WO2017170412A1 - 異方性導電接続構造体 - Google Patents

異方性導電接続構造体 Download PDF

Info

Publication number
WO2017170412A1
WO2017170412A1 PCT/JP2017/012408 JP2017012408W WO2017170412A1 WO 2017170412 A1 WO2017170412 A1 WO 2017170412A1 JP 2017012408 W JP2017012408 W JP 2017012408W WO 2017170412 A1 WO2017170412 A1 WO 2017170412A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode terminal
anisotropic conductive
connection structure
conductive particles
protrusion
Prior art date
Application number
PCT/JP2017/012408
Other languages
English (en)
French (fr)
Inventor
佐藤 大祐
明史 樋口
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Priority to KR1020187013065A priority Critical patent/KR102081570B1/ko
Priority to CN201780017937.1A priority patent/CN108780763B/zh
Priority to US16/077,785 priority patent/US10602619B2/en
Publication of WO2017170412A1 publication Critical patent/WO2017170412A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives
    • H05K3/323Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives by applying an anisotropic conductive adhesive layer over an array of pads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/16Non-insulated conductors or conductive bodies characterised by their form comprising conductive material in insulating or poorly conductive material, e.g. conductive rubber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L24/80 - H01L24/90
    • H01L24/92Specific sequence of method steps
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/36Assembling printed circuits with other printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/36Assembling printed circuits with other printed circuits
    • H05K3/368Assembling printed circuits with other printed circuits parallel to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05617Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/05624Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05639Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05644Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05647Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05655Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/1301Shape
    • H01L2224/13016Shape in side view
    • H01L2224/13018Shape in side view comprising protrusions or indentations
    • H01L2224/13019Shape in side view comprising protrusions or indentations at the bonding interface of the bump connector, i.e. on the surface of the bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/1302Disposition
    • H01L2224/13023Disposition the whole bump connector protruding from the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/13124Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13139Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13144Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13147Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13155Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16135Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/16145Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • H01L2224/16148Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked the bump connector connecting to a bonding area protruding from the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16238Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bonding area protruding from the surface of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29199Material of the matrix
    • H01L2224/2929Material of the matrix with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/29386Base material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29399Coating material
    • H01L2224/294Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29438Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29444Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29399Coating material
    • H01L2224/294Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29438Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29455Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29499Shape or distribution of the fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32135Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/32145Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/819Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector with the bump connector not providing any mechanical bonding
    • H01L2224/81901Pressing the bump connector against the bonding areas by means of another connector
    • H01L2224/81903Pressing the bump connector against the bonding areas by means of another connector by means of a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/832Applying energy for connecting
    • H01L2224/83201Compression bonding
    • H01L2224/83203Thermocompression bonding, e.g. diffusion bonding, pressure joining, thermocompression welding or solid-state welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • H01L2224/83851Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester being an anisotropic conductive adhesive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/921Connecting a surface with connectors of different types
    • H01L2224/9211Parallel connecting processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector

