WO2017188043A1 - リチウムイオン二次電池用電極の製造方法 - Google Patents

リチウムイオン二次電池用電極の製造方法 Download PDF

Info

Publication number
WO2017188043A1
WO2017188043A1 PCT/JP2017/015447 JP2017015447W WO2017188043A1 WO 2017188043 A1 WO2017188043 A1 WO 2017188043A1 JP 2017015447 W JP2017015447 W JP 2017015447W WO 2017188043 A1 WO2017188043 A1 WO 2017188043A1
Authority
WO
WIPO (PCT)
Prior art keywords
slurry
electrode
active material
producing
ion secondary
Prior art date
Application number
PCT/JP2017/015447
Other languages
English (en)
French (fr)
Inventor
扶志香 大垣
将人 倉津
歩 ▲高▼岡
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to CN201780014713.5A priority Critical patent/CN108780886B/zh
Priority to JP2018514507A priority patent/JP6739524B2/ja
Priority to US16/096,211 priority patent/US10680235B2/en
Publication of WO2017188043A1 publication Critical patent/WO2017188043A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for manufacturing a lithium ion secondary battery electrode.
  • Non-aqueous electrolyte secondary batteries such as lithium ion secondary batteries are required to have battery performance that can withstand repeated charge and discharge over a long period of time. As one of attempts to ensure such battery performance, studies on electrode manufacturing methods have been conducted.
  • Patent Document 1 describes a method for producing a positive electrode using a material with a specified amount of water as a positive electrode slurry and using the slurry as a positive electrode material. It is said to be suppressed.
  • An object of the present invention is to provide a method for producing an electrode for a lithium ion secondary battery, in which a decrease in capacity retention rate is suppressed and which has excellent cycle stability.
  • the manufacturing method of the electrode for lithium ion secondary batteries which concerns on this invention is a manufacturing method of the negative electrode containing the positive electrode containing a positive electrode active material, and a negative electrode active material, Comprising:
  • the manufacturing process of the slurry for electrodes for manufacturing a positive electrode and a negative electrode includes a first step of mixing a positive electrode active material or a negative electrode active material, a conductive additive, and a non-aqueous solvent, and diluting or concentrating the slurry obtained in the first step.
  • a lithium ion secondary battery having excellent cycle stability can be obtained.
  • the lithium ion secondary battery according to the present invention will be described with reference to FIG. 1 as an embodiment for easy understanding.
  • FIG. 1 is a cross-sectional view of a lithium ion secondary battery.
  • a lithium ion secondary battery 10 is formed by enclosing a laminated body 5 including a positive electrode 1, a negative electrode 2, and a separator 3, a non-aqueous electrolyte 6, and a terminal 7 in an enclosure 8.
  • the electrodes (positive electrode 1 and negative electrode 2) have a function of inserting and removing lithium ions, that is, an electrode reaction, and the lithium ion secondary battery is charged and discharged by the electrode reaction.
  • the electrode is composed of an active material layer containing an active material and a current collector.
  • the positive electrode active material layer 23 is formed on one surface or both surfaces of the positive electrode current collector 22, and in the negative electrode 2, the negative electrode active material layer 33 is formed on one surface or both surfaces of the negative electrode current collector 32.
  • the electrode may be in a form in which the positive electrode active material layer 23 is formed on one side of the current collector and the negative electrode active material layer 33 is formed on the other side, that is, a bipolar type (bipolar).
  • the active material is a substance that contributes to the electrode reaction.
  • Examples of the positive electrode active material included in the positive electrode 1 include lithium manganese oxide (for example, LiMnO 2 ), lithium nickel oxide (for example, LiNiO 2 ), lithium cobalt oxide (for example, LiCoO 2 ), and lithium nickel cobalt oxide (for example, LiNi 1).
  • -Y Co y O 2 lithium nickel manganese oxide (eg LiNi x Co y Mn 1-yz O 2 ), spinel-type lithium manganese oxide (eg LiMn 2 O 4 ), or lithium phosphorus having an olivine structure suitably used as long as an oxide (e.g. LiFePO 4, etc.
  • LiFe 1-y Mn y PO 4 or LiCoPO 4 lithium complex oxide such as lithium nickel oxide, lithium-nickel-manganese oxide or a spinel-type lithium manganese oxide Things are better Ku, lithium nickel manganese oxide is more preferred.
  • These positive electrode active materials may be used individually by 1 type, and may use 2 or more types together.
  • the negative electrode active material contained in the negative electrode 2 is not particularly limited as long as the standard potential is lower than that of the positive electrode active material, and is a carbon material such as carbon or hard carbon, a metal such as tin (Sn), or silicon oxide in these metals. (SiO) -containing materials, or metal oxides such as niobium pentoxide (Nb 2 O 5 ), titanic acid compounds, lithium titanate or titanium dioxide are preferably used, and titanic acid compounds, titanium dioxide or lithium titanate are used. More preferred is titanium dioxide or lithium titanate. These negative electrode active materials may be used individually by 1 type, and may use 2 or more types together.
  • the titanic acid compound is preferably H 2 Ti 3 O 7 , H 2 Ti 4 O 9 , H 2 Ti 5 O 11 , or H 2 Ti 6 O 13 , H 2 Ti 12 O 25 , and H 2 Ti More preferably, it is 12 O 25 .
  • Titanium dioxide is preferably an anatase type or a bronze type (TiO 2 (B)), and more preferably a bronze type since insertion and desorption of lithium proceeds efficiently. Also, a mixture of anatase type and bronze type may be used.
  • the lithium titanate preferably has a spinel structure or a ramsdellite type, and a molecular formula represented by Li 4 Ti 5 O 12 is preferable.
  • the spinel structure the expansion and contraction of the active material in the reaction of insertion / extraction of lithium ions is small.
  • the titanium compound is Li 4 Ti 5 O 12 , and since it is possible to provide a negative electrode with higher safety and stability, a lithium ion secondary with higher safety and stability can be provided. A battery can be obtained.
  • the bulk density of the active material is preferably not more than 0.2 g / cm 3 or more 2.2 g / cm 3, more preferably not more than 0.2 g / cm 3 or more 2.0 g / cm 3.
  • the current collectors 22 and 32 are members that collect current from the active material layers 23 and 33.
  • the current collectors 22 and 32 are preferably used as long as they are conductive materials.
  • the conductive material aluminum or an alloy thereof is preferable, and since it is stable in the positive electrode reaction atmosphere, high-purity aluminum typified by JIS standards 1030, 1050, 1085, 1N90, or 1N99 is more preferable.
  • the thickness of the current collectors 22 and 32 is not particularly limited, but is preferably 10 ⁇ m or more and 100 ⁇ m or less.
  • the electrode may further contain a conductive aid.
  • the conductive assistant is a conductive or semiconductive material contained in the positive electrode active material and the negative electrode active material for the purpose of assisting the conductivity of the electrode.
  • any metal material or carbon material is preferably used.
  • Metallic materials include copper or nickel.
  • Examples of the carbon material include natural graphite, artificial graphite, vapor-grown carbon fiber, carbon nanotube, or carbon black such as acetylene black, ketjen black, or furnace black.
  • These conductive aids may be used alone or in combination of two or more.
  • the amount of the conductive assistant is preferably 1 part by weight or more and 30 parts by weight or less, more preferably 2 parts by weight or more and 15 parts by weight or less with respect to 100 parts by weight of the positive electrode active material or the negative electrode active material. If the quantity of a conductive support agent is such a range, the electroconductivity of an electrode will become more favorable.
  • the electrode may further contain a binder.
  • the binder is a material that enhances the binding property between the active material layers 23 and 33 and the current collectors 22 and 32.
  • binder at least one selected from the group consisting of polyvinylidene fluoride (PVdF), polytetrafluoroethylene (PTFE), styrene-butadiene rubber, polyimide, and derivatives thereof is suitably used.
  • PVdF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • styrene-butadiene rubber polyimide, and derivatives thereof is suitably used.
  • the amount of the binder is preferably 1 part by weight or more and 30 parts by weight or less, more preferably 2 parts by weight or more and 15 parts by weight or less with respect to 100 parts by weight of the positive electrode active material or the negative electrode active material. Within these ranges, sufficient binding between the active material layer and the current collector can be obtained.
  • a method for producing an electrode there is a method in which an electrode slurry is produced, and then the electrode slurry is supported on the current collector and the nonaqueous solvent is removed to form an active material layer on the current collector. Preferably used.
  • the electrode slurry material includes at least an active material and a non-aqueous solvent, and preferably further includes a binder, a conductive additive, a dispersant, a thickener, or the like.
  • the dispersing agent has a function of dispersing materials such as active materials in the slurry.
  • N-methyl-2-pyrrolidone NMP
  • dimethylformamide dimethylacetamide
  • methyl ethyl ketone methyl acetate
  • ethyl acetate ethyl acetate
  • tetrahydrofuran tetrahydrofuran
  • the electrode slurry is supported on the current collector by a method of applying the slurry by a doctor blade, a die coater or a comma coater, a method of attaching the slurry to the current collector by spraying, or a method of impregnating the current collector in the slurry. If there is, it is preferably used. From the viewpoint of ease of production, a method of applying a slurry is preferable.
  • drying using an oven or a vacuum oven is preferable from the viewpoint of easy work.
  • the atmosphere for removing the solvent is preferably air, inert gas, or a reduced pressure state.
  • An atmosphere for removing the solvent includes a vacuum state.
