WO2018110277A1 - 光学積層体、画像表示装置、及び光学積層体の製造方法 - Google Patents

光学積層体、画像表示装置、及び光学積層体の製造方法 Download PDF

Info

Publication number
WO2018110277A1
WO2018110277A1 PCT/JP2017/042746 JP2017042746W WO2018110277A1 WO 2018110277 A1 WO2018110277 A1 WO 2018110277A1 JP 2017042746 W JP2017042746 W JP 2017042746W WO 2018110277 A1 WO2018110277 A1 WO 2018110277A1
Authority
WO
WIPO (PCT)
Prior art keywords
retardation layer
retardation
layer
polarizer
film
Prior art date
Application number
PCT/JP2017/042746
Other languages
English (en)
French (fr)
Inventor
芳美 今野
寛教 柳沼
章典 伊▲崎▼
▲吉▼紹 北村
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to CN201780077098.2A priority Critical patent/CN110088652B/zh
Priority to US16/468,469 priority patent/US20190331838A1/en
Priority to KR1020197017203A priority patent/KR102455369B1/ko
Priority to JP2018556545A priority patent/JP6992006B2/ja
Publication of WO2018110277A1 publication Critical patent/WO2018110277A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • G02B5/3041Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks
    • G02B5/305Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks including organic materials, e.g. polymeric layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/03Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers with respect to the orientation of features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2305/00Condition, form or state of the layers or laminate
    • B32B2305/55Liquid crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/418Refractive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/42Polarizing, birefringent, filtering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2413/00Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates
    • G02F2413/03Number of plates being 3
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2413/00Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates
    • G02F2413/04Number of plates greater than or equal to 4
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2413/00Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates
    • G02F2413/07All plates on one side of the LC cell

Definitions

  • the present invention relates to an optical laminate, an image display device, and a method for producing the optical laminate.
  • Patent Document 1 In order to improve the visibility when viewing the display screen of the image display device by wearing polarized sunglasses, an image display device using a quarter wave plate as a protective base material for the touch sensor base material or the viewing side polarizing plate is provided.
  • Patent Document 1 Known (Patent Document 1).
  • the image display device of Patent Document 1 has a 1 ⁇ 4 plate on the viewing side of the viewing side polarizing plate, and the angle formed by the absorption axis of the viewing side polarizing plate and the slow axis of the 1 ⁇ 4 wavelength plate is 45 °. Is done.
  • the above-described conventional image display device has a problem that when the display screen is viewed while wearing polarized sunglasses, a hue change and a transmittance change corresponding to the angle of the polarized sunglasses occur, and the visibility is lowered.
  • the present invention has been made in order to solve the above-described conventional problems, and a main purpose thereof is an optical laminate that can improve visibility by suppressing a change in hue according to the angle of polarized sunglasses, and the optical laminate described above.
  • An object of the present invention is to provide an image display device including a body and a method for manufacturing an optical laminate.
  • the first retardation layer, the second retardation layer, the polarizer, and the third retardation layer are laminated in this order from the viewing side.
  • the in-plane retardation Re1 of the first retardation layer is Re1 (450) / Re1 (550) ⁇ 1.03 Re1 (650) / Re1 (550)> 0.97
  • the in-plane retardation Re2 of the second retardation layer is Re2 (450) / Re2 (550) ⁇ 1.03 Re2 (650) / Re2 (550) ⁇ 0.97 Meet.
  • the in-plane retardation Re1 (550) of the first retardation layer is 105 nm to 115 nm
  • the in-plane retardation Re2 (550) of the second retardation layer is 190 nm to 260 nm
  • the polarizer The angle ⁇ 1 formed between the absorption axis and the slow axis of the first retardation layer is 19 ° to 35 °, and the absorption axis of the polarizer and the slow axis of the second retardation layer are Whether the formed angle ⁇ 2 is 77 ° to 85 °
  • the in-plane retardation Re1 (550) of the first retardation layer is 116 nm to 125 nm
  • the in-plane retardation Re2 (550) of the second retardation layer is 200 nm to 260 nm
  • the polarizer An angle ⁇ 1 formed between the absorption axis and the slow axis of the first retardation layer is 15 ° to 35 °, and the absorption axis
  • the first retardation layer is composed of a stretched polymer film
  • the second retardation layer is composed of an alignment solidified layer of a liquid crystal compound.
  • the in-plane retardation Re1 of the first retardation layer is Re1 (450) / Re1 (550) ⁇ 1.03 Re1 (650) / Re1 (550)> 0.97
  • the in-plane retardation Re2 of the second retardation layer is Re2 (450) / Re2 (550) ⁇ 1.03 Re2 (650) / Re2 (550)> 0.97 Meet.
  • an image display device is provided.
  • the image display device includes the optical laminate.
  • the manufacturing method of an optical laminated body includes a long optical laminate in which a first retardation layer, a second retardation layer, a polarizer, and a third retardation layer are laminated in this order. And a long first film constituting the first retardation layer, a long second film constituting the second retardation layer, and the long polarizer. And a step of laminating each of the long third films constituting the third retardation layer to adjacent films while being conveyed.
  • the change in hue according to the angle of the polarized sunglasses when the display screen is viewed with the polarized sunglasses is suppressed, and as a result, the visibility can be improved.
  • Refractive index (nx, ny, nz) “Nx” is the refractive index in the direction in which the in-plane refractive index is maximum (ie, the slow axis direction), and “ny” is the direction orthogonal to the slow axis in the plane (ie, the fast axis direction). “Nz” is the refractive index in the thickness direction.
  • Refractive index (nx, ny, nz) “Nx” is the refractive index in the direction in which the in-plane refractive index is maximum (ie, the slow axis direction), and “ny” is the direction orthogonal to the slow axis in the plane (ie, the fast axis direction). “Nz” is the refractive index in the thickness direction.
  • In-plane retardation (Re) “Re ( ⁇ )” is an in-plane retardation measured with light having a wavelength of ⁇ nm at 23 ° C.
  • Re (550) is an in-plane retardation measured with light having a wavelength of 550 nm at 23 ° C.
  • Thickness direction retardation (Rth) is a retardation in the thickness direction measured with light having a wavelength of ⁇ nm at 23 ° C.
  • Rth (550) is a retardation in the thickness direction measured with light having a wavelength of 550 nm at 23 ° C.
  • FIG. 1 is a cross-sectional view of an optical laminate according to one embodiment of the present invention.
  • the optical laminate 10 has a configuration in which a first retardation layer 1, a second retardation layer 2, a polarizer 3, and a third retardation layer 4 are laminated in this order.
  • the optical laminated body 10 is typically used for an image display device (typically, a liquid crystal display device or an organic EL display device).
  • the optical laminated body 10 is arrange
  • the first retardation layer 1 exhibits a flat wavelength dispersion characteristic in which the in-plane retardation value hardly changes regardless of the wavelength of the measurement light, and the second retardation layer 2 The larger the wavelength of light is, the smaller the in-plane retardation value is.
  • the in-plane retardation Re1 of the first retardation layer 1 and the in-plane retardation Re2 of the second retardation layer 2 preferably satisfy the following expressions (1) to (4).
  • the in-plane retardation Re1 (550) of the first retardation layer When the first retardation layer 1 exhibits flat wavelength dispersion characteristics and the second retardation layer 2 exhibits positive wavelength dispersion characteristics, the in-plane retardation Re1 (550) of the first retardation layer, The in-plane retardation Re2 (550) of the two retardation layers, the angle ⁇ 1 between the absorption axis of the polarizer and the slow axis of the first retardation layer, and the absorption axis of the polarizer and the second retardation.
  • the angle ⁇ 2 formed with the slow axis of the layer preferably satisfies any of the following (A) to (D).
  • (A) Re1 (550) is 105 nm to 115 nm, Re2 (550) is 190 nm to 260 nm, ⁇ 1 is 19 ° to 35 °, and ⁇ 2 is 77 ° to 85 °.
  • (B) Re1 (550) is 116 nm to 125 nm, Re2 (550) is 200 nm to 260 nm, ⁇ 1 is 15 ° to 35 °, and ⁇ 2 is 75 ° to 85 °.
  • Re1 (550) is 126 nm to 135 nm
  • Re2 (550) is 210 nm to 260 nm
  • ⁇ 1 is 15 ° to 35 °
  • ⁇ 2 is 75 ° to 85 °
  • Re1 (550) is 136 nm to 145 nm
  • Re2 (550) is 220 nm to 270 nm
  • ⁇ 1 is 15 ° to 31 °
  • ⁇ 2 is 75 ° to 83 °.
  • the first retardation layer 1 exhibits a flat chromatic dispersion characteristic in which the in-plane retardation value hardly changes regardless of the wavelength of the measurement light, and the second retardation layer 2 similarly. It shows a flat wavelength dispersion characteristic in which the in-plane retardation value hardly changes regardless of the wavelength of the measurement light.
  • the in-plane retardation Re1 of the first retardation layer 1 and the in-plane retardation Re2 of the second retardation layer 2 preferably satisfy the following expressions (5) to (8).
  • the first retardation layer 1 is composed of a stretched polymer film
  • the second retardation layer 2 is composed of an alignment solidified layer of a liquid crystal compound.
  • the refractive index ellipsoid typically satisfies the relationship of nx> nz> ny.
  • the first retardation layer 1, the second retardation layer 2, the polarizer 3, and the third retardation layer 4 are arranged in this order from the viewing side.
  • the optical layered body 10 can practically have a surface protective film on the opposite side of the first retardation layer 1 from the second retardation layer 2, and the polarizer 3 of the third retardation layer 4. It may have an adhesive layer on the opposite side.