Definitions

  • the present invention relates to an anisotropic conductive connection structure.
  • a flip chip bonding method As a method for connecting a plurality of electronic components (for example, an IC chip, a rigid substrate, a flexible substrate, etc.) having electrode terminals, a flip chip bonding method is known.
  • electrode terminals are connected in a state where electrode terminals of a plurality of electronic components are opposed to each other.
  • An ultrasonic connection method is known as an example of such a flip chip bonding method.
  • electrode terminals of a plurality of electronic components are brought into contact with each other.
  • the contact portion of the electrode terminal is vibrated by ultrasonic waves.
  • electrode terminals are connected.
  • the electrode terminals of both electronic components are made of gold.
  • a filler (so-called underfill) is filled in the space around the connecting portion and cured.
  • a eutectic method is known as another example of the flip chip bonding method.
  • electrode terminals of a plurality of electronic components are brought into contact with each other.
  • the contact portion of the electrode terminal is heated.
  • the electrode terminals are eutectic and connected.
  • the electrode terminal of one electronic component is made of gold
  • the electrode terminal of the other electronic component is made of tin.
  • a filler is filled in the space around the connecting portion and cured.
  • the electrode terminal vibrates greatly due to the ultrasonic wave, which may cause a connection failure or a short circuit.
  • the electrode terminal to which the ultrasonic connection method can be applied needs to be made of an expensive material such as gold, the cost increases. Further, since filling and curing of the filler are necessary, the cost also increases in this respect. In addition, the man-hour increases.
  • the connecting portion of the electrode terminal is heated, but the heating temperature at this time becomes very high.
  • the heating temperature is about 400 ° C.
  • the flexible substrate may be deformed during heating.
  • the position of the electrode terminal on the flexible substrate may be shifted. Therefore, connection failure, short circuit, etc. may occur.
  • the filler as in the ultrasonic connection method.
  • Patent Documents 1 and 2 a method of anisotropically connecting electrode terminals using an anisotropic conductive film has attracted attention as a flip chip bonding method.
  • this method since no ultrasonic wave is required, there is no problem with ultrasonic waves. Further, even in the connection method using an anisotropic conductive film, a heating process is required, but the heating temperature is lower than that in the eutectic method. Furthermore, since the curable resin constituting the anisotropic conductive film functions as a filler, a process of separately filling and curing the filler becomes unnecessary.
  • the electronic component when the electronic component is an IC chip, bumps are formed as electrode terminals on the IC chip.
  • a protrusion is formed on the peripheral portion of the surface of the bump (ie, the surface facing the electrode terminal of another electronic component).
  • the protrusion is often formed over the entire outer periphery of the surface of the bump.
  • such protrusions have been thought to cause poor connection, and it has been considered preferable to make them as small as possible.
  • the conductive particles when the conductive particles are buried in the recesses (so-called dimples) formed by the protrusions, the conductive particles may not be sufficiently compressed. For this reason, connection failure may occur.
  • the protruding portion is made as small as possible.
  • the technique disclosed in Patent Document 1 in order to reduce the protrusion, the opening area of the opening formed in the insulating layer is extremely reduced.
  • the insulating layer is a layer covering the functional surface of the IC chip, and the opening is formed on the electrode pad of the IC chip.
  • the bump is connected to the electrode pad through the opening of the insulating layer.
  • the protruding portion is reduced by reducing the opening area of such an opening.
  • the process of reducing the opening area is very laborious.
  • the technique disclosed in Patent Document 2 requires a separate process of irradiating the protrusion with ultrasonic waves in order to reduce the protrusion.
  • the present invention has been made in view of the above problems, and an object of the present invention is to reduce the connection resistance of the anisotropic conductive connection portion between the electrode terminals and to improve the reliability. Another object of the present invention is to provide a new and improved anisotropic conductive connection structure capable of increasing the connection strength.
  • a first electrode terminal having a protrusion formed on the surface, a second electrode terminal, a first electrode terminal, and a second electrode terminal And an anisotropic conductive adhesive layer containing conductive particles that are electrically connected to each other, wherein the ratio of the height of the protruding portion to the particle diameter before compression of the conductive particles is less than 60%, and the first electrode terminal
  • An anisotropic conductive connection structure is provided in which the opening area ratio is 55% or more and the height of the second electrode terminal is 6 ⁇ m or more.
  • the projecting portion can capture more conductive particles in the recess in the projecting portion. Furthermore, the conductive particles in the recess are sufficiently compressed. Accordingly, connection resistance is reduced and reliability is improved. Furthermore, since a sufficient amount of adhesive flows between the second electrode terminals, the first electrode terminal and the second electrode terminal are firmly bonded.
  • the ratio of the hardness of the first electrode terminal to the hardness of the second electrode terminal may be larger than 10%.
  • the recessed part enclosed by the protrusion part is formed in the surface of a 1st electrode terminal,
  • the ratio of the particle diameter before compression of the electroconductive particle with respect to the short side length of the recessed part of a 1st electrode terminal is less than 10% It may be.
  • the recessed part enclosed by the protrusion part is formed in the surface of a 1st electrode terminal, and the average occupation area rate of the electroconductive particle which exists in the recessed part of a 1st electrode terminal may be less than 20%. .
  • the protrusion may be formed over the entire outer edge of the surface of the first electrode terminal.
  • the first electrode terminal may be a bump formed on the first electronic component.
  • connection resistance of the anisotropic conductive connection portion between the electrode terminals can be reduced, the reliability can be increased, and the connection strength can be increased.
  • the anisotropic conductive connection structure 10 includes a first electronic component 20, a first electrode terminal 21 formed on the first electronic component 20, a second electronic component 30, and a second electronic component.
  • the second electrode terminal 32 formed on the substrate 30 and the adhesive layer 40 are provided.
  • the first electronic component 20 is, for example, an electronic circuit board.
  • the type of the electronic circuit board is not particularly limited, and may be an IC chip, various rigid boards (for example, a glass epoxy board), a flexible board, or the like.
  • the first electronic component 20 is, for example, an IC chip.
  • the first electrode terminal 21 is a bump.
  • the protrusions 22 are easily formed on the bumps.
  • the first electrode terminal 21 is formed on the first electronic component 20.
  • the first electrode terminal 21 is electrically connected to an electronic circuit that constitutes the first electronic component 20.
  • a protrusion 22 is formed on the surface of the first electrode terminal 21 (that is, the surface facing the second electronic component 30).
  • the first electrode terminal 21 is a bump.
  • the 1st electrode terminal 21 should just be the thing in which the protrusion part 22 was formed. Therefore, the first electrode terminal 21 is not limited to a bump.
  • the material constituting the first electrode terminal 21 is not particularly limited as long as it has conductivity.
  • a material which comprises the 1st electrode terminal 21 it is preferable to comprise with metals, such as aluminum, silver, nickel, copper, and gold
  • the protrusion 22 is formed on the surface of the first electrode terminal 21. As shown in FIG. 2, the protrusion 22 is formed over the entire outer edge of the surface of the first electrode terminal 21. When the first electrode terminal 21 is a bump, the protrusion 22 is often formed over the entire outer edge of the surface of the first electrode terminal 21.
  • the shape of the protrusion 22 is not limited to that shown in FIG. 1, but the shape of FIG. 2 is preferable. In this case, the protrusion 22 can capture the conductive particles 42 more reliably.
  • a concave portion 23 (so-called dimple) surrounded by the protruding portion 22 is formed on the surface of the first electrode terminal 21.
  • the protrusion 22 is actively used.
  • the conductive particles 42 can be held between the first electrode terminal 21 and the second electrode terminal 32 by capturing the conductive particles 42 by the protrusion 22.
  • the conductive particles 42 are included in the adhesive layer 40.
  • the second electronic component 30 is, for example, an electronic circuit board.
  • the type of the electronic circuit board is not particularly limited, and may be an IC chip, various rigid boards (for example, a glass epoxy board), a flexible board, or the like.
  • the second electronic component 30 is a flexible substrate, for example. When the second electronic component 30 is a flexible substrate, the height H2 of the second electrode terminal 32 easily satisfies the requirements described later.
  • the type of the flexible substrate is not particularly limited, and may be a polyimide substrate, for example.
  • the second electrode terminal 31 is formed on the second electronic component 30.
  • the second electrode terminal 31 is electrically connected to an electronic circuit that constitutes the second electronic component 30.
  • the material which comprises the 2nd electrode terminal 31 will not be restrict
  • Examples of the material constituting the second electrode terminal 31 include metals such as aluminum, silver, nickel, copper, and gold.
  • the metal constituting the second electrode terminal 31 may be plated with various metals.
  • the adhesive layer 40 is obtained by curing an anisotropic conductive adhesive, and includes a cured resin layer 41 and conductive particles 42. That is, the adhesive layer 40 performs anisotropic conductive connection between the first electrode terminal 21 and the second electrode terminal 31.
  • the anisotropic conductive adhesive includes a curable resin and conductive particles 42.
  • the curable resin includes a polymerizable compound and a curing initiator.
  • the polymerizable compound is a resin that is cured by a curing initiator.
  • the cured polymerizable compound that is, the cured resin layer 41 adheres the first electrode terminal 21 and the second electrode terminal 31 in the adhesive layer 40 and holds the conductive particles 42 in the adhesive layer 40.
  • Examples of the polymerizable compound include an epoxy polymerizable compound and an acrylic polymerizable compound.
  • the epoxy polymerizable compound is a monomer, oligomer, or prepolymer having one or more epoxy groups in the molecule.
  • epoxy polymerizable compounds various bisphenol type epoxy resins (bisphenol A type, F type, etc.), novolac type epoxy resins, various modified epoxy resins such as rubber and urethane, naphthalene type epoxy resins, biphenyl type epoxy resins, phenol novolac type Examples thereof include epoxy resins, stilbene type epoxy resins, triphenolmethane type epoxy resins, dicyclopentadiene type epoxy resins, triphenylmethane type epoxy resins, and prepolymers thereof.
  • the acrylic polymerizable compound is a monomer, oligomer, or prepolymer having one or more acrylic groups in the molecule.
  • acrylic polymerizable compounds include methyl acrylate, ethyl acrylate, isopropyl acrylate, isobutyl acrylate, epoxy acrylate, ethylene glycol diacrylate, diethylene glycol diacrylate, trimethylol propane triacrylate, dimethylol tricyclodecane diacrylate, and tetramethylene glycol.
  • the curing initiator is, for example, a thermosetting initiator.
  • the thermosetting initiator is a material that is cured together with the polymerizable compound by heat.
