WO2017170615A1 - 正帯電用電子写真感光体、電子写真感光体カートリッジ、及び画像形成装置 - Google Patents

正帯電用電子写真感光体、電子写真感光体カートリッジ、及び画像形成装置 Download PDF

Info

Publication number
WO2017170615A1
WO2017170615A1 PCT/JP2017/012767 JP2017012767W WO2017170615A1 WO 2017170615 A1 WO2017170615 A1 WO 2017170615A1 JP 2017012767 W JP2017012767 W JP 2017012767W WO 2017170615 A1 WO2017170615 A1 WO 2017170615A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
photosensitive member
electrophotographic photosensitive
formula
energy level
Prior art date
Application number
PCT/JP2017/012767
Other languages
English (en)
French (fr)
Inventor
山崎 大輔
Original Assignee
三菱化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱化学株式会社 filed Critical 三菱化学株式会社
Priority to CN201780020724.4A priority Critical patent/CN108885416A/zh
Priority to JP2018508109A priority patent/JP6879293B2/ja
Priority to EP17775152.6A priority patent/EP3438752B1/en
Publication of WO2017170615A1 publication Critical patent/WO2017170615A1/ja
Priority to US16/143,979 priority patent/US20190025719A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/05Organic bonding materials; Methods for coating a substrate with a photoconductive layer; Inert supplements for use in photoconductive layers
    • G03G5/0528Macromolecular bonding materials
    • G03G5/0532Macromolecular bonding materials obtained by reactions only involving carbon-to-carbon unsatured bonds
    • G03G5/0546Polymers comprising at least one carboxyl radical, e.g. polyacrylic acid, polycrotonic acid, polymaleic acid; Derivatives thereof, e.g. their esters, salts, anhydrides, nitriles, amides
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0601Acyclic or carbocyclic compounds
    • G03G5/0612Acyclic or carbocyclic compounds containing nitrogen
    • G03G5/0614Amines
    • G03G5/06142Amines arylamine
    • G03G5/06147Amines arylamine alkenylarylamine
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/75Details relating to xerographic drum, band or plate, e.g. replacing, testing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/043Photoconductive layers characterised by having two or more layers or characterised by their composite structure
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/05Organic bonding materials; Methods for coating a substrate with a photoconductive layer; Inert supplements for use in photoconductive layers
    • G03G5/0528Macromolecular bonding materials
    • G03G5/0557Macromolecular bonding materials obtained otherwise than by reactions only involving carbon-to-carbon unsatured bonds
    • G03G5/0564Polycarbonates
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0601Acyclic or carbocyclic compounds
    • G03G5/0605Carbocyclic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0601Acyclic or carbocyclic compounds
    • G03G5/0605Carbocyclic compounds
    • G03G5/0607Carbocyclic compounds containing at least one non-six-membered ring
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0601Acyclic or carbocyclic compounds
    • G03G5/0609Acyclic or carbocyclic compounds containing oxygen
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0601Acyclic or carbocyclic compounds
    • G03G5/0612Acyclic or carbocyclic compounds containing nitrogen
    • G03G5/0614Amines
    • G03G5/06142Amines arylamine
    • G03G5/06144Amines arylamine diamine
    • G03G5/061443Amines arylamine diamine benzidine
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0601Acyclic or carbocyclic compounds
    • G03G5/0612Acyclic or carbocyclic compounds containing nitrogen
    • G03G5/0614Amines
    • G03G5/06149Amines enamine
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0601Acyclic or carbocyclic compounds
    • G03G5/0612Acyclic or carbocyclic compounds containing nitrogen
    • G03G5/0616Hydrazines; Hydrazones
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0664Dyes
    • G03G5/0675Azo dyes
    • G03G5/0677Monoazo dyes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0664Dyes
    • G03G5/0696Phthalocyanines

