WO2017170360A1 - 光学異方性積層体、円偏光板、及び、画像表示装置 - Google Patents
光学異方性積層体、円偏光板、及び、画像表示装置 Download PDFInfo
- Publication number
- WO2017170360A1 WO2017170360A1 PCT/JP2017/012322 JP2017012322W WO2017170360A1 WO 2017170360 A1 WO2017170360 A1 WO 2017170360A1 JP 2017012322 W JP2017012322 W JP 2017012322W WO 2017170360 A1 WO2017170360 A1 WO 2017170360A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- optically anisotropic
- group
- anisotropic layer
- carbon atoms
- liquid crystal
- Prior art date
Links
- 239000004973 liquid crystal related substance Substances 0.000 claims description 295
- 125000004432 carbon atom Chemical group C* 0.000 claims description 280
- 230000003287 optical effect Effects 0.000 claims description 158
- 150000001875 compounds Chemical class 0.000 claims description 123
- 125000001424 substituent group Chemical group 0.000 claims description 123
- 239000000203 mixture Substances 0.000 claims description 111
- 125000000217 alkyl group Chemical group 0.000 claims description 64
- 125000003118 aryl group Chemical group 0.000 claims description 49
- 125000002723 alicyclic group Chemical group 0.000 claims description 39
- 238000010521 absorption reaction Methods 0.000 claims description 36
- 230000002441 reversible effect Effects 0.000 claims description 35
- 125000003342 alkenyl group Chemical group 0.000 claims description 33
- 125000006615 aromatic heterocyclic group Chemical group 0.000 claims description 30
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 28
- 125000000753 cycloalkyl group Chemical group 0.000 claims description 26
- 125000005843 halogen group Chemical group 0.000 claims description 26
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 25
- 239000006185 dispersion Substances 0.000 claims description 22
- 125000001931 aliphatic group Chemical group 0.000 claims description 19
- 229910052799 carbon Inorganic materials 0.000 claims description 18
- 125000000962 organic group Chemical group 0.000 claims description 16
- 125000000304 alkynyl group Chemical group 0.000 claims description 13
- 125000000547 substituted alkyl group Chemical group 0.000 claims description 12
- 125000005017 substituted alkenyl group Chemical group 0.000 claims description 11
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 claims description 10
- 238000005401 electroluminescence Methods 0.000 claims description 8
- IOJUPLGTWVMSFF-UHFFFAOYSA-N benzothiazole Chemical group C1=CC=C2SC=NC2=C1 IOJUPLGTWVMSFF-UHFFFAOYSA-N 0.000 claims description 7
- 150000001721 carbon Chemical class 0.000 claims description 7
- 239000000126 substance Substances 0.000 claims description 7
- 125000000590 4-methylphenyl group Chemical group [H]C1=C([H])C(=C([H])C([H])=C1*)C([H])([H])[H] 0.000 claims description 6
- NAWXUBYGYWOOIX-SFHVURJKSA-N (2s)-2-[[4-[2-(2,4-diaminoquinazolin-6-yl)ethyl]benzoyl]amino]-4-methylidenepentanedioic acid Chemical compound C1=CC2=NC(N)=NC(N)=C2C=C1CCC1=CC=C(C(=O)N[C@@H](CC(=C)C(O)=O)C(O)=O)C=C1 NAWXUBYGYWOOIX-SFHVURJKSA-N 0.000 claims description 2
- 125000002029 aromatic hydrocarbon group Chemical group 0.000 claims 3
- 239000010410 layer Substances 0.000 description 625
- 239000010408 film Substances 0.000 description 207
- -1 acryl Chemical group 0.000 description 148
- 239000000758 substrate Substances 0.000 description 87
- 229920000642 polymer Polymers 0.000 description 69
- 238000004519 manufacturing process Methods 0.000 description 55
- 238000004040 coloring Methods 0.000 description 51
- 239000000463 material Substances 0.000 description 44
- 230000001629 suppression Effects 0.000 description 43
- 238000000034 method Methods 0.000 description 42
- 150000004945 aromatic hydrocarbons Chemical group 0.000 description 40
- 230000000052 comparative effect Effects 0.000 description 39
- 230000000694 effects Effects 0.000 description 38
- 239000002070 nanowire Substances 0.000 description 37
- 239000002585 base Substances 0.000 description 36
- 239000012790 adhesive layer Substances 0.000 description 34
- 125000003545 alkoxy group Chemical group 0.000 description 34
- 229920005989 resin Polymers 0.000 description 31
- 239000011347 resin Substances 0.000 description 31
- 230000010287 polarization Effects 0.000 description 30
- 229910052751 metal Inorganic materials 0.000 description 25
- 239000002184 metal Substances 0.000 description 25
- 239000002904 solvent Substances 0.000 description 25
- 239000000523 sample Substances 0.000 description 22
- 125000004093 cyano group Chemical group *C#N 0.000 description 20
- 239000000178 monomer Substances 0.000 description 20
- 239000000853 adhesive Substances 0.000 description 19
- 230000001070 adhesive effect Effects 0.000 description 19
- 238000001035 drying Methods 0.000 description 19
- 238000000576 coating method Methods 0.000 description 15
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 14
- 239000011248 coating agent Substances 0.000 description 13
- 239000003505 polymerization initiator Substances 0.000 description 13
- 125000000623 heterocyclic group Chemical group 0.000 description 12
- 230000000873 masking effect Effects 0.000 description 12
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 12
- 239000012071 phase Substances 0.000 description 12
- 238000005266 casting Methods 0.000 description 11
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 11
- 239000003999 initiator Substances 0.000 description 11
- JFNLZVQOOSMTJK-KNVOCYPGSA-N norbornene Chemical compound C1[C@@H]2CC[C@H]1C=C2 JFNLZVQOOSMTJK-KNVOCYPGSA-N 0.000 description 11
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 10
- 229920002284 Cellulose triacetate Polymers 0.000 description 10
- NNLVGZFZQQXQNW-ADJNRHBOSA-N [(2r,3r,4s,5r,6s)-4,5-diacetyloxy-3-[(2s,3r,4s,5r,6r)-3,4,5-triacetyloxy-6-(acetyloxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6s)-4,5,6-triacetyloxy-2-(acetyloxymethyl)oxan-3-yl]oxyoxan-2-yl]methyl acetate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](OC(C)=O)[C@H]1OC(C)=O)O[C@H]1[C@@H]([C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](COC(C)=O)O1)OC(C)=O)COC(=O)C)[C@@H]1[C@@H](COC(C)=O)O[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@H]1OC(C)=O NNLVGZFZQQXQNW-ADJNRHBOSA-N 0.000 description 10
- 210000002858 crystal cell Anatomy 0.000 description 10
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 10
- 229910052731 fluorine Inorganic materials 0.000 description 10
- 239000004094 surface-active agent Substances 0.000 description 10
- 238000011156 evaluation Methods 0.000 description 9
- 238000013210 evaluation model Methods 0.000 description 9
- 229910052717 sulfur Inorganic materials 0.000 description 9
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 8
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 8
- 229920002678 cellulose Polymers 0.000 description 8
- BGTOWKSIORTVQH-UHFFFAOYSA-N cyclopentanone Chemical compound O=C1CCCC1 BGTOWKSIORTVQH-UHFFFAOYSA-N 0.000 description 8
- YMWUJEATGCHHMB-UHFFFAOYSA-N dichloromethane Natural products ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 8
- 125000001153 fluoro group Chemical group F* 0.000 description 8
- 238000005259 measurement Methods 0.000 description 8
- 125000001624 naphthyl group Chemical group 0.000 description 8
- 125000004430 oxygen atom Chemical group O* 0.000 description 8
- 230000008569 process Effects 0.000 description 8
- 125000004434 sulfur atom Chemical group 0.000 description 8
- 239000003795 chemical substances by application Substances 0.000 description 7
- 229910052801 chlorine Inorganic materials 0.000 description 7
- 125000001309 chloro group Chemical group Cl* 0.000 description 7
- 229920001940 conductive polymer Polymers 0.000 description 7
- 239000011521 glass Substances 0.000 description 7
- 229920000123 polythiophene Polymers 0.000 description 7
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 7
- 230000001105 regulatory effect Effects 0.000 description 7
- 238000002834 transmittance Methods 0.000 description 7
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- 229920002301 cellulose acetate Polymers 0.000 description 6
- 239000000975 dye Substances 0.000 description 6
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 description 6
- 230000001747 exhibiting effect Effects 0.000 description 6
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 6
- 238000006116 polymerization reaction Methods 0.000 description 6
- 229910052709 silver Inorganic materials 0.000 description 6
- 239000004332 silver Substances 0.000 description 6
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 description 6
- 238000004088 simulation Methods 0.000 description 6
- WNXJIVFYUVYPPR-UHFFFAOYSA-N 1,3-dioxolane Chemical compound C1COCO1 WNXJIVFYUVYPPR-UHFFFAOYSA-N 0.000 description 5
- YLQBMQCUIZJEEH-UHFFFAOYSA-N Furan Chemical compound C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 5
- 239000004372 Polyvinyl alcohol Substances 0.000 description 5
- 239000000654 additive Substances 0.000 description 5
- 239000002041 carbon nanotube Substances 0.000 description 5
- 229910021393 carbon nanotube Inorganic materials 0.000 description 5
- 125000004122 cyclic group Chemical group 0.000 description 5
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 5
- 229910052737 gold Inorganic materials 0.000 description 5
- 239000010931 gold Substances 0.000 description 5
- 125000003253 isopropoxy group Chemical group [H]C([H])([H])C([H])(O*)C([H])([H])[H] 0.000 description 5
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 5
- 239000012788 optical film Substances 0.000 description 5
- 229920002451 polyvinyl alcohol Polymers 0.000 description 5
- 150000003839 salts Chemical class 0.000 description 5
- 239000004215 Carbon black (E152) Substances 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 4
- 125000003277 amino group Chemical group 0.000 description 4
- 229920006318 anionic polymer Polymers 0.000 description 4
- 125000004104 aryloxy group Chemical group 0.000 description 4
- 125000003236 benzoyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C(*)=O 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 150000004292 cyclic ethers Chemical group 0.000 description 4
- 235000014113 dietary fatty acids Nutrition 0.000 description 4
- 125000002147 dimethylamino group Chemical group [H]C([H])([H])N(*)C([H])([H])[H] 0.000 description 4
- 229930195729 fatty acid Natural products 0.000 description 4
- 239000000194 fatty acid Substances 0.000 description 4
- 230000009477 glass transition Effects 0.000 description 4
- 229930195733 hydrocarbon Natural products 0.000 description 4
- 150000002739 metals Chemical class 0.000 description 4
- 239000012299 nitrogen atmosphere Substances 0.000 description 4
- 239000008188 pellet Substances 0.000 description 4
- 125000003170 phenylsulfonyl group Chemical group C1(=CC=CC=C1)S(=O)(=O)* 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 239000011787 zinc oxide Substances 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical group [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- 101100132433 Arabidopsis thaliana VIII-1 gene Proteins 0.000 description 3
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 229920000265 Polyparaphenylene Polymers 0.000 description 3
- BFPLMTPHDFFMTG-UHFFFAOYSA-N [1,3]oxazolo[5,4-b]pyridine Chemical group C1=CN=C2OC=NC2=C1 BFPLMTPHDFFMTG-UHFFFAOYSA-N 0.000 description 3
- 239000006096 absorbing agent Substances 0.000 description 3
- 125000002947 alkylene group Chemical group 0.000 description 3
- 239000012298 atmosphere Substances 0.000 description 3
- 125000002837 carbocyclic group Chemical group 0.000 description 3
- 239000000460 chlorine Substances 0.000 description 3
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 3
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 239000004210 ether based solvent Substances 0.000 description 3
- 150000004665 fatty acids Chemical class 0.000 description 3
- 238000005227 gel permeation chromatography Methods 0.000 description 3
- 229910052740 iodine Inorganic materials 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 229910044991 metal oxide Inorganic materials 0.000 description 3
- 150000004706 metal oxides Chemical class 0.000 description 3
- 239000002736 nonionic surfactant Substances 0.000 description 3
- 230000000379 polymerizing effect Effects 0.000 description 3
- 150000003254 radicals Chemical class 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- 238000007142 ring opening reaction Methods 0.000 description 3
- 229910001961 silver nitrate Inorganic materials 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 125000005346 substituted cycloalkyl group Chemical group 0.000 description 3
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 description 3
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 3
- QNODIIQQMGDSEF-UHFFFAOYSA-N (1-hydroxycyclohexyl)-phenylmethanone Chemical compound C=1C=CC=CC=1C(=O)C1(O)CCCCC1 QNODIIQQMGDSEF-UHFFFAOYSA-N 0.000 description 2
- 125000000355 1,3-benzoxazolyl group Chemical group O1C(=NC2=C1C=CC=C2)* 0.000 description 2
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 2
- IANQTJSKSUMEQM-UHFFFAOYSA-N 1-benzofuran Chemical group C1=CC=C2OC=CC2=C1 IANQTJSKSUMEQM-UHFFFAOYSA-N 0.000 description 2
- FCEHBMOGCRZNNI-UHFFFAOYSA-N 1-benzothiophene Chemical group C1=CC=C2SC=CC2=C1 FCEHBMOGCRZNNI-UHFFFAOYSA-N 0.000 description 2
- 125000002941 2-furyl group Chemical group O1C([*])=C([H])C([H])=C1[H] 0.000 description 2
- LWRBVKNFOYUCNP-UHFFFAOYSA-N 2-methyl-1-(4-methylsulfanylphenyl)-2-morpholin-4-ylpropan-1-one Chemical compound C1=CC(SC)=CC=C1C(=O)C(C)(C)N1CCOCC1 LWRBVKNFOYUCNP-UHFFFAOYSA-N 0.000 description 2
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 2
- 125000001494 2-propynyl group Chemical group [H]C#CC([H])([H])* 0.000 description 2
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical group [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 2
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Chemical compound CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- RGSFGYAAUTVSQA-UHFFFAOYSA-N Cyclopentane Chemical compound C1CCCC1 RGSFGYAAUTVSQA-UHFFFAOYSA-N 0.000 description 2
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 2
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 239000004695 Polyether sulfone Substances 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- 239000004820 Pressure-sensitive adhesive Substances 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical group C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- 239000002042 Silver nanowire Substances 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- FZWLAAWBMGSTSO-UHFFFAOYSA-N Thiazole Chemical group C1=CSC=N1 FZWLAAWBMGSTSO-UHFFFAOYSA-N 0.000 description 2
- PUZFXDRHCPIYCB-UHFFFAOYSA-N [1,3]oxazolo[4,5-b]pyrazine Chemical group C1=CN=C2OC=NC2=N1 PUZFXDRHCPIYCB-UHFFFAOYSA-N 0.000 description 2
- BRIOKNPDCPJCOD-UHFFFAOYSA-N [1,3]oxazolo[5,4-d]pyrimidine Chemical group N1=CN=C2OC=NC2=C1 BRIOKNPDCPJCOD-UHFFFAOYSA-N 0.000 description 2
- WFIHKLWVLPBMIQ-UHFFFAOYSA-N [1,3]thiazolo[5,4-b]pyridine Chemical group C1=CN=C2SC=NC2=C1 WFIHKLWVLPBMIQ-UHFFFAOYSA-N 0.000 description 2
- 230000021736 acetylation Effects 0.000 description 2
- 238000006640 acetylation reaction Methods 0.000 description 2
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 239000005456 alcohol based solvent Substances 0.000 description 2
- 125000004450 alkenylene group Chemical group 0.000 description 2
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 2
- 238000010539 anionic addition polymerization reaction Methods 0.000 description 2
- 238000001241 arc-discharge method Methods 0.000 description 2
- 125000003785 benzimidazolyl group Chemical group N1=C(NC2=C1C=CC=C2)* 0.000 description 2
- WTEOIRVLGSZEPR-UHFFFAOYSA-N boron trifluoride Chemical compound FB(F)F WTEOIRVLGSZEPR-UHFFFAOYSA-N 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 125000002091 cationic group Chemical group 0.000 description 2
- 238000010538 cationic polymerization reaction Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 150000001924 cycloalkanes Chemical group 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- JAONJTDQXUSBGG-UHFFFAOYSA-N dialuminum;dizinc;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Al+3].[Al+3].[Zn+2].[Zn+2] JAONJTDQXUSBGG-UHFFFAOYSA-N 0.000 description 2
- 238000007607 die coating method Methods 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 2
- 238000003618 dip coating Methods 0.000 description 2
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 2
- 238000011978 dissolution method Methods 0.000 description 2
- 229910052733 gallium Inorganic materials 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- 230000004313 glare Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 125000004836 hexamethylene group Chemical group [H]C([H])([*:2])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[*:1] 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 125000002883 imidazolyl group Chemical group 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 125000003453 indazolyl group Chemical group N1N=C(C2=C1C=CC=C2)* 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 239000011630 iodine Substances 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 239000005453 ketone based solvent Substances 0.000 description 2
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 2
- 229910052753 mercury Inorganic materials 0.000 description 2
- TZIHFWKZFHZASV-UHFFFAOYSA-N methyl formate Chemical compound COC=O TZIHFWKZFHZASV-UHFFFAOYSA-N 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 125000002950 monocyclic group Chemical group 0.000 description 2
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 125000001280 n-hexyl group Chemical group C(CCCCC)* 0.000 description 2
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 125000002971 oxazolyl group Chemical group 0.000 description 2
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical compound OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 description 2
- LFSXCDWNBUNEEM-UHFFFAOYSA-N phthalazine Chemical group C1=NN=CC2=CC=CC=C21 LFSXCDWNBUNEEM-UHFFFAOYSA-N 0.000 description 2
- 239000000049 pigment Substances 0.000 description 2
- 239000004014 plasticizer Substances 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 229920001197 polyacetylene Polymers 0.000 description 2
- 229920000767 polyaniline Polymers 0.000 description 2
- 229920006393 polyether sulfone Polymers 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 229920005672 polyolefin resin Polymers 0.000 description 2
- 229920000128 polypyrrole Polymers 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 238000007639 printing Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 125000003373 pyrazinyl group Chemical group 0.000 description 2
- 125000003226 pyrazolyl group Chemical group 0.000 description 2
- BBEAQIROQSPTKN-UHFFFAOYSA-N pyrene Chemical compound C1=CC=C2C=CC3=CC=CC4=CC=C1C2=C43 BBEAQIROQSPTKN-UHFFFAOYSA-N 0.000 description 2
- PBMFSQRYOILNGV-UHFFFAOYSA-N pyridazine Chemical group C1=CC=NN=C1 PBMFSQRYOILNGV-UHFFFAOYSA-N 0.000 description 2
- 125000000714 pyrimidinyl group Chemical group 0.000 description 2
- 125000000168 pyrrolyl group Chemical group 0.000 description 2
- 125000002943 quinolinyl group Chemical group N1=C(C=CC2=CC=CC=C12)* 0.000 description 2
- 239000007870 radical polymerization initiator Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 2
- 239000002109 single walled nanotube Substances 0.000 description 2
- 238000007767 slide coating Methods 0.000 description 2
- GGCZERPQGJTIQP-UHFFFAOYSA-N sodium;9,10-dioxoanthracene-2-sulfonic acid Chemical compound [Na+].C1=CC=C2C(=O)C3=CC(S(=O)(=O)O)=CC=C3C(=O)C2=C1 GGCZERPQGJTIQP-UHFFFAOYSA-N 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 125000000542 sulfonic acid group Chemical group 0.000 description 2
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 2
- 125000000383 tetramethylene group Chemical group [H]C([H])([*:1])C([H])([H])C([H])([H])C([H])([H])[*:2] 0.000 description 2
- 229920005992 thermoplastic resin Polymers 0.000 description 2
- 150000008634 thiazolopyrimidines Chemical group 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- ZODNDDPVCIAZIQ-UHFFFAOYSA-N (2-hydroxy-3-prop-2-enoyloxypropyl) 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCC(O)COC(=O)C=C ZODNDDPVCIAZIQ-UHFFFAOYSA-N 0.000 description 1
- 125000003837 (C1-C20) alkyl group Chemical group 0.000 description 1
- SCYULBFZEHDVBN-UHFFFAOYSA-N 1,1-Dichloroethane Chemical compound CC(Cl)Cl SCYULBFZEHDVBN-UHFFFAOYSA-N 0.000 description 1
- 125000006219 1-ethylpentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C([H])([H])[H] 0.000 description 1
- NAYIXKXYHOLMRC-UHFFFAOYSA-N 1-phenyl-4-propylbenzene Chemical group C1=CC(CCC)=CC=C1C1=CC=CC=C1 NAYIXKXYHOLMRC-UHFFFAOYSA-N 0.000 description 1
- KWVGIHKZDCUPEU-UHFFFAOYSA-N 2,2-dimethoxy-2-phenylacetophenone Chemical compound C=1C=CC=CC=1C(OC)(OC)C(=O)C1=CC=CC=C1 KWVGIHKZDCUPEU-UHFFFAOYSA-N 0.000 description 1
- GJKGAPPUXSSCFI-UHFFFAOYSA-N 2-Hydroxy-4'-(2-hydroxyethoxy)-2-methylpropiophenone Chemical compound CC(C)(O)C(=O)C1=CC=C(OCCO)C=C1 GJKGAPPUXSSCFI-UHFFFAOYSA-N 0.000 description 1
- UHFFVFAKEGKNAQ-UHFFFAOYSA-N 2-benzyl-2-(dimethylamino)-1-(4-morpholin-4-ylphenyl)butan-1-one Chemical compound C=1C=C(N2CCOCC2)C=CC=1C(=O)C(CC)(N(C)C)CC1=CC=CC=C1 UHFFVFAKEGKNAQ-UHFFFAOYSA-N 0.000 description 1
- 125000000069 2-butynyl group Chemical group [H]C([H])([H])C#CC([H])([H])* 0.000 description 1
- 125000000954 2-hydroxyethyl group Chemical group [H]C([*])([H])C([H])([H])O[H] 0.000 description 1
- OMIGHNLMNHATMP-UHFFFAOYSA-N 2-hydroxyethyl prop-2-enoate Chemical compound OCCOC(=O)C=C OMIGHNLMNHATMP-UHFFFAOYSA-N 0.000 description 1
- 125000000175 2-thienyl group Chemical group S1C([*])=C([H])C([H])=C1[H] 0.000 description 1
- WNOOCRQGKGWSJE-UHFFFAOYSA-N 3,4-dihydro-2h-thieno[3,4-b][1,4]dioxepine Chemical compound O1CCCOC2=CSC=C21 WNOOCRQGKGWSJE-UHFFFAOYSA-N 0.000 description 1
- 125000000474 3-butynyl group Chemical group [H]C#CC([H])([H])C([H])([H])* 0.000 description 1
- 125000001541 3-thienyl group Chemical group S1C([H])=C([*])C([H])=C1[H] 0.000 description 1
- 125000004801 4-cyanophenyl group Chemical group [H]C1=C([H])C(C#N)=C([H])C([H])=C1* 0.000 description 1
- 125000001255 4-fluorophenyl group Chemical group [H]C1=C([H])C(*)=C([H])C([H])=C1F 0.000 description 1
- SXIFAEWFOJETOA-UHFFFAOYSA-N 4-hydroxy-butyl Chemical group [CH2]CCCO SXIFAEWFOJETOA-UHFFFAOYSA-N 0.000 description 1
- 125000006418 4-methylphenylsulfonyl group Chemical group 0.000 description 1
- 125000000339 4-pyridyl group Chemical group N1=C([H])C([H])=C([*])C([H])=C1[H] 0.000 description 1
- 125000004199 4-trifluoromethylphenyl group Chemical group [H]C1=C([H])C(=C([H])C([H])=C1*)C(F)(F)F 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 101100459319 Arabidopsis thaliana VIII-2 gene Proteins 0.000 description 1
- 229910015900 BF3 Inorganic materials 0.000 description 1
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 1
- 125000005914 C6-C14 aryloxy group Chemical group 0.000 description 1
- CDURACOVSHPTLS-UHFFFAOYSA-N C[Al](C)(C)C(NI)=C Chemical compound C[Al](C)(C)C(NI)=C CDURACOVSHPTLS-UHFFFAOYSA-N 0.000 description 1
- HNUALPPJLMYHDK-UHFFFAOYSA-N C[CH]C Chemical compound C[CH]C HNUALPPJLMYHDK-UHFFFAOYSA-N 0.000 description 1
- 229920008347 Cellulose acetate propionate Polymers 0.000 description 1
- 229920001747 Cellulose diacetate Polymers 0.000 description 1
- DQEFEBPAPFSJLV-UHFFFAOYSA-N Cellulose propionate Chemical compound CCC(=O)OCC1OC(OC(=O)CC)C(OC(=O)CC)C(OC(=O)CC)C1OC1C(OC(=O)CC)C(OC(=O)CC)C(OC(=O)CC)C(COC(=O)CC)O1 DQEFEBPAPFSJLV-UHFFFAOYSA-N 0.000 description 1
- 239000004986 Cholesteric liquid crystals (ChLC) Substances 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- 239000005264 High molar mass liquid crystal Substances 0.000 description 1
- 239000002841 Lewis acid Substances 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical class [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 1
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 1
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 229920001609 Poly(3,4-ethylenedioxythiophene) Polymers 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- KEAYESYHFKHZAL-UHFFFAOYSA-N Sodium Chemical class [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- DHXVGJBLRPWPCS-UHFFFAOYSA-N Tetrahydropyran Chemical compound C1CCOCC1 DHXVGJBLRPWPCS-UHFFFAOYSA-N 0.000 description 1
- 241000534944 Thia Species 0.000 description 1
- 229910021627 Tin(IV) chloride Inorganic materials 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 235000010724 Wisteria floribunda Nutrition 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- FVFBQHPTVOZLNI-UHFFFAOYSA-N [1,3]oxazolo[5,4-c]pyridazine Chemical group C1=NN=C2OC=NC2=C1 FVFBQHPTVOZLNI-UHFFFAOYSA-N 0.000 description 1
- WJRZTBNFQGTLRC-UHFFFAOYSA-N [1,3]thiazolo[5,4-c]pyridazine Chemical group C1=NN=C2SC=NC2=C1 WJRZTBNFQGTLRC-UHFFFAOYSA-N 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- 150000008062 acetophenones Chemical class 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000007605 air drying Methods 0.000 description 1
- 125000003158 alcohol group Chemical group 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 229920006125 amorphous polymer Polymers 0.000 description 1
- 229940072049 amyl acetate Drugs 0.000 description 1
- PGMYKACGEOXYJE-UHFFFAOYSA-N anhydrous amyl acetate Natural products CCCCCOC(C)=O PGMYKACGEOXYJE-UHFFFAOYSA-N 0.000 description 1
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Natural products C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 description 1
- 125000005577 anthracene group Chemical group 0.000 description 1
- 230000003373 anti-fouling effect Effects 0.000 description 1
- 239000002518 antifoaming agent Substances 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 239000003849 aromatic solvent Substances 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 125000002047 benzodioxolyl group Chemical group O1OC(C2=C1C=CC=C2)* 0.000 description 1
- 125000004244 benzofuran-2-yl group Chemical group [H]C1=C(*)OC2=C([H])C([H])=C([H])C([H])=C12 0.000 description 1
- 125000004618 benzofuryl group Chemical group O1C(=CC2=C1C=CC=C2)* 0.000 description 1
- ISAOCJYIOMOJEB-UHFFFAOYSA-N benzoin Chemical class C=1C=CC=CC=1C(O)C(=O)C1=CC=CC=C1 ISAOCJYIOMOJEB-UHFFFAOYSA-N 0.000 description 1
- 150000008366 benzophenones Chemical class 0.000 description 1
- 125000004619 benzopyranyl group Chemical group O1C(C=CC2=C1C=CC=C2)* 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 125000000319 biphenyl-4-yl group Chemical group [H]C1=C([H])C([H])=C([H])C([H])=C1C1=C([H])C([H])=C([*])C([H])=C1[H] 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- 125000004369 butenyl group Chemical group C(=CCC)* 0.000 description 1
- 125000004106 butoxy group Chemical group [*]OC([H])([H])C([H])([H])C(C([H])([H])[H])([H])[H] 0.000 description 1
- 125000000480 butynyl group Chemical group [*]C#CC([H])([H])C([H])([H])[H] 0.000 description 1
- 150000001728 carbonyl compounds Chemical class 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920006217 cellulose acetate butyrate Polymers 0.000 description 1
- 229920001727 cellulose butyrate Polymers 0.000 description 1
- 229920006218 cellulose propionate Polymers 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 238000007766 curtain coating Methods 0.000 description 1
- 150000001925 cycloalkenes Chemical group 0.000 description 1
- 125000000000 cycloalkoxy group Chemical group 0.000 description 1
- 125000001995 cyclobutyl group Chemical group [H]C1([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000002933 cyclohexyloxy group Chemical group C1(CCCCC1)O* 0.000 description 1
- ZBLGFUHEYYJSSE-UHFFFAOYSA-N cycloicosane Chemical compound C1CCCCCCCCCCCCCCCCCCC1 ZBLGFUHEYYJSSE-UHFFFAOYSA-N 0.000 description 1
- 125000000640 cyclooctyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C([H])([H])C1([H])[H] 0.000 description 1
- 125000001887 cyclopentyloxy group Chemical group C1(CCCC1)O* 0.000 description 1
- 125000003493 decenyl group Chemical group [H]C([*])=C([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 150000008049 diazo compounds Chemical class 0.000 description 1
- 150000001993 dienes Chemical class 0.000 description 1
- SMBQBQBNOXIFSF-UHFFFAOYSA-N dilithium Chemical class [Li][Li] SMBQBQBNOXIFSF-UHFFFAOYSA-N 0.000 description 1
- 125000000532 dioxanyl group Chemical group 0.000 description 1
- 125000005879 dioxolanyl group Chemical group 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 125000005066 dodecenyl group Chemical group C(=CCCCCCCCCCC)* 0.000 description 1
- 239000002079 double walled nanotube Substances 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- 239000003759 ester based solvent Substances 0.000 description 1
- 125000005678 ethenylene group Chemical group [H]C([*:1])=C([H])[*:2] 0.000 description 1
- 125000000816 ethylene group Chemical group [H]C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 238000007765 extrusion coating Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- GVEPBJHOBDJJJI-UHFFFAOYSA-N fluoranthrene Natural products C1=CC(C2=CC=CC=C22)=C3C2=CC=CC3=C1 GVEPBJHOBDJJJI-UHFFFAOYSA-N 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 125000004428 fluoroalkoxy group Chemical group 0.000 description 1
- 238000007755 gap coating Methods 0.000 description 1
- 239000003349 gelling agent Substances 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 238000007756 gravure coating Methods 0.000 description 1
- 238000007646 gravure printing Methods 0.000 description 1
- 150000008282 halocarbons Chemical class 0.000 description 1
- DMEGYFMYUHOHGS-UHFFFAOYSA-N heptamethylene Natural products C1CCCCCC1 DMEGYFMYUHOHGS-UHFFFAOYSA-N 0.000 description 1
- MNWFXJYAOYHMED-UHFFFAOYSA-M heptanoate Chemical compound CCCCCCC([O-])=O MNWFXJYAOYHMED-UHFFFAOYSA-M 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-M hexanoate Chemical compound CCCCCC([O-])=O FUZZWVXGSFPDMH-UHFFFAOYSA-M 0.000 description 1
- 125000006038 hexenyl group Chemical group 0.000 description 1
- 125000005980 hexynyl group Chemical group 0.000 description 1
- 230000005525 hole transport Effects 0.000 description 1
- OAKJQQAXSVQMHS-UHFFFAOYSA-N hydrazine Substances NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 1
- 125000002768 hydroxyalkyl group Chemical group 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- BDVZHDCXCXJPSO-UHFFFAOYSA-N indium(3+) oxygen(2-) titanium(4+) Chemical compound [O-2].[Ti+4].[In+3] BDVZHDCXCXJPSO-UHFFFAOYSA-N 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- ATFCOADKYSRZES-UHFFFAOYSA-N indium;oxotungsten Chemical compound [In].[W]=O ATFCOADKYSRZES-UHFFFAOYSA-N 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 239000011256 inorganic filler Substances 0.000 description 1
- 229910003475 inorganic filler Inorganic materials 0.000 description 1
- 239000003456 ion exchange resin Substances 0.000 description 1
- 229920003303 ion-exchange polymer Polymers 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 125000004491 isohexyl group Chemical group C(CCC(C)C)* 0.000 description 1
- 125000001972 isopentyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000000555 isopropenyl group Chemical group [H]\C([H])=C(\*)C([H])([H])[H] 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 239000011254 layer-forming composition Substances 0.000 description 1
- 239000002346 layers by function Substances 0.000 description 1
- 238000007644 letterpress printing Methods 0.000 description 1
- 150000007517 lewis acids Chemical class 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 229910001507 metal halide Inorganic materials 0.000 description 1
- 150000005309 metal halides Chemical class 0.000 description 1
- 125000005641 methacryl group Chemical group 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- SKTCDJAMAYNROS-UHFFFAOYSA-N methoxycyclopentane Chemical compound COC1CCCC1 SKTCDJAMAYNROS-UHFFFAOYSA-N 0.000 description 1
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000002048 multi walled nanotube Substances 0.000 description 1
- 125000006606 n-butoxy group Chemical group 0.000 description 1
- 125000001298 n-hexoxy group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])O* 0.000 description 1
- 125000003935 n-pentoxy group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])O* 0.000 description 1
- 125000003506 n-propoxy group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])O* 0.000 description 1
- 125000001971 neopentyl group Chemical group [H]C([*])([H])C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 125000006501 nitrophenyl group Chemical group 0.000 description 1
- 125000005064 octadecenyl group Chemical group C(=CCCCCCCCCCCCCCCCC)* 0.000 description 1
- 125000004365 octenyl group Chemical group C(=CCCCCCC)* 0.000 description 1
- 125000005069 octynyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C#C* 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 125000000636 p-nitrophenyl group Chemical group [H]C1=C([H])C(=C([H])C([H])=C1*)[N+]([O-])=O 0.000 description 1
- 125000006340 pentafluoro ethyl group Chemical group FC(F)(F)C(F)(F)* 0.000 description 1
- 125000004817 pentamethylene group Chemical group [H]C([H])([*:2])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[*:1] 0.000 description 1
- 125000002255 pentenyl group Chemical group C(=CCCC)* 0.000 description 1
- 125000005981 pentynyl group Chemical group 0.000 description 1
- 125000000951 phenoxy group Chemical group [H]C1=C([H])C([H])=C(O*)C([H])=C1[H] 0.000 description 1
- 125000000843 phenylene group Chemical group C1(=C(C=CC=C1)*)* 0.000 description 1
- 229920000301 poly(3-hexylthiophene-2,5-diyl) polymer Polymers 0.000 description 1
- 229920003227 poly(N-vinyl carbazole) Polymers 0.000 description 1
- 229920000172 poly(styrenesulfonic acid) Polymers 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920005668 polycarbonate resin Polymers 0.000 description 1
- 239000004431 polycarbonate resin Substances 0.000 description 1
- 125000003367 polycyclic group Chemical group 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920002098 polyfluorene Polymers 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 229920001195 polyisoprene Polymers 0.000 description 1
- 229920000193 polymethacrylate Polymers 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 229940005642 polystyrene sulfonic acid Drugs 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 125000004368 propenyl group Chemical group C(=CC)* 0.000 description 1
- 235000019260 propionic acid Nutrition 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 125000002568 propynyl group Chemical group [*]C#CC([H])([H])[H] 0.000 description 1
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 1
- 150000004053 quinones Chemical class 0.000 description 1
- 229920013730 reactive polymer Polymers 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000000979 retarding effect Effects 0.000 description 1
- 238000007151 ring opening polymerisation reaction Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 125000005920 sec-butoxy group Chemical group 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000009751 slip forming Methods 0.000 description 1
- 238000007764 slot die coating Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 125000005063 tetradecenyl group Chemical group C(=CCCCCCCCCCCCC)* 0.000 description 1
- 125000001412 tetrahydropyranyl group Chemical group 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 229930192474 thiophene Natural products 0.000 description 1
- 239000013008 thixotropic agent Substances 0.000 description 1
- HPGGPRDJHPYFRM-UHFFFAOYSA-J tin(iv) chloride Chemical compound Cl[Sn](Cl)(Cl)Cl HPGGPRDJHPYFRM-UHFFFAOYSA-J 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 150000003918 triazines Chemical class 0.000 description 1
- 125000005040 tridecenyl group Chemical group C(=CCCCCCCCCCCC)* 0.000 description 1
- ITMCEJHCFYSIIV-UHFFFAOYSA-N triflic acid Chemical compound OS(=O)(=O)C(F)(F)F ITMCEJHCFYSIIV-UHFFFAOYSA-N 0.000 description 1
- 125000003258 trimethylene group Chemical group [H]C([H])([*:2])C([H])([H])C([H])([H])[*:1] 0.000 description 1
- 238000009281 ultraviolet germicidal irradiation Methods 0.000 description 1
- 239000006097 ultraviolet radiation absorber Substances 0.000 description 1
- 125000005065 undecenyl group Chemical group C(=CCCCCCCCCC)* 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 239000004034 viscosity adjusting agent Substances 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
- 150000007964 xanthones Chemical class 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/02—Physical, chemical or physicochemical properties
- B32B7/023—Optical properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/06—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B27/08—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K19/00—Liquid crystal materials
- C09K19/04—Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
- C09K19/06—Non-steroidal liquid crystal compounds
- C09K19/08—Non-steroidal liquid crystal compounds containing at least two non-condensed rings
- C09K19/30—Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K19/00—Liquid crystal materials
- C09K19/04—Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
- C09K19/06—Non-steroidal liquid crystal compounds
- C09K19/34—Non-steroidal liquid crystal compounds containing at least one heterocyclic ring
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K19/00—Liquid crystal materials
- C09K19/04—Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
- C09K19/38—Polymers
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/10—Optical coatings produced by application to, or surface treatment of, optical elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
- G02B5/3016—Polarising elements involving passive liquid crystal elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
- G02B5/3025—Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
- G02B5/3033—Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
- G02B5/3041—Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks
- G02B5/305—Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks including organic materials, e.g. polymeric layers
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
- G02B5/3083—Birefringent or phase retarding elements
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/133553—Reflecting elements
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/13363—Birefringent elements, e.g. for optical compensation
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/13363—Birefringent elements, e.g. for optical compensation
- G02F1/133634—Birefringent elements, e.g. for optical compensation the refractive index Nz perpendicular to the element surface being different from in-plane refractive indices Nx and Ny, e.g. biaxial or with normal optical axis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/044—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/044—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
- G06F3/0443—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B33/00—Electroluminescent light sources
- H05B33/02—Details
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/13356—Structural association of cells with optical devices, e.g. polarisers or reflectors characterised by the placement of the optical elements
- G02F1/133562—Structural association of cells with optical devices, e.g. polarisers or reflectors characterised by the placement of the optical elements on the viewer side
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/13363—Birefringent elements, e.g. for optical compensation
- G02F1/133638—Waveplates, i.e. plates with a retardation value of lambda/n
Definitions
- the present invention relates to an optically anisotropic laminate, and a circularly polarizing plate and an image display device including the same.