  • the kind of thermosetting initiator is not particularly limited.
  • Examples of the thermosetting initiator include a thermal anion or thermal cation curing initiator that cures the epoxy polymerizable compound, and a thermal radical polymerization curing agent that cures the acrylic polymerizable compound.
  • an appropriate thermosetting initiator may be selected depending on the polymerizable compound.
  • a photocuring initiator is mentioned as another example of a curing initiator.
  • photocuring initiator examples include a photoanion or photocationic curing initiator that cures an epoxy polymerizable compound, and a photo radical polymerization curing agent that cures an acrylic polymerizable compound.
  • an appropriate photocuring initiator may be selected depending on the polymerizable compound.
  • the anisotropic conductive adhesive may include a film-forming resin, various additives and the like in addition to the above components.
  • the film-forming resin is added to the anisotropic conductive adhesive when it is desired to form a film in order to make the anisotropic conductive adhesive easy to handle.
  • various resins such as an epoxy resin, a phenoxy resin, a polyester urethane resin, a polyester resin, a polyurethane resin, an acrylic resin, a polyimide resin, and a butyral resin can be used. In the present embodiment, only one of these film-forming resins can be used, or two or more can be used in any combination.
  • film forming resin is a phenoxy resin from a viewpoint of making film forming property and adhesive reliability favorable.
  • the thickness of a film is not particularly limited. However, if the film becomes too thick, the amount of unnecessary resin becomes too large, causing problems with fluidity. Therefore, 100 micrometers or less are preferable and 40 micrometers or less are more preferable. Since handling will become difficult when it becomes too thin, 5 micrometers or more are preferable and 12 micrometers or more are more preferable.
  • additives that can be added to the anisotropic conductive adhesive include silane coupling agents, inorganic fillers, colorants, antioxidants, and rust inhibitors.
  • the kind of silane coupling agent is not particularly limited.
  • examples of the silane coupling agent include epoxy-based, amino-based, mercapto-sulfide-based, and ureido-based silane coupling agents. When these silane coupling agents are added to the anisotropic conductive adhesive, the adhesiveness can be improved depending on the material of the substrate.
  • the inorganic filler is an additive for adjusting the fluidity and film strength of the anisotropic conductive adhesive, particularly the minimum melt viscosity described later.
  • the kind of inorganic filler is not particularly limited. Examples of the inorganic filler include silica, talc, titanium oxide, calcium carbonate, and magnesium oxide.
  • the conductive particle 42 is a material that anisotropically connects the first electrode terminal 21 and the second electrode terminal 31 in the adhesive layer 40. Specifically, the conductive particles 42 sandwiched between the first electrode terminal 21 and the second electrode terminal 31 in the adhesive layer 40 are connected to the first electrode terminal 21 and the second electrode terminal 31. Conduct. On the other hand, other conductive particles 42 (for example, conductive particles 42 that have entered the gap between the first electrode terminals 21, conductive particles 42 that have entered the gap between the second electrode terminals 31, etc.) No conduction between terminals (that is, a short circuit in which the conductive particles 42 are connected between the first electrode terminals 21 and a short circuit in which the conductive particles 42 are connected between the second electrode terminals 31 are not generated). .
  • the conductive particles 42 maintain the insulation between the first electrode terminals 21 and the second electrode terminals 31 in the adhesive layer 40, while maintaining the insulation between the first electrode terminals 21 and the second electrode terminals 31. Can be conducted. That is, the conductive particles 42 are held between the first electrode terminal 21 and the second electrode terminal 31 in the adhesive layer 40, thereby conducting them and making an anisotropic conductive connection.
  • the conductive particles 42 may be dispersed in the anisotropic conductive agent to such an extent that they do not short-circuit, or may be arranged individually. This arrangement is appropriately set depending on the size of each electrode terminal, the distance in the arrangement direction of the electrode terminals, and the like, but may be regular. Moreover, the electroconductive particle 42 satisfy
  • the particle diameter before compression of the conductive particles 42 is not particularly limited as long as the requirements described later are satisfied, but is 1 to 10 ⁇ m as an example.
  • the anisotropic conductive adhesive before anisotropic conductive connection may be formed in advance as a film body.
  • anisotropic conductive connection structure 10 satisfies the following requirements, the protrusion 22 can capture the conductive particles 42. As a result, the connection resistance can be reduced and the reliability is improved. Furthermore, the adhesive layer 40 can firmly bond the first electrode terminal 21 and the second electrode terminal 31.
  • the anisotropic conductive connection structure 10 needs to satisfy at least requirements 1 to 3. It is preferable that the anisotropic conductive connection structure 10 further satisfies the requirement 4 or later.
  • each electrode When evaluating whether or not the following requirements are satisfied, the structure and the like of each electrode can be observed with an SEM (scanning electron microscope) or the like.
  • the height H1 of the protrusion 22 can be measured by observing the first electrode terminal 21 with an SEM.
  • the following parameters may be an arithmetic average value of measured values measured for a plurality of anisotropic conductive connection structures 10, or any one of the values may be used as a representative value.
  • the ratio of the height H1 of the protrusion 22 to the particle diameter before compression of the conductive particles 42 (hereinafter also referred to as “protrusion height / particle diameter ratio”) is less than 60%. Is the particle diameter before compressing the conductive particles 42.
  • the protrusion height / particle diameter ratio is 60% or more, the protrusion 22 inhibits the compression of the conductive particles 42. That is, the conductive particles 42 trapped in the recesses 23 are not sufficiently compressed, resulting in an increase in connection resistance and deterioration in reliability, where the protrusion height / particle diameter ratio is less than 60%.
  • the protrusion 22 can capture the conductive particles 42 in the recess 23. Furthermore, the conductive particles 42 are sufficiently compressed, and the protrusion height / particle diameter ratio is less than 50%. It is preferable.
  • the lower limit of the protrusion height / particle diameter ratio is not particularly limited, but if it is too small, the protrusion 22 may not be able to sufficiently capture the conductive particles 42. Therefore, the protrusion height / particle diameter ratio is preferably 30% or more, more preferably 40% or more, and still more preferably 42% or more.
  • the opening area ratio of the first electrode terminal 21 is 55% or more.
  • the opening area ratio is an area ratio of the opening surface of the recess 23 to the entire area of the surface of the first electrode terminal 21.
  • the opening area ratio is preferably 70% or more.
  • the upper limit value of the opening area ratio is not particularly limited, but if the opening area ratio is too large, the rigidity of the protrusion 22 may be lowered. For this reason, it is preferable that an opening area ratio is 90% or less.
  • the height H2 of the second electrode terminal 31 is 6 ⁇ m or more. As a result, a sufficient amount of adhesive also flows between the second electrode terminals 31, so that the first electrode terminal 21 and the second electrode terminal 31 are firmly bonded. Further, even if the protruding portion 22 of the first electrode terminal 21 contacts the second electrode terminal 31, a sufficient amount of the cured resin layer 41 exists below the first electrode terminal 21. Therefore, the protruding portion 22 and thus the first electrode terminal 21 are sufficiently protected by the cured resin layer 41. As a result, connection resistance is reduced and reliability is improved.
  • the upper limit value of the height H2 is not particularly limited, but is preferably 35 ⁇ m or less.
  • the ratio of the hardness of the first electrode terminal 21 to the hardness of the second electrode terminal 31 is preferably greater than 10%. This is because if the first electrode terminal 21 is too soft than the second electrode terminal 31, the first electrode terminal 21 is greatly deformed during compression (that is, during anisotropic conductive connection). When the amount of deformation is large, the first electrode terminals 21 may come into contact with each other and short-circuit.
  • the hardness of each electrode terminal is, for example, Picker's hardness.
  • the hardness ratio of the electrode terminals is more preferably greater than 15%, and even more preferably greater than 30%.
  • the upper limit of the hardness ratio of the electrode terminals is not particularly limited, but may be about 1 (that is, the hardness of both is substantially the same).
  • the ratio of the particle size before compression of the conductive particles 42 to the short side length of the recesses 23 is preferably less than 10%.
  • the short side length of the concave portion 23 is the short side length of the planar view shape (for example, the shape shown in FIG. 2) of the concave portion 23.
  • the particle diameter / opening short side length ratio is more preferably less than 9%, and further preferably less than 8.5%.
  • the lower limit value of the particle diameter / opening short side length ratio is determined by requirement 1. That is, when the particle diameter / opening short side length ratio is too small, the particle diameter of the conductive particles 42 becomes too small and the requirement 1 is not satisfied.
  • the average occupied area rate of the electroconductive particle 42 which exists in the recessed part 23 is less than 20%.
  • the lower limit of the average occupied area ratio is preferably an occupied area ratio of one or more compressed conductive particles, more preferably an occupied area ratio of two or more compressed conductive particles, and compression. It is even more preferable that the occupied area ratio is equal to or more than three conductive particles.
  • the occupation area of each conductive particle 42 is an area obtained when the compressed conductive particle 42 is projected onto a horizontal plane.
  • the average occupied area ratio can be measured by the following steps.
  • first electrode terminal 21 and the second electrode terminal 21 and the second electrode terminal 21 are removed by peeling the first electrode terminal 21 from the anisotropic conductive connection structure 10 or by polishing the anisotropic conductive connection structure 10 to the connection portion.
  • the connection portion with the electrode terminal 31 is exposed.
  • 50 exposed connection portions are selected.
  • each connection portion is observed in a plane view, and the area occupied by the conductive particles 42 in each connection portion is measured. Observation may be performed with an SEM (scanning electron microscope) or the like. Then, the area occupied by all the conductive particles 42 present in the recesses 23 of each connection portion is measured, and the total area is divided by the area of the opening surface of the recesses 23.
  • the occupation area ratio in each connection part is measured.
  • the average occupied area ratio is measured by arithmetically averaging these occupied area ratios.
  • the anisotropic conductive connection structure preferably further satisfies the following requirements. That is, 30% deformation during compression hardness of the conductive particles 42 (K value) is preferably less than 6000 N / mm 2, more preferably 5500N / mm 2 or less.
  • the compression hardness (K value) at 30% deformation is a kind of parameter that serves as an index of the compression strength of the conductive particles 42.
  • the compression hardness (K value) at the time of 30% deformation is calculated by the following process.
  • F is a load at the time of 30% compression deformation of the conductive particles 42
  • S is a displacement amount (mm) of the conductive particles 42 due to compression