  • the temperature at which the solvent is removed is not particularly limited as long as the solvent is removed.
  • the lower limit of the temperature is preferably room temperature or higher, more preferably 60 ° C. or higher, and further preferably 80 ° C. or higher.
  • the upper limit of the temperature is preferably 300 ° C. or lower, more preferably 250 ° C. or lower, and further preferably 230 ° C. or lower.
  • FIG. 2 is a flowchart showing the manufacturing process of the electrode slurry.
  • the electrode slurry was obtained in the first step S1 in which the positive electrode active material or the negative electrode active material, the conductive additive, the nonaqueous solvent, and the binder were mixed, and in the first step S1.
  • the slurry can be manufactured by a method including the second step S2 of manufacturing a slurry for an electrode.
  • a rotation and revolution mixer a ball mill, a planetary mixer, a jet mill, or a thin film swirl mixer is preferably used.
  • the viscosity of the slurry in the first step S1 is 500 cP or more and 8000 cP or less, preferably 500 cP or more and 5000 cP or less from the viewpoint of good dispersibility of the active material, and 600 cP or more and 4000 cP or less from the viewpoint of better workability. Is more preferable and 1000 cP or more and 4000 cP or less is still more preferable.
  • the viscosity of the slurry is 500 cP or more, the shearing force applied to the mixed slurry becomes strong, and the effect of uniformly mixing the slurry material is obtained.
  • it is 8000 cP or less, cutting of the conductive path due to the shearing force applied to the slurry is suppressed.
  • the current density distribution in the electrode is made uniform, gas generation is less likely to occur, and cycle stability is also good. Become.
  • the slurry is always mixed at the above viscosity, chemical damage to the active material is suppressed, so the battery is considered to have excellent performance.
  • the water content of the slurry in the first step S1 is 1000 ppm or less, preferably 500 ppm or less, and more preferably 350 ppm or less.
  • the slurry is always mixed with the water content described above, chemical damage to the active material is suppressed, so that the battery is considered to have excellent performance. Furthermore, the dispersibility of each material improves by mixing an active material, a conductive support agent, a binder, and a non-aqueous solvent under the conditions of the water content and viscosity in the first step S1, and a uniform slurry is obtained. It is thought that it is obtained.
  • the second step S2 kneading is performed so that the moisture content of the obtained electrode slurry is maintained at the moisture content of the slurry after the completion of the first step S1.
  • the water content of the obtained electrode slurry is maintained at the water content of the slurry after the first step S1 means that the water content of the obtained electrode slurry is the first step. It says that it exists in the range of +/- 5% of the moisture content of the slurry after finishing S1.
  • the highly dispersible slurry obtained in the first step S1 is kneaded while maintaining the water content, thereby further increasing dispersibility and chemical damage to the active material in the slurry. Is suppressed. Furthermore, since kneading is performed while maintaining the water content, a favorable shearing force is applied to the slurry, the binding force of the binder is increased, the adhesion with the current collector is improved, and as a result, the resistance value of the electrode is lowered and excellent. An electrode capable of providing high battery performance is obtained.
  • the same non-aqueous solvent as that contained in the slurry may be added, or the other non-aqueous solvent may be used for dilution.
  • heating or decompression is preferably used.
  • the viscosity of the diluted or concentrated slurry is preferably 600 cP or more and 4000 cP or less, and more preferably 1000 cP or more and 4000 cP or less, from the viewpoint of good processability when producing an electrode.
  • the kneading time in the first step S1 and the second step S2 may be appropriately adjusted within a range in which the active material is uniformly dispersed, and is preferably 1 hour or more and 5 hours or less. If it is 1 hour or more, each material in a slurry will fully disperse
  • the kneading time in the second step S2 is preferably in the above range.
  • the solid content concentration of the slurry in the first step S1 and the second step S2 is preferably 30 wt% or more and 80 wt% or less from the viewpoint of good electrode formation.
  • the solid content concentration of the slurry obtained in the second step S2 is preferably within the above range.
  • the slurry is preferably stirred under reduced pressure or heated under reduced pressure, and reduced pressure stirring is more preferable from the viewpoint of ease of implementation and small chemical damage to the active material. .
  • the atmosphere of stirring under reduced pressure is suitably used as long as it is an atmosphere that evaporates at least water, more preferably an absolute pressure of 31 kPa or less, and further preferably an absolute pressure of 20 kPa or less.
  • the first step S1 and the second step S2 by adjusting the moisture content and viscosity of the slurry in two steps, the first step S1 and the second step S2, and by kneading while maintaining suitable conditions in the second step S2, in particular, Dispersion uniformity becomes better and chemical damage to the active material can be reduced. Further, since the conductive additive in the slurry is also uniformly dispersed, the resistance value of the electrode can be lowered. Furthermore, since the slurry is kneaded under the above conditions, a preferable shearing force is applied to the slurry, the binding force of the binder is improved, the adhesion with the current collector is improved, and as a result, an electrode capable of giving excellent battery performance is obtained. It is thought that it is obtained.
  • the surrounding environment such as temperature and humidity is particularly affected during the kneading of the slurry, and the state of the slurry changes.
  • the solvent also contains moisture, when the solvent is added, the moisture content of the slurry naturally increases and the viscosity is lowered. From these points, the dispersibility and the coating property to the current collector are lowered, and consequently the battery characteristics are adversely affected. Therefore, the two steps as in the present invention are important.
  • the content of the conductive additive in the electrode slurry is preferably 1 part by weight or more and 30 parts by weight or less, more preferably 2 parts by weight with respect to 100 parts by weight of the positive electrode active material or the negative electrode active material. It is not less than 15 parts by weight. If content of a conductive support agent is the said range, the dispersibility of each material in the slurry for electrodes will be favorable, and the electroconductivity of an electrode will become more favorable. When the content of the conductive assistant is too small, the resistance value of the electrode tends to increase. When the content of the conductive auxiliary agent is excessive, the dispersibility of the active material is deteriorated, and the amount of the active material is relatively reduced, so that the battery capacity tends to be reduced.
  • the separator 3 is installed between the positive electrode 2 and the negative electrode 1 and has a function as a medium that mediates the conduction of lithium ions between them while preventing the conduction of electrons and holes between them. It does not have electron or hole conductivity.
  • the separator 3 may contain various plasticizers, antioxidants, flame retardants, and may be coated with a metal oxide or the like.
  • the material of the separator 3 is formed of an electrically insulating material and has electrical insulating properties.
  • the material of the separator 3 is suitable if it has a specific resistance of at least 1 ⁇ 10 8 ⁇ ⁇ cm.
  • Examples of the material of the separator 3 include nylon, cellulose, polysulfone, polyethylene, polypropylene, polybutene, polyacrylonitrile, polyimide, polyamide, PET, and a woven fabric, a nonwoven fabric, and a microporous membrane formed by combining two or more of them. It is done.
  • the material of the separator 3 is preferably at least one selected from the group consisting of cellulose unwoven cloth, polypropylene, polyethylene and PET, and more preferably polypropylene, polyethylene and cellulose unwoven cloth. preferable.
  • the laminated body 5 is formed by alternately laminating or winding a plurality of positive electrodes 1, negative electrodes 2, and separators 3.
  • the number of layers / stacks of the stacked body 5 may be appropriately adjusted according to a desired voltage value and battery capacity.
  • the non-aqueous electrolyte 6 has a function of mediating ion transfer between the positive electrode 1 and the negative electrode 2, and is an electrolyte obtained by dissolving a solute in a non-aqueous electrolyte solvent or a solute dissolved in a non-aqueous solvent.
  • a gel electrolyte in which a polymer is impregnated with an electrolytic solution can be used.
  • the solute is preferably a lithium salt such as LiClO 4 , LiBF 4 , LiPF 6 , LiAsF 6 , LiCF 3 SO 3 , LiBOB (Lithium Bis (Oxalato) Borate), LiN (SO 2 CF 3 ) 2 , and LiPF 6. preferable.
  • a lithium salt such as LiClO 4 , LiBF 4 , LiPF 6 , LiAsF 6 , LiCF 3 SO 3 , LiBOB (Lithium Bis (Oxalato) Borate), LiN (SO 2 CF 3 ) 2 , and LiPF 6. preferable.
  • any non-aqueous solvent is preferably used. From the viewpoint of good solubility of the lithium salt, an aprotic polar solvent is more preferable.
  • aprotic polar solvents examples include cyclic aprotic polar solvents or chain aprotic polar solvents, such as carbonate, ester, ether, phosphate ester, amide, sulfate ester, sulfite ester, sulfone, sulfone.
  • An acid ester, a nitrile, etc. are illustrated.
  • cyclic aprotic polar solvent examples include cyclic carbonates, cyclic esters, cyclic sulfones, and cyclic ethers.
  • cyclic carbonate examples include ethylene carbonate (EC), propylene carbonate (PC), fluoroethylene carbonate, butylene carbonate, and the like.
  • chain aprotic polar solvent examples include a chain carbonate, a chain carboxylic acid ester, or a chain ether.
  • chain carbonates examples include dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate (EMC), dipropyl carbonate, and methyl propyl carbonate.
