前記範囲の下限値以上にすることにより、生じる熱を抑え良好な切断面を得ることができる。また、上限値以下にすることにより、レーザー光の走査回数を減らし効率的な切断ができる。
 レーザー光の照射は、レーザー光の出力P(単位:W)及び走査速度V(単位:mm/s)の比P/Vが、特定の範囲となるように行うことが好ましい。
 P/Vの値は、0.10以上、好ましくは0.15以上であり、一方0.25以下、好ましくは0.20以下である。切断工程においてこのようなレーザー光の照射を行うことにより、支持体へのダメージをさらに低減し、且つ樹脂層の切断をさらに円滑に行うことができる。
 樹脂層(R)をある線に沿って切断するためにレーザー光を照射する際、その線に沿ったレーザー光の走査回数は、1回でもよく、2回以上でもよい。1回の走査で切断することにより、切断工程に要する時間を短くできる。また、2回以上にすることにより、1回当たりのレーザー光の照射で樹脂層(R)に生じる熱を小さくできるので、レーザー処理影響部の幅を更に低くすることができる。
 レーザー光として、一の方位のみにおいて平坦状のエネルギー分布を示すレーザー光を用いる場合は、切断工程に際して、当該方位と垂直な方向にレーザー光を走査することが、精密に制御された切断面を得ることができるため好ましい。
 〔4.切断工程後の工程〕
 本発明の光学フィルムの製造方法では、切断工程の後に、任意の工程を行いうる。例えば、切断工程の結果複数のフィルム片となった樹脂層(R)のうち一部又は全部を、支持体から剥離する工程を行いうる。剥離に際して、樹脂層(R)の全部の層を支持体から剥離してもよく、一部の層のみを残余から剥離してもよい。剥離して得られた樹脂層(R)のフィルム片は、そのまま、又は必要に応じて他の任意の層との貼合等の任意の工程を経て、製品たる光学フィルムとしうる。または、切断された樹脂層(R)のフィルム片と支持体との積層体をそのまま、製品たる偏光板と支持体を組み合わせた積層体として、表示装置に組み込んでもよい。
 本発明の製造方法により得られた光学フィルムの用途に制限は無く、偏光板等の任意の光学部材としうる。また、この光学フィルムは、それ単独で用いてもよく、他の任意の部材と組み合わせて用いてもよい。例えば、液晶表示装置、有機エレクトロルミネッセンス表示装置、プラズマ表示装置、FED(電界放出)表示装置、SED(表面電界)表示装置等の表示装置に組み込んで用いてもよい。
 また、例えば、本発明の光学フィルムの製造方法により得られたフィルム片の光学フィルムを、偏光子の保護フィルムとして用い、さらに他の偏光子層と貼合して偏光板を構成してもよい。
 さらに、例えば、得られたフィルム片を位相差フィルムとして円偏光フィルムとを組み合わせて、輝度向上フィルムを得てもよい。
 以下、実施例を示して本発明について具体的に説明する。ただし、本発明は以下の実施例に限定されるものでは無く、本発明の請求の範囲及びその均等の範囲を逸脱しない範囲において、任意に変更して実施しうる。
 以下の説明において、量を表す「%」及び「部」は、別に断らない限り、重量基準である。また、以下に説明する操作は、別に断らない限り、常温及び常圧の条件において行った。
 〔評価方法〕
 (平均吸収率の測定)
 実施例及び比較例のそれぞれで得た樹脂フィルムのそれぞれをサンプル1として用意した。さらに、サンプル1の一方の表面に、実施例及び比較例のそれぞれにおいて用いた接着剤層と同じ材料及び厚みの接着剤層を設けたものをサンプル2として用意した。これらのサンプル1~2について、平均吸収率を測定した。測定装置としてはNICOLET iS5(サーモフィッシャサイエンティフィック社)を用いて、透過法にて、検出器DTGS KBr、分解能4cm-1、積算回数16回にて測定を行い、9μm以上11μm以下の波長領域の吸収率の平均値を求め、平均吸収率を得た。サンプル1の平均吸収率を平均吸収率Aとした。サンプル2の平均吸収率とサンプル1の平均吸収率との差を、平均吸収率Aとした。各実施例及び比較例の平均吸収率Aは下記表1及び表2に示す通りであった。一方、平均吸収率Aは、いずれも0.07を大きく上回っていたことを確認した。
 〔実施例1〕
 (1-1.環状オレフィン樹脂フィルム)