Definitions

  • the present invention relates to a positively charged electrophotographic photosensitive member, an electrophotographic photosensitive member cartridge, and an image forming apparatus.
  • the present invention relates to a positively chargeable electrophotographic photosensitive member, an electrophotographic photosensitive member cartridge, and an image forming apparatus that are excellent in wear resistance and have improved chargeability at an extremely early stage of life.
  • Electrophotographic technology is widely used in the fields of copiers, printers, multifunction peripherals, digital printing, etc. because high-quality images can be obtained at high speed.
  • electrophotographic photoreceptors (hereinafter also simply referred to as “photoreceptors”), which are the core of electrophotographic technology, organic photoconductive substances having advantages such as pollution-free, easy film formation, and easy production are used.
  • the photoconductor used is mainly used.
  • a single layer type electrophotographic photosensitive member (hereinafter also simply referred to as “single layer type photosensitive member”) having a charge generation material and a charge transport material in the same layer, a charge generation material and a charge
  • a multilayer electrophotographic photosensitive member (hereinafter also simply referred to as “multilayered photosensitive member”) in which a transport material is separated and stacked in separate layers (a charge generation layer and a charge transport layer) is known.
  • the laminated type photoreceptors are of this type because most of the current photoreceptors are of this type because the functions are easily optimized for each layer and the characteristics can be easily controlled from the viewpoint of the photoreceptor design.
  • Most laminated photoreceptors have a charge generation layer and a charge transport layer in this order on a substrate. In the charge transport layer, there are very few suitable electron transport materials, whereas there are many well-known materials for hole transport materials. Therefore, the charge generation layer and the charge transport layer are arranged in this order on the substrate. Are used with negative charge.
  • Japanese Patent Laid-Open No. 5-92936 Japanese Laid-Open Patent Publication No. 2-228670 Japanese Patent Laid-Open No. 2001-33997 Japanese Unexamined Patent Publication No. 2005-331965 Japanese Unexamined Patent Publication No. 2013-231866
  • An object of the present invention is to enable good image output from the first printed sheet without causing initial charging failure even when polyarylate resin is used for a positively charging single-layer type electrophotographic photosensitive member. There is.
  • the inventor of the present invention uses a polyarylate resin as a binder resin in a single-layer type photosensitive layer and contains a specific compound, thereby improving wear resistance, filming resistance, cleaning properties, and lifetime of the photoreceptor. It has been found that the charging failure in the very early stage of can be improved.
  • the gist of the present invention resides in the following ⁇ 1> to ⁇ 7>.
  • a positively chargeable electrophotographic photosensitive member having a single-layer type photosensitive layer containing at least a binder resin, a compound having a hole transporting ability, and a compound having an electron transporting ability on a conductive support,
  • the binder resin contains a polyarylate resin,
  • B3LYP / 6-31G (d, P) among the compounds having the hole transport ability, the compound having the hole transport ability having the highest HOMO energy level is defined as Compound A.
  • the HOMO energy level is Ah
  • the compound having the lowest LUMO energy level is the compound B
  • the LUMO energy level of the compound B is Bl.
  • the single-layer type photosensitive layer further includes a compound C other than the compound A and the compound B, and the molecular weight of the compound C is 500 or less, A positively charged electrophotographic photosensitive member satisfying the following formula (1a), the following formula (2a), and the following formula (3a) when the HOMO energy level of the compound C is Ch.
  • Ar b1 to Ar b4 each independently represents an arylene group which may have a substituent.
  • Z represents a single bond, an oxygen atom, a sulfur atom or an alkylene group.
  • Y represents a single bond, an oxygen atom, a sulfur atom, or an alkylene group.
  • An electrophotographic photosensitive member cartridge comprising at least one of an exposure unit to be formed, a developing unit for developing an electrostatic latent image formed on the electrophotographic photosensitive member, and a cleaning unit for cleaning the electrophotographic photosensitive member .
  • An image forming apparatus comprising: an exposure unit to be formed; and a developing unit for developing an electrostatic latent image formed on the electrophotographic photosensitive member.
  • the electrophotographic photosensitive member of the present invention can improve wear resistance, filming resistance, cleaning properties, and extremely poor initial chargeability by using a specific binder resin and a specific compound in the photosensitive layer. Therefore, it is possible to provide an electrophotographic process cartridge including the electrophotographic photosensitive member and an image forming apparatus including the electrophotographic photosensitive member.
  • FIG. 1 is a graph showing the transition of the surface charge potential with respect to the number of printed sheets of a photoreceptor with poor initial charging failure.
  • FIG. 2 is a schematic diagram showing the main configuration of an embodiment of the image forming apparatus of the present invention.
  • the configuration of the electrophotographic photosensitive member of the present invention will be described below.
  • the electrophotographic photoreceptor of the present invention has a single-layer type photosensitive layer as the outermost layer.
  • an intermediate layer containing a compound having a hole transport ability and a binder resin may be provided on the conductive support side.
  • ⁇ Conductive support> There are no particular restrictions on the conductive support, but for example, metal materials such as aluminum, aluminum alloys, stainless steel, copper and nickel, and conductive powders such as metal, carbon and tin oxide can be added to make the conductive material conductive.
  • Mainly used are resin, glass, paper, or the like obtained by depositing or applying the applied resin material or a conductive material such as aluminum, nickel, ITO (indium tin oxide) on the surface. These may be used individually by 1 type, and may use 2 or more types together by arbitrary combinations and arbitrary ratios.
  • the form of the conductive support may be a drum, sheet, belt or the like. Furthermore, a conductive material having an appropriate resistance value may be used on a conductive support made of a metal material in order to control conductivity and surface properties and to cover defects. Moreover, when using metal materials, such as an aluminum alloy, as an electroconductive support body, you may use, after giving an anodic oxide film. When an anodized film is applied, it is desirable to perform a sealing treatment by a known method.
  • the surface of the conductive support may be smooth, or may be roughened by using a special cutting method or by performing a polishing process. Further, it may be roughened by mixing particles having an appropriate particle diameter with the material constituting the conductive support. In order to reduce the cost, it is possible to use the drawing tube as it is without performing the cutting process.
  • An undercoat layer may be provided between the conductive support and the photosensitive layer for the purpose of improving adhesiveness, blocking property, etc., concealing surface defects on the support, and the like.
  • a resin or a resin in which particles such as a metal oxide are dispersed is used as the undercoat layer.
  • the undercoat layer may be a single layer or a plurality of layers.
  • metal oxide particles used for the undercoat layer include metal oxide particles containing one metal element such as titanium oxide, aluminum oxide, silicon oxide, zirconium oxide, zinc oxide, iron oxide, calcium titanate, titanium Examples thereof include metal oxide particles containing a plurality of metal elements such as strontium acid and barium titanate. One kind of these particles may be used alone, or a plurality of kinds of particles may be mixed and used.
  • titanium oxide and aluminum oxide are preferable, and titanium oxide is particularly preferable.
  • the surface of the titanium oxide particles may be treated with an inorganic substance such as tin oxide, aluminum oxide, antimony oxide, zirconium oxide, or silicon oxide, or an organic substance such as stearic acid, polyol, or silicon.
  • an inorganic substance such as tin oxide, aluminum oxide, antimony oxide, zirconium oxide, or silicon oxide, or an organic substance such as stearic acid, polyol, or silicon.
  • any of rutile, anatase, brookite, and amorphous can be used.
  • the thing of the several crystal state may be contained.
  • the average primary particle size is preferably 10 nm or more and 100 nm or less, and particularly 10 nm or more and 50 nm or less. preferable.
  • This average primary particle size can be obtained from a TEM (Transmission-Electron Microscope) photograph or the like.
  • the undercoat layer is preferably formed by dispersing metal oxide particles in a binder resin.
  • the binder resin used for the undercoat layer is epoxy resin, polyethylene resin, polypropylene resin, acrylic resin, methacrylic resin, polyamide resin, vinyl chloride resin, vinyl acetate resin, phenol resin, polycarbonate resin, polyurethane resin, polyimide resin, chloride resin.
  • the organic zirconium compound alkoxide compounds, titanyl chelate compounds, organic titanyl compounds such as titanium alkoxide compounds include known binder resins such as a silane coupling agent.
  • the charge generation layer constituting the multilayer photoconductor can be substituted for the undercoat layer.
  • a phthalocyanine pigment or an azo pigment dispersed in a binder resin is preferably used because it may have excellent electrical characteristics. Among these, it is more preferable to use a phthalocyanine pigment (phthalocyanine compound) from the viewpoint of electrical characteristics.
  • the binder resin polyvinyl acetal resins are preferably used, and polyvinyl butyral resin is particularly preferably used.
  • oxytitanium phthalocyanine having a clear peak at a diffraction angle 2 ⁇ ( ⁇ 0.2 °) of 27.2 ° in powder X-ray diffraction using CuK ⁇ rays.
  • the use ratio of the particles to the binder resin used in the undercoat layer can be arbitrarily selected, but is usually 10% by mass or more and 500% with respect to the binder resin from the viewpoint of dispersion stability and coating properties. It is preferable to use in the range of mass% or less.
  • the thickness of the undercoat layer is arbitrary as long as the effects of the present invention are not significantly impaired, but the viewpoint of improving the electrical characteristics, strong exposure characteristics, image characteristics, repeat characteristics, and coating properties during production of the electrophotographic photosensitive member. Therefore, it is usually 0.01 ⁇ m or more, preferably 0.1 ⁇ m or more, and usually 30 ⁇ m or less, preferably 20 ⁇ m or less.
  • a known antioxidant or the like may be mixed in the undercoat layer. For the purpose of preventing image defects, pigment particles, resin particles, and the like may be included.
  • the single-layer type photosensitive layer is formed using a binder resin in order to ensure film strength in addition to the charge transport material. Specifically, a charge transporting material and various binder resins are dissolved or dispersed in a solvent to prepare a coating solution, which is applied on a conductive support (or an undercoat layer when an undercoat layer is provided) and dried. Can be obtained.
  • the positively charged electrophotographic photoreceptor of the present invention can contain any charge generating material.
  • the charge generating material include inorganic photoconductive materials such as selenium and its alloys, cadmium sulfide, and organic photoconductive materials such as organic pigments, but organic photoconductive materials are preferred, especially organic pigments. Is preferred.
  • organic pigments include phthalocyanine pigments, azo pigments, dithioketopyrrolopyrrole pigments, squalene (squarylium) pigments, quinacridone pigments, indigo pigments, perylene pigments, polycyclic quinone pigments, anthanthrone pigments, and benzimidazole pigments. .
  • phthalocyanine pigments or azo pigments are particularly preferable.
  • When organic pigments are used as the charge generation material usually, fine particles of these organic pigments are used in the form of a dispersion layer bound with various binder resins.
  • a phthalocyanine pigment as a charge generation material, specifically, metal-free phthalocyanine, copper, indium, gallium, tin, titanium, zinc, vanadium, silicon, germanium, aluminum or other metal or oxide thereof, halide, water Those having crystal forms of coordinated phthalocyanines such as oxides and alkoxides, and phthalocyanine dimers using oxygen atoms as bridging atoms are used.
  • titanyl phthalocyanines also known as oxytitanium
  • A-type also known as ⁇ -type
  • B-type also known as ⁇ -type
  • D-type also known as Y-type
  • vanadyl phthalocyanine vanadyl phthalocyanine
  • chloroindium phthalocyanine hydroxyindium phthalocyanine
  • chlorogallium phthalocyanine such as type II
  • hydroxygallium phthalocyanine such as type V
  • ⁇ -oxo-gallium phthalocyanine dimer such as type G and type I, type II, etc.
  • the ⁇ -oxo-aluminum phthalocyanine dimer is preferred.
  • X-type metal-free phthalocyanine A-type (also known as ⁇ -type), B-type (also known as ⁇ -type), and diffraction angle 2 ⁇ ( ⁇ 0.2 °) of powder X-ray diffraction are 27.1 °.
  • Hydroxygallium phthalocyanine having no peak at 2 °, a clear peak at 28.1 °, and a full width at half maximum W of 25.9 ° of 0.1 ° ⁇ W ⁇ 0.4 °
  • G-type ⁇ -oxo-gallium phthalocyanine dimer is particularly preferred.
  • the phthalocyanine compound a single compound may be used, or several mixed or mixed crystals may be used.
  • the mixed state in the phthalocyanine compound or crystal state here, those obtained by mixing the respective constituent elements later may be used, or the mixed state in the production / treatment process of the phthalocyanine compound such as synthesis, pigmentation, crystallization, etc. It may be the one that gave rise to.
  • acid paste treatment, grinding treatment, solvent treatment and the like are known.
  • two types of crystals are mixed, mechanically ground and made amorphous, and then a specific crystal state is obtained by solvent treatment. The method of converting into is mentioned.
  • the particle size of the charge generating material is usually 1 ⁇ m or less, preferably 0.5 ⁇ m or less.
  • the charge generating material dispersed in the photosensitive layer is usually 0.1 parts by mass or more, preferably 0.5 parts by mass or more, more preferably 1.0 parts by mass or more with respect to 100 parts by mass of the binder resin. Moreover, from a sensitivity viewpoint, it is 20 mass parts or less normally, Preferably it is 15 mass parts or less, More preferably, it is 10 mass parts or less.
  • the binder resin contains a polyarylate resin, but it can also be mixed with other resins and used for an electrophotographic photoreceptor.
  • Other resins used here include vinyl polymers such as polymethyl methacrylate, polystyrene, polyvinyl chloride, and copolymers thereof, polycarbonate, polyarylate, polyarylate polycarbonate, polysulfone, phenoxy, epoxy, silicone resin, etc. And other thermoplastic resins and various thermosetting resins. Of these resins, polycarbonate resin is preferable.
  • the structure of the polyarylate resin contained in the photosensitive layer is exemplified below. This illustration is made for the purpose of clarifying the gist of the present invention, and is not limited to the illustrated structure unless it is contrary to the gist of the present invention.
  • the polyarylate resin contained in the photosensitive layer preferably contains, for example, a repeating structural unit represented by the following general formula (1b), and is produced from a divalent hydroxyaryl component and a dicarboxylic acid component by a known method, for example. can do.
  • Ar b1 to Ar b4 each independently represents an arylene group which may have a substituent.
  • Z represents a single bond, an oxygen atom, a sulfur atom or an alkylene group.
  • Y represents a single bond, an oxygen atom, a sulfur atom, or an alkylene group.
  • the carbon number of the arylene group in Ar b1 to Ar b4 is usually 6 or more, and usually 20 or less, preferably 10 or less, more preferably 6.
  • Ar b1 to Ar 13 include 1,2-phenylene group, 1,3-phenylene group, 1,4-phenylene group, naphthylene group, anthrylene group, phenanthrylene group and the like.
  • the arylene group is preferably a 1,4-phenylene group from the viewpoint of electrical characteristics.
  • An arylene group may be used individually by 1 type, and may be used 2 or more types by arbitrary ratios and combinations.
  • examples of the substituent that Ar b1 to Ar b4 may have include an alkyl group, an aryl group, a halogen group, and an alkoxy group.
  • an alkyl group having 1 to 4 carbon atoms and an aryl group having 6 to 12 carbon atoms can be considered in consideration of mechanical properties and solubility in a coating solution for forming a photosensitive layer.
  • Group is preferable, and an alkoxy group having 1 to 4 carbon atoms is also preferable.
  • the alkyl group is preferably a methyl group, an ethyl group, a propyl group, or an isopropyl group
  • the aryl group is preferably a phenyl group or a naphthyl group
  • the alkoxy group is a methoxy group, an ethoxy group, a propoxy group, A butoxy group is preferred.
  • Ar b3 and Ar b4 each independently preferably have a substituent number of 0 or more and 2 or less, more preferably from the viewpoint of adhesiveness, more preferably from the viewpoint of wear resistance. It is particularly preferable that the number of groups is one. Moreover, as a substituent, an alkyl group is preferable and a methyl group is particularly preferable. Further, from the viewpoint of electrical characteristics and wear resistance, in the above formula (1b), when m is 0, Ar b3 and Ar b4 are each preferably an arylene group having an alkyl group. On the other hand, Ar b1 and Ar b2 each independently preferably have 0 or more and 2 or less substituents, and more preferably have no substituents from the viewpoint of wear resistance.
  • Y is a single bond, an oxygen atom, a sulfur atom or an alkylene group.
  • alkylene group —CH 2 —, —CH (CH 3 ) —, —C (CH 3 ) 2 —, and cyclohexylene are preferable, and —CH 2 —, —CH (CH 3 ) —, — C (CH 3 ) 2 —.
  • Z is a single bond, an oxygen atom, a sulfur atom or an alkylene group, and among them, Z is preferably an oxygen atom.
  • m is preferably 0 or 1, particularly preferably 1.
  • diphenyl ether-2,2′-dicarboxylic acid residue diphenyl ether-2,4′-dicarboxylic acid residue
  • diphenyl ether-4,4′-dicarboxylic acid Residues are more preferred, and diphenyl ether-4,4′-dicarboxylic acid residues are particularly preferred.
  • dicarboxylic acid residue when m is 0 examples include phthalic acid residue, isophthalic acid residue, terephthalic acid residue, toluene-2,5-dicarboxylic acid residue, p-xylene-2,5- Dicarboxylic acid residue, naphthalene-1,4-dicarboxylic acid residue, naphthalene-2,3-dicarboxylic acid residue, naphthalene-2,6-dicarboxylic acid residue, biphenyl-2,2′-dicarboxylic acid residue, Biphenyl-4,4′-dicarboxylic acid residue may be mentioned.
  • phthalic acid residue isophthalic acid residue, terephthalic acid residue, naphthalene-1,4-dicarboxylic acid residue, naphthalene-2,6-dicarboxylic acid residue, biphenyl-2,2 ′
  • a dicarboxylic acid residue and a biphenyl-4,4′-dicarboxylic acid residue particularly preferably an isophthalic acid residue and a terephthalic acid residue. It is also possible to use a combination of these dicarboxylic acid residues.
  • the dicarboxylic acid residue which comprises this invention is preferably 70% or more, more preferably 80% or more, and particularly preferably 90% or more. Most preferably, it has only the dicarboxylic acid residue constituting the present invention, that is, the case where the dicarboxylic acid residue constituting the present invention is 100% as the number of repeating units.
  • the viscosity average molecular weight of the polyarylate resin is not particularly limited, but is usually 10,000 or more, preferably 15,000 or more, more preferably 20,000 or more, but usually 300,000 or less, preferably 200. 1,000 or less, more preferably 100,000 or less.
  • the viscosity average molecular weight of the polyarylate resin can be measured by the method described below.
  • the photosensitive layer preferably contains a compound represented by the following formula (1e) as a compound having an electron transporting ability.
  • R 1 to R 4 are each independently a hydrogen atom, an optionally substituted alkyl group having 1 to 20 carbon atoms, or an optionally substituted carbon atom.
  • R 1 and R 2 or R 3 and R 4 may be bonded to each other to form a cyclic structure, and X represents an organic residue having a molecular weight of 120 or more and 250 or less. .
  • R 1 to R 4 each independently represents a hydrogen atom, an optionally substituted alkyl group having 1 to 20 carbon atoms, or an alkenyl group having 1 to 20 carbon atoms.
  • alkyl group having 1 to 20 carbon atoms which may have a substituent include, for example, a linear alkyl group such as a methyl group, an ethyl group and a hexyl group, an iso-propyl group, a tert-butyl group and a tert group.
  • -Branched alkyl groups such as amyl groups, and cyclic alkyl groups such as cyclohexyl and cyclopentyl groups.
  • an alkyl group having 1 to 15 carbon atoms is preferable from the viewpoint of versatility of the raw material, and an alkyl group having 1 to 10 carbon atoms is more preferable from the viewpoint of handling during production, and an alkyl group having 1 to 5 carbon atoms is preferable. Further preferred. Further, a linear alkyl group or a branched alkyl group is preferable from the viewpoint of electron transport capability, and among them, a methyl group, a tert-butyl group, or a tert-amyl group is more preferable, and from the viewpoint of solubility in an organic solvent used in a coating solution, A tert-butyl group or a tert-amyl group is more preferred.
  • alkenyl group having 1 to 20 carbon atoms which may have a substituent include a straight chain alkenyl group such as an ethenyl group, a branched alkenyl group such as a 2-methyl-1-propenyl group, and a cyclohexenyl group. And cyclic alkenyl groups. Among these, a straight-chain alkenyl group having 1 to 10 carbon atoms is preferable from the viewpoint of light attenuation characteristics of the photoreceptor.
  • R 1 to R 4 may be bonded to each other to form a cyclic structure.
  • R 1 and R 2 are both alkenyl groups, they are preferably bonded to each other to form an aromatic ring, and R 1 and R 2 are both ethenyl groups and bonded to each other, More preferably, it has a benzene ring structure.
  • X represents an organic residue having a molecular weight of 120 or more and 250 or less, and X is represented by any one of the following formulas (2e) to (5e) from the viewpoint of light attenuation characteristics of the photoreceptor. It is preferably an organic residue.