  • non-aqueous electrolyte solvent it is preferable to use a solvent in which two or more of these solvents are mixed. From the viewpoint of good lithium ion conductivity, a mixture of a cyclic aprotic polar solvent and a chain aprotic polar solvent is preferable. A solvent is particularly preferred. By doing so, the solubility of the solute can be improved. In addition, the conductivity of lithium ions can be increased.
  • the proportion of the chain aprotic polar solvent in the mixed solvent is preferably 5% by volume to 95% by volume because the balance between viscosity and solubility is good, and 10% by volume to 90% because the balance is particularly good. More preferably, it is more preferably 20% by volume to 80% by volume, and most preferably 50% by volume to 80% by volume.
  • a general non-aqueous solvent such as acetonitrile may be used.
  • non-aqueous electrolyte 6 according to the present invention may contain a trace amount of additives such as flame retardants and stabilizers.
  • the amount of the non-aqueous electrolyte 6 is suitably used as long as it is 0.1 mL or more per 1 Ah of battery capacity. If it is this range, the conduction
  • the terminal 7 is a member that electrically connects the lithium ion secondary battery 10 and an external device.
  • the terminal 7 is formed by connecting the positive electrode forming member 15 and the positive electrode terminal 71, or the negative electrode forming member 16 and the negative electrode terminal 72.
  • a conductor is preferably used, and aluminum is more preferable from the viewpoint of a good balance between performance and cost.
  • the enclosure 8 has a function of protecting the laminate 5 and the non-aqueous electrolyte 6 from moisture and air outside the lithium ion secondary battery 10.
  • the metal can is suitably used, and a composite film is more preferable.
  • an aluminum foil can be suitably used in terms of a good balance between moisture barrier properties, weight and cost.
  • thermoplastic resin layer of the composite film polyethylene or polypropylene is preferably used from the viewpoint that the heat seal temperature range and the blocking property of the non-aqueous electrolyte 6 are good.
  • the terminal 7 has a terminal extension 9 extending at least to the outside of the enclosure 8.
  • an E-type viscometer (TV-22 viscometer, cone plate type: Toki Sangyo Co., Ltd.) was used.
  • the shape of the rotor was 3 ° ⁇ R24, the rotation speed was 60 rpm, and the viscosity when the rotor was operated for 1 minute was measured.
  • the water content of the slurry was measured using a Karl Fischer moisture meter (MCK-610: Kyoto Electronics Industry Co., Ltd.).
  • the resistance value of the electrode plate was measured by a 4-terminal method using an LCR meter 3522-50 manufactured by HIOKI. At this time, the measurement was performed in a state where an alligator clip type was used as a measurement terminal and the distance between the terminals was fixed at 0.5 cm.
  • Example 1> (Preparation of positive electrode) First Step First, 7 parts by weight of acetylene black, 4.5 parts by weight of PVdF, and 105 parts by weight of NMP were added to a planetary mixer with respect to 100 parts by weight of LiNi 1/2 Mn 3/2 O 4 . Thereafter, these mixtures were stirred at room temperature while reducing the pressure inside the planetary mixer to an absolute pressure of 20 kPa or less to obtain a first slurry. The water content of the first slurry was 300 ppm, and the viscosity was 4000 cP.
  • the positive electrode slurry was applied onto an aluminum foil having a thickness of 15 ⁇ m using a comma coater. Thereafter, NMP in the slurry was removed by heat drying at 120 ° C. and vacuum drying at 150 ° C. to obtain a positive electrode.
  • the negative electrode slurry was coated on an aluminum foil having a thickness of 15 ⁇ m using a comma coater. Thereafter, NMP in the slurry was removed by heat drying at 120 ° C. and vacuum drying at 150 ° C. to obtain a negative electrode.
  • an aluminum terminal was attached to each positive electrode and negative electrode. Then, the electrode group provided with this terminal was sandwiched between two aluminum laminate sheets. At this time, the terminal partially extended outside the aluminum laminate sheet.
  • a nonaqueous electrolytic solution having a concentration of 1 mol / L by adding LiPF6 as a solute to a nonaqueous solvent in which EC and DMC were mixed at a volume ratio of 3: 7 was added into the bag. Thereafter, a space was created while reducing the pressure inside the bag to obtain an encapsulated body in which the electrode group and the non-aqueous electrolyte were sealed.
  • the inclusion body was cured for 12 hours to obtain a lithium ion secondary battery.
  • Example 2 In the production of the positive electrode, the first slurry was adjusted to a water content of 200 ppm and a viscosity of 5000 cP, and the second slurry was adjusted to a solid content concentration of 44%, so that the water content was 200 ppm and the viscosity was 2500 cP. Except for these, a lithium ion secondary battery was obtained through the same steps as in Example 1.
  • Example 3 As the positive electrode material, LiNi 1/2 Mn 1/2 O 2 was used instead of LiNi 1/2 Mn 3/2 O 4 . Further, in the production of the positive electrode, the first slurry had a water content of 300 ppm and a viscosity of 4500 cP, and the second slurry had a solid content concentration of 44%, a water content of 300 ppm and a viscosity of 1500 cP. Except for these, a lithium ion secondary battery was obtained through the same steps as in Example 1.
  • the first slurry had a water content of 300 ppm and a viscosity of 12000 cP, and the second slurry had a solid content concentration of 44%, and had a water content of 250 ppm and a viscosity of 3500 cP. Except for these, a lithium ion secondary battery was obtained through the same steps as in Example 1.
  • ⁇ Comparative example 2> In preparing the positive electrode, the slurry was stirred without reducing the pressure in the planetary mixer, and the first slurry was adjusted to have a water content of 2000 ppm and a viscosity of 4000 cP. The second slurry had a water content of 900 ppm and a viscosity of 2000 cP. Except for these, a lithium ion secondary battery was obtained through the same steps as in Example 1.
  • the first slurry had a water content of 900 ppm and a viscosity of 8000 cP, and the slurry was stirred without reducing the pressure in the planetary mixer, so that the second slurry had a water content of 1200 ppm and a viscosity of 3000 cP. Except for these, a lithium ion secondary battery was obtained through the same steps as in Example 1.
  • ⁇ Comparative example 4> In producing the positive electrode, 0.5 parts by weight of acetylene black, 4.5 parts by weight of PVdF, and 45 parts by weight of NMP were added to the planetary mixer with respect to 100 parts by weight of LiNi 1/2 Mn 3/2 O 4 . Thereafter, these mixtures were stirred at room temperature while reducing the pressure inside the planetary mixer to an absolute pressure of 20 kPa or less to obtain a first slurry.
  • the water content of the first slurry was 300 ppm and the viscosity was 9000 cP.
  • the first slurry was diluted with NMP, and the slurry adjusted to a solid content concentration of 44% was stirred with a planetary mixer while reducing the absolute pressure to 20 kPa or less to obtain a second slurry.
  • the second slurry had a water content of 2000 ppm and a viscosity of 300 cP.
  • a positive electrode slurry was obtained. Except for these, a lithium ion secondary battery was obtained through the same steps as in Example 1.
  • ⁇ Comparative Example 5> In producing the positive electrode, 32 parts by weight of acetylene black, 15 parts by weight of PVdF, and 160 parts by weight of NMP were added to the planetary mixer with respect to 100 parts by weight of LiNi 1/2 Mn 3/2 O 4 . Thereafter, these mixtures were stirred at room temperature while reducing the pressure inside the planetary mixer to an absolute pressure of 20 kPa or less to obtain a first slurry.
  • the water content of the first slurry was 800 ppm and the viscosity was 10000 cP.
  • the first slurry was diluted with NMP, and the slurry prepared to a solid content concentration of 38% was stirred with a planetary mixer while reducing the absolute pressure to 20 kPa or less to obtain a second slurry.
  • the second slurry had a water content of 7000 ppm and a viscosity of 600 cP.
  • a positive electrode slurry was obtained. Except for these, a lithium ion secondary battery was obtained through the same steps as in Example 1.
  • ⁇ Comparative Example 6> In preparing the positive electrode, first, 90 parts by weight of acetylene black, 6 parts by weight of PVdF, and 4 parts by weight of NMP were added to a planetary mixer with respect to 100 parts by weight of LiNi 1/2 Mn 3/2 O 4 . Then, these mixtures were stirred at room temperature while reducing the pressure inside the planetary mixer to an absolute pressure of 20 kPa or less to prepare a solid content concentration of 44%. The slurry at this time had a water content of 400 ppm and a viscosity of 2000 cP. Except for these, a lithium ion secondary battery was obtained through the same steps as in Example 1.
  • Aging condition 1 First, the secondary battery is charged to 3.4 V and SOC (charged state) 100% with a constant current of 0.2 C. Then, the lithium ion secondary battery is stored in an oven at 60 ° C. for one week.
  • Aging condition 2 First, the secondary battery is charged to 3.0 V and SOC (charged state) 100% at a constant current of 0.2 C. Then, the lithium ion secondary battery is stored in an oven at 60 ° C. for one week.
  • Charge / discharge condition 2 Charging condition 2: Charge at a constant current of 0.5 C until the voltage reaches 3.0 V, then charge at a constant voltage while maintaining 3.0 V, and then when the current reaches 0.02 C Stop charging.
  • Discharge condition 2 Discharge at a constant current of 1.0 C until the voltage decreases to 2.0 V, and terminate the discharge when it reaches 2.5 V.
  • C is defined as a current value required to charge or discharge the entire capacity of a lithium ion secondary battery in 1 hour as 1C.
  • 0.5 C represents a current value necessary for charging or discharging the entire capacity of the lithium ion secondary battery in 2 hours.
  • the ratio (percentage value) calculated with the discharge capacity after one cycle in the charge / discharge cycle test as the denominator and the discharge capacity after 400 cycles as the numerator was defined as the capacity maintenance rate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