 窒素で置換した反応器に、トリシクロ[4.3.0.12,5]デカ-3-エン(以下、「DCP」という)とテトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン(以下、「TCD」という)とテトラシクロ[9.2.1.02,10.03,8]テトラデカ-3,5,7,12-テトラエン(以下、「MTF」という)の混合物(重量比60/35/5)7部(重合に使用するモノマー全量に対して重量1%)とシクロヘキサン1600部とを加え、トリ-i-ブチルアルミニウム0.55部、イソブチルアルコール0.21部、反応調整剤としてジイソプロピルエーテル0.84部、及び分子量調節剤として1-ヘキセン3.24部を添加した。ここに、シクロヘキサンに溶解させた0.65%の六塩化タングステン溶液24.1部を添加して、55℃で10分間攪拌した。次いで、反応系を55℃に保持しながら、DCPとTCDとMTF(重量比60/35/5)の混合物を693部とシクロヘキサンに溶解させた0.65%の六塩化タングステン溶液48.9部とをそれぞれ系内に150分かけて連続的に滴下した。その後、30分間反応を継続し重合を終了し、開環重合反応液得た。
 重合終了後、ガスクロマトグラフィーにより測定したモノマーの重合転化率は重合終了時で100%であった。
 得られた開環重合反応液を耐圧性の水素化反応器に移送し、ケイソウ土担持ニッケル触媒(日揮化学社製、製品名「T8400RL」、ニッケル担持率57%)1.4部及びシクロヘキサン167部を加え、180℃、水素圧4.6MPaで6時間反応させた。この反応溶液を、ラジオライト#500を濾過床として、圧力0.25MPaで加圧濾過(石川島播磨重工社製、製品名「フンダバックフィルター」)して水素化触媒を除去し、無色透明な溶液を得た。次いで前記水素添加物100部あたり0.5部の酸化防止剤:ペンタエリスリトールテトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート](チバ・スペシャルティ・ケミカルズ社製、製品名「イルガノックス1010」)を、得られた溶液に添加して溶解させた。次いで、ゼータープラスフィルター30H(キュノーフィルター社製、孔径0.5~1μm)にて順次濾過しさらに別の金属ファイバー製フィルター(孔径0.4μm、ニチダイ社製)にて濾過して微小な固形分を除去した。濾過後の溶液中において、開環重合体水素添加物の水素添加率は99.9%であった。
 次いで、上記溶液を、円筒型濃縮乾燥器(日立製作所社製)を用いて、温度270℃、圧力1kPa以下で、溶液から、溶媒であるシクロヘキサン及びその他の揮発成分を除去した。揮発成分除去後の残渣を、濃縮機に直結したダイから溶融状態でストランド状に押出し、冷却後、開環重合体水素添加物のバージン材のペレットを得た。ペレットのガラス転移温度は123℃、メルトフローレートは15.0であった。
 スクリュー径20mmφ、圧縮比3.1、L/D=30のスクリューを備えたハンガーマニュホールドタイプのTダイ式のフィルム溶融押出成形機(据置型、GSIクレオス社製)を用意した。
 上記のペレットを、前記のフィルム溶融押出成形機を使用して、加熱し溶融させてフィルム状に成形し、厚み13μmの環状オレフィン樹脂フィルムを得た。
 (1-2.支持体-積層体複合物)
 (1-1)で得られた樹脂フィルムを、支持体としてのガラス板(厚さ0.7mm)の一方の面上に、接着剤を用いて貼合した。接着剤としては、アクリル系接着剤(商品名「CS9621」日東電工株式会社製)を用いた。この製品は、2枚の離型シートの間に設けられた厚さ25μmの接着剤層を有する両面粘着シートであり、離型シートを適宜剥離して、接着剤層を支持体上に転写することにより用いた。これにより、(樹脂フィルム層)/(接着剤層)/(ガラス板)の層構成を有する、支持体-積層体複合物を得た。これらの層のうち、樹脂フィルム層が樹脂層(R)に相当し、接着剤層がレーザー吸収層に相当し、樹脂フィルム層及び接着剤層が積層体に相当する。接着剤層の厚みTは25μmであり、その結果厚み比率T/Tは1.9となった。
 (1-3.切断工程)
 (1-2)で得られた支持体-積層体複合物の樹脂フィルム側の面に、レーザー光照射装置(DIAMOND E-250i(Coherent社製))により、波長9.4μmの炭酸ガスレーザー光を垂直に照射し、樹脂層(R)を切断し、切断された樹脂層(R)及び接着剤層を含む、光学フィルムを得た。レーザー光の出力Pの調整は、100Wとした。照射に際し、レーザー光は、照射と停止とを周波数20kHzの周期で繰り返すパルスレーザー光とした。照射装置から照射されたガウシアン分布を有する平行光線であるレーザー光を、DOE(回折光学素子)を備えるビーム整形器により整形することにより、レーザー光のビームのエネルギー分布を、光軸に垂直な面方向に略均一な平坦状とした。樹脂層(R)の面上において、レーザー光の照射位置を移動させることにより、走査的な樹脂層(R)の切断を行なった。走査速度Vは500mm/s、走査回数は1回とした。