- an optically anisotropic film is usually provided as an optical film.
- an optical film is usually provided as an optical film.
- the image of the image display device may be displayed by linearly polarized light.
- the liquid crystal display device includes a liquid crystal cell and a linear polarizer
- an image of the liquid crystal display device can be displayed by linearly polarized light that has passed through the linear polarizer.
- a circularly polarizing plate may be provided on the display surface of the organic EL display device in order to suppress reflection of external light, and the image of the organic EL display device including the circularly polarizing plate is thus circularly polarized. It can be displayed by linearly polarized light transmitted through a linear polarizer included in the plate.
- an image displayed by linearly polarized light becomes dark when viewed through polarized sunglasses and may not be visible.
- the vibration direction of the linearly polarized light for displaying the image and the polarization absorption axis of the polarized sunglasses are parallel, the linearly polarized light cannot pass through the polarized sunglasses, so that the image cannot be visually recognized.
- the vibration direction of linearly polarized light means the vibration direction of the electric field of linearly polarized light.
- the present inventor attempted to provide an optically anisotropic film capable of functioning as a ⁇ / 4 wavelength plate on the viewing side of the linear polarizer of the image display device in order to make the image visible.
- the linearly polarized light that has passed through the linear polarizer is converted into circularly polarized light by the optically anisotropic film. Since a part of this circularly polarized light can pass through the polarized sunglasses, it is possible to view the image through the polarized sunglasses.
- the tilt angle of the polarized sunglasses is the tilt angle in the rotation direction around the rotation axis perpendicular to the display surface.
- This inclination angle can be expressed by an angle formed by the polarization absorption axis of the linear polarizer of the polarized sunglasses with respect to the polarization absorption axis of the linear polarizer provided in the image display device.
- the above-mentioned coloring is considered to be caused by the in-plane retardation of the conventional optically anisotropic film exhibiting forward wavelength dispersion.
- the forward wavelength dispersion of the in-plane retardation means a property that the in-plane retardation becomes smaller as the wavelength is longer.
- in-plane retardation of a stretched film obtained by stretching a resin film generally exhibits forward wavelength dispersibility.
- the linearly polarized light transmitted through the optically anisotropic film is ideal depending on the wavelength of the linearly polarized light.
- a broadband ⁇ / 4 wavelength plate that can function as a ⁇ / 4 wavelength plate in a wide wavelength range is obtained. It is known to be obtained.
- the inventor tried to suppress the coloring by applying such a broadband ⁇ / 4 wavelength plate as the optically anisotropic film.
- a broadband ⁇ / 4 wavelength plate is used, it is difficult to uniformly convert linearly polarized light into ideal circularly polarized light for all light in the visible wavelength region. It has been difficult to sufficiently suppress the coloring of the corresponding display surface.
- the present invention was devised in view of the above problems, and is an optical that can suppress coloring of the display surface according to the tilt angle of the polarized sunglasses when the display surface of the image display device is viewed from the front through the polarized sunglasses.
- An object of the present invention is to provide an anisotropic laminate; and a circularly polarizing plate provided with the optically anisotropic laminate, and an image display device.
- the present inventor is an optically anisotropic laminate comprising a first optically anisotropic layer and a second optically anisotropic layer, wherein the first optical anisotropic at wavelengths of 450 nm, 550 nm, 590 nm and 650 nm -Plane retardation Re (H450), Re (H550), Re (H590) and Re (H650), and in-plane retardation of the second optically anisotropic layer at wavelengths of 450 nm, 550 nm, 590 nm and 650 nm
- Re (Q450), Re (Q550), Re (Q590), and Re (Q650) satisfy the predetermined requirements, and thus the present invention was completed. That is, the present invention is as follows.
- An optically anisotropic laminate comprising a first optically anisotropic layer and a second optically anisotropic layer, In-plane retardation Re (H450), Re (H550), Re (H590) and Re (H650) of the first optical anisotropic layer at wavelengths of 450 nm, 550 nm, 590 nm and 650 nm are represented by the following formula (1), Satisfy (2) and (3) In-plane retardation Re (Q450), Re (Q550), Re (Q590) and Re (Q650) of the second optically anisotropic layer at wavelengths of 450 nm, 550 nm, 590 nm and 650 nm are represented by the following formula (4): An optically anisotropic laminate satisfying (5) and (6).
- An optically anisotropic laminate comprising a first optically anisotropic layer and a second optically anisotropic layer, In-plane retardation Re (H450), Re (H550), Re (H590) and Re (H650) of the first optical anisotropic layer at wavelengths of 450 nm, 550 nm, 590 nm and 650 nm are represented by the following formula (7), Satisfy (8) and (9) In-plane retardation Re (Q450)
- An optically anisotropic laminate comprising a first optically anisotropic layer and a second optically anisotropic layer, In-plane retardation Re (H450), Re (H550), Re (H590), and Re (H650) of the first optically anisotropic layer at wavelengths of 450 nm, 550 nm, 590 nm, and 650 nm are represented by the following formula (13): Satisfy (14) and (15), In-plane retardation
- a slow axis direction indicating the maximum refractive index in the plane of the first optical anisotropic layer and a slow axis direction indicating the maximum refractive index in the plane of the second optical anisotropic layer are formed.
- R 1 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
- G 1 and G 2 each independently represent a divalent aliphatic group having 1 to 20 carbon atoms, which may have a substituent.
- the aliphatic group includes one or more —O—, —S—, —O—C ( ⁇ O) —, —C ( ⁇ O) —O—, —O—C per aliphatic group.
- ( ⁇ O) —O—, —NR 2 —C ( ⁇ O) —, —C ( ⁇ O) —NR 2 —, —NR 2 —, or —C ( ⁇ O) — may be present. Good.
- R 2 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
- Z 1 and Z 2 each independently represents an alkenyl group having 2 to 10 carbon atoms which may be substituted with a halogen atom.
- a x represents an organic group having 2 to 30 carbon atoms having at least one aromatic ring selected from the group consisting of an aromatic hydrocarbon ring and an aromatic heterocyclic ring.
- a y has a hydrogen atom, an optionally substituted alkyl group having 1 to 20 carbon atoms, an optionally substituted alkenyl group having 2 to 20 carbon atoms, and a substituent.
- a cycloalkyl group having 3 to 12 carbon atoms, an alkynyl group having 2 to 20 carbon atoms which may have a substituent, —C ( ⁇ O) —R 3 , —SO 2 —R 4 , —C ( S) NH-R 9 or an organic group having 2 to 30 carbon atoms having at least one aromatic ring selected from the group consisting of an aromatic hydrocarbon ring and an aromatic heterocyclic ring.
- R 3 has an optionally substituted alkyl group having 1 to 20 carbon atoms, an optionally substituted alkenyl group having 2 to 20 carbon atoms, and a substituent.
- R 4 represents an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, a phenyl group, or a 4-methylphenyl group.
- R 9 is an optionally substituted alkyl group having 1 to 20 carbon atoms, an optionally substituted alkenyl group having 2 to 20 carbon atoms, and an optionally substituted carbon. It represents a cycloalkyl group having 3 to 12 carbon atoms or an aromatic group having 5 to 20 carbon atoms which may have a substituent. The aromatic ring which said Ax and Ay have may have a substituent.
- a x and A y may be combined to form a ring.
- a 1 represents a trivalent aromatic group which may have a substituent.
- a 2 and A 3 each independently represent a divalent alicyclic hydrocarbon group having 3 to 30 carbon atoms which may have a substituent.
- a 4 and A 5 each independently represents a divalent aromatic group having 6 to 30 carbon atoms, which may have a substituent.
- Q 1 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms which may have a substituent.
- m represents 0 or 1 each independently.
- the liquid crystal compound contains at least one selected from the group consisting of a benzothiazole ring and a combination of a cyclohexyl ring and a phenyl ring in the molecule of the liquid crystal compound.
- [9] to [13] The optically anisotropic laminate according to any one of the above.
- a linear polarizer, and the optically anisotropic laminate according to any one of [1] to [15] A circularly polarizing plate comprising the linear polarizer, the first optically anisotropic layer, and the second optically anisotropic layer in this order.
- An image display device comprising the circularly polarizing plate according to any one of [16] to [18] and an image display element, An image display device comprising the optically anisotropic laminate, the linear polarizer, and the image display element in this order.
- An organic electroluminescence display device comprising the circularly polarizing plate according to any one of [16] to [18] and an organic electroluminescence element, An image display device comprising the linear polarizer, the optically anisotropic laminate, and the organic electroluminescence element in this order.
- the optically anisotropic laminate that can suppress coloring of the display surface according to the tilt angle of the polarized sunglasses;
- a circularly polarizing plate provided with an anisotropic laminate and an image display device can be provided.
- FIG. 1 is a cross-sectional view schematically showing a cross section of an optically anisotropic laminate as a first embodiment of the present invention.
- FIG. 2 is a cross-sectional view schematically showing a cross section of an optically anisotropic laminate as a second embodiment of the present invention.
- FIG. 3 is a cross-sectional view schematically showing a cross section of a circularly polarizing plate as a third embodiment of the present invention.
- FIG. 4 is an exploded perspective view showing the circularly polarizing plate as a third embodiment of the present invention in an exploded manner.
- FIG. 5 is a cross-sectional view schematically showing an organic EL display device as an image display device according to a fourth embodiment of the present invention.
- FIG. 1 is a cross-sectional view schematically showing a cross section of an optically anisotropic laminate as a first embodiment of the present invention.
- FIG. 2 is a cross-sectional view schematically showing a cross section of an optically anisotropic
- FIG. 6 is a cross-sectional view schematically showing an organic EL display device as an image display device according to a fifth embodiment of the present invention.
- FIG. 7 is a cross-sectional view schematically showing a liquid crystal display device as an image display device according to a sixth embodiment of the present invention.
- FIG. 8 is a perspective view schematically showing a state of the evaluation model set when calculating the saturation in the simulation in the example and the comparative example.
- the “long” film means a film having a length of 5 times or more, preferably 10 times or more, and specifically a roll.
- the upper limit of the length of the long film is not particularly limited, and can be, for example, 100,000 times or less with respect to the width.
- nx represents a refractive index in the slow axis direction that gives a maximum refractive index in a direction (in-plane direction) perpendicular to the thickness direction of the layer
- ny represents the in-plane direction of the layer. It represents the refractive index in the direction orthogonal to the nx direction
- d represents the thickness of the layer.
- the slow axis of the film represents the slow axis in the plane of the film.
- the slanting direction of the long film indicates the in-plane direction of the film, which is neither parallel nor perpendicular to the width direction of the film.
- the front direction of a surface means the normal direction of the surface, and specifically refers to the direction of the polar angle 0 ° and the azimuth angle 0 ° of the surface.
- the directions of the elements “parallel”, “vertical”, and “orthogonal” include errors within a range that does not impair the effects of the present invention, for example, ⁇ 5 °, unless otherwise specified. You may go out.
- substrate polarizing plate
- retarding plate ⁇ / 2 wavelength plate
- ⁇ / 4 wavelength plate are not only rigid members unless otherwise specified.
- a flexible member such as a resin film is also included.
- angles formed by the optical axes (polarization absorption axis, polarization transmission axis, slow axis, etc.) of each layer in a member having a plurality of layers are as viewed from the thickness direction unless otherwise noted. Represents the angle.
- (meth) acrylate is a term encompassing “acrylate”, “methacrylate” and combinations thereof, and “(meth) acryl” means “acryl”, “methacryl” ”And combinations thereof.
- a resin having a positive intrinsic birefringence value means a resin in which the refractive index in the stretching direction is larger than the refractive index in the direction orthogonal thereto.
- the resin having a negative intrinsic birefringence value means a resin whose refractive index in the stretching direction is smaller than the refractive index in the direction orthogonal thereto.
- the intrinsic birefringence value can be calculated from the dielectric constant distribution.
- FIG. 1 is a cross-sectional view schematically showing a cross section of an optically anisotropic laminate 100 as a first embodiment of the present invention.
- the optically anisotropic laminate 100 includes a first optically anisotropic layer 110 and a second optically anisotropic layer 120.
- the first optically anisotropic layer 110 and the second optically anisotropic layer 120 have an in-plane retardation that satisfies a predetermined requirement by any combination of the following first to third.
- the optically anisotropic laminated body 100 may be provided with arbitrary layers (not shown) as needed.
- the material of the first optical anisotropic layer 110 and the second optical anisotropic layer 120 is not particularly limited. However, since the desired first optical anisotropic layer 110 and the second optical anisotropic layer 120 can be easily manufactured as a thin film, at least one of the first optical anisotropic layer 110 and the second optical anisotropic layer 120 is used. Is preferably made of a cured product of a liquid crystal composition containing a polymerizable liquid crystal compound, and both the first optical anisotropic layer 110 and the second optical anisotropic layer 120 are liquid crystals containing a polymerizable liquid crystal compound. More preferably, it consists of a cured product of the composition.
- In-plane retardation Re (H590) of one optical anisotropic layer in-plane retardation Re (H650) of the first optical anisotropic layer at a wavelength of 650 nm, in-plane letter of the second optical anisotropic layer at a wavelength of 450 nm In-plane retardation Re (Q550) of the second optically anisotropic layer at a wavelength of 550 nm, In-plane retardation Re (Q590) of the second optically anisotropic layer at a wavelength of 590 nm, and wavelength of 650 nm In-plane retardation Re (Q650) of the second optically anisotropic layer in 1) to satisfy the following (6).
- the optically anisotropic laminate provided with a combination with the light-sensitive layer is provided in the image display device, and according to the inclination angle of the polarized sunglasses when the display surface of the image display device is viewed from the front direction through the polarized sunglasses. Coloring of the display surface can be suppressed.
- a circularly polarizing plate obtained by combining the optically anisotropic layer with a linear polarizer layer is usually provided in an organic EL display device, and usually reflects external light in the front direction of the organic EL display device. Can be suppressed.
- the ratio Re (H450) / Re (H550) of the in-plane retardation of the first optically anisotropic layer according to the formula (2) will be described in detail.
- the ratio Re (H450) / Re (H550) is usually 0.8. It is 75 or more, preferably 0.77 or more, more preferably 0.79 or more, and is usually 0.85 or less, preferably 0.83 or less, more preferably 0.81 or less.
- the ratio Re (H450) / Re (H550) falls within such a range, the above-described effects such as suppression of coloring of the display surface and suppression of reflection of external light can be obtained particularly effectively.
- the ratio Re (H650) / Re (H550) of the in-plane retardation of the first optically anisotropic layer according to the formula (3) will be described in detail.
- the ratio Re (H650) / Re (H550) is usually 1. It is 04 or more, and is usually 1.20 or less, preferably 1.10 or less, more preferably 1.07 or less.
- the ratio Re (H650) / Re (H550) falls within such a range, the above-described effects such as suppression of coloring of the display surface and suppression of reflection of external light can be obtained particularly effectively.
- the ratio Re (Q450) / Re (Q550) of the in-plane retardation of the second optically anisotropic layer according to the formula (5) will be described in detail.
- the ratio Re (Q450) / Re (Q550) is usually 0.8. It is 75 or more, preferably 0.77 or more, more preferably 0.79 or more, and is usually 0.85 or less, preferably 0.83 or less, more preferably 0.81 or less.
- the ratio Re (Q450) / Re (Q550) falls within such a range, the above-described effects such as suppression of coloring of the display surface and suppression of reflection of external light can be obtained particularly effectively.
- the ratio Re (Q450) / Re (Q550) of the in-plane retardation of the second optical anisotropic layer is the ratio Re (H450) / Re (H550) of the in-plane retardation of the first optical anisotropic layer.
- the ratio of the in-plane retardation of the first optically anisotropic layer is more preferably the same as Re (H450) / Re (H550).
- the ratio Re (Q650) / Re (Q550) of the in-plane retardation of the second optically anisotropic layer according to formula (6) will be described in detail.
- the ratio Re (Q650) / Re (Q550) is usually 1. It is 04 or more, and is usually 1.20 or less, preferably 1.10 or less, more preferably 1.07 or less.
- the ratio Re (Q650) / Re (Q550) falls within such a range, the above-described effects such as suppression of coloring of the display surface and suppression of reflection of external light can be obtained particularly effectively.
- the ratio Re (Q650) / Re (Q550) of the in-plane retardation of the second optical anisotropic layer is the ratio Re (H650) / Re (H550) of the in-plane retardation of the first optical anisotropic layer.
- the ratio of the in-plane retardation of the first optically anisotropic layer is preferably the same as Re (H650) / Re (H550).
- the in-plane retardation Re (Q590) of the second optically anisotropic layer at a wavelength of 590 nm preferably satisfies the following formula (19) and formula (20). 266 nm ⁇ Re (H590) ⁇ 314 nm (19) 133 nm ⁇ Re (Q590) ⁇ 157 nm (20)
- the in-plane retardation Re (H590) of the first optically anisotropic layer is preferably larger than 266 nm, more preferably larger than 274 nm, particularly preferably larger than 285 nm. Preferably it is less than 314 nm, More preferably, it is less than 307 nm, Most preferably, it is less than 299 nm.
- the in-plane retardation Re (Q590) of the second optically anisotropic layer is preferably greater than 133 nm, more preferably greater than 137 nm, particularly preferably greater than 142 nm. Preferably it is less than 157 nm, More preferably, it is less than 153 nm, Most preferably, it is less than 150 nm.
- the optically anisotropic laminate provided in combination is provided on the image display device so that when the display surface of the image display device is viewed from the front direction through the polarized sunglasses, the display surface corresponding to the tilt angle of the polarized sunglasses is displayed. Coloring can be suppressed particularly effectively.
- the surface of the first optically anisotropic layer at a wavelength of 590 nm preferably satisfy the following formulas (23) and (24). 274 nm ⁇ Re (H590) ⁇ 299 nm (23) 137 nm ⁇ Re (Q590) ⁇ 150 nm (24)
- the in-plane retardation Re (H590) of the first optically anisotropic layer is preferably larger than 274 nm, more preferably larger than 278 nm, particularly preferably larger than 285 nm. Preferably it is less than 299 nm.
- the in-plane retardation Re (Q590) of the second optically anisotropic layer is preferably greater than 137 nm, more preferably greater than 139 nm, particularly preferably greater than 142 nm. Preferably it is less than 150 nm.
- the optically anisotropic laminate provided in combination can particularly effectively suppress reflection of external light in the front direction of the organic EL display device by a circularly polarizing plate obtained in combination with the linear polarizer layer.
- In-plane retardation Re (H590) of one optical anisotropic layer in-plane retardation Re (H650) of the first optical anisotropic layer at a wavelength of 650 nm, in-plane letter of the second optical anisotropic layer at a wavelength of 450 nm In-plane retardation Re (Q550) of the second optically anisotropic layer at a wavelength of 550 nm, In-plane retardation Re (Q590) of the second optically anisotropic layer at a wavelength of 590 nm, and wavelength of 650 nm In-plane retardation Re (Q650) of the second optically anisotropic layer in 7) to satisfy the following (12).
- the optically anisotropic laminate provided with a combination with the light-sensitive layer is provided in the image display device, and according to the inclination angle of the polarized sunglasses when the display surface of the image display device is viewed from the front direction through the polarized sunglasses. Coloring of the display surface can be suppressed.
- a circularly polarizing plate obtained by combining the optically anisotropic layer with a linear polarizer layer is usually provided in an organic EL display device, and usually reflects external light in the front direction of the organic EL display device. Can be suppressed.
- the ratio Re (H450) / Re (H550) of the in-plane retardation of the first optically anisotropic layer according to the formula (8) will be described in detail.
- the ratio Re (H450) / Re (H550) is usually 0.8. More than 85, preferably more than 0.87, more preferably more than 0.88, and usually 0.90 or less.
- the ratio Re (H450) / Re (H550) falls within such a range, the above-described effects such as suppression of coloring of the display surface and suppression of reflection of external light can be obtained particularly effectively.
- the ratio Re (H650) / Re (H550) of the in-plane retardation of the first optically anisotropic layer according to the formula (9) will be described in detail.
- the ratio Re (H650) / Re (H550) is usually 1. 02 or more, and usually less than 1.04.
- the ratio Re (H650) / Re (H550) falls within such a range, the above-described effects such as suppression of coloring of the display surface and suppression of reflection of external light can be obtained particularly effectively.
- the ratio Re (Q450) / Re (Q550) of the in-plane retardation of the second optically anisotropic layer according to the formula (11) will be described in detail.
- the ratio Re (Q450) / Re (Q550) is usually 0.8. More than 85, preferably more than 0.87, more preferably more than 0.88, and usually 0.90 or less.
- the ratio Re (Q450) / Re (Q550) falls within such a range, the above-described effects such as suppression of coloring of the display surface and suppression of reflection of external light can be obtained particularly effectively.
- the ratio Re (Q450) / Re (Q550) of the in-plane retardation of the second optical anisotropic layer is the ratio Re (H450) / Re (H550) of the in-plane retardation of the first optical anisotropic layer.
- the ratio of the in-plane retardation of the first optically anisotropic layer is more preferably the same as Re (H450) / Re (H550).
- the ratio Re (Q650) / Re (Q550) of the in-plane retardation of the second optically anisotropic layer according to the formula (12) will be described in detail.
- the ratio Re (Q650) / Re (Q550) is usually 1. 02 or more, and usually less than 1.04.
- the ratio Re (Q650) / Re (Q550) falls within such a range, the above-described effects such as suppression of coloring of the display surface and suppression of reflection of external light can be obtained particularly effectively.
- the ratio Re (Q650) / Re (Q550) of the in-plane retardation of the second optical anisotropic layer is the ratio Re (H650) / Re (H550) of the in-plane retardation of the first optical anisotropic layer.
- the ratio of the in-plane retardation of the first optically anisotropic layer is preferably the same as Re (H650) / Re (H550).
- the in-plane retardation Re (Q590) of the second optically anisotropic layer at a wavelength of 590 nm preferably satisfies the following formulas (21) and (22). 260 nm ⁇ Re (H590) ⁇ 291 nm (21) 130 nm ⁇ Re (Q590) ⁇ 145 nm (22)
- the in-plane retardation Re (H590) of the first optically anisotropic layer is preferably greater than 260 nm, more preferably greater than 267 nm, and preferably less than 291 nm, more preferably Is less than 283 nm.
- the in-plane retardation Re (Q590) of the second optically anisotropic layer is preferably greater than 130 nm, more preferably greater than 133 nm, and preferably less than 145 nm, more preferably Is less than 141 nm.
- the optically anisotropic laminate provided in combination is provided on the image display device so that when the display surface of the image display device is viewed from the front direction through the polarized sunglasses, the display surface corresponding to the tilt angle of the polarized sunglasses is displayed. Coloring can be suppressed particularly effectively.
- the surface of the first optically anisotropic layer at a wavelength of 590 nm preferably satisfy the following formulas (25) and (26). 271 nm ⁇ Re (H590) ⁇ 291 nm (25) 135 nm ⁇ Re (Q590) ⁇ 145 nm (26)
- the in-plane retardation Re (H590) of the first optically anisotropic layer is preferably larger than 271 nm, more preferably larger than 275 nm, particularly preferably larger than 279 nm. Preferably it is less than 291 nm, More preferably, it is less than 287 nm.
- the in-plane retardation Re (Q590) of the second optically anisotropic layer is preferably larger than 135 nm, more preferably larger than 137 nm, particularly preferably larger than 139 nm. Preferably it is less than 145 nm, More preferably, it is less than 143 nm.
- the optically anisotropic laminate provided in combination can particularly effectively suppress reflection of external light in the front direction of the organic EL display device by a circularly polarizing plate obtained in combination with the linear polarizer layer.
- the optically anisotropic laminate provided with a combination with the light-sensitive layer is provided in the image display device, and according to the inclination angle of the polarized sunglasses when the display surface of the image display device is viewed from the front direction through the polarized sunglasses. Coloring of the display surface can be suppressed.
- a circularly polarizing plate obtained by combining the optically anisotropic layer with a linear polarizer layer is usually provided in an organic EL display device, and usually reflects external light in the front direction of the organic EL display device. Can be suppressed.
- the ratio Re (H450) / Re (H550) of the in-plane retardation of the first optical anisotropic layer according to the formula (14) will be described in detail. It is greater than 90, preferably greater than 0.91, more preferably greater than 0.92, and is usually 0.99 or less, preferably 0.96 or less, more preferably 0.94 or less. When the ratio Re (H450) / Re (H550) falls within such a range, the above-described effects such as suppression of coloring of the display surface and suppression of reflection of external light can be obtained particularly effectively.
- the ratio Re (H650) / Re (H550) of the in-plane retardation of the first optically anisotropic layer according to the formula (15) will be described in detail.
- the ratio Re (H650) / Re (H550) is usually 1. It is 01 or more and usually less than 1.02.
- the ratio Re (H650) / Re (H550) falls within such a range, the above-described effects such as suppression of coloring of the display surface and suppression of reflection of external light can be obtained particularly effectively.
- the ratio Re (Q450) / Re (Q550) of the in-plane retardation of the second optically anisotropic layer according to the formula (17) will be described in detail.
- the ratio Re (Q450) / Re (Q550) is usually set to 0.8. It is greater than 90, preferably greater than 0.91, more preferably greater than 0.92, and is usually 0.99 or less, preferably 0.96 or less, more preferably 0.94 or less.
- the ratio Re (Q450) / Re (Q550) falls within such a range, the above-described effects such as suppression of coloring of the display surface and suppression of reflection of external light can be obtained particularly effectively.
- the ratio Re (Q450) / Re (Q550) of the in-plane retardation of the second optical anisotropic layer is the ratio Re (H450) / Re (H550) of the in-plane retardation of the first optical anisotropic layer.
- the ratio of the in-plane retardation of the first optically anisotropic layer is more preferably the same as Re (H450) / Re (H550).
- the ratio Re (Q650) / Re (Q550) of the in-plane retardation of the second optically anisotropic layer according to the formula (18) will be described in detail.
- the ratio Re (Q650) / Re (Q550) is usually 1. It is 01 or more and usually less than 1.02.
- the ratio Re (Q650) / Re (Q550) falls within such a range, the above-described effects such as suppression of coloring of the display surface and suppression of reflection of external light can be obtained particularly effectively.
- the ratio Re (Q650) / Re (Q550) of the in-plane retardation of the second optical anisotropic layer is the ratio Re (H650) / Re (H550) of the in-plane retardation of the first optical anisotropic layer.
- the ratio of the in-plane retardation of the first optically anisotropic layer is preferably the same as Re (H650) / Re (H550).
- in-plane retardation Re (H590) of the first optical anisotropic layer at a wavelength of 590 nm is preferably within a predetermined range.
- the in-plane retardation Re (H590) of the first optically anisotropic layer is preferably greater than 248 nm, more preferably greater than 255 nm, particularly preferably greater than 259 nm, and preferably less than 277 nm.
- the in-plane retardation Re (Q590) of the second optically anisotropic layer is preferably greater than 124 nm, more preferably greater than 127 nm, particularly preferably greater than 130 nm, and preferably less than 138 nm, more preferably It is less than 136 nm, particularly preferably less than 134 nm.
- An optically anisotropic laminate comprising a combination of the first optically anisotropic layer having in-plane retardations Re (H590) and Re (Q590) in such a range and the second optically anisotropic layer is provided as an image display.
- the surface of the first optically anisotropic layer at a wavelength of 590 nm is preferably within a predetermined range.
- the in-plane retardation Re (H590) of the first optically anisotropic layer is preferably greater than 268 nm, more preferably greater than 272 nm, and preferably less than 286 nm, more preferably less than 281 nm.
- the in-plane retardation Re (Q590) of the second optically anisotropic layer is preferably greater than 134 nm, more preferably greater than 136 nm, and preferably less than 143 nm, more preferably less than 141 nm.
- An optically anisotropic laminate comprising a combination of a first optically anisotropic layer having in-plane retardations Re (H590) and Re (Q590) in such a range and a second optically anisotropic layer is a linearly polarized light. The reflection of external light in the front direction of the organic EL display device can be particularly effectively suppressed by the circularly polarizing plate obtained in combination with the child layer.
- first optical anisotropic layer As the first optically anisotropic layer, a layer made of a cured product of a liquid crystal composition containing a polymerizable liquid crystal compound can be used.
- a layer formed of a cured product of a liquid crystal composition containing a polymerizable liquid crystal compound may be referred to as a “liquid crystal cured layer” as appropriate.