  • R 5 to R 7 each independently represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • R 8 to R 11 each independently represents a hydrogen atom, a halogen atom, or an alkyl group having 1 to 6 carbon atoms.
  • R 12 represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or a halogen atom.
  • R 13 and R 14 each independently represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or an aryl group having 6 to 12 carbon atoms.
  • Examples of the alkyl group having 1 to 6 carbon atoms in R 5 to R 14 include linear alkyl groups such as a methyl group, an ethyl group, and a hexyl group, an iso-propyl group, a tert-butyl group, and a tert-amyl group. And a branched alkyl group such as a cyclohexyl group. From the viewpoint of electron transport capability, a methyl group, a tert-butyl group, or a tert-amyl group is more preferable.
  • Examples of the halogen atom include fluorine, chlorine, bromine and iodine, and chlorine is preferable from the viewpoint of electron transport capability.
  • Examples of the aryl group having 6 to 12 carbon atoms include a phenyl group and a naphthyl group. From the viewpoint of film properties of the photosensitive layer, a phenyl group or a naphthyl group is preferable, and a phenyl group is more preferable.
  • X is preferably the formula (2e) or the formula (3e) from the viewpoint of image quality stability upon repeated image formation, and is the formula (3e). Is more preferable.
  • the compound represented by Formula (1e) may be used independently, the compound represented by Formula (1e) from which a structure differs may be used together, and it uses together with the compound which has another electron transport ability. You can also The structure of the compound which has a preferable electron transport ability is illustrated below.
  • the ratio of the binder resin in the photosensitive layer and the compound having the electron transporting ability is usually 10 parts by weight or more of the compound having the electron transporting ability with respect to 100 parts by weight of the binder resin from the viewpoint of suppressing light fatigue. 20 parts by mass or more is more preferable, and 30 parts by mass or more is more preferable.
  • the compound having an electron transporting ability is usually 100 parts by mass or less, preferably 80 parts by mass or less, and more preferably 60 parts by mass or less.
  • ⁇ Compound with hole transport ability> There is no limitation on the structure of the compound having a hole transporting ability, and an aromatic amine derivative, a stilbene derivative, a butadiene derivative, a hydrazone derivative, a carbazole derivative, an aniline derivative, an enamine derivative, and a combination of these compounds, or Examples thereof include electron donating materials such as polymers having groups comprising these compounds in the main chain or side chain.
  • aromatic amine derivatives, stilbene derivatives, hydrazone derivatives, enamine derivatives, and those in which a plurality of these compounds are bonded are preferable, and those in which a plurality of enamine derivatives and aromatic amines are bonded are more preferable.
  • the charge transport performance generally increases, and a structure in which the ⁇ -conjugated system spreads is preferable in consideration of planarity and steric effects due to substituents.
  • a compound having a plurality of types of hole transporting ability among these compounds having one or more kinds of hole transporting ability, it has a hole transporting ability having a higher energy level of HOMO.
  • the molecular weight of the compound is usually 450 or more, preferably 500 or more, more preferably 600 or more.
  • the compound C is contained in the photosensitive layer or each of the layers forming it for the purpose of improving the charging property at the very initial stage of the life of the photoreceptor without greatly affecting the electrical characteristics.
  • Compound C has a molecular weight of 500 or less, preferably 450 or less, more preferably 400 or less, and still more preferably 350 or less. The reason is not clear, but if the molecular weight of the compound C is small, the compound C tends to bleed out to the surface of the photoreceptor, and this is considered to be due to the suppression of the bleed out of the compound having an electron transport ability. .
  • Compound C is preferably one that does not inhibit charge transfer in the electrophotographic process.
  • the compound C forms a charge transfer complex with a compound having an electron transporting ability, bleed out of the compound having an electron transporting ability to the surface of the photoreceptor is promoted. For that reason, the compound C preferably has a low Ch.
  • Ch is preferably ⁇ 4.75 eV or less, more preferably ⁇ 4.9 eV or less. Further, it is usually ⁇ 7.5 eV or more.
  • the compound having the highest HOMO energy level (compound A) has a HOMO energy level of Ah
  • the compound having the electron transporting ability LUMO
  • Ah is usually ⁇ 5.0 to ⁇ 4.0 eV in view of hole transport ability.
  • B1 is usually ⁇ 4.5 to ⁇ 3.0 eV in view of the electron transport ability.
  • the compound having the electron transporting ability and the compound having the hole transporting ability or the compound C form a charge transfer complex, and the compound having the electron transporting ability when placed in the environment of Tg or higher than Tg such as a drying process. There is a possibility of greatly promoting the bleed-out.
  • the compound C When the LUMO energy level is Cl, the compound C preferably satisfies Formula (4a) and Formula (5a) simultaneously from the viewpoint of not inhibiting charge transfer.
  • the compound C is preferably ⁇ 2.0 eV or more, and usually 1.0 eV or less.
  • the compound C contains 13 mass% or more with respect to the compound which has an electron transport ability, More preferably, it is 20 mass% or more, More preferably, it is 25 mass% or more. Further, it is usually 200% by mass or less, preferably 100% by mass or less, and more preferably 75% by mass or less in order to improve the durability of the photoreceptor without relatively reducing the ratio of the binder resin.
  • the energy level E_homo of HOMO and the energy level E_lumo of LUMO are a kind of density half function method, B3LYP (A. D. Becke, J. Chem. Phys. 98, 5648 (1993), C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B37, 785 (1988) and B. Miehlich, A. Savin, H. Stoll, and H. Preuss, Chem. Phys. Lett. 157, 200 (1989 )))
  • B3LYP A. D. Becke, J. Chem. Phys. 98, 5648 (1993), C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B37, 785 (1988) and B. Miehlich, A. Savin, H. Stoll, and H. Preuss, Chem. Phys. Lett. 157, 200 (1989 )
  • 6-31G (d, p) obtained by adding a polarization function to 6-31G was used as a basis function system (R. Ditchfield, WJ Hehre, and JA Pople, J. Chem. Phys. 54, 724 (1971). ), WJ Hehre, R. Ditchfield, and JA Pople, J. Chem. Phys. 56, 2257 (1972), PC Hariharan and JA Pople, Mol. Phys. 27, 209 (1974), MS Gordon, Chem. Phys. Lett. 76, 163 (1980), PC Hariharan and JA Pople, Theo. Chim. Acta 28, 213 (1973), J.-P.
  • the program used for B3LYP / 6-31G (d, p) calculation is Gaussian 03, Revision D. 01 (M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. lyengar , J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. , J.
  • antioxidants for the photosensitive layer, well-known antioxidants, plasticizers, ultraviolet absorbers, electron-withdrawing compounds are used for the purpose of improving film forming properties, flexibility, coating properties, stain resistance, gas resistance, light resistance, etc. Further, additives such as a leveling agent, a visible light shielding agent, and a space filler may be contained.
  • particles made of fluorine resin, silicone resin, polyethylene resin, etc., inorganic Compound particles may also be included.
  • Each layer constituting the above-described photoreceptor is formed by dip coating, spray coating, nozzle coating, bar coating, roll coating, blade coating on a conductive support obtained by dissolving or dispersing a substance to be contained in a solvent. It is formed by repeating a coating / drying step sequentially for each layer by a known method such as coating.
  • solvent or dispersion medium used for the preparation of the coating solution, but specific examples include alcohols such as methanol, ethanol, propanol and 2-methoxyethanol, tetrahydrofuran, 1,4-dioxane, dimethoxyethane and the like.
  • esters such as methyl formate and ethyl acetate, ketones such as acetone, methyl ethyl ketone, cyclohexanone and 4-methoxy-4-methyl-2-pentanone, aromatic hydrocarbons such as benzene, toluene and xylene, dichloromethane, Chlorinated hydrocarbons such as chloroform, 1,2-dichloroethane, 1,1,2-trichloroethane, 1,1,1-trichloroethane, tetrachloroethane, 1,2-dichloropropane, trichloroethylene, n-butylamine, isopropanolamine, Diechi Amines, triethanolamine, ethylenediamine, nitrogen-containing compounds such as triethylenediamine, acetonitrile, N- methylpyrrolidone, N, N- dimethylformamide, aprotic polar solvents such as dimethyl sulfoxide and the like.
  • the amount of the solvent or the dispersion medium used is not particularly limited, but considering the purpose of each layer and the properties of the selected solvent / dispersion medium, it is appropriately determined so that the physical properties such as the solid content concentration and viscosity of the coating liquid are within a desired range. It is preferable to adjust.
  • the solid content concentration of the coating solution is usually 5% by mass or more, preferably 10% by mass or more, and usually 40% by mass or less, preferably 35% by mass or less. .
  • the viscosity of the coating solution is usually 10 mPa ⁇ s or higher, preferably 50 mPa ⁇ s or higher, and usually 500 mPa ⁇ s or lower, preferably 400 mPa ⁇ s or lower, at the temperature during use.
  • the drying of the coating solution is preferably performed by drying at the room temperature, and then drying by heating in a temperature range of usually 30 ° C. or more and 200 ° C. or less for 1 minute to 2 hours while still or blowing. Further, the heating temperature may be constant, or heating may be performed while changing the temperature during drying.
  • the image forming apparatus includes an electrophotographic photoreceptor 1, a charging device 2, an exposure device 3, and a developing device 4, and further, a transfer device 5, a cleaning device 6 and a fixing device as necessary.
  • a device 7 is provided.
  • the electrophotographic photoreceptor 1 is not particularly limited as long as it is the above-described electrophotographic photoreceptor of the present invention, but in FIG. 2, as an example, a drum in which the above-described photosensitive layer is formed on the surface of a cylindrical conductive support.
  • the photoconductor is shown.
  • a charging device 2, an exposure device 3, a developing device 4, a transfer device 5, and a cleaning device 6 are arranged along the outer peripheral surface of the electrophotographic photoreceptor 1.
  • the charging device 2 charges the electrophotographic photoreceptor 1 and uniformly charges the surface of the electrophotographic photoreceptor 1 to a predetermined potential.
  • Examples of a general charging device include a non-contact corona charging device such as corotron and scorotron, or a contact type charging device (direct type charging device) that charges a charged member by bringing a charged member into contact with the surface of the photoreceptor.
  • Examples of the contact charging device include a charging roller and a charging brush.
  • a roller-type charging device (charging roller) is shown as an example of the charging device 2.
  • the charging roller is manufactured by integrally molding a resin, a plasticizer, and the like with a metal shaft, and may have a laminated structure as necessary.
  • a voltage applied at the time of charging it is possible to use only a direct current voltage or to superimpose alternating current on direct current.
  • the type of the exposure apparatus 3 is not particularly limited as long as it can expose the electrophotographic photoreceptor 1 to form an electrostatic latent image on the photosensitive surface of the electrophotographic photoreceptor 1.
  • Specific examples include halogen lamps, fluorescent lamps, lasers such as semiconductor lasers and He—Ne lasers, LEDs, and the like.
  • exposure may be performed by a photoreceptor internal exposure method.
  • the light used for the exposure is arbitrary. For example, if exposure is performed with monochromatic light having a wavelength of 780 nm, monochromatic light with a wavelength of 600 nm to 700 nm slightly shorter, monochromatic light with a wavelength of 380 nm to 500 nm, or the like. Good.
  • the type of toner T is arbitrary, and in addition to powdered toner, polymerized toner using suspension polymerization method, emulsion polymerization method, or the like can be used.
  • a toner having a small particle diameter of about 4 to 8 ⁇ m is preferable, and the toner particles are used in a variety of shapes from a nearly spherical shape to a non-spherical shape such as a rod shape. be able to.
  • the polymerized toner is excellent in charging uniformity and transferability and is suitably used for high image quality.
  • the type of the transfer device 5 is not particularly limited, and an apparatus using an arbitrary system such as an electrostatic transfer method such as corona transfer, roller transfer, or belt transfer, a pressure transfer method, or an adhesive transfer method can be used.
  • the transfer device 5 includes a transfer charger, a transfer roller, a transfer belt, and the like disposed so as to face the electrophotographic photoreceptor 1.
  • the transfer device 5 applies a predetermined voltage value (transfer voltage) having a polarity opposite to the charging potential of the toner T, and transfers the toner image formed on the electrophotographic photosensitive member 1 to a recording paper (paper, medium) P. Is.
  • the type of the cleaning device 6 is not particularly limited, and any cleaning device such as a brush cleaner, a magnetic brush cleaner, an electrostatic brush cleaner, a magnetic roller cleaner, or a blade cleaner can be used.
  • the cleaning device 6 is for scraping off residual toner adhering to the photoreceptor 1 with a cleaning member and collecting the residual toner. However, when there is little or almost no toner remaining on the surface of the photoreceptor, the cleaning device 6 may be omitted.
  • an image is recorded as follows. That is, first, the surface (photosensitive surface) of the photoreceptor 1 is charged to a predetermined potential (for example, 600 V) by the charging device 2. At this time, charging may be performed with a DC voltage, or charging may be performed by superimposing an AC voltage on the DC voltage. Subsequently, the photosensitive surface of the charged photoreceptor 1 is exposed by the exposure device 3 according to the image to be recorded, and an electrostatic latent image is formed on the photosensitive surface. The developing device 4 develops the electrostatic latent image formed on the photosensitive surface of the photoreceptor 1.
  • a predetermined potential for example, 600 V
  • the developing device 4 thins the toner T supplied by the supply roller 43 with a regulating member (developing blade) 45 and has a predetermined polarity (here, the same polarity as the charging potential of the photoreceptor 1), and the positive polarity. ) And is carried while being carried on the developing roller 44 and brought into contact with the surface of the photoreceptor 1.
  • a toner image corresponding to the electrostatic latent image is formed on the photosensitive surface of the photoreceptor 1.
  • This toner image is transferred onto the recording paper P by the transfer device 5. Thereafter, the toner remaining on the photosensitive surface of the photoreceptor 1 without being transferred is removed by the cleaning device 6.
  • the image forming apparatus may be configured to perform, for example, a static elimination process.
  • the neutralization step is a step of neutralizing the electrophotographic photosensitive member by exposing the electrophotographic photosensitive member, and a fluorescent lamp, an LED, or the like is used as the neutralizing device.
  • the light used in the static elimination process is light having an exposure energy three times or more that of exposure light. From the viewpoint of miniaturization and energy saving, it is preferable not to have a static elimination step.
  • the image forming apparatus may be further modified.
  • the image forming apparatus may be configured to perform a pre-exposure process, an auxiliary charging process, or the like, or may be configured to perform offset printing.
  • a full-color tandem system configuration using toner may be used.
  • the electrophotographic photosensitive member 1 is combined with one or more of the charging device 2, the exposure device 3, the developing device 4, the transfer device 5, the cleaning device 6, and the fixing device 7 to form an integrated cartridge (
  • the electrophotographic photosensitive member cartridge may be configured so as to be detachable from the main body of an electrophotographic apparatus such as a copying machine or a laser beam printer.
  • Example 1 10 parts by mass of Y-type oxytitanium phthalocyanine was added to 150 parts by mass of 1,2-dimethoxyethane, and pulverized and dispersed in a sand grind mill to prepare a pigment dispersion. 160 parts by mass of the pigment dispersion thus obtained was mixed with 100 parts by mass of a 5% 1,2-dimethoxyethane solution of polyvinyl butyral (trade name # 6000C, manufactured by Denki Kagaku Kogyo Co., Ltd.) and an appropriate amount of 4-methoxy-4.
  • polyvinyl butyral trade name # 6000C, manufactured by Denki Kagaku Kogyo Co., Ltd.
  • a subbing coating solution having a solid content concentration of 4.0% by mass was prepared.
  • a cylinder made of an aluminum alloy having an outer diameter of 30 mm, a length of 340 mm, and a wall thickness of 0.75 mm is dip-coated on the undercoat coating solution so that the film thickness after drying becomes 0.3 ⁇ m.
  • An undercoat layer was formed.
  • X-type metal-free phthalocyanine was dispersed together with 60 parts by mass of toluene by a sand grind mill.
  • the single layer type photosensitive layer coating solution thus prepared is applied onto the above-described undercoat layer so that the film thickness after drying becomes 30 ⁇ m, blown and dried at 100 ° C. for 30 minutes, and then a positively charged single layer A type electrophotographic photosensitive member was obtained.
  • Example 2 A photoconductor was produced by the same procedures as in Example 1, except that the number of parts of compound C4 was changed to 5 parts by mass.
  • Example 3 A photoconductor was prepared by the same procedures as in Example 1, except that the compound C4 was changed to a compound represented by the following structural formula (C-5).
  • Example 4 A photoconductor was manufactured by the same procedures as in Example 3, except that the number of parts of the compound represented by the structural formula (C-5) was changed to 5 parts by mass.
  • Example 5 A photoconductor was prepared by the same procedures as in Example 1, except that the compound C4 was changed to a compound represented by the following structural formula (C-6).
  • Example 6 A photoconductor was manufactured by the same operations as in Example 5, except that the number of parts of the compound represented by the structural formula (C-6) was changed to 5 parts by mass.
  • Example 7 A photoconductor was manufactured by the same procedures as in Example 1, except that the compound C4 was changed to a compound represented by the following structural formula (C-7).
  • Example 8 A photoconductor was prepared by the same procedures as in Example 1, except that the compound C4 was changed to a compound represented by the following structural formula (C-8).
  • Example 9 A photoconductor was manufactured by the same procedures as in Example 1, except that the compound C4 was changed to a compound represented by the following structural formula (C-9).
  • Example 10 A photoconductor was produced by the same procedures as in Example 1, except that the compound having the electron transporting ability was changed to the compound having the electron transporting ability represented by the structural formula (ET-4).
  • Example 11 A photoconductor was produced by the same procedures as in Example 1 except that the compound having a hole transporting ability was changed to a compound having a hole transporting ability represented by the following structural formula (C-2).
  • Example 12 A photoconductor was manufactured by the same procedures as in Example 11 except that the compound C4 was changed to a compound represented by the structural formula (C-10) shown below.
  • Example 13 A photoconductor was manufactured by the same operations as in Example 1 except that the binder resin A1 was changed to a polyarylate represented by the following structural formula (A-2).
  • Example 1 A photoconductor was produced by the same operations as in Example 1 except that the binder resin A1 was changed to a polycarbonate represented by the following structural formula (P-1).
  • Example 4 A photoconductor was produced by the same procedures as in Example 1 except that the compound having a hole transporting ability was changed to a compound having a hole transporting ability represented by the following structural formula (C-3).
  • the electrophotographic photosensitive member obtained in each of the examples and comparative examples was produced by using an electrophotographic characteristic evaluation apparatus prepared according to the electrophotographic society measurement standard (basic and applied electrophotographic technology, edited by the Electrophotographic Society, Corona, 404- (Described on page 405), and separately, the charged potential (white background potential) of the photoreceptor was measured. A constant grid voltage was applied, and the charging potential after one sheet of printing was Vo (1) [V], and the charging potential of the tenth sheet was Vo (10) [V]. The results are shown in Table 2.
  • Example 11 and Example 12 where the difference (Ah ⁇ Ch) between the HOMO energy level of Compound A and the HOMO energy level of Compound C was relatively small. This may indicate that Compound C affected charge transport.
  • Examples 5 to 9 it is considered that the chargeability of the photoconductor after printing one sheet was better than the other examples, and the HOMO energy level of the compound C used was lower than the other examples. It is done.
  • Example 1 using polyarylate as the binder resin of the photoconductor compared with Comparative Example 1 using polycarbonate, the wear resistance, cleaning properties, filming resistance, etc. Excellent mechanical properties. From all the results shown in Tables 2 to 4, it can be seen that the electrophotographic photosensitive member of the present invention has excellent mechanical characteristics and features that can suppress fog at the very initial stage of the photosensitive member life.
  • Photoconductor (Electrophotographic photoconductor) 2 Charging device (charging roller; charging unit) 3 Exposure equipment (exposure section) 4 Development device (development unit) DESCRIPTION OF SYMBOLS 5 Transfer device 6 Cleaning device 7 Fixing device 41 Developing tank 42 Agitator 43 Supply roller 44 Developing roller 45 Control member 71 Upper fixing member (fixing roller) 72 Lower fixing member (fixing roller) 73 Heating device T Toner P Recording paper (paper, medium)