 (1-4.評価)
 切断工程による切断の状態を観察して評価した。その結果、樹脂層(R)が完全に切断され、支持体には傷がついていなかったことが観察された。
 〔実施例2~4及び比較例1~4〕
 (1-1)におけるフィルムの溶融押出成形の条件を変更して、環状オレフィン樹脂フィルムの厚みを表1及び表2に示す値に変更した。さらに、接着剤層の厚みを、表1に示す値に変更した。厚さ50μmの接着剤層は、実施例1で使用した接着剤層を2層重ねて設けることにより形成した。これらの事項以外は、実施例1と同様にして、切断工程を行い光学フィルムを得て、切断工程による切断の状態を観察して評価した。
 〔実施例5〕
 (5-1.アクリル系樹脂溶液の調製)
 温度計、攪拌機、滴下ロート及び還流冷却器を備えた反応器内にメチルエチルケトン28部、トルエン8部を仕込み、攪拌しながら昇温し、90℃になった後、ベンジルアクリレート70部、2-ヒドロキシエチルアクリレート15部、ブチルアクリレート15部に、重合開始剤としてアゾビスイソブチロニトリル(AIBN)0.16部を溶解させた混合物を2時間にわたって滴下した。さらに重合途中に、酢酸エチル2部にAIBN0.06部を溶解させた重合触媒液を逐次追加しながら7時間重合させ、アクリル系樹脂溶液(固形分濃度65.1%、粘度1300mPa・s(25℃)、重量平均分子量105,000、数平均分子量36,000、分散度2.92、ガラス転移温度-8.3℃)を得た。
 (5-2.接着剤の調製)
 (5-1)で得たアクリル系樹脂溶液100部(固形分相当量)に、トリメチロールプロパンのトリレンジイソシアネート付加物の55%酢酸エチル溶液(日本ポリウレタン社製、「コロネートL-55E」)0.3部を配合し、粘着剤組成物とした。この粘着剤組成物を、ポリエステル系離型シートに、乾燥後の膜厚が10μmになるよう塗布し、100℃で4分間乾燥し、接着剤層を形成した。これにより、(離型シート)/(接着剤層)の層構成を有する2層の複層物を得た。その後、この複層物の接着剤層側の面に、ポリエステル系離型シートを貼り合わせ、(離型シート)/(接着剤層)/(離型シート)の層構成を有する、3層の複層物を得た。これを、40℃の条件下で10日間エージングさせて、両面粘着シートを得た。
 (5-3.切断工程)
 接着剤として、(5-2)で得たものを用いた他は、実施例1と同様にして、切断工程を行い光学フィルムを得て、切断工程による切断の状態を観察して評価した。
 〔実施例6〕
 (1-1)におけるフィルムの溶融押出成形の条件を変更して、環状オレフィン樹脂フィルムの厚みを表1に示す値に変更した。さらに、切断工程において用いるレーザー光を、波長10.6μmの炭酸ガスレーザー光に変更した。これらの事項以外は、実施例1と同様にして、切断工程を行い光学フィルムを得て、切断工程による切断の状態を観察して評価した。
 〔比較例5〕
 (1-1)におけるフィルムの溶融押出成形の条件を変更して、環状オレフィン樹脂フィルムの厚みを表1に示す値に変更した。さらに、接着剤として、(5-2)で得たものを用いた。さらに、切断工程において用いるレーザー光を、レーザー光照射装置(DIAMOND E-250(Coherent社製))により、波長10.6μmの炭酸ガスレーザー光に変更した。これらの事項以外は、実施例1と同様にして、切断工程を行い光学フィルムを得て、切断工程による切断の状態を観察して評価した。
 実施例及び比較例の概要及び評価結果を、下記表1及び表2にまとめて示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 1)良:樹脂層(R)が完全に切断され、支持体には傷がついていなかったことが観察された。不良:樹脂層(R)が切れていない箇所が残った。
 以上の結果から、比率T/T等の諸条件が本発明の要件を満たす実施例の製造方法では、比率T/Tが本発明の要件の範囲外である比較例に比べて、樹脂層(R)の円滑な切断が達成できたことが分かる。
 100:支持体-積層体複合物
 110:積層体
 111:樹脂層(R)
 112:レーザー吸収層
 120:支持体
 200:レーザー光照射装置