- a liquid crystal compound is a compound that can exhibit a liquid crystal phase when blended and aligned in a liquid crystal composition.
- the polymerizable liquid crystal compound is a liquid crystal compound that can be polymerized in the liquid crystal composition in a state of exhibiting such a liquid crystal phase and can be a polymer while maintaining the molecular orientation in the liquid crystal phase.
- the liquid crystal cured layer usually contains cured liquid crystal molecules obtained from a liquid crystal compound.
- the “cured liquid crystal molecule” means a molecule of the compound when the compound capable of exhibiting the liquid crystal phase is turned into a solid while exhibiting the liquid crystal phase.
- the cured liquid crystal molecule contained in the liquid crystal cured layer is usually a polymer obtained by polymerizing a liquid crystal compound. Therefore, the liquid crystal cured layer usually includes a polymer obtained by polymerizing a liquid crystal compound, and is a resin layer that can include any component as necessary.
- Such a liquid crystal cured layer has optical anisotropy corresponding to the orientation state of the cured liquid crystal molecules. Therefore, the liquid crystal cured layer can adjust the in-plane retardation of the liquid crystal cured layer according to the type and orientation state of the liquid crystal compound and the thickness of the liquid crystal cured layer. Can have the desired in-plane retardation described above.
- the liquid crystal composition contains a polymerizable liquid crystal compound, and further contains optional components as necessary.
- a liquid crystal compound exhibiting in-plane retardation of reverse wavelength dispersion when homogeneously aligned.
- the polymerizable liquid crystal compound exhibiting reverse wavelength dispersion in-plane retardation when homogeneously aligned in this way is sometimes referred to as “reverse wavelength polymerizable liquid crystal compound” as appropriate.
- the liquid crystal compound is homogeneously aligned means that a layer containing the liquid crystal compound is formed, and the major axis direction of the mesogen of the molecule of the liquid crystal compound in the layer is set in one direction parallel to the plane of the layer. It means that it is oriented.
- the direction in which the longest type of mesogens is aligned is the alignment direction.
- the liquid crystal compound is homogeneously aligned and the alignment direction are determined by measuring the slow axis direction using a phase difference meter represented by AxoScan (manufactured by Axometrics) and the incident angle in the slow axis direction. It can be confirmed by measuring the retardation distribution for each.
- the in-plane retardation Re indicates reverse wavelength dispersibility means that the in-plane retardations Re (450), Re (550) and Re (650) at wavelengths of 450 nm, 550 nm and 650 nm are usually Re. (450) ⁇ Re (650) is satisfied, and preferably, Re (450) ⁇ Re (550) ⁇ Re (650) is satisfied.
- the in-plane retardation ratios Re (H450) / Re (H550) and Re (H650) / Re (H550) of the first optically anisotropic layer are obtained. It can be easily adjusted to the above-described range.
- the reverse wavelength polymerizable liquid crystal compound for example, a compound containing a main chain mesogen and a side chain mesogen bonded to the main chain mesogen in the molecule of the reverse wavelength polymerizable liquid crystal compound can be used.
- the reverse wavelength polymerizable liquid crystal compound containing a main chain mesogen and a side chain mesogen the side chain mesogen can be aligned in a direction different from the main chain mesogen in a state where the reverse wavelength polymerizable liquid crystal compound is aligned.
- birefringence appears as a difference between the refractive index corresponding to the main chain mesogen and the refractive index corresponding to the side chain mesogen, and as a result, when the reverse wavelength polymerizable liquid crystal compound is homogeneously oriented, In-plane retardation of reverse wavelength dispersion can be shown.
- Examples of the reverse wavelength polymerizable liquid crystal compound include those described in JP-A-2014-123134. Moreover, as a reverse wavelength polymeric liquid crystal compound, the compound represented by a following formula (Ia) is mentioned, for example. In the following description, the compound represented by the formula (Ia) may be referred to as “compound (Ia)” as appropriate.
- a 1a represents an aromatic carbon atom having at least one aromatic ring selected from the group consisting of an aromatic hydrocarbon ring and an aromatic heterocyclic ring and having an organic group having 1 to 67 carbon atoms as a substituent.
- a 1a include a group represented by the formula: —R f C ( ⁇ N—NR g R h ) or a group represented by the formula: —R f C ( ⁇ N— N ⁇ R f1 R h ).
- Y 1a to Y 8a are each independently a chemical single bond, —O—, —S—, —O—C ( ⁇ O) —, —C ( ⁇ O) —.
- R 1 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
- G 1a and G 2a each independently represent a divalent aliphatic group having 1 to 20 carbon atoms, which may have a substituent.
- the aliphatic group includes one or more —O—, —S—, —O—C ( ⁇ O) —, —C ( ⁇ O) —O—, —O—C per aliphatic group.
- ( ⁇ O) —O—, —NR 2 —C ( ⁇ O) —, —C ( ⁇ O) —NR 2 —, —NR 2 —, or —C ( ⁇ O) — may be present. Good. However, the case where two or more of —O— or —S— are adjacent to each other is excluded.
- R 2 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
- Z 1a and Z 2a each independently represents an alkenyl group having 2 to 10 carbon atoms which may be substituted with a halogen atom.
- a 2a and A 3a each independently represents a C 3-30 divalent alicyclic hydrocarbon group which may have a substituent.
- a 4a and A 5a each independently represent a divalent aromatic group having 6 to 30 carbon atoms, which may have a substituent.
- k and l each independently represents 0 or 1.
- a particularly preferred specific example of the reverse wavelength polymerizable liquid crystal compound is a compound represented by the following formula (I).
- the compound represented by the formula (I) may be referred to as “compound (I)” as appropriate.
- the main chain mesogen 1a and the side chain mesogen 1b cross each other.
- the main chain mesogen 1a and the side chain mesogen 1b can be combined into one mesogen, in the present invention, they are divided into two mesogens.
- the refractive index in the major axis direction of the main chain mesogen 1a is n1
- the refractive index in the major axis direction of the side chain mesogen 1b is n2.
- the absolute value and the wavelength dispersion of the refractive index n1 usually depend on the molecular structure of the main chain mesogen 1a.
- the absolute value and wavelength dispersion of the refractive index n2 usually depend on the molecular structure of the side chain mesogen 1b.
- the reverse wavelength polymerizable liquid crystal compound normally performs a rotational motion with the major axis direction of the main chain mesogen 1a as the rotation axis, and the refractive indexes n1 and n2 referred to here are the refraction as a rotating body. Represents the rate.
- the absolute value of the refractive index n1 is larger than the absolute value of the refractive index n2 due to the molecular structure of the main chain mesogen 1a and the side chain mesogen 1b. Furthermore, the refractive indexes n1 and n2 usually show forward wavelength dispersion.
- the forward wavelength dispersive refractive index represents a refractive index in which the absolute value of the refractive index decreases as the measurement wavelength increases.
- the refractive index n1 of the main chain mesogen 1a exhibits a small degree of forward wavelength dispersion. Therefore, the refractive index n1 measured at the long wavelength is smaller than the refractive index n1 measured at the short wavelength, but the difference between them is small.
- the refractive index n2 of the side chain mesogen 1b exhibits a large degree of forward wavelength dispersion. Therefore, the refractive index n2 measured at the long wavelength is smaller than the refractive index n2 measured at the short wavelength, and the difference between them is large. Therefore, when the measurement wavelength is short, the difference ⁇ n between the refractive index n1 and the refractive index n2 is small, and when the measurement wavelength is long, the difference ⁇ n between the refractive index n1 and the refractive index n2 is large.
- compound (I) can exhibit in-plane retardation of reverse wavelength dispersion when homogeneously oriented.
- Y 1 to Y 8 are each independently a chemical single bond, —O—, —S—, —O—C ( ⁇ O) —, —C ( ⁇ O) —.
- R 1 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
- alkyl group having 1 to 6 carbon atoms of R 1 include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, t-butyl group, n-pentyl group, An n-hexyl group may be mentioned.
- R 1 is preferably a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
- Y 1 to Y 8 are each independently a chemical single bond, —O—, —O—C ( ⁇ O) —, —C ( ⁇ O) —O—, or , —O—C ( ⁇ O) —O— is preferable.
- G 1 and G 2 each independently represent a divalent aliphatic group having 1 to 20 carbon atoms, which may have a substituent.
- the divalent aliphatic group having 1 to 20 carbon atoms include a divalent aliphatic group having a chain structure such as an alkylene group having 1 to 20 carbon atoms and an alkenylene group having 2 to 20 carbon atoms; And divalent aliphatic groups such as a cycloalkanediyl group having 3 to 20 carbon atoms, a cycloalkenediyl group having 4 to 20 carbon atoms, and a divalent alicyclic fused ring group having 10 to 30 carbon atoms.
- Examples of the substituent for the divalent aliphatic group represented by G 1 and G 2 include halogen atoms such as fluorine atom, chlorine atom, bromine atom and iodine atom; methoxy group, ethoxy group, n-propoxy group, isopropoxy group
- halogen atoms such as fluorine atom, chlorine atom, bromine atom and iodine atom
- methoxy group, ethoxy group, n-propoxy group isopropoxy group
- An alkoxy group having 1 to 6 carbon atoms such as an n-butoxy group, a sec-butoxy group, a t-butoxy group, an n-pentyloxy group and an n-hexyloxy group.
- a fluorine atom, a methoxy group, and an ethoxy group are preferable.
- the aliphatic group includes one or more —O—, —S—, —O—C ( ⁇ O) —, —C ( ⁇ O) —O—, —O—C per aliphatic group.
- ( ⁇ O) —O—, —NR 2 —C ( ⁇ O) —, —C ( ⁇ O) —NR 2 —, —NR 2 —, or —C ( ⁇ O) — may be present. Good. However, the case where two or more of —O— or —S— are adjacent to each other is excluded.
- R 2 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, and is preferably a hydrogen atom or a methyl group.
- the group intervening in the aliphatic group is preferably —O—, —O—C ( ⁇ O) —, —C ( ⁇ O) —O—, —C ( ⁇ O) —.
- G 1 and G 2 are each independently an alkylene group having 1 to 20 carbon atoms, an alkenylene group having 2 to 20 carbon atoms, or the like from the viewpoint of better expressing the desired effect of the present invention.
- a divalent aliphatic group having a chain structure is preferable.
- Z 1 and Z 2 each independently represents an alkenyl group having 2 to 10 carbon atoms which may be substituted with a halogen atom.
- the alkenyl group preferably has 2 to 6 carbon atoms.
- Examples of the halogen atom that is a substituent of the alkenyl group of Z 1 and Z 2 include a fluorine atom, a chlorine atom, a bromine atom, and the like, and a chlorine atom is preferable.
- alkenyl group having 2 to 10 carbon atoms of Z 1 and Z 2 include CH 2 ⁇ CH—, CH 2 ⁇ C (CH 3 ) —, CH 2 ⁇ CH—CH 2 —, CH 3 —CH ⁇ .
- Z 1 and Z 2 are each independently CH 2 ⁇ CH—, CH 2 ⁇ C (CH 3 ) —, CH 2 ⁇ C (Cl) —, CH 2 ⁇ CH—CH 2 —, CH 2 ⁇ C (CH 3 ) —CH 2 —, or CH 2 ⁇ C (CH 3 ) —CH 2 —CH 2 — is preferred, and CH 2 ⁇ CH—, CH 2 ⁇ C (CH 3 ) — or CH 2 ⁇ C (Cl) — is more preferred, and CH 2 ⁇ CH— is particularly preferred.
- a x represents an organic group having 2 to 30 carbon atoms having at least one aromatic ring selected from the group consisting of an aromatic hydrocarbon ring and an aromatic heterocyclic ring.
- “Aromatic ring” means a cyclic structure having a broad sense of aromaticity according to the Huckle rule, that is, a cyclic conjugated structure having (4n + 2) ⁇ electrons, and sulfur, oxygen, typified by thiophene, furan, benzothiazole, etc. It means a cyclic structure in which a lone electron pair of a hetero atom such as nitrogen is involved in the ⁇ -electron system and exhibits aromaticity.
- the organic group having 2 to 30 carbon atoms and having at least one aromatic ring selected from the group consisting of an aromatic hydrocarbon ring and an aromatic heterocyclic ring of A x may have a plurality of aromatic rings. And having both an aromatic hydrocarbon ring and an aromatic heterocycle.
- aromatic hydrocarbon ring examples include a benzene ring, a naphthalene ring, and an anthracene ring.
- aromatic heterocyclic ring examples include monocyclic aromatic heterocyclic rings such as a pyrrole ring, a furan ring, a thiophene ring, a pyridine ring, a pyridazine ring, a pyrimidine ring, a pyrazine ring, a pyrazole ring, an imidazole ring, an oxazole ring, and a thiazole ring; Benzothiazole ring, benzoxazole ring, quinoline ring, phthalazine ring, benzimidazole ring, benzopyrazole ring, benzofuran ring, benzothiophene ring, thiazolopyridine ring, oxazolopyridine ring, thiazolopyrazine ring,
- the aromatic ring of A x may have a substituent.
- substituents include halogen atoms such as fluorine atom and chlorine atom; cyano group; alkyl group having 1 to 6 carbon atoms such as methyl group, ethyl group and propyl group; and carbon number 2 such as vinyl group and allyl group.
- R 5 represents an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, or a cycloalkyl group having 3 to 12 carbon atoms
- R 6 is a carbon atom similar to R 4 described later. It represents an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, a phenyl group, or a 4-methylphenyl group.
- the aromatic ring within A x may have a plurality of identical or different substituents, bonded two adjacent substituents together may form a ring.
- the ring formed may be a monocycle, a condensed polycycle, an unsaturated ring, or a saturated ring.
- the “carbon number” of the organic group having 2 to 30 carbon atoms in A x means the total number of carbon atoms in the whole organic group not including the carbon atom of the substituent (the same applies to A y described later). .
- Examples of the organic group having 2 to 30 carbon atoms and having at least one aromatic ring selected from the group consisting of an aromatic hydrocarbon ring and an aromatic heterocycle of A x include, for example, a benzene ring group, a naphthalene ring group, an anthracene Aromatic hydrocarbon ring groups such as ring groups; pyrrole ring groups, furan ring groups, thiophene ring groups, pyridine ring groups, pyridazine ring groups, pyrimidine ring groups, pyrazine ring groups, pyrazole ring groups, imidazole ring groups, oxazole ring groups , Thiazole ring group, benzothiazole ring group, benzoxazole ring group, quinoline ring group, phthalazine ring group, benzimidazole ring group, benzopyrazole ring group, benzofuran ring group, benzothiophene ring group, thia
- Ax is not limited to the following.
- “-” represents a bond extending from any position of the ring (the same applies hereinafter).
- E represents NR 6a , an oxygen atom or a sulfur atom.
- R 6a represents a hydrogen atom; or an alkyl group having 1 to 6 carbon atoms such as a methyl group, an ethyl group, or a propyl group.
- X and Y each independently represent NR 7 , oxygen atom, sulfur atom, —SO— or —SO 2 — (provided that oxygen atom, sulfur atom, —SO—, —SO 2) 2- except when adjacent to each other.)
- R 7 represents the same hydrogen atom as R 6a ; or an alkyl group having 1 to 6 carbon atoms such as a methyl group, an ethyl group, or a propyl group.
- X 1 represents —CH 2 —, —NR c —, an oxygen atom, a sulfur atom, —SO— or —SO 2 —
- E 1 represents —NR c —, an oxygen atom or a sulfur atom Represents.
- R c represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms such as a methyl group, an ethyl group, or a propyl group. (However, in each formula, oxygen atom, sulfur atom, —SO—, and —SO 2 — are not adjacent to each other.)] (3) A group containing a combination of an aromatic hydrocarbon ring and a heterocyclic ring
- X and Y each independently represent the same meaning as described above.
- Z represents NR 7 , an oxygen atom, a sulfur atom, —SO—, or —SO 2. -(Except that oxygen atom, sulfur atom, -SO-, -SO 2- are adjacent to each other).
- an aromatic hydrocarbon ring group having 6 to 30 carbon atoms an aromatic heterocyclic group having 4 to 30 carbon atoms, or a combination of 4 to 30 carbon atoms including a combination of an aromatic hydrocarbon ring and a heterocyclic ring.
- 30 groups are preferred, and any of the groups shown below is more preferred.
- a x is more preferably any of the groups shown below.
- Ring within A x may have a substituent.
- substituents include halogen atoms such as fluorine atom and chlorine atom; cyano group; alkyl group having 1 to 6 carbon atoms such as methyl group, ethyl group and propyl group; and carbon number 2 such as vinyl group and allyl group.
- substituent a halogen atom, a cyano group, an alkyl group having 1 to 6 carbon atoms, and an alkoxy having 1
- the ring of A x may have a plurality of the same or different substituents, and two adjacent substituents may be bonded together to form a ring.
- the ring formed may be a single ring or a condensed polycycle.
- the “carbon number” of the organic group having 2 to 30 carbon atoms in A x means the total number of carbon atoms in the whole organic group not including the carbon atom of the substituent (the same applies to A y described later).
- a y is a hydrogen atom, an optionally substituted alkyl group having 1 to 20 carbon atoms, an optionally substituted alkenyl group having 2 to 20 carbon atoms, A cycloalkyl group having 3 to 12 carbon atoms which may have a substituent, an alkynyl group having 2 to 20 carbon atoms which may have a substituent, —C ( ⁇ O) —R 3 , —SO 2
- R 3 has an optionally substituted alkyl group having 1 to 20 carbon atoms, an optionally substituted alkenyl group having 2 to 20 carbon atoms, and a substituent. Or a cycloalkyl group having 3 to 12 carbon atoms or an aromatic hydrocarbon ring group having 5 to 12 carbon atoms.
- R 4 represents an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, a phenyl group, or a 4-methylphenyl group.
- R 9 is an optionally substituted alkyl group having 1 to 20 carbon atoms, an optionally substituted alkenyl group having 2 to 20 carbon atoms, and an optionally substituted carbon. It represents a cycloalkyl group having 3 to 12 carbon atoms or an aromatic group having 5 to 20 carbon atoms which may have a substituent.
- alkyl group having 1 to 20 carbon atoms alkyl group substituents to 1 carbon atoms which may have a 20, for example, a methyl group, an ethyl group, n- propyl group, an isopropyl radical, n -Butyl group, isobutyl group, 1-methylpentyl group, 1-ethylpentyl group, sec-butyl group, t-butyl group, n-pentyl group, isopentyl group, neopentyl group, n-hexyl group, isohexyl group, n -Heptyl, n-octyl, n-nonyl, n-decyl, n-undecyl, n-dodecyl, n-tridecyl, n-tetradecyl, n-pentadecyl, n-hexadecyl
- the alkenyl group having 2 to 20 carbon atoms alkenyl group substituents to 2 carbon atoms which may have a 20, for example, vinyl group, propenyl group, isopropenyl group, butenyl group, isobutenyl group Pentenyl group, hexenyl group, heptenyl group, octenyl group, decenyl group, undecenyl group, dodecenyl group, tridecenyl group, tetradecenyl group, pentadecenyl group, hexadecenyl group, heptadecenyl group, octadecenyl group, nonadecenyl group, icocenyl group.
- the carbon number of the alkenyl group having 2 to 20 carbon atoms which may have a substituent is preferably 2 to 12.
- the cycloalkyl group having 3 to 12 carbon atoms a cycloalkyl group which has 1-3 carbon atoms which may 12 have a substituent, for example, cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, A cyclooctyl group is mentioned.
- alkynyl group having 2 to 20 carbon atoms alkynyl group substituents to 2 carbon atoms which may have a 20, for example, ethynyl group, propynyl group, 2-propynyl group (propargyl group), Butynyl, 2-butynyl, 3-butynyl, pentynyl, 2-pentynyl, hexynyl, 5-hexynyl, heptynyl, octynyl, 2-octynyl, nonanyl, decanyl, 7-decanyl Is mentioned.
- Examples of the substituent of the alkyl group having 1 to 20 carbon atoms that may have a substituent and the alkenyl group having 2 to 20 carbon atoms that may have a substituent of A y include, for example, a fluorine atom Halogen atom such as chlorine atom; cyano group; substituted amino group such as dimethylamino group; alkoxy group having 1 to 20 carbon atoms such as methoxy group, ethoxy group, isopropoxy group, butoxy group; methoxymethoxy group, methoxyethoxy group An alkoxy group having 1 to 12 carbon atoms substituted by an alkoxy group having 1 to 12 carbon atoms, such as nitro group; an aryl group such as phenyl group or naphthyl group; a carbon number such as cyclopropyl group, cyclopentyl group, cyclohexyl group, etc.
- a fluorine atom Halogen atom such as chlorine atom
- a fluoroalkoxy group having 1 to 12 carbon atoms in which at least one is substituted with a fluorine atom, such as a group, —CH 2 CF 3 ; benzofuryl group; benzopyranyl group; benzodioxolyl group; benzodioxanyl group; ( O)
- R 7a and R 10 are each independently an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, a cycloalkyl group having 3 to 12 carbon atoms, or a 6 to 12 carbon atoms.
- R 8a represents an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, a phenyl group, or a 4-methylphenyl group, similar to R 4 described above.
- Examples of the substituent of the cycloalkyl group having 3 to 12 carbon atoms which may have a substituent of A y include, for example, a halogen atom such as a fluorine atom and a chlorine atom; a cyano group; a substituted amino group such as a dimethylamino group Groups: alkyl groups having 1 to 6 carbon atoms such as methyl, ethyl, and propyl groups; alkoxy groups having 1 to 6 carbon atoms such as methoxy, ethoxy, and isopropoxy groups; nitro groups; phenyl groups, naphthyl groups, and the like A cycloalkyl group having 3 to 8 carbon atoms such as a cyclopropyl group, a cyclopentyl group, and a cyclohexyl group; —C ( ⁇ O) —R 7a ; —C ( ⁇ O) —OR 7a ; —SO 2 R 8a A hydroxy
- Examples of the substituent of the alkynyl group having 2 to 20 carbon atoms that may have a substituent of A y include, for example, an alkyl group having 1 to 20 carbon atoms that may have a substituent, and a substituent. Examples thereof include the same substituents as those of the alkenyl group having 2 to 20 carbon atoms which may have a group.
- R 3 may have a C 1-20 alkyl group which may have a substituent, or may have a substituent. It represents a good alkenyl group having 2 to 20 carbon atoms, an optionally substituted cycloalkyl group having 3 to 12 carbon atoms, or an aromatic hydrocarbon ring group having 5 to 12 carbon atoms. Specific examples thereof include the alkyl group having 1 to 20 carbon atoms which may have a substituent, the alkenyl group having 2 to 20 carbon atoms which may have a substituent, and a substituent of the above Ay.
- cycloalkyl group which has carbon atoms 3 be ⁇ 12 have a group; and, the same as the number of carbon atoms of the aromatic hydrocarbon ring group described in the a x is given as an example of from 5 to 12 Things.
- R 4 is an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, a phenyl group, or a 4-methylphenyl group To express.
- Specific examples of the alkyl group having 1 to 20 carbon atoms and the alkenyl group having 2 to 20 carbon atoms in R 4 include the alkyl group having 1 to 20 carbon atoms and the alkenyl group having 2 to 20 carbon atoms in the above Ay . The thing similar to what was mentioned as an example is mentioned.
- R 9 has an optionally substituted alkyl group having 1 to 20 carbon atoms and a substituent.
- Examples of the organic group having 2 to 30 carbon atoms and having at least one aromatic ring selected from the group consisting of an aromatic hydrocarbon ring and an aromatic heterocyclic ring for A y are the same as those described for A x above. Is mentioned.
- a hydrogen atom an optionally substituted alkyl group having 1 to 20 carbon atoms, an optionally substituted alkenyl group having 2 to 20 carbon atoms, and a substituent
- a y includes a hydrogen atom, an optionally substituted alkyl group having 1 to 20 carbon atoms, an optionally substituted alkenyl group having 2 to 20 carbon atoms, and a substituent.
- a hydrogen ring group, an optionally substituted aromatic heterocyclic group having 3 to 9 carbon atoms, an optionally substituted aromatic hydrocarbon ring and a combination of heterocyclic rings and 3 to 3 carbon atoms The group represented by the group 9, —C ( ⁇ O) —R 3 , —SO 2 —R 4 is more preferable.
- R 3 and R 4 represent the same meaning as described above.
- an alkyl group having 1 to 20 carbon atoms which may have a substituent an alkenyl group having 2 to 20 carbon atoms which may have a substituent, and an optionally substituted carbon
- substituent of the alkynyl group having 2 to 20 carbon atoms include a halogen atom, a cyano group, an alkoxy group having 1 to 20 carbon atoms, an alkoxy group having 1 to 12 carbon atoms substituted with an alkoxy group having 1 to 12 carbon atoms, phenyl Group, cyclohexyl group, C2-C12 cyclic ether group, C6-C14 aryloxy group, hydroxyl group, benzodioxanyl group, phenylsulfonyl group, 4-methylphenylsulfonyl group, benzoyl group, -SR 10 Is preferred.
- R 10 represents the same meaning as described above.
- a y has a cycloalkyl group having 3 to 12 carbon atoms which may have a substituent, an aromatic hydrocarbon ring group having 6 to 12 carbon atoms which may have a substituent, and a substituent.
- substituent for the group having 3 to 9 carbon atoms which may include an aromatic heterocyclic group having 3 to 9 carbon atoms, and a combination of an aromatic hydrocarbon ring and a heterocyclic ring which may have a substituent, include fluorine An atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, and a cyano group are preferable.
- a x and A y may be combined to form a ring.
- a ring examples include an unsaturated heterocyclic ring having 4 to 30 carbon atoms and an unsaturated carbocyclic ring having 6 to 30 carbon atoms, which may have a substituent.
- the unsaturated heterocyclic ring having 4 to 30 carbon atoms and the unsaturated carbocyclic ring having 6 to 30 carbon atoms are not particularly limited, and may or may not have aromaticity.
- Examples of the ring formed by combining A x and A y include the rings shown below.
- the ring shown below is the one in the formula (I)
- the total number of ⁇ electrons contained in A x and A y is preferably 4 or more and 24 or less, more preferably 6 or more and 20 or less, from the viewpoint of better expressing the desired effect of the present invention. More preferably, it is 6 or more and 18 or less.
- a x and A y include the following combination ( ⁇ ) and combination ( ⁇ ).
- a x is a group containing 4 to 30 carbon atoms, an aromatic hydrocarbon ring group, an aromatic heterocyclic group, or a combination of an aromatic hydrocarbon ring and a heterocyclic ring
- a y is a hydrogen atom
- a cycloalkyl group having 3 to 8 carbon atoms (a halogen atom, a cyano group, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or a cycloalkyl group having 3 to 8 carbon atoms) as a substituent
- An aromatic hydrocarbon ring group having 6 to 12 carbon atoms which may have (halogen atom, alkyl group having 1 to 6 carbon atoms, alkoxy group having 1 to 6 carbon atoms, cyano group) as a substituent
- optionally having an aromatic heterocyclic group having 3 to 9 carbon atoms (a halogen
- 3 to 9 carbon atoms often containing a combination of aromatic hydrocarbon rings and heterocyclic rings A group having 1 to 20 carbon atoms which may have a substituent, an alkenyl group having 1 to 20 carbon atoms which may have a substituent, or a substituent.
- An alkynyl group having 2 to 20 carbon atoms, and the substituent is a halogen atom, a cyano group, an alkoxy group having 1 to 20 carbon atoms, or an alkoxy group having 1 to 12 carbon atoms substituted with an alkoxy group having 1 to 12 carbon atoms Group, phenyl group, cyclohexyl group, cyclic ether group having 2 to 12 carbon atoms, aryloxy group having 6 to 14 carbon atoms, hydroxyl group, benzodioxanyl group, benzenesulfonyl group, benzoyl group and —SR 10 A combination.
- R 10 represents the same meaning as described above.
- a x and A y include the following combination ( ⁇ ).
- a x is any of the groups having the following structure, and A y is a hydrogen atom, a cycloalkyl group having 3 to 8 carbon atoms, (a halogen atom, a cyano group, an alkyl group having 1 to 6 carbon atoms, carbon An aromatic hydrocarbon ring group having 6 to 12 carbon atoms which may have a substituent having an alkoxy group having 1 to 6 carbon atoms or a cycloalkyl group having 3 to 8 carbon atoms) (halogen atom, 1 to An aromatic heterocyclic group having 3 to 9 carbon atoms which may have a substituent such as an alkyl group having 6 alkyl groups, an alkoxy group having 1 to 6 carbon atoms, or a cyano group) (halogen atom, alkyl having 1 to 6 carbon atoms) Group, an alkoxy group having 1 to 6 carbon atoms, a cyano group)
- It may have an alkyl group having 1 to 20 carbon atoms or a substituent.
- R 10 represents the same meaning as described above.
- a particularly preferred combination of A x and A y includes the following combination ( ⁇ ).
- a x is any of the groups having the following structure, and A y is a hydrogen atom, a cycloalkyl group having 3 to 8 carbon atoms, a (halogen atom, a cyano group, an alkyl group having 1 to 6 carbon atoms, carbon An aromatic hydrocarbon ring group having 6 to 12 carbon atoms which may have a substituent having an alkoxy group having 1 to 6 carbon atoms or a cycloalkyl group having 3 to 8 carbon atoms) (halogen atom, 1 to An aromatic heterocyclic group having 3 to 9 carbon atoms which may have a substituent such as an alkyl group having 6 alkyl groups, an alkoxy group having 1 to 6 carbon atoms, or a cyano group) (halogen atom, alkyl having 1 to 6 carbon atoms) Group, an al
- It may have an alkyl group having 1 to 20 carbon atoms or a substituent.
- X represents the same meaning as described above.
- R 10 represents the same meaning as described above.
- a 1 represents a trivalent aromatic group which may have a substituent.
- the trivalent aromatic group may be a trivalent carbocyclic aromatic group or a trivalent heterocyclic aromatic group. From the viewpoint of better expressing the desired effect of the present invention, a trivalent carbocyclic aromatic group is preferable, a trivalent benzene ring group or a trivalent naphthalene ring group is more preferable, and a trivalent represented by the following formula: The benzene ring group or trivalent naphthalene ring group is more preferable.
- the substituents Y 1 and Y 2 are described for convenience in order to clarify the bonding state (Y 1 and Y 2 represent the same meaning as described above, and the same applies hereinafter). .
- a 1 groups represented by the following formulas (A11) to (A25) are more preferable.
- A13 groups represented by the following formulas (A11), (A13), (A15), (A19), and (A23) are particularly preferred.
- Examples of the substituent that the trivalent aromatic group of A 1 may have include the same groups as those described as the substituent of the aromatic ring of A x .
- a 1 preferably has no substituent.
- a 2 and A 3 each independently represent a C 3-30 divalent alicyclic hydrocarbon group which may have a substituent.
- Examples of the divalent alicyclic hydrocarbon group having 3 to 30 carbon atoms include a cycloalkanediyl group having 3 to 30 carbon atoms and a divalent alicyclic condensed ring group having 10 to 30 carbon atoms.
- Examples of the cycloalkanediyl group having 3 to 30 carbon atoms include cyclopropanediyl group; cyclobutanediyl group such as cyclobutane-1,2-diyl group and cyclobutane-1,3-diyl group; cyclopentane-1,2- Cyclopentanediyl groups such as diyl groups, cyclopentane-1,3-diyl groups; cyclohexanediyl groups such as cyclohexane-1,2-diyl groups, cyclohexane-1,3-diyl groups, cyclohexane-1,4-diyl groups Groups: cycloheptane-1,2-diyl group, cycloheptane-1,3-diyl group, cycloheptanediyl group such as cycloheptane-1,4-diyl group; cyclo
- Tandiyl group cyclodecane-1,2-diyl group, cyclodecane-1,3-diyl group, cyclodecane-1,4-diyl group, cyclodecane-1,5-diyl group, etc .
- cyclodecane-1 Cyclododecanediyl groups such as 2-diyl, cyclododecane-1,3-diyl, cyclododecane-1,4-diyl, cyclododecane-1,5-diyl
- Examples of the divalent alicyclic fused ring group having 10 to 30 carbon atoms include a decalindiyl group such as a decalin-2,5-diyl group and a decalin-2,7-diyl group; an adamantane-1,2-diyl group An adamantanediyl group such as an adamantane-1,3-diyl group; a bicyclo [2.2.1] heptane-2,3-diyl group, a bicyclo [2.2.1] heptane-2,5-diyl group And bicyclo [2.2.1] heptanediyl group such as bicyclo [2.2.1] heptane-2,6-diyl group.
- a decalindiyl group such as a decalin-2,5-diyl group and a decalin-2,7-diyl group
- These divalent alicyclic hydrocarbon groups may have a substituent at any position.
- substituents include the same as those described as substituents of the aromatic ring of the A x.
- a 2 and A 3 a divalent alicyclic hydrocarbon group having 3 to 12 carbon atoms is preferable, a cycloalkanediyl group having 3 to 12 carbon atoms is more preferable, and the following formula (A31) to A group represented by (A34) is more preferred, and a group represented by the following formula (A32) is particularly preferred.
- the divalent alicyclic hydrocarbon group having 3 to 30 carbon atoms is based on a difference in configuration of carbon atoms bonded to Y 1 and Y 3 (or Y 2 and Y 4 ).
- Stereoisomers can exist.
- a cis-type isomer (A32a) and a trans-type isomer (A32b) may exist.
- the divalent alicyclic hydrocarbon group having 3 to 30 carbon atoms may be cis, trans, or a mixture of cis and trans isomers.
- the trans-type or cis-type is preferable because the orientation is good, and the trans-type is more preferable.
- a 4 and A 5 each independently represents a divalent aromatic group having 6 to 30 carbon atoms which may have a substituent.
- the aromatic groups of A 4 and A 5 may be monocyclic or polycyclic.