  • R is before compression of the conductive particles 42. Radius (mm).
  • the quality of the anisotropic conductive connection structure 10 can be improved by utilizing the protruding portion 22.
  • the protrusion 22 can capture more conductive particles 42 in the recess 23 in the protrusion 22.
  • the conductive particles in the recess 23 are sufficiently compressed. Accordingly, connection resistance is reduced and reliability is improved.
  • the height H2 of the second electrode terminal 31 is a value within a predetermined range, a sufficient amount of adhesive flows between the second electrode terminals 31. Therefore, the first electrode terminal and the second electrode terminal are firmly bonded.
  • this embodiment is applicable as long as it has an ACF crimping line. Therefore, this embodiment can be easily introduced.
  • Example 1> (1-1. Preparation of first electronic component) An IC chip was prepared as the first electronic component 20. In this IC chip, a plurality of bumps were formed as the first electrode terminals 21. The first electrode terminal 21 has a protrusion 22 having a height H1 1.5 ⁇ m. The bump size (that is, the planar shape of the first electrode terminal 21) was a square shape of 50 ⁇ m ⁇ 50 ⁇ m. The opening area ratio was 73.96%. Therefore, requirement 2 was satisfied. The Picker hardness of the first electrode terminal 21 was 50 Hv.
  • a flexible substrate was prepared as the second electronic component 30.
  • the second electrode terminal 31 was formed by applying Ni / Au plating after Cu etching on a polyimide substrate (CS12-25-00CE manufactured by Nippon Steel Chemical Co., Ltd.) having a thickness of 25 ⁇ m.
  • the flexible substrate was produced by the above process.
  • Ni / Au plating was performed by electrolytic plating.
  • the height H1 of the second electrode terminal 31 was 12 ⁇ m. Therefore, requirement 3 was satisfied.
  • the width of the second electrode terminal 31 was 50 ⁇ m. Therefore, the effective connection area between the first electrode terminal 21 and the second electrode terminal 31 was 1849 ⁇ m 2 .
  • the effective connection area means an area occupied by the second electrode terminal 31 with respect to the opening area of the first electrode terminal 21.
  • the Picker hardness of the second electrode terminal 31 was 150 Hv. Therefore, the hardness ratio of the electrode terminals was 33.3%. Therefore, requirement 4 was satisfied.
  • ACF anisotropic conductive film
  • the conductive particles 42, the number density were formulated into adhesive compositions so as to 3,500,000 pieces / mm 3. Then, an adhesive composition was applied to a separately prepared release-treated PET film having a thickness of 38 ⁇ m with a bar coater and dried to obtain an anisotropic conductive film having a thickness of 40 ⁇ m.
  • Example 1 satisfied the requirements 1 to 5.
  • transformation of the electroconductive particle 42 was 5500 N / mm ⁇ 2 >.
  • the compression hardness at 30% deformation was measured with a micro compression tester manufactured by Shimadzu Corporation.
  • the first electronic component 20, the anisotropic conductive film, and the second electronic component 30 were sequentially laminated.
  • the first electronic component 20 and the second electronic component 30 were aligned so that the positions of the first electrode terminal 21 and the second electrode terminal 31 were aligned.
  • a heat tool was pressed onto the second electronic component 30 via a cushioning material or the like.
  • the 1st electrode terminal 21 and the 2nd electrode terminal 31 were thermocompression-bonded using the heat tool.
  • the anisotropic conductive connection structure 10 was produced through the above steps.
  • the thermocompression bonding conditions were 200 ° C.-10 sec-100 MPa.
  • the first electrode terminal 21 and the second electrode terminal 31 are thermocompression bonded for 10 seconds at a pressure of 100 MPa while raising the temperature of the heattool so that the temperature of the heattool becomes 200 ° C. in 10 seconds from the start of pressure bonding. did.
  • a plurality of anisotropic conductive connection structures 10 were prepared for evaluation to be described later. The configuration of the anisotropic conductive connection structure 10 is summarized in Table 1.
  • the first electrode terminal 21 was peeled off from the anisotropic conductive connection structure 10 to expose the connection portion.
  • the connected portion was observed with an SEM, and the number of conductive particles 42 (that is, the number of trapped particles) present in the recesses 23 and the average occupied area ratio of the conductive particles 42 were measured.
  • the average occupied area ratio was measured by the method described above. That is, 50 connection parts to be measured were observed in a plane view, and the area occupied by the particles, that is, the occupied area was measured. And based on this occupied area, the occupied area rate was calculated.
  • the number of trapped particles of the conductive particles 42 was an arithmetic average value of the number of particles measured for 50 connecting portions. The results are summarized in Table 1.
  • Example 2 In Example 2, the same process as in Example 1 was performed except that the Picker's hardness of the first electrode terminal 21 was 90 Hv. In Example 2, the hardness ratio of the electrode terminals was 60%. Therefore, requirement 4 was also satisfied in Example 2. Table 1 summarizes the configuration and evaluation results of the anisotropic conductive connection structure 10.
  • Example 3 In Example 3, the same processing as in Example 1 was performed except that the Picker hardness of the first electrode terminal 21 was set to 20 Hv. In Example 3, the hardness ratio of the electrode terminals was 13.3%. Therefore, requirement 4 was also satisfied in Example 3. However, since the hardness ratio was 30% or less, a slight deformation of the first electrode terminal 21 was confirmed. Table 1 summarizes the configuration and evaluation results of the anisotropic conductive connection structure 10.
  • Example 4 In Example 4, the same processing as in Example 1 was performed except that the Picker hardness of the second electrode terminal 31 was set to 500 Hv. Specifically, the above picker hardness was obtained by performing plating of the second electrode terminal 31 by electroless plating. In Example 4, the hardness ratio of the electrode terminals was 10%. Therefore, in Example 4, requirement 4 was not satisfied. For this reason, the first electrode terminal 21 was greatly deformed after crimping. However, since the pitch of the first electrode terminals 21 was increased, no short circuit occurred. Table 1 summarizes the configuration and evaluation results of the anisotropic conductive connection structure 10.
  • Example 5> In Example 5, the same process as in Example 1 was performed except that the width of the second electrode terminal 31 was set to 40 ⁇ m. Table 1 summarizes the configuration and evaluation results of the anisotropic conductive connection structure 10.
  • Example 6> In Example 6, the same process as in Example 1 was performed except that the particle size of the conductive particles 42 was set to 3.0 ⁇ m. Table 1 summarizes the configuration and evaluation results of the anisotropic conductive connection structure 10.
  • Example 7> The same processing as in Example 1 was performed except that the width of the second electrode terminal 31 was set to 30 ⁇ m. Table 1 summarizes the configuration and evaluation results of the anisotropic conductive connection structure 10.
  • Example 8> The same processing as in Example 1 was performed except that the width of the second electrode terminal 31 was set to 20 ⁇ m. Table 1 summarizes the configuration and evaluation results of the anisotropic conductive connection structure 10.
  • Example 9> The same processing as in Example 1 was performed except that the height H2 of the second electrode terminal 31 was set to 6 ⁇ m. Table 1 summarizes the configuration and evaluation results of the anisotropic conductive connection structure 10.
  • Comparative Example 1> The same treatment as in Example 1 was performed except that the particle size before compression of the conductive particles 42 was set to 2.5 ⁇ m. Therefore, since the protrusion height / particle diameter ratio is 60%, the requirement 1 is not satisfied.
  • Table 2 summarizes the configuration and evaluation results of the anisotropic conductive connection structure 10.
  • Comparative Example 2 The same processing as in Example 1 was performed except that the opening area ratio of the first electrode terminal 21 was changed to 51.84%. Therefore, in Comparative Example 2, requirement 2 was not satisfied. Table 2 summarizes the configuration and evaluation results of the anisotropic conductive connection structure 10.
  • Comparative Example 3 The same process as in Example 1 was performed except that the height H1 of the protrusion 22 was set to 3.0 ⁇ m. Therefore, in Comparative Example 3, the protrusion height / particle diameter ratio was 85.71%, so requirement 1 was not satisfied.
  • Table 2 summarizes the configuration and evaluation results of the anisotropic conductive connection structure 10.
  • Comparative Example 4 The protrusion 22 was removed from the first electrode terminal 21 by polishing, and the same process as in Example 1 was performed except that the width of the second electrode terminal 31 was 20 ⁇ m. Therefore, in Comparative Example 4, at least requirement 1 was not satisfied.
  • Table 2 summarizes the configuration and evaluation results of the anisotropic conductive connection structure 10.
  • Comparative Example 5 The same processing as in Example 1 was performed except that the second electronic component 30 was a glass substrate. A second electrode terminal 31 made of ITO was formed on the glass substrate, and the height H2 of the second electrode terminal 31 was 1 ⁇ m or less. Therefore, in Comparative Example 5, requirement 3 was not satisfied. Table 2 summarizes the configuration and evaluation results of the anisotropic conductive connection structure 10.
  • Reference Example 1 The protrusion 22 was removed from the first electrode terminal 21 by polishing, and the same processing as in Example 1 was performed except that the width of the second electrode terminal 31 was 40 ⁇ m. Therefore, in Reference Example 1, at least requirement 1 was not satisfied.
  • Table 2 summarizes the configuration and evaluation results of the anisotropic conductive connection structure 10.
  • Reference Example 2 The protrusion 22 was removed from the first electrode terminal 21 by polishing, and the same processing as in Example 1 was performed except that the width of the second electrode terminal 31 was changed to 30 ⁇ m. Therefore, in Reference Example 1, at least requirement 1 was not satisfied.
  • Table 2 summarizes the configuration and evaluation results of the anisotropic conductive connection structure 10.
  • Examples 1 to 3, and 5 to 9 satisfy all the requirements 1 to 6, so that good results were obtained with respect to initial resistance, defect rate, and peel strength.
  • a sufficient number of conductive particles 42 could be captured in the recesses 23 by the protrusions 22. Further, these conductive particles 42 could be sufficiently compressed. For this reason, it is estimated that the favorable result was obtained.
  • Example 3 some deformation was observed in the first electrode terminal 21.
  • the hardness ratio of the electrode terminals is 30% or less. That is, in Example 3, requirement 4 is satisfied, but the value is 30% or less.
  • the hardness ratio of the electrode terminals is 10% or less. Therefore, requirement 4 is not satisfied. Therefore, it was found that requirement 4 is preferably satisfied from the viewpoint of suppressing deformation of the electrode terminal.
  • Comparative Examples 1 to 5 the reliability evaluation was particularly poor. In Comparative Examples 1 to 5, since any one of the requirements 1 to 3 is not satisfied, it is estimated that such a result was obtained. In Reference Examples 1 and 2, the protrusion 22 was not formed. For this reason, the number of trapped particles was smaller than in the Examples. However, an evaluation result almost equal to that of the example was obtained. On the other hand, in Comparative Example 4 in which the protrusions 22 were not formed, the evaluation results were poor. This is because, in Reference Examples 1 and 2, the effective connection area was large. However, in Reference Examples 1 and 2, since the work of removing the protrusions 22 is required separately, it takes time for anisotropic conductive connection. Therefore, it can be said that Examples 1 to 9 are preferable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Wire Bonding (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Combinations Of Printed Boards (AREA)