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Photoreceptors In Electrophotography (AREA)

Abstract

本発明は、導電性支持体上に、バインダー樹脂、正孔輸送能を有する化合物(1)及び電子輸送能を有する化合物(2)を含有する単層型感光層を有する感光体であって、化合物(1)の内のHOMOのエネルギーレベルが最も高い化合物の該レベルAh、化合物(2)の内のLUMOのエネルギーレベルが最も低い化合物の該レベルBl、及び該感光層が有する分子量500以下の他の化合物CのHOMOのエネルギーレベルChが特定式を満たす、正帯電用電子写真感光体に関する。

Description

正帯電用電子写真感光体、電子写真感光体カートリッジ、及び画像形成装置
 本発明は、正帯電用電子写真感光体、電子写真感光体カートリッジ、及び画像形成装置に関する。特に、耐摩耗性に関して優れ、且つ、寿命の極めて初期段階での帯電性を改良した正帯電用電子写真感光体、電子写真感光体カートリッジ、及び画像形成装置に関する。
 電子写真技術は、高速で高品質な画像が得られること等から、複写機、プリンター、複合機、デジタル印刷等の分野で広く使われている。電子写真技術の中核となる電子写真感光体(以下、単に「感光体」ともいう)については、無公害で成膜が容易、製造が容易である等の利点を有する有機系の光導電物質を使用した感光体が主に使用されている。
 有機系電子写真感光体においては、電荷の発生と移動の機能を別々の化合物に分担させる、いわゆる機能分離型の感光体が、材料選択の余地が大きく、感光体の特性の制御がし易いことから主流となっている。層構成の観点からは、電荷発生材料と電荷輸送材料を同一の層中に有する単層型の電子写真感光体(以下、単に「単層型感光体」ともいう)と、電荷発生材料と電荷輸送材料を別々の層(電荷発生層と電荷輸送層)中に分離、積層する積層型の電子写真感光体(以下、単に「積層型感光体」ともいう)が知られている。
 これらのうち積層型感光体は、感光体設計上からは、層ごとに機能の最適化が図り易く、特性の制御も容易なことから、現行感光体の大部分はこのタイプになっている。積層型感光体のほとんどのものは、基体上に電荷発生層、電荷輸送層をこの順序で有している。電荷輸送層においては、好適な電子輸送材料が極めて少ないのに対して、正孔輸送材料は特性良好な材料が数多く知られていることから、基体上に電荷発生層、電荷輸送層がこの順で積層され、負帯電で使用される。
 一方、単層型感光体においては、原理的には負帯電方式及び正帯電方式のいずれも利用可能であるが、正帯電方式の方が、前述の積層型感光体において問題となるオゾン発生を抑制することができ、かつ負帯電系より一般に高感度にし易いことから、有利である。また、塗布工程が少なく、解像度面で有利である利点も有しており、電気特性面では負帯電の積層型感光体よりも劣る点を有するものの、一部実用化され、現在に至るまで様々な改良検討がなされている(特許文献1~5)。
日本国特開平5-92936号公報 日本国特開平2-228670号公報 日本国特開2001-33997号公報 日本国特開2005-331965号公報 日本国特開2013-231866号公報
 しかしながら、単層型感光体において、感光体製造後にプリンターに装着して画像出力を行うと、10枚程度の初段階の印刷工程において、白地に微細な黒点が生成するいわゆるカブリや、ハーフトーン画像の一部の濃度が濃化する黒帯といった画像欠陥が生じる問題が有った。この現象は、10枚程度の印刷といった初期画像にのみ起き、以降は発生しないことから、感光体の表面に何らかの過渡的な異常部位が形成されたためと推定された。感光体の電気特性を測定したところ、図1(A)に示すように、そのようなカブリを生じる感光体は、初期的に帯電不良状態となっており、10枚程度の印刷をしないと、その帯電不良が改善されないことが分かった。一方、図1(B)に示すように初期的な帯電不良は、電子移動材料を含有しない場合は発生しなかった。
 そこで、飛行時間型二次イオン質量分析法(略称:TOF-SIMS)によって最表面および表面近傍深さ方向の分析を行ったところ、感光層表面にブリードアウトした電子輸送材料が、そのような初期的な帯電不良の一因となっていることが推定された。そこで、感光体を塗布により製造した際に、低分子量の電子輸送材料が感光体の表面にブリードアウトするのを抑制する手法が求められていた。
 一方で、近年の複写機やプリンターの高速化、高画質化に伴い、いずれの帯電型であっても電気特性面及び機械特性面の双方についてより高性能な感光体が求められている。このうち機械的特性面では長期使用に対応するため、感光体最外層表面の耐摩耗性の向上、フィルミング特性、及びクリーニング特性の向上が一つの課題となっている。これらの要求を満たす感光体として、ポリアリレート樹脂を最外層に含有する感光体が知られていた。
 しかしながら、ポリアリレート樹脂を上述のような正帯電感光体に使用した際、初期における帯電不良が悪化する現象が見られ、機械特性と初期帯電特性の双方を満たす感光体が求められた。
 本発明の目的は、ポリアリレート樹脂を正帯電用単層型電子写真感光体に用いた場合においても、初期的な帯電不良を発生せず、印刷一枚目から良好な画像出力を可能とすることにある。
 本発明者は、バインダー樹脂としてポリアリレート樹脂を単層型感光層に用い、且つ特定の化合物を含有させることにより、耐摩耗性、耐フィルミング性、クリーニング性を改善し、且つ、感光体寿命の極めて初期における帯電不良を改善できることを見出した。
 即ち本発明の要旨は以下の<1>~<7>に存する。
<1>導電性支持体上に、少なくともバインダー樹脂、正孔輸送能を有する化合物及び電子輸送能を有する化合物を含有する単層型感光層を有する正帯電用電子写真感光体であって、
 該バインダー樹脂は、ポリアリレート樹脂を含有し、
 密度汎関数計算B3LYP/6-31G(d,P)において、該正孔輸送能を有する化合物の内、HOMOのエネルギーレベルが最も高い正孔輸送能を有する化合物を化合物Aとし、該化合物AのHOMOのエネルギーレベルをAhとし、該電子輸送能を有する化合物の内、LUMOのエネルギーレベルが最も低い電子輸送能を有する化合物を化合物Bとし、該化合物BのLUMOのエネルギーレベルをBlとし、
 該単層型感光層は、更に該化合物A及び該化合物B以外の化合物Cを含み、該化合物Cの分子量が500以下であり、
 該化合物CのHOMOのエネルギーレベルをChとしたとき、下記式(1a)、下記式(2a)及び下記式(3a)を満たす、正帯電用電子写真感光体。
 Ch≦-4.69 (eV)      (1a)
 Ah-Ch≧0.10 (eV)    (2a)
 Bl-Ch≧1.18 (eV)    (3a)
<2>前記式(2a)が、
 Ah-Ch≧0.11 (eV)
である、<1>に記載の電子写真感光体。
<3>前記化合物CのLUMOのエネルギーレベルをClとしたとき、前記Ch及び前記Clが下記式(4a)及び下記式(5a)を同時に満たす、<1>又は<2>に記載の電子写真感光体。
 Ch≦-4.9 (eV)             式(4a)
 Cl≧-3.2 (eV)             式(5a)
<4>前記化合物Cが、前記電子輸送能を有する化合物に対して、13質量%以上含有される、<1>~<3>のいずれか1つに記載の電子写真感光体。
<5>前記ポリアリレート樹脂が、下記一般式(1b)で表される構造単位を有する、<1>~<4>のいずれか1つに記載の電子写真感光体。
Figure JPOXMLDOC01-appb-C000002
(式(1b)中、Arb1~Arb4はそれぞれ独立に置換基を有していてもよいアリーレン基を表す。Zは、単結合、酸素原子、硫黄原子、又はアルキレン基を表す。mは0以上2以下の整数を表す。Yは、単結合、酸素原子、硫黄原子、又はアルキレン基を表す。)
<6><1>~<5>のいずれか1つに記載の電子写真感光体と、該電子写真感光体を帯電させる帯電部、帯電した該電子写真感光体を露光させ静電潜像を形成する露光部、該電子写真感光体上に形成された静電潜像を現像する現像部、該電子写真感光体上をクリーニングするクリーニング部のうち、少なくとも一つとを備える、電子写真感光体カートリッジ。
<7><1>~<5>のいずれか1つに記載の電子写真感光体と、該電子写真感光体を帯電させる帯電部、帯電した該電子写真感光体を露光させ静電潜像を形成する露光部、及び該電子写真感光体上に形成された静電潜像を現像する現像部とを備える、画像形成装置。
 本発明の電子写真感光体は、特定のバインダー樹脂と特定の化合物を感光層に用いることにより、耐摩耗性、耐フィルミング性、クリーニング性と、極めて初期における帯電性不良をいずれも良好にできるものであり、該電子写真感光体を備える電子写真プロセスカートリッジ、および該電子写真感光体を備える画像形成装置を提供することが可能となる。
図1は、初期的な帯電不良が悪い感光体の印刷枚数に対する表面帯電電位の推移を示したグラフである。 図2は、本発明の画像形成装置の一実施態様の要部構成を示す概略図である。
 以下、本発明の実施の形態につき詳細に説明するが、本発明は以下の説明に限定されるものではなく、本発明の要旨を逸脱しない範囲において、適宜変更して実施することができる。
≪正帯電用電子写真感光体≫
 以下に、本発明の電子写真感光体の構成について説明する。本発明の電子写真感光体は単層型感光層を最表層として有する。正電荷の輸送能力を向上させるため、導電性支持体側に正孔輸送能を有する化合物及びバインダー樹脂を含有する中間層を設けることもできる。
<導電性支持体>
 導電性支持体については特に制限はないが、例えば、アルミニウム、アルミニウム合金、ステンレス鋼、銅、ニッケル等の金属材料や、金属、カーボン、酸化錫等の導電性粉体を添加して導電性を付与した樹脂材料や、アルミニウム、ニッケル、ITO(酸化インジウム錫)等の導電性材料をその表面に蒸着又は塗布した樹脂、ガラス、紙等が主として使用される。これらは1種を単独で用いてもよく、2種以上を任意の組み合わせ及び任意の比率で併用してもよい。
 導電性支持体の形態としては、ドラム状、シート状、ベルト状等のものが用いられる。更には、金属材料の導電性支持体の上に、導電性・表面性等の制御や欠陥被覆のために、適当な抵抗値を有する導電性材料を塗布したものを用いてもよい。また、導電性支持体としてアルミニウム合金等の金属材料を用いた場合、陽極酸化被膜を施してから用いてもよい。陽極酸化被膜を施した場合には、公知の方法により封孔処理を施すのが望ましい。
 導電性支持体表面は、平滑であってもよいし、特別な切削方法を用いたり、研磨処理を施したりすることにより、粗面化されていてもよい。また、導電性支持体を構成する材料に適当な粒径の粒子を混合することによって、粗面化されたものであってもよい。また、安価化のためには、切削処理を施さず、引き抜き管をそのまま使用することも可能である。
<下引き層>
 導電性支持体と感光層との間には、接着性、ブロッキング性等の改善、支持体の表面欠陥の隠ぺい等の目的のため、下引き層を設けてもよい。下引き層としては、樹脂、又は樹脂に金属酸化物等の粒子を分散したもの等が用いられる。また、下引き層は、単一層からなるものであっても、複数層からなるものであってもかまわない。
 下引き層に用いる金属酸化物粒子の例としては、酸化チタン、酸化アルミニウム、酸化珪素、酸化ジルコニウム、酸化亜鉛、酸化鉄等の1種の金属元素を含む金属酸化物粒子、チタン酸カルシウム、チタン酸ストロンチウム、チタン酸バリウム等の複数の金属元素を含む金属酸化物粒子等が挙げられる。これらは一種類の粒子を単独で用いてもよいし、複数の種類の粒子を混合して用いてもよい。
 これらの金属酸化物粒子の中でも、酸化チタン及び酸化アルミニウムが好ましく、特に酸化チタンが好ましい。酸化チタン粒子は、その表面に、酸化錫、酸化アルミニウム、酸化アンチモン、酸化ジルコニウム、酸化珪素等の無機物、又はステアリン酸、ポリオール、シリコン等の有機物による処理を施されていてもよい。酸化チタン粒子の結晶型としては、ルチル、アナターゼ、ブルッカイト、アモルファスのいずれも用いることができる。また、複数の結晶状態のものが含まれていてもよい。
 また、金属酸化物粒子の粒径としては種々のものが利用できるが、中でも特性及び液の安定性の点から、その平均一次粒径は、10nm以上100nm以下が好ましく、特に10nm以上50nm以下が好ましい。この平均一次粒径は、TEM(Transmission Electron Microscope)写真等から得ることができる。
 下引き層は、金属酸化物粒子をバインダー樹脂に分散した形で形成するのが望ましい。下引き層に用いられるバインダー樹脂としては、エポキシ樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、アクリル樹脂、メタクリル樹脂、ポリアミド樹脂、塩化ビニル樹脂、酢酸ビニル樹脂、フェノール樹脂、ポリカーボネート樹脂、ポリウレタン樹脂、ポリイミド樹脂、塩化ビニリデン樹脂、ポリビニルアセタール樹脂、塩化ビニル-酢酸ビニル共重合体、ポリビニルアルコール樹脂、ポリウレタン樹脂、ポリアクリル樹脂、ポリアクリルアミド樹脂、ポリビニルピロリドン樹脂、ポリビニルピリジン樹脂、水溶性ポリエステル樹脂、ニトロセルロース等のセルロースエステル樹脂、セルロースエーテル樹脂、カゼイン、ゼラチン、ポリグルタミン酸、澱粉、スターチアセテート、アミノ澱粉、ジルコニウムキレート化合物、ジルコニウムアルコキシド化合物等の有機ジルコニウム化合物、チタニルキレート化合物、チタンアルコキシド化合物等の有機チタニル化合物、シランカップリング剤等の公知のバインダー樹脂が挙げられる。これらは単独で用いてもよく、或いは2種以上を任意の組み合わせ及び比率で併用してもよい。また、硬化剤とともに硬化した形で使用してもよい。中でも、アルコール可溶性の共重合ポリアミド、変性ポリアミド等は、良好な分散性、塗布性を示すことから好ましい。
 また、積層型感光体を構成する電荷発生層を下引き層の代用とすることもできる。この場合は、フタロシアニン顔料やアゾ顔料をバインダー樹脂中に分散して塗布したもの等が、電気特性が優れる場合があることから好適に用いられる。中でも、フタロシアニン顔料(フタロシアニン化合物)を用いることが、電気特性の点から、より好ましい。バインダー樹脂としては、ポリビニルアセタール樹脂類が好ましく用いられ、特にはポリビニルブチラール樹脂が好ましく用いられる。その場合、CuKα線を用いた粉末X線回折において、回折角2θ(±0.2°)が27.2°に明瞭なピークを示すオキシチタニウムフタロシアニンを混合することが好ましい。
 下引き層に用いられるバインダー樹脂に対する粒子の使用比率は任意に選ぶことが可能であるが、分散液の安定性、塗布性の観点から、バインダー樹脂に対して、通常は10質量%以上、500質量%以下の範囲で使用することが好ましい。