- Preferable specific examples of A 4 and A 5 include the following.
- the divalent aromatic groups of A 4 and A 5 may have a substituent at any position.
- the substituent include a halogen atom, a cyano group, a hydroxyl group, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, a nitro group, and a —C ( ⁇ O) —OR 8b group; Can be mentioned.
- R 8b is an alkyl group having 1 to 6 carbon atoms.
- a halogen atom, an alkyl group having 1 to 6 carbon atoms, and an alkoxy group are preferable.
- the halogen atom is more preferably a fluorine atom
- the alkyl group having 1 to 6 carbon atoms is more preferably a methyl group, an ethyl group or a propyl group
- the alkoxy group is more preferably a methoxy group or an ethoxy group.
- a 4 and A 5 may each independently have a substituent, and the following formulas (A41) and (A42) Or the group represented by (A43) is more preferable, and the group represented by the formula (A41) which may have a substituent is particularly preferable.
- Q 1 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms which may have a substituent.
- the alkyl group having 1 to 6 carbon atoms which may have a substituent include those having 1 to 20 carbon atoms among the alkyl groups having 1 to 20 carbon atoms which may have a substituent described in the above Ay. ⁇ 6.
- Q 1 is preferably a hydrogen atom and an alkyl group having 1 to 6 carbon atoms, more preferably a hydrogen atom and a methyl group.
- n independently represents 0 or 1. Among these, m is preferably 1.
- Compound (I) can be produced, for example, by a reaction of a hydrazine compound and a carbonyl compound described in International Publication No. 2012/147904.
- a benzothiazole ring (ring of the following formula (31A)) is present in the molecule of the reverse wavelength polymerizable liquid crystal compound.
- the CN point of the liquid crystal compound is preferably 25 ° C. or higher, more preferably 45 ° C. or higher, particularly preferably 60 ° C. or higher, preferably 120 ° C. or lower, more preferably 110 ° C. or lower, particularly preferably 100 ° C. or lower.
- the “CN point” refers to a crystal-nematic phase transition temperature.
- the molecular weight of the liquid crystal compound is preferably 300 or more, more preferably 700 or more, particularly preferably 1000 or more, preferably 2000 or less, more preferably 1700 or less, and particularly preferably 1500 or less.
- the coating property of the liquid crystal composition for forming the liquid crystal cured layer can be particularly improved.
- the above liquid crystal compounds may be used alone or in combination of two or more at any ratio.
- the liquid crystal composition can contain, for example, a polymerization initiator as an optional component.
- a polymerization initiator a suitable thing can be used according to the kind of polymeric compounds, such as a liquid crystal compound which a liquid-crystal composition contains.
- the polymerizable compound is a component of the liquid crystal composition and is a generic name for compounds having a polymerizable property (such as a liquid crystal compound and other polymerizable compounds).
- a photopolymerization initiator is preferable.
- photopolymerization initiator examples include radical polymerization initiators, anionic polymerization initiators, and cationic polymerization initiators.
- radical polymerization initiator examples include a photo radical generator that is a compound that generates an active species capable of initiating polymerization of a polymerizable compound by light irradiation.
- the photoradical generator examples include acetophenone compounds, biimidazole compounds, triazine compounds, O-acyloxime compounds, onium salt compounds, benzoin compounds described in International Publication No. 2012/147904, Examples include benzophenone compounds, ⁇ -diketone compounds, polynuclear quinone compounds, xanthone compounds, diazo compounds, imide sulfonate compounds, and the like.
- anionic polymerization initiator examples include alkyl lithium compounds; monolithium salts or monosodium salts such as biphenyl, naphthalene, and pyrene; polyfunctional initiators such as dilithium salts and trilithium salts; and the like.
- Examples of the cationic polymerization initiator include proton acids such as sulfuric acid, phosphoric acid, perchloric acid, and trifluoromethanesulfonic acid; Lewis acids such as boron trifluoride, aluminum chloride, titanium tetrachloride, and tin tetrachloride; aromatic A combined system of an onium salt or an aromatic onium salt and a reducing agent.
- photopolymerization initiators include trade names: Irgacure 907, trade names: Irgacure 184, trade names: Irgacure 369, trade names: Irgacure 651, trade names: Irgacure 819, trade names: Irgacure 907, trade names, manufactured by BASF. : Irgacure 379, trade name: Irgacure 379EG, and trade name: Irgacure OXE02; trade name: Adeka optomer N1919 manufactured by ADEKA.
- polymerization initiator one type may be used alone, or two or more types may be used in combination at any ratio.
- the ratio of the polymerization initiator is preferably 0.1 to 30 parts by weight, more preferably 0.5 to 10 parts by weight with respect to 100 parts by weight of the liquid crystal compound.
- the liquid crystal composition can contain, for example, a surfactant as an optional component.
- the surface tension of the liquid crystal composition can be adjusted by the surfactant.
- the surfactant is not particularly limited, but a nonionic surfactant is preferable.
- a commercially available product can be used as the nonionic surfactant.
- a nonionic surfactant that is an oligomer having a molecular weight of about several thousand can be used.
- Specific examples of these surfactants include “PF-151N”, “PF-636”, “PF-6320”, “PF-656”, “PF-6520”, “PF-3320” of PolyFox of OMNOVA.
- Surfactant may be used alone or in combination of two or more at any ratio.
- the ratio of the surfactant is preferably 0.01 to 10 parts by weight, more preferably 0.1 to 2 parts by weight with respect to 100 parts by weight of the liquid crystal compound.
- the liquid crystal composition can contain a solvent such as an organic solvent as an optional component.
- organic solvents include hydrocarbon solvents such as cyclopentane and cyclohexane; ketone solvents such as cyclopentanone, cyclohexanone, methyl ethyl ketone, acetone, and methyl isobutyl ketone; acetate solvents such as butyl acetate and amyl acetate; chloroform, dichloromethane Halogenated hydrocarbon solvents such as dichloroethane; ether solvents such as 1,4-dioxane, cyclopentylmethyl ether, tetrahydrofuran, tetrahydropyran, 1,3-dioxolane, 1,2-dimethoxyethane; aromatics such as toluene, xylene and mesitylene Group hydrocarbon solvents; and mixtures thereof.
- the boiling point of the solvent is preferably 60 ° C. to 250
- the amount of the solvent used is preferably 100 parts by weight to 1000 parts by weight with respect to 100 parts by weight of the liquid crystal compound.
- Liquid crystal compositions further include metals, metal complexes, dyes, pigments, fluorescent materials, phosphorescent materials, leveling agents, thixotropic agents, gelling agents, polysaccharides, ultraviolet absorbers, infrared absorbers, antioxidants, ion exchange resins.
- Any additive such as a metal oxide such as titanium oxide can be included.
- the ratio of such optional additives is preferably 0.1 to 20 parts by weight with respect to 100 parts by weight of the liquid crystal compound.
- the liquid crystal cured layer as the first optical anisotropic layer is, for example, Step (i): A step of applying a liquid crystal composition on a substrate to obtain a layer of the liquid crystal composition, Step (ii): a step of aligning a liquid crystal compound contained in the liquid crystal composition layer, and Step (iii): It can be produced by a production method comprising a step of curing the liquid crystal composition.
- Step (i) can be performed, for example, by applying a liquid crystal composition on a substrate.
- a liquid crystal composition on a substrate.
- the substrate it is preferable to use a long substrate.
- a liquid-crystal composition continuously on the base material conveyed continuously. Therefore, by using a long base material, the liquid crystal cured layer can be continuously produced, so that productivity can be improved.
- the flatness is a shake amount in the vertical direction perpendicular to the width direction and the conveyance direction of the base material, and is ideally 0 mm, but is usually 1 mm or less.
- a substrate film is usually used.
- a film that can be used as a substrate of an optical laminate can be appropriately selected and used.
- a transparent film is preferable as the base film from the viewpoint that a multilayer film including a base film and a liquid crystal cured layer can be used as an optical film and the base film is not required to be peeled off.
- the total light transmittance of the base film is preferably 80% or more, more preferably 85% or more, and particularly preferably 88% or more.
- the total light transmittance of the substrate film can be measured in a wavelength range of 400 nm to 700 nm using an ultraviolet / visible spectrometer.
- the material of the base film is not particularly limited, and various resins can be used.
- the resin include resins containing various polymers.
- the polymer include an alicyclic structure-containing polymer, cellulose ester, polyvinyl alcohol, polyimide, UV transparent acrylic, polycarbonate, polysulfone, polyethersulfone, epoxy polymer, polystyrene, and combinations thereof.
- alicyclic structure-containing polymers and cellulose esters are preferable, and alicyclic structure-containing polymers are more preferable.
- the alicyclic structure-containing polymer is a polymer having an alicyclic structure in a repeating unit, and is usually an amorphous polymer.
- the alicyclic structure-containing polymer any of a polymer containing an alicyclic structure in the main chain and a polymer containing an alicyclic structure in the side chain can be used.
- the alicyclic structure include a cycloalkane structure and a cycloalkene structure, and a cycloalkane structure is preferable from the viewpoint of thermal stability.
- the number of carbon atoms constituting one repeating unit of the alicyclic structure is not particularly limited, but is preferably 4 or more, more preferably 5 or more, particularly preferably 6 or more, preferably 30 or less, more The number is preferably 20 or less, particularly preferably 15 or less.
- the proportion of the repeating unit having an alicyclic structure in the alicyclic structure-containing polymer can be appropriately selected depending on the purpose of use, but is preferably 50% by weight or more, more preferably 70% by weight or more, particularly preferably. 90% by weight or more.
- the heat resistance of the base film can be increased.
- Examples of the alicyclic structure-containing polymer include (1) norbornene polymer, (2) monocyclic olefin polymer, (3) cyclic conjugated diene polymer, (4) vinyl alicyclic hydrocarbon polymer, And hydrogenated products thereof.
- a norbornene polymer is more preferable from the viewpoint of transparency and moldability.
- norbornene polymers include, for example, ring-opening polymers of norbornene monomers, ring-opening copolymers of norbornene monomers with other monomers capable of ring-opening copolymerization, and hydrogenated products thereof; addition polymers of norbornene monomers; Examples include addition copolymers with other monomers copolymerizable with norbornene monomers.
- a ring-opening polymer hydrogenated product of norbornene monomer is particularly preferable from the viewpoint of transparency.
- the above alicyclic structure-containing polymer is selected from known polymers disclosed in, for example, JP-A No. 2002-332102.
- the glass transition temperature of the alicyclic structure-containing polymer is preferably 80 ° C. or higher, more preferably in the range of 100 ° C. to 250 ° C.
- An alicyclic structure-containing polymer having a glass transition temperature in such a range is less susceptible to deformation and stress during use at high temperatures, and is excellent in durability.
- the weight average molecular weight (Mw) of the alicyclic structure-containing polymer is preferably 10,000 to 100,000, more preferably 25,000 to 80,000, and even more preferably 25,000 to 50,000. .
- the weight average molecular weight can be measured as a value in terms of polyisoprene by gel permeation chromatography (hereinafter abbreviated as “GPC”) using cyclohexane as a solvent.
- GPC gel permeation chromatography
- dissolve in cyclohexane in said GPC a weight average molecular weight can be measured by the value of polystyrene conversion using toluene as a solvent.
- the molecular weight distribution (weight average molecular weight (Mw) / number average molecular weight (Mn)) of the alicyclic structure-containing polymer is preferably 1 or more, more preferably 1.2 or more, preferably 10 or less, more preferably 4 or less, particularly preferably 3.5 or less.
- the thickness of the base film is preferably 1 ⁇ m or more from the viewpoint of improving productivity, facilitating thinning and weight reduction.
- the thickness is 1000 ⁇ m, more preferably 5 ⁇ m to 300 ⁇ m, and particularly preferably 30 ⁇ m to 100 ⁇ m.
- the resin containing the alicyclic structure-containing polymer may be composed only of the alicyclic structure-containing polymer, but may contain any compounding agent as long as the effects of the present invention are not significantly impaired.
- the ratio of the alicyclic structure-containing polymer in the resin containing the alicyclic structure-containing polymer is preferably 70% by weight or more, more preferably 80% by weight or more.
- Preferable specific examples of the resin containing the alicyclic structure-containing polymer include “Zeonor 1420” and “Zeonor 1420R” manufactured by Nippon Zeon.
- Typical examples of cellulose esters include lower fatty acid esters of cellulose (eg, cellulose acetate, cellulose acetate butyrate, and cellulose acetate propionate).
- Lower fatty acid means a fatty acid having 6 or less carbon atoms per molecule.
- Cellulose acetate includes triacetyl cellulose (TAC) and cellulose diacetate (DAC).
- the degree of acetylation of cellulose acetate is preferably 50% to 70%, particularly preferably 55% to 65%.
- the weight average molecular weight is preferably 70,000 to 120,000, and particularly preferably 80,000 to 100,000.
- the cellulose acetate may be esterified with not only acetic acid but also a part of fatty acid such as propionic acid and butyric acid.
- resin which comprises a base film may contain combining cellulose acetate and cellulose esters (cellulose propionate, cellulose butyrate, etc.) other than cellulose acetate. In that case, it is preferable that all of these cellulose esters satisfy the above acetylation degree.
- a film of triacetyl cellulose is used as the base film, such a film is prepared by dissolving triacetyl cellulose in a solvent substantially free of dichloromethane by a low temperature dissolution method or a high temperature dissolution method.
- a triacetyl cellulose film produced using a dope is particularly preferable from the viewpoint of environmental conservation.
- a film of triacetyl cellulose can be produced by a co-casting method. In the co-casting method, a solution (dope) containing raw material flakes and a solvent of triacetyl cellulose and optional additives is prepared, and the dope is cast from a dope feeder (die) onto a support.
- the cast can be peeled off from the support as a film when the cast material is dried to some extent to give rigidity, and the film is further dried to remove the solvent.
- solvents for dissolving raw material flakes include halogenated hydrocarbon solvents (dichloromethane, etc.), alcohol solvents (methanol, ethanol, butanol, etc.), ester solvents (methyl formate, methyl acetate, etc.), ether solvents (dioxane, dioxolane, Diethyl ether and the like).
- the additive contained in the dope include a retardation increasing agent, a plasticizer, an ultraviolet absorber, a deterioration preventing agent, a slipping agent, and a peeling accelerator.
- Examples of the support for casting the dope include a horizontal endless metal belt and a rotating drum.
- a single dope can be cast as a single layer, or a plurality of layers can be co-cast.
- a low concentration cellulose ester dope layer and a high concentration cellulose ester dope layer provided in contact with the front and back surfaces are formed.
- the dopes can be cast sequentially.
- the method of drying a film and removing a solvent the method of conveying a film and allowing the inside to pass through the drying part set to the conditions suitable for drying is mentioned.
- the triacetyl cellulose film examples include “TAC-TD80U” manufactured by Fuji Photo Film Co., Ltd., and those disclosed in the Japan Society for Invention and Technology Publication No. 2001-1745.
- the thickness of the triacetyl cellulose film is not particularly limited, but is preferably 20 ⁇ m to 150 ⁇ m, more preferably 40 ⁇ m to 130 ⁇ m, and still more preferably 70 ⁇ m to 120 ⁇ m.
- the alignment regulating force of the substrate refers to the property of the substrate that can align the liquid crystal compound in the liquid crystal composition coated on the substrate.
- the orientation regulating force can be imparted by applying a treatment that imparts the orientation regulating force to a member such as a film as a material of the base material.
- a treatment that imparts the orientation regulating force include stretching treatment and rubbing treatment.
- the substrate is a stretched film.
- this stretched film it can be set as the base material which has the orientation control force according to the extending
- the stretching direction of the stretched film is arbitrary. Therefore, the stretching may be only oblique stretching (stretching in a direction not parallel to both the longitudinal direction and the width direction of the base material), or only lateral stretching (stretching in the width direction of the base material), and longitudinal stretching ( Only stretching in the longitudinal direction of the base material) may be used. Further, these stretching may be performed in combination.
- the draw ratio can be appropriately set within the range in which the orientation regulating force is generated on the substrate surface.
- the base material uses a resin having positive intrinsic birefringence as a material
- the molecules are oriented in the stretching direction and a slow axis is developed in the stretching direction. Stretching can be performed using a known stretching machine such as a tenter stretching machine.
- the substrate is a diagonally stretched film. That is, the substrate is more preferably a long film and a film stretched in a direction that is not parallel to both the longitudinal direction and the width direction of the film.
- the angle formed by the stretching direction and the width direction of the stretched film can be specifically more than 0 ° and less than 90 °.
- an optically anisotropic laminate is transferred and laminated on a long linear polarizer by roll-to-roll, and an optical film such as a circularly polarizing plate can be efficiently manufactured. .
- the angle formed between the stretching direction and the width direction of the stretched film is preferably 15 ° ⁇ 5 °, 22.5 ⁇ 5 °, 45 ° ⁇ 5 °, or 75 ° ⁇ 5 °, more preferably. Is 15 ° ⁇ 4 °, 22.5 ° ⁇ 4 °, 45 ° ⁇ 4 °, or 75 ° ⁇ 4 °, even more preferably 15 ° ⁇ 3 °, 22.5 ° ⁇ 3 °, 45 ° ⁇ 3 Or a specific range such as 75 ° ⁇ 3 °.
- the optically anisotropic laminate can be made a material that enables efficient production of a circularly polarizing plate.
- liquid crystal composition coating methods include curtain coating, extrusion coating, roll coating, spin coating, dip coating, bar coating, spray coating, slide coating, slide coating, print coating, and gravure coating. Method, die coating method, gap coating method, and dipping method.
- the thickness of the layer of the liquid crystal composition to be applied can be appropriately set according to a desired thickness required for the liquid crystal cured layer.
- step (ii) for aligning the liquid crystal compound is performed.
- the liquid crystal compound contained in the liquid crystal composition layer is aligned in the alignment direction corresponding to the alignment regulating force of the substrate.
- the liquid crystal compound contained in the layer of the liquid crystal composition is aligned in parallel with the stretched direction of the stretched film.
- the liquid crystal compound is preferably oriented in an oblique direction that is neither the longitudinal direction nor the width direction of the substrate.
- a liquid crystal cured layer having the alignment direction in the oblique direction is usually obtained. Therefore, an optically anisotropic laminate is transferred and laminated on a long linear polarizer by roll-to-roll, and an optical film such as a circularly polarizing plate can be efficiently manufactured.
- Step (ii) may be achieved immediately by coating, but may also be achieved by applying an orientation treatment such as heating after coating, if necessary.
- the alignment treatment conditions can be appropriately set according to the properties of the liquid crystal composition to be used.
- the alignment treatment may be performed at a temperature of 50 ° C. to 160 ° C. for 30 seconds to 5 minutes.
- the step (iii) may be performed immediately after the step (ii), but the layer of the liquid crystal composition may be dried as necessary at any stage such as before the subsequent step (iii) of the step (ii). You may perform a process. Such drying can be achieved by a drying method such as natural drying, heat drying, reduced pressure drying, and reduced pressure heat drying. By such drying, the solvent can be removed from the liquid crystal composition layer.
- a drying method such as natural drying, heat drying, reduced pressure drying, and reduced pressure heat drying.
- a polymerizable compound such as a liquid crystal compound contained in the liquid crystal composition is polymerized to cure the liquid crystal composition layer to obtain a liquid crystal cured layer.
- a polymerization method of the polymerizable compound a method suitable for the properties of the components of the liquid crystal composition, such as the polymerizable compound and the polymerization initiator, can be appropriately selected.
- a method of irradiating light is preferable.
- the irradiated light may include light such as visible light, ultraviolet light, and infrared light. Among these, the method of irradiating with ultraviolet rays is preferable because the operation is simple.
- Ultraviolet irradiation intensity when the step and (iii) ultraviolet irradiation is preferably in the range of 0.1mW / cm 2 ⁇ 1000mW / cm 2, more preferably from 0.5mW / cm 2 ⁇ 600mW / cm 2 .
- the ultraviolet irradiation time is preferably in the range of 1 second to 300 seconds, more preferably in the range of 5 seconds to 100 seconds.
- the UV integrated light quantity (mJ / cm 2 ) is obtained by UV irradiation intensity (mW / cm 2 ) ⁇ irradiation time (seconds).
- a high pressure mercury lamp, a metal halide lamp, or a low pressure mercury lamp can be used as the ultraviolet irradiation light source.
- step (iii) it is preferable to adjust the polymerization conditions of the polymerizable compound in order to reduce the residual monomer ratio in the liquid crystal cured layer.
- step (iii) it is preferable to adjust the temperature of the liquid crystal composition layer.
- the step (iii) since the residual monomer ratio tends to be reduced when the step (iii) is performed under an inert gas atmosphere such as a nitrogen atmosphere rather than under the air, the step (iii) It is preferable to carry out in an inert gas atmosphere.
- the liquid crystal compound is usually polymerized while maintaining the molecular orientation. Therefore, a liquid crystal cured layer containing cured liquid crystal molecules aligned in a direction parallel to the alignment direction of the liquid crystal compound included in the liquid crystal composition before curing is obtained by the polymerization. Therefore, for example, when a stretched film is used as the substrate, a liquid crystal cured layer having an orientation direction parallel to the stretched direction of the stretched film can be obtained.
- the term “parallel” means that the deviation between the stretch direction of the stretched film and the orientation direction of the cured liquid crystal molecules is usually ⁇ 3 °, preferably ⁇ 1 °, ideally 0 °.
- the cured liquid crystal molecules obtained from the liquid crystal compound preferably have an alignment regularity that is horizontally oriented with respect to the base film.
- the cured liquid crystal molecules can be horizontally aligned in the liquid crystal cured layer.
- the average direction of the major axis direction of the mesogen of the cured liquid crystal molecules is parallel or nearly parallel to the film surface (for example, the angle formed with the film surface Alignment in a certain direction within 5 °).
- a phase difference meter such as AxoScan (manufactured by Axometrics).
- the major axis direction of the mesogen of the liquid crystal compound is usually the major axis direction of the mesogen of the cured liquid crystal molecule.
- the longest type of mesogens is usually selected. The direction in which the major axis direction is aligned is the alignment direction.
- the above-described method for producing a liquid crystal cured layer as the first optically anisotropic layer may further include an optional step.
- a multilayer film including a base material and a liquid crystal cured layer formed on the base material is usually obtained. Therefore, the manufacturing method peels off the base material as an optional step. A process may be included.
- the slow axis direction indicating the maximum refractive index in the plane of the first optically anisotropic layer can be arbitrarily set according to the use of the optically anisotropic laminate.
- the angle formed by the slow axis of the first optically anisotropic layer and the width direction of the optically anisotropic laminate is greater than 0 ° and less than 90 °. It is preferable.
- the angle formed by the slow axis of the first optically anisotropic layer and the width direction of the optically anisotropic laminate is preferably 15 ° ⁇ 5 °, 22.5 ° ⁇ 5 °, 45 ° ⁇ 5 °, or 75 ° ⁇ 5 °, more preferably 15 ° ⁇ 4 °, 22.5 ° ⁇ 4 °, 45 ° ⁇ 4 °, or 75 ° ⁇ 4 °, and even more preferably 15 ° ⁇ 3 It may be a specific range such as 22.5 ° ⁇ 3 °, 45 ° ⁇ 3 °, or 75 ° ⁇ 3 °.
- the optically anisotropic laminate can be made a material that enables efficient production of a circularly polarizing plate.
- the thickness of the first optically anisotropic layer is not particularly limited, and can be appropriately adjusted so that characteristics such as in-plane retardation can be within a desired range.
- the specific thickness of the first optically anisotropic layer is preferably 0.5 ⁇ m or more, more preferably 1.0 ⁇ m or more, preferably 10 ⁇ m or less, more preferably 7 ⁇ m or less, and particularly preferably 6 ⁇ m or less.
- a liquid crystal cured layer made of a cured product of a liquid crystal composition containing a polymerizable liquid crystal compound can be used.
- the liquid crystal cured layer as the second optical anisotropic layer any liquid crystal cured layer having the above-mentioned desired in-plane retardation is used from the range described as the liquid crystal cured layer as the first optical anisotropic layer. sell.
- the cured product of the liquid crystal composition contained in the liquid crystal cured layer as the second optical anisotropic layer may be different from the cured product of the liquid crystal composition contained in the liquid crystal cured layer as the first optical anisotropic layer. Good, but preferably the same.
- the cured product of the liquid crystal composition contained in the liquid crystal cured layer as the second optical anisotropic layer is the same as the cured product of the liquid crystal composition contained in the liquid crystal cured layer as the second optical anisotropic layer.
- the wavelength dispersion of the in-plane retardation of the first optically anisotropic layer can be made the same as the wavelength dispersion of the in-plane retardation of the second optically anisotropic layer.
- the ratio Re (H450) / Re (H550) of the in-plane retardation of the first optical anisotropic layer and the ratio Re (Q450) / Re (Q550) of the in-plane retardation of the second optical anisotropic layer can be made the same.
- the liquid crystal cured layer as the second optical anisotropic layer can be produced by the same production method as the method for producing the liquid crystal cured layer as the first optical anisotropic layer.
- the slow axis direction indicating the maximum refractive index in the plane of the second optically anisotropic layer can be arbitrarily set according to the use of the optically anisotropic laminate.
- the angle formed by the slow axis of the second optically anisotropic layer and the width direction of the optically anisotropic laminate is greater than 0 ° and less than 90 °. It is preferable.
- the angle formed by the slow axis of the first optically anisotropic layer and the width direction of the optically anisotropic laminate is preferably 15 ° ⁇ 5 °, 22.5 ° ⁇ 5 °, 45 ° ⁇ 5 °, or 75 ° ⁇ 5 °, more preferably 15 ° ⁇ 4 °, 22.5 ° ⁇ 4 °, 45 ° ⁇ 4 °, or 75 ° ⁇ 4 °, and even more preferably 15 ° ⁇ 3 It may be a specific range such as 22.5 ° ⁇ 3 °, 45 ° ⁇ 3 °, or 75 ° ⁇ 3 °.
- the optically anisotropic laminate can be made a material that enables efficient production of a circularly polarizing plate.
- the angle formed by the slow axis direction in the plane of the first optical anisotropic layer and the slow axis direction in the plane of the second optical anisotropic layer is preferably 60 ° ⁇ 10 °, more preferably Is 60 ° ⁇ 5 °, particularly preferably 60 ° ⁇ 3 °.
- the first optical Since the optically anisotropic laminate including the anisotropic layer and the second optically anisotropic layer can function as a broadband ⁇ / 4 wavelength plate, it is possible to suppress coloring of the display surface and to reflect external light. The aforementioned effects such as suppression can be exhibited particularly effectively.
- the thickness of the second optically anisotropic layer is not particularly limited, and can be appropriately adjusted so that characteristics such as in-plane retardation can be within a desired range.
- the specific thickness of the second optically anisotropic layer is preferably 0.5 ⁇ m or more, more preferably 1.0 ⁇ m or more, preferably 10 ⁇ m or less, more preferably 5 ⁇ m or less, and particularly preferably 3 ⁇ m or less.
- the optically anisotropic laminate may further include an arbitrary layer in combination with the first optically anisotropic layer and the second optically anisotropic layer.
- the optically anisotropic laminate may include a base material used for producing the first optically anisotropic layer or the second optically anisotropic layer as an arbitrary layer.
- the optically anisotropic layer may include an adhesive layer, a hard coat layer, and the like as arbitrary layers.
- FIG. 2 is a cross-sectional view schematically showing a cross section of the optically anisotropic laminate 200 as the second embodiment of the present invention.
- the optically anisotropic laminate 200 may include a transparent conductive layer 210 as an arbitrary layer in combination with the first optically anisotropic layer 110 and the second optically anisotropic layer 120. Good. In this case, the position of the transparent conductive layer 210 is arbitrary. Therefore, as shown in FIG. 2, the optically anisotropic laminate 200 may include a transparent conductive layer 210, a first optically anisotropic layer 110, and a second optically anisotropic layer 120 in this order. Further, the optically anisotropic laminate 200 may include a transparent conductive layer 210, a second optically anisotropic layer 120, and a first optically anisotropic layer 110 in this order.
- the optical anisotropic laminate 200 including the transparent conductive layer 210 can use the transparent conductive layer 210 as an electrode of the touch panel when the optical anisotropic laminate 200 is provided on the touch panel.
- coloring of the display surface according to the tilt angle of the polarized sunglasses can be suppressed, and reflection of external light can be suppressed.
- a layer containing at least one conductive material selected from the group consisting of conductive metal oxides, conductive nanowires, metal meshes, and conductive polymers can be used.
- Examples of the conductive metal oxide include ITO (indium tin oxide), IZO (indium zinc oxide), ZnO (zinc oxide), IWO (indium tungsten oxide), ITiO (indium titanium oxide), and AZO (aluminum zinc oxide). , GZO (gallium zinc oxide), XZO (zinc-based special oxide), IGZO (indium gallium zinc oxide), and the like. One of these may be used alone, or two or more of these may be used in combination at any ratio.
- the conductive nanowire is a conductive substance having a needle-like or thread-like shape and a diameter of nanometer.
- the conductive nanowire may be linear or curved.
- Such a conductive nanowire can form a good electrical conduction path even with a small amount of conductive nanowires by forming gaps between the conductive nanowires and forming a mesh. Can be realized.
- the conductive wire has a mesh shape, an opening is formed in the mesh space, so that the transparent conductive layer 210 having high light transmittance can be obtained.
- the transparent conductive layer 210 containing conductive nanowires the optically anisotropic laminate 200 having excellent bending resistance can be obtained.
- the ratio between the thickness d and the length L of the conductive nanowire is preferably 10 to 100,000, more preferably 50 to 100,000, and particularly preferably 100 to 100,000. 10,000.
- the conductive nanowires having a large aspect ratio are used in this way, the conductive nanowires can cross well and high conductivity can be expressed by a small amount of conductive nanowires.
- the optically anisotropic laminate 200 having excellent transparency can be obtained.
- the thickness of the conductive nanowire means the diameter when the cross section of the conductive nanowire is circular, the short diameter when the cross section of the conductive nanowire is circular, and the polygonal shape Means the longest diagonal. The thickness and length of the conductive nanowire can be confirmed by a scanning electron microscope or a transmission electron microscope.
- the thickness of the conductive nanowire is preferably less than 500 nm, more preferably less than 200 nm, still more preferably 10 nm to 100 nm, and particularly preferably 10 nm to 50 nm. Thereby, the transparency of the transparent conductive layer 210 can be improved.
- the length of the conductive nanowire is preferably 2.5 ⁇ m to 1000 ⁇ m, more preferably 10 ⁇ m to 500 ⁇ m, and particularly preferably 20 ⁇ m to 100 ⁇ m. Thereby, the electroconductivity of the transparent conductive layer 210 can be improved.
- Examples of conductive nanowires include metal nanowires made of metal, conductive nanowires containing carbon nanotubes, and the like.
- the metal contained in the metal nanowire is preferably a highly conductive metal.
- suitable metals include gold, platinum, silver and copper, with silver, copper and gold being preferred, and silver being more preferred.
- a material obtained by performing a plating process for example, a gold plating process
- the said material may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
- any appropriate method can be adopted as a method for producing the metal nanowire.
- a method of reducing silver nitrate in a solution a method in which an applied voltage or current is applied to the precursor surface from the tip of the probe, a metal nanowire is drawn at the probe tip, and the metal nanowire is continuously formed;
- silver nanowires can be synthesized by liquid phase reduction of a silver salt such as silver nitrate in the presence of a polyol such as ethylene glycol and polyvinylpyrrolidone.
- Uniform sized silver nanowires are, for example, Xia, Y. et al. etal. , Chem. Mater. (2002), 14, 4736-4745, Xia, Y. et al. etal. , Nano letters (2003) 3 (7), 955-960, mass production is possible.
- the carbon nanotubes for example, so-called multi-walled carbon nanotubes, double-walled carbon nanotubes, single-walled carbon nanotubes and the like are used. Of these, single-walled carbon nanotubes are preferred because of their high conductivity. Any appropriate method can be adopted as a method for producing the carbon nanotube. Preferably, carbon nanotubes produced by an arc discharge method are used. Carbon nanotubes produced by the arc discharge method are preferred because of their excellent crystallinity.
- the transparent conductive layer 210 containing conductive nanowires can be manufactured by applying and drying a conductive nanowire dispersion obtained by dispersing conductive nanowires in a solvent.
- Examples of the solvent contained in the conductive nanowire dispersion liquid include water, alcohol solvents, ketone solvents, ether solvents, hydrocarbon solvents, aromatic solvents, etc. It is preferable to use water. Moreover, a solvent may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.
- the concentration of the conductive nanowire in the conductive nanowire dispersion is preferably 0.1% by weight to 1% by weight. Thereby, the transparent conductive layer excellent in electroconductivity and transparency can be formed.
- the conductive nanowire dispersion liquid may contain any component in combination with the conductive nanowire and the solvent.
- the optional component include a corrosion inhibitor that suppresses corrosion of the conductive nanowire, a surfactant that suppresses aggregation of the conductive nanowire, a binder polymer for holding the conductive nanowire in the transparent conductive layer 210, and the like. It is done.
- arbitrary components may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
- Examples of the coating method of the conductive nanowire dispersion include spray coating, bar coating, roll coating, die coating, inkjet coating, screen coating, dip coating, slot die coating, letterpress printing, and intaglio. Examples thereof include a printing method and a gravure printing method. Any appropriate drying method (for example, natural drying, air drying, heat drying) may be employed as the drying method. For example, in the case of heat drying, the drying temperature may be 100 ° C. to 200 ° C., and the drying time may be 1 minute to 10 minutes.
- the ratio of the conductive nanowires in the transparent conductive layer is preferably 80% by weight to 100% by weight, more preferably 85% by weight to 99% by weight, based on the total weight of the transparent conductive layer.
- the metal mesh is a thin metal wire formed in a lattice shape.