Claims (8)

  1.  樹脂層、及び前記樹脂層の片面に設けられたレーザー吸収層を有する積層体に対して、レーザー光を照射し、前記樹脂層を切断する切断工程を含む、光学フィルムの製造方法であって、
     前記レーザー吸収層による9μm以上11μm以下の波長領域の光の平均吸収率Aは、前記樹脂層による9μm以上11μm以下の波長領域の光の平均吸収率Aより大きく、
     前記樹脂層の厚みTに対する、前記レーザー吸収層の厚みTの比率T/Tが、0.8以上である、光学フィルムの製造方法。
  2.  前記レーザー吸収層による前記平均吸収率Aが、0.07以上である、請求項1に記載の光学フィルムの製造方法。
  3.  前記レーザー光の照射を、前記レーザー光のビームのエネルギー分布が平坦状となるように行う、請求項1又は2に記載の光学フィルムの製造方法。
  4.  前記樹脂層が、環状オレフィン重合体を含む熱可塑性樹脂の層である、請求項1~3のいずれか1項に記載の光学フィルムの製造方法。
  5.  前記レーザー吸収層が、エステル化合物を含む樹脂の層である、請求項1~4のいずれか1項に記載の光学フィルムの製造方法。
  6.  前記エステル化合物を含む樹脂が、アクリル系接着剤である、請求項5に記載の光学フィルムの製造方法。
  7.  前記レーザー光の波長が9μm以上11μm以下である、請求項1~6のいずれか1項に記載の光学フィルムの製造方法。
  8.  前記切断工程が、支持体、前記レーザー吸収層及び前記樹脂層をこの順に備える支持体-積層体複合物を形成することを含み、
     前記レーザー光の照射が、前記支持体-積層体複合物の、前記樹脂層側に、前記レーザー光を照射することを含む、請求項1~7のいずれか1項に記載の光学フィルムの製造方法。
PCT/JP2017/016140 2016-04-28 2017-04-24 光学フィルムの製造方法 WO2017188168A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780023378.5A CN109073811B (zh) 2016-04-28 2017-04-24 光学膜的制造方法
US16/092,874 US20190202005A1 (en) 2016-04-28 2017-04-24 Method for manufacturing optical film
KR1020187029470A KR102394274B1 (ko) 2016-04-28 2017-04-24 광학 필름의 제조 방법
JP2018514574A JP6922899B2 (ja) 2016-04-28 2017-04-24 光学フィルムの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-090006 2016-04-28
JP2016090006 2016-04-28