  • the optical laminate 10 may practically have a protective layer disposed on at least one side of the polarizer 3.
  • the protective layer is formed of any suitable film that can be used as a protective layer for a polarizer.
  • Specific examples of the material as the main component of the film include cellulose resins such as triacetyl cellulose (TAC), polyester-based, polyvinyl alcohol-based, polycarbonate-based, polyamide-based, polyimide-based, polyethersulfone-based, and polysulfone-based materials.
  • transparent resins such as polystyrene, polynorbornene, polyolefin, (meth) acryl, and acetate.
  • FIG. 2 is a cross-sectional view of an optical laminate according to another embodiment of the present invention.
  • the optical layered body 11 includes a first retardation layer 1, a second retardation layer 2, a polarizer 3, a third retardation layer 5, and a fourth retardation layer 6 in this order. It has a stacked configuration.
  • the refractive index ellipsoid of the third retardation layer 5 satisfies the relationship of nx> ny> nz
  • the refractive index ellipsoid of the fourth retardation layer 6 is nz> nx>. ny relationship is satisfied.
  • the optical layered body may be a single wafer or may be long.
  • the first retardation layer preferably exhibits a flat wavelength dispersion characteristic in which an in-plane retardation value hardly changes regardless of the wavelength of measurement light, and Re1 (450) / Re1 (550). Is smaller than 1.03, and Re1 (650) / Re1 (550) is larger than 0.97. Re1 (450) / Re1 (550) is more preferably 0.98 to 1.02, and Re1 (650) / Re1 (550) is more preferably 0.98 to 1.02.
  • the thickness of the first retardation layer can be set so as to obtain a desired in-plane retardation. Specifically, the thickness is preferably 1 ⁇ m to 80 ⁇ m, more preferably 10 ⁇ m to 60 ⁇ m, and most preferably 30 ⁇ m to 50 ⁇ m.
  • the absolute value of the photoelastic coefficient of the first retardation layer is preferably 2 ⁇ 10 ⁇ 11 m 2 / N or less, more preferably 2.0 ⁇ 10 ⁇ 13 m 2 / N to 1.5 ⁇ 10 ⁇ 11. m 2 / N, more preferably from 1.0 ⁇ 10 -12 m 2 /N ⁇ 1.2 ⁇ 10 -11 m 2 / N resin.
  • the first retardation layer may be composed of any appropriate resin film.
  • a typical example of such a resin is a cyclic olefin resin.
  • the cyclic olefin-based resin is a general term for resins that are polymerized using a cyclic olefin as a polymerization unit, and is described in, for example, JP-A-1-240517, JP-A-3-14882, JP-A-3-122137, and the like. Resin. Specific examples include ring-opening (co) polymers of cyclic olefins, addition polymers of cyclic olefins, copolymers of cyclic olefins and ⁇ -olefins such as ethylene and propylene (typically random copolymers).
  • graft modified products in which these are modified with an unsaturated carboxylic acid or a derivative thereof, and hydrides thereof.
  • Specific examples of the cyclic olefin include norbornene monomers.
  • Examples of the norbornene-based monomer include monomers described in JP-A-2015-210459.
  • cycloolefins capable of ring-opening polymerization can be used in combination as long as the object of the present invention is not impaired.
  • cycloolefins include compounds having one reactive double bond such as cyclopentene, cyclooctene, and 5,6-dihydrodicyclopentadiene.
  • the cyclic olefin resin preferably has a number average molecular weight (Mn) measured by a gel permeation chromatograph (GPC) method using a toluene solvent, preferably 25,000 to 200,000, more preferably 30,000 to 100,000. 000, most preferably 40,000 to 80,000.
  • Mn number average molecular weight measured by a gel permeation chromatograph (GPC) method using a toluene solvent, preferably 25,000 to 200,000, more preferably 30,000 to 100,000. 000, most preferably 40,000 to 80,000.
  • cyclic olefin resin Various products are commercially available as the cyclic olefin resin. Specific examples include trade names “ZEONEX” and “ZEONOR” manufactured by ZEON CORPORATION, “Arton” manufactured by JSR, “TOPAS” trade name manufactured by TICONA, and trade names manufactured by Mitsui Chemicals, Inc. “APEL” may be mentioned.
  • the first retardation layer is obtained, for example, by stretching a film formed from the cyclic olefin resin.
  • Any appropriate molding method can be adopted as a method of forming a film from a cyclic olefin-based resin.
  • the film constituting the first retardation layer may be a single wafer or a long film.
  • the 1st phase contrast layer is produced by cutting out the above-mentioned resin film extended in the elongate direction in the direction of a predetermined angle to the elongate direction.
  • the first retardation layer is produced by continuously and obliquely stretching the long resin film in a predetermined angle direction with respect to the long direction.
  • the first retardation layer is formed by obliquely stretching a laminate of a supporting base material and a resin layer laminated on the supporting base material, and forming an obliquely stretched resin layer (resin film). It is produced by transferring to another layer.
  • a long stretched film having an orientation angle of a predetermined angle with respect to the longitudinal direction of the film (slow axis in the direction of the angle) can be obtained.
  • the predetermined angle may be an angle formed by the absorption axis (long direction) of the polarizer and the slow axis of the first retardation layer.
  • Examples of the stretching machine used for the oblique stretching include a tenter type stretching machine capable of adding feed forces, pulling forces, or pulling forces at different speeds in the lateral and / or longitudinal directions.
  • the tenter type stretching machine includes a horizontal uniaxial stretching machine, a simultaneous biaxial stretching machine, and the like, but any suitable stretching machine can be used as long as a long resin film can be continuously stretched obliquely.
  • the first retardation layer having the desired in-plane retardation and having the slow axis in the desired direction can be obtained by appropriately controlling the left and right speeds in the stretching machine.
  • the stretching temperature of the film can vary depending on the in-plane retardation value and thickness desired for the first retardation layer, the type of resin used, the thickness of the film used, the stretching ratio, and the like. Specifically, the stretching temperature is preferably Tg-30 ° C to Tg + 30 ° C, more preferably Tg-15 ° C to Tg + 15 ° C, and most preferably Tg-10 ° C to Tg + 10 ° C.
  • Tg is the glass transition temperature of the constituent material of the film.
  • the first retardation layer may be composed of any appropriate resin film mainly composed of a thermoplastic resin having a negative intrinsic birefringence value. As a material constituting an optical element having negative refractive index anisotropy, a polymer having negative intrinsic birefringence is preferably used.
  • a polymer having negative intrinsic birefringence refers to a polymer having a relatively small refractive index in the orientation direction when the polymer is oriented by stretching or the like.
  • Examples of the polymer having negative intrinsic birefringence include those in which a chemical bond or a functional group having a large polarization anisotropy such as an aromatic group or a carbonyl group is introduced into the side chain of the polymer. Examples thereof include acrylic resins, styrene resins, maleimide resins, and fumaric acid ester resins.
  • the first retardation layer can be obtained, for example, by stretching a resin film containing as a main component a thermoplastic resin having a negative intrinsic birefringence value.
  • Any appropriate stretching method can be adopted as a method of stretching the resin film mainly composed of the thermoplastic resin having the negative intrinsic birefringence value.
  • a shrinkable film is bonded to both surfaces of a resin film containing a thermoplastic resin as a main component, and the film is heated and stretched by a longitudinal uniaxial stretching method using a roll stretching machine.
  • the shrinkable film is used for imparting a shrinkage force in a direction perpendicular to the stretching direction at the time of heat stretching and increasing a refractive index (nz) in the thickness direction.
  • the method for attaching the shrinkable film on both sides of the resin film is not particularly limited, but an acrylic pressure-sensitive adhesive layer having an acrylic polymer as a base polymer is provided between the resin film and the shrinkable film. Is preferable from the viewpoint of excellent workability and economical efficiency. Details of the method for forming the resin film constituting the first retardation layer of the present embodiment are described in JP-A-2007-193365. The description in this publication is incorporated herein by reference.
  • the 1st phase contrast layer is produced by carrying out the slanting extension of the above-mentioned long resin film continuously to the direction of a predetermined angle to the longitudinal direction.
  • the resin film on which the shrinkable film is bonded is laminated on a supporting substrate, the laminate is stretched obliquely, and the obliquely stretched resin film is transferred to another layer.
  • the second retardation layer exhibits a positive chromatic dispersion characteristic in which the in-plane retardation value decreases as the wavelength of the measurement light increases, and Re2 (450) / Re2 ( 550) is 1.03 or more, and Re2 (650) / Re2 (550) is 0.97 or less. Re2 (450) / Re2 (550) is more preferably 1.03 to 1.15, and Re2 (650) / Re2 (550) is more preferably 0.90 to 0.97.
  • the second retardation layer exhibits a flat wavelength dispersion characteristic in which the in-plane retardation value hardly changes regardless of the wavelength of the measurement light, and Re2 (450) / Re2 (550) is 1.
  • Re2 (650) / Re2 (550) is greater than 0.97.
  • Re2 (450) / Re2 (550) is more preferably 0.98 to 1.02, and Re2 (650) / Re2 (550) is more preferably 0.98 to 1.02.
  • Re1 ( 550), Re2 (550), ⁇ 1, and ⁇ 2 preferably satisfy any of the following (A) to (D).
  • Re1 (550) is 105 nm to 115 nm
  • Re2 (550) is 190 nm to 260 nm
  • ⁇ 1 is 19 ° to 35 °
  • ⁇ 2 is 77 ° to 85 °.