容量維持率の低下が抑制され、優れたサイクル安定性を有するリチウムイオン二次電池用電極の製造方法を提供する。 本発明は、正極活物質を含む正極および負極活物質を含む負極の製造方法であって、正極および負極を製造するための電極用スラリーの製造工程を含み、電極用スラリーの製造工程は、少なくとも、正極活物質または負極活物質と、導電助剤と、非水溶媒とを混合する第一工程S1と、第一工程S1で得られたスラリーを希釈または濃縮して混練することで、電極用スラリーを製造する第二工程S2とを有し、第一工程S1では、得られるスラリーの水分含有量が1000ppm以下、粘度が500cP以上8000cP以下の条件となるように混合し、第二工程S2では、得られる電極用スラリーの水分含有量が、第一工程S1を終えた後のスラリーの水分含有量に維持されるように混練する。

Description

リチウムイオン二次電池用電極の製造方法
 リチウムイオン二次電池用電極の製造方法に関する。
 リチウムイオン二次電池等の非水電解液二次電池においては、長期間の繰り返し充放電に耐えうる電池性能が求められている。そのような電池性能を確保する試みの一つとして、電極の製造方法に関する検討が行われている。
 例えば特許文献1には、水分量が規定された材料を用いて正極スラリーを調整し、それを正極材料とする正極の製造方法が記載され、このような技術により、電池容量維持率の低下が抑制されるとしている。
特開2014-192136号公報
 しかしながら、特許文献1の技術のように水分量を規定していても、正極スラリーを製造する工程で活物質が化学的にダメージを受けるため、正極活物質の活性が低下し、それが電気容量維持率の低下に繋がるため、製造の工程に改善の余地があった。
 本発明の目的は、容量維持率の低下が抑制され、優れたサイクル安定性を有するリチウムイオン二次電池用電極の製造方法を提供することにある。
  本発明に係るリチウムイオン二次電池用電極の製造方法は、正極活物質を含む正極および負極活物質を含む負極の製造方法であって、正極および負極を製造するための電極用スラリーの製造工程を含み、電極用スラリーの製造工程は、正極活物質または負極活物質と、導電助剤と、非水溶媒とを混合する第一工程と、第一工程で得られたスラリーを希釈または濃縮して混練することで、電極用スラリーを製造する第二工程と、を有し、第一工程では、得られるスラリーの水分含有量が1000ppm以下、粘度が500cP以上8000cP以下の条件となるように混合し、第二工程では、得られる電極用スラリーの水分含有量が、第一工程を終えた後のスラリーの水分含有量に維持されるように混練する。これにより、電極用スラリー中の活物質の化学的なダメージが低減され、結果的には、良好な電池特性が得られることを見出した。
 本発明に係るリチウムイオン二次電池用電極の製造方法によると、優れたサイクル安定性を有するリチウムイオン二次電池が得られる。
リチウムイオン二次電池の断面図である。 電極用スラリーの製造工程を示すフローチャートである。
 本発明に係るリチウムイオン二次電池について、理解の容易のために一実施形態である図1を用いて説明する。
 図1はリチウムイオン二次電池の断面図である。リチウムイオン二次電池10は、正極1と、負極2と、セパレータ3とからなる積層体5、非水電解液6、および端子7を封入体8に封入してなる。
<電極>
 電極(正極1及び負極2)は、リチウムイオンの挿入及び脱離、すなわち電極反応をする機能を有し、当該電極反応により、リチウムイオン二次電池の充電及び放電が為される。
 電極は、活物質を含む活物質層と、集電体とからなる。
 正極1において、正極集電体22の片面または両面に正極活物質層23が形成され、負極2において、負極集電体32の片面または両面に負極活物質層33が形成される。
 なお、電極は集電体の片面に正極活物質層23、他方に負極活物質層33が形成された形態、すなわち双極型(バイポーラ)であってもよい。
 活物質は、電極反応に寄与する物質である。
 正極1に含まれる正極活物質としては、リチウムマンガン酸化物(例えばLiMnO)、リチウムニッケル酸化物(例えばLiNiO)、リチウムコバルト酸化物(例えばLiCoO)、リチウムニッケルコバルト酸化物(例えばLiNi1-yCo)、リチウムニッケルマンガン酸化物(例えばLiNiCoMn1-y-z)、スピネル型リチウムマンガン酸化物(例えばLiMn)、またはオリビン構造を有するリチウムリン酸化物(例えばLiFePO、LiFe1-yMnPOまたはLiCoPOなど)などのリチウム複合酸化物であれば好適に用いられ、リチウムニッケル酸化物、リチウムニッケルマンガン酸化物またはスピネル型リチウムマンガン酸化物がより好ましく、リチウムニッケルマンガン酸化物がさらに好ましい。これらの正極活物質は、1種を単独で用いてもよいし、2種以上を併用してもよい。
 負極2に含まれる負極活物質としては、標準電位が正極活物質より低いものであれば特に限定されず、カーボンもしくはハードカーボン等の炭素材料、スズ(Sn)等の金属もしくはそれら金属に酸化ケイ素(SiO)を含むもの、または五酸化ニオブ(Nb)、チタン酸化合物、チタン酸リチウムもしくは二酸化チタン等の金属酸化物が好適に用いられ、チタン酸化合物、二酸化チタンまたはチタン酸リチウムがより好ましく、二酸化チタンまたはチタン酸リチウムがさらに好ましい。これらの負極活物質は1種を単独で用いてもよいし、2種以上を併用してもよい。
 チタン酸化合物としては、HTi,HTi,HTi11,又はHTi13,HTi1225であることが好ましく、HTi1225であることがより好ましい。
 二酸化チタンとしては、アナターゼ型、ブロンズ型(TiO(B))であることが好ましく、リチウムの挿入・脱離が効率よく進むことから、ブロンズ型であることがより好ましい。また、アナターゼ型とブロンズ型の混合物を用いても良い。
 チタン酸リチウムとしては、スピネル構造、ラムズデライト型であることが好ましく、分子式としてLiTi12で表されるものが好ましい。スピネル構造の場合、リチウムイオンの挿入・脱離の反応における活物質の膨張収縮が小さい。
 特に好ましくは、チタン化合物をLiTi12とすることであり、より安全性、安定性に優れた負極を備えることが可能となるため、安全性、安定性に優れたリチウムイオン二次電池を得ることができる。
 活物質の嵩密度は、0.2g/cm以上2.2g/cm以下であることが好ましく、0.2g/cm以上2.0g/cm以下であることがより好ましい。
 集電体22,32は、活物質層23,33から集電をする部材である。
 集電体22,32は、導電性材料であれば好適に用いられる。導電性材料としてはアルミニウムまたはその合金が好ましく、正極反応雰囲気下で安定であることから、JIS規格1030、1050、1085、1N90、または1N99等に代表される高純度アルミニウムであることがより好ましい。
 集電体22,32の厚みは、特に限定されないが、10μm以上100μm以下であることが好ましい。
 電極は、さらに導電助剤を含んでいてもよい。導電助剤とは、電極の導電性を補助する目的で、正極活物質および負極活物質に含まれる、導電性または半導電性の物質である。
 導電助剤としては、金属材料または炭素材料であれば好適に用いられる。
 金属材料としては、銅またはニッケルなどが挙げられる。
 炭素材料としては、天然黒鉛、人造黒鉛、気相成長炭素繊維、カーボンナノチューブ、またはアセチレンブラック、ケッチェンブラック、もしくはファーネスブラックなどのカーボンブラックなどが挙げられる。
 これら導電助剤は1種類を用いてもよいし、2種類以上を用いてもよい。
 導電助剤の量は、正極活物質または負極活物質100重量部に対して、好ましくは1重量部以上30重量部以下、より好ましくは2重量部以上15重量部以下である。導電助剤の量がこのような範囲であれば、電極の導電性がより良好となる。
 電極は、さらにバインダーを含んでいてもよい。バインダーとは、活物質層23,33と、集電体22,32との結着性を高める材料である。
 バインダーとしては、ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン(PTFE)、スチレン-ブタジエンゴム、ポリイミド、およびそれらの誘導体よりなる群から選ばれる少なくとも1種であれば好適に用いられる。
 バインダーの量は、正極活物質または負極活物質100重量部に対して、好ましくは1重量部以上30重量部以下、より好ましくは2重量部以上15重量部以下である。これらの範囲であれば、活物質層と集電体との結着性が十分に得られる。
 <電極の作製方法>
 電極の作製方法としては、電極用スラリーを作製し、その後、電極用スラリーを集電体上に担持し、そして非水溶媒を除去して、活物質層を集電体上に形成する方法が好適に用いられる。
 電極用スラリーの材料は、少なくとも活物質および非水溶媒を含み、好ましくはバインダー、導電助剤、分散剤、または増粘剤などをさらに含む。
 分散剤は、スラリー中において活物質などの材料を分散させる働きをもつ。
 非水溶媒としては、N-メチル-2-ピロリドン(NMP)、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、酢酸メチル、酢酸エチル、またはテトラヒドロフランが好適に用いられる。
 電極用スラリーを集電体に担持させる方法は、ドクターブレード、ダイコータもしくはコンマコーターによりスラリーを塗布する方法、スプレーにより集電体にスラリーを付着させる方法、またはスラリーに集電体を含浸させる方法であれば好適に用いられる。作製方法の容易さの観点から、スラリーを塗布する方法が好ましい。
 集電体に担持した電極用スラリーから非水溶媒を除去する方法としては、作業が容易である観点から、オーブンまたは真空オーブンを用いる乾燥が好ましい。
 溶媒を除去する雰囲気としては、空気、不活性ガス、または減圧状態であれば好適である。また、溶媒を除去する雰囲気としては、真空状態などが挙げられる。
 溶媒を除去する温度は、溶媒が除去される限りにおいては特に限定されない。溶媒除去に要する時間が短縮される点から、温度の下限は室温以上が好ましく、60℃以上がより好ましく、80℃以上がさらに好ましい。また温度の上限は、300℃以下が好ましく、250℃以下がより好ましく、230℃以下がさらに好ましい。
 <電極用スラリーの製造方法>
 図2は、電極用スラリーの製造工程を示すフローチャートである。電極用スラリーは、図2に示すように、正極活物質または負極活物質と、導電助剤と、非水溶媒と、バインダーとを混合する第一工程S1と、第一工程S1で得られたスラリーを希釈または濃縮して混練することで、電極用スラリーを製造する第二工程S2と、を有する方法により製造することができる。
 第一工程S1および第二工程S2において、電極用スラリー材料を混合して混練する際には、自転公転ミキサー、ボールミル、プラネタリーミキサー、ジェットミル、又は薄膜旋回型ミキサーが好適に用いられる。