Abstract

【課題】電極端子同士の異方性導電接続部分の接続抵抗を減少し、信頼性を高めることができ、かつ、接続強度を高めることが可能な、新規かつ改良された異方性導電接続構造体を提供する。 【解決手段】上記課題を解決するために、本発明のある観点によれば、表面に突出部が形成された第1の電極端子と、第2の電極端子と、第1の電極端子と第2の電極端子とを導通する導電性粒子を含む異方性導電接着剤層と、を備え、導電性粒子の圧縮前粒子径に対する突出部の高さの比は、60%未満であり、第1の電極端子の開口面積率は55%以上であり、第2の電極端子の高さは6μm以上である、異方性導電接続構造体が提供される。

Description

異方性導電接続構造体
 本発明は、異方性導電接続構造体に関する。
 電極端子を有する複数の電子部品(例えば、ICチップ、リジッド基板、フレキシブル基板等)同士を接続する方法として、フリップチップボンディング法が知られている。フリップチップボンディング法では、複数の電子部品の電極端子同士を対抗させた状態で、電極端子同士を接続する。
 このようなフリップチップボンディング法の例として、超音波接続法が知られている。この方法では、複数の電子部品の電極端子同士を接触させる。ついで、電極端子の接触部分を超音波により振動させる。これにより、電極端子同士を接続させる。この方法では、両方の電子部品の電極端子を金で構成する。ついで、接続部分の周辺の空間に充填剤(いわゆるアンダーフィル)を充填し、硬化させる。
 また、フリップチップボンディング法の他の例として、共晶法が知られている。この方法では、複数の電子部品の電極端子同士を接触させる。ついで、電極端子の接触部分を加熱する。これにより、電極端子同士が共晶し、接続される。この方法では、例えば、一方の電子部品の電極端子を金で構成し、他方の電子部品の電極端子をスズで構成する。ついで、接続部分の周辺の空間に充填剤(いわゆるアンダーフィル)を充填し、硬化させる。
 しかし、超音波接続法では、超音波により電極端子が大きく振動するので、接続不良やショート等が発生する可能性がある。また、超音波接続法の適用が可能な電極端子は、金等の高価な材料で構成される必要があるため、コストが増大してしまう。また、充填剤の充填、硬化が必要なので、この点でもコストが増大してしまう。また、工数も増大する。
 一方、共晶法では、電極端子の接続部分を加熱するが、この時の加熱温度は非常に高くなる。例えば、加熱温度は400℃程度となる。このため、電子部品がフレキシブル基板となる場合、加熱時にフレキシブル基板が変形する可能性がある。フレキシブル基板が変形すると、フレキシブル基板上の電極端子の位置等がずれる場合がある。したがって、接続不良、ショート等が発生する可能性がある。さらに、超音波接続法と同様に充填剤に関する問題もある。
 そこで、近年、例えば特許文献1、2に開示されるように、フリップチップボンディング法として、異方性導電フィルムを用いて電極端子同士を異方性導電接続する方法が注目されている。この方法では、超音波が不要となるので、超音波に関する問題は発生しない。また、異方性導電フィルムを用いた接続方法でも、加熱のプロセスは必要になるが、加熱温度は共晶法に比べて低い。さらに、異方性導電フィルムを構成する硬化性樹脂が充填剤として機能するので、別途充填剤を充填、硬化させるプロセスが不要となる。
特開平11-31698号公報 特開2005-93978号公報
 ところで、電子部品がICチップとなる場合、ICチップには電極端子としてバンプが形成される。このバンプの表面(すなわち、他の電子部品の電極端子に対向する面)の周縁部分には、突出部が形成されることが多い。さらに、突出部は、バンプの表面の外縁全周にわたって形成されることが多い。従来、このような突出部は、接続不良の原因となると考えられていたことから、なるべく小さくすることが好ましいと考えられていた。具体的には、突出部によって形成される凹部(いわゆるディンプル)内に導電性粒子が埋没した場合に、導電性粒子が十分に圧縮されない可能性があった。このため、接続不良が起こる可能性があった。このため、特許文献1、2に開示された技術では、突出部をなるべく小さくするようにしている。
 しかし、特許文献1、2に開示された技術では、突出部を小さくするために非常に大きな手間がかかっていた。具体的には、特許文献1に開示された技術では、突出部を小さくするために、絶縁層に形成される開口部分の開口面積を非常に小さくする。ここで、絶縁層は、ICチップの機能面を覆う層であり、開口部分は、ICチップの電極パッド上に形成される。そして、バンプは、絶縁層の開口部分を介して電極パッドと接続される。特許文献1に開示された技術では、このような開口部分の開口面積を小さくすることで、突出部を小さくする。しかし、開口面積を小さくする工程は非常に手間がかかる。一方、特許文献2に開示された技術では、突出部を小さくするために、超音波を突出部に照射するという工程が別途必要になる。
 さらに、本発明者が突出部を小さくする技術について検討したところ、単に突出部を小さくしただけでは、かえって接続抵抗の増大や信頼性の低下が起こりうることがわかった。さらに、近年、異方性導電接続部分の接続強度のさらなる向上が強く求められていた。
 そこで、本発明は、上記問題に鑑みてなされたものであり、本発明の目的とするところは、電極端子同士の異方性導電接続部分の接続抵抗を減少し、信頼性を高めることができ、かつ、接続強度を高めることが可能な、新規かつ改良された異方性導電接続構造体を提供することにある。
 上記課題を解決するために、本発明のある観点によれば、表面に突出部が形成された第1の電極端子と、第2の電極端子と、第1の電極端子と第2の電極端子とを導通する導電性粒子を含む異方性導電接着剤層と、を備え、導電性粒子の圧縮前粒子径に対する突出部の高さの比は、60%未満であり、第1の電極端子の開口面積率は55%以上であり、第2の電極端子の高さは6μm以上である、異方性導電接続構造体が提供される。
 本観点によれば、突出部は、より多くの導電性粒子を突出部内の凹部に捕捉することができる。さらに、凹部内の導電性粒子は十分に圧縮される。したがって、接続抵抗が低減し、信頼性が向上する。さらに、第2の電極端子の間には十分な量の接着剤が流入するので、第1の電極端子と第2の電極端子とが強固に接着される。
 ここで、第2の電極端子の硬度に対する第1の電極端子の硬度の比は10%より大きくてもよい。
 また、第1の電極端子の表面には、突出部に囲まれた凹部が形成され、第1の電極端子の凹部の短辺長さに対する導電性粒子の圧縮前粒子径の比は10%未満であってもよい。
 また、第1の電極端子の表面には、突出部に囲まれた凹部が形成され、第1の電極端子の凹部に存在する導電性粒子の平均占有面積率が20%未満であってもよい。
 また、突出部は、第1の電極端子の表面の外縁全周にわたって形成されていてもよい。
 また、第1の電極端子は、第1の電子部品に形成されるバンプであってもよい。
 以上説明したように本発明によれば、電極端子同士の異方性導電接続部分の接続抵抗を減少し、信頼性を高めることができ、かつ、接続強度を高めることが可能となる。
本実施形態に係る異方性導電接続構造体10の概略構成を示す側断面図である。 同実施形態に係る第1の電極端子の表面構造を示す平面図である。
 以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
 <1.異方性導電接続構造体の構成>
 まず、図1及び図2に基づいて、本実施形態に係る異方性導電接続構造体10の構成について説明する。
 異方性導電接続構造体10は、第1の電子部品20と、第1の電子部品20上に形成された第1の電極端子21と、第2の電子部品30と、第2の電子部品30上に形成された第2の電極端子32と、接着剤層40とを備える。
 第1の電子部品20は、例えば電子回路基板である。電子回路基板の種類は特に問われず、ICチップ、各種のリジッド基板(例えば、ガラスエポキシ基板等)、フレキシブル基板などであってもよい。第1の電子部品20は、例えばICチップとなる。第1の電子部品20がICチップとなる場合、第1の電極端子21はバンプとなる。バンプには、突出部22が形成されやすい。
 第1の電極端子21は、第1の電子部品20上に形成されている。また、第1の電極端子21は、第1の電子部品20を構成する電子回路と導通されている。第1の電極端子21の表面(すなわち、第2の電子部品30に対向する面)には、突出部22が形成されている。第1の電子部品20がICチップとなる場合、第1の電極端子21はバンプとなる。ただし、第1の電極端子21は、突出部22が形成されたものであればよい。したがって、第1の電極端子21はバンプに限定されない。
 第1の電極端子21を構成する材料は、導電性を有するものであれば特に制限されない。第1の電極端子21を構成する材料としては、例えば、アルミニウム、銀、ニッケル、銅、および金などの金属で構成されることが好ましい。
 突出部22は、第1の電極端子21の表面に形成されている。図2に示すように、突出部22は、第1の電極端子21の表面の外縁全周にわたって形成されている。なお、第1の電極端子21がバンプとなる場合、突出部22は、第1の電極端子21の表面の外縁全周にわたって形成されることが多い。もちろん、突出部22の形状は図1に示されるものに限られないが、図2の形状であることが好ましい。この場合、突出部22は、導電性粒子42をより確実に捕捉することができる。
 また、第1の電極端子21の表面には、突出部22によって囲まれる凹部23(いわゆるディンプル)が形成されている。従来では、このような突出部22及び凹部23は、接続不良の原因となると考えられていたことから、なるべく小さくすることが好ましいと考えられていた。しかし、本実施形態では、突出部22を積極的に活用する。具体的には、突出部22によって導電性粒子42を捕捉することで、導電性粒子42を第1の電極端子21及び第2の電極端子32の間に保持することができる。ここで、導電性粒子42は接着剤層40に含まれるものである。これにより、本実施形態では、接続抵抗を減少し、かつ、信頼性を高めることができる。具体的には、初期抵抗を低減することができ、かつ、冷熱サイクル試験後の不良率を低減することができる。
 第2の電子部品30は、例えば電子回路基板である。電子回路基板の種類は特に問われず、ICチップ、各種のリジッド基板(例えば、ガラスエポキシ基板等)、フレキシブル基板などであってもよい。第2の電子部品30は、例えばフレキシブル基板となる。第2の電子部品30がフレキシブル基板となる場合、第2の電極端子32の高さH2は後述する要件を満たしやすい。フレキシブル基板の種類も特に制限されず、例えばポリイミド基板であってもよい。
 第2の電極端子31は、第2の電子部品30上に形成されている。また、第2の電極端子31は、第2の電子部品30を構成する電子回路と導通されている。第2の電極端子31を構成する材料は、導電性を有するものであれば特に制限されない。第2の電極端子31を構成する材料としては、例えば、アルミニウム、銀、ニッケル、銅、および金などの金属が挙げられる。第2の電極端子31を構成する金属は、各種金属によってめっきされていてもよい。
 接着剤層40は、異方性導電接着剤が硬化したものであり、硬化樹脂層41と、導電性粒子42とを備える。すなわち、接着剤層40は、第1の電極端子21と第2の電極端子31とを異方性導電接続する。
 異方性導電接着剤は、硬化性樹脂と、導電性粒子42とを備える。硬化性樹脂は、重合性化合物、及び硬化開始剤を含む。重合性化合物は、硬化開始剤によって硬化する樹脂である。硬化した重合性化合物、すなわち硬化樹脂層41は、接着剤層40内で第1の電極端子21と第2の電極端子31とを接着するとともに、導電性粒子42を接着剤層40内に保持する。重合性化合物としては、例えばエポキシ重合性化合物、及びアクリル重合性化合物等が挙げられる。エポキシ重合性化合物は、分子内に1つまたは2つ以上のエポキシ基を有するモノマー、オリゴマー、またはプレポリマーである。エポキシ重合性化合物としては、各種ビスフェノール型エポキシ樹脂(ビスフェノールA型、F型等)、ノボラック型エポキシ樹脂、ゴムおよびウレタン等の各種変性エポキシ樹脂、ナフタレン型エポキシ樹脂、ビフェニル型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、スチルベン型エポキシ樹脂、トリフェノールメタン型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、及びこれらのプレポリマー等が挙げられる。