Publications (1)

Publication Number Publication Date
WO2017188168A1 true WO2017188168A1 (ja) 2017-11-02

Family

ID=60161559

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/016140 WO2017188168A1 (ja) 2016-04-28 2017-04-24 光学フィルムの製造方法

Country Status (6)

Country Link
US (1) US20190202005A1 (ja)
JP (1) JP6922899B2 (ja)
KR (1) KR102394274B1 (ja)
CN (1) CN109073811B (ja)
TW (1) TWI731070B (ja)
WO (1) WO2017188168A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019099613A (ja) * 2017-11-29 2019-06-24 三菱ケミカル株式会社 レーザー加工用離型フィルム及びレーザー加工品の製造方法
JP2021142545A (ja) * 2020-03-12 2021-09-24 株式会社村田製作所 基板加工方法および構造体
WO2022025077A1 (ja) * 2020-07-29 2022-02-03 コニカミノルタ株式会社 光学フィルム、偏光板および液晶表示装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102094479B1 (ko) * 2019-08-22 2020-03-27 진영식 렌즈용 스페이서 제조장치
KR20220063842A (ko) * 2020-11-10 2022-05-18 삼성디스플레이 주식회사 표시 장치의 제조 장치 및 표시 장치의 제조 방법
CN114406500B (zh) * 2022-03-03 2024-06-18 广东华中科技大学工业技术研究院 一种铁氧体复合材料激光切割方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002343747A (ja) * 2001-05-17 2002-11-29 Lintec Corp ダイシングシート及びダイシング方法
JP2005189530A (ja) * 2003-12-25 2005-07-14 Nitto Denko Corp 積層型偏光板およびその製造方法
JP2008073742A (ja) * 2006-09-22 2008-04-03 Nitto Denko Corp 光学フィルムの切断方法及び光学フィルム
US20130344326A1 (en) * 2012-06-25 2013-12-26 Nitto Europe N.V. Pressure-sensitive adhesive film
JP2014508313A (ja) * 2010-12-30 2014-04-03 スリーエム イノベイティブ プロパティズ カンパニー レーザー切断方法及びこれにより製造された物品
US20150202858A1 (en) * 2014-01-21 2015-07-23 General Lasertronics Corporation Laser film debonding method
WO2016031776A1 (ja) * 2014-08-28 2016-03-03 日本ゼオン株式会社 光学フィルム
US20160107425A1 (en) * 2014-10-21 2016-04-21 Nitto Europe N.V. Pressure-sensitive adhesive film for laser beam cutting applications
JP2017019036A (ja) * 2015-07-09 2017-01-26 Towa株式会社 ブラスト加工装置およびブラスト加工による製品製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004042140A (ja) 2002-07-12 2004-02-12 Hitachi Zosen Corp 薄膜除去方法及び装置
US8350187B2 (en) 2009-03-28 2013-01-08 Electro Scientific Industries, Inc. Method and apparatus for laser machining
CN102282485B (zh) 2009-08-06 2012-08-29 住友化学株式会社 偏光板的制造方法
JP2016057403A (ja) 2014-09-08 2016-04-21 日本ゼオン株式会社 カットフィルムの製造方法、偏光板の製造方法及びフィルム