 第一工程S1におけるスラリーの粘度は、500cP以上8000cP以下であり、活物質の分散性が良好である点から、500cP以上5000cP以下が好ましく、加工性がより良好である点から、600cP以上4000cP以下がより好ましく、1000cP以上4000cP以下が更に好ましい。
 スラリーの粘度が500cP以上であれば、混合されるスラリーに加わるせん断力が強くなり、スラリーの材料が均一に混ざる効果が得られる。一方で8000cP以下であれば、スラリーに加わるせん断力による導電パスの切断が抑制されるため、結果として電極における電流密度の分布が均一化されガス発生が起きにくくなり、さらにサイクル安定性も良好となる。
 スラリーが常に上記の粘度で混合されることにより、活物質への化学的なダメージが抑制されるため、電池が優れた性能を有することになると考えられる。
 第一工程S1における、スラリーの水分含有量は、1000ppm以下であり、500ppm以下が好ましく、350ppm以下がより好ましい。
 スラリーが常に上記の水分含有量で混合されることにより、活物質への化学的なダメージが抑制されるため、電池が優れた性能を有することになると考えられる。さらに、第一工程S1で上記の水分含有量および粘度の条件下で、活物質と導電助剤およびバインダーと非水溶媒を混合することで、各材料の分散性が向上し、均一なスラリーが得られると考えられる。
 第二工程S2では、得られる電極用スラリーの水分含有量が、第一工程S1を終えた後のスラリーの水分含有量に維持されるように混練する。なお、「得られる電極用スラリーの水分含有量が、第一工程S1を終えた後のスラリーの水分含有量に維持される」とは、得られる電極用スラリーの水分含有量が、第一工程S1を終えた後のスラリーの水分含有量の±5%の範囲にあることを言う。
 この第二工程S2では、第一工程S1で得られた分散性の高いスラリーを、水分含有量を維持しながら混練することで、分散性がさらに増しスラリー中の活物質への化学的なダメージが抑制される。さらに、水分含有量を維持しながら混練するため、スラリーに好ましいせん断力がかかり、バインダーの結着力が増し、集電体との密着性が向上し、結果的に電極の抵抗値が下がり、優れた電池性能を与え得る電極が得られる。
 第二工程S2でのスラリーの希釈方法としては、スラリーに含まれるものと同じ非水溶媒を加えても良いし、それ以外の非水溶媒を用いて希釈しても良い。
 第二工程S2でのスラリーの濃縮方法としては、加熱または減圧が好適に用いられる。
 希釈または濃縮したスラリーの粘度は、電極を作製する場合の加工性が良い点から、600cP以上4000cP以下が好ましく、1000cP以上4000cP以下がより好ましい。
 第一工程S1および第二工程S2における混練時間は、活物質が均一に分散する範囲内で適宜調整すれば良く、1時間以上5時間以下が好ましい。1時間以上であれば、スラリー中の各材料が十分に分散され、5時間以下であれば時間経過によるスラリーのゲル化および混合による活物質への化学的なダメージが抑えられる。特に、第二工程S2での混練時間は、上記の範囲とすることが好ましい。
 第一工程S1および第二工程S2におけるスラリーの固形分濃度は、良好な電極形成が行われる点から、30wt%以上80wt%以下とすることが好ましい。特に、第二工程S2で得られるスラリーの固形分濃度は、上記の範囲内とすることが好ましい。
 第一工程S1および第二工程S2において、スラリーが減圧攪拌または加熱減圧攪拌されることが好ましく、実施の容易さと活物質への化学的なダメージが小さく好適である点から、減圧攪拌がより好ましい。
 減圧攪拌の雰囲気は、少なくとも水分を蒸発させる雰囲気であれば好適に用いられ、絶対圧31kPa以下がより好ましく、絶対圧20kPa以下がさらに好ましい。
 このように、第一工程S1および第二工程S2との2工程でスラリーの水分含有量と粘度を調整し、特に第二工程S2で好適な条件を維持しながら混練することで、各材料の分散均一性がより良好になり、活物質への化学的なダメージを少なくすることができる。また、スラリー中の導電助剤も均一に分散することから電極の抵抗値を下げることができる。さらに、上記の条件下で混練するため、スラリーに好ましいせん断力がかかり、バインダーの結着力が向上し、集電体との密着性が向上し、結果的に優れた電池性能を与え得る電極が得られると考えられる。一つの工程でスラリーの水分含有量と粘度とを調整する場合、特にスラリーの混練中に、周囲の環境、例えば温度や湿度が影響し、スラリーの状態が変化してしまう。また、溶媒にも水分が含まれているため、溶媒を添加する際には、スラリーの水分含有量が自然と増え、粘度も低くなる。これらのような点から、分散性や集電体への塗工性が低下し、結果的には電池特性に悪影響を及ぼしてしまうため、本発明のような2工程が重要となる。
 ここで、電極用スラリー中の導電助剤の含有量は、上述したように、正極活物質または負極活物質100重量部に対して、好ましくは1重量部以上30重量部以下、より好ましくは2重量部以上15重量部以下である。導電助剤の含有量が上記範囲であれば、電極用スラリー中の各材料の分散性が良好であり、電極の導電性がより良好となる。導電助剤の含有量が過小であると、電極の抵抗値が大きくなる傾向にある。導電助剤の含有量が過大であると、活物質の分散性が悪化し、また活物質の量が相対的に減少することから、電池容量が小さくなる傾向がある。
 <セパレータ>
 セパレータ3は、正極2と負極1との間に設置され、これらの間の電子やホールの伝導を阻止しつつ、これらの間のリチウムイオンの伝導を仲介する媒体としての機能を有し、少なくとも電子やホールの伝導性を有さないものである。
 セパレータ3は、各種可塑剤、酸化防止剤、難燃剤が含まれてもよいし、金属酸化物等によって被覆されていてもよい。
 セパレータ3の材料は、電気絶縁材料で形成されるものであり、電気絶縁性を有している。
 セパレータ3の材料は、少なくとも比抵抗が1×10Ω・cm以上の材料であれば好適である。
 セパレータ3の材料は、例えば、ナイロン、セルロース、ポリスルホン、ポリエチレン、ポリプロピレン、ポリブテン、ポリアクリロニトリル、ポリイミド、ポリアミド、PET及びそれらを2種類以上複合したものからなる織布、不織布、微多孔膜などが挙げられる。
 セパレータ3の材料は、実用性の観点から、セルロース不職布、ポリプロピレン、ポリエチレン及びPETからなる群から選ばれる1種以上であることが好ましく、ポリプロピレン、ポリエチレンおよびセルロース不職布であることがより好ましい。
 <積層体>
 積層体5は、複数の正極1、負極2およびセパレータ3を交互に積層または捲回してなる。
 積層体5の積層/捲回数は、所望の電圧値および電池容量に応じて、適宜調整すればよい。
 <非水電解液>
 非水電解液6は、正極1と負極2との間のイオン伝達を媒介する機能を有し、非水電解液溶媒に溶質を溶解させた電解液、または非水溶媒に溶質を溶解させた電解液を高分子に含浸させたゲル電解質などを用いることができる。
 溶質としては、LiClO、LiBF、LiPF、LiAsF、LiCFSO、LiBOB(Lithium Bis (Oxalato) Borate)、LiN(SOCFなどのリチウム塩が好ましく、LiPFがより好ましい。
 非水電解液溶媒としては、非水溶媒であれば好適に用いられる。リチウム塩の溶解性が良好である点から、非プロトン性極性溶媒がより好ましい。
 非プロトン性極性溶媒としては、環状非プロトン性極性溶媒または鎖状非プロトン性極性溶媒があり、それらの例としてカーボネート、エステル、エーテル、リン酸エステル、アミド、硫酸エステル、亜硫酸エステル、スルホン、スルホン酸エステル、またはニトリルなどが例示される。
 環状非プロトン性極性溶媒としては、環状カーボネート、環状エステル、環状スルホンまたは環状エーテルなどが例示される。
 環状カーボネートとしては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、フルオロエチレンカーボネート、またはブチレンカーボネート等が挙げられる。
 鎖状非プロトン性極性溶媒としては、鎖状カーボネート、鎖状カルボン酸エステル、または鎖状エーテルなどが例示される。
 鎖状カーボネートとしては、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート(EMC)、ジプロピルカーボネート、またはメチルプロピルカーボネート等が挙げられる。
 非水電解液溶媒は、これら溶媒を2種類以上混合した溶媒を用いることが好ましく、リチウムイオンの伝導性が良好である点から、環状非プロトン性極性溶媒および鎖状非プロトン性極性溶媒の混合溶媒が特に好ましい。こうすることによって、溶質の溶解性を向上させることができる。また、リチウムイオンの伝導性を高めることができる。
 混合溶媒における鎖状非プロトン性極性溶媒の割合は、粘度および溶解性のバランスが良好であることから5体積%~95体積%が好ましく、前記バランスが特に良好であることから10体積%~90体積%より好ましく、20体積%~80体積%がさらに好ましく、50体積%~80体積%が最も好ましい。
 また、混合溶媒に加え、アセトニトリルなどの一般的な非水溶媒を用いても良い。
 また、本発明に係る非水電解液6には、難燃剤、安定化剤などの添加剤が微量含まれていてもよい。
 非水電解液6の量は、電池容量1Ahあたり、0.1mL以上であれば好適に用いられる。この範囲であれば、電極反応に伴うリチウムイオンの伝導を十分に担保せしめることができ、所望の電池性能を発現させることができる。
 <端子>
 端子7は、リチウムイオン二次電池10と外部機器とを電気的に繋ぐ部材である。
 端子7は、正極形成部材15および正極端子71、または負極形成部材16および負極端子72を接続してなる。
 端子7としては、導電体であれば好適に用いられ、性能とコストとのバランスが良好である点から、アルミニウムがより好ましい。
<封入体>
 封入体8は、積層体5および非水電解液6を、リチウムイオン二次電池10の外にある水分および空気から保護する機能を有する。
 封入体8としては、金属箔にヒートシール用の熱可塑性樹脂層を設けた複合フィルム、蒸着やスパッタリングによって形成された金属層、または角形、楕円形、円筒形、コイン形、ボタン形もしくはシート形の金属缶が好適に用いられ、複合フィルムがより好ましい。
 複合フィルムの金属箔としては、水分遮断性、重量およびコストのバランスが良好な点から、アルミ箔が好適に用いられ得る。
 複合フィルムの熱可塑性樹脂層としては、ヒートシール温度範囲および非水電解液6の遮断性が良好である点から、ポリエチレンまたはポリプロピレンが好適に用いられる。
 リチウムイオン二次電池10において、端子7は少なくとも封入体8の外側まで延びた端子延在部9を有する。