- a highly conductive metal is preferable.
- suitable metals include gold, platinum, silver and copper, among which silver, copper and gold are preferred, and silver is more preferred. These metals may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
- the transparent conductive layer 210 containing a metal mesh can be formed, for example, by applying a composition for forming a transparent conductive layer containing a silver salt and forming metal fine wires in a predetermined lattice pattern by exposure processing and development processing.
- the transparent conductive layer 210 containing a metal mesh can also be formed by printing a transparent conductive layer forming composition containing metal fine particles in a predetermined pattern.
- JP-A-2012-18634 and JP-A-2003-331654 can be referred to for details of such a transparent conductive layer and a method for forming the transparent conductive layer.
- Examples of conductive polymers include polythiophene polymers, polyacetylene polymers, polyparaphenylene polymers, polyaniline polymers, polyparaphenylene vinylene polymers, polypyrrole polymers, polyphenylene polymers, and polyester polymers modified with acrylic polymers. Examples thereof include polymers. Among these, polythiophene polymers, polyacetylene polymers, polyparaphenylene polymers, polyaniline polymers, polyparaphenylene vinylene polymers, and polypyrrole polymers are preferable.
- a polythiophene polymer is particularly preferable.
- a polythiophene-based polymer By using a polythiophene-based polymer, it is possible to obtain a transparent conductive layer 210 that is excellent in transparency and chemical stability.
- Specific examples of the polythiophene-based polymer include: polythiophene; poly (3-C 1-8 alkyl-thiophene) such as poly (3-hexylthiophene); poly (3,4-ethylenedioxythiophene), poly (3,4 -Propylenedioxythiophene), poly [3,4- (1,2-cyclohexylene) dioxythiophene] and other poly (3,4- (cyclo) alkylenedioxythiophene); polythienylene vinylene and the like .
- the said conductive polymer may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
- the conductive polymer is preferably polymerized in the presence of an anionic polymer.
- the polythiophene polymer is preferably oxidatively polymerized in the presence of an anionic polymer.
- an anionic polymer the polymer which has a carboxyl group, a sulfonic acid group, or its salt is mentioned.
- an anionic polymer having a sulfonic acid group such as polystyrene sulfonic acid is used.
- the transparent conductive layer 210 containing a conductive polymer can be formed, for example, by applying a conductive composition containing a conductive polymer and drying it.
- JP, 2011-175601, A can be referred to for transparent conductive layer 210 containing a conductive polymer.
- the transparent conductive layer 210 may be formed in the entire in-plane direction of the optically anisotropic laminate 200, but may be patterned into a predetermined pattern.
- the pattern shape of the transparent conductive layer 210 is preferably a pattern that operates well as a touch panel (for example, a capacitive touch panel).
- a touch panel for example, a capacitive touch panel.
- the thickness of the transparent conductive layer 210 is preferably 0.01 ⁇ m to 10 ⁇ m, more preferably 0.05 ⁇ m to 3 ⁇ m, and particularly preferably 0.1 ⁇ m to 1 ⁇ m.
- the total light transmittance of the transparent conductive layer is preferably 85% or more, more preferably 90% or more, and further preferably 95% or more.
- the optically anisotropic laminate is preferably excellent in transparency.
- the total light transmittance of the optically anisotropic laminate is preferably 80% or more, more preferably 85% or more, and particularly preferably 90% or more.
- the haze of the optically anisotropic laminate is preferably 5% or less, more preferably 3% or less, particularly preferably 1% or less, and ideally 0%.
- the light transmittance can be measured using a spectrophotometer (manufactured by JASCO Corporation, ultraviolet-visible near-infrared spectrophotometer “V-570”) in accordance with JIS K0115.
- haze can be measured at five locations using “Durbidity Meter NDH-300A” manufactured by Nippon Denshoku Industries Co., Ltd. in accordance with JIS K7361-1997, and an average value obtained therefrom can be adopted.
- optically anisotropic laminate can be produced, for example, by a production method including a step of bonding the first optically anisotropic layer and the second optically anisotropic layer to obtain the optically anisotropic laminate.
- the optical anisotropic laminate is Forming a first optically anisotropic layer as a liquid crystal cured layer on the first substrate and preparing a first multilayer film including the first substrate and the first optically anisotropic layer; Forming a second optically anisotropic layer as a liquid crystal cured layer on the second substrate and preparing a second multilayer film comprising the second substrate and the second optically anisotropic layer; The first optically anisotropic layer and the second optically anisotropic layer are bonded together to obtain an optically anisotropic laminate.
- An appropriate adhesive can be used for bonding the first optically anisotropic layer and the second optically anisotropic layer.
- This adhesive includes not only a narrowly defined adhesive (an adhesive having a shear storage modulus of 1 MPa to 500 MPa at 23 ° C. after irradiation with energy rays or after heat treatment), but also a shear storage modulus of less than 1 MPa at 23 ° C.
- the adhesive which is is also included. Among these, it is preferable to use the same adhesive as that used in the circularly polarizing plate described later.
- the method for producing an optically anisotropic laminate may include an optional step in addition to the steps described above.
- the said manufacturing method may include the process of peeling the 1st base material and the 2nd base material, the process of providing arbitrary layers, such as a transparent conductive layer, etc.
- FIG. 3 is a cross-sectional view schematically showing a cross section of a circularly polarizing plate 300 as the third embodiment of the present invention.
- the circularly polarizing plate 300 includes a linear polarizer 310 and an optically anisotropic laminate 100.
- the circularly polarizing plate 300 includes a linear polarizer 310, a first optical anisotropic layer 110, and a second optical anisotropic layer 120 in this order.
- linear polarizer 310 a known linear polarizer used in devices such as a liquid crystal display device and other optical devices can be used.
- linear polarizer 310 examples include a polarizer having a function of separating polarized light into reflected light and transmitted light, such as a grid polarizer, a multilayer polarizer, and a cholesteric liquid crystal polarizer.
- the linear polarizer 310 is preferably a polarizer containing polyvinyl alcohol.
- the linear polarizer 310 may be a long film.
- the polarization absorption axis of the linear polarizer 310 is parallel or perpendicular to the width direction of the linear polarizer 310.
- Such a long linear polarizer 310 can be bonded to the above-described optically anisotropic laminate 100 by roll-to-roll to easily manufacture a long circularly polarizing plate 300.
- the degree of polarization of the linear polarizer 310 is not particularly limited, but is preferably 98% or more, more preferably 99% or more.
- the thickness of the linear polarizer 310 is preferably 5 ⁇ m to 80 ⁇ m.
- FIG. 4 is an exploded perspective view showing the circularly polarizing plate 300 as the third embodiment of the present invention in an exploded manner. 4, the first optically anisotropic layer 110 and the second optically anisotropic layer 120, an imaginary line parallel to the polarization absorption axis direction D P of the linear polarizer 310, shown by a chain line. As shown in FIG.
- a polarization absorption axis direction D P of the linear polarizer 310, the angle slow the axial direction D H is in the first optically anisotropic layer 110 in the plane, represented by " ⁇ 1”
- a polarization absorption axis direction D P of the linear polarizer 310, the angle slow the axial direction D Q is in the second optically anisotropic layer 120 in the plane, represented by " ⁇ 2”.
- angles ⁇ 1 and ⁇ 2 have the same sign and satisfy the following expressions (27) and (28).
- 15 ° ⁇ 5 °
- 75 ° ⁇ 10 °
- the equation (27) will be described in detail.
- of the angle ⁇ 1 is usually 15 ° ⁇ 5 °, preferably 15 ° ⁇ 3 °, more preferably 15 ° ⁇ 1 °.
- the equation (28) will be described in detail.
- of the angle ⁇ 2 is usually 75 ° ⁇ 10 °, preferably 75 ° ⁇ 6 °, more preferably 75 ° ⁇ 2 °.
- angles ⁇ 1 and ⁇ 2 have the same sign and satisfy the following expressions (29) and (30).
- 75 ° ⁇ 10 ° (29)
- 15 ° ⁇ 5 ° (30)
- the equation (29) will be described in detail.
- of the angle ⁇ 1 is usually 75 ° ⁇ 10 °, preferably 75 ° ⁇ 6 °, more preferably 75 ° ⁇ 2 °.
- the equation (30) will be described in detail.
- of the angle ⁇ 2 is usually 15 ° ⁇ 5 °, preferably 15 ° ⁇ 3 °, more preferably 15 ° ⁇ 1 °.
- the in-plane optical axis (slow axis, polarization transmission axis, polarization absorption axis, etc.) direction and geometric direction (film longitudinal direction, width direction, etc.) Is defined as a positive shift in one direction and a negative shift in the other direction, and the positive and negative directions are defined in common in the components in the product.
- the slow axis direction of the first optical anisotropic layer with respect to the polarization absorption axis direction of the linear polarizer is 15 ° and the second optical anisotropy with respect to the polarization absorption axis direction of the linear polarizer is “The slow axis direction of the layer is 75 °” means the following two cases: When the circularly polarizing plate is observed from one surface thereof, the slow axis direction of the first optically anisotropic layer is shifted 15 ° clockwise from the polarization absorption axis direction of the linear polarizer, and the second The slow axis direction of the optically anisotropic layer is shifted by 75 ° clockwise from the polarization absorption axis direction of the linear polarizer.
- the slow axis direction of the first optically anisotropic layer is shifted 15 ° counterclockwise from the polarization absorption axis direction of the linear polarizer, and
- the slow axis direction of the two optically anisotropic layers is shifted by 75 ° counterclockwise from the polarization absorption axis direction of the linear polarizer.
- the circularly polarizing plate 300 may further include an adhesive layer (not shown) for bonding the linear polarizer 310 and the optically anisotropic laminate 100 together.
- an adhesive layer a pressure-sensitive adhesive layer may be used, but a layer obtained by curing a curable adhesive is preferably used.
- a thermosetting adhesive may be used as the curable adhesive, but a photocurable adhesive is preferably used.
- a photocurable adhesive what contains a polymer or a reactive monomer can be used. Further, the adhesive may contain one or more of a solvent, a photopolymerization initiator, other additives and the like as necessary.
- the photocurable adhesive is an adhesive that can be cured when irradiated with light such as visible light, ultraviolet light, and infrared light.
- light such as visible light, ultraviolet light, and infrared light.
- an adhesive that can be cured with ultraviolet rays is preferable because of its simple operation.
- the photocurable adhesive contains 50% by weight or more of a (meth) acrylate monomer having a hydroxyl group.
- a (meth) acrylate monomer having a hydroxyl group when the phrase “adhesive contains a monomer in a certain ratio”, the ratio of the monomer means that the monomer exists as a monomer, the monomer already It is the ratio of the sum of both of those polymerized to form part of the polymer.
- Examples of (meth) acrylate monomers having a hydroxyl group include 4-hydroxybutyl (meth) acrylate, 2-hydroxy-3-phenoxypropyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) ) Acrylates, hydroxyalkyl (meth) acrylates such as 2-hydroxy-3-acryloyloxypropyl methacrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl (meth) acrylate and the like. These may be used alone or in combination of two or more at any ratio. The content when used in combination is a total ratio.
- Examples of the monomer other than the (meth) acrylate monomer having a hydroxyl group that can be contained in the photocurable adhesive include (meth) acrylate monomer having no monofunctional or polyfunctional hydroxyl group, and one or more per molecule The compound containing the epoxy group of this is mentioned.
- the adhesive may further contain an optional component as long as the effects of the present invention are not significantly impaired.
- optional components include a photopolymerization initiator, a crosslinking agent, an inorganic filler, a polymerization inhibitor, a color pigment, a dye, an antifoaming agent, a leveling agent, a dispersant, a light diffusing agent, a plasticizer, an antistatic agent, and an interface.
- An activator, a non-reactive polymer (inactive polymer), a viscosity modifier, a near-infrared absorber, etc. are mentioned. One of these may be used alone, or two or more of these may be used in combination at any ratio.
- Examples of the photopolymerization initiator include a radical initiator and a cationic initiator.
- Examples of the cationic initiator include Irgacure 250 (diallyliodonium salt, manufactured by BASF).
- Examples of the radical initiator include Irgacure 184, Irgacure 819, Irgacure 2959 (all manufactured by BASF).
- the thickness of the adhesive layer is preferably 0.5 ⁇ m or more, more preferably 1 ⁇ m or more, preferably 30 ⁇ m or less, more preferably 20 ⁇ m or less, and even more preferably 10 ⁇ m or less.
- the circularly polarizing plate 300 can further include an arbitrary layer.
- a polarizer protective film layer (not shown) is mentioned, for example. Any transparent film layer can be used as the polarizer protective film layer.
- a resin film layer excellent in transparency, mechanical strength, thermal stability, moisture shielding properties and the like is preferable.
- resins include acetate resins such as triacetyl cellulose, polyester resins, polyethersulfone resins, polycarbonate resins, polyamide resins, polyimide resins, chain olefin resins, cyclic olefin resins, and (meth) acrylic resins. It is done.
- examples of the optional layer that the circularly polarizing plate 300 may include include a hard coat layer such as an impact-resistant polymethacrylate resin layer, a mat layer that improves the slipperiness of the film, an antireflection layer, and an antifouling layer. It is done.
- a hard coat layer such as an impact-resistant polymethacrylate resin layer
- a mat layer that improves the slipperiness of the film
- an antireflection layer an antifouling layer. It is done.
- Each of the above layers may be provided with only one layer or two or more layers.
- the circularly polarizing plate 300 can be manufactured by a manufacturing method including bonding the linear polarizer 310 and the optically anisotropic laminated body 100 together.
- the image display device of the present invention includes an image display element and the above-described circularly polarizing plate.
- the circularly polarizing plate is usually provided on the viewing side of the image display element.
- the direction of the circularly polarizing plate can be arbitrarily set according to the use of the circularly polarizing plate. Therefore, the image display apparatus may include the optically anisotropic laminate, the linear polarizer, and the image display element in this order.
- the image display device may include a linear polarizer, an optically anisotropic laminate, and an image display element in this order.
- image display devices There are various types of image display devices depending on the type of image display element. Typical examples include a liquid crystal display device having a liquid crystal cell as an image display element, and an organic electroluminescence element as an image display element. (Hereinafter, it may be referred to as “organic EL element” as appropriate).
- organic EL element As appropriate.
- FIG. 5 is a cross-sectional view schematically showing an organic EL display device 400 as an image display device according to a fourth embodiment of the present invention.
- the organic EL display device 400 includes an organic EL element 410 as an image display element; an optical anisotropic laminate 100 including a second optical anisotropic layer 120 and a first optical anisotropic layer 110.
- an optical anisotropic laminate 100 including a second optical anisotropic layer 120 and a first optical anisotropic layer 110.
- a linear polarizer 310 in this order.
- the organic EL element 410 includes a transparent electrode layer, a light emitting layer, and an electrode layer in this order, and the light emitting layer can generate light when voltage is applied from the transparent electrode layer and the electrode layer.
- the material constituting the organic light emitting layer include polyparaphenylene vinylene-based, polyfluorene-based, and polyvinyl carbazole-based materials.
- the light emitting layer may have a stack of layers having different emission colors or a mixed layer in which a different dye is doped in a certain dye layer.
- the organic EL element 410 may include functional layers such as a hole injection layer, a hole transport layer, an electron injection layer, an electron transport layer, an equipotential surface forming layer, and a charge generation layer.
- an organic EL display device 400 when viewed from the front direction of the display surface 400U by the circularly polarizing plate 300 including the optically anisotropic laminate 100 and the linear polarizer 310, the display surface due to reflection of external light.
- the glare of 400U can be suppressed. Specifically, only a part of the linearly polarized light passes through the linear polarizer 310 and then passes through the optically anisotropic laminated body 100, so that the light incident from the outside of the apparatus becomes circularly polarized light. .
- Circularly polarized light is reflected by a component (such as a reflective electrode (not shown) in the organic EL element 410) that reflects light in the display device, and enters the optically anisotropic laminated body 100 again to enter.
- the linearly polarized light has a vibration direction orthogonal to the vibration direction of the linearly polarized light and does not pass through the linear polarizer 310.
- the function of suppressing reflection is achieved (for the principle of suppressing reflection in an organic EL display device, refer to Japanese Patent Laid-Open No. 9-127858).
- the first optical anisotropic layer 110 and the second optical anisotropic layer 120 included in the optical anisotropic laminate 100 have in-plane retardation Re that satisfies the above-described requirements. Therefore, the circularly polarizing plate 300 can effectively exhibit the above-described reflection suppressing function in a wide wavelength range. Therefore, in the organic EL display device 400, reflection of external light in the front direction of the display surface 400U of the organic EL display device 400 can be effectively suppressed, and excellent visibility can be realized.
- the reflection suppression function can be evaluated by the lightness L * of light reflected in the front direction of the display surface 400U when the display surface 400U of the organic EL display device 400 is irradiated with light.
- the lightness L * and is of a lightness L * in the L * a * b * color system. It represents that it is excellent in the function of light reflection suppression in the display surface 400U, so that this lightness L * is small.
- FIG. 6 is a cross-sectional view schematically showing an organic EL display device 500 as an image display device according to a fifth embodiment of the present invention.
- the organic EL display device 500 includes an organic EL element 410 as an image display element; a ⁇ / 4 wavelength plate 510; a linear polarizer 310; and a first optical anisotropic layer 110 and a second optical element.
- An optically anisotropic laminate 100 including the anisotropic layer 120 is provided in this order.
- ⁇ / 4 wavelength plate 510 a member capable of converting linearly polarized light transmitted through the linear polarizer 310 into circularly polarized light can be used.
- a ⁇ / 4 wavelength plate 510 for example, a film having an in-plane retardation Re in a range similar to the range of the in-plane retardation Re that the second optical anisotropic layer 120 can have can be used.
- the angle formed by the slow axis of the ⁇ / 4 wavelength plate 510 with respect to the polarization absorption axis of the linear polarizer 310 is 45 ° or an angle close thereto (for example, preferably 45 ° ⁇ 5 °, more preferably 45 ° ⁇ 4 °, particularly preferably 45 ° ⁇ 3 °).
- the combination of the ⁇ / 4 wavelength plate 510 and the linear polarizer 310 allows the function of a circularly polarizing plate to be exhibited, and glare of the display surface 500U due to reflection of external light can be suppressed.
- an image is displayed by light emitted from the organic EL element 410 and passed through the ⁇ / 4 wavelength plate 510, the linear polarizer 310, and the optically anisotropic laminate 100. Therefore, the light for displaying an image is linearly polarized when it passes through the linear polarizer 310, but is converted into circularly polarized light by passing through the optically anisotropic laminate 100. Therefore, in the organic EL display device 500, an image is displayed by circularly polarized light. Therefore, when the display surface 500U is viewed through polarized sunglasses, the image can be visually recognized.
- the first optical anisotropic layer 110 and the second optical anisotropic layer 120 included in the optical anisotropic laminate 100 have in-plane retardation Re that satisfies the above-described requirements. Therefore, the optically anisotropic laminate 100 can convert light for displaying an image into ideal circularly polarized light in a wide wavelength range. Therefore, in this organic EL display device 500, when viewing the display surface 500U through the polarized sunglasses from the front direction of the display surface 500U of the organic EL display device 500, the light of any wavelength does not depend on the tilt angle of the polarized sunglasses. Uniformly transmits through polarized sunglasses. Therefore, coloring of the display surface 500U according to the tilt angle of the polarized sunglasses can be suppressed. Therefore, when the polarized sunglasses are tilted, it is possible to suppress a change in the color of the display surface due to the tilt angle.
- FIG. 7 is a cross-sectional view schematically showing a liquid crystal display device 600 as an image display device according to a sixth embodiment of the present invention.
- the liquid crystal display device 600 includes a light source 610; a light source side linear polarizer 620; a liquid crystal cell 630 as an image display element; a linear polarizer 310 as a viewing side linear polarizer;
- the optically anisotropic laminate 100 including the isotropic layer 110 and the second optically anisotropic layer 120 is provided in this order.
- the liquid crystal cell 630 includes, for example, an in-plane switching (IPS) mode, a vertical alignment (VA) mode, a multi-domain vertical alignment (MVA) mode, a continuous spin wheel alignment (CPA) mode, a hybrid alignment nematic (HAN) mode, and a twisted.
- IPS in-plane switching
- VA vertical alignment
- MVA multi-domain vertical alignment
- CPA continuous spin wheel alignment
- HAN hybrid alignment nematic
- twisted twisted.
- a liquid crystal cell of any mode such as a nematic (TN) mode, a super twisted nematic (STN) mode, or an optically compensated bend (OCB) mode can be used.
- an image is displayed by light emitted from the light source 610 and passed through the light source side linear polarizer 620, the liquid crystal cell 630, the linear polarizer 310, and the optical anisotropic laminate 100. . Therefore, the light for displaying an image is linearly polarized when it passes through the linear polarizer 310, but is converted into circularly polarized light by passing through the optically anisotropic laminate 100. Therefore, in the liquid crystal display device 600, an image is displayed by circularly polarized light. Therefore, when the display surface 600U is viewed through polarized sunglasses, the image can be visually recognized.
- the first optical anisotropic layer 110 and the second optical anisotropic layer 120 included in the optical anisotropic laminate 100 have in-plane retardation Re that satisfies the above-described requirements.
- the optically anisotropic laminate 100 can convert light for displaying an image into ideal circularly polarized light in a wide wavelength range. Therefore, similarly to the organic EL display device 500 described in the fifth embodiment, the liquid crystal display device 600 according to this embodiment can suppress coloring of the display surface 600U according to the tilt angle of the polarized sunglasses. Therefore, when the polarized sunglasses are tilted, it is possible to suppress a change in the color of the display surface due to the tilt angle.
- the function of suppressing coloring can be evaluated by the average value of the saturation C * of the display surfaces 500U and 600U.
- chroma C * and is a chroma C * in the L * C * h color system.
- the chroma C * by using the L * a * b * color system chromaticity a * and b *, represented by the following formula (X).
- the average value of the saturation C * can be measured by the following method. From the front direction of the display surface of the image display device, the display surface is observed through polarized sunglasses, and the saturation C * is measured.
- the chroma C * Measurement of the inclination formed by the polarization absorption axis of the polarized sunglasses respect to the reference direction is parallel to the display surface (e.g., polarizing absorption axis direction of the linear polarizer of the image display apparatus) of the image display device The angle is changed within a range of 0 ° or more and less than 360 ° in increments of 5 °. Then, the average value of the saturation C * at each measured tilt angle is calculated.
- the size of the glass plate was 75 mm ⁇ 25 mm, the glass plate was bonded so that the long side of the glass plate and the long side of the sample piece were parallel, and the excess part of the sample piece protruding from the glass plate was cut off with a cutter. .
- the laminated body which has a layer structure of (glass plate) / (adhesive layer) / (optically anisotropic layer) / (stretching base material) was obtained.
- the stretched substrate was peeled from the laminate to obtain a retardation plate for measurement having a layer configuration of (glass plate) / (adhesive layer) / (optically anisotropic layer).
- a retardation plate for measurement having a layer configuration of (glass plate) / (adhesive layer) / (optically anisotropic layer).
- the slow axis direction were measured using a phase difference measuring device (“AxoScan” manufactured by AXOMETRICS).
- the optical anisotropy is formed on the display surface of a commercially available liquid crystal display device (“iPad Air” manufactured by Apple) including a light source, a light source side linear polarizer, a liquid crystal cell, and a viewing side linear polarizer in this order.
- a commercially available liquid crystal display device (“iPad Air” manufactured by Apple) including a light source, a light source side linear polarizer, a liquid crystal cell, and a viewing side linear polarizer in this order.
- An image display device obtained by bonding the surfaces on the first optically anisotropic layer side of the laminate was set. The above-mentioned bonding is the slow axis of the first optical anisotropic layer and the second optical anisotropic layer of the optically anisotropic laminate with respect to the polarization absorption axis of the viewing-side linear polarizer as viewed from the thickness direction.
- This image display device includes, from the viewing side, a second optical anisotropic layer, a first optical anisotropic layer, a viewing side linear polarizer, and a liquid crystal cell as an image display element in this order.
- FIG. 8 is a perspective view schematically showing a state of the evaluation model set when calculating the saturation in the simulation in the example and the comparative example.
- a line segment 22 parallel to the polarization absorption axis 21 of the polarized sunglasses 20 is indicated by a one-dot chain line on the display surface 10 of the image display device.
- the image display device was displayed in white, and the saturation C * of the image seen through the polarized sunglasses 20 when calculated from the front direction of the display surface 10 was calculated.
- An ideal polarizing film was set as the polarizing sunglasses 20.
- the ideal polarizing film refers to a film that transmits all linearly polarized light having a vibration direction parallel to a certain direction but does not allow linearly polarized light having a vibration direction perpendicular to that direction to pass through at all.
- the inclination angle ⁇ formed by the polarization absorption axis 21 of the polarized sunglasses 20 with respect to the reference direction 11 on the display surface 10 is in the range of 0 ° to less than 360 ° in 5 ° increments. I went while changing. Then, the average value of the calculated saturation C * was calculated as the saturation average value. It shows that it is the favorable result by which coloring was suppressed, so that this saturation average value is small.
- a liquid crystal display device (“iPad” manufactured by Apple) including a light source, a light source side linear polarizer, an IPS mode liquid crystal cell, and a viewing side linear polarizer in this order was prepared.
- the display surface portion of the liquid crystal display device was disassembled to expose the viewing-side linear polarizer of the liquid crystal display device.
- the surface on the first optical anisotropic layer side of the optically anisotropic laminate produced in the examples or comparative examples described later was bonded to the exposed viewing-side linear polarizer using a hand-attached roller. The bonding was performed via an adhesive layer (“CS9621” manufactured by Nitto Denko).
- the pasting is performed in the thickness direction of the first optically anisotropic layer and the slow axis of the first optically anisotropic layer with respect to the polarization absorption axis of the viewing-side linear polarizer of the liquid crystal display device.
- the angle formed by the slow axis was 15.0 ° and 75.0 °, respectively. Thereby, an image display device for evaluation was obtained.
- the image display device was displayed in white, and the display surface was visually observed through polarized sunglasses from the front direction of the display surface. During this observation, the image display device was rotated once about a rotation axis perpendicular to the display surface. Then, it was evaluated whether the observed image has a color change according to the rotation angle. The smaller the color change according to the rotation angle, the better the result.
- the above evaluation is performed by a large number of observers, and each person ranks the results of all the experimental examples (Examples and Comparative Examples) of the experimental group I to IV, and the score corresponding to the ranking (1st place) 61 points, 2nd place 60 points, ..., the lowest 1 point).
- the total points scored by each person for each experimental example were arranged in the order of points, and evaluation was performed in the order of A, B, C, D and E from the upper group within the range of the points.
- An organic EL display device (“GALAXY” manufactured by Samsunung) provided with an organic EL element and a circularly polarizing plate in this order was prepared.
- the display surface portion of the organic EL display device was disassembled and the circularly polarizing plate was removed. Thereafter, the surface on the second optically anisotropic layer side of the circularly polarizing plate produced in Examples or Comparative Examples described later was bonded onto the organic EL element by using a hand-bonded roller.
- the bonding was performed via an adhesive layer (“CS9621” manufactured by Nitto Denko). Thereby, an image display device for evaluation was obtained.
- the image display device was displayed in black, and the display surface was observed from the front direction of the display surface. At the time of observation, the smaller the luminance due to reflection of external light, the better the result.
- the above evaluation is performed by a large number of observers, and each person ranks the results of all the experimental examples (Examples and Comparative Examples) in the experimental group V to VIII, and the score corresponding to the rank (1st place) 55 points, 2nd place 54 points, ..., the lowest 1 point).
- the total points scored by each person for each experimental example were arranged in the order of points, and evaluation was performed in the order of A, B, C, D and E from the upper group within the range of the points.
- the base material (S0) before stretching was pulled out from the roll of the base material (S0) before stretching, the masking film was continuously peeled off, and supplied to a tenter stretching machine to perform a stretching process in an oblique direction.
- the stretching ratio was 1.5 times, and the stretching temperature was 142 ° C.
- both ends in the film width direction were trimmed to obtain a long stretched substrate (S1) with a width of 1350 mm.
- the orientation angle formed by the slow axis of the obtained stretched substrate (S1) with respect to the film width direction is 15 °, the variation of the orientation angle is 0.7 °, and the Nz coefficient of the stretched substrate (S1) is 1.1.
- the in-plane retardation Re of the stretched substrate (S1) at a measurement wavelength of 590 nm was 141 nm, and the thickness of the stretched substrate (S1) was 22 ⁇ m.
- Example I-1 (I-1-1. Production of a multilayer film including the first optically anisotropic layer)
- the stretched substrate (S1) was fed out from the roll (S1-1) of the stretched substrate (S1), the masking film was peeled off, and the film was conveyed in the longitudinal direction of the film.
- the liquid crystal composition (A) is directly applied using a die coater to the surface of the stretched substrate (S1) to be conveyed on the side where the masking film is bonded. A layer of material was formed.
- the liquid crystal composition layer on the stretched substrate (S1) was subjected to an alignment treatment at 110 ° C. for 2.5 minutes. Thereafter, under a nitrogen atmosphere, the liquid crystal composition layer was irradiated with ultraviolet rays having an integrated illuminance of 500 mJ / cm 2 or more to polymerize the reverse wavelength polymerizable liquid crystal compound in the liquid crystal composition. Thereby, the layer of the liquid crystal composition is cured to obtain a multilayer film (S1-a1) having a layer configuration of (stretched substrate (S1)) / (first optical anisotropic layer (a1)). It was. The dry thickness of the first optically anisotropic layer (a1) was 3.89 ⁇ m.
- the first optically anisotropic layer (a1) contained a polymer of a reverse wavelength polymerizable liquid crystal compound as a cured liquid crystal molecule of a homogeneously oriented liquid crystal compound.
- the retardation property of the first optical anisotropic layer (a1) was measured by the method described above.
- the angle formed by the slow axis with respect to the film width direction was 15 °.
- the stretched substrate (S1) was fed from the roll (S1-2), not the roll (S1-1). Moreover, the thickness of the liquid crystal composition (A) to be applied was changed. Except for the above, a multilayer having the layer structure of (stretched substrate (S1)) / (second optically anisotropic layer (a2)) in the same manner as in the step (I-1-1). A film (S1-a2) was obtained. The dry thickness of the second optically anisotropic layer (a2) was 1.95 ⁇ m.
- the second optically anisotropic layer (a2) contained a polymer of a reverse wavelength polymerizable liquid crystal compound as a cured liquid crystal molecule of a homogeneously aligned liquid crystal compound.
- the retardation property of the second optical anisotropic layer (a2) was measured by the method described above.
- the angle formed by the slow axis with respect to the film width direction was -15 °.
- the multilayer film (S1-a2) has a long side parallel to the longitudinal direction of the multilayer film (S1-a2) and a short side parallel to the width direction of the multilayer film (S1-a2).
- a sample piece (S1-a2) of A4 size was cut out.
- an A4-sized sample piece (ZF) was cut out from an unstretched film (“ZF16” manufactured by Nippon Zeon Co., Ltd., thickness 100 ⁇ m) made of a resin containing a norbornene polymer.
- the stretched substrate (S1) is peeled from the laminate (ZF-a2-S1), and the layer structure of (sample piece (ZF)) / (adhesive layer) / (second optically anisotropic layer (a2))
- sample piece (ZF) / (adhesive layer) / (second optical anisotropic layer (a2)) / (adhesive layer) / (first optical anisotropic layer (a1)) / ( A laminate (ZF-a2-a1-S1) having a layer structure of the stretched substrate (S1) was obtained.
- the stretched substrate (S1) is peeled from the laminate (ZF-a2-a1-S1), and (sample piece (ZF)) / (adhesive layer) / (second optical anisotropic layer (a2)) /
- An optically anisotropic laminate (ZF-a2-a1) having a layer structure of (pressure-sensitive adhesive layer) / (first optically anisotropic layer (a1)) was obtained.
- the angle formed by the slow axis of the first optically anisotropic layer (a1) and the slow axis of the second optically anisotropic layer (a2) in this laminate (ZF-a2-a1) was 60 °. It was.
- the saturation average value was calculated and the coloring was evaluated by the methods described above.
- Examples I-2 to I-17 and Comparative Examples I-1 to I-3 In the step (I-1-1), by changing the thickness of the liquid crystal composition (A) to be applied and adjusting the dry thickness of the first optically anisotropic layer (a1), the first at a wavelength of 590 nm is obtained.
- the in-plane retardation Re (H590) of the optically anisotropic layer (a1) was changed as shown in Table 1.
- the thickness of the liquid crystal composition (A) to be applied is changed to adjust the dry thickness of the second optically anisotropic layer (a2).
- the in-plane retardation Re (Q590) of the second optically anisotropic layer (a2) was changed as shown in Table 1. Except for the above, the optically anisotropic laminate (ZF-a2-a1) was produced and evaluated in the same manner as in Example I-1.
- each of the optically anisotropic layers in Examples I-1 to I-17 and Comparative Examples I-1 to I-3 is obtained from the same liquid crystal composition (A). Therefore, the first optically anisotropic layer (a1) and the second optically anisotropic layer (a2) of Examples I-1 to I-17 and Comparative Examples I-1 to I-3 are represented by Re (H450) / Re (H550) and Re (Q450) / Re (Q550) are both the same value, and Re (H650) / Re (H550) and Re (Q650) / Re (Q550) are both the same value. It was.
- Example II-1 Experimental example relating to the effect of suppressing coloring using the liquid crystal composition (B)]
- Example II-1 An anisotropic laminate (ZF-2b-1b) was produced and evaluated. This will be specifically described below.
- the stretched substrate (S1) was fed out from the roll (S1-1) of the stretched substrate (S1), the masking film was peeled off, and the film was conveyed in the longitudinal direction of the film.