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002343747A (ja) * 2001-05-17 2002-11-29 Lintec Corp ダイシングシート及びダイシング方法
JP2005189530A (ja) * 2003-12-25 2005-07-14 Nitto Denko Corp 積層型偏光板およびその製造方法
JP2008073742A (ja) * 2006-09-22 2008-04-03 Nitto Denko Corp 光学フィルムの切断方法及び光学フィルム
JP2014508313A (ja) * 2010-12-30 2014-04-03 スリーエム イノベイティブ プロパティズ カンパニー レーザー切断方法及びこれにより製造された物品
US20130344326A1 (en) * 2012-06-25 2013-12-26 Nitto Europe N.V. Pressure-sensitive adhesive film
US20150202858A1 (en) * 2014-01-21 2015-07-23 General Lasertronics Corporation Laser film debonding method
WO2016031776A1 (ja) * 2014-08-28 2016-03-03 日本ゼオン株式会社 光学フィルム
US20160107425A1 (en) * 2014-10-21 2016-04-21 Nitto Europe N.V. Pressure-sensitive adhesive film for laser beam cutting applications
JP2017019036A (ja) * 2015-07-09 2017-01-26 Towa株式会社 ブラスト加工装置およびブラスト加工による製品製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019099613A (ja) * 2017-11-29 2019-06-24 三菱ケミカル株式会社 レーザー加工用離型フィルム及びレーザー加工品の製造方法
JP7147156B2 (ja) 2017-11-29 2022-10-05 三菱ケミカル株式会社 レーザー加工用離型フィルム及びレーザー加工品の製造方法
JP2021142545A (ja) * 2020-03-12 2021-09-24 株式会社村田製作所 基板加工方法および構造体
JP7192814B2 (ja) 2020-03-12 2022-12-20 株式会社村田製作所 基板加工方法および構造体
WO2022025077A1 (ja) * 2020-07-29 2022-02-03 コニカミノルタ株式会社 光学フィルム、偏光板および液晶表示装置
TWI785703B (zh) * 2020-07-29 2022-12-01 日商柯尼卡美能達股份有限公司 光學薄膜、偏光板及液晶顯示裝置

Also Published As

Publication number Publication date
KR20190002448A (ko) 2019-01-08
TWI731070B (zh) 2021-06-21
TW201834868A (zh) 2018-10-01
US20190202005A1 (en) 2019-07-04
CN109073811A (zh) 2018-12-21
JPWO2017188168A1 (ja) 2019-02-28
KR102394274B1 (ko) 2022-05-03
JP6922899B2 (ja) 2021-08-18
CN109073811B (zh) 2021-03-05

Similar Documents

Publication Publication Date Title
WO2017188168A1 (ja) 光学フィルムの製造方法
JP6724789B2 (ja) 光学フィルムの製造方法
KR101260555B1 (ko) 감압성 충격 흡수 접착제 시트 및 그 제조 방법
JP2012053078A (ja) 偏光板の製造方法
JP5582466B2 (ja) 光学フィルムおよび複合偏光板
TW201200917A (en) Polarizing plate and liquid crystal display comprising the same
JP2007334295A (ja) 偏光板とその製造方法、積層光学部材及び液晶表示装置
US20050249890A1 (en) Optical laminate
KR20090029716A (ko) 편광판, 이의 제조방법, 적층 광학 부재 및 액정 표시 장치
KR20210120984A (ko) 점착제층을 갖는 광학 적층 필름 및 화상 표시 장치
JP2014182283A (ja) 複層フィルム及びその製造方法、位相差フィルム積層体の製造方法、位相差フィルム、偏光板並びにips液晶パネル
KR20120022608A (ko) 폴리프로필렌계 수지 필름, 및 이를 사용한 편광판, 액정 패널 및 액정 표시 장치
JP2009258588A (ja) 偏光板、ならびにそれを用いた積層光学部材および液晶表示装置
JP2015100984A (ja) 積層体及び偏光板
JP2010002808A (ja) 楕円偏光板およびその製造方法、ならびに楕円偏光板チップ、液晶表示装置
JP6844180B2 (ja) 複合パネル及びその製造方法
JP2018055044A (ja) 光学フィルムの製造方法
CN113748018A (zh) 光学层叠体及图像显示装置
JP2012008517A (ja) 偏光板
JP2011154176A (ja) 楕円偏光板およびその製造方法、ならびに楕円偏光板チップ、液晶表示装置
JP2011113025A (ja) 偏光板および積層光学部材
JP2009251150A (ja) ハードコート層を有する偏光板用保護フィルム、偏光板とその製造方法、積層光学部材及び液晶表示装置
JP2021071581A (ja) 光学フィルムの製造方法
WO2012172696A1 (ja) 偏光板及び液晶表示装置
TW202402524A (zh) 附表面保護薄膜之光學積層體及其製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018514574

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20187029470

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17789450

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17789450

Country of ref document: EP

Kind code of ref document: A1