 以下、実施例により具体的に説明するが、これら実施例により限定されるものではない。
 スラリーの粘度測定には、E型粘度計(TV-22形粘度計 コーンプレートタイプ:東機産業株式会社)を用いた。ローターの形状は3°×R24、および回転数は60rpmとし、1分間ローターを運転させたときの粘度を測定した。
 スラリーの水分含有量は、カールフィッシャー水分計(MCK-610:京都電子工業株式会社)を用いて測定した。
 電極板の抵抗値は、HIOKI製LCRメーター3522-50を用いて4端子法にて測定した。この際、測定端子に、ワニ口クリップタイプを使用し、端子間距離は0.5cmで固定した状態で測定した。
 なお、略号の物質名は以下の通りである。
PVdF:ポリフッ化ビニリデン
NMP:N-メチルピロリドン
EC:エチレンカーボネート
DMC:ジメチルカーボネート
 <実施例1>
(正極の作製)
・第一工程
 まず、LiNi1/2Mn3/2100重量部に対して、アセチレンブラック7重量部、PVdF4.5重量部、およびNMP105重量部をプラネタリーミキサーに加えた。その後、これらの混合物を、プラネタリーミキサー内を絶対圧20kPa以下まで減圧しながら常温で攪拌し、第一スラリーを得た。第一スラリーの水分含有量は300ppmとし、粘度は4000cPとした。
・第二工程
 第一スラリーをNMPで希釈して、固形分濃度を44%に調製したスラリーを、絶対圧20kPa以下まで減圧しながらプラネタリーミキサーで攪拌し、第二スラリーを得た。第二スラリーは水分含有量300ppm、粘度2000cPとした。以上の工程を経て、正極スラリーを得た。
 次に、正極スラリーを、コンマコーターを用いて厚さ15μmのアルミニウム箔上に塗工した。その後、120℃の加熱乾燥および150℃の真空乾燥によってスラリーのNMPを除去し、正極を得た。
(負極の作製)
・第一工程
 まず、チタン酸リチウム100重量部に対して、アセチレンブラック4.4重量部、PVdF4.4重量部およびNMP53.5重量部をプラネタリーミキサーに加えた。その後、これらの混合物を、プラネタリーミキサー内を絶対圧20kPa以下まで減圧しながら常温で攪拌し、第一スラリーを得た。第一スラリーは水分含有量400ppmとし、粘度3000cPとした。
・第二工程
 第一スラリーをNMPで希釈して、固形分濃度を44%に調製したスラリーを、絶対圧20kPa以下まで減圧しながらプラネタリーミキサーで攪拌し、第二スラリーを得た。第二スラリーは水分含有量350ppmとし、粘度1000cPとした。以上の工程を経て、負極スラリーを得た。
 次に、負極スラリーを、コンマコーターを用いて厚さ15μmのアルミニウム箔上に塗工した。その後、120℃の加熱乾燥および150℃の真空乾燥によってスラリーのNMPを除去し、負極を得た。
(電池の作製)
 まず、面積24cmに打ち抜かれた正極13枚と、面積27cmに打ち抜かれた負極14枚とを、厚さ25μm、面積30cmのセルロース不織布のセパレータを介して交互に積層して、積層体を得た。
 次に、それぞれの正極および負極にアルミニウム端子を取り付けた。その後、この端子を備える電極群を2枚のアルミラミネートシートで挟んだ。このとき、端子が部分的にアルミラミネートシートの外側に延在するようにした。
 その後、アルミラミネート2枚同士を熱溶着して袋状に成形した。このとき、電極群を納める空間と、非水電解液注液用のスペースと、電池内で発生するガスを溜めるガスポケットとを作製した。
 その後、ECとDMCとを容量比率3:7で混合した非水溶媒に、溶質としてLiPF6を加えて濃度1mol/Lとした非水電解液を袋内に加えた。その後、袋内を減圧しながらスペースをして、電極群と非水電解液を密封した封入体を得た。
 そして、封入体を12時間養生して、リチウムイオン二次電池を得た。
 <実施例2>
 正極の作製において、第一スラリーは水分含有量200ppm、粘度5000cPとし、第二スラリーは固形分濃度を44%に調製し、水分含有量200ppm、粘度2500cPとした。これら以外は実施例1と同じ工程を経てリチウムイオン二次電池を得た。
 <実施例3>
 正極材料として、LiNi1/2Mn3/2の代わりにLiNi1/2Mn1/2を用いた。さらに正極作製において第一スラリーを水分含有量300ppmかつ粘度4500cPとし、第二スラリーを固形分濃度44%、水分含有量300ppmかつ粘度1500cPとした。これら以外は実施例1と同じ工程を経てリチウムイオン二次電池を得た。
 <比較例1>
 正極作製において、第一スラリーは水分含有量300ppm、粘度12000cPとし、第二スラリーは固形分濃度を44%に調製し、水分含有量250ppm、粘度3500cPとした。これら以外は実施例1と同じ工程を経てリチウムイオン二次電池を得た。
 <比較例2>
 正極作製においてプラネタリーミキサー内を減圧せずにスラリーを攪拌し、第一スラリーを水分含有量2000ppm、粘度4000cPとした。第二スラリーは水分含有量900ppm、粘度2000cPとした。これら以外は実施例1と同じ工程を経てリチウムイオン二次電池を得た。
 <比較例3>
 正極作製において第一スラリーを水分含有量900ppm、粘度8000cPとし、プラネタリーミキサー内を減圧せずにスラリーを攪拌して、第二スラリーを水分含有量1200ppm、粘度3000cPとした。これら以外は実施例1と同じ工程を経てリチウムイオン二次電池を得た。
<比較例4>
 正極作製において、LiNi1/2Mn3/2100重量部に対して、アセチレンブラック0.5重量部、PVdF4.5重量部、およびNMP45重量部をプラネタリーミキサーに加えた。その後、これらの混合物を、プラネタリーミキサー内を絶対圧20kPa以下まで減圧しながら常温で攪拌し、第一スラリーを得た。第一スラリーの水分含有量は300ppmとし、粘度を9000cPとした。
 その後、第一スラリーをNMPで希釈して、固形分濃度を44%に調製したスラリーを、絶対圧20kPa以下まで減圧しながらプラネタリーミキサーで攪拌し、第二のスラリーを得た。第二スラリーは水分含有量2000ppmとし、粘度300cPとした。以上の工程を経て、正極スラリーを得た。これら以外は実施例1と同じ工程を経てリチウムイオン二次電池を得た。
<比較例5>
 正極作製において、LiNi1/2Mn3/2100重量部に対して、アセチレンブラック32重量部、PVdF15重量部、およびNMP160重量部をプラネタリーミキサーに加えた。その後、これらの混合物を、プラネタリーミキサー内を絶対圧20kPa以下まで減圧しながら常温で攪拌し、第一スラリーを得た。第一スラリーの水分含有量は800ppmとし、粘度を10000cPとした。
 その後、第一スラリーをNMPで希釈して、固形分濃度を38%に調製したスラリーを、絶対圧20kPa以下まで減圧しながらプラネタリーミキサーで攪拌し、第二スラリーを得た。第二スラリーは水分含有量7000ppm、粘度600cPとした。以上の工程を経て、正極スラリーを得た。これら以外は実施例1と同じ工程を経てリチウムイオン二次電池を得た。
<比較例6>
 正極作製において、まず、LiNi1/2Mn3/2100重量部に対して、アセチレンブラック90重量部、PVdF6重量部、およびNMP4重量部をプラネタリーミキサーに加えた。その後、これらの混合物を、プラネタリーミキサー内を絶対圧20kPa以下まで減圧しながら常温で攪拌し、固形分濃度を44%に調製した。このときのスラリーを水分含有量400ppm、粘度2000cPとした。これら以外は実施例1と同じ工程を経てリチウムイオン二次電池を得た。
(性能評価)
 実施例で作製したリチウムイオン二次電池に対し、エージング試験およびガス発生量測定、または充放電サイクル試験を行い、性能を評価した。
(エージング試験)
 エージング試験は、2つの条件のうち、いずれか1つを用いて行った。
エージング条件1:
まず、0.2Cの定電流で3.4VかつSOC(充電状態)100%まで二次電池を充電する。そして、60℃のオーブン内にリチウムイオン二次電池を1週間保存する。
エージング条件2:
まず、0.2Cの定電流で3.0VかつSOC(充電状態)100%まで二次電池を充電する。そして、60℃のオーブン内にリチウムイオン二次電池を1週間保存する。
(ガス発生量測定)
 エージング前後の電池の体積差をアルキメデス法で測定し、ガス発生量とした。
(充放電サイクル試験の方法)
 充放電サイクル試験は、充電条件1および放電条件1、または充電条件2および放電条件2にて充放電サイクルを繰り返した。なお、以下に記載する電圧は、リチウム金属基準ではなく、リチウムイオン二次電池の電圧である。
  サイクル条件
   電池環境温度:45℃
   単位サイクル:充電1回及び放電1回を1サイクルとする。
  サイクル数:400サイクル
  充放電条件1
   充電条件1:電圧が3.4Vに達するまでは1.0Cの定電流で充電し、その後、3.4Vで充電を終了する。
   放電条件1:電圧が2.5Vまで減少するまでは1.0Cの定電流で放電し、2.5Vとなった時点で放電を終了する。
  充放電条件2
   充電条件2:電圧が3.0Vに達するまでは0.5Cの定電流で充電し、その後、3.0Vを維持して定電圧で充電し、その後、電流が0.02Cとなった時点で充電を終了する。
   放電条件2:電圧が2.0Vまで減少するまでは1.0Cの定電流で放電し、2.5Vとなった時点で放電を終了する。
 ここでいう「C」とは、リチウムイオン二次電池の全容量を1時間で充電、又は放電するために必要な電流値を1Cと定義したものである。例えば0.5Cは、リチウムイオン二次電池の全容量を2時間で充電、又は放電するために必要な電流値を表す。
 そして、充放電サイクル試験における1サイクル後の放電容量を分母とし、400サイクル後の放電容量を分子として算出した割合(パーセント値)を、容量維持率とした。
(電池の評価基準)
 作製した電池の評価基準としては、充放電サイクル試験後の容量維持率が90%以上であり、かつ、ガス発生量が20cc以下である場合を合格とした。
Figure JPOXMLDOC01-appb-T000001
[表1の総評]
 実施例1~3は、正極の抵抗値が100Ω以下と低く、90%以上と高い容量維持率、および20cc以下と少ないガス発生量を示し、特に優れた電池性能を有することが明らかとなった。これに対し、比較例1~6は評価基準を満足せず、サイクル安定性が十分とはいえず、ガスの発生量も多く、電池性能に優れているとはいえなかった。
  1  正極
  2  負極
  3  セパレータ
  5  積層体
  6  非水電解液
  7  端子
  8  封入体
  9  端子延在部
 10  リチウムイオン二次電池
 15  正極形成部材
 16  負極形成部材
 22  正極集電体
 23  正極活物質層
 32  負極集電体
 33  負極活物質層
 71  正極端子
 72  負極端子