 下引き層の膜厚は、本発明の効果を著しく損なわない限り任意であるが、電子写真感光体の電気特性、強露光特性、画像特性、繰り返し特性、及び製造時の塗布性を向上させる観点から、通常は0.01μm以上、好ましくは0.1μm以上、また、通常30μm以下、好ましくは20μm以下である。下引き層には、公知の酸化防止剤等を混合してもよい。画像欠陥防止等を目的として、顔料粒子、樹脂粒子等を含有させて用いてもよい。
<単層型感光層>
 単層型感光層は、電荷輸送材料に加えて、膜強度確保のためにバインダー樹脂を使用して形成する。具体的には、電荷輸送材料と各種バインダー樹脂とを溶剤に溶解又は分散して塗布液を作製し、導電性支持体上(下引き層を設ける場合は下引き層上)に塗布、乾燥して得ることができる。
<電荷発生材料>
 本発明の正帯電用電子写真感光体は、任意の電荷発生材料を含有することができる。電荷発生材料としては、セレニウム及びその合金、硫化カドミウム等の無機系光導電材料と、有機顔料等の有機系光導電材料とが挙げられるが、有機系光導電材料の方が好ましく、特に有機顔料が好ましい。有機顔料としては、例えば、フタロシアニン顔料、アゾ顔料、ジチオケトピロロピロール顔料、スクアレン(スクアリリウム)顔料、キナクリドン顔料、インジゴ顔料、ペリレン顔料、多環キノン顔料、アントアントロン顔料、ベンズイミダゾール顔料等が挙げられる。これらの中でも、特にフタロシアニン顔料又はアゾ顔料が好ましい。電荷発生材料として有機顔料を使用する場合、通常はこれらの有機顔料の微粒子を、各種のバインダー樹脂で結着した分散層の形で使用する。
 電荷発生材料としてフタロシアニン顔料を使用する場合、具体的には無金属フタロシアニン、銅、インジウム、ガリウム、スズ、チタン、亜鉛、バナジウム、シリコン、ゲルマニウム、アルミニウムなどの金属又はその酸化物、ハロゲン化物、水酸化物、アルコキシドなどの配位したフタロシアニン類の各結晶型を持ったもの、酸素原子等を架橋原子として用いたフタロシアニンダイマー類などが使用される。特に、感度の高い結晶型であるX型、τ型無金属フタロシアニン、A型(別称β型)、B型(別称α型)、D型(別称Y型)等のチタニルフタロシアニン(別称:オキシチタニウムフタロシアニン)、バナジルフタロシアニン、クロロインジウムフタロシアニン、ヒドロキシインジウムフタロシアニン、II型等のクロロガリウムフタロシアニン、V型等のヒドロキシガリウムフタロシアニン、G型、I型等のμ-オキソ-ガリウムフタロシアニン二量体、II型等のμ-オキソ-アルミニウムフタロシアニン二量体が好適である。
 また、これらフタロシアニン化合物の中でも、X型無金属フタロシアニン、A型(別称β型)、B型(別称α型)、粉末X線回折の回折角2θ(±0.2゜)が27.1゜、もしくは27.3゜に明瞭なピークを示すことを特徴とするD型(Y型)チタニルフタロシアニン、II型クロロガリウムフタロシアニン、V型及び28.1゜に最も強いピークを有すること、また26.2゜にピークを持たず28.1゜に明瞭なピークを有し、かつ25.9゜の半値幅Wが0.1゜≦W≦0.4゜であることを特徴とするヒドロキシガリウムフタロシアニン、並びにG型μ-オキソ-ガリウムフタロシアニン二量体が特に好ましい。
 フタロシアニン化合物は単一の化合物のものを用いてもよいし、幾つかの混合又は混晶状態のものを用いてもよい。ここでのフタロシアニン化合物ないしは結晶状態における混合状態としては、それぞれの構成要素を後から混合したものを用いてもよいし、合成、顔料化、結晶化等のフタロシアニン化合物の製造・処理工程において混合状態を生じさせたものでもよい。このような処理としては、酸ペースト処理・磨砕処理・溶剤処理等が知られている。混晶状態を生じさせるためには、日本国特開平10-48859号公報記載のように、2種類の結晶を混合後に機械的に磨砕、不定形化した後に、溶剤処理によって特定の結晶状態に変換する方法が挙げられる。
 電荷発生材料の粒子径は、通常1μm以下であり、好ましくは0.5μm以下で使用される。感光層内に分散される電荷発生材料は、通常、バインダー樹脂100質量部に対して0.1質量部以上、好ましくは0.5質量部以上、より好ましくは1.0質量部以上である。また、感度の観点から、通常20質量部以下、好ましくは15質量部以下、より好ましくは10質量部以下である。
<バインダー樹脂>
 本発明においてバインダー樹脂は、ポリアリレート樹脂を含有するが、他の樹脂と混合して、電子写真感光体に用いることも可能である。ここで併用される他の樹脂としては、ポリメチルメタクリレート、ポリスチレン、ポリ塩化ビニル等のビニル重合体、及びその共重合体、ポリカーボネート、ポリアリレート、ポリアリレートポリカーボネート、ポリスルホン、フェノキシ、エポキシ、シリコーン樹脂等の熱可塑性樹脂や種々の熱硬化性樹脂等が挙げられる。これらの樹脂のなかでもポリカーボネート樹脂が好ましい。
[ポリアリレート樹脂]
 感光層に含まれる前記ポリアリレート樹脂の構造を以下に例示する。本例示は、本発明の趣旨を明確にするために行うものであり、本発明の趣旨に反しない限りは例示される構造に限定されるものではない。感光層に含まれるポリアリレート樹脂は、例えば、下記一般式(1b)で表される繰り返し構造単位を含むものであることが好ましく、公知の方法により、例えば二価ヒドロキシアリール成分とジカルボン酸成分とから製造することができる。
Figure JPOXMLDOC01-appb-C000003
 (式(1b)中、Arb1~Arb4はそれぞれ独立に置換基を有していてもよいアリーレン基を表す。Zは、単結合、酸素原子、硫黄原子、又はアルキレン基を表す。mは0以上2以下の整数を表す。Yは、単結合、酸素原子、硫黄原子、又はアルキレン基を表す。)
 上記式(1b)中、Arb1~Arb4におけるアリーレン基の炭素数としては、通常6以上であり、また、通常20以下、好ましくは10以下であり、より好ましくは6である。Arb1~Ar13の具体例としては、1,2-フェニレン基、1,3-フェニレン基、1,4-フェニレン基、ナフチレン基、アントリレン基、フェナントリレン基等が挙げられる。中でも、アリーレン基としては、電気特性の観点から、1,4-フェニレン基が好ましい。アリーレン基は1種を単独で用いてもよく、2種以上を任意の比率及び組み合わせで用いてもよい。
 また、Arb1~Arb4が有していてもよい置換基としては、アルキル基、アリール基、ハロゲン基、アルコキシ基等が挙げられる。中でも、ポリエステル樹脂を感光層用のバインダー樹脂として用いる場合、機械的特性と感光層形成用塗布液に対する溶解性とを勘案すれば、炭素数1~4のアルキル基、炭素数6~12のアリール基が好ましく、炭素数1~4のアルコキシ基も好ましい。具体的には、アルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基が好ましく、アリール基としてはフェニル基、ナフチル基が好ましく、アルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基が好ましい。
 より詳しくは、Arb3及びArb4は、それぞれ独立して置換基の数は0以上2以下が好ましく、接着性の観点から置換基を有することがより好ましく、中でも、耐摩耗性の観点から置換基の数は1個であることが特に好ましい。また、置換基としてはアルキル基が好ましく、メチル基が特に好ましい。また、電気特性及び耐摩耗性の観点から上記式(1b)中、mが0の場合、Arb3及びArb4がそれぞれ独立してアルキル基を有するアリーレン基であることが好ましい。一方、Arb1及びArb2は、それぞれ独立して、置換基の数は0以上2以下が好ましく、耐摩耗性の観点から置換基を有さないことがより好ましい。
 また、上記式(1b)において、Yは単結合、酸素原子、硫黄原子又はアルキレン基である。アルキレン基としては、-CH-、-CH(CH)-、-C(CH-、シクロヘキシレンが好ましく、より好ましくは、-CH-、-CH(CH)-、-C(CH-である。
 また、上記式(1b)において、Zは単結合、酸素原子、硫黄原子又はアルキレン基であって、中でも、Zは酸素原子であることが好ましい。その際、mは0か1であることが好ましく、1であることが特に好ましい。
 mが1の場合に好ましい式(1b)で表される構造単位であるジカルボン酸残基の具体例としては、ジフェニルエーテル-2,2’-ジカルボン酸残基、ジフェニルエーテル-2,3’-ジカルボン酸残基、ジフェニルエーテル-2,4’-ジカルボン酸残基、ジフェニルエーテル-3,3’-ジカルボン酸残基、ジフェニルエーテル-3,4’-ジカルボン酸残基、ジフェニルエーテル-4,4’-ジカルボン酸残基等が挙げられる。
 これらの中でも、ジカルボン酸成分の製造の簡便性を考慮すれば、ジフェニルエーテル-2,2’-ジカルボン酸残基、ジフェニルエーテル-2,4’-ジカルボン酸残基、ジフェニルエーテル-4,4’-ジカルボン酸残基がより好ましく、ジフェニルエーテル-4,4’-ジカルボン酸残基が特に好ましい。
 mが0の場合のジカルボン酸残基の具体例としては、フタル酸残基、イソフタル酸残基、テレフタル酸残基、トルエン-2,5-ジカルボン酸残基、p-キシレン-2,5-ジカルボン酸残基、ナフタレン-1,4-ジカルボン酸残基、ナフタレン-2,3-ジカルボン酸残基、ナフタレン-2,6-ジカルボン酸残基、ビフェニル-2,2’-ジカルボン酸残基、ビフェニル-4,4’-ジカルボン酸残基が挙げられる。
 これらの中でも、好ましくは、フタル酸残基、イソフタル酸残基、テレフタル酸残基、ナフタレン-1,4-ジカルボン酸残基、ナフタレン-2,6-ジカルボン酸残基、ビフェニル-2,2’-ジカルボン酸残基、ビフェニル-4,4’-ジカルボン酸残基であり、特に好ましくは、イソフタル酸残基、テレフタル酸残基である。これらのジカルボン酸残基を複数組み合わせて用いることも可能である。
 なお、上記ポリアリレート樹脂が、上記一般式(1b)で表される繰り返し構造単位であるジカルボン酸残基と上述した他のジカルボン酸残基とを有する場合、本発明を構成するジカルボン酸残基が、繰り返しユニットの個数として70%以上であることが好ましく、80%以上であることがより好ましく、90%以上であることが特に好ましい。最も好ましくは、本発明を構成するジカルボン酸残基のみを有する場合、すなわち、本発明を構成するジカルボン酸残基が、繰り返しユニットの個数として100%である場合である。
 ポリアリレート樹脂の粘度平均分子量は、特に限定されないが、通常、10,000以上、好ましくは15,000以上、さらに好ましくは20,000以上であり、但し、通常、300,000以下、好ましくは200,000以下、より好ましくは100,000以下である。なお、ポリアリレート樹脂の粘度平均分子量は下記に記載の方法によって測定することができる。
[粘度平均分子量の測定方法]
 まず、ポリアリレート樹脂をジクロロメタンに溶解し、濃度Cが6.00g/Lの溶液を調製する。その後、溶媒(ジクロロメタン)の流下時間t0が136.16秒のウベローデ型毛細管粘度計を用いて、20.0℃に設定した恒温水槽中で試料溶液の流下時間tを測定し、以下の式に従って粘度平均分子量(Mv)を算出できる。
 a=0.438×ηsp+1(ηsp=t/t0-1)
 b=100×ηsp/C(C=6.00(g/L))
 η=b/a
 Mv=3207×1.205η
<電荷輸送材料>
[電子輸送能を有する化合物]
 感光層には電子輸送能を有する化合物として下記式(1e)で表される化合物を含有することが好ましい。
Figure JPOXMLDOC01-appb-C000004
 (式(1e)中、R~Rはそれぞれ独立して、水素原子、置換基を有していてもよい炭素数1~20のアルキル基、又は置換基を有していてもよい炭素数1~20のアルケニル基表し、RとR同士、またはRとR同士は互いに結合して環状構造を形成してもよい。Xは分子量120以上250以下の有機残基を表す。)
 R~Rはそれぞれ独立して水素原子、置換基を有していてもよい炭素数1~20のアルキル基、又は炭素数1~20のアルケニル基を表す。
 置換基を有していてもよい炭素数1~20のアルキル基の例としては、例えば、メチル基、エチル基及びヘキシル基等の直鎖アルキル基、iso-プロピル基、tert-ブチル基及びtert-アミル基等の分岐アルキル基、並びにシクロヘキシル基及びシクロペンチル基等の環状アルキル基が挙げられる。これらの中でも原料の汎用性の面から炭素数1~15のアルキル基が好ましく、製造時の取り扱い性からは、炭素数1~10のアルキル基がより好ましく、炭素数1~5のアルキル基が更に好ましい。また、電子輸送能力の面から直鎖アルキル基又は分岐アルキル基が好ましく、中でもメチル基、tert-ブチル基又はtert-アミル基がより好ましく、塗布液に用いる有機溶剤への溶解性の面から、tert-ブチル基又はtert-アミル基が更に好ましい。
 置換基を有していてもよい炭素数1~20のアルケニル基としては、例えば、エテニル基等の直鎖アルケニル基、2-メチル-1-プロペニル基等の分岐アルケニル基及びシクロヘキセニル基等の環状アルケニル基等が挙げられる。これらの中でも、感光体の光減衰特性の面から、炭素数1~10の直鎖アルケニル基が好ましい。
 前記置換基R~Rは、RとR同士、またはRとR同士が互いに結合して環状構造を形成してもよい。電子移動度の観点から、RとRが共にアルケニル基である場合、お互いに結合して芳香環を形成することが好ましく、RとRが共にエテニル基で、お互いに結合し、ベンゼン環構造を有することがより好ましい。
 上記式(1e)中、Xは分子量120以上250以下の有機残基を表し、感光体の光減衰特性の観点から、Xが下記式(2e)~(5e)で表されるいずれか1の有機残基であることが好ましい。
Figure JPOXMLDOC01-appb-C000005
 (式(2e)中、R~Rはそれぞれ独立して水素原子、又は炭素数1~6のアルキル基を表す。)
Figure JPOXMLDOC01-appb-C000006
 (式(3e)中、R~R11はそれぞれ独立して水素原子、ハロゲン原子、又は炭素数1~6のアルキル基を表す。)
Figure JPOXMLDOC01-appb-C000007
 (式(4e)中、R12は水素原子、炭素数1~6のアルキル基、又はハロゲン原子を表す。) 
Figure JPOXMLDOC01-appb-C000008
 (式(5e)中、R13及びR14はそれぞれ独立して水素原子、炭素数1~6のアルキル基、又は炭素原子6~12のアリール基を表す。)