  • Re1 (550) is 116 nm to 125 nm
  • Re2 (550) is 200 nm to 260 nm
  • ⁇ 1 is 15 ° to 35 °
  • ⁇ 2 is 75 ° to 85 °
  • C Re1 (550) is 126 nm to 135 nm
  • Re2 (550) is 210 nm to 260 nm
  • ⁇ 1 is 15 ° to 35 °
  • ⁇ 2 is 75 ° to 85 °.
  • Re1 (550) is 136 nm to 145 nm
  • Re2 (550) is 220 nm to 270 nm
  • ⁇ 1 is 15 ° to 31 °
  • ⁇ 2 is 75 ° to 83 °.
  • Re1 (550), Re2 (550), ⁇ 1, and ⁇ 2 are More preferably, any one of the following (E) to (G) is satisfied.
  • (E) Re1 (550) is 105 nm to 115 nm
  • Re2 (550) is 210 nm to 250 nm
  • ⁇ 1 is 19 ° to 35 °
  • ⁇ 2 is 77 ° to 85 °.
  • Re1 (550) is 116 nm to 135 nm
  • Re2 (550) is 220 nm to 260 nm
  • ⁇ 1 is 19 ° to 31 °
  • ⁇ 2 is 77 ° to 83 °
  • Re1 (550) is 136 nm to 145 nm
  • Re2 (550) is 220 nm to 260 nm
  • ⁇ 1 is 19 ° to 27 °
  • ⁇ 2 is 77 ° to 81 °.
  • Re1 (550), Re2 (550), ⁇ 1, and ⁇ 2 are Most preferably, any one of the following (H) to (K) is satisfied.
  • (H) Re1 (550) is 105 nm to 115 nm
  • Re2 (550) is 220 nm to 230 nm
  • ⁇ 1 is 23 ° to 27 °
  • ⁇ 2 is 79 ° to 81 °.
  • Re1 (550) is 116 nm to 125 nm
  • Re2 (550) is 220 nm to 250 nm
  • ⁇ 1 is 19 ° to 27 °
  • ⁇ 2 is 77 ° to 81 °
  • Re1 (550) is 126 nm to 135 nm
  • Re2 (550) is 230 nm to 250 nm
  • ⁇ 1 is 19 ° to 27 °
  • ⁇ 2 is 77 ° to 81 °.
  • Re1 (550) is 136 nm to 145 nm
  • Re2 (550) is 245 nm to 255 nm
  • ⁇ 1 is 19 ° to 23 °
  • ⁇ 2 is 77 ° to 79 °.
  • the thickness of the second retardation layer can be set so as to obtain a desired in-plane retardation. Specifically, the thickness is preferably 1 ⁇ m to 80 ⁇ m. When the second retardation layer is composed of an alignment solidified layer of a liquid crystal compound, the thickness is more preferably 1 ⁇ m to 10 ⁇ m, still more preferably 1 ⁇ m to 6 ⁇ m.
  • the second retardation layer may be composed of an alignment solidified layer of a liquid crystal compound.
  • the “alignment solidified layer” refers to a layer in which a liquid crystal compound is aligned in a predetermined direction in the layer and the alignment state is fixed.
  • rod-like liquid crystal compounds are aligned in a state of being aligned in the slow axis direction of the second retardation layer (homogeneous alignment).
  • the liquid crystal compound include a liquid crystal compound (nematic liquid crystal) whose liquid crystal phase is a nematic phase.
  • a liquid crystal compound for example, a liquid crystal polymer or a liquid crystal monomer can be used.
  • the liquid crystal compound may exhibit liquid crystallinity either lyotropic or thermotropic.
  • the liquid crystal polymer and the liquid crystal monomer may be used alone or in combination.
  • the liquid crystal monomer is preferably a polymerizable monomer and a crosslinkable monomer. This is because the alignment state of the liquid crystal monomer can be fixed by polymerizing or crosslinking the liquid crystal monomer. After aligning the liquid crystal monomers, for example, if the liquid crystal monomers are polymerized or cross-linked, the alignment state can be fixed thereby.
  • a polymer is formed by polymerization and a three-dimensional network structure is formed by crosslinking, but these are non-liquid crystalline. Therefore, in the formed second retardation layer, for example, transition to a liquid crystal phase, a glass phase, or a crystal phase due to a temperature change specific to the liquid crystal compound does not occur.
  • the second retardation layer is a retardation layer that is not affected by temperature changes and has extremely high stability.
  • the temperature range in which the liquid crystal monomer exhibits liquid crystal properties varies depending on its type. Specifically, the temperature range is preferably 40 ° C. to 120 ° C., more preferably 50 ° C. to 100 ° C., and most preferably 60 ° C. to 90 ° C.
  • liquid crystal monomer any appropriate liquid crystal monomer can be adopted as the liquid crystal monomer.
  • the polymerizable mesogenic compounds described in JP-T-2002-533742 WO00 / 37585
  • EP358208 US521118)
  • EP66137 US4388453
  • WO93 / 22397 EP0266172
  • DE195504224 DE44081171
  • GB2280445 Specific examples of such a polymerizable mesogenic compound include, for example, trade name LC242 of BASF, trade name E7 of Merck, and trade name LC-Silicon-CC3767 of Wacker-Chem.
  • the liquid crystal monomer for example, a nematic liquid crystal monomer is preferable.
  • the alignment solidified layer of the liquid crystal compound is subjected to an alignment treatment on the surface of a predetermined substrate, and a coating liquid containing the liquid crystal compound is applied to the surface to align the liquid crystal compound in a direction corresponding to the alignment treatment, It can be formed by fixing the alignment state.
  • the substrate is any suitable resin film, and the alignment solidified layer formed on the substrate can be transferred to the surface of the first retardation layer.
  • any appropriate alignment treatment can be adopted as the alignment treatment.
  • a mechanical alignment process, a physical alignment process, and a chemical alignment process are mentioned.
  • Specific examples of the mechanical alignment treatment include rubbing treatment and stretching treatment.
  • Specific examples of the physical alignment process include a magnetic field alignment process and an electric field alignment process.
  • Specific examples of the chemical alignment treatment include oblique vapor deposition and photo-alignment treatment.
  • Arbitrary appropriate conditions may be employ
  • the alignment of the liquid crystal compound is performed by processing at a temperature showing a liquid crystal phase according to the type of the liquid crystal compound.
  • the liquid crystal compound takes a liquid crystal state, and the liquid crystal compound is oriented according to the orientation treatment direction of the substrate surface.
  • the alignment state is fixed by cooling the liquid crystal compound aligned as described above.
  • the alignment state is fixed by subjecting the liquid crystal compound aligned as described above to a polymerization treatment or a crosslinking treatment.
  • liquid crystal compound and details of the method of forming the alignment solidified layer are described in JP-A No. 2006-163343. The description in this publication is incorporated herein by reference.
  • the second retardation layer may be composed of an alignment solidified layer of a liquid crystalline composition containing a discotic liquid crystal compound aligned substantially vertically.
  • the “discotic liquid crystal compound” has a disc-shaped mesogenic group in the molecular structure, and 2 to 8 side differences in the mesogenic group are radially formed by an ether bond or an ester bond. This is what is connected.
  • the mesogenic group include P.I. of the Liquid Crystal Dictionary (Baifukan Publishing). 22 and the structure described in FIG. Specific examples include benzene, triphenylene, turxene, pyran, luffalool, porphyrin, and metal complex.
  • the discotic liquid crystal compound aligned substantially vertically has an optical axis in one direction in the film plane.
  • a substantially perpendicularly oriented discotic liquid crystal compound means that the disc surface of the discotic liquid crystal compound is perpendicular to the film plane and the optical axis is parallel to the film plane.
  • the liquid crystalline composition containing the above discotic liquid crystal compound is not particularly limited as long as it contains a discotic liquid crystal compound and exhibits liquid crystallinity.
  • the content of the discotic liquid crystal compound in the liquid crystal composition is preferably 40 parts by weight or more and less than 100 parts by weight, more preferably 50 parts by weight with respect to 100 parts by weight of the total solid content of the liquid crystal composition.
  • the amount is at least 100 parts by weight, and most preferably at least 70 parts by weight and less than 100 parts by weight.
  • a retardation film comprising an alignment solidified layer of a liquid crystalline composition containing a substantially vertically aligned discotic liquid crystal compound can be obtained by the method described in JP-A No. 2001-56411.
  • the retardation film composed of the alignment solidified layer of the liquid crystalline composition containing the substantially perpendicularly aligned discotic liquid crystal compound is applied in one direction, thereby substantially perpendicular to the coating direction.
  • a direction in which the refractive index increases in the film plane slow axis direction
  • It is possible to produce a roll-like retardation film (negative A plate) having A roll-like retardation film having a slow axis in a direction orthogonal to the longitudinal direction can be roll-to-rolled when laminated with other layers.
  • the second retardation layer may be composed of an alignment solidified layer of a liquid crystalline composition containing a homogeneously aligned lyotropic liquid crystal compound.
  • lyotropic liquid crystal compound refers to a liquid crystal compound that exhibits a liquid crystal phase depending on the concentration of a solute in a solution state. Any appropriate lyotropic liquid crystal compound may be used.
  • the lyotropic liquid crystal compound examples include an amphiphilic compound having a hydrophilic group and a hydrophobic group at both ends of the molecule, a chromonic compound having an aromatic ring with water solubility, a cellulose derivative, a polypeptide, And a high molecular compound having a rod-like skeleton in the main chain such as nucleic acid.
  • the retardation film used for the second retardation layer is preferably an alignment solidified layer of a liquid crystalline composition containing a homogeneously aligned lyotropic liquid crystal compound, and the lyotropic liquid crystal compound is water-soluble. Is a chromonic compound having an aromatic ring.