 

Claims (7)

  1.  正極活物質を含む正極および負極活物質を含む負極の製造方法であって、
     正極および負極を製造するための電極用スラリーの製造工程を含み、
     前記電極用スラリーの製造工程は、
     少なくとも、前記正極活物質または前記負極活物質と、導電助剤と、非水溶媒とを混合する第一工程と、
     前記第一工程で得られたスラリーを希釈または濃縮して混練することで、電極用スラリーを製造する第二工程と、を有し、
     前記第一工程では、得られるスラリーの水分含有量が1000ppm以下、粘度が500cP以上8000cP以下の条件となるように混合し、
     前記第二工程では、得られる電極用スラリーの水分含有量が、前記第一工程を終えた後のスラリーの水分含有量に維持されるように混練する
     ことを特徴とする、リチウムイオン二次電池用電極の製造方法。
  2.  前記電極用スラリーにおける前記導電助剤の含有量を、前記正極活物質または前記負極活物質100重量部に対して、1重量部以上30重量部以下とする
     請求項1に記載のリチウムイオン二次電池用電極の製造方法。
  3.  前記第一工程および第二工程では、前記電極用スラリーの粘度が600cP以上4000cP以下となるようにする
     請求項1または2に記載のリチウムイオン二次電池用電極の製造方法。
  4.  前記第一工程および第二工程では、前記電極用スラリーの水分含有量が500ppm以下となるようにする
     請求項1から3のいずれかに記載のリチウムイオン二次電池用電極の製造方法。
  5.  前記電極用スラリーにおける固形分濃度を30wt%以上80wt%以下とする
     請求項1から4のいずれかに記載のリチウムイオン二次電池用電極の製造方法。
  6.  前記第一工程および前記第二工程では、前記スラリーを減圧攪拌する
     請求項1から5のいずれかに記載のリチウムイオン二次電池用電極の製造方法。
  7.  前記減圧攪拌の雰囲気を絶対圧31kPa以下とする
     請求項6に記載のリチウムイオン二次電池用電極の製造方法。
PCT/JP2017/015447 2016-04-27 2017-04-17 リチウムイオン二次電池用電極の製造方法 WO2017188043A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780014713.5A CN108780886B (zh) 2016-04-27 2017-04-17 锂离子二次电池用电极的制造方法
JP2018514507A JP6739524B2 (ja) 2016-04-27 2017-04-17 リチウムイオン二次電池用電極の製造方法
US16/096,211 US10680235B2 (en) 2016-04-27 2017-04-17 Method for producing electrode for lithium-ion secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-089137 2016-04-27
JP2016089137 2016-04-27