 アクリル重合性化合物は、分子内に1つまたは2つ以上のアクリル基を有するモノマー、オリゴマー、またはプレポリマーである。アクリル重合性化合物としては、例えば、メチルアクリレート、エチルアクリレート、イソプロピルアクリレート、イソブチルアクリレート、エポキシアクリレート、エチレングリコールジアクリレート、ジエチレングリコールジアクリレート、トリメチロールプロパントリアクリレート、ジメチロールトリシクロデカンジアクリレート、テトラメチレングリコールテトラアクリレート、2-ヒドロキシ-1,3-ジアクリロキシプロパン、2,2-ビス[4-(アクリロキシメトキシ)フェニル]プロパン、2,2-ビス[4-(アクリロキシエトキシ)フェニル]プロパン、ジシクロペンテニルアクリレート、トリシクロデカニルアクリレート、トリス(アクリロキシエチル)イソシアネレート、およびウレタンアクリレート等が挙げられる。本実施形態では、上記で列挙した重合性化合物のうちいずれか1種を用いてもよく、2種以上を任意に組み合わせて用いてもよい。
 硬化開始剤は、例えば、熱硬化開始剤である。熱硬化開始剤は、熱によって上記重合性化合物とともに硬化する材料である。熱硬化開始剤の種類も特に制限されない。熱硬化開始剤としては、例えば、エポキシ重合性化合物を硬化させる熱アニオンまたは熱カチオン硬化開始剤、アクリル重合性化合物を硬化させる熱ラジカル重合型硬化剤等が挙げられる。本実施形態では、重合性化合物によって適切な熱硬化開始剤を選択すればよい。なお、硬化開始剤の他の例としては、光硬化開始剤が挙げられる。光硬化開始剤としては、例えば、エポキシ重合性化合物を硬化させる光アニオンまたは光カチオン硬化開始剤、アクリル重合性化合物を硬化させる光ラジカル重合型硬化剤等が挙げられる。本実施形態では、重合性化合物によって適切な光硬化開始剤を選択すればよい。
 また、異方性導電接着剤には、上記の成分の他、膜形成樹脂、各種添加剤等を含めてもよい。膜形成樹脂は、異方性導電接着剤を取り扱い易くさせるためにフィルム形状としたい場合に異方性導電接着剤に添加される。膜形成樹脂としては、例えば、エポキシ樹脂、フェノキシ樹脂、ポリエステルウレタン樹脂、ポリエステル樹脂、ポリウレタン樹脂、アクリル樹脂、ポリイミド樹脂、ブチラール樹脂などの種々の樹脂を用いることができる。また、本実施形態では、これらの膜形成樹脂のうちいずれか1種だけを使用することもできるし、2種以上を任意に組み合わせて使用することもできる。なお、膜形成樹脂は、膜形成性および接着信頼性を良好にするという観点からは、フェノキシ樹脂であることが好ましい。なお、異方性導電接着剤をフィルム形状とした場合、フィルム(すなわち、異方性導電フィルム)の厚さは特に制限されない。ただし、フィルムが厚くなりすぎると不要な樹脂の量が多くなりすぎ流動性などに問題が生じる。そのため100μm以下が好ましく、40μm以下がより好ましい。薄くなりすぎると取り扱いが困難になるため、5μm以上が好ましく、12μm以上がより好ましい。
 異方性導電接着剤に添加可能な添加剤としては、シランカップリング剤、無機フィラー、着色剤、酸化防止剤、および防錆剤等が挙げられる。シランカップリング剤の種類は特に制限されない。シランカップリング剤としては、例えば、エポキシ系、アミノ系、メルカプト・スルフィド系、ウレイド系のシランカップリング剤等が挙げられる。異方性導電接着剤にこれらのシランカップリング剤が添加された場合、基材の材質によっては接着性を向上させることができる。
 また、無機フィラーは、異方性導電接着剤の流動性及び膜強度、特に後述する最低溶融粘度を調整するための添加剤である。無機フィラーの種類も特に制限されない。無機フィラーとしては、例えば、シリカ、タルク、酸化チタン、炭酸カルシウム、酸化マグネシウム等が挙げられる。
 導電性粒子42は、接着剤層40内で第1の電極端子21と第2の電極端子31とを異方性導電接続する材料である。具体的には、接着剤層40内で第1の電極端子21と第2の電極端子31とで挟持された導電性粒子42は、第1の電極端子21と第2の電極端子31とを導通させる。一方、他の導電性粒子42(例えば、第1の電極端子21同士の隙間に入り込んだ導電性粒子42、第2の電極端子31同士の隙間に入り込んだ導電性粒子42等)は、いずれの端子間も導通させない(すなわち、第1の電極端子21間で導電性粒子42が連なる形でのショート、第2の電極端子31間で導電性粒子42が連なる形でのショートなどを生じさせない)。
 したがって、導電性粒子42は、接着剤層40内で第1の電極端子21同士及び第2の電極端子31同士の絶縁性を維持しつつ、第1の電極端子21と第2の電極端子31とを導通させることができる。すなわち、導電性粒子42は、接着剤層40内で第1の電極端子21と第2の電極端子31に挟待されることでこれらを導通し、異方性導電接続する。導電性粒子42はショートしない程度に異方性導電剤に分散していてもよく、個々に独立するように配置されていてもよい。この配置は、各電極端子のサイズや電極端子の配列方向における距離などによって適宜設定されるが、規則的であってもよい。また、導電性粒子42は、後述する要件を満たす。なお、導電性粒子42の圧縮前粒子径は、後述する要件が満たされるのであれば特に制限されないが、一例として1~10μmである。ここで、前記したように異方性導電接続前の異方性導電接着剤は、予めフィルム体として形成されたものであってもよい。
 <2.異方性導電接続構造体が満たすべき要件>
 次に、異方性導電接続構造体10が満たすべき要件について説明する。異方性導電接続構造体10が以下の要件を満たす場合に、突出部22が導電性粒子42を捕捉することができる。この結果、接続抵抗を低減することができ、信頼性が向上する。さらに、接着剤層40は、第1の電極端子21と第2の電極端子31とを強固に接着することができる。なお、異方性導電接続構造体10は、少なくとも要件1~3を満たす必要がある。異方性導電接続構造体10は、さらに要件4以降を満たすことが好ましい。なお、以下の要件を満たすか否かを評価するに際して、各電極の構造等は、SEM(走査型電子顕微鏡)等によって観察可能である。例えば、突出部22の高さH1は、第1の電極端子21をSEMで観察することで測定可能である。また、以下のパラメータは、複数の異方性導電接続構造体10について測定された測定値の算術平均値であってもよいし、いずれかの値を代表値として使用してもよい。
 (2-1.要件1)
 導電性粒子42の圧縮前粒子径に対する突出部22の高さH1の比(以下、「突出部高さ/粒子径比」とも称する」は、60%未満である。ここで、圧縮前粒子径は、導電性粒子42を圧縮する前の粒子径である。突出部高さ/粒子径比が60%以上となる場合には、突出部22が導電性粒子42の圧縮を阻害してしまう。すなわち、凹部23内に捕捉された導電性粒子42は、十分に圧縮されない。この結果、接続抵抗が増大し、信頼性が悪化する。突出部高さ/粒子径比が60%未満となる場合、突出部22は、導電性粒子42を凹部23内に捕捉することができる。さらに、導電性粒子42は、十分に圧縮される。突出部高さ/粒子径比は、50%未満であることが好ましい。
 なお、突出部高さ/粒子径比の下限値は特に制限されないが、あまりに小さすぎると突出部22が導電性粒子42を十分に捕捉できない可能性がある。このため、突出部高さ/粒子径比は、30%以上であることが好ましく、40%以上であることがより好ましく、42%以上であることが更に好ましい。
 (2-2.要件2)
 第1の電極端子21の開口面積率は55%以上である。ここで、開口面積率は、第1の電極端子21の表面の全面積に対する凹部23の開口面の面積比である。開口面積率が55%未満となる場合、凹部23内に十分な数の導電性粒子42を捕捉することができない。開口面積率は、70%以上であることが好ましい。開口面積率の上限値は特に制限されないが、開口面積率が大きすぎると突出部22の剛性が低くなる可能性がある。このため、開口面積率は90%以下であることが好ましい。
 (2-3.要件3)
 第2の電極端子31の高さH2は6μm以上である。これにより、第2の電極端子31間にも十分な量の接着剤が流入するので、第1の電極端子21と第2の電極端子31とが強固に接着される。さらに、第1の電極端子21の突出部22が仮に第2の電極端子31に接触したとしても、第1の電極端子21の下方には、十分な量の硬化樹脂層41が存在する。したがって、突出部22、ひいては第1の電極端子21は硬化樹脂層41によって十分に保護される。この結果、接続抵抗が低減し、信頼性が向上する。高さH2の上限値は特に制限されないが、35μm以下が好ましい。
 (2-5.要件4)
 第2の電極端子31の硬度に対する第1の電極端子21の硬度の比(以下、「電極端子の硬度比」とも称する)は10%より大きいことが好ましい。第1の電極端子21が第2の電極端子31よりも柔らかすぎる場合、圧縮時(すなわち、異方性導電接続時)に、第1の電極端子21が大きく変形するからである。変形量が大きい場合、第1の電極端子21同士が接触し、ショートする可能性がある。なお、各電極端子の硬度は、例えばピッカース硬度である。電極端子の硬度比は、15%より大きいことがさらに好ましく、30%より大きいことがさらに好ましい。電極端子の硬度比の上限値は特に制限されないが、1程度(すなわち、両者の硬度がほぼ一致)であってもよい。
 (2-6.要件5)
 凹部23の短辺長さに対する導電性粒子42の圧縮前粒子径の比(以下、「粒子径/開口短辺長さ比」とも称する)は、10%未満であることが好ましい。ここで、凹部23の短辺長さは、凹部23の平面視形状(例えば図2に示す形状)の短辺長さである。粒子径/開口短辺長さ比が10%未満となる場合、より多くの導電性粒子42を凹部23内に捕捉することができる。粒子径/開口短辺長さ比は、9%未満であることがさらに好ましく、8.5%未満であることが更に好ましい。なお、粒子径/開口短辺長さ比の下限値は、要件1によって定まる。すなわち、粒子径/開口短辺長さ比が小さすぎると、導電性粒子42の粒子径が小さくなりすぎて、要件1が満たされなくなる。
 (2-7.要件6)
 また、凹部23内に存在する導電性粒子42の平均占有面積率が20%未満であることが好ましい。平均占有面積率の下限は、圧縮された導電性粒子1個分以上の占有面積率であることが好ましく、圧縮された導電性粒子2個分以上の占有面積率であることがより好ましく、圧縮された導電性粒子3個分以上の占有面積率であることが更により好ましい。ここで、各導電性粒子42の占有面積は、圧縮された導電性粒子42を水平面に投影したときに得られる面積である。また、平均占有面積率は、以下の工程で測定可能である。すなわち、異方性導電接続構造体10から第1の電極端子21を引き剥がすか、あるいは、接続部分まで異方性導電接続構造体10を研磨することで、第1の電極端子21と第2の電極端子31との接続部分を露出させる。ついで、露出された接続部分を50個選択する。ついで、各接続部分を面視野で観察し、各接続部分における導電性粒子42の占有面積を測定する。なお、観察はSEM(走査型電子顕微鏡)等で行えば良い。そして、各接続部分の凹部23内に存在する全ての導電性粒子42の占有面積を測定し、これらの総面積を凹部23の開口面の面積で除算する。これにより、各接続部分における占有面積率を測定する。そして、これらの占有面積率を算術平均することで、平均占有面積率を測定する。平均占有面積率が上述した範囲内となる場合に、凹部23内に十分な量の導電性粒子42が捕捉されていることになる。
 導電性粒子42は反発が大きすぎる場合に、信頼性などに影響を及ぼす恐れがある。そのため、異方性導電接続構造体は、上述した要件に加え、さらに以下の要件を満たすことが好ましい。すなわち、導電性粒子42の30%変形時の圧縮硬さ(K値)は6000N/mm未満であることが好ましく、5500N/mm以下であることがより好ましい。ここで、30%変形時の圧縮硬さ(K値)は、導電性粒子42の圧縮強度の指標となるパラメータの一種である。30%変形時の圧縮硬さ(K値)は、以下の工程で算出される。すなわち、導電性粒子42の粒子径(直径)が元の粒子径に比べて30%短くなるまで、導電性粒子42を一方向に圧縮する。そして、このときの荷重、変位量、及び圧縮前の導電性粒子42の半径と、以下の数式(1)とに基づいて、30%変形時の圧縮硬さ(K値)を算出する。数式(1)によれば、K値が小さいほど導電性粒子42は柔らかい粒子となる。
 K=(3/√2)F・S-8/2・R-1/2   (1)
 数式(1)中、Fは、導電性粒子42の30%圧縮変形時における荷重であり、Sは圧縮による導電性粒子42の変位量(mm)であり、Rは導電性粒子42の圧縮前の半径(mm)である。