- the liquid crystal composition (B) is directly applied using a die coater to the surface of the stretched substrate (S1) to be conveyed on the side where the masking film is bonded. A layer of material was formed.
- the liquid crystal composition layer on the stretched substrate (S1) was subjected to an alignment treatment at 110 ° C. for 2.5 minutes. Thereafter, under a nitrogen atmosphere, the liquid crystal composition layer was irradiated with ultraviolet rays having an integrated illuminance of 500 mJ / cm 2 or more to polymerize the reverse wavelength polymerizable liquid crystal compound in the liquid crystal composition. Thereby, the layer of the liquid crystal composition is cured to obtain a multilayer film (S1-b1) having a layer configuration of (stretched substrate (S1)) / (first optical anisotropic layer (b1)). It was. The dry thickness of the first optically anisotropic layer (b1) was 3.37 ⁇ m.
- the first optically anisotropic layer (b1) contained a polymer of a reverse wavelength polymerizable liquid crystal compound as a cured liquid crystal molecule of a homogeneously aligned liquid crystal compound.
- the retardation property of the first optical anisotropic layer (b1) was measured by the method described above.
- the angle formed by the slow axis with respect to the film width direction was 15 °.
- the stretched substrate (S1) was drawn from the roll (S1-2), not the roll (S1-1). Moreover, the thickness of the liquid crystal composition (B) to be applied was changed. Except for the above, a multilayer having the layer structure of (stretched base material (S1)) / (second optically anisotropic layer (b2)) in the same manner as in step (II-1-1) above. A film (S1-b2) was obtained. The dry thickness of the second optically anisotropic layer (b2) was 1.69 ⁇ m.
- the second optically anisotropic layer (b2) contained a polymer of a reverse wavelength polymerizable liquid crystal compound as a cured liquid crystal molecule of a homogeneously aligned liquid crystal compound.
- the retardation property of the second optical anisotropic layer (b2) was measured by the method described above.
- the angle formed by the slow axis with respect to the film width direction was -15 °.
- sample piece (ZF) / (adhesive layer) / (second optically anisotropic layer (b2)) in the same manner as in step (I-1-3) of Example I-1.
- / (Adhesive layer) / (first optical anisotropic layer (b1)) was obtained as an optically anisotropic laminate (ZF-b2-b1).
- the saturation average value was calculated and the coloring was evaluated by the methods described above.
- Example II-1-1 by changing the thickness of the liquid crystal composition (B) to be applied and adjusting the dry thickness of the first optically anisotropic layer (b1), the first at a wavelength of 590 nm is obtained.
- the in-plane retardation Re (H590) of the optically anisotropic layer (b1) was changed as shown in Table 2.
- the wavelength at 590 nm The in-plane retardation Re (Q590) of the second optically anisotropic layer (b2) was changed as shown in Table 2. Except for the above, the optically anisotropic laminate (ZF-b2-b1) was produced and evaluated in the same manner as in Example II-1.
- each of the optically anisotropic layers in Examples II-1 to II-10 and Comparative Examples II-1 to II-4 is obtained from the same liquid crystal composition (B). Therefore, the first optically anisotropic layer (b1) and the second optically anisotropic layer (b2) of Examples II-1 to II-10 and Comparative Examples II-1 to II-4 are represented by Re (H450) / Re (H550) and Re (Q450) / Re (Q550) are both the same value, and Re (H650) / Re (H550) and Re (Q650) / Re (Q550) are both the same value. It was.
- Example III-1 Experimental example relating to coloring effect using liquid crystal composition (C)]
- Example III-1 In the same manner as in Example I-1, except that the liquid crystal composition (C) was used instead of the liquid crystal composition (A) and the coating thickness of the liquid crystal composition (C) was changed, the optical An anisotropic laminate (ZF-2c-1c) was produced and evaluated. This will be specifically described below.
- the liquid crystal composition layer on the stretched substrate (S1) was subjected to an alignment treatment at 110 ° C. for 2.5 minutes. Thereafter, under a nitrogen atmosphere, the liquid crystal composition layer was irradiated with ultraviolet rays having an accumulated illuminance of 500 mJ / cm 2 or more to polymerize the reverse wavelength polymer liquid crystal compound in the liquid crystal composition. As a result, the layer of the liquid crystal composition is cured, and the multilayer film having the layer structure of (stretched substrate (S1)) / (first optically anisotropic layer (c1)) is converted into (S1-c1). Obtained. The dry thickness of the first optically anisotropic layer (c1) was 3.17 ⁇ m.
- the first optically anisotropic layer (c1) contained a polymer of a reverse wavelength polymerizable liquid crystal compound as a cured liquid crystal molecule of a homogeneously aligned liquid crystal compound.
- the retardation property of the first optical anisotropic layer (c1) was measured by the method described above.
- the angle formed by the slow axis with respect to the film width direction was 15 °.
- the retardation property of the second optical anisotropic layer (c2) was measured by the method described above.
- the angle formed by the slow axis with respect to the film width direction was -15 °.
- Example piece (ZF)) / (adhesive layer) / (second optically anisotropic layer (c2)) ) / (Adhesive layer) / (first optical anisotropic layer (c1)) was obtained as an optically anisotropic laminate (ZF-c2-c1).
- the saturation average value was calculated and the coloring was evaluated by the methods described above.
- step (III-1-1) by changing the thickness of the liquid crystal composition (C) to be applied and adjusting the dry thickness of the first optically anisotropic layer (c1), the first at a wavelength of 590 nm is obtained.
- the value of the in-plane retardation Re (H590) of the optically anisotropic layer (c1) was changed as shown in Table 3.
- step (III-1-2) by changing the thickness of the liquid crystal composition (C) to be applied and adjusting the dry thickness of the second optically anisotropic layer (c2), the wavelength at 590 nm is adjusted.
- the in-plane retardation Re (Q590) of the second optically anisotropic layer (c2) was changed as shown in Table 3. Except for the above, the optically anisotropic laminate (ZF-c2-c1) was produced and evaluated in the same manner as in Example III-1.
- each of the optically anisotropic layers of Examples III-1 to III-9 and Comparative Examples III-1 to III-7 is obtained from the same liquid crystal composition (C). Therefore, the first optically anisotropic layer (c1) and the second optically anisotropic layer (c2) of Examples III-1 to III-9 and Comparative Examples III-1 to III-7 are represented by Re (H450) / Re (H550) and Re (Q450) / Re (Q550) are both the same value, and Re (H650) / Re (H550) and Re (Q650) / Re (Q550) are both the same value. It was.
- the extrusion of the resin is performed by adjusting the take-up speed of the resin with a casting drum so that a stretched film having in-plane retardation Re (H590) shown in Table 4 is obtained. I went while adjusting. This pre-stretched film was stretched under the stretching conditions common to the respective comparative examples to obtain a stretched film as the first optically anisotropic layer.
- H590 in-plane retardation Re
- ⁇ 2 an angle formed by the slow axis of the second optically anisotropic layer with respect to the polarization absorption axis of the viewing-side linear polarizer of the liquid crystal display device.
- Average C * Average value of saturation C * .
- COP an alicyclic structure-containing polymer.
- an optically anisotropic laminate comprising the first optically anisotropic layer and the second optically anisotropic layer having in-plane retardation satisfying the requirements of the present invention.
- Example V-1 Production of multilayer film including first optically anisotropic layer
- Re (H590) of the first optically anisotropic layer (a1) was changed to 262 nm.
- the layer structure of (stretched substrate (S1)) / (first optically anisotropic layer (a1)) is the same as in step (I-1-1) of Example I-1.
- a multilayer film (S1-a1) was produced.
- V-1-3 Production of multilayer film containing second optically anisotropic layer
- the multilayer film (S1-a2) has a long side parallel to the width direction of the multilayer film (S1-a2) and a short side parallel to the longitudinal direction of the multilayer film (S1-a2). A sample piece of size (s1-a2) was cut out.
- a polarizing film as a long linear polarizer (“HLC2-5618S” manufactured by Sanlitz Co., Ltd., having a thickness of 180 ⁇ m, a polarizing transmission axis in the direction of 0 ° with respect to the width direction, and 90 ° with respect to the width direction. Having a polarization absorption axis in the direction of. From this polarizing film, an A4 size polarizer piece (P) having a long side parallel to the longitudinal direction of the polarizing film and a short side parallel to the width direction of the polarizing film was cut out.
- HEC2-5618S manufactured by Sanlitz Co., Ltd.
- the stretched substrate (S1) is peeled from the laminate (P-a1-s1), and (polarizer piece (P)) / (adhesive layer) / (first optical anisotropic layer (a1))
- a laminate (P-a1) having a layer structure was obtained.
- the stretched substrate (S1) is peeled off from the laminate (P-a1-a2-S1), and (polarizer piece (P)) / (adhesive layer) / (first optical anisotropic layer (a1))
- a circularly polarizing plate (P-a1-a2) having a layer structure of / (adhesive layer) / (second optically anisotropic layer (a2)) was obtained.
- the angle formed by the slow axis of the first optically anisotropic layer (a1) and the slow axis of the second optically anisotropic layer (a2) is 60 °. there were.
- the lightness L * was calculated and the reflection luminance was evaluated by the methods described above.
- Examples V-2 to V-11 and Comparative Examples V-1 to V-2 In the step (V-1-1), by changing the thickness of the liquid crystal composition (A) to be applied and adjusting the dry thickness of the first optically anisotropic layer (a1), the first at a wavelength of 590 nm is obtained.
- the value of the in-plane retardation Re (H590) of the optically anisotropic layer (a1) was changed as shown in Table 5.
- the thickness of the liquid crystal composition (A) to be applied is changed to adjust the dry thickness of the second optically anisotropic layer (a2).
- the in-plane retardation Re (Q590) of the second optically anisotropic layer (a2) was changed as shown in Table 5. Except for the above, a circularly polarizing plate (P-a1-a2) was produced and evaluated in the same manner as in Example V-1.
- each of the optically anisotropic layers of Examples V-1 to V-11 and Comparative Examples V-1 to V-2 is obtained from the same liquid crystal composition (A). Therefore, the first optically anisotropic layer (a1) and the second optically anisotropic layer (a2) of Examples V-1 to V-11 and Comparative Examples V-1 to V-2 are represented by Re (H450) / Re (H550) and Re (Q450) / Re (Q550) are both 0.80, and Re (H650) / Re (H550) and Re (Q650) / Re (Q550) are both 1.04. Met.
- Example group VI Experimental example relating to antireflection effect using liquid crystal composition (B)]
- Example VI-1 (VI-1-1. Production of a multilayer film including the first optically anisotropic layer) By changing the dry thickness of the first optically anisotropic layer (b1) to 3.54 ⁇ m, Re (H590) of the first optically anisotropic layer (b1) was changed to 254 nm. Except for the above, the layer structure of (stretched substrate (S1)) / (first optically anisotropic layer (b1)) was the same as in Step (II-1-1) of Example II-1. A multilayer film (S1-b1) was produced.
- Examples VI-2 to VI-14 and Comparative Examples VI-1 to VI-2 [Examples VI-2 to VI-14 and Comparative Examples VI-1 to VI-2]
- the step (VI-1-1) by changing the thickness of the liquid crystal composition (B) to be applied and adjusting the dry thickness of the first optically anisotropic layer (b1), the first at a wavelength of 590 nm is obtained.
- the value of the in-plane retardation Re (H590) of the optically anisotropic layer (b1) was changed as shown in Table 6.
- the step (VI-1-2) by changing the thickness of the liquid crystal composition (B) to be applied and adjusting the dry thickness of the second optically anisotropic layer (b2), the wavelength at 590 nm is adjusted.
- the value of the in-plane retardation Re (Q590) of the second optically anisotropic layer (b2) was changed as shown in Table 6. Except for the above, a circularly polarizing plate (Pb1-b2) was produced and evaluated in the same manner as in Example VI-1.
- each of the optically anisotropic layers of Examples VI-1 to VI-14 and Comparative Examples VI-1 to VI-2 is obtained from the same liquid crystal composition (B). Therefore, the first optically anisotropic layer (b1) and the second optically anisotropic layer (b2) of Examples VI-1 to VI-14 and Comparative Examples VI-1 to VI-2 are represented by Re (H450) / Re (H550) and Re (Q450) / Re (Q550) are both 0.89, and Re (H650) / Re (H550) and Re (Q650) / Re (Q550) are both 1.03. Met.
- Example group VII Experimental example relating to the antireflection effect using the liquid crystal composition (C)]
- Example VII-1 (VII-1-1.
- Production of a multilayer film including the first optically anisotropic layer) By changing the dry thickness of the first optically anisotropic layer (c1) to 3.17 ⁇ m, Re (H590) of the first optically anisotropic layer (c1) was changed to 243 nm. Except for the above, the layer structure of (stretched substrate (S1)) / (first optically anisotropic layer (c1)) was made in the same manner as in step (III-1-1) of Example III-1. A multilayer film (S1-c1) was produced.
- Examples VII-2 to VII-9 and Comparative Examples VII-1 to VII-6 In the step (VII-1-1), by changing the thickness of the liquid crystal composition (C) to be applied and adjusting the dry thickness of the first optically anisotropic layer (c1), the first at a wavelength of 590 nm is obtained.
- the value of the in-plane retardation Re (H590) of the optically anisotropic layer (c1) was changed as shown in Table 7.
- step (VII-1-2) by changing the thickness of the liquid crystal composition (C) to be applied and adjusting the dry thickness of the second optically anisotropic layer (c2), at a wavelength of 590 nm
- the value of the in-plane retardation Re (Q590) of the second optically anisotropic layer (c2) was changed as shown in Table 7. Except for the above, the circularly polarizing plate (Pc1-c2) was produced and evaluated in the same manner as in Example VII-1.
- each of the optically anisotropic layers in Examples VII-1 to VII-9 and Comparative Examples VII-1 to VII-6 is obtained from the same liquid crystal composition (C). Therefore, the first optically anisotropic layer (c1) and the second optically anisotropic layer (c2) of Examples VII-1 to VII-9 and Comparative Examples VII-1 to VII-6 are represented by Re (H450) / Re (H550) and Re (Q450) / Re (Q550) are both 0.93, and Re (H650) / Re (H550) and Re (Q650) / Re (Q550) are both 1.01. Met.
- ⁇ 2 an angle formed by the slow axis of the second optically anisotropic layer with respect to the polarization absorption axis of the polarizer piece of the circularly polarizing plate.
- L * Lightness.
- A) Liquid crystal composition
- B Liquid crystal composition
- C Liquid crystal composition
- COP an alicyclic structure-containing polymer.
- the optically anisotropic laminate of the present invention has an in-plane in which the first optically anisotropic layer and the second optically anisotropic layer satisfy predetermined requirements.
- it can be used with a circularly polarizing plate in combination with a linear polarizer.
- the circularly-polarizing plate can be used as an antireflection film capable of particularly effectively suppressing reflection of external light in the front direction of the image display device.
Landscapes
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Nonlinear Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Mathematical Physics (AREA)
- General Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Human Computer Interaction (AREA)
- Polarising Elements (AREA)
- Liquid Crystal (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
- Electroluminescent Light Sources (AREA)
- Laminated Bodies (AREA)
Abstract
Description
すなわち、本発明は、下記のとおりである。
波長450nm、550nm、590nm及び650nmにおける、前記第一光学異方性層の面内レターデーションRe(H450)、Re(H550)、Re(H590)及びRe(H650)が、下記式(1)、(2)及び(3)を満たし、
波長450nm、550nm、590nm及び650nmにおける、前記第二光学異方性層の面内レターデーションRe(Q450)、Re(Q550)、Re(Q590)及びRe(Q650)が、下記式(4)、(5)及び(6)を満たす、光学異方性積層体。
242nm<Re(H590)<331nm (1)
0.75≦Re(H450)/Re(H550)≦0.85 (2)
1.04≦Re(H650)/Re(H550)≦1.20 (3)
121nm<Re(Q590)<166nm (4)
0.75≦Re(Q450)/Re(Q550)≦0.85 (5)
1.04≦Re(Q650)/Re(Q550)≦1.20 (6)
〔2〕 第一光学異方性層及び第二光学異方性層を備える、光学異方性積層体であって、
波長450nm、550nm、590nm及び650nmにおける、前記第一光学異方性層の面内レターデーションRe(H450)、Re(H550)、Re(H590)及びRe(H650)が、下記式(7)、(8)及び(9)を満たし、
波長450nm、550nm、590nm及び650nmにおける、前記第二光学異方性層の面内レターデーションRe(Q450)、Re(Q550)、Re(Q590)及びRe(Q650)が、下記式(10)、(11)及び(12)を満たす、光学異方性積層体。
236nm<Re(H590)<316nm (7)
0.85<Re(H450)/Re(H550)≦0.90 (8)
1.02≦Re(H650)/Re(H550)<1.04 (9)
118nm<Re(Q590)<158nm (10)
0.85<Re(Q450)/Re(Q550)≦0.90 (11)
1.02≦Re(Q650)/Re(Q550)<1.04 (12)
〔3〕 第一光学異方性層及び第二光学異方性層を備える、光学異方性積層体であって、
波長450nm、550nm、590nm及び650nmにおける、前記第一光学異方性層の面内レターデーションRe(H450)、Re(H550)、Re(H590)及びRe(H650)が、下記式(13)、(14)及び(15)を満たし、
波長450nm、550nm、590nm及び650nmにおける、前記第二光学異方性層の面内レターデーションRe(Q450)、Re(Q550)、Re(Q590)及びRe(Q650)が、下記式(16)、(17)及び(18)を満たす、光学異方性積層体。
240nm<Re(H590)<290nm (13)
0.90<Re(H450)/Re(H550)≦0.99 (14)
1.01≦Re(H650)/Re(H550)<1.02 (15)
120nm<Re(Q590)<148nm (16)
0.90<Re(Q450)/Re(Q550)≦0.99 (17)
1.01≦Re(Q650)/Re(Q550)<1.02 (18)
〔4〕 波長590nmにおける前記第一光学異方性層の面内レターデーションRe(H590)が、下記式(19)を満たし、
波長590nmにおける前記第二光学異方性層の面内レターデーションRe(Q590)が、下記式(20)を満たす、〔1〕記載の光学異方性積層体。
266nm<Re(H590)<314nm (19)
133nm<Re(Q590)<157nm (20)
〔5〕 波長590nmにおける前記第一光学異方性層の面内レターデーションRe(H590)が、下記式(21)を満たし、
波長590nmにおける前記第二光学異方性層の面内レターデーションRe(Q590)が、下記式(22)を満たす、〔2〕記載の光学異方性積層体。
260nm<Re(H590)<291nm (21)
130nm<Re(Q590)<145nm (22)
〔6〕 波長590nmにおける前記第一光学異方性層の面内レターデーションRe(H590)が、下記式(23)を満たし、
波長590nmにおける前記第二光学異方性層の面内レターデーションRe(Q590)が、下記式(24)を満たす、〔1〕又は〔4〕記載の光学異方性積層体。
274nm<Re(H590)<299nm (23)
137nm<Re(Q590)<150nm (24)
〔7〕 波長590nmにおける前記第一光学異方性層の面内レターデーションRe(H590)が、下記式(25)を満たし、
波長590nmにおける前記第二光学異方性層の面内レターデーションRe(Q590)が、下記式(26)を満たす、〔2〕又は〔5〕記載の光学異方性積層体。
271nm<Re(H590)<291nm (25)
135nm<Re(Q590)<145nm (26)
〔8〕 前記第一光学異方性層の面内における最大屈折率を示す遅相軸方向と、前記第二光学異方性層の面内における最大屈折率を示す遅相軸方向とがなす角度が、60°±10°である、〔1〕~〔7〕のいずれか一項に記載の光学異方性積層体。
〔9〕 前記第一光学異方性層及び前記第二光学異方性層の少なくとも一方が、重合性の液晶化合物を含む液晶組成物の硬化物からなる、〔1〕~〔8〕のいずれか一項に記載の光学異方性積層体。
〔10〕 前記第一光学異方性層及び前記第二光学異方性層の両方が、重合性の液晶化合物を含む液晶組成物の硬化物からなる、〔1〕~〔9〕のいずれか一項に記載の光学異方性積層体。
〔11〕 前記液晶化合物が、ホモジニアス配向した場合に、逆波長分散性の面内レターデーションを示すものである、〔9〕又は〔10〕記載の光学異方性積層体。
〔12〕 前記液晶化合物が、前記液晶化合物の分子中に、主鎖メソゲンと、前記主鎖メソゲンに結合した側鎖メソゲンとを含む、〔9〕~〔11〕のいずれか一項に記載の光学異方性積層体。
〔13〕 前記液晶化合物が、下記式(I)で表される、〔9〕~〔12〕のいずれか一項に記載の光学異方性積層体。
Y1~Y8は、それぞれ独立して、化学的な単結合、-O-、-S-、-O-C(=O)-、-C(=O)-O-、-O-C(=O)-O-、-NR1-C(=O)-、-C(=O)-NR1-、-O-C(=O)-NR1-、-NR1-C(=O)-O-、-NR1-C(=O)-NR1-、-O-NR1-、又は、-NR1-O-を表す。ここで、R1は、水素原子又は炭素数1~6のアルキル基を表す。
G1及びG2は、それぞれ独立して、置換基を有していてもよい、炭素数1~20の二価の脂肪族基を表す。また、前記脂肪族基には、1つの脂肪族基当たり1以上の-O-、-S-、-O-C(=O)-、-C(=O)-O-、-O-C(=O)-O-、-NR2-C(=O)-、-C(=O)-NR2-、-NR2-、又は、-C(=O)-が介在していてもよい。ただし、-O-又は-S-がそれぞれ2以上隣接して介在する場合を除く。ここで、R2は、水素原子又は炭素数1~6のアルキル基を表す。