Publications (1)

Publication Number Publication Date
WO2017188043A1 true WO2017188043A1 (ja) 2017-11-02

Family

ID=60161588

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/015447 WO2017188043A1 (ja) 2016-04-27 2017-04-17 リチウムイオン二次電池用電極の製造方法

Country Status (4)

Country Link
US (1) US10680235B2 (ja)
JP (1) JP6739524B2 (ja)
CN (1) CN108780886B (ja)
WO (1) WO2017188043A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019198467A1 (ja) * 2018-04-09 2019-10-17 日産自動車株式会社 非水電解質二次電池の製造方法
WO2020075626A1 (ja) * 2018-10-10 2020-04-16 日本ゼオン株式会社 電極合材層用導電性ペースト、電極合材層用スラリー、電気化学素子用電極、および電気化学素子

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007234418A (ja) * 2006-03-01 2007-09-13 Matsushita Electric Ind Co Ltd 非水系二次電池用負極合剤ペースト、それを用いた負極及び非水系二次電池並びに負極合剤ペーストの製造方法
JP2011025183A (ja) * 2009-07-28 2011-02-10 Nissan Motor Co Ltd 混合装置及び混合方法
JP2012186054A (ja) * 2011-03-07 2012-09-27 Hitachi Maxell Energy Ltd 合剤スラリーおよびその製造方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6447951B1 (en) * 1996-09-23 2002-09-10 Valence Technology, Inc. Lithium based phosphates, method of preparation, and uses thereof
JPH11144714A (ja) * 1997-11-07 1999-05-28 Toray Ind Inc 電極用スラリーの製造方法
WO2005043568A1 (ja) * 2003-09-30 2005-05-12 Tdk Corporation 積層セラミック電子部品の内部電極用の導電体ペーストの製造方法
JP4449447B2 (ja) * 2003-12-22 2010-04-14 日産自動車株式会社 固体電解質電池の製造方法
JP4799245B2 (ja) * 2006-03-30 2011-10-26 株式会社東芝 非水電解質電池、電池パック及び自動車
JP2010044871A (ja) * 2008-08-08 2010-02-25 Panasonic Corp 電極合剤スラリーの製造方法
JP4487219B1 (ja) * 2008-12-26 2010-06-23 トヨタ自動車株式会社 非水二次電池用電極の製造方法
US9257696B2 (en) * 2009-02-12 2016-02-09 Daikin Industries, Ltd. Positive electrode mixture slurry for lithium secondary batteries, and positive electrode and lithium secondary battery that use said slurry
US8927151B2 (en) * 2009-12-08 2015-01-06 I.S.T. Corporation Binder composition for electrodes and electrode mix slurry
CN102754246A (zh) * 2010-01-11 2012-10-24 安普雷斯股份有限公司 可变容量电池组件
US20120107689A1 (en) * 2010-06-30 2012-05-03 Daikin Industries Building Binder composition for electrode
KR101277996B1 (ko) * 2010-06-30 2013-06-27 다이킨 고교 가부시키가이샤 전극용 바인더 조성물
JP2012043658A (ja) 2010-08-19 2012-03-01 Toyota Motor Corp リチウムイオン二次電池とその製造方法
CN104904042B (zh) * 2013-02-04 2017-03-15 日本瑞翁株式会社 锂离子二次电池正极用浆料
JP2014192136A (ja) 2013-03-28 2014-10-06 Asahi Kasei Corp 非水電解質二次電池用正極の製造方法及び非水電解質二次電池
KR102221799B1 (ko) * 2014-10-22 2021-03-02 삼성에스디아이 주식회사 리튬 이차 전지

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007234418A (ja) * 2006-03-01 2007-09-13 Matsushita Electric Ind Co Ltd 非水系二次電池用負極合剤ペースト、それを用いた負極及び非水系二次電池並びに負極合剤ペーストの製造方法
JP2011025183A (ja) * 2009-07-28 2011-02-10 Nissan Motor Co Ltd 混合装置及び混合方法
JP2012186054A (ja) * 2011-03-07 2012-09-27 Hitachi Maxell Energy Ltd 合剤スラリーおよびその製造方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019198467A1 (ja) * 2018-04-09 2019-10-17 日産自動車株式会社 非水電解質二次電池の製造方法
JP2019186009A (ja) * 2018-04-09 2019-10-24 日産自動車株式会社 非水電解質二次電池の製造方法
CN111954944A (zh) * 2018-04-09 2020-11-17 日产自动车株式会社 非水电解质二次电池的制造方法
JP7481795B2 (ja) 2018-04-09 2024-05-13 日産自動車株式会社 非水電解質二次電池の製造方法
WO2020075626A1 (ja) * 2018-10-10 2020-04-16 日本ゼオン株式会社 電極合材層用導電性ペースト、電極合材層用スラリー、電気化学素子用電極、および電気化学素子
CN112789750A (zh) * 2018-10-10 2021-05-11 日本瑞翁株式会社 电极复合材料层用导电性糊、电极复合材料层用浆料、电化学元件用电极及电化学元件
EP3866226A4 (en) * 2018-10-10 2022-08-03 Zeon Corporation ELECTRICALLY CONDUCTIVE ELECTRODE MIX LAYER PASTE, ELECTRODE MIX LAYER SLURRY, ELECTRODE ELECTROCHEMICAL ELEMENT AND ELECTROCHEMICAL ELEMENT

Also Published As

Publication number Publication date
CN108780886A (zh) 2018-11-09
JP6739524B2 (ja) 2020-08-12
US10680235B2 (en) 2020-06-09
JPWO2017188043A1 (ja) 2018-12-13
US20190140259A1 (en) 2019-05-09
CN108780886B (zh) 2021-06-18

Similar Documents

Publication Publication Date Title
US20080299457A1 (en) Nonaqueous electrolyte secondary battery and method for manufacturing positive electrode of nonaqueous electrolyte secondary battery
CN107112584B (zh) 非水电解液二次电池和非水电解液二次电池的正极
JP2009123463A (ja) リチウムイオン二次電池用正極、その製造方法及びリチウムイオン二次電池
JP2009123464A (ja) リチウムイオン二次電池用正極活物質、正極、その製造方法及びリチウムイオン二次電池
KR20160052382A (ko) 리튬 이차 전지
JP6750196B2 (ja) 非水系リチウム電池及びその使用方法
US10790512B2 (en) Nonaqueous electrolyte secondary battery
JP6656370B2 (ja) リチウムイオン二次電池および組電池
JP7358363B2 (ja) 被覆正極活物質及びリチウムイオン二次電池の製造方法
JP6739524B2 (ja) リチウムイオン二次電池用電極の製造方法
WO2013084840A1 (ja) 非水電解質二次電池及びそれを用いた組電池
JP2017204334A (ja) 電極の製造方法、ならびに非水電解質二次電池および蓄電ユニット
JP7363443B2 (ja) リチウムイオン二次電池
JP2017174647A (ja) 電極構造体及びリチウム二次電池
JP2020077575A (ja) リチウムイオン二次電池
JP2014072062A (ja) 非水電解質二次電池及び組電池
JP2019021563A (ja) リチウムイオン二次電池およびその製造方法
US20230246182A1 (en) Additives for high-nickel electrodes and methods of forming the same
CN110476291B (zh) 非水电解质二次电池及其制造方法
WO2019124123A1 (ja) 活物質と導電性炭素材料からなる複合体を含むリチウムイオン二次電池用電極の製造方法
JP2017182917A (ja) リチウムイオン二次電池及びその製造方法、ならびに組電池
JP2023111498A (ja) リチウムイオン二次電池用正極の製造方法
JP2021039820A (ja) 活物質と導電性炭素材料からなる複合体を含むリチウムイオン二次電池用電極の製造方法
JP2023119911A (ja) リチウムイオン二次電池用バインダー、リチウムイオン二次電池用負極活物質ペースト及びリチウムイオン二次電池
JP2022130217A (ja) リチウムイオン二次電池用正極活物質及びリチウムイオン二次電池の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018514507

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17789328

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17789328

Country of ref document: EP

Kind code of ref document: A1