  • the liquid crystalline composition containing the above lyotropic liquid crystal compound is not particularly limited as long as it contains a lyotropic liquid crystal compound and exhibits liquid crystallinity.
  • the content of the discotic liquid crystal compound in the liquid crystal composition is preferably 40 parts by weight or more and less than 100 parts by weight, more preferably 50 parts by weight or more and 100 parts by weight with respect to the total solid content 100 of the liquid crystal composition. It is less than part by weight, most preferably 70 parts by weight or more and less than 100 parts by weight.
  • the retardation film comprising an alignment solidified layer of a liquid crystalline composition containing the substantially vertically aligned lyotropic liquid crystal compound can be obtained by the method described in JP-A No. 2002-296415.
  • a retardation film comprising an alignment solidified layer of a liquid crystalline composition containing the homogeneously aligned lyotropic liquid crystal compound is applied in one direction, and in a direction substantially perpendicular to the coating direction. In the direction of increasing the refractive index (slow axis direction), wrinkles are generated, so that rolls having a slow axis in the direction perpendicular to the longitudinal direction are not continuously stretched or contracted by continuous coating.
  • a retardation film can be produced.
  • a roll-like retardation film having a slow axis in a direction orthogonal to the longitudinal direction can be roll-to-rolled when laminated with other layers.
  • the second retardation layer is a retardation showing flat wavelength dispersion characteristics in which the in-plane retardation value hardly changes regardless of the wavelength of the measurement light. It may be a layer.
  • the thickness of the second retardation layer can be set so as to obtain a desired in-plane retardation. Specifically, the thickness is preferably 1 ⁇ m to 160 ⁇ m, more preferably 10 ⁇ m to 80 ⁇ m, and most preferably 20 ⁇ m to 50 ⁇ m.
  • the resin film forming the polarizer may be a single-layer resin film or a laminate of two or more layers.
  • polarizers composed of a single-layer resin film include hydrophilic polymer films such as polyvinyl alcohol (PVA) films, partially formalized PVA films, and ethylene / vinyl acetate copolymer partially saponified films.
  • PVA polyvinyl alcohol
  • polyene-based oriented films such as those subjected to dyeing treatment and stretching treatment with dichroic substances such as iodine and dichroic dyes, PVA dehydrated products and polyvinyl chloride dehydrochlorinated products.
  • a polarizer obtained by dyeing a PVA film with iodine and uniaxially stretching is used because of excellent optical properties.
  • the dyeing with iodine is performed, for example, by immersing a PVA film in an aqueous iodine solution.
  • the stretching ratio of the uniaxial stretching is preferably 3 to 7 times.
  • the stretching may be performed after the dyeing treatment or may be performed while dyeing. Moreover, you may dye
  • the PVA film is subjected to swelling treatment, crosslinking treatment, washing treatment, drying treatment and the like. For example, by immersing the PVA film in water and washing it before dyeing, not only can the surface of the PVA film be cleaned of dirt and anti-blocking agents, but the PVA film can be swollen to cause uneven staining. Can be prevented.
  • a polarizer obtained by using a laminate a laminate of a resin substrate and a PVA resin layer (PVA resin film) laminated on the resin substrate, or a resin substrate and the resin
  • a polarizer obtained by using a laminate with a PVA resin layer applied and formed on a substrate examples thereof include a polarizer obtained by using a laminate with a PVA resin layer applied and formed on a substrate.
  • a polarizer obtained by using a laminate of a resin base material and a PVA resin layer applied and formed on the resin base material may be obtained by, for example, applying a PVA resin solution to a resin base material and drying it.
  • a PVA-based resin layer is formed thereon to obtain a laminate of a resin base material and a PVA-based resin layer; the laminate is stretched and dyed to make the PVA-based resin layer a polarizer; obtain.
  • stretching typically includes immersing the laminate in an aqueous boric acid solution and stretching.
  • the stretching may further include, if necessary, stretching the laminate in the air at a high temperature (for example, 95 ° C. or higher) before stretching in the aqueous boric acid solution.
  • the obtained resin base material / polarizer laminate may be used as it is (that is, the resin base material may be used as a protective layer of the polarizer), and the resin base material is peeled from the resin base material / polarizer laminate.
  • Any appropriate protective layer according to the purpose may be laminated on the release surface. Details of a method for manufacturing such a polarizer are described in, for example, Japanese Patent Application Laid-Open No. 2012-73580. This publication is incorporated herein by reference in its entirety.
  • the thickness of the polarizer is preferably 25 ⁇ m or less, more preferably 1 ⁇ m to 12 ⁇ m, and even more preferably 3 ⁇ m to 8 ⁇ m.
  • the thickness of the polarizer is in such a range, curling during heating can be satisfactorily suppressed, and good appearance durability during heating can be obtained.
  • the polarizer preferably exhibits absorption dichroism at any wavelength between 380 nm and 780 nm.
  • the single transmittance of the polarizer is preferably 42.0% to 46.0%, more preferably 44.5% to 46.0%.
  • the polarization degree of the polarizer is preferably 97.0% or more, more preferably 99.0% or more, and further preferably 99.9% or more.
  • the thickness of the third retardation layer is preferably 0.1 ⁇ m to 50 ⁇ m, more preferably 10 ⁇ m to 30 ⁇ m.
  • the third retardation layer preferably also serves as a protective layer for the polarizer. In this case, a separate protective layer may not be provided between the polarizer and the third retardation layer. In this case, the third retardation layer is bonded to the polarizer via any appropriate adhesive layer.
  • the refractive index ellipsoid of the third retardation layer satisfies the relationship of nx> nz> ny, and the Nz coefficient of the third retardation layer is, for example, 0.1 to 0.9.
  • the refractive index ellipsoid of the third retardation layer satisfies the relationship of nx> ny> nz
  • the Nz coefficient of the third retardation layer is, for example, 1.03 or more.
  • the optical layered body has a fourth retardation layer whose refractive index ellipsoid satisfies the relationship of nz> nx> ny.
  • the third retardation layer in which the refractive index ellipsoid satisfies the relationship of nx>nz> ny is 150 nm to 400 nm, more preferably 180 nm to 350 nm.
  • the angle ⁇ 3 formed between the absorption axis of the polarizer and the slow axis of the third retardation layer is preferably 87 ° to 93 ° or ⁇ 3 ° to 3 °, more preferably 89 ° to 91 ° or ⁇ . 1 ° to 1 °.
  • the third retardation layer can be made of any appropriate material that can satisfy the optical properties and mechanical properties as described above.
  • it may be composed of any suitable retardation film.
  • the retardation film contains at least one thermoplastic resin selected from a norbornene resin, a cellulose resin, a carbonate resin, and an ester resin. More preferably, the retardation film contains at least one thermoplastic resin selected from a norbornene resin and a carbonate resin. It is because it is excellent in heat resistance, transparency, and moldability. Any appropriate method can be adopted as a method for producing the retardation film.
  • thermoplastic resin or a composition containing the thermoplastic resin is formed into a sheet shape to form a polymer film, and a shrinkable film is bonded to one or both sides of the polymer film,
  • the method of extending by heating is mentioned.
  • heat stretching include heat stretching by a longitudinal uniaxial stretching method using a roll stretching machine.
  • the third retardation layer in which the refractive index ellipsoid satisfies the relationship of nx>ny> nz The in-plane retardation Re3 (550) of the third retardation layer in which the refractive index ellipsoid satisfies the relationship of nx>ny> nz is , 90 nm to 160 nm, and more preferably 110 nm to 155 nm.
  • the angle ⁇ 3 formed between the absorption axis of the polarizer and the slow axis of the third retardation layer is preferably 87 ° to 93 °, more preferably 89 ° to 91 °.
  • the third retardation layer can be made of any appropriate material that can satisfy the optical properties and mechanical properties as described above.
  • the third retardation layer may be composed of any appropriate retardation film.
  • the resin forming the retardation film is preferably a norbornene resin or a polycarbonate resin.
  • any appropriate method including a resin film stretching step can be adopted. Examples of the stretching method include lateral uniaxial stretching (fixed end biaxial stretching) and sequential biaxial stretching.
  • the stretching temperature is preferably 135 to 165 ° C, more preferably 140 to 160 ° C.
  • the draw ratio is preferably 2.8 to 3.2 times, more preferably 2.9 to 3.1 times.
  • the third retardation layer can be composed of any suitable non-liquid crystalline material.
  • the thickness of the third retardation layer is typically 0.1 to 10 ⁇ m, more preferably 0.1 to 8 ⁇ m, and particularly preferably 0.1 to 5 ⁇ m.
  • the non-liquid crystalline material is preferably a non-liquid crystalline polymer, and specifically, polymers such as polyamide, polyimide, polyester, polyether ketone, polyamide imide, and polyester imide are preferable. These polymers may be used alone or in a mixture of two or more.
  • the third retardation layer can be typically formed by applying a solution of the non-liquid crystal polymer to a base film and removing the solvent.
  • a process for imparting optical biaxiality (nx> ny> nz) (for example, a stretching process) is preferably performed.
  • a difference in refractive index (nx> ny) can be reliably imparted in the surface.
  • specific examples of the polyimide and specific examples of the method for forming the third retardation layer include polymers and production methods described in JP-A-2006-234848.
  • the fourth retardation layer has a relationship in which the refractive index characteristic is nz>nx> ny.
  • the in-plane retardation Re4 (550) of the fourth retardation layer is preferably 10 nm to 150 nm, and more preferably 10 nm to 80 nm.
  • the Nz coefficient of the fourth retardation layer is, for example, ⁇ 0.1 or less, preferably ⁇ 2.0 or less.