 R~R14における、炭素数1~6のアルキル基としては、例えば、メチル基、エチル基及びヘキシル基等の直鎖アルキル基、iso-プロピル基、tert-ブチル基及びtert-アミル基等の分岐アルキル基、並びにシクロヘキシル基等の環状アルキル基が挙げられる。電子輸送能力の面から、メチル基、tert-ブチル基又はtert-アミル基がより好ましい。ハロゲン原子としては、例えば、フッ素、塩素、臭素及びヨウ素が挙げられ、電子輸送能力の面から、塩素が好ましい。炭素原子6~12のアリール基としては、例えば、フェニル基及びナフチル基等が挙げられ、感光層の膜物性の観点から、フェニル基又はナフチル基が好ましく、より好ましくはフェニル基である。
 Xは、上記式(2e)~(5e)の中でも、繰り返し画像形成した際の画質安定性の観点から、式(2e)又は式(3e)であることが好ましく、式(3e)であることがより好ましい。また、式(1e)で表される化合物を単独で用いてもよいし、構造の異なる式(1e)で表される化合物を併用してもよく、その他の電子輸送能を有する化合物と併用することもできる。以下に好ましい電子輸送能を有する化合物の構造を例示する。
Figure JPOXMLDOC01-appb-C000009
 感光層中のバインダー樹脂と前記電子輸送能を有する化合物との割合は、バインダー樹脂100質量部に対して、光疲労抑制の観点から、通常、電子輸送能を有する化合物を10質量部以上であり、20質量部以上がより好ましく、30質量部以上がより好ましい。一方、電気特性の安定性の観点から、通常、電子輸送能を有する化合物を100質量部以下であり、80質量部以下が好ましく、60質量部以下がより好ましい。
<正孔輸送能を有する化合物>
 正孔輸送能を有する化合物の構造に制限はなく、芳香族アミン誘導体、スチルベン誘導体、ブタジエン誘導体、ヒドラゾン誘導体、カルバゾール誘導体、アニリン誘導体、エナミン誘導体、及びこれらの化合物の複数種が結合したもの、あるいはこれらの化合物からなる基を主鎖、もしくは側鎖に有する重合体等の電子供与性材料等が挙げられる。これらの中でも、芳香族アミン誘導体、スチルベン誘導体、ヒドラゾン誘導体、エナミン誘導体、およびこれらの化合物の複数種が結合したものが好ましく、中でも、エナミン誘導体、及び芳香族アミンが複数結合したものがより好ましい。
 また、π共役系が広がるほど、一般的に電荷輸送性能は高くなり、平面性及び置換基による立体効果を考慮した上で、π共役系が広がる構造が好ましい。
 また、複数種の正孔輸送能を有する化合物と併用しても構わないが、これら単数又は複数種の正孔輸送能を有する化合物の内、HOMOのエネルギーレベルがより高い正孔輸送能を有する化合物の分子量が、通常、450以上、好ましくは500以上、さらに好ましくは600以上である。正孔輸送能を有する化合物の分子量が小さいと、感光層表面へのブリードアウトが起こりやすくなり、電子輸送能を有する化合物と電荷移動錯体を形成することで、そのブリードアウトを促進するからである。
<化合物C>
 本発明において、電気特性に大きく影響を与えず、且つ感光体寿命の極初期における帯電性を改良することを目的に、化合物Cを感光層又はそれを形成する各層に含有させる。
 化合物Cは、分子量が500以下であり、好ましくは450以下、より好ましくは400以下、更に好ましくは350以下である。理由は定かではないが、化合物Cの分子量が小さいと感光体表面への化合物Cのブリードアウトが起こりやすくなり、その分、電子輸送能を有する化合物のブリードアウトを抑制するためであると考えられる。
 化合物Cは、密度汎関数計算B3LYP/6-31G(d,p)による構造最適化計算の結果得られたHOMOのエネルギーレベルChが式(1a)を満たす。
 Ch≦-4.69 (eV)      (1a)
 化合物Cは、電子写真プロセスにおける電荷の移動を阻害しないものが好ましい。また、化合物Cが一方で電子輸送能を有する化合物と電荷移動錯体を形成すると、電子輸送能を有する化合物の感光体表面へのブリードアウトを促進してしまう。その理由から化合物CはChが低いものが好ましい。
 Chは好ましくは-4.75eV以下、さらに好ましくは-4.9eV以下である。また、通常-7.5eV以上である。
 また、前記正孔輸送能を有する化合物の内、HOMOのエネルギーレベルが最も高い正孔輸送能を有する化合物(化合物A)のHOMOのエネルギーレベルがAh、前記電子輸送能を有する化合物の内、LUMOのエネルギーレベルが最も低い電子輸送能を有する化合物(化合物B)のLUMOのエネルギーレベルがBlであるとき、下記式(2a)及び下記式(3a)を満たす必要がある。
 Ah-Ch≧0.10 (eV)    式(2a)
 Bl-Ch≧1.18 (eV)    式(3a)
 式(2a)においては、電気特性を良好にする観点から、好ましくは0.11eV以上、より好ましくは0.15eV以上である。
 式(3a)においては、錯体形成抑制の観点から、好ましくは1.21eV以上である。
 Ahは、正孔輸送能を鑑みると通常-5.0~-4.0eVである。Blは電子輸送能を鑑みると通常-4.5~-3.0eVである。
 また、電子輸送能を有する化合物と正孔輸送能を有する化合物又は化合物Cは電荷移動錯体を形成し、乾燥工程などTg周辺及びTg以上の環境下に置かれた場合に電子輸送能を有する化合物のブリードアウトを大きく促進してしまう可能性がある。
 化合物Cは、LUMOのエネルギーレベルがClであるとき、電荷の移動を阻害しない観点から式(4a)及び式(5a)を同時に満たすことが好ましい。
 Ch≦ -4.9 (eV)             式(4a)
 Cl≧ -3.2 (eV)             式(5a)
 Clは好ましくは-2.0eV以上であり、通常1.0eV以下である。
 また、前述の本発明の効果を十分に発揮するには、化合物Cが、電子輸送能を有する化合物に対して13質量%以上含有されることが好ましく、より好ましくは20質量%以上であり、さらに好ましくは25質量%以上である。また、通常200質量%以下、バインダー樹脂の比率が相対的に減少させず、感光体の耐久性を向上させるため、好ましくは100質量%以下、さらに好ましくは75質量%以下である。
 本発明においてHOMOのエネルギーレベルE_homo、およびLUMOのエネルギーレベルE_lumoは密度半関数法の一種である、B3LYP(A. D. Becke, J. Chem. Phys. 98, 5648(1993), C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B37, 785(1988) 及び B. Miehlich, A. Savin, H. Stoll, and H. Preuss, Chem. Phys. Lett. 157, 200(1989)参照) を用い構造最適化計算により安定構造を求めて得た。
 この時、基底関数系として6-31Gに分極関数を加えた6-31G(d,p)を用いた(R. Ditchfield, W. J. Hehre, and J. A. Pople, J. Chem. Phys. 54, 724(1971), W. J. Hehre, R. Ditchfield, and J. A. Pople, J. Chem. Phys. 56, 2257(1972), P. C. Hariharan and J. A. Pople, Mol. Phys. 27, 209(1974), M. S. Gordon, Chem. Phys. Lett. 76, 163(1980), P. C. Hariharan and J. A. Pople, Theo. Chim. Acta 28, 213(1973), J. -P. Blaudeau, M. P. McGrath, L. A. Curtiss, and L. Radom, J. Chem. Phys. 107, 5016(1997), M. M. Francl, W.J. Pietro, W. J. Hehre, J. S. Binkley, D. J. DeFrees, J. A. Pople, and M. S. Gordon, J. Chem. Phys. 77, 3654(1982), R. C. Binning Jr. and L. A. Curtiss, J. Comp. Chem. 11, 1206(1990), V. A. Rassolov, J. A. Pople, M. A. Ratner, and T. L. Windus, J. Chem. Phys. 109, 1223(1998), 及び V. A. Rassolov, M. A. Ratner, J. A. Pople, P. C. Redfern, and L. A. Curtiss, J. Comp. Chem. 22, 976(2001)を参照)。
 本発明において6-31G(d,p)を用いたB3LYP計算をB3LYP/6-31G(d,p)と記述する。
 本発明では、B3LYP/6-31G(d,p)計算に用いたプログラムはGaussian 03, Revision D. 01(M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. lyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi,G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Ilratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C.Gonzalez, and J. A. Pople, Gaussian, Inc., Wallingford CT, 2004.)である。
 以下に、化合物とその分子量、HOMOおよびLUMOのエネルギーレベルの値の例を列挙する。但し、本発明に係る正孔輸送能を有する化合物、電子輸送能を有する化合物、化合物Cはこれらの化合物に限定されるものではない。なお、Meはメチル基を、Etはエチル基を、tBuはtert-ブチル基を示す。
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
<その他の添加物>
 感光層には、成膜性、可撓性、塗布性、耐汚染性、耐ガス性、耐光性等を向上させる目的で、周知の酸化防止剤、可塑剤、紫外線吸収剤、電子吸引性化合物、レベリング剤、可視光遮光剤、空間充填剤等の添加物を含有させてもよい。また、感光体表面の摩擦抵抗や、摩耗を低減、トナーの感光体から転写ベルト、紙への転写効率を高める等の目的で、フッ素系樹脂、シリコーン樹脂、ポリエチレン樹脂等からなる粒子や、無機化合物の粒子を含有させてもよい。
<各層の形成方法>
 上記した感光体を構成する各層は、含有させる物質を溶剤に溶解または分散させて得られた塗布液を、導電性支持体上に浸漬塗布、スプレー塗布、ノズル塗布、バーコート、ロールコート、ブレード塗布等の公知の方法により、各層ごとに順次塗布・乾燥工程を繰り返すことにより形成される。
 塗布液の作製に用いられる溶媒または分散媒に特に制限は無いが、具体例としては、メタノール、エタノール、プロパノール、2-メトキシエタノール等のアルコール類、テトラヒドロフラン、1,4-ジオキサン、ジメトキシエタン等のエーテル類、ギ酸メチル、酢酸エチル等のエステル類、アセトン、メチルエチルケトン、シクロヘキサノン、4-メトキシ-4-メチル-2-ペンタノン等のケトン類、ベンゼン、トルエン、キシレン等の芳香族炭化水素類、ジクロロメタン、クロロホルム、1,2-ジクロロエタン、1,1,2-トリクロロエタン、1,1,1-トリクロロエタン、テトラクロロエタン、1,2-ジクロロプロパン、トリクロロエチレン等の塩素化炭化水素類、n-ブチルアミン、イソプロパノールアミン、ジエチルアミン、トリエタノールアミン、エチレンジアミン、トリエチレンジアミン等の含窒素化合物類、アセトニトリル、N-メチルピロリドン、N,N-ジメチルホルムアミド、ジメチルスルホキシド等の非プロトン性極性溶剤類等が挙げられる。また、これらは1種を単独で用いてもよいし、2種以上を任意の組み合わせおよび種類で併用してもよい。
 溶媒または分散媒の使用量は特に制限されないが、各層の目的や選択した溶媒・分散媒の性質を考慮して、塗布液の固形分濃度や粘度等の物性が所望の範囲となるように適宜調整するのが好ましい。
 例えば、単層型感光体の場合には、塗布液の固形分濃度を通常5質量%以上、好ましくは10質量%以上、また、通常40質量%以下、好ましくは35質量%以下の範囲とする。また、塗布液の粘度を使用時の温度において通常10mPa・s以上、好ましくは50mPa・s以上、また、通常500mPa・s以下、好ましくは400mPa・s以下の範囲とする。
 塗布液の乾燥は、室温における指触乾燥後、通常30℃以上、200℃以下の温度範囲で、1分から2時間の間、静止又は送風下で加熱乾燥させることが好ましい。また、加熱温度は一定であってもよく、乾燥時に温度を変更させながら加熱を行ってもよい。
<カートリッジ、画像形成装置>
 次に、本発明の電子写真感光体を用いた画像形成装置(本発明の画像形成装置)の実施の形態について、装置の要部構成を示す図2を用いて説明する。但し、実施の形態は以下の説明に限定されるものではなく、本発明の要旨を逸脱しない限り任意に変形して実施することができる。
 図2に示すように、画像形成装置は、電子写真感光体1、帯電装置2、露光装置3及び現像装置4を備えて構成され、更に、必要に応じて転写装置5、クリーニング装置6及び定着装置7が設けられる。
 電子写真感光体1は、上述した本発明の電子写真感光体であれば特に制限はないが、図2ではその一例として、円筒状の導電性支持体の表面に上述した感光層を形成したドラム状の感光体を示している。この電子写真感光体1の外周面に沿って、帯電装置2、露光装置3、現像装置4、転写装置5及びクリーニング装置6がそれぞれ配置されている。
 帯電装置2は、電子写真感光体1を帯電させるもので、電子写真感光体1の表面を所定電位に均一帯電させる。一般的な帯電装置としては、コロトロンやスコロトロン等の非接触のコロナ帯電装置、あるいは電圧印加された帯電部材を感光体表面に接触させて帯電させる接触型帯電装置(直接型帯電装置)が挙げられる。接触帯電装置の例としては、帯電ローラー、帯電ブラシ等が挙げられる。
 なお、図2では、帯電装置2の一例としてローラー型の帯電装置(帯電ローラー)を示している。通常帯電ローラーは樹脂、及び可塑剤等を金属シャフトと一体成型して製造され、必要に応じて積層構造を取ることも有る。なお、帯電時に印可する電圧としては、直流電圧だけの場合、及び直流に交流を重畳させて用いることもできる。
 露光装置3は、電子写真感光体1に露光を行って電子写真感光体1の感光面に静電潜像を形成することができるものであれば、その種類に特に制限はない。具体例としては、ハロゲンランプ、蛍光灯、半導体レーザーやHe-Neレーザー等のレーザー、LED等が挙げられる。また、感光体内部露光方式によって露光を行うようにしてもよい。露光を行う際の光は任意であるが、例えば、波長が780nmの単色光、波長600nm~700nmのやや短波長寄りの単色光、波長380nm~500nmの短波長の単色光等で露光を行えばよい。