 以上により、本実施形態によれば、突出部22の高さH1等が所定の要件を満たすので、突出部22を活かして異方性導電接続構造体10の品質を高めることができる。具体的には、突出部22は、より多くの導電性粒子42を突出部22内の凹部23に捕捉することができる。さらに、凹部23内の導電性粒子は十分に圧縮される。したがって、接続抵抗が低減し、信頼性が向上する。さらに、第2の電極端子31の高さH2が所定範囲内の値となっているので、第2の電極端子31の間には十分な量の接着剤が流入する。したがって、第1の電極端子と第2の電極端子とが強固に接着される。さらに、本実施形態は、ACFの圧着ラインさえあれば適用可能である。したがって、本実施形態を容易に導入することが可能となる。
 <1.実施例1>
 (1-1.第1の電子部品の準備)
 第1の電子部品20として、ICチップを準備した。このICチップには、第1の電極端子21として複数のバンプが形成されていた。第1の電極端子21には、高さH1=1.5μmの突出部22が形成されていた。また、バンプサイズ(すなわち、第1の電極端子21の平面形状)は、50μm×50μmの正方形状であった。また、開口面積率は73.96%であった。したがって、要件2は満たされていた。また、第1の電極端子21のピッカース硬度は50Hvであった。
 (1-2.第2の電子部品の準備)
 第2の電子部品30として、フレキシブル基板を準備した。具体的には、厚さ25μmのポリイミド基板(新日鐵化学社製CS12-25-00CE)にCuエッチング後、Ni/Auめっきを施すことで、第2の電極端子31を形成した。以上の工程により、フレキシブル基板を作製した。Ni/Auめっきは電解めっき法により行った。第2の電極端子31の高さH1は12μmであった。したがって、要件3は満たされていた。また、第2の電極端子31の幅は50μmであった。したがって、第1の電極端子21と第2の電極端子31との有効接続面積は1849μmであった。ここで、有効接続面積は、第1の電極端子21の開口面積に対して第2の電極端子31が占める面積を意味する。
 また、第2の電極端子31のピッカース硬度は150Hvであった。したがって、電極端子の硬度比は33.3%であった。したがって、要件4は満たされていた。
 (1-3.異方性導電フィルム(ACF)の準備)
 フェノキシ樹脂(品名:YP50、新日鐵化学社製)36質量部、エポキシ硬化剤(品名:HP3941HP、旭化成ケミカルズ社製)36質量部、エポキシモノマー(品名:HP4032D、DIC社製)5質量部、ゴム変性エポキシ樹脂(品名:XER-91、JSR社製)15質量部、ゴム成分(品名:SG80H、長瀬ケムテックス社製)7質量部、カップリング剤(品名:A-187、モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社)、導電性粒子42(日本化学株式会社製)を混合することで、接着剤組成物を作製した。ここで、導電性粒子42は、個数密度が3,500,000個/mmとなるように接着剤組成物に配合した。そして、別途用意した厚さ38μmの剥離処理PETフィルムに接着剤組成物をバーコータにより塗工、乾燥することで、厚さ40μmの異方性導電フィルムを得た。
 導電性粒子42の圧縮前粒子径は3.5μmであり、Ni/Auめっきが施されていた。したがって、突出部高さ/粒子径比は、42.85%であった。したがって、要件1は満たされていた。また、粒子径/開口短辺長さ比は、8.14%であった。したがって、要件5は満たされていた。以上により、実施例1は、要件1~5を満たしていることが確認できた。また、導電性粒子42の30%変形時の圧縮硬さは5500N/mmであった。30%変形時の圧縮硬さは、島津製作所製微小圧縮試験機により測定した。なお、以下の各実施例、比較例で使用した導電性粒子42は、いずれも30%変形時の圧縮硬さが5500N/mmであった。
 (1-4.異方性導電接続構造体の作製)
 第1の電子部品20、異方性導電フィルム、及び第2の電子部品30を順次積層した。ここで、第1の電極端子21と第2の電極端子31との位置が揃うように第1の電子部品20及び第2の電子部品30の位置合わせを行った。ついで、第2の電子部品30上に緩衝材等を介してヒートツールを押し当てた。ついで、ヒートツールを用いて第1の電極端子21と第2の電極端子31とを熱圧着した。以上の工程により、異方性導電接続構造体10を作製した。ここで、熱圧着の条件は、200℃-10sec-100MPaとした。すなわち、ヒートツールの温度が圧着開始から10秒間で200℃になるようにヒートツールを昇温しつつ、100MPaの圧力で第1の電極端子21と第2の電極端子31とを10秒間熱圧着した。異方性導電接続構造体10は、後述する評価のために複数個作製した。異方性導電接続構造体10の構成を表1にまとめて示す。
 (1-5.初期抵抗)
 1-4.で作製した異方性導電接続構造体10の接続抵抗をデジタルマルチメーター(商品名:デジタルマルチメーター7561、横河電機社製)を用いて測定した。結果を表1にまとめて示す。なお、複数の接続部分での初期抵抗を測定した。表1には、測定値の範囲を示す。
 (1-6.信頼性評価)
 1-4.で作製した異方性導電接続構造体10の冷熱サイクル試験を行うことで、信頼性を評価した。冷熱サイクル試験では、異方性導電接続構造体10を-40℃及び100℃の雰囲気に各30分間曝し、これを1サイクルとする冷熱サイクルを500サイクル行った。ついで、異方性導電接続構造体10の接続部分を400箇所抽出し、これらのうち不良(100mΩ以上の抵抗を示すチャンネル)があった箇所の数をカウントした。結果を表1にまとめて示す。
 (1-7.占有面積率等の測定)
 異方性導電接続構造体10から第1の電極端子21を引き剥がすことで、接続部分を露出させた。ついで、接続部分をSEMで観察し、凹部23内に存在する導電性粒子42の数(すなわち、捕捉粒子数)、及び導電性粒子42の平均占有面積率を測定した。平均占有面積率の測定は上述した方法により行った。すなわち、測定対象となる50個の接続部分を面視野で観察し、粒子が占有している面積、すなわち占有面積を測定した。そして、この占有面積に基づいて、占有面積率を算出した。また、導電性粒子42の捕捉粒子数は、50個の接続部分について測定された粒子数の算術平均値とした。結果を表1にまとめて示す。
 <2.実施例2>
 実施例2では、第1の電極端子21のピッカース硬度を90Hvとした他は実施例1と同様の処理を行った。実施例2では、電極端子の硬度比は60%となった。したがって、実施例2でも要件4は満たされていた。異方性導電接続構造体10の構成及び評価結果を表1にまとめて示す。
 <3.実施例3>
 実施例3では、第1の電極端子21のピッカース硬度を20Hvとした他は実施例1と同様の処理を行った。実施例3では、電極端子の硬度比は13.3%となった。したがって、実施例3でも要件4は満たされていた。ただし、硬度比が30%以下となったので、第1の電極端子21の若干の変形が確認された。異方性導電接続構造体10の構成及び評価結果を表1にまとめて示す。
 <4.実施例4>
 実施例4では、第2の電極端子31のピッカース硬度を500Hvとした他は実施例1と同様の処理を行った。具体的には、第2の電極端子31のめっきを無電解めっきで行うことで、上記ピッカース硬度を得た。実施例4では、電極端子の硬度比は10%となった。したがって、実施例4では要件4は満たされていなかった。このため、圧着後に第1の電極端子21が大きく変形した。しかし、第1の電極端子21のピッチを広めにしていたため、ショートは発生しなかった。異方性導電接続構造体10の構成及び評価結果を表1にまとめて示す。
 <5.実施例5>
 実施例5では、第2の電極端子31の幅を40μmとした他は実施例1と同様の処理を行った。異方性導電接続構造体10の構成及び評価結果を表1にまとめて示す。
 <6.実施例6>
 実施例6では、導電性粒子42の粒径を3.0μmとした他は実施例1と同様の処理を行った。異方性導電接続構造体10の構成及び評価結果を表1にまとめて示す。
 <7.実施例7>
 第2の電極端子31の幅を30μmとした他は実施例1と同様の処理を行った。異方性導電接続構造体10の構成及び評価結果を表1にまとめて示す。
 <8.実施例8>
 第2の電極端子31の幅を20μmとした他は実施例1と同様の処理を行った。異方性導電接続構造体10の構成及び評価結果を表1にまとめて示す。
 <9.実施例9>
 第2の電極端子31の高さH2を6μmとした他は実施例1と同様の処理を行った。異方性導電接続構造体10の構成及び評価結果を表1にまとめて示す。
 <10.比較例1>
 導電性粒子42の圧縮前粒子径を2.5μmとした他は実施例1と同様の処理を行った。したがって、突出部高さ/粒子径比は60%となるので、要件1が満たされなかった。異方性導電接続構造体10の構成及び評価結果を表2にまとめて示す。
 <11.比較例2>
 第1の電極端子21の開口面積率を51.84%とした他は、実施例1と同様の処理を行った。したがって、比較例2では、要件2が満たされなかった。異方性導電接続構造体10の構成及び評価結果を表2にまとめて示す。
 <12.比較例3>
 突出部22の高さH1を3.0μmとした他は実施例1と同様の処理を行った。したがって、比較例3では、突出部高さ/粒子径比は85.71%となるので、要件1が満たされなかった。異方性導電接続構造体10の構成及び評価結果を表2にまとめて示す。
 <13.比較例4>
 第1の電極端子21から突出部22を研磨により除去し、第2の電極端子31の幅を20μmとした他は実施例1と同様の処理を行った。したがって、比較例4では、少なくとも要件1が満たされなかった。異方性導電接続構造体10の構成及び評価結果を表2にまとめて示す。
 <14.比較例5>
 第2の電子部品30をガラス基板とした他は、実施例1と同様の処理を行った。このガラス基板上には、ITOからなる第2の電極端子31が形成されており、第2の電極端子31の高さH2は1μm以下であった。したがって、比較例5では、要件3が満たされなかった。異方性導電接続構造体10の構成及び評価結果を表2にまとめて示す。
 <15.参考例1>
 第1の電極端子21から突出部22を研磨により除去し、第2の電極端子31の幅を40μmとした他は実施例1と同様の処理を行った。したがって、参考例1では、少なくとも要件1が満たされなかった。異方性導電接続構造体10の構成及び評価結果を表2にまとめて示す。
 <16.参考例2>
 第1の電極端子21から突出部22を研磨により除去し、第2の電極端子31の幅を30μmとした他は実施例1と同様の処理を行った。したがって、参考例1では、少なくとも要件1が満たされなかった。異方性導電接続構造体10の構成及び評価結果を表2にまとめて示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 実施例1~3、5~9は、要件1~6をすべて満たすので、初期抵抗、不良率、及びピール強度に関していずれも良好な結果が得られた。これらの実施例では、突出部22により十分な数の導電性粒子42を凹部23内に捕捉することができた。さらに、これらの導電性粒子42を十分に圧縮することができた。このため、良好な結果が得られたと推定される。
 ただし、実施例3では、第1の電極端子21に若干の変形が観察された。実施例3では、電極端子の硬度比が30%以下となっている。すなわち、実施例3では、要件4は満たされるが、30%以下の値となっている。また、実施例4でも良好な結果が得られたが、第1の電極端子21の変形がさらに大きくなった。実施例4では、電極端子の硬度比が10%以下となっている。したがって、要件4が満たされない。したがって、電極端子の変形を抑制するという観点からは、要件4が満たされることが好ましいことがわかった。
 一方、比較例1~5では、特に信頼性の評価が悪くなった。比較例1~5では、要件1~3のいずれかが満たされないため、このような結果が得られたと推定される。参考例1、2では、突出部22が形成されなかった。このため、捕捉粒子数が実施例に対して少なかった。しかし、実施例とほぼ遜色ない評価結果が得られた。その一方で、同じく突出部22が形成されていない比較例4では、評価結果が悪くなった。この理由として、参考例1、2では、有効接続面積が大きかったことが挙げられる。しかし、参考例1、2では、突出部22を除去する作業が別途必要になるので、異方性導電接続に手間がかかってしまう。したがって、実施例1~9の方が好ましいと言える。
 以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。
 10   異方性導電接続構造体
 20   第1の電子部品
 21   第1の電極端子
 22   突出部
 23   凹部
 30   第2の電子部品
 31   第2の電極端子
 40   接着剤層
 41   硬化樹脂層
 42   導電性粒子