  • the angle formed by the absorption axis of the polarizer and the slow axis of the fourth retardation layer is preferably 87 ° to 93 °, more preferably 89 ° to 91 °.
  • the fourth retardation layer may be composed of any appropriate material that can satisfy the optical characteristics and mechanical characteristics as described above.
  • the fourth retardation layer may be composed of a liquid crystal layer fixed in homeotropic alignment.
  • the liquid crystal material (liquid crystal compound) that can be homeotropically aligned may be a liquid crystal monomer or a liquid crystal polymer.
  • Specific examples of the liquid crystal compound and the method for forming the liquid crystal layer include the liquid crystal compounds and methods described in JP-A-2002-333642, [0020] to [0042].
  • the thickness is preferably 0.1 ⁇ m to 6 ⁇ m, more preferably 0.2 ⁇ m to 3 ⁇ m.
  • the fourth retardation layer may be a retardation film formed of a fumaric acid diester resin described in JP 2012-32784 A.
  • the thickness is preferably 5 ⁇ m to 50 ⁇ m, more preferably 5 ⁇ m to 35 ⁇ m.
  • the manufacturing method of the optical laminate is typically a long first film constituting the first retardation layer 1 and a long second film constituting the second retardation layer 2.
  • Each of the long polarizer 3 and the long third film constituting the third retardation layer 4 is continuously bonded to an adjacent film while being conveyed.
  • the 2nd film is formed on the substrate, and after pasting the 2nd film formed on the substrate on the 1st film, it includes the process of exfoliating the substrate.
  • the polarizer is formed on a base material, and includes a step of peeling the base material after the polarizer formed on the base material is bonded to the second film.
  • the third film is formed on a base material, and includes a step of peeling the base material after the third film formed on the base material is bonded to a polarizer. Two or more of the above embodiments may be combined.
  • An image display device includes the optical layered body described in the above items A to F, and the optical layered body includes a first retardation layer, a second retardation layer, a polarizer, 3 retardation layers are provided so as to be arranged in this order from the viewing side of the image display device.
  • the present invention will be specifically described by way of examples, but the present invention is not limited to these examples.
  • the measuring method of each characteristic is as follows.
  • Thickness The thickness was measured using a digital micrometer (KC-351C manufactured by Anritsu).
  • Retardation value Refractive indexes nx, ny and nz of retardation layers used in Examples and Comparative Examples were measured with an automatic birefringence measuring device (manufactured by Oji Scientific Instruments Co., Ltd., automatic birefringence meter KOBRA-WPR).
  • the measurement wavelength of the in-plane retardation Re was 450 nm, 550 nm, and 650 nm
  • the measurement wavelength of the thickness direction retardation Rth was 550 nm
  • the measurement temperature was 23 ° C.
  • a light source (product name “JCR 12V 50W 20H” manufactured by Iwasaki Electric Co., Ltd.) is provided on the back side (third retardation layer side) of the optical laminate.
  • a polarizer simulating polarized sunglasses was placed on the front side (surface protective film side) of the optical laminate. While rotating the polarizer in the range of 90 ° to -90 °, the light emitted from the light source and transmitted through the optical laminate and the polarizer is converted into an integrating sphere type sentence high transmittance measuring device DOT-3C (Inc. The spectrum was measured using Murakami Color Research Laboratory.
  • the hues a and b of the Hunter Lab color system were calculated from the spectrum of the obtained transmitted light, and plotted on coordinates where the horizontal axis was a and the vertical axis was b.
  • the horizontal axis is plotted as the angle of a polarizer simulating polarized sunglasses, and the vertical axis is plotted as the transmittance (Y value).
  • Example 1 Production of Retardation Film A Constructing First Retardation Layer of cycloolefin resin (trade name “Zeonor ZF14”, thickness 40 ⁇ m, manufactured by Nippon Zeon Co., Ltd.) obtained by hydrogenating a ring-opening polymer of norbornene monomer. On both sides, a biaxially stretched polypropylene film (manufactured by Toray Industries, Inc., trade name “Treffan—high shrinkage type”, thickness 60 ⁇ m) was bonded via an acrylic adhesive layer (thickness 15 ⁇ m). Then, the longitudinal direction of the film was held with a roll stretching machine and stretched 1.40 times in an air circulation type drying oven at 148 ° C.
  • cycloolefin resin trade name “Zeonor ZF14”, thickness 40 ⁇ m, manufactured by Nippon Zeon Co., Ltd.
  • a biaxially stretched polypropylene film manufactured by Toray Industries, Inc., trade name “Treffan—high shrinkage type
  • retardation film A The stretched film thus obtained was designated as retardation film A.
  • Preparation of alignment solidified layer B of liquid crystal compound constituting second retardation layer A photo-alignment film is applied to the surface of a long polyethylene terephthalate substrate (PET substrate) having a thickness of 100 ⁇ m, and the longitudinal direction is The photo-alignment treatment was performed in the direction of 10 °.
  • PTT substrate polyethylene terephthalate substrate
  • 10 parts by weight of a polymerizable liquid crystal monomer exhibiting a nematic liquid crystal phase manufactured by BASF: trade name Paliocolor LC242
  • 3 parts by weight of a photopolymerization initiator for the polymerizable liquid crystal monomer manufactured by BASF: trade name: Irgacure 907 are added to 40 parts of toluene.
  • a liquid crystal coating solution was prepared by dissolving in parts by weight.
  • the coating liquid was applied to the surface of the PET substrate subjected to the photo-alignment treatment with a bar coater, and then the liquid crystal was aligned by heating and drying at 80 ° C. for 4 minutes.
  • a long laminate (alignment solidified layer laminate) in which the alignment solidified layer B was formed on the PET substrate was obtained.
  • This alignment solidified layer B has a thickness of 2 ⁇ m, an in-plane retardation Re (550) of 220 nm, Re (450) / Re (550) of 1.08, and Re (650) / Re (550).
  • the laminated body thus obtained was immersed in an insolubilizing bath having a liquid temperature of 30 ° C. for 30 seconds (insolubilizing step). Subsequently, it was immersed in a dyeing bath having a liquid temperature of 30 ° C. for 60 seconds (dyeing process). Next, it was immersed in a crosslinking bath at a liquid temperature of 30 ° C. for 30 seconds (crosslinking step). Thereafter, the laminate was uniaxially stretched in the machine direction (longitudinal direction) between rolls having different peripheral speeds while being immersed in a boric acid aqueous solution having a liquid temperature of 60 ° C.
  • the immersion time in the boric acid aqueous solution was 120 seconds, and the laminate was stretched until just before breaking. Thereafter, the laminate was immersed in a cleaning bath and then dried with warm air of 60 ° C. (cleaning / drying step). In this way, a long laminate (polarizer laminate) in which a polarizer having a thickness of 5 ⁇ m was formed on a substrate was obtained. 4).
  • retardation film C constituting third retardation layer A polymer film containing a long norbornene-based resin having a thickness of 100 ⁇ m (trade name “Zeonor ZF-14-100” manufactured by Optes Co., Ltd.) A 60 ⁇ m shrinkable film (trade name “Torphan BO2873” manufactured by Toray Industries, Inc.) was bonded through an acrylic adhesive layer (thickness 15 ⁇ m), and then 1.38 times in an air circulation oven at 146 ° C. To obtain a long laminate (retardation film laminate) in which a long retardation film C is formed on a shrinkable film, and the retardation film C has a thickness of 17 ⁇ m.
  • the in-plane retardation Re (550) is 275 nm, Re (450) / Re (550) is 1.10, Re (650) / Re (550) is 0.95, and the refractive index.
  • Oval Body satisfies a relationship of nx>nz> ny, the angle between the slow axis and the longitudinal direction was 90 °. 5).
  • Production of Optical Laminate A surface protective film was bonded to one surface of the retardation film A. Subsequently, the surface of the alignment solidified layer B of the alignment solidified layer laminate was bonded to the other surface of the retardation film A by roll-to-roll with the long direction aligned.
  • the PET base material was peeled from the oriented solidified layer laminate, and the surface of the polarizer of the polarizer laminated body was bonded to the surface of the oriented solidified layer B by aligning the longitudinal direction by roll-to-roll.
  • the base material was peeled from the polarizer laminate, and the retardation film laminate was bonded to the surface of the polarizer by aligning the longitudinal direction by roll-to-roll.
  • the shrinkable film is peeled from the retardation film laminate, whereby the surface protective film, the first retardation layer, the second retardation layer, the polarizer, and the third retardation layer are laminated in this order. An optical layered product was obtained.
  • the acrylic adhesive was used for bonding of each structure.
  • the angle formed by the absorption axis of the polarizer and the slow axis of the first retardation layer is 25 °
  • the absorption axis of the polarizer and the slow axis of the second retardation layer are The angle formed is 80 °.
  • the obtained optical laminated body it used for evaluation of the hue change and the transmittance
  • FIG. 3 shows the evaluation result of the hue change
  • FIG. 4 shows the evaluation result of the transmittance change.
  • ⁇ Comparative Example 1> Production of Retardation Film D Constructing First Retardation Layer A long film composed of polycarbonate resin pellets was obliquely stretched to obtain a long retardation film D.
  • the optical laminated body is an optical laminated body in which a first retardation layer, a polarizer, and a second retardation layer are laminated in this order, and the absorption axis of the polarizer and the retardation of the first retardation layer are delayed.
  • the angle formed with the phase axis is 45 °.
  • the in-plane retardation Re (550) of the obtained retardation film A is 100 nm, the angle formed by the slow axis and the longitudinal direction is 45 °, and the laminate of the retardation film A and the alignment solidified layer is formed.