 トナーTの種類は任意であり、粉状トナーのほか、懸濁重合法や乳化重合法等を用いた重合トナー等を用いることができる。特に、重合トナーを用いる場合には径が4~8μm程度の小粒径のものが好ましく、また、トナーの粒子の形状も球形に近いものから棒状等の球形から外れたものまで様々に使用することができる。重合トナーは、帯電均一性、転写性に優れ、高画質化に好適に用いられる。
 転写装置5は、その種類に特に制限はなく、コロナ転写、ローラー転写、ベルト転写等の静電転写法、圧力転写法、粘着転写法等、任意の方式を用いた装置を使用することができる。ここでは、転写装置5が電子写真感光体1に対向して配置された転写チャージャー、転写ローラー、転写ベルト等から構成されるものとする。この転写装置5は、トナーTの帯電電位とは逆極性で所定電圧値(転写電圧)を印加し、電子写真感光体1に形成されたトナー像を記録紙(用紙、媒体)Pに転写するものである。
 クリーニング装置6は、その種類に特に制限はなく、ブラシクリーナー、磁気ブラシクリーナー、静電ブラシクリーナー、磁気ローラークリーナー、ブレードクリーナー等、任意のクリーニング装置を用いることができる。クリーニング装置6は、感光体1に付着している残留トナーをクリーニング部材で掻き落とし、残留トナーを回収するものである。但し、感光体表面に残留するトナーが少ないか、ほとんど無い場合には、クリーニング装置6は無くても構わない。
 以上のように構成された電子写真装置では、次のようにして画像の記録が行われる。即ち、まず感光体1の表面(感光面)が、帯電装置2によって所定の電位(例えば600V)に帯電される。この際、直流電圧により帯電させてもよく、直流電圧に交流電圧を重畳させて帯電させてもよい。
 続いて、帯電された感光体1の感光面を、記録すべき画像に応じて露光装置3により露光し、感光面に静電潜像を形成する。そして、その感光体1の感光面に形成された静電潜像の現像を、現像装置4で行う。
 現像装置4は、供給ローラー43により供給されるトナーTを、規制部材(現像ブレード)45により薄層化するとともに、所定の極性(ここでは感光体1の帯電電位と同極性であり、正極性)に摩擦帯電させ、現像ローラー44に担持しながら搬送して、感光体1の表面に接触させる。
 現像ローラー44に担持された帯電トナーTが感光体1の表面に接触すると、静電潜像に対応するトナー像が感光体1の感光面に形成される。そしてこのトナー像は、転写装置5によって記録紙Pに転写される。この後、転写されずに感光体1の感光面に残留しているトナーが、クリーニング装置6で除去される。
 トナー像の記録紙P上への転写後、定着装置7を通過させてトナー像を記録紙P上へ熱定着することで、最終的な画像が得られる。
 なお、画像形成装置は、上述した構成に加え、例えば除電工程を行うことができる構成としてもよい。除電工程は、電子写真感光体に露光を行うことで電子写真感光体の除電を行う工程であり、除電装置としては、蛍光灯、LED等が使用される。また、除電工程で用いる光は、強度としては露光光の3倍以上の露光エネルギーを有する光である場合が多い。小型化、省エネの観点からは、除電工程を有さないことが好ましい。
 また、画像形成装置は更に変形して構成してもよく、例えば、前露光工程、補助帯電工程等の工程を行うことができる構成としたり、オフセット印刷を行う構成としたり、更には複数種のトナーを用いたフルカラータンデム方式の構成としてもよい。
 なお、電子写真感光体1を、帯電装置2、露光装置3、現像装置4、転写装置5、クリーニング装置6、及び定着装置7のうち1つ又は2つ以上と組み合わせて、一体型のカートリッジ(以下適宜「電子写真感光体カートリッジ」という)として構成し、この電子写真感光体カートリッジを複写機やレーザービームプリンター等の電子写真装置本体に対して着脱可能な構成にしてもよい。
 以下、実施例により本発明の実施の形態を更に具体的に説明する。ただし、以下の実施例は本発明を詳細に説明するために示すものであり、本発明はその要旨を逸脱しない限り、以下に示した実施例に限定されるものではなく任意に変形して実施することができる。また、以下の実施例、及び比較例中の「部」の記載は、特に指定しない限り「質量部」を示す。
<電子写真感光体の作成>
[実施例1]
 Y型オキシチタニウムフタロシアニン10質量部を1,2-ジメトキシエタン150質量部に加え、サンドグラインドミルにて粉砕分散処理し、顔料分散液を作製した。こうして得られた160質量部の顔料分散液を、ポリビニルブチラール(電気化学工業株式会社製、商品名#6000C)の5質量%1,2-ジメトキシエタン溶液100質量部と適量の4-メトキシ-4-メチル-2-ペンタノンに加え、最終的に固形分濃度4.0質量%の下引き用塗布液を作製した。この下引き用塗布液に、表面が粗切削された外径30mm、長さ340mm、肉厚0.75mmのアルミニウム合金よりなるシリンダーを浸漬塗布し、乾燥後の膜厚が0.3μmとなるように下引き層を形成した。
 次に、X型無金属フタロシアニン4.5質量部をトルエン60質量部と共にサンドグラインドミルにより分散した。
 一方、下記構造式(C-1)で示される正孔輸送能を有する化合物を60質量部と、前記構造式(ET-2)で示される電子輸送能を有する化合物を40質量部と下記構造式(C-4)で表される化合物(以下、化合物C4とも言う)15質量部、及び下記構造式(A-1)で示されるポリアリレート樹脂(以下、バインダー樹脂A1とも言う)[粘度平均分子量:Mv=41,000]100質量部をテトラヒドロフラン590質量部とトルエン90質量部の混合溶媒に溶解した。
 そして、レベリング剤としてシリコーンオイル0.05部を加え、これに上記分散液を追加し、ホモジナイザーにより均一になるように混合し、単層型感光層用塗布液を調製した。このように調製した単層型感光層用塗布液を、上述の下引き層上に、乾燥後の膜厚が30μmになるように塗布し、100℃で30分間送風乾燥後、正帯電単層型の電子写真感光体を得た。
Figure JPOXMLDOC01-appb-C000019
[実施例2]
 化合物C4の部数を5質量部へ変更した以外は、実施例1と同様の操作を行うことにより、感光体を製造した。
[実施例3]
 化合物C4を下記構造式(C-5)で表される化合物に変更した以外は、実施例1と同様の操作を行うことにより、感光体を製造した。
Figure JPOXMLDOC01-appb-C000020
[実施例4]
 上記構造式(C-5)で表される化合物の部数を5質量部へ変更した以外は、実施例3と同様の操作を行うことにより、感光体を製造した。
[実施例5]
 化合物C4を下記構造式(C-6)で表される化合物に変更した以外は、実施例1と同様の操作を行うことにより、感光体を製造した。
Figure JPOXMLDOC01-appb-C000021
[実施例6]
 上記構造式(C-6)で表される化合物の部数を5質量部へ変更した以外は、実施例5と同様の操作を行うことにより、感光体を製造した。
[実施例7]
 化合物C4を下記構造式(C-7)で表される化合物に変更した以外は、実施例1と同様の操作を行うことにより、感光体を製造した。
Figure JPOXMLDOC01-appb-C000022
[実施例8]
 化合物C4を下記構造式(C-8)で表される化合物に変更した以外は、実施例1と同様の操作を行うことにより、感光体を製造した。
Figure JPOXMLDOC01-appb-C000023
[実施例9]
 化合物C4を下記構造式(C-9)で表される化合物に変更した以外は、実施例1と同様の操作を行うことにより、感光体を製造した。
Figure JPOXMLDOC01-appb-C000024
[実施例10]
 電子輸送能を有する化合物を前記構造式(ET-4)で示される電子輸送能を有する化合物に変更した以外は、実施例1と同様の操作を行うことにより、感光体を製造した。
[実施例11]
 正孔輸送能を有する化合物を下記構造式(C-2)で示される正孔輸送能を有する化合物に変更した以外は、実施例1と同様の操作を行うことにより、感光体を製造した。
Figure JPOXMLDOC01-appb-C000025
[実施例12]
 化合物C4を下記構造式(C-10)で表される化合物に変更した以外は、実施例11と同様の操作を行うことにより、感光体を製造した。
Figure JPOXMLDOC01-appb-C000026
[実施例13]
 バインダー樹脂A1を下記構造式(A-2)で表されるポリアリレートに変更した以外は、実施例1と同様の操作を行うことにより、感光体を製造した。
Figure JPOXMLDOC01-appb-C000027
[比較例1]
 バインダー樹脂A1を下記構造式(P-1)で表されるポリカーボネートに変更した以外は、実施例1と同様の操作を行うことにより、感光体を製造した。
Figure JPOXMLDOC01-appb-C000028
[比較例2]
 化合物C4を下記構造式(C-11)で表される化合物に変更した以外は、実施例1と同様の操作を行うことにより、感光体を製造した。
Figure JPOXMLDOC01-appb-C000029
[比較例3]
 化合物C4を下記構造式(C-12)で表される化合物に変更した以外は、実施例1と同様の操作を行うことにより、感光体を製造した。
Figure JPOXMLDOC01-appb-C000030
[比較例4]
 正孔輸送能を有する化合物を下記構造式(C-3)で示される正孔輸送能を有する化合物に変更した以外は、実施例1と同様の操作を行うことにより、感光体を製造した。
Figure JPOXMLDOC01-appb-C000031
[比較例5]
 化合物C4を前記構造式(C-3)で表される化合物に変更した以外は、実施例10と同様の操作を行うことにより、感光体を製造した。
<初期画像試験>
 各実施例および比較例で得られた電子写真感光体を、A3モノクロデジタル複写機[京セラドキュメントソリューション社製KM-1620(印刷速度:A4ヨコ16枚/分解像度:600dpi 露光源:レーザー 帯電方式:スコロトロン)]のドラムカートリッジに装着し、上記複写機にセットした。
 印刷の入力として、ハーフトーンのベタ画像パターンを用い、コピー機能にて印字、その結果得られる出力画像を目視評価した。結果を表-2に示す。
<感光体の電気特性の評価>
 各実施例および比較例で得られた電子写真感光体を、電子写真学会測定標準に従って作製された電子写真特性評価装置(続電子写真技術の基礎と応用、電子写真学会編、コロナ社、404-405頁記載)を使用し、別途、感光体の帯電電位(白地電位)を測定した。
 一定のグリッド電圧をかけ、印刷1枚後の帯電電位をVo(1)[V]、10枚目の帯電電位をVo(10)[V]とした。結果を表-2に示す。
<各パラメータ値>
 密度汎関数計算B3LYP/6-31G(d,P)において、正孔輸送能を有する化合物の内、HOMOのエネルギーレベルが最も高い正孔輸送能を有する化合物(化合物A)のHOMOのエネルギーレベルをAhとし、電子輸送能を有する化合物の内、LUMOのエネルギーレベルが最も低い電子輸送能を有する化合物(化合物B)のLUMOのエネルギーレベルをBlとし、化合物A及び化合物B以外の化合物(化合物C)のHOMOのエネルギーレベルをChとしたときの、Ch、Ah-Ch及びBl-Chを求めた。結果を化合物Cの分子量と共に表-3に示す。
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000033
 表-2、および表-3から分かるように、本発明のパラメータを満たす構成である実施例1~13では印刷一枚目から表面電位が十分上がって良好な画像が得られたのに対し、本発明のパラメータの範囲外の比較例2~5では、1枚目の帯電電位が低く、カブリや画像ムラ(黒帯状)が生じた。
 電子輸送能を有する化合物に対する質量%が12.5%で、比較的に化合物Cの含有量が少ない実施例2、4、6では、ややカブリが見られるものの、実使用上では問題ないレベルであった。
 化合物BのLUMOのエネルギーレベルと化合物CのHOMOのエネルギーレベルの差(Bl-Ch)の比較的小さい、実施例10では実使用上問題ないレベルだが、わずかにカブリが見られた。これは化合物Cが電子輸送能を有する化合物のブリードアウトを抑える効果が小さくなったためと思われる。
 また、化合物AのHOMOのエネルギーレベルと化合物CのHOMOのエネルギーレベルの差(Ah-Ch)が比較的小さい、実施例11及び実施例12ではやや濃度の低下が見られた。これは化合物Cが電荷輸送に影響を及ぼした可能性がある。
 実施例5~9では、一枚印刷後の感光体の帯電性が、他の例と比較して良好であり、使用した化合物CのHOMOのエネルギーレベルが他の例より低かったためであると考えられる。
<耐刷画像試験>
 次に実施例1の感光体、および、比較例1の感光体について、A3モノクロデジタル複合機[京セラドキュメントソリューション社製TASKalfa1800(印刷速度:A4ヨコ18枚/分 解像度:600dpi 露光源:レーザー 帯電方式:接触ローラー帯電)]のドラムカートリッジに装着し、上記複合機にセットした。温度25℃、湿度50%の環境で、30,000枚画像形成を行った。表-4に画像評価の結果(摩耗性、クリーニング性、フィルミングの発生)について示す。
Figure JPOXMLDOC01-appb-T000034
 表-4から明らかなように、感光体のバインダー樹脂としてポリアリレートを用いた実施例1では、ポリカーボネートを用いた比較例1と比較して、耐摩耗性、クリーニング性、耐フィルミング性等の機械特性に優れている。
 表-2~表-4のすべての結果から、本発明における電子写真感光体は、機械特性に優れ、且つ、感光体寿命の極初期におけるカブリを抑制できる特徴を合わせ持っていることがわかる。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は2016年3月29日出願の日本特許出願(特願2016-066782)に基づくものであり、その内容はここに参照として取り込まれる。
 1  感光体(電子写真感光体)
 2  帯電装置(帯電ローラー;帯電部)
 3  露光装置(露光部)
 4  現像装置(現像部)
 5  転写装置
 6  クリーニング装置
 7  定着装置
 41 現像槽
 42 アジテータ
 43 供給ローラー
 44 現像ローラー
 45 規制部材
 71 上部定着部材(定着ローラー)
 72 下部定着部材(定着ローラー)
 73 加熱装置
 T  トナー
 P  記録紙(用紙,媒体)