Claims (6)

  1.  表面に突出部が形成された第1の電極端子と、
     第2の電極端子と、
     前記第1の電極端子と前記第2の電極端子とを導通する導電性粒子を含む異方性導電接着剤層と、を備え、
     前記導電性粒子の圧縮前粒子径に対する前記前記突出部の高さの比は、60%未満であり、
     前記第1の電極端子の開口面積率は55%以上であり、
     前記第2の電極端子の高さは6μm以上である、
    異方性導電接続構造体。
  2.  前記第2の電極端子の硬度に対する前記第1の電極端子の硬度の比は10%より大きい、請求項1記載の異方性導電接続構造体。
  3.  前記第1の電極端子の表面には、前記突出部に囲まれた凹部が形成され、
     前記第1の電極端子の凹部の短辺長さに対する前記導電性粒子の圧縮前粒子径の比は10%未満である、請求項1または2記載の異方性導電接続構造体。
  4.  前記第1の電極端子の表面には、前記突出部に囲まれた凹部が形成され、
     前記第1の電極端子の凹部に存在する前記導電性粒子の平均占有面積率が20%未満である、請求項1~3のいずれか1項に記載の異方性導電接続構造体。
  5.  前記突出部は、前記第1の電極端子の表面の外縁全周にわたって形成されている、請求項1~4のいずれか1項に記載の異方性導電接続構造体。
  6.  前記第1の電極端子は、第1の電子部品に形成されるバンプである、請求項1~5の何れか1項に記載の異方性導電接続構造体。
PCT/JP2017/012408 2016-03-31 2017-03-27 異方性導電接続構造体 WO2017170412A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020187013065A KR102081570B1 (ko) 2016-03-31 2017-03-27 이방성 도전 접속 구조체
CN201780017937.1A CN108780763B (zh) 2016-03-31 2017-03-27 各向异性导电连接构造体
US16/077,785 US10602619B2 (en) 2016-03-31 2017-03-27 Anisotropic conductive connection structure body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016073087A JP6945276B2 (ja) 2016-03-31 2016-03-31 異方性導電接続構造体
JP2016-073087 2016-03-31

Publications (1)

Publication Number Publication Date
WO2017170412A1 true WO2017170412A1 (ja) 2017-10-05

Family

ID=59964518

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/012408 WO2017170412A1 (ja) 2016-03-31 2017-03-27 異方性導電接続構造体

Country Status (6)

Country Link
US (1) US10602619B2 (ja)
JP (1) JP6945276B2 (ja)
KR (1) KR102081570B1 (ja)
CN (1) CN108780763B (ja)
TW (1) TWI759290B (ja)
WO (1) WO2017170412A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6945276B2 (ja) * 2016-03-31 2021-10-06 デクセリアルズ株式会社 異方性導電接続構造体
CN108987439A (zh) * 2018-06-21 2018-12-11 武汉华星光电半导体显示技术有限公司 显示面板和显示装置
TWI671921B (zh) 2018-09-14 2019-09-11 頎邦科技股份有限公司 晶片封裝構造及其晶片
CN111179750A (zh) * 2019-12-12 2020-05-19 武汉华星光电技术有限公司 显示面板的结构和其制作方法
JP7334198B2 (ja) 2021-02-01 2023-08-28 プライムプラネットエナジー&ソリューションズ株式会社 電極端子および該電極端子を備えた二次電池

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001028280A (ja) * 1999-07-13 2001-01-30 Three Bond Co Ltd 回路接続部材
JP2004186411A (ja) * 2002-12-03 2004-07-02 Renesas Technology Corp 半導体装置およびその製造方法

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2699951B2 (ja) * 1995-09-28 1998-01-19 日本電気株式会社 電子部品の接続構造及び製造方法
JPH1131698A (ja) 1997-07-14 1999-02-02 Texas Instr Japan Ltd 半導体装置、その製造方法及び実装構造
US5965064A (en) * 1997-10-28 1999-10-12 Sony Chemicals Corporation Anisotropically electroconductive adhesive and adhesive film
JP3624729B2 (ja) * 1998-04-06 2005-03-02 セイコーエプソン株式会社 Icチップ、ic構造体、液晶装置及び電子機器
KR20000057810A (ko) * 1999-01-28 2000-09-25 가나이 쓰토무 반도체 장치
US6451875B1 (en) * 1999-10-12 2002-09-17 Sony Chemicals Corporation Connecting material for anisotropically electroconductive connection
JP2002151551A (ja) * 2000-11-10 2002-05-24 Hitachi Ltd フリップチップ実装構造、その実装構造を有する半導体装置及び実装方法
US7154206B2 (en) * 2002-07-31 2006-12-26 Kyocera Corporation Surface acoustic wave device and method for manufacturing same
JP4115832B2 (ja) * 2002-12-27 2008-07-09 東芝松下ディスプレイテクノロジー株式会社 半導体素子及び液晶表示パネル
JP2005093978A (ja) 2003-08-12 2005-04-07 Seiko Instruments Inc 半導体装置の製造方法
US7393771B2 (en) * 2004-06-29 2008-07-01 Hitachi, Ltd. Method for mounting an electronic part on a substrate using a liquid containing metal particles
JP3964911B2 (ja) * 2004-09-03 2007-08-22 松下電器産業株式会社 バンプ付き基板の製造方法
EP1865549A4 (en) * 2005-03-29 2012-07-11 Panasonic Corp RETURN CHIP MOUNTING METHOD AND DAMPER FORMING METHOD
KR101410108B1 (ko) * 2007-05-15 2014-06-25 히타치가세이가부시끼가이샤 회로 접속 재료 및 회로 부재의 접속 구조
KR20100009539A (ko) * 2007-10-02 2010-01-27 히다치 가세고교 가부시끼가이샤 회로 접속 재료 및 회로 단자의 접속 구조
JP2008047943A (ja) * 2007-11-01 2008-02-28 Renesas Technology Corp 半導体装置
US20090278213A1 (en) * 2008-05-08 2009-11-12 International Business Machines Corporation Electrode arrays and methods of fabricating the same using printing plates to arrange particles in an array
JP5008767B2 (ja) * 2008-09-29 2012-08-22 シャープ株式会社 基板モジュールおよびその製造方法
JP5533665B2 (ja) * 2008-11-28 2014-06-25 富士通株式会社 電子装置の製造方法、電子部品搭載用基板及びその製造方法
JP5599680B2 (ja) * 2010-08-27 2014-10-01 富士フイルム株式会社 導電接合構造、実装構造体及び導電接合方法
JP6057521B2 (ja) * 2012-03-05 2017-01-11 デクセリアルズ株式会社 異方性導電材料を用いた接続方法及び異方性導電接合体
CN107267076B (zh) * 2012-08-24 2021-06-29 迪睿合电子材料有限公司 各向异性导电膜的制造方法和各向异性导电膜
JP6321910B2 (ja) * 2013-03-26 2018-05-09 日東電工株式会社 封止シート、半導体装置の製造方法及び封止シート付き基板
JP6267067B2 (ja) * 2013-06-26 2018-01-24 積水化学工業株式会社 接続構造体
KR101628440B1 (ko) * 2013-10-31 2016-06-08 제일모직주식회사 이방성 도전 필름 및 이를 이용한 반도체 장치
JP6324746B2 (ja) 2014-02-03 2018-05-16 デクセリアルズ株式会社 接続体、接続体の製造方法、電子機器
US10461054B2 (en) * 2014-03-31 2019-10-29 Dexerials Corporation Anisotropic conductive film and production method of the same
KR101900175B1 (ko) * 2014-06-02 2018-09-18 후지필름 가부시키가이샤 산화물 입자 및 그 제조 방법, 산화물 입자 분산액, 산화물 입자 박막의 형성 방법, 박막 트랜지스터, 그리고 전자 소자
JP2016029698A (ja) * 2014-07-22 2016-03-03 デクセリアルズ株式会社 接続体、及び接続体の製造方法
JP6750197B2 (ja) * 2015-07-13 2020-09-02 デクセリアルズ株式会社 異方性導電フィルム及び接続構造体
JP6945276B2 (ja) * 2016-03-31 2021-10-06 デクセリアルズ株式会社 異方性導電接続構造体

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001028280A (ja) * 1999-07-13 2001-01-30 Three Bond Co Ltd 回路接続部材
JP2004186411A (ja) * 2002-12-03 2004-07-02 Renesas Technology Corp 半導体装置およびその製造方法

Also Published As

Publication number Publication date
US10602619B2 (en) 2020-03-24
TWI759290B (zh) 2022-04-01
CN108780763A (zh) 2018-11-09
TW201804583A (zh) 2018-02-01
KR20180066178A (ko) 2018-06-18
JP6945276B2 (ja) 2021-10-06
US20190053383A1 (en) 2019-02-14
CN108780763B (zh) 2022-12-06
KR102081570B1 (ko) 2020-02-26
JP2017183664A (ja) 2017-10-05

Similar Documents

Publication Publication Date Title
WO2017170412A1 (ja) 異方性導電接続構造体
KR102064584B1 (ko) 반도체용 접착제, 반도체 장치 및 그것을 제조하는 방법
KR101886909B1 (ko) 이방성 도전 접속 재료, 접속 구조체, 접속 구조체의 제조 방법 및 접속 방법
JP5690648B2 (ja) 異方性導電フィルム、接続方法及び接続構造体
US6426021B2 (en) Anisotropically electroconductive adhesive material and connecting method
KR101842855B1 (ko) 실장체의 제조 방법, 접속 방법 및 이방성 도전막
JP5622137B2 (ja) 電気的接続体及びその製造方法
JP5654289B2 (ja) 実装体の製造方法及び実装体並びに異方性導電膜
JP2010251336A (ja) 異方性導電フィルム及びこれを用いた接続構造体の製造方法
JP5712884B2 (ja) フィルム状接着剤およびこれを用いた半導体装置の製造方法
JP6505423B2 (ja) 実装体の製造方法、及び異方性導電フィルム
JP7176532B2 (ja) 半導体装置、半導体装置の製造方法及び接着剤
JP5608504B2 (ja) 接続方法及び接続構造体
KR20190142333A (ko) 반도체 장치 및 그 제조 방법
JP2011211245A (ja) 接続構造体の製造方法及び接続構造体並びに接続方法
WO2022102181A1 (ja) 半導体装置の製造方法及びこれに用いられる接着剤

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20187013065

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17774949

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17774949

Country of ref document: EP

Kind code of ref document: A1