  • an optical laminate was produced in the same manner as in Example 1 except that the retardation film A was bonded to the polarizer surface of the polarizer laminate by roll-to-roll.
  • the optical laminated body is an optical laminated body in which a first retardation layer, a polarizer, and a second retardation layer are laminated in this order, and the absorption axis of the polarizer and the retardation of the first retardation layer are delayed.
  • the angle formed with the phase axis is 45 °.
  • the obtained optical laminated body it used for evaluation of the hue change and the transmittance
  • FIG. The results are shown in FIG. 3 and FIG.
  • the curve drawn by the hue plot obtained by the spectrum measurement through the optical laminate of Example 1 is obtained by the spectrum measurement through the optical laminate of Comparative Example 1 and Comparative Example 2.
  • the inner area is small, or the change width along the vertical axis is small.
  • the amplitude of the curve obtained by the transmittance measurement via the optical laminate of Example 1 is smaller than the amplitude of the curve obtained by the transmittance measurement via the optical laminate of Comparative Example 2. This means that the optical laminated body of Example 1 has a smaller change in transmittance due to the change in the angle of the polarizer simulating the polarized sunglasses compared to the optical laminated body of Comparative Example 2.
  • the optical laminate of the present invention is suitably used for an image display device (particularly a liquid crystal display device).

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)
  • Laminated Bodies (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

偏光サングラスの角度に応じた色相変化を抑制することによって視認性を改善し得る光学積層体を提供する。光学積層体は、第2の位相差層と、偏光子と、第3の位相差層とが、視認側からこの順に積層されている。

Description

光学積層体、画像表示装置、及び光学積層体の製造方法
 本発明は、光学積層体、画像表示装置、及び光学積層体の製造方法に関する。
 偏光サングラスをかけて画像表示装置の表示画面を見たときの視認性を向上させるために、タッチセンサー基材または視認側偏光板の保護基材に1/4波長板を用いた画像表示装置が知られている(特許文献1)。特許文献1の画像表示装置は、視認側偏光板の視認側に1/4板を有し、視認側偏光板の吸収軸と1/4波長板の遅相軸とのなす角度は45°とされる。これにより、表示画面から円偏光が出射され、その結果、偏光サングラスの透過軸が視認側偏光板の透過軸に対して直交した状態で表示画面を観察した場合に表示画面が暗くなるという問題を解消し得る。
特開平10-10523号公報
 しかしながら、上述の従来の画像表示装置では、偏光サングラスをかけて表示画面を見たときに、偏光サングラスの角度に応じた色相変化および透過率変化が生じ、視認性が低下するという問題がある。
 本発明は上記従来の課題を解決するためになされたものであり、その主たる目的は、偏光サングラスの角度に応じた色相変化を抑制することによって視認性を改善し得る光学積層体、上記光学積層体を備える画像表示装置、及び光学積層体の製造方法を提供することにある。
 本発明の光学積層体は、第1の位相差層と、第2の位相差層と、偏光子と、第3の位相差層とが、視認側からこの順に積層されている。
 1つの実施形態においては、上記第1の位相差層の面内位相差Re1が、
Re1(450)/Re1(550)<1.03
Re1(650)/Re1(550)>0.97
を満たし、上記第2の位相差層の面内位相差Re2が、
Re2(450)/Re2(550)≧1.03
Re2(650)/Re2(550)≦0.97
を満たす。
 1つの実施形態においては、
 上記第1の位相差層の面内位相差Re1(550)が105nm~115nmであり、上記第2の位相差層の面内位相差Re2(550)が190nm~260nmであり、上記偏光子の吸収軸と上記第1の位相差層の遅相軸とのなす角度θ1が19°~35°であり、かつ、上記偏光子の吸収軸と上記第2の位相差層の遅相軸とのなす角度θ2が77°~85°であるか、
 上記第1の位相差層の面内位相差Re1(550)が116nm~125nmであり、上記第2の位相差層の面内位相差Re2(550)が200nm~260nmであり、上記偏光子の吸収軸と上記第1の位相差層の遅相軸とのなす角度θ1が15°~35°であり、かつ、上記偏光子の吸収軸と上記第2の位相差層の遅相軸とのなす角度θ2が75°~85°であるか、
 上記第1の位相差層の面内位相差Re1(550)が126nm~135nmであり、上記第2の位相差層の面内位相差Re2(550)が210nm~260nmであり、上記偏光子の吸収軸と上記第1の位相差層の遅相軸とのなす角度θ1が15°~35°であり、かつ、上記偏光子の吸収軸と上記第2の位相差層の遅相軸とのなす角度θ2が75°~85°であるか、または、
 上記第1の位相差層の面内位相差Re1(550)が136nm~145nmであり、上記第2の位相差層の面内位相差Re2(550)が220nm~270nmであり、上記偏光子の吸収軸と上記第1の位相差層の遅相軸とのなす角度θ1が15°~31°であり、かつ、上記偏光子の吸収軸と上記第2の位相差層の遅相軸とのなす角度θ2が75°~83°である。
 1つの実施形態においては、上記第1の位相差層が高分子フィルムの延伸体で構成され、上記第2の位相差層が液晶化合物の配向固化層で構成される。
 1つの実施形態においては、上記第1の位相差層の面内位相差Re1が、
Re1(450)/Re1(550)<1.03
Re1(650)/Re1(550)>0.97
を満たし、上記第2の位相差層の面内位相差Re2が、
Re2(450)/Re2(550)<1.03
Re2(650)/Re2(550)>0.97
を満たす。
 1つの実施形態においては、上記第1の位相差層の屈折率楕円体が、nx=nz>nyの関係を満たし、上記第2の位相差層の屈折率楕円体が、nx>ny=nzの関係を満たす。
 1つの実施形態においては、上記第1の位相差層の屈折率楕円体が、nx>ny=nzの関係を満たし、上記第2の位相差層の屈折率楕円体が、nx=nz>nyの関係を満たす。
 本発明の別の局面によれば、画像表示装置が提供される。この画像表示装置は、上記光学積層体を含む。
 本発明の別の局面によれば、光学積層体の製造方法が提供される。この光学積層体の製造方法は、第1の位相差層と、第2の位相差層と、偏光子と、第3の位相差層とが、この順に積層された長尺状の光学積層体の製造方法であって、上記第1の位相差層を構成する長尺状の第1フィルム、上記第2の位相差層を構成する長尺状の第2フィルム、長尺状の上記偏光子、および上記第3の位相差層を構成する長尺状の第3フィルムのそれぞれを、搬送しながら連続的に隣接するフィルムに貼り合わせる工程を含む。
 本発明によれば、偏光サングラスをかけて表示画面を見たときの偏光サングラスの角度に応じた色相変化を抑制し、その結果、視認性を改善し得る。
本発明の1つの実施形態に係る光学積層体の断面図である。 本発明の別の実施形態に係る光学積層体の断面図である。 実施例1、比較例1、および比較例2の光学積層体を介した透過率スペクトル測定で得られた色相を示す図である。 実施例1、比較例1、および比較例2の光学積層体を介した透過率スペクトル測定で得られた透過率変化を示す図である。
 以下、本発明の実施形態について説明するが、本発明はこれらの実施形態には限定されない。
(用語および記号の定義)
 本明細書における用語および記号の定義は下記の通りである。
(1)屈折率(nx、ny、nz)
 「nx」は面内の屈折率が最大になる方向(すなわち、遅相軸方向)の屈折率であり、「ny」は面内で遅相軸と直交する方向(すなわち、進相軸方向)の屈折率であり、「nz」は厚み方向の屈折率である。
(2)面内位相差(Re)
 「Re(λ)」は、23℃における波長λnmの光で測定した面内位相差である。例えば、「Re(550)」は、23℃における波長550nmの光で測定した面内位相差である。Re(λ)は、層(フィルム)の厚みをd(nm)としたとき、式:Re(λ)=(nx-ny)×dによって求められる。