Z1及びZ2は、それぞれ独立して、ハロゲン原子で置換されていてもよい炭素数2~10のアルケニル基を表す。
Axは、芳香族炭化水素環及び芳香族複素環からなる群から選ばれる少なくとも一つの芳香環を有する、炭素数2~30の有機基を表す。
Ayは、水素原子、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数2~20のアルケニル基、置換基を有していてもよい炭素数3~12のシクロアルキル基、置換基を有していてもよい炭素数2~20のアルキニル基、-C(=O)-R3、-SO2-R4、-C(=S)NH-R9、又は、芳香族炭化水素環及び芳香族複素環からなる群から選ばれる少なくとも一つの芳香環を有する、炭素数2~30の有機基を表す。ここで、R3は、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数2~20のアルケニル基、置換基を有していてもよい炭素数3~12のシクロアルキル基、又は、炭素数5~12の芳香族炭化水素環基を表す。R4は、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、フェニル基、又は、4-メチルフェニル基を表す。R9は、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数2~20のアルケニル基、置換基を有していてもよい炭素数3~12のシクロアルキル基、又は、置換基を有していてもよい炭素数5~20の芳香族基を表す。前記Ax及びAyが有する芳香環は、置換基を有していてもよい。また、前記AxとAyは、一緒になって、環を形成していてもよい。
A1は、置換基を有していてもよい三価の芳香族基を表す。
A2及びA3は、それぞれ独立して、置換基を有していてもよい炭素数3~30の二価の脂環式炭化水素基を表す。
A4及びA5は、それぞれ独立して、置換基を有していてもよい、炭素数6~30の二価の芳香族基を表す。
Q1は、水素原子、又は、置換基を有していてもよい炭素数1~6のアルキル基を表す。
mは、それぞれ独立に、0又は1を表す。)
〔14〕 前記液晶化合物が、前記液晶化合物の分子中に、ベンゾチアゾール環、並びに、シクロヘキシル環及びフェニル環の組み合わせ、からなる群より選ばれる少なくとも1種を含有する、〔9〕~〔13〕のいずれか一項に記載の光学異方性積層体。
〔15〕 透明導電層を備える、〔1〕~〔14〕のいずれか一項に記載の光学異方性積層体。
〔16〕 直線偏光子と、〔1〕~〔15〕のいずれか一項に記載の光学異方性積層体とを備え、
前記直線偏光子、前記第一光学異方性層、及び、前記第二光学異方性層をこの順に備える、円偏光板。
〔17〕 前記直線偏光子の吸収軸方向と、前記第一光学異方性層の面内における最大屈折率を示す遅相軸方向とがなす角度θ1(-90°<θ1<90°)、及び、
前記直線偏光子の吸収軸方向と、前記第二光学異方性層の面内における最大屈折率を示す遅相軸方向とがなす角度θ2(-90°<θ2<90°)が、
同符号であり、且つ、
下記式(27)及び(28)を満たす、〔16〕記載の円偏光板。
|θ1|=15°±5° (27)
|θ2|=75°±10° (28)
〔18〕 前記直線偏光子の吸収軸方向と、前記第一光学異方性層の面内における最大屈折率を示す遅相軸方向とがなす角度θ1(-90°<θ1<90°)、及び、
前記直線偏光子の吸収軸方向と、前記第二光学異方性層の面内における最大屈折率を示す遅相軸方向とがなす角度θ2(-90°<θ2<90°)が、
同符号であり、且つ、
下記式(29)及び(30)を満たす、〔16〕記載の円偏光板。
|θ1|=75°±10° (29)
|θ2|=15°±5° (30)
〔19〕 〔16〕~〔18〕のいずれか一項に記載の円偏光板及び画像表示素子を備える画像表示装置であって、
前記光学異方性積層体、前記直線偏光子及び前記画像表示素子を、この順に備える、画像表示装置。
〔20〕 〔16〕~〔18〕のいずれか一項に記載の円偏光板及び有機エレクトロルミネッセンス素子を備える有機エレクトロルミネッセンス表示装置であって、
前記直線偏光子、前記光学異方性積層体及び前記有機エレクトロルミネッセンス素子を、この順に備える、画像表示装置。
図1は、本発明の第一実施形態としての光学異方性積層体100の断面を模式的に示す断面図である。
図1に示すように、光学異方性積層体100は、第一光学異方性層110及び第二光学異方性層120を備える。前記の第一光学異方性層110及び第二光学異方性層120は、下記の第一~第三のいずれかの組み合わせで、所定の要件を満たす面内レターデーションを有する。また、光学異方性積層体100は、必要に応じて、任意の層(図示せず)を備えていてもよい。
第一の組み合わせにおいて、波長450nmにおける第一光学異方性層の面内レターデーションRe(H450)、波長550nmにおける第一光学異方性層の面内レターデーションRe(H550)、波長590nmにおける第一光学異方性層の面内レターデーションRe(H590)、波長650nmにおける第一光学異方性層の面内レターデーションRe(H650)、波長450nmにおける第二光学異方性層の面内レターデーションRe(Q450)、波長550nmにおける第二光学異方性層の面内レターデーションRe(Q550)、波長590nmにおける第二光学異方性層の面内レターデーションRe(Q590)、及び、波長650nmにおける第二光学異方性層の面内レターデーションRe(Q650)は、下記の式(1)~下記(6)を満たす。
242nm<Re(H590)<331nm (1)
0.75≦Re(H450)/Re(H550)≦0.85 (2)
1.04≦Re(H650)/Re(H550)≦1.20 (3)
121nm<Re(Q590)<166nm (4)
0.75≦Re(Q450)/Re(Q550)≦0.85 (5)
1.04≦Re(Q650)/Re(Q550)≦1.20 (6)
266nm<Re(H590)<314nm (19)
133nm<Re(Q590)<157nm (20)
274nm<Re(H590)<299nm (23)
137nm<Re(Q590)<150nm (24)
第二の組み合わせにおいて、波長450nmにおける第一光学異方性層の面内レターデーションRe(H450)、波長550nmにおける第一光学異方性層の面内レターデーションRe(H550)、波長590nmにおける第一光学異方性層の面内レターデーションRe(H590)、波長650nmにおける第一光学異方性層の面内レターデーションRe(H650)、波長450nmにおける第二光学異方性層の面内レターデーションRe(Q450)、波長550nmにおける第二光学異方性層の面内レターデーションRe(Q550)、波長590nmにおける第二光学異方性層の面内レターデーションRe(Q590)、及び、波長650nmにおける第二光学異方性層の面内レターデーションRe(Q650)は、下記の式(7)~下記(12)を満たす。
236nm<Re(H590)<316nm (7)
0.85<Re(H450)/Re(H550)≦0.90 (8)
1.02≦Re(H650)/Re(H550)<1.04 (9)
118nm<Re(Q590)<158nm (10)
0.85<Re(Q450)/Re(Q550)≦0.90 (11)
1.02≦Re(Q650)/Re(Q550)<1.04 (12)
260nm<Re(H590)<291nm (21)
130nm<Re(Q590)<145nm (22)
271nm<Re(H590)<291nm (25)
135nm<Re(Q590)<145nm (26)
第三の組み合わせにおいて、波長450nmにおける第一光学異方性層の面内レターデーションRe(H450)、波長550nmにおける第一光学異方性層の面内レターデーションRe(H550)、波長590nmにおける第一光学異方性層の面内レターデーションRe(H590)、波長650nmにおける第一光学異方性層の面内レターデーションRe(H650)、波長450nmにおける第二光学異方性層の面内レターデーションRe(Q450)、波長550nmにおける第二光学異方性層の面内レターデーションRe(Q550)、波長590nmにおける第二光学異方性層の面内レターデーションRe(Q590)、及び、波長650nmにおける第二光学異方性層の面内レターデーションRe(Q650)は、下記の式(13)~式(18)を満たす。
240nm<Re(H590)<290nm (13)
0.90<Re(H450)/Re(H550)≦0.99 (14)
1.01≦Re(H650)/Re(H550)<1.02 (15)
120nm<Re(Q590)<148nm (16)
0.90<Re(Q450)/Re(Q550)≦0.99 (17)
1.01≦Re(Q650)/Re(Q550)<1.02 (18)
具体的には、第一光学異方性層の面内レターデーションRe(H590)は、好ましくは248nmより大きく、より好ましくは255nmより大きく、特に好ましくは259nmより大きく、また、好ましくは277nm未満、より好ましくは272nm未満、特に好ましくは268nm未満である。
また、第二光学異方性層の面内レターデーションRe(Q590)は、好ましくは124nmより大きく、より好ましくは127nmより大きく、特に好ましくは130nmより大きく、また、好ましくは138nm未満、より好ましくは136nm未満、特に好ましくは134nm未満である。
このような範囲の面内レターデーションRe(H590)及びRe(Q590)を有する第一光学異方性層と第二光学異方性層とを組み合わせて備える光学異方性積層体は、画像表示装置に設けることにより、偏光サングラスを通して正面方向からその画像表示装置の表示面を見た場合に、偏光サングラスの傾き角度に応じた表示面の色づきを、特に効果的に抑制できる。
具体的には、第一光学異方性層の面内レターデーションRe(H590)は、好ましくは268nmより大きく、より好ましくは272nmより大きく、また、好ましくは286nm未満、より好ましくは281nm未満である。
また、第二光学異方性層の面内レターデーションRe(Q590)は、好ましくは134nmより大きく、より好ましくは136nmより大きく、また、好ましくは143nm未満、より好ましくは141nm未満である。
このような範囲の面内レターデーションRe(H590)及びRe(Q590)を有する第一光学異方性層と第二光学異方性層とを組み合わせて備える光学異方性積層体は、直線偏光子層と組み合わせて得られる円偏光板によって、有機EL表示装置の正面方向における外光の反射を、特に効果的に抑制できる。
第一光学異方性層としては、重合性の液晶化合物を含む液晶組成物の硬化物からなる層を用いうる。以下、このように重合性の液晶化合物を含む液晶組成物の硬化物からなる層のことを、適宜「液晶硬化層」ということがある。
R1の炭素数1~6のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、t-ブチル基、n-ペンチル基、n-へキシル基が挙げられる。
R1としては、水素原子又は炭素数1~4のアルキル基が好ましい。
炭素数1~20の二価の脂肪族基としては、例えば、炭素数1~20のアルキレン基、炭素数2~20のアルケニレン基等の鎖状構造を有する二価の脂肪族基;炭素数3~20のシクロアルカンジイル基、炭素数4~20のシクロアルケンジイル基、炭素数10~30の二価の脂環式縮合環基等の二価の脂肪族基;が挙げられる。
前記脂肪族基に介在する基としては、-O-、-O-C(=O)-、-C(=O)-O-、-C(=O)-が好ましい。
該アルケニル基の炭素数としては、2~6が好ましい。Z1及びZ2のアルケニル基の置換基であるハロゲン原子としては、フッ素原子、塩素原子、臭素原子等が挙げられ、塩素原子が好ましい。
さらに、Axの炭素数2~30の有機基の「炭素数」は、置換基の炭素原子を含まない有機基全体の総炭素数を意味する(後述するAyにて同じである。)。
(1)芳香族炭化水素環基
(3)芳香族炭化水素環及び複素環の組み合わせを含む基
Axの炭素数2~30の有機基の「炭素数」は、置換基の炭素原子を含まない有機基全体の総炭素数を意味する(後述するAyにて同じである。)。
AxとAyが一緒になって形成される環としては、例えば、下記に示す環が挙げられる。なお、下記に示す環は、式(I)中の
また、これらの環は置換基を有していてもよい。かかる置換基としては、Axが有する芳香環の置換基として説明したのと同様のものが挙げられる。
(α)Axが炭素数4~30の、芳香族炭化水素環基、芳香族複素環基、又は、芳香族炭化水素環及び複素環の組み合わせを含む基であり、Ayが水素原子、炭素数3~8のシクロアルキル基、(ハロゲン原子、シアノ基、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、若しくは炭素数3~8のシクロアルキル基)を置換基として有していてもよい炭素数6~12の芳香族炭化水素環基、(ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、シアノ基)を置換基として有していてもよい炭素数3~9の芳香族複素環基、(ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、シアノ基)を置換基として有していてもよく芳香族炭化水素環及び複素環の組み合わせを含む炭素数3~9の基、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数1~20のアルケニル基、又は、置換基を有していてもよい炭素数2~20のアルキニル基であり、当該置換基が、ハロゲン原子、シアノ基、炭素数1~20のアルコキシ基、炭素数1~12のアルコキシ基で置換された炭素数1~12のアルコキシ基、フェニル基、シクロヘキシル基、炭素数2~12の環状エーテル基、炭素数6~14のアリールオキシ基、水酸基、ベンゾジオキサニル基、ベンゼンスルホニル基、ベンゾイル基及び-SR10のいずれかである組み合わせ。
(β)AxとAyが一緒になって不飽和複素環又は不飽和炭素環を形成している組み合わせ。
ここで、R10は前記と同じ意味を表す。
(γ)Axが下記構造を有する基のいずれかであり、Ayが水素原子、炭素数3~8のシクロアルキル基、(ハロゲン原子、シアノ基、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、若しくは炭素数3~8のシクロアルキル基)を置換基として有していてもよい炭素数6~12の芳香族炭化水素環基、(ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、シアノ基)を置換基として有していてもよい炭素数3~9の芳香族複素環基、(ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、シアノ基)を置換基として有していてもよく芳香族炭化水素環及び複素環の組み合わせを含む炭素数3~9の基、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数1~20のアルケニル基、又は、置換基を有していてもよい炭素数2~20のアルキニル基であり、当該置換基が、ハロゲン原子、シアノ基、炭素数1~20のアルコキシ基、炭素数1~12のアルコキシ基で置換された炭素数1~12のアルコキシ基、フェニル基、シクロヘキシル基、炭素数2~12の環状エーテル基、炭素数6~14のアリールオキシ基、水酸基、ベンゾジオキサニル基、ベンゼンスルホニル基、ベンゾイル基、-SR10のいずれかである組み合わせ。
ここで、R10は前記と同じ意味を表す。
AxとAyの特に好ましい組み合わせとしては、下記の組み合わせ(δ)が挙げられる。
(δ)Axが下記構造を有する基のいずれかであり、Ayが水素原子、炭素数3~8のシクロアルキル基、(ハロゲン原子、シアノ基、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、若しくは炭素数3~8のシクロアルキル基)を置換基として有していてもよい炭素数6~12の芳香族炭化水素環基、(ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、シアノ基)を置換基として有していてもよい炭素数3~9の芳香族複素環基、(ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、シアノ基)を置換基として有していてもよく芳香族炭化水素環及び複素環の組み合わせを含む炭素数3~9の基、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数1~20のアルケニル基、又は、置換基を有していてもよい炭素数2~20のアルキニル基であり、当該置換基が、ハロゲン原子、シアノ基、炭素数1~20のアルコキシ基、炭素数1~12のアルコキシ基で置換された炭素数1~12のアルコキシ基、フェニル基、シクロヘキシル基、炭素数2~12の環状エーテル基、炭素数6~14のアリールオキシ基、水酸基、ベンゾジオキサニル基、ベンゼンスルホニル基、ベンゾイル基、及び、-SR10のいずれかである組み合わせ。
下記式中、Xは前記と同じ意味を表す。ここで、R10は前記と同じ意味を表す。
工程(i):基材上に液晶組成物を塗工して、液晶組成物の層を得る工程、
工程(ii):液晶組成物の層に含まれる液晶化合物を配向させる工程、及び、
工程(iii):液晶組成物を硬化する工程
を含む製造方法によって、製造できる。
脂環式構造としては、例えば、シクロアルカン構造、シクロアルケン構造等が挙げられるが、熱安定性等の観点からシクロアルカン構造が好ましい。
1つの脂環式構造の繰り返し単位を構成する炭素数に特に制限はないが、好ましくは4個以上、より好ましくは5個以上、特に好ましくは6個以上であり、好ましくは30個以下、より好ましくは20個以下、特に好ましくは15個以下である。
脂環式構造含有重合体を含む樹脂の好適な具体例としては、日本ゼオン社製「ゼオノア1420」、「ゼオノア1420R」を挙げうる。
第二光学異方性層としては、重合性の液晶化合物を含む液晶組成物の硬化物からなる液晶硬化層を用いうる。第二光学異方性層としての液晶硬化層には、第一光学異方性層としての液晶硬化層として説明した範囲から、上述した所望の面内レターデーションを有する任意の液晶硬化層を用いうる。
光学異方性積層体は、第一光学異方性層及び第二光学異方性層に組み合わせて、更に任意の層を備えうる。例えば、光学異方性積層体は、第一光学異方性層又は第二光学異方性層を製造するために用いた基材を、任意の層として備えていてもよい。また、例えば、光学異方性層は、接着層、ハードコート層等を、任意の層として備えていてもよい。
図2に示すように、光学異方性積層体200は、第一光学異方性層110及び第二光学異方性層120に組み合わせて、任意の層として透明導電層210を備えていてもよい。この場合、透明導電層210の位置は任意である。よって、光学異方性積層体200は、図2に示すように、透明導電層210、第一光学異方性層110及び第二光学異方性層120をこの順に備えていてもよい。また、光学異方性積層体200は、透明導電層210、第二光学異方性層120及び第一光学異方性層110をこの順に備えていてもよい。
また、前記の導電性ポリマーは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
光学異方性積層体は、透明性に優れることが好ましい。具体的には、光学異方性積層体の全光線透過率は、好ましくは80%以上、より好ましくは85%以上、特に好ましくは90%以上である。また、光学異方性積層体のヘイズは、好ましくは5%以下、より好ましくは3%以下、特に好ましくは1%以下であり、理想的には0%である。ここで、光線透過率は、JIS K0115に準拠して、分光光度計(日本分光社製、紫外可視近赤外分光光度計「V-570」)を用いて測定しうる。また、ヘイズは、JIS K7361-1997に準拠して、日本電色工業社製「濁度計 NDH-300A」を用いて、5箇所測定し、それから求めた平均値を採用しうる。
光学異方性積層体は、例えば、第一光学異方性層と第二光学異方性層とを貼り合わせて光学異方性積層体を得る工程を含む製造方法によって、製造しうる。
具体例を挙げると、第一光学異方性層及び第二光学異方性層が液晶硬化層である場合には、光学異方性積層体は、
第一基材上に液晶硬化層としての第一光学異方性層を形成して、第一基材及び第一光学異方性層を備える第一複層フィルムを用意する工程と;
第二基材上に液晶硬化層としての第二光学異方性層を形成して、第二基材及び第二光学異方性層を備える第二複層フィルムを用意する工程と;
第一光学異方性層と第二光学異方性層とを貼り合わせて、光学異方性積層体を得る工程と;を含む製造方法によって、製造しうる。
図3は、本発明の第三実施形態としての円偏光板300の断面を模式的に示す断面図である。
図3に示すように、円偏光板300は、直線偏光子310と光学異方性積層体100とを備える。また、この円偏光板300は、直線偏光子310、第一光学異方性層110及び第二光学異方性層120を、この順に備えている。
また、直線偏光子310の厚みは、好ましくは5μm~80μmである。
図4に示すように、直線偏光子310の偏光吸収軸方向DPと、第一光学異方性層110の面内における遅相軸方向DHとがなす角度を、「θ1」で表し、直線偏光子310の偏光吸収軸方向DPと、第二光学異方性層120の面内における遅相軸方向DQとがなす角度を、「θ2」で表す。この際、-90°<θ1<90°、且つ、-90°<θ2<90°である。
|θ1|=15°±5° (27)
|θ2|=75°±10° (28)
式(28)を詳細に説明すると、角度θ2の絶対値|θ2|は、通常75°±10°、好ましくは75°±6°、より好ましくは75°±2°である。
このような要件を満たすことにより、直線偏光子310を透過した広い波長範囲の直線偏光を、第一光学異方性層110及び第二光学異方性層120を含む光学異方性積層体100によって、円偏光に変換できる。したがって、円偏光板300を画像表示装置に設けた場合に、表示面の色づきの抑制、及び、外光の反射の抑制といった前述の効果を、特に効果的に発揮できる。
|θ1|=75°±10° (29)
|θ2|=15°±5° (30)
式(30)を詳細に説明すると、角度θ2の絶対値|θ2|は、通常15°±5°、好ましくは15°±3°、より好ましくは15°±1°である。
このような要件を満たすことにより、直線偏光子310を透過した広い波長範囲の直線偏光を、第一光学異方性層110及び第二光学異方性層120を含む光学異方性積層体100によって、円偏光に変換できる。したがって、円偏光板300を画像表示装置に設けた場合に、表示面の色づきの抑制、及び、外光の反射の抑制といった前述の効果を、特に効果的に発揮できる。
・当該円偏光板を、そのある一方の面から観察すると、第一光学異方性層の遅相軸方向が、直線偏光子の偏光吸収軸方向から時計周りに15°シフトし、且つ第二光学異方性層の遅相軸方向が、直線偏光子の偏光吸収軸方向から時計周りに75°シフトしている。
・当該円偏光板を、そのある一方の面から観察すると、第一光学異方性層の遅相軸方向が、直線偏光子の偏光吸収軸方向から反時計周りに15°シフトし、且つ第二光学異方性層の遅相軸方向が、直線偏光子の偏光吸収軸方向から反時計周りに75°シフトしている。
前記の層は、それぞれ、1層だけを設けてもよく、2層以上を設けてもよい。
本発明の画像表示装置は、画像表示素子と、上述した円偏光板とを備える。画像表示装置において、円偏光板は、通常、画像表示素子の視認側に設けられる。この際、円偏光板の向きは、その円偏光板の用途に応じて任意に設定しうる。よって、画像表示装置は、光学異方性積層体と、直線偏光子と、画像表示素子とを、この順に備えていてもよい。また、画像表示装置は、直線偏光子と、光学異方性積層体と、画像表示素子とを、この順に備えていてもよい。
以下、画像表示装置の好ましい実施形態について、図面を示して説明する。
図5に示すように、有機EL表示装置400は、画像表示素子としての有機EL素子410;第二光学異方性層120及び第一光学異方性層110を備える光学異方性積層体100;並びに、直線偏光子310;を、この順に備える。
具体的には、装置外部から入射した光は、その一部の直線偏光のみが直線偏光子310を通過し、次にそれが光学異方性積層体100を通過することにより、円偏光となる。円偏光は、表示装置内の光を反射する構成要素(有機EL素子410中の反射電極(図示せず)等)により反射され、再び光学異方性積層体100を通過することにより、入射した直線偏光の振動方向と直交する振動方向を有する直線偏光となり、直線偏光子310を通過しなくなる。これにより、反射抑制の機能が達成される(有機EL表示装置における反射抑制の原理は、特開平9-127885号公報参照)。
図6に示すように、有機EL表示装置500は、画像表示素子としての有機EL素子410;λ/4波長板510;直線偏光子310;並びに、第一光学異方性層110及び第二光学異方性層120を備える光学異方性積層体100;を、この順に備える。
図7に示すように、液晶表示装置600は、光源610;光源側直線偏光子620;画像表示素子としての液晶セル630;視認側直線偏光子としての直線偏光子310;並びに、第一光学異方性層110及び第二光学異方性層120を備える光学異方性積層体100;を、この順に備える。
画像表示装置の表示面の正面方向から、偏光サングラスを通して、前記の表示面を観察し、その彩度C*を測定する。前記の彩度C*の測定を、画像表示装置の表示面に平行なある基準方向(例えば、画像表示装置の直線偏光子の偏光吸収軸方向)に対して偏光サングラスの偏光吸収軸がなす傾き角度を、0°以上360°未満の範囲で、5°刻みで変えながら、行う。そして、測定された各傾き角度での彩度C*の平均値を計算する。
〔光学異方性層の位相差特性の測定方法〕
延伸基材及び光学異方性層を備える複層フィルムから、複層フィルムの長手方向に平行な長辺と、複層フィルムの幅方向に平行な短辺とを有する、A4サイズのサンプル片を切り出した。
光学的に等方性のガラス板の一方の面と、前記サンプル片の光学異方性層側の面とを、手貼りローラーを用いて、貼り合わせた。貼り合わせは、粘着剤層(日東電工製「CS9621」)を介して行った。また、ガラス板のサイズは75mm×25mmであり、ガラス板の長辺とサンプル片の長辺とが平行になるように貼り合わせ、ガラス板からはみ出したサンプル片の余り部分は、カッターで切り落とした。これにより、(ガラス板)/(粘着剤層)/(光学異方性層)/(延伸基材)の層構成を有する、積層体を得た。
こうして得られた測定用位相差板を用いて、波長450nm、550nm、590nm及び650nmにおける光学異方性層の面内レターデーションRe(450)、Re(550)、Re(590)及びRe(650)、並びに、遅相軸方向を、位相差測定装置(AXOMETRICS社製「AxoScan」)を用いて測定した。そして、光学異方性層のRe(590)、Re(450)/Re(550)及びRe(650)/Re(550)の値を求めた。また、フィルム幅方向に対して、光学異方性層の遅相軸がなす角度を求めた。
シミュレーション用のソフトウェアとして、シンテック社製「LCD Master」を用いて、光学異方性積層体を備える下記の評価モデルを作成した。
前記の画像表示装置を白表示にして、図8に示すように、表示面10の正面方向から見たときに、偏光サングラス20を通して見える画像の彩度C*を計算した。偏光サングラス20としては、理想偏光フィルムを設定した。ここで、理想偏光フィルムとは、ある方向に平行な振動方向を有する直線偏光の全てを通過させるが、その方向に垂直な振動方向を有する直線偏光を全く通過させないフィルムをいう。
光源、光源側直線偏光子、IPSモードの液晶セル、及び視認側直線偏光子をこの順に備えた液晶表示装置(Apple社製「iPad」)を用意した。この液晶表示装置の表示面部分を分解し、液晶表示装置の視認側直線偏光子を露出させた。露出した視認側直線偏光子に、後述する実施例又は比較例で製造した光学異方性積層体の第一光学異方性層側の面を、手貼りローラーを用いて貼り合わせた。貼り合わせは、粘着剤層(日東電工製「CS9621」)を介して行った。また、前記の貼り合わせは、厚み方向から見て、液晶表示装置の視認側直線偏光子の偏光吸収軸に対して第一光学異方性層の遅相軸及び第二光学異方性層の遅相軸がなす角度が、それぞれ、15.0°及び75.0°となるように行った。これにより、評価用の画像表示装置を得た。
シミュレーション用のソフトウェアとしてシンテック社製「LCD Master」を用いて、円偏光板を備える下記の評価モデルを作成した。
有機EL素子及び円偏光板をこの順に備えた有機EL表示装置(Samusung社製「GALAXY」)を用意した。この有機EL表示装置の表示面部分を分解し、円偏光板を取り除いた。その後、有機EL素子上に、後述する実施例又は比較例で製造した円偏光板の第二光学異方性層側の面を、手貼りローラーを用いて貼り合わせた。貼り合わせは、粘着剤層(日東電工製「CS9621」)を介して行った。これにより、評価用の画像表示装置を得た。
ノルボルネン重合体を含む熱可塑性樹脂のペレット(日本ゼオン社製、ガラス転移温度Tg=126℃)を、90℃で5時間乾燥させた。乾燥させたペレットを押し出し機に供給し、押し出し機内で溶融させた。そして、溶融した樹脂を、ポリマーパイプ及びポリマーフィルターを通し、Tダイからキャスティングドラム上にシート状に押し出し、冷却し、厚み60μm、幅1350mmの長尺の延伸前基材(S0)を得た。こうして得られた延伸前基材(S0)を、マスキングフィルム(トレデガー社製「FF1025」)と貼り合わせて保護しながら、巻き取り、延伸前基材(S0)のロールを得た。
延伸前基材(S0)に斜め延伸を施して得た延伸基材(S1)に、新たなマスキングフィルム(トレデガー社製「FF1025」)を貼り合わせる際、マスキングフィルムと貼り合わせる延伸基材(S1)の面を、製造例1でマスキングフィルムと貼り合わせた面とは反対側の面に変更した。以上の事項以外は製造例1と同様にして、延伸基材(S1)のロール(S1-2)を得た。
下記式(B1)で表される逆波長重合性液晶化合物21.295部、界面活性剤(DIC社製「メガファックF-562」)0.064部、重合開始剤(BASF社製「IRGACURE379EG」)0.641部、並びに、溶媒として1,3-ジオキソラン(東邦化学社製)46.800重量部及びシクロペンタノン(日本ゼオン社製)31.200部を混合して、液状の液晶組成物(A)を調製した。
前記式(B1)で表される逆波長分散液晶化合物13.629部、下記式(B2)で表される逆波長重合性液晶化合物7.666部、界面活性剤(DIC社製「メガファックF-562」)0.064部、重合開始剤(BASF社製「IRGACURE379EG」)0.641部、並びに、溶媒として1,3-ジオキソラン(東邦化学社製)46.800重量部及びシクロペンタノン(日本ゼオン社製)31.200部を混合して、液状の液晶組成物(B)を調製した。
前記式(B1)で表される逆波長重合性液晶化合物10.009部、前記式(B2)で表される逆波長重合性液晶化合物11.286部、界面活性剤(DIC社製「メガファックF-562」)0.064部、重合開始剤(BASF社製「IRGACURE379EG」)0.641部、並びに、溶媒として1,3-ジオキソラン(東邦化学社製)46.800重量部及びシクロペンタノン(日本ゼオン社製)31.200部を混合して、液状の液晶組成物(C)を調製した。
[実施例I-1]
(I-1-1.第一光学異方性層を含む複層フィルムの製造)
延伸基材(S1)のロール(S1-1)から、延伸基材(S1)を繰り出し、マスキングフィルムを剥離して、フィルム長手方向に搬送した。室温25℃において、搬送される延伸基材(S1)の、マスキングフィルムが貼合されていた側の面に、液晶組成物(A)を、ダイコーターを用いて直接に塗工し、液晶組成物の層を形成した。
ロール(S1-1)ではなく、ロール(S1-2)から延伸基材(S1)を繰り出した。また、塗工する液晶組成物(A)の厚みを変更した。以上の事項以外は、前記の工程(I-1-1)と同様にして、(延伸基材(S1))/(第二光学異方性層(a2))の層構成を有する、複層フィルム(S1-a2)を得た。前記の第二光学異方性層(a2)の乾燥厚みは1.95μmであった。また、第二光学異方性層(a2)は、ホモジニアス配向した液晶化合物の硬化液晶分子として逆波長重合性液晶化合物の重合体を含んでいた。
複層フィルム(S1-a1)から、複層フィルム(S1-a1)の幅方向に平行な長辺と、複層フィルム(S1-a1)の長手方向に平行な短辺とを有する、A4サイズのサンプル片(S1-a1)を切り出した。
こうして得られた光学異方性積層体(ZF-a2-a1)について、上述した方法により、彩度平均値の計算、及び、色づきの評価を行った。
前記工程(I-1-1)において、塗工する液晶組成物(A)の厚みを変更して第一光学異方性層(a1)の乾燥厚みを調整することにより、波長590nmにおける第一光学異方性層(a1)の面内レターデーションRe(H590)の値を、表1に示すように変更した。
また、前記工程(I-1-2)において、塗工する液晶組成物(A)の厚みを変更して第二光学異方性層(a2)の乾燥厚みを調整することにより、波長590nmにおける第二光学異方性層(a2)の面内レターデーションRe(Q590)の値を、表1に示すように変更した。
以上の事項以外は、実施例I-1と同様にして、光学異方性積層体(ZF-a2-a1)の製造及び評価を行った。
[実施例II-1]
液晶組成物(A)の代わりに液晶組成物(B)を用いたこと、並びに、液晶組成物(B)の塗工厚みを変更したこと以外は、実施例I-1と同様にして、光学異方性積層体(ZF-2b-1b)の製造及び評価を行った。以下、具体的に説明する。
延伸基材(S1)のロール(S1-1)から、延伸基材(S1)を繰り出し、マスキングフィルムを剥離して、フィルム長手方向に搬送した。室温25℃において、搬送される延伸基材(S1)の、マスキングフィルムが貼合されていた側の面に、液晶組成物(B)を、ダイコーターを用いて直接に塗工し、液晶組成物の層を形成した。
ロール(S1-1)ではなく、ロール(S1-2)から延伸基材(S1)を引き出した。また、塗工する液晶組成物(B)の厚みを変更した。以上の事項以外は、前記の工程(II-1-1)と同様にして、(延伸基材(S1))/(第二光学異方性層(b2))の層構成を有する、複層フィルム(S1-b2)を得た。前記の第二光学異方性層(b2)の乾燥厚みは、1.69μmであった。また、第二光学異方性層(b2)は、ホモジニアス配向した液晶化合物の硬化液晶分子として逆波長重合性液晶化合物の重合体を含んでいた。
複層フィルム(S1-a1)の代わりに、(延伸基材(S1))/(第一光学異方性層(b1))の層構成を有する前記複層フィルム(S1-b1)を用いた。
また、複層フィルム(S1-a2)の代わりに、(延伸基材(S1))/(第二光学異方性層(b2))の層構成を有する前記複層フィルム(S1-b2)を用いた。
以上の事項以外は、実施例I-1の工程(I-1-3)と同様にして、(サンプル片(ZF))/(粘着剤層)/(第二光学異方性層(b2))/(粘着剤層)/(第一光学異方性層(b1))の層構成を有する光学異方性積層体(ZF-b2-b1)を得た。
こうして得られた光学異方性積層体(ZF-b2-b1)について、上述した方法により、彩度平均値の計算、及び、色づきの評価を行った。
前記工程(II-1-1)において、塗工する液晶組成物(B)の厚みを変更して第一光学異方性層(b1)の乾燥厚みを調整することにより、波長590nmにおける第一光学異方性層(b1)の面内レターデーションRe(H590)の値を、表2に示すように変更した。
また、前記工程(II-1-2)において、塗工する液晶組成物(B)の厚みを変更して第二光学異方性層(b2)の乾燥厚みを調整することにより、波長590nmにおける第二光学異方性層(b2)の面内レターデーションRe(Q590)の値を、表2に示すように変更した。
以上の事項以外は、実施例II-1と同様にして、光学異方性積層体(ZF-b2-b1)の製造及び評価を行った。
[実施例III-1]
液晶組成物(A)の代わりに液晶組成物(C)を用いたこと、並びに、液晶組成物(C)の塗工厚みを変更したこと以外は、実施例I-1と同様にして、光学異方性積層体(ZF-2c-1c)の製造及び評価を行った。以下、具体的に説明する。
延伸基材(S1)のロール(S1-1)から、延伸基材(S1)を繰り出し、マスキングフィルムを剥離して、フィルム長手方向に搬送した。室温25℃において、搬送される延伸基材(S1)の、マスキングフィルムが貼合されていた側の面に、液晶組成物(C)を、ダイコーターを用いて直接に塗工し、液晶組成物の層を形成した。
ロール(S1-1)ではなく、ロール(S1-2)から延伸基材(S1)を繰り出した。また、塗工する液晶組成物(C)の厚みを変更した。以上の事項以外は、前記の工程(III-1-1)と同様にして、(延伸基材(S1))/(第二光学異方性層(c2))の層構成を有する、複層フィルム(S1-c2)を得た。前記の第二光学異方性層(c2)の乾燥厚みは、1.58μmであった。また、第二光学異方性層(c2)は、ホモジニアス配向した液晶化合物の硬化液晶分子として逆波長重合性液晶化合物の重合体を含んでいた。
複層フィルム(S1-a1)の代わりに、(延伸基材(S1))/(第一光学異方性層(c1))の層構成を有する前記複層フィルムを(S1-c1)を用いた。
また、複層フィルム(S1-a2)の代わりに、(延伸基材(S1))/(第二光学異方性層(c2))の層構成を有する前記複層フィルム(S1-c2)を用いた。
以上の事項以外は、実施例I-1の工程(I-1-3)と同様にして、(サンプル片(ZF))/(粘着剤層)/(第二光学異方性層(c2))/(粘着剤層)/(第一光学異方性層(c1))の層構成を有する光学異方性積層体(ZF-c2-c1)を得た。
こうして得られた光学異方性積層体(ZF-c2-c1)について、上述した方法により、彩度平均値の計算、及び、色づきの評価を行った。
前記工程(III-1-1)において、塗工する液晶組成物(C)の厚みを変更して第一光学異方性層(c1)の乾燥厚みを調整することにより、波長590nmにおける第一光学異方性層(c1)の面内レターデーションRe(H590)の値を、表3に示すように変更した。
また、前記工程(III-1-2)において、塗工する液晶組成物(C)の厚みを変更して第二光学異方性層(c2)の乾燥厚みを調整することにより、波長590nmにおける第二光学異方性層(c2)の面内レターデーションRe(Q590)の値を、表3に示すように変更した。
以上の事項以外は、実施例III-1と同様にして、光学異方性積層体(ZF-c2-c1)の製造及び評価を行った。
[比較例IV-1~IV-11]
(IV-1.第一光学異方性層の製造)
ノルボルネン重合体を含む熱可塑性樹脂のペレット(日本ゼオン社製、ガラス転移温度Tg=126℃)を、90℃で5時間乾燥させた。乾燥させたペレットを押し出し機に供給し、押し出し機内で溶融させた。そして、溶融した樹脂を、ポリマーパイプ及びポリマーフィルターを通し、Tダイからキャスティングドラム上にシート状に押し出し、冷却し、延伸前フィルムを得た。前記の樹脂の押し出しは、表4に示す面内レターデーションRe(H590)を有する延伸フィルムが得られるように、キャスティングドラムによる樹脂の引取速度を調整することで、得られる延伸前フィルムの厚みを調整しながら行った。この延伸前フィルムを各比較例で共通の延伸条件で延伸して、第一光学異方性層としての延伸フィルムを得た。
樹脂の押し出しの際に、キャスティングドラムによる樹脂の引取速度を調整することで、表4に示す面内レターデーションRe(Q590)を有する延伸フィルムが得られるように、延伸前フィルムの厚みを変更した。以上の事項以外は、前記の工程(IV-1)と同様にして、第二光学異方性層としての延伸フィルムを得た。
前記の第一光学異方性層としての延伸フィルムと第二光学異方性層としての延伸フィルムとを、粘着剤層(日東電工製「CS9621」)を介して貼り合わせて、光学異方性積層体を得た。この際、第一光学異方性層の遅相軸と第二光学異方性層の遅相軸とがなす角度は、60°にした。
こうして得られた光学異方性積層体について、上述した方法により、彩度平均値の計算、及び、色づきの評価を行った。
前記の色づき抑制効果に係る実験例としての、実施例I-1~I-17及び比較例I-1~I-3(表1);実施例II-1~I-10及び比較例II-1~II-4(表2);実施例III-1~III-9及び比較例III-1~III-7(表3);並びに、比較例IV-1~IV-11(表4)の結果を、下記の表1~4に示す。下記の表において、略称の意味は、以下のとおりである。
θ1:第一光学異方性層の遅相軸が、液晶表示装置の視認側直線偏光子の偏光吸収軸に対してなす角度。
θ2:第二光学異方性層の遅相軸が、液晶表示装置の視認側直線偏光子の偏光吸収軸に対してなす角度。
平均C*:彩度C*の平均値。
(A):液晶組成物(A)。
(B):液晶組成物(B)。
(C):液晶組成物(C)。
COP:脂環式構造含有重合体。
[実施例V-1]
(V-1-1.第一光学異方性層を含む複層フィルムの製造)
第一光学異方性層(a1)の乾燥厚みを4.15μmに変更することにより、第一光学異方性層(a1)のRe(H590)を262nmに変更した。以上の事項以外は、実施例I-1の工程(I-1-1)と同様にして、(延伸基材(S1))/(第一光学異方性層(a1))の層構成を有する複層フィルム(S1-a1)を製造した。
第二光学異方性層(a2)の乾燥厚みを2.07μmに変更することにより、第二光学異方性層(a2)のRe(Q590)を131nmに変更した。以上の事項以外は、実施例I-1の工程(I-1-2)と同様にして、(延伸基材(S1))/(第二光学異方性層(a2))の層構成を有する複層フィルム(S1-a2)を製造した。
複層フィルム(S1-a1)から、複層フィルム(S1-a1)の長手方向に平行な長辺と、複層フィルム(S1-a1)の幅方向に平行な短辺とを有する、A4サイズのサンプル片(s1-a1)を切り出した。
こうして得られた円偏光板(P-a1-a2)について、上述した方法により、明度L*の計算、及び、反射輝度の評価を行った。
前記工程(V-1-1)において、塗工する液晶組成物(A)の厚みを変更して第一光学異方性層(a1)の乾燥厚みを調整することにより、波長590nmにおける第一光学異方性層(a1)の面内レターデーションRe(H590)の値を、表5に示すように変更した。
また、前記工程(V-1-2)において、塗工する液晶組成物(A)の厚みを変更して第二光学異方性層(a2)の乾燥厚みを調整することにより、波長590nmにおける第二光学異方性層(a2)の面内レターデーションRe(Q590)の値を、表5に示すように変更した。
以上の事項以外は、実施例V-1と同様にして、円偏光板(P-a1-a2)の製造及び評価を行った。
[実施例VI-1]
(VI-1-1.第一光学異方性層を含む複層フィルムの製造)
第一光学異方性層(b1)の乾燥厚みを3.54μmに変更することにより、第一光学異方性層(b1)のRe(H590)を254nmに変更した。以上の事項以外は、実施例II-1の工程(II-1-1)と同様にして、(延伸基材(S1))/(第一光学異方性層(b1))の層構成を有する複層フィルム(S1-b1)を製造した。
第二光学異方性層(b2)の乾燥厚みを1.78μmに変更することにより、第二光学異方性層(b2)のRe(Q590)を127nmに変更した。以上の事項以外は、実施例II-1の工程(II-1-2)と同様にして、(延伸基材(S1))/(第二光学異方性層(b2))の層構成を有する複層フィルム(S1-b2)を製造した。
複層フィルム(S1-a1)の代わりに、(延伸基材(S1))/(第一光学異方性層(b1))の層構成を有する前記複層フィルム(S1-b1)を用いた。
また、複層フィルム(S1-a2)の代わりに、(延伸基材(S1))/(第二光学異方性層(b2))の層構成を有する前記複層フィルム(S1-b2)を用いた。
以上の事項以外は、実施例V-1の工程(V-1-3)と同様にして、(偏光子片(P))/(粘着剤層)/(第一光学異方性層(b1))/(粘着剤層)/(第二光学異方性層(b2))の層構成を有する円偏光板(P-b1-b2)を得た。
こうして得られた円偏光板(P-b1-b2)について、上述した方法により、明度L*の計算、及び、反射輝度の評価を行った。
前記工程(VI-1-1)において、塗工する液晶組成物(B)の厚みを変更して第一光学異方性層(b1)の乾燥厚みを調整することにより、波長590nmにおける第一光学異方性層(b1)の面内レターデーションRe(H590)の値を、表6に示すように変更した。