Claims (7)

  1.  導電性支持体上に、少なくともバインダー樹脂、正孔輸送能を有する化合物及び電子輸送能を有する化合物を含有する単層型感光層を有する正帯電用電子写真感光体であって、
     該バインダー樹脂は、ポリアリレート樹脂を含有し、
     密度汎関数計算B3LYP/6-31G(d,P)において、該正孔輸送能を有する化合物の内、HOMOのエネルギーレベルが最も高い正孔輸送能を有する化合物を化合物Aとし、該化合物AのHOMOのエネルギーレベルをAhとし、該電子輸送能を有する化合物の内、LUMOのエネルギーレベルが最も低い電子輸送能を有する化合物を化合物Bとし、該化合物BのLUMOのエネルギーレベルをBlとし、
     該単層型感光層は、更に該化合物A及び該化合物B以外の化合物Cを含み、該化合物Cの分子量が500以下であり、
     該化合物CのHOMOのエネルギーレベルをChとしたとき、下記式(1a)、下記式(2a)及び下記式(3a)を満たす、正帯電用電子写真感光体。
     Ch≦-4.69 (eV)      (1a)
     Ah-Ch≧0.10 (eV)    (2a)
     Bl-Ch≧1.18 (eV)    (3a)
  2.  前記式(2a)が、
     Ah-Ch≧0.11 (eV)
    である、請求項1に記載の電子写真感光体。
  3.  前記化合物CのLUMOのエネルギーレベルをClとしたとき、前記Ch及び前記Clが下記式(4a)及び下記式(5a)を同時に満たす、請求項1又は2に記載の電子写真感光体。
     Ch≦-4.9 (eV)             式(4a)
     Cl≧-3.2 (eV)             式(5a)
  4.  前記化合物Cが、前記電子輸送能を有する化合物に対して、13質量%以上含有される、請求項1~3のいずれか1項に記載の電子写真感光体。
  5.  前記ポリアリレート樹脂が、下記一般式(1b)で表される構造単位を有する、請求項1~4のいずれか1項に記載の電子写真感光体。
    Figure JPOXMLDOC01-appb-C000001
    (式(1b)中、Arb1~Arb4はそれぞれ独立に置換基を有していてもよいアリーレン基を表す。Zは、単結合、酸素原子、硫黄原子、又はアルキレン基を表す。mは0以上2以下の整数を表す。Yは、単結合、酸素原子、硫黄原子、又はアルキレン基を表す。)
  6.  請求項1~5のいずれか1項に記載の電子写真感光体と、該電子写真感光体を帯電させる帯電部、帯電した該電子写真感光体を露光させ静電潜像を形成する露光部、該電子写真感光体上に形成された静電潜像を現像する現像部、該電子写真感光体上をクリーニングするクリーニング部のうち、少なくとも一つとを備える、電子写真感光体カートリッジ。
  7.  請求項1~5のいずれか1項に記載の電子写真感光体と、該電子写真感光体を帯電させる帯電部、帯電した該電子写真感光体を露光させ静電潜像を形成する露光部、及び該電子写真感光体上に形成された静電潜像を現像する現像部とを備える、画像形成装置。
PCT/JP2017/012767 2016-03-29 2017-03-28 正帯電用電子写真感光体、電子写真感光体カートリッジ、及び画像形成装置 WO2017170615A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780020724.4A CN108885416A (zh) 2016-03-29 2017-03-28 带正电用电子照相感光体、电子照相感光体盒以及成像装置
JP2018508109A JP6879293B2 (ja) 2016-03-29 2017-03-28 正帯電用電子写真感光体、電子写真感光体カートリッジ、及び画像形成装置
EP17775152.6A EP3438752B1 (en) 2016-03-29 2017-03-28 Positively chargeable electrophotographic photoreceptor, electrophotographic photoreceptor cartridge, and image forming apparatus
US16/143,979 US20190025719A1 (en) 2016-03-29 2018-09-27 Electrophotographic photoreceptor for positive charging, electrophotographic photoreceptor cartridge, and image forming apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016066782 2016-03-29
JP2016-066782 2016-03-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/143,979 Continuation US20190025719A1 (en) 2016-03-29 2018-09-27 Electrophotographic photoreceptor for positive charging, electrophotographic photoreceptor cartridge, and image forming apparatus

Publications (1)

Publication Number Publication Date
WO2017170615A1 true WO2017170615A1 (ja) 2017-10-05

Family

ID=59964699

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/012767 WO2017170615A1 (ja) 2016-03-29 2017-03-28 正帯電用電子写真感光体、電子写真感光体カートリッジ、及び画像形成装置

Country Status (5)

Country Link
US (1) US20190025719A1 (ja)
EP (1) EP3438752B1 (ja)
JP (1) JP6879293B2 (ja)
CN (1) CN108885416A (ja)
WO (1) WO2017170615A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180004101A1 (en) * 2015-03-13 2018-01-04 Mitsubishi Chemical Corporation Single-layer type electrophotographic photoreceptor for positive charging, electrophotographic photoreceptor cartridge, and image forming apparatus
JP2018028642A (ja) * 2016-08-19 2018-02-22 富士ゼロックス株式会社 電子写真感光体、プロセスカートリッジ、及び画像形成装置
JP2020154130A (ja) * 2019-03-20 2020-09-24 富士ゼロックス株式会社 電子写真感光体、プロセスカートリッジ、及び画像形成装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110226132A (zh) * 2017-01-27 2019-09-10 三菱化学株式会社 电子照相感光体、电子照相感光体盒、及图像形成装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004133230A (ja) * 2002-10-11 2004-04-30 Kyocera Mita Corp 有機感光体を備えている画像形成装置
JP2011227486A (ja) * 2010-03-31 2011-11-10 Mitsubishi Chemicals Corp 電子写真感光体、画像形成方法及び画像形成装置
WO2013128575A1 (ja) * 2012-02-28 2013-09-06 富士電機株式会社 電子写真用感光体、その製造方法および電子写真装置、並びに共重合ポリアリレート樹脂の製造方法
WO2015097903A1 (ja) * 2013-12-27 2015-07-02 富士電機株式会社 電子写真用感光体、その製造方法および電子写真装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS486Y1 (ja) * 1970-09-14 1973-01-05
JPH077Y2 (ja) * 1989-05-19 1995-01-11 安久津 義人 カルチベーターにおける自動高低調節装置
JPH0535166A (ja) * 1991-07-31 1993-02-12 Canon Inc 画像形成装置
US5430536A (en) * 1993-10-12 1995-07-04 Xerox Corporation Automatic duplex and simplex document handler for electronic input
JP2000314969A (ja) * 1999-04-30 2000-11-14 Fuji Denki Gazo Device Kk 電子写真用感光体および電子写真装置
JP4132640B2 (ja) * 2000-02-22 2008-08-13 三菱化学株式会社 電子写真感光体
JP2004177703A (ja) * 2002-11-27 2004-06-24 Kyocera Mita Corp 電子写真感光体
CN101443707A (zh) * 2006-05-18 2009-05-27 三菱化学株式会社 电子照相感光体、成像装置和电子照相盒
JP2010175784A (ja) * 2009-01-29 2010-08-12 Kyocera Mita Corp 単層型電子写真感光体、画像形成装置、及び画像形成方法
JP2011192598A (ja) * 2010-03-16 2011-09-29 Stanley Electric Co Ltd 白色led光源モジュール
JP5942601B2 (ja) * 2012-05-28 2016-06-29 三菱化学株式会社 電子写真感光体、電子写真カートリッジ、及び画像形成装置
JP6256055B2 (ja) * 2014-01-31 2018-01-10 三菱ケミカル株式会社 電子写真感光体、電子写真プロセスカートリッジ及び画像形成装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004133230A (ja) * 2002-10-11 2004-04-30 Kyocera Mita Corp 有機感光体を備えている画像形成装置
JP2011227486A (ja) * 2010-03-31 2011-11-10 Mitsubishi Chemicals Corp 電子写真感光体、画像形成方法及び画像形成装置
WO2013128575A1 (ja) * 2012-02-28 2013-09-06 富士電機株式会社 電子写真用感光体、その製造方法および電子写真装置、並びに共重合ポリアリレート樹脂の製造方法
WO2015097903A1 (ja) * 2013-12-27 2015-07-02 富士電機株式会社 電子写真用感光体、その製造方法および電子写真装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3438752A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180004101A1 (en) * 2015-03-13 2018-01-04 Mitsubishi Chemical Corporation Single-layer type electrophotographic photoreceptor for positive charging, electrophotographic photoreceptor cartridge, and image forming apparatus
JP2018028642A (ja) * 2016-08-19 2018-02-22 富士ゼロックス株式会社 電子写真感光体、プロセスカートリッジ、及び画像形成装置
JP2020154130A (ja) * 2019-03-20 2020-09-24 富士ゼロックス株式会社 電子写真感光体、プロセスカートリッジ、及び画像形成装置
JP7275708B2 (ja) 2019-03-20 2023-05-18 富士フイルムビジネスイノベーション株式会社 電子写真感光体、プロセスカートリッジ、及び画像形成装置

Also Published As

Publication number Publication date
EP3438752A1 (en) 2019-02-06
EP3438752A4 (en) 2019-03-13
CN108885416A (zh) 2018-11-23
US20190025719A1 (en) 2019-01-24
JPWO2017170615A1 (ja) 2019-02-07
EP3438752B1 (en) 2022-01-12
JP6879293B2 (ja) 2021-06-02

Similar Documents

Publication Publication Date Title
JP5353077B2 (ja) 電子写真感光体、電子写真感光体カートリッジ及び画像形成装置
JP5577722B2 (ja) 電子写真感光体、電子写真カートリッジ、及び画像形成装置
TWI599860B (zh) Photoreceptor for electrophotography, process for producing the same, and electrophotographic apparatus
JP6879293B2 (ja) 正帯電用電子写真感光体、電子写真感光体カートリッジ、及び画像形成装置
JP2014016609A (ja) 画像形成装置および電子写真感光体
WO2014157115A1 (ja) 電子写真感光体、電子写真感光体カートリッジ、及び画像形成装置
JP2015052734A (ja) 電子写真感光体及び画像形成装置
JP6051907B2 (ja) 電子写真感光体、電子写真感光体カートリッジ、および画像形成装置
CN107407895B (zh) 带正电用单层型电子照相感光体、电子照相感光体盒、以及图像形成装置
JP6160103B2 (ja) 電子写真感光体、電子写真感光体カートリッジ、および画像形成装置
JP6060738B2 (ja) 電子写真感光体、電子写真感光体カートリッジ、および画像形成装置
JP2016186593A (ja) 電子写真感光体の製造方法、電子写真感光体、電子写真感光体カートリッジ、及び画像形成装置
JP5659455B2 (ja) 電子写真感光体、電子写真感光体カートリッジ、および、画像形成装置
WO2016098682A1 (ja) 電子写真感光体、電子写真感光体カートリッジ、及び画像形成装置
JP2017067938A (ja) 電子写真感光体、電子写真感光体カートリッジ、及び画像形成装置
JP2012022256A (ja) 画像形成装置及び電子写真感光体
WO2018062518A1 (ja) 電子写真感光体、電子写真感光体カートリッジ及び画像形成装置
JP5309465B2 (ja) 電子写真感光体及び画像形成装置
JP6447062B2 (ja) 電子写真感光体、電子写真感光体カートリッジ、及び画像形成装置
JP2014167555A (ja) 電子写真感光体、電子写真感光体カートリッジ、及び画像形成装置
JP2013097270A (ja) 電子写真感光体、電子写真感光体カートリッジ、および画像形成装置
JP2018136404A (ja) 正帯電用単層型電子写真感光体の製造方法
JP6102639B2 (ja) 電子写真感光体、電子写真カートリッジ、及び画像形成装置
JP2019053334A (ja) 電子写真感光体の製造方法、電子写真感光体、電子写真感光体カートリッジ、及び画像形成装置
JP2012037660A (ja) 電子写真感光体、該感光体を用いる電子写真カートリッジ、及び該感光体を用いる画像形成装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018508109

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017775152

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017775152

Country of ref document: EP

Effective date: 20181029

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17775152

Country of ref document: EP

Kind code of ref document: A1