(3)厚み方向の位相差(Rth)
 「Rth(λ)」は、23℃における波長λnmの光で測定した厚み方向の位相差である。例えば、「Rth(550)」は、23℃における波長550nmの光で測定した厚み方向の位相差である。Rth(λ)は、層(フィルム)の厚みをd(nm)としたとき、式:Rth(λ)=(nx-nz)×dによって求められる。
(4)Nz係数
 Nz係数は、Nz=Rth/Reによって求められる。
A.光学積層体の全体構成
 図1は、本発明の1つの実施形態による光学積層体の断面図である。光学積層体10は、第1の位相差層1と、第2の位相差層2と、偏光子3と、第3の位相差層4とが、この順に積層された構成を有する。光学積層体10は、代表的には画像表示装置(代表的には、液晶表示装置、有機EL表示装置)に用いられる。光学積層体10は、第1の位相差層1が視認側となるように、画像表示装置に配置される。すなわち、光学積層体10が画像表示装置に配置された状態において、第1の位相差層1、第2の位相差層2、偏光子3、および第3の位相差層4は、画像表示装置の視認側からこの順に配置される。
 1つの実施形態においては、第1の位相差層1は、測定光の波長に関わらず面内位相差値がほとんど変化しないフラットな波長分散特性を示し、第2の位相差層2は、測定光の波長が大きいほど面内位相差値が小さい正の波長分散特性を示す。第1の位相差層1の面内位相差Re1および第2の位相差層2の面内位相差Re2は、好ましくは、以下の式(1)~(4)を満たす。
Re1(450)/Re1(550)<1.03 ・・・(1)
Re1(650)/Re1(550)>0.97 ・・・(2)
Re2(450)/Re2(550)≧1.03 ・・・(3)
Re2(650)/Re2(550)≦0.97 ・・・(4)
 第1の位相差層1がフラットな波長分散特性を示し、第2の位相差層2が正の波長分散特性を示す場合、第1の位相差層の面内位相差Re1(550)、第2の位相差層の面内位相差Re2(550)、偏光子の吸収軸と第1の位相差層の遅相軸とのなす角度θ1、および、偏光子の吸収軸と第2の位相差層の遅相軸とのなす角度θ2は、好ましくは以下の(A)~(D)のいずれかを満たす。
(A)Re1(550)が105nm~115nmであり、Re2(550)が190nm~260nmであり、θ1が19°~35°であり、かつ、θ2が77°~85°である。
(B)Re1(550)が116nm~125nmであり、Re2(550)が200nm~260nmであり、θ1が15°~35°であり、かつ、θ2が75°~85°である。
(C)Re1(550)が126nm~135nmであり、Re2(550)が210nm~260nmであり、θ1が15°~35°であり、かつ、θ2が75°~85°である。
(D)Re1(550)が136nm~145nmであり、Re2(550)が220nm~270nmであり、θ1が15°~31°であり、かつ、θ2が75°~83°である。
 別の実施形態においては、第1の位相差層1は、測定光の波長に関わらず面内位相差値がほとんど変化しないフラットな波長分散特性を示し、第2の位相差層2も同様に、測定光の波長に関わらず面内位相差値がほとんど変化しないフラットな波長分散特性を示す。第1の位相差層1の面内位相差Re1および第2の位相差層2の面内位相差Re2は、好ましくは、以下の式(5)~(8)を満たす。
Re1(450)/Re1(550)<1.03 ・・・(5)
Re1(650)/Re1(550)>0.97 ・・・(6)
Re2(450)/Re2(550)<1.03 ・・・(7)
Re2(650)/Re2(550)>0.97 ・・・(8)
 代表的には、第1の位相差層1および第2の位相差層2のうち、一方の屈折率楕円体がnx=nz>nyの関係を満たし、他方の屈折率楕円体が、nx>ny=nzの関係を満たす。すなわち、第1の位相差層1および第2の位相差層2のうち、一方がネガティブAプレートであり、他方がポジティブAプレートである。代表的には、第1の位相差層1が高分子フィルムの延伸体で構成され、第2の位相差層2が液晶化合物の配向固化層で構成される。第3の位相差層4は、代表的には、屈折率楕円体がnx>nz>nyの関係を満たす。本発明の実施形態による光学積層体10を、第1の位相差層1、第2の位相差層2、偏光子3、および第3の位相差層4が視認側からこの順に配置されるように画像表示装置に適用することで、偏光サングラスをかけて表示画面を見たときの偏光サングラスの角度に応じた色相変化を抑制し得、その結果、視認性を改善し得る。
 光学積層体10は、実用的には、第1の位相差層1の第2の位相差層2とは反対側に表面保護フィルムを有し得、第3の位相差層4の偏光子3とは反対側に粘着剤層を有し得る。光学積層体10は、実用的には、偏光子3の少なくとも片側に配置された保護層を有し得る。上記保護層は、偏光子の保護層として使用できる任意の適切なフィルムで形成される。当該フィルムの主成分となる材料の具体例としては、トリアセチルセルロース(TAC)等のセルロース系樹脂や、ポリエステル系、ポリビニルアルコール系、ポリカーボネート系、ポリアミド系、ポリイミド系、ポリエーテルスルホン系、ポリスルホン系、ポリスチレン系、ポリノルボルネン系、ポリオレフィン系、(メタ)アクリル系、アセテート系等の透明樹脂等が挙げられる。
 図2は、本発明の別の実施形態による光学積層体の断面図である。光学積層体11は、第1の位相差層1と、第2の位相差層2と、偏光子3と、第3の位相差層5と、第4の位相差層6とが、この順に積層された構成を有する。本実施形態では、代表的には、第3の位相差層5の屈折率楕円体がnx>ny>nzの関係を満たし、第4の位相差層6の屈折率楕円体がnz>nx>nyの関係を満たす。
 光学積層体は、枚葉状であってもよく、長尺状であってもよい。
B.第1の位相差層
 第1の位相差層は、好ましくは、測定光の波長に関わらず面内位相差値がほとんど変化しないフラットな波長分散特性を示し、Re1(450)/Re1(550)が1.03より小さく、Re1(650)/Re1(550)が0.97より大きい。Re1(450)/Re1(550)は、より好ましくは0.98~1.02であり、Re1(650)/Re1(550)は、より好ましくは0.98~1.02である。
 第1の位相差層の厚みは、所望の面内位相差が得られるように設定され得る。具体的には、厚みは、好ましくは1μm~80μmであり、さらに好ましくは10μm~60μmであり、最も好ましくは30μm~50μmである。
 第1の位相差層は、光弾性係数の絶対値が好ましくは2×10-11/N以下、より好ましくは2.0×10-13/N~1.5×10-11/N、さらに好ましくは1.0×10-12/N~1.2×10-11/Nの樹脂を含む。光弾性係数の絶対値がこのような範囲であれば、加熱時の収縮応力が発生した場合に位相差変化が生じにくい。
 1つの実施形態においては、第1の位相差層の屈折率楕円体がnx>ny=nzの関係を満たし、第1の位相差層のNz係数が例えば0.9より大きく1.1未満である。別の実施形態では、第1の位相差層の屈折率楕円体がnx=nz>nyの関係を満たし、第1の位相差層のNz係数が例えば-0.1より大きく0.1未満である。
B-1.屈折率楕円体がnx>ny=nzの関係を満たす第1の位相差層
 屈折率楕円体がnx>ny=nzの関係を満たす第1の位相差層は、上記のような光学的特性および機械的特性を満足し得る任意の適切な材料で構成され得る。1つの実施形態においては、第1の位相差層は、任意の適切な樹脂フィルムで構成され得る。そのような樹脂の代表例としては、環状オレフィン系樹脂が挙げられる。
 環状オレフィン系樹脂は、環状オレフィンを重合単位として重合される樹脂の総称であり、例えば、特開平1-240517号公報、特開平3-14882号公報、特開平3-122137号公報等に記載されている樹脂が挙げられる。具体例としては、環状オレフィンの開環(共)重合体、環状オレフィンの付加重合体、環状オレフィンとエチレン、プロピレン等のα-オレフィンとの共重合体(代表的には、ランダム共重合体)、および、これらを不飽和カルボン酸やその誘導体で変性したグラフト変性体、ならびに、それらの水素化物が挙げられる。環状オレフィンの具体例としては、ノルボルネン系モノマーが挙げられる。ノルボルネン系モノマーとしては、特開2015-210459号公報等に記載されているモノマーが挙げられる。
 本発明においては、本発明の目的を損なわない範囲内において、開環重合可能な他のシクロオレフィン類を併用することができる。このようなシクロオレフィンの具体例としては、例えば、シクロペンテン、シクロオクテン、5,6-ジヒドロジシクロペンタジエン等の反応性の二重結合を1個有する化合物が挙げられる。
 上記環状オレフィン系樹脂は、トルエン溶媒によるゲル・パーミエーション・クロマトグラフ(GPC)法で測定した数平均分子量(Mn)が好ましくは25,000~200,000、さらに好ましくは30,000~100,000、最も好ましくは40,000~80,000である。数平均分子量が上記の範囲であれば、機械的強度に優れ、溶解性、成形性、流延の操作性が良いものができる。
 上記環状オレフィン系樹脂は、種々の製品が市販されている。具体例としては、日本ゼオン社製の商品名「ゼオネックス」、「ゼオノア」、JSR社製の商品名「アートン(Arton)」、TICONA社製の商品名「トーパス」、三井化学社製の商品名「APEL」が挙げられる。
 第1の位相差層は、例えば、上記環状オレフィン系樹脂から形成されたフィルムを延伸することにより得られる。環状オレフィン系樹脂からフィルムを形成する方法としては、任意の適切な成形加工法が採用され得る。なお、上記環状オレフィン系樹脂は、多くのフィルム製品が市販されているので、当該市販フィルムをそのまま延伸処理に供してもよい。
 第1の位相差層を構成するフィルムは、枚葉状であってもよく、長尺状であってもよい。1つの実施形態においては、第1の位相差層は、長尺方向に延伸された上記樹脂フィルムを、長尺方向に対して所定の角度の方向に切り出すことにより作製される。別の実施形態においては、第1の位相差層は、長尺状の上記樹脂フィルムを長尺方向に対して所定の角度の方向に連続的に斜め延伸することにより作製される。さらに別の実施形態においては、第1の位相差層は、支持基材と当該支持基材に積層された樹脂層との積層体を斜め延伸し、斜め延伸された樹脂層(樹脂フィルム)を他の層に転写することにより作製される。斜め延伸を採用することにより、フィルムの長尺方向に対して所定の角度の配向角(当該角度の方向に遅相軸)を有する長尺状の延伸フィルムが得られ、例えば、他の層との積層に際してロールトゥロールが可能となり、製造工程を簡略化することができる。なお、当該所定の角度は、偏光子の吸収軸(長尺方向)と第1の位相差層の遅相軸とがなす角度であり得る。