また、前記工程(VI-1-2)において、塗工する液晶組成物(B)の厚みを変更して第二光学異方性層(b2)の乾燥厚みを調整することにより、波長590nmにおける第二光学異方性層(b2)の面内レターデーションRe(Q590)の値を、表6に示すように変更した。
以上の事項以外は、実施例VI-1と同様にして、円偏光板(P-b1-b2)の製造及び評価を行った。
[実施例VII-1]
(VII-1-1.第一光学異方性層を含む複層フィルムの製造)
第一光学異方性層(c1)の乾燥厚みを3.17μmに変更することにより、第一光学異方性層(c1)のRe(H590)を243nmに変更した。以上の事項以外は、実施例III-1の工程(III-1-1)と同様にして、(延伸基材(S1))/(第一光学異方性層(c1))の層構成を有する複層フィルム(S1-c1)を製造した。
第二光学異方性層(c2)の乾燥厚みを1.58μmに変更することにより、第二光学異方性層(c2)のRe(Q590)を122nmに変更した。以上の事項以外は、実施例III-1の工程(III-1-2)と同様にして、(延伸基材(S1))/(第二光学異方性層(c2))の層構成を有する複層フィルム(S1-c2)を製造した。
複層フィルム(S1-a1)の代わりに、(延伸基材(S1))/(第一光学異方性層(c1))の層構成を有する前記複層フィルム(S1-c1)を用いた。
また、複層フィルム(S1-a2)の代わりに、(延伸基材(S1))/(第二光学異方性層(c2))の層構成を有する前記複層フィルム(S1-c2)を用いた。
以上の事項以外は、実施例V-1の工程(V-1-3)と同様にして、(偏光子片(P))/(粘着剤層)/(第一光学異方性層(c1))/(粘着剤層)/(第二光学異方性層(c2))の層構成を有する円偏光板(P-c1-c2)を得た。
こうして得られた円偏光板(P-c1-c2)について、上述した方法により、明度L*の計算、及び、反射輝度の評価を行った。
前記工程(VII-1-1)において、塗工する液晶組成物(C)の厚みを変更して第一光学異方性層(c1)の乾燥厚みを調整することにより、波長590nmにおける第一光学異方性層(c1)の面内レターデーションRe(H590)の値を、表7に示すように変更した。
また、前記工程(VII-1-2)において、塗工する液晶組成物(C)の厚みを変更して第二光学異方性層(c2)の乾燥厚みを調整することにより、波長590nmにおける第二光学異方性層(c2)の面内レターデーションRe(Q590)の値を、表7に示すように変更した。
以上の事項以外は、実施例VII-1と同様にして、円偏光板(P-c1-c2)の製造及び評価を行った。
[比較例VIII-1~VIII-11]
(VIII-1.第一光学異方性層の製造)
表8に示す面内レターデーションRe(H590)を有する延伸フィルムが得られるように、キャスティングドラムによる樹脂の引取速度を調整して、延伸フィルムの厚みを変更した。以上の事項以外は、比較例IV-1~IV-11の工程(IV-1)と同様にして、第一光学異方性層としての延伸フィルムを得た。
得られた第一光学異方性層は、いずれの比較例でも、Re(H450)/Re(H550)=1.01、Re(H650)/Re(H550)=0.99であった。
表8に示す面内レターデーションRe(Q590)を有する延伸フィルムが得られるように、キャスティングドラムによる樹脂の引取速度を調整して、延伸フィルムの厚みを変更した。以上の事項以外は、比較例IV-1~IV-11の工程(IV-2)と同様にして、第二光学異方性層としての延伸フィルムを得た。
得られた第二光学異方性層は、いずれの比較例でも、Re(Q450)/Re(Q550)=1.01、Re(Q650)/Re(Q550)=0.99であった。
偏光フィルム(サンリッツ社製「HLC2-5618S」)と、前記の第一光学異方性層としての延伸フィルムと、第二光学異方性層としての延伸フィルムとを、この順で、粘着剤層(日東電工製「CS9621」)を介して貼り合わせて、円偏光板を得た。この際、偏光フィルムの偏光吸収軸に対して第一光学異方性層の遅相軸及び第二光学異方性層の遅相軸がなす角度は、それぞれ、15°及び75°にした。
こうして得られた円偏光板について、上述した方法により、明度L*の計算、及び、反射輝度の評価を行った。
前記の反射抑制効果に係る実験例としての、実施例V-1~I-11及び比較例V-1~I-2(表5);実施例VI-1~VI-14及び比較例VI-1~VI-2(表6);実施例VII-1~VII-9及び比較例VII-1~VII-6(表7);並びに、比較例VIII-1~VIII-11(表8)の結果を、下記の表5~8に示す。下記の表において、略称の意味は、以下のとおりである。
θ1:第一光学異方性層の遅相軸が、円偏光板の偏光子片の偏光吸収軸に対してなす角度。
θ2:第二光学異方性層の遅相軸が、円偏光板の偏光子片の偏光吸収軸に対してなす角度。
L*:明度。
(A):液晶組成物(A)。
(B):液晶組成物(B)。
(C):液晶組成物(C)。
COP:脂環式構造含有重合体。
110 第一光学異方性層
120 第二光学異方性層
200 光学異方性積層体
210 透明導電層
300 円偏光板
310 直線偏光子
400 有機EL表示装置
410 有機EL素子
500 有機EL表示装置
510 λ/4波長板
600 液晶表示装置
610 光源
620 光源側直線偏光子
630 液晶セル
Claims (20)
- 第一光学異方性層及び第二光学異方性層を備える、光学異方性積層体であって、
波長450nm、550nm、590nm及び650nmにおける、前記第一光学異方性層の面内レターデーションRe(H450)、Re(H550)、Re(H590)及びRe(H650)が、下記式(1)、(2)及び(3)を満たし、
波長450nm、550nm、590nm及び650nmにおける、前記第二光学異方性層の面内レターデーションRe(Q450)、Re(Q550)、Re(Q590)及びRe(Q650)が、下記式(4)、(5)及び(6)を満たす、光学異方性積層体。
242nm<Re(H590)<331nm (1)
0.75≦Re(H450)/Re(H550)≦0.85 (2)
1.04≦Re(H650)/Re(H550)≦1.20 (3)
121nm<Re(Q590)<166nm (4)
0.75≦Re(Q450)/Re(Q550)≦0.85 (5)
1.04≦Re(Q650)/Re(Q550)≦1.20 (6) - 第一光学異方性層及び第二光学異方性層を備える、光学異方性積層体であって、
波長450nm、550nm、590nm及び650nmにおける、前記第一光学異方性層の面内レターデーションRe(H450)、Re(H550)、Re(H590)及びRe(H650)が、下記式(7)、(8)及び(9)を満たし、
波長450nm、550nm、590nm及び650nmにおける、前記第二光学異方性層の面内レターデーションRe(Q450)、Re(Q550)、Re(Q590)及びRe(Q650)が、下記式(10)、(11)及び(12)を満たす、光学異方性積層体。
236nm<Re(H590)<316nm (7)
0.85<Re(H450)/Re(H550)≦0.90 (8)
1.02≦Re(H650)/Re(H550)<1.04 (9)
118nm<Re(Q590)<158nm (10)
0.85<Re(Q450)/Re(Q550)≦0.90 (11)
1.02≦Re(Q650)/Re(Q550)<1.04 (12) - 第一光学異方性層及び第二光学異方性層を備える、光学異方性積層体であって、
波長450nm、550nm、590nm及び650nmにおける、前記第一光学異方性層の面内レターデーションRe(H450)、Re(H550)、Re(H590)及びRe(H650)が、下記式(13)、(14)及び(15)を満たし、
波長450nm、550nm、590nm及び650nmにおける、前記第二光学異方性層の面内レターデーションRe(Q450)、Re(Q550)、Re(Q590)及びRe(Q650)が、下記式(16)、(17)及び(18)を満たす、光学異方性積層体。
240nm<Re(H590)<290nm (13)
0.90<Re(H450)/Re(H550)≦0.99 (14)
1.01≦Re(H650)/Re(H550)<1.02 (15)
120nm<Re(Q590)<148nm (16)
0.90<Re(Q450)/Re(Q550)≦0.99 (17)
1.01≦Re(Q650)/Re(Q550)<1.02 (18) - 波長590nmにおける前記第一光学異方性層の面内レターデーションRe(H590)が、下記式(19)を満たし、
波長590nmにおける前記第二光学異方性層の面内レターデーションRe(Q590)が、下記式(20)を満たす、請求項1記載の光学異方性積層体。
266nm<Re(H590)<314nm (19)
133nm<Re(Q590)<157nm (20) - 波長590nmにおける前記第一光学異方性層の面内レターデーションRe(H590)が、下記式(21)を満たし、
波長590nmにおける前記第二光学異方性層の面内レターデーションRe(Q590)が、下記式(22)を満たす、請求項2記載の光学異方性積層体。
260nm<Re(H590)<291nm (21)
130nm<Re(Q590)<145nm (22) - 波長590nmにおける前記第一光学異方性層の面内レターデーションRe(H590)が、下記式(23)を満たし、
波長590nmにおける前記第二光学異方性層の面内レターデーションRe(Q590)が、下記式(24)を満たす、請求項1又は4記載の光学異方性積層体。
274nm<Re(H590)<299nm (23)
137nm<Re(Q590)<150nm (24) - 波長590nmにおける前記第一光学異方性層の面内レターデーションRe(H590)が、下記式(25)を満たし、
波長590nmにおける前記第二光学異方性層の面内レターデーションRe(Q590)が、下記式(26)を満たす、請求項2又は5記載の光学異方性積層体。
271nm<Re(H590)<291nm (25)
135nm<Re(Q590)<145nm (26) - 前記第一光学異方性層の面内における最大屈折率を示す遅相軸方向と、前記第二光学異方性層の面内における最大屈折率を示す遅相軸方向とがなす角度が、60°±10°である、請求項1~7のいずれか一項に記載の光学異方性積層体。
- 前記第一光学異方性層及び前記第二光学異方性層の少なくとも一方が、重合性の液晶化合物を含む液晶組成物の硬化物からなる、請求項1~8のいずれか一項に記載の光学異方性積層体。
- 前記第一光学異方性層及び前記第二光学異方性層の両方が、重合性の液晶化合物を含む液晶組成物の硬化物からなる、請求項1~9のいずれか一項に記載の光学異方性積層体。
- 前記液晶化合物が、ホモジニアス配向した場合に、逆波長分散性の面内レターデーションを示すものである、請求項9又は10記載の光学異方性積層体。
- 前記液晶化合物が、前記液晶化合物の分子中に、主鎖メソゲンと、前記主鎖メソゲンに結合した側鎖メソゲンとを含む、請求項9~11のいずれか一項に記載の光学異方性積層体。
- 前記液晶化合物が、下記式(I)で表される、請求項9~12のいずれか一項に記載の光学異方性積層体。
Y1~Y8は、それぞれ独立して、化学的な単結合、-O-、-S-、-O-C(=O)-、-C(=O)-O-、-O-C(=O)-O-、-NR1-C(=O)-、-C(=O)-NR1-、-O-C(=O)-NR1-、-NR1-C(=O)-O-、-NR1-C(=O)-NR1-、-O-NR1-、又は、-NR1-O-を表す。ここで、R1は、水素原子又は炭素数1~6のアルキル基を表す。
G1及びG2は、それぞれ独立して、置換基を有していてもよい、炭素数1~20の二価の脂肪族基を表す。また、前記脂肪族基には、1つの脂肪族基当たり1以上の-O-、-S-、-O-C(=O)-、-C(=O)-O-、-O-C(=O)-O-、-NR2-C(=O)-、-C(=O)-NR2-、-NR2-、又は、-C(=O)-が介在していてもよい。ただし、-O-又は-S-がそれぞれ2以上隣接して介在する場合を除く。ここで、R2は、水素原子又は炭素数1~6のアルキル基を表す。
Z1及びZ2は、それぞれ独立して、ハロゲン原子で置換されていてもよい炭素数2~10のアルケニル基を表す。
Axは、芳香族炭化水素環及び芳香族複素環からなる群から選ばれる少なくとも一つの芳香環を有する、炭素数2~30の有機基を表す。
Ayは、水素原子、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数2~20のアルケニル基、置換基を有していてもよい炭素数3~12のシクロアルキル基、置換基を有していてもよい炭素数2~20のアルキニル基、-C(=O)-R3、-SO2-R4、-C(=S)NH-R9、又は、芳香族炭化水素環及び芳香族複素環からなる群から選ばれる少なくとも一つの芳香環を有する、炭素数2~30の有機基を表す。ここで、R3は、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数2~20のアルケニル基、置換基を有していてもよい炭素数3~12のシクロアルキル基、又は、炭素数5~12の芳香族炭化水素環基を表す。R4は、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、フェニル基、又は、4-メチルフェニル基を表す。R9は、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数2~20のアルケニル基、置換基を有していてもよい炭素数3~12のシクロアルキル基、又は、置換基を有していてもよい炭素数5~20の芳香族基を表す。前記Ax及びAyが有する芳香環は、置換基を有していてもよい。また、前記AxとAyは、一緒になって、環を形成していてもよい。
A1は、置換基を有していてもよい三価の芳香族基を表す。
A2及びA3は、それぞれ独立して、置換基を有していてもよい炭素数3~30の二価の脂環式炭化水素基を表す。
A4及びA5は、それぞれ独立して、置換基を有していてもよい、炭素数6~30の二価の芳香族基を表す。
Q1は、水素原子、又は、置換基を有していてもよい炭素数1~6のアルキル基を表す。
mは、それぞれ独立に、0又は1を表す。) - 前記液晶化合物が、前記液晶化合物の分子中に、ベンゾチアゾール環、並びに、シクロヘキシル環及びフェニル環の組み合わせ、からなる群より選ばれる少なくとも1種を含有する、請求項9~13のいずれか一項に記載の光学異方性積層体。
- 透明導電層を備える、請求項1~14のいずれか一項に記載の光学異方性積層体。
- 直線偏光子と、請求項1~15のいずれか一項に記載の光学異方性積層体とを備え、
前記直線偏光子、前記第一光学異方性層、及び、前記第二光学異方性層をこの順に備える、円偏光板。 - 前記直線偏光子の吸収軸方向と、前記第一光学異方性層の面内における最大屈折率を示す遅相軸方向とがなす角度θ1(-90°<θ1<90°)、及び、
前記直線偏光子の吸収軸方向と、前記第二光学異方性層の面内における最大屈折率を示す遅相軸方向とがなす角度θ2(-90°<θ2<90°)が、
同符号であり、且つ、
下記式(27)及び(28)を満たす、請求項16記載の円偏光板。
|θ1|=15°±5° (27)
|θ2|=75°±10° (28) - 前記直線偏光子の吸収軸方向と、前記第一光学異方性層の面内における最大屈折率を示す遅相軸方向とがなす角度θ1(-90°<θ1<90°)、及び、
前記直線偏光子の吸収軸方向と、前記第二光学異方性層の面内における最大屈折率を示す遅相軸方向とがなす角度θ2(-90°<θ2<90°)が、
同符号であり、且つ、
下記式(29)及び(30)を満たす、請求項16記載の円偏光板。
|θ1|=75°±10° (29)
|θ2|=15°±5° (30) - 請求項16~18のいずれか一項に記載の円偏光板及び画像表示素子を備える画像表示装置であって、
前記光学異方性積層体、前記直線偏光子及び前記画像表示素子を、この順に備える、画像表示装置。 - 請求項16~18のいずれか一項に記載の円偏光板及び有機エレクトロルミネッセンス素子を備える有機エレクトロルミネッセンス表示装置であって、
前記直線偏光子、前記光学異方性積層体及び前記有機エレクトロルミネッセンス素子を、この順に備える、画像表示装置。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP17774897.7A EP3438713A4 (en) | 2016-03-30 | 2017-03-27 | OPTICALLY ANISOTROPIC LAMINATE, CIRCULAR POLARIZATION BLADE, AND IMAGE DISPLAY DEVICE |
KR1020187026951A KR102362131B1 (ko) | 2016-03-30 | 2017-03-27 | 광학 이방성 적층체, 원편광판, 및 화상 표시 장치 |
CN201780018016.7A CN108780186B (zh) | 2016-03-30 | 2017-03-27 | 光学各向异性层叠体、圆偏振片以及图像显示装置 |
JP2018509324A JP6927198B2 (ja) | 2016-03-30 | 2017-03-27 | 光学異方性積層体、円偏光板、及び、画像表示装置 |
US16/085,218 US10824016B2 (en) | 2016-03-30 | 2017-03-27 | Optically anisotropic laminate, circularly polarizing plate, and image display device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016068010 | 2016-03-30 | ||
JP2016-068010 | 2016-03-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017170360A1 true WO2017170360A1 (ja) | 2017-10-05 |
Family
ID=59964459
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/012322 WO2017170360A1 (ja) | 2016-03-30 | 2017-03-27 | 光学異方性積層体、円偏光板、及び、画像表示装置 |
Country Status (7)
Country | Link |
---|---|
US (1) | US10824016B2 (ja) |
EP (1) | EP3438713A4 (ja) |
JP (1) | JP6927198B2 (ja) |
KR (1) | KR102362131B1 (ja) |
CN (1) | CN108780186B (ja) |
TW (1) | TWI719177B (ja) |
WO (1) | WO2017170360A1 (ja) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018110277A1 (ja) * | 2016-12-16 | 2018-06-21 | 日東電工株式会社 | 光学積層体、画像表示装置、及び光学積層体の製造方法 |
WO2019069855A1 (ja) * | 2017-10-03 | 2019-04-11 | 日本ゼオン株式会社 | 光学異方性層及びその製造方法、光学異方性積層体及びその製造方法、光学異方性転写体、偏光板、並びに画像表示装置 |
WO2019124456A1 (ja) * | 2017-12-20 | 2019-06-27 | 日本ゼオン株式会社 | 円偏光板、長尺の広帯域λ/4板、有機エレクトロルミネッセンス表示装置及び液晶表示装置 |
WO2019146468A1 (ja) * | 2018-01-29 | 2019-08-01 | 日本ゼオン株式会社 | 有機発光表示装置 |
CN112105970A (zh) * | 2018-04-27 | 2020-12-18 | 日本瑞翁株式会社 | 宽带波长膜及其制造方法、以及圆偏振膜的制造方法 |
JP2021092685A (ja) * | 2019-12-11 | 2021-06-17 | 住友化学株式会社 | 光学積層体、その製造方法、液晶パネルおよび液晶表示装置 |
WO2022044925A1 (ja) * | 2020-08-28 | 2022-03-03 | 日東電工株式会社 | 配向液晶フィルムおよびその製造方法、ならびに画像表示装置 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2020239964A1 (en) * | 2019-03-15 | 2021-10-07 | Hoya Optical Labs Of America, Inc. | Mesogen polarizer |
Citations (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09127885A (ja) | 1995-10-30 | 1997-05-16 | Sony Corp | 表示素子 |
JP2002156528A (ja) * | 1998-10-30 | 2002-05-31 | Teijin Ltd | 熱可塑性高分子フィルム |
JP2002321302A (ja) | 2001-04-26 | 2002-11-05 | Nippon Zeon Co Ltd | 脂環式構造含有重合体樹脂積層体 |
JP2003511799A (ja) | 1999-10-08 | 2003-03-25 | シナプティクス インコーポレイテッド | 電子デバイスのためのフレキシブルで透明な接触検出システム |
JP2003331654A (ja) | 2002-05-08 | 2003-11-21 | Toppan Printing Co Ltd | 導電膜およびその製造方法 |
JP2004309597A (ja) * | 2003-04-03 | 2004-11-04 | Fuji Photo Film Co Ltd | 位相差板および楕円偏光板 |
JP2005326818A (ja) | 2004-04-16 | 2005-11-24 | Sharp Corp | 円偏光板及び液晶表示装置 |
JP2007328310A (ja) | 2006-05-12 | 2007-12-20 | Nitto Denko Corp | 楕円偏光板およびそれを用いた画像表示装置 |
JP2008310550A (ja) | 2007-06-14 | 2008-12-25 | Epson Imaging Devices Corp | 静電容量型入力装置 |
JP2010164938A (ja) | 2009-01-16 | 2010-07-29 | Samsung Mobile Display Co Ltd | タッチスクリーンパネル |
JP2010541109A (ja) | 2007-10-04 | 2010-12-24 | アップル インコーポレイテッド | 単層タッチ感知ディスプレイ |
JP2011511357A (ja) | 2008-01-29 | 2011-04-07 | メルファス,インコーポレイテッド | 分割電極構造を有する接触感知パネル及びこれを備えた接触感知装置 |
JP2011138144A (ja) | 2000-09-05 | 2011-07-14 | Nitto Denko Corp | タッチパネル付el表示装置 |
JP2011175601A (ja) | 2010-02-25 | 2011-09-08 | Daicel Chemical Industries Ltd | 透明導電性膜及びタッチパネル |
JP2012018634A (ja) | 2010-07-09 | 2012-01-26 | Fujifilm Corp | 透明導電性基板、タッチパネル用導電シート及びタッチパネル |
WO2012147904A1 (ja) | 2011-04-27 | 2012-11-01 | 日本ゼオン株式会社 | 重合性化合物、重合性組成物、高分子、及び光学異方体 |
JP2014071209A (ja) | 2012-09-28 | 2014-04-21 | Dainippon Printing Co Ltd | 光学フィルム用転写体、光学フィルム、光学フィルム用転写体の製造方法 |
JP2014123099A (ja) | 2012-11-21 | 2014-07-03 | Dainippon Printing Co Ltd | 光学フィルム、光学フィルム用転写体、画像表示装置 |
JP2014123134A (ja) | 2007-12-28 | 2014-07-03 | Sumitomo Chemical Co Ltd | 化合物、光学フィルム及び光学フィルムの製造方法 |
JP2014142462A (ja) * | 2013-01-23 | 2014-08-07 | Dainippon Printing Co Ltd | 光学機能層付きタッチパネル用電極部、円偏光板付きタッチパネル電極部、タッチパネル、画像表示装置 |
JP2015040904A (ja) | 2013-08-20 | 2015-03-02 | 大日本印刷株式会社 | 光学フィルム、画像表示装置、光学フィルム用転写体、光学フィルムの製造方法及び光学フィルム用転写体の製造方法 |
JP2015079230A (ja) | 2013-09-10 | 2015-04-23 | 住友化学株式会社 | 積層体の製造方法 |
WO2015064581A1 (ja) * | 2013-10-28 | 2015-05-07 | 日本ゼオン株式会社 | 複層フィルム、光学異方性積層体、円偏光板、有機エレクトロルミネッセンス表示装置、及び製造方法 |
WO2015166991A1 (ja) * | 2014-05-01 | 2015-11-05 | 富士フイルム株式会社 | 有機el表示装置 |
WO2016043124A1 (ja) * | 2014-09-17 | 2016-03-24 | 日本ゼオン株式会社 | 円偏光板、広帯域λ/4板、及び、有機エレクトロルミネッセンス表示装置 |
WO2016114254A1 (ja) * | 2015-01-16 | 2016-07-21 | Dic株式会社 | 位相差板及び円偏光板 |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1457792A1 (en) | 1998-10-30 | 2004-09-15 | Teijin Limited | Retardation film and optical device employing it |
KR100474495B1 (ko) * | 1999-07-29 | 2005-03-08 | 데이진 가부시키가이샤 | 위상차 필름, 위상차 필름 복합체 및 그것을 사용한액정표시장치 |
JP4036322B2 (ja) * | 2002-03-25 | 2008-01-23 | 日東電工株式会社 | 光学フィルム、これを用いた照明装置および画像表示装置 |
US20050237440A1 (en) | 2004-03-16 | 2005-10-27 | Vision-Ease Lens | Method and device to enhance the readability of a liquid crystal display through polarized lenses |
JP2006119203A (ja) * | 2004-10-19 | 2006-05-11 | Nitto Denko Corp | 偏光板および偏光板の製造方法、ならびに、このような偏光板を用いた液晶パネル、液晶テレビおよび液晶表示装置 |
JP2006195363A (ja) * | 2005-01-17 | 2006-07-27 | Fuji Photo Film Co Ltd | 液晶表示装置、さらにそれに用いる光学補償シート、及び偏光板 |
CN100474066C (zh) * | 2005-04-28 | 2009-04-01 | 大日本印刷株式会社 | 光学元件的制造方法及其制造装置 |
JP2010116528A (ja) * | 2007-12-21 | 2010-05-27 | Sumitomo Chemical Co Ltd | 光学フィルム及び該光学フィルムの製造方法 |
JP5251214B2 (ja) * | 2008-04-01 | 2013-07-31 | Jsr株式会社 | 積層光学フィルムの製造方法、積層光学フィルムおよびその用途 |
JP5845702B2 (ja) * | 2011-08-08 | 2016-01-20 | コニカミノルタ株式会社 | 位相差フィルムの製造方法 |
CN107253935B (zh) | 2012-07-09 | 2020-10-09 | 日本瑞翁株式会社 | 肼化合物、聚合性化合物的制备方法及将肼化合物作为聚合性化合物的制造原料使用的方法 |
JP6216323B2 (ja) * | 2012-10-04 | 2017-10-18 | 富士フイルム株式会社 | 円偏光板およびその製造方法、光学積層体 |
CN102928907B (zh) * | 2012-11-28 | 2016-05-11 | 中国科学院上海光学精密机械研究所 | 双半波全介质f-p窄带偏振分离滤光片 |
CN104823299B (zh) * | 2012-11-30 | 2018-07-06 | 3M创新有限公司 | 具有反射偏振片的发射显示器 |
WO2014126113A1 (ja) * | 2013-02-15 | 2014-08-21 | 日本ゼオン株式会社 | 重合性化合物、重合性組成物、高分子、及び光学異方体 |
JP6641683B2 (ja) * | 2013-10-28 | 2020-02-05 | 日本ゼオン株式会社 | 樹脂フィルム、λ/4板、円偏光板、有機エレクトロルミネッセンス表示装置、及び製造方法 |
KR20150113886A (ko) * | 2014-03-31 | 2015-10-08 | 후지필름 가부시키가이샤 | 광학 필름, 편광판, 및 광학 필름의 제조 방법 |
JP6437854B2 (ja) * | 2015-03-17 | 2018-12-12 | 日東電工株式会社 | 液晶パネルおよび液晶表示装置 |
US10288931B2 (en) * | 2015-09-30 | 2019-05-14 | Zeon Corporation | LCD device |
-
2017
- 2017-03-27 TW TW106110099A patent/TWI719177B/zh active
- 2017-03-27 JP JP2018509324A patent/JP6927198B2/ja active Active
- 2017-03-27 EP EP17774897.7A patent/EP3438713A4/en not_active Withdrawn
- 2017-03-27 US US16/085,218 patent/US10824016B2/en active Active
- 2017-03-27 KR KR1020187026951A patent/KR102362131B1/ko active IP Right Grant
- 2017-03-27 WO PCT/JP2017/012322 patent/WO2017170360A1/ja active Application Filing
- 2017-03-27 CN CN201780018016.7A patent/CN108780186B/zh active Active
Patent Citations (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09127885A (ja) | 1995-10-30 | 1997-05-16 | Sony Corp | 表示素子 |
JP2002156528A (ja) * | 1998-10-30 | 2002-05-31 | Teijin Ltd | 熱可塑性高分子フィルム |
JP2003511799A (ja) | 1999-10-08 | 2003-03-25 | シナプティクス インコーポレイテッド | 電子デバイスのためのフレキシブルで透明な接触検出システム |
JP2011138144A (ja) | 2000-09-05 | 2011-07-14 | Nitto Denko Corp | タッチパネル付el表示装置 |
JP2002321302A (ja) | 2001-04-26 | 2002-11-05 | Nippon Zeon Co Ltd | 脂環式構造含有重合体樹脂積層体 |
JP2003331654A (ja) | 2002-05-08 | 2003-11-21 | Toppan Printing Co Ltd | 導電膜およびその製造方法 |
JP2004309597A (ja) * | 2003-04-03 | 2004-11-04 | Fuji Photo Film Co Ltd | 位相差板および楕円偏光板 |
JP2005326818A (ja) | 2004-04-16 | 2005-11-24 | Sharp Corp | 円偏光板及び液晶表示装置 |
JP2007328310A (ja) | 2006-05-12 | 2007-12-20 | Nitto Denko Corp | 楕円偏光板およびそれを用いた画像表示装置 |
JP2008310550A (ja) | 2007-06-14 | 2008-12-25 | Epson Imaging Devices Corp | 静電容量型入力装置 |
JP2010541109A (ja) | 2007-10-04 | 2010-12-24 | アップル インコーポレイテッド | 単層タッチ感知ディスプレイ |
JP2014123134A (ja) | 2007-12-28 | 2014-07-03 | Sumitomo Chemical Co Ltd | 化合物、光学フィルム及び光学フィルムの製造方法 |
JP2011511357A (ja) | 2008-01-29 | 2011-04-07 | メルファス,インコーポレイテッド | 分割電極構造を有する接触感知パネル及びこれを備えた接触感知装置 |
JP2010164938A (ja) | 2009-01-16 | 2010-07-29 | Samsung Mobile Display Co Ltd | タッチスクリーンパネル |
JP2011175601A (ja) | 2010-02-25 | 2011-09-08 | Daicel Chemical Industries Ltd | 透明導電性膜及びタッチパネル |
JP2012018634A (ja) | 2010-07-09 | 2012-01-26 | Fujifilm Corp | 透明導電性基板、タッチパネル用導電シート及びタッチパネル |
WO2012147904A1 (ja) | 2011-04-27 | 2012-11-01 | 日本ゼオン株式会社 | 重合性化合物、重合性組成物、高分子、及び光学異方体 |
JP2014071209A (ja) | 2012-09-28 | 2014-04-21 | Dainippon Printing Co Ltd | 光学フィルム用転写体、光学フィルム、光学フィルム用転写体の製造方法 |
JP2014123099A (ja) | 2012-11-21 | 2014-07-03 | Dainippon Printing Co Ltd | 光学フィルム、光学フィルム用転写体、画像表示装置 |
JP2014142462A (ja) * | 2013-01-23 | 2014-08-07 | Dainippon Printing Co Ltd | 光学機能層付きタッチパネル用電極部、円偏光板付きタッチパネル電極部、タッチパネル、画像表示装置 |
JP2015040904A (ja) | 2013-08-20 | 2015-03-02 | 大日本印刷株式会社 | 光学フィルム、画像表示装置、光学フィルム用転写体、光学フィルムの製造方法及び光学フィルム用転写体の製造方法 |
JP2015079230A (ja) | 2013-09-10 | 2015-04-23 | 住友化学株式会社 | 積層体の製造方法 |
WO2015064581A1 (ja) * | 2013-10-28 | 2015-05-07 | 日本ゼオン株式会社 | 複層フィルム、光学異方性積層体、円偏光板、有機エレクトロルミネッセンス表示装置、及び製造方法 |
WO2015166991A1 (ja) * | 2014-05-01 | 2015-11-05 | 富士フイルム株式会社 | 有機el表示装置 |
WO2016043124A1 (ja) * | 2014-09-17 | 2016-03-24 | 日本ゼオン株式会社 | 円偏光板、広帯域λ/4板、及び、有機エレクトロルミネッセンス表示装置 |
WO2016114254A1 (ja) * | 2015-01-16 | 2016-07-21 | Dic株式会社 | 位相差板及び円偏光板 |
Non-Patent Citations (3)
Title |
---|
See also references of EP3438713A4 |
XIA, Y. ET AL., CHEM. MATER., vol. 14, 2002, pages 4736 - 4745 |
XIA, Y. ET AL., NANO LETTERS, vol. 3, no. 7, 2003, pages 955 - 960 |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018110277A1 (ja) * | 2016-12-16 | 2018-06-21 | 日東電工株式会社 | 光学積層体、画像表示装置、及び光学積層体の製造方法 |
WO2019069855A1 (ja) * | 2017-10-03 | 2019-04-11 | 日本ゼオン株式会社 | 光学異方性層及びその製造方法、光学異方性積層体及びその製造方法、光学異方性転写体、偏光板、並びに画像表示装置 |
JPWO2019069855A1 (ja) * | 2017-10-03 | 2020-11-26 | 日本ゼオン株式会社 | 光学異方性層及びその製造方法、光学異方性積層体及びその製造方法、光学異方性転写体、偏光板、並びに画像表示装置 |
JP7156294B2 (ja) | 2017-10-03 | 2022-10-19 | 日本ゼオン株式会社 | 光学異方性層及びその製造方法、光学異方性積層体及びその製造方法、光学異方性転写体、偏光板、並びに画像表示装置 |
WO2019124456A1 (ja) * | 2017-12-20 | 2019-06-27 | 日本ゼオン株式会社 | 円偏光板、長尺の広帯域λ/4板、有機エレクトロルミネッセンス表示装置及び液晶表示装置 |
WO2019146468A1 (ja) * | 2018-01-29 | 2019-08-01 | 日本ゼオン株式会社 | 有機発光表示装置 |
JPWO2019146468A1 (ja) * | 2018-01-29 | 2021-01-28 | 日本ゼオン株式会社 | 有機発光表示装置 |
JP7279645B2 (ja) | 2018-01-29 | 2023-05-23 | 日本ゼオン株式会社 | 有機発光表示装置 |
CN112105970A (zh) * | 2018-04-27 | 2020-12-18 | 日本瑞翁株式会社 | 宽带波长膜及其制造方法、以及圆偏振膜的制造方法 |
JP2021092685A (ja) * | 2019-12-11 | 2021-06-17 | 住友化学株式会社 | 光学積層体、その製造方法、液晶パネルおよび液晶表示装置 |
WO2022044925A1 (ja) * | 2020-08-28 | 2022-03-03 | 日東電工株式会社 | 配向液晶フィルムおよびその製造方法、ならびに画像表示装置 |
JP2022039873A (ja) * | 2020-08-28 | 2022-03-10 | 日東電工株式会社 | 配向液晶フィルムの製造方法 |
Also Published As
Publication number | Publication date |
---|---|
KR20180130497A (ko) | 2018-12-07 |
JP6927198B2 (ja) | 2021-08-25 |
US10824016B2 (en) | 2020-11-03 |
TWI719177B (zh) | 2021-02-21 |
TW201739045A (zh) | 2017-11-01 |
KR102362131B1 (ko) | 2022-02-11 |
JPWO2017170360A1 (ja) | 2019-02-07 |
CN108780186B (zh) | 2021-07-13 |
US20190079355A1 (en) | 2019-03-14 |
EP3438713A1 (en) | 2019-02-06 |
CN108780186A (zh) | 2018-11-09 |
EP3438713A4 (en) | 2019-11-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017170360A1 (ja) | 光学異方性積層体、円偏光板、及び、画像表示装置 | |
KR102369128B1 (ko) | 광학 이방성층 및 그 제조 방법, 광학 이방성 적층체 및 그 제조 방법, 광학 이방성 전사체, 편광판, 그리고 화상 표시 장치 | |
JP6860012B2 (ja) | 光学異方性積層体、偏光板及び、画像表示装置 | |
TWI650888B (zh) | 複層薄膜、光學異向性積層體、圓偏光板、有機電激發光顯示裝置及其製造方法 | |
JP6641683B2 (ja) | 樹脂フィルム、λ/4板、円偏光板、有機エレクトロルミネッセンス表示装置、及び製造方法 | |
JP6442886B2 (ja) | 複層フィルム、位相差フィルム、円偏光板、及び、有機エレクトロルミネッセンス表示装置の製造方法 | |
JPWO2016136901A1 (ja) | 光学フィルム用転写体、光学フィルム、有機エレクトロルミネッセンス表示装置、及び光学フィルムの製造方法 | |
WO2017110631A1 (ja) | 光学異方性層及びその製造方法、光学異方性積層体並びに円偏光板 | |
KR102589809B1 (ko) | 광학 이방성층 및 그 제조 방법, 광학 이방성 적층체, 전사용 복층물, 편광판, 그리고 화상 표시 장치 | |
JP2017072786A (ja) | 積層光学フィルム、照明装置及び表示装置 | |
KR102581852B1 (ko) | 복층 필름, 광학 이방성 적층체, 원편광판, 유기 일렉트로 루미네선스 표시 장치, 및 제조 방법 | |
JP2017111394A (ja) | 光学フィルムの製造方法 | |
JP7156294B2 (ja) | 光学異方性層及びその製造方法、光学異方性積層体及びその製造方法、光学異方性転写体、偏光板、並びに画像表示装置 | |
JP6446860B2 (ja) | 複層フィルム、位相差フィルム、円偏光板、及び、有機エレクトロルミネッセンス表示装置の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2018509324 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20187026951 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2017774897 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2017774897 Country of ref document: EP Effective date: 20181030 |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17774897 Country of ref document: EP Kind code of ref document: A1 |