 斜め延伸に用いる延伸機としては、例えば、横および/または縦方向に、左右異なる速度の送り力もしくは引張り力または引き取り力を付加し得るテンター式延伸機が挙げられる。テンター式延伸機には、横一軸延伸機、同時二軸延伸機等があるが、長尺状の樹脂フィルムを連続的に斜め延伸し得る限り、任意の適切な延伸機が用いられ得る。
 上記延伸機において左右の速度をそれぞれ適切に制御することにより、上記所望の面内位相差を有し、かつ、上記所望の方向に遅相軸を有する第1の位相差層が得られ得る。
 上記フィルムの延伸温度は、第1の位相差層に所望される面内位相差値および厚み、使用される樹脂の種類、使用されるフィルムの厚み、延伸倍率等に応じて変化し得る。具体的には、延伸温度は、好ましくはTg-30℃~Tg+30℃、さらに好ましくはTg-15℃~Tg+15℃、最も好ましくはTg-10℃~Tg+10℃である。このような温度で延伸することにより、本発明の効果を適切に発揮し得る面内位相差を有する第1の位相差層が得られ得る。なお、Tgは、フィルムの構成材料のガラス転移温度である。
B-2.屈折率楕円体がnx=nz>nyの関係を満たす第1の位相差層
 屈折率楕円体がnx=nz>nyの関係を満たす第1の位相差層は、上記のような光学的特性および機械的特性を満足し得る任意の適切な材料で構成され得る。1つの実施形態においては、第1の位相差層は、負の固有複屈折値を有する熱可塑性樹脂を主成分とする任意の適切な樹脂フィルムで構成され得る。負の屈折率異方性を有する光学素子を構成する材料としては、負の固有複屈折を有するポリマーが好ましく用いられる。負の固有複屈折を有するポリマーは、ポリマーを延伸等により配向させた場合に、その配向方向の屈折率が相対的に小さくなるものを指す。負の固有複屈折を有するポリマーとしては、例えば、芳香族やカルボニル基などの分極異方性の大きい化学結合や官能基が、ポリマーの側鎖に導入されているものが挙げられ、具体的には、アクリル系樹脂、スチレン系樹脂、マレイミド系樹脂、フマル酸エステル系樹脂等が挙げられる。ポジティブAプレートにおける「ny=nz」との記載、あるいはネガティブAプレートにおける「nz=ny」の記載は、面内の屈折率(nxまたはny)と厚み方向の屈折率nzが必ずしも完全に一致する必要はない。Nz=(nx-nz)/(nx-ny)で表されるNz係数が0.97~1.03の範囲内であれば、ny=nzのポジティブAプレートとみなすことができ、Nz係数が-0.03~0.03の範囲内であれば、nx=nzのネガティブAプレートとみなすことができる。
 第1の位相差層は、例えば、上記負の固有複屈折値を有する熱可塑性樹脂を主成分とする樹脂フィルムを延伸することにより得られる。上記負の固有複屈折値を有する熱可塑性樹脂を主成分とする樹脂フィルムを延伸する方法としては、任意の適切な延伸方法が採用され得る。好ましくは、熱可塑性樹脂を主成分とする樹脂フィルムの両面に収縮性フィルムを貼り合せて、ロール延伸機にて縦一軸延伸法で、加熱延伸する方法である。当該収縮性フィルムは、加熱延伸時に延伸方向と直交する方向の収縮力を付与し、厚み方向の屈折率(nz)を高めるために用いられる。上記樹脂フィルムの両面に収縮性フィルムを貼り合せる方法としては、特に制限はないが、上記樹脂フィルムと上記収縮性フィルムとの間に、アクリル系ポリマーをベースポリマーとするアクリル系粘着剤層を設けて接着する方法が、作業性、経済性に優れる点から好ましい。本実施形態の第1の位相差層を構成する樹脂フィルムの形成方法の詳細は、特開2007-193365号公報に記載されている。当該公報の記載は本明細書に参考として援用される。1つの実施形態においては、第1の位相差層は、長尺状の上記樹脂フィルムを長尺方向に対して所定の角度の方向に連続的に斜め延伸することにより作製される。この場合、好ましくは、上記収縮性フィルムを貼り合せた樹脂フィルムを支持基材上に積層し、この積層体を斜め延伸し、斜め延伸された樹脂フィルムを他の層に転写することにより作製される。
C.第2の位相差層
 1つの実施形態においては、第2の位相差層は、測定光の波長が大きいほど面内位相差値が小さい正の波長分散特性を示し、Re2(450)/Re2(550)が1.03以上であり、Re2(650)/Re2(550)が0.97以下である。Re2(450)/Re2(550)は、より好ましくは1.03~1.15であり、Re2(650)/Re2(550)は、より好ましくは0.90~0.97である。別の実施形態においては、第2の位相差層は、測定光の波長に関わらず面内位相差値がほとんど変化しないフラットな波長分散特性を示し、Re2(450)/Re2(550)が1.03より小さく、Re2(650)/Re2(550)が0.97より大きい。Re2(450)/Re2(550)は、より好ましくは0.98~1.02であり、Re2(650)/Re2(550)は、より好ましくは0.98~1.02である。
C-1.正の波長分散特性を示す第2の位相差層
 第1の位相差層がフラットな波長分散特性を示し、第2の位相差層が正の波長分散特性を示す場合、上記のとおり、Re1(550)、Re2(550)、θ1、および、θ2は、好ましくは以下の(A)~(D)のいずれかを満たす。
(A)Re1(550)が105nm~115nmであり、Re2(550)が190nm~260nmであり、θ1が19°~35°であり、かつ、θ2が77°~85°である。
(B)Re1(550)が116nm~125nmであり、Re2(550)が200nm~260nmであり、θ1が15°~35°であり、かつ、θ2が75°~85°である。
(C)Re1(550)が126nm~135nmであり、Re2(550)が210nm~260nmであり、θ1が15°~35°であり、かつ、θ2が75°~85°である。
(D)Re1(550)が136nm~145nmであり、Re2(550)が220nm~270nmであり、θ1が15°~31°であり、かつ、θ2が75°~83°である。
 第1の位相差層1がフラットな波長分散特性を示し、第2の位相差層2が正の波長分散特性を示す場合、Re1(550)、Re2(550)、θ1、および、θ2は、より好ましくは以下の(E)~(G)のいずれかを満たす。
(E)Re1(550)が105nm~115nmであり、Re2(550)が210nm~250nmであり、θ1が19°~35°であり、かつ、θ2が77°~85°である。
(F)Re1(550)が116nm~135nmであり、Re2(550)が220nm~260nmであり、θ1が19°~31°であり、かつ、θ2が77°~83°である。
(G)Re1(550)が136nm~145nmであり、Re2(550)が220nm~260nmであり、θ1が19°~27°であり、かつ、θ2が77°~81°である。
 第1の位相差層1がフラットな波長分散特性を示し、第2の位相差層2が正の波長分散特性を示す場合、Re1(550)、Re2(550)、θ1、および、θ2は、最も好ましくは以下の(H)~(K)のいずれかを満たす。
(H)Re1(550)が105nm~115nmであり、Re2(550)が220nm~230nmであり、θ1が23°~27°であり、かつ、θ2が79°~81°である。
(I)Re1(550)が116nm~125nmであり、Re2(550)が220nm~250nmであり、θ1が19°~27°であり、かつ、θ2が77°~81°である。
(J)Re1(550)が126nm~135nmであり、Re2(550)が230nm~250nmであり、θ1が19°~27°であり、かつ、θ2が77°~81°である。
(K)Re1(550)が136nm~145nmであり、Re2(550)が245nm~255nmであり、θ1が19°~23°であり、かつ、θ2が77°~79°である。
 第2の位相差層の厚みは、所望の面内位相差が得られるように設定され得る。具体的には、厚みは、好ましくは1μm~80μmである。第2の位相差層が液晶化合物の配向固化層で構成される場合には、厚みは、より好ましくは1μm~10μmであり、さらに好ましくは1μm~6μmである。
 1つの実施形態においては、第2の位相差層の屈折率楕円体がnx=nz>nyの関係を満たし、第2の位相差層のNz係数が例えば-0.1より大きく0.1未満である。別の実施形態では、第2の位相差層の屈折率楕円体がnx>ny=nzの関係を満たし、第2の位相差層のNz係数が例えば0.9より大きく1.1未満である。
C-1-1.屈折率楕円体がnx>ny=nzの関係を満たす第2の位相差層
 屈折率楕円体がnx>ny=nzの関係を満たす第2の位相差層は、上記のような光学的特性および機械的特性を満足し得る任意の適切な材料で構成され得る。1つの実施形態においては、第2の位相差層は、液晶化合物の配向固化層により構成され得る。液晶化合物を用いることにより、得られる位相差層のnxとnyとの差を非液晶材料に比べて格段に大きくすることができるので、所望の面内位相差を得るための位相差層の厚みを格段に小さくすることができる。その結果、光学積層体(最終的には、画像表示装置)のさらなる薄型化を実現することができる。本明細書において「配向固化層」とは、液晶化合物が層内で所定の方向に配向し、その配向状態が固定されている層をいう。本実施形態においては、代表的には、棒状の液晶化合物が第2の位相差層の遅相軸方向に並んだ状態で配向している(ホモジニアス配向)。液晶化合物としては、例えば、液晶相がネマチック相である液晶化合物(ネマチック液晶)が挙げられる。このような液晶化合物として、例えば、液晶ポリマーや液晶モノマーが使用可能である。液晶化合物の液晶性の発現機構は、リオトロピックでもサーモトロピックでもどちらでもよい。液晶ポリマーおよび液晶モノマーは、それぞれ単独で用いてもよく、組み合わせてもよい。
 液晶化合物が液晶モノマーである場合、当該液晶モノマーは、重合性モノマーおよび架橋性モノマーであることが好ましい。液晶モノマーを重合または架橋させることにより、液晶モノマーの配向状態を固定できるからである。液晶モノマーを配向させた後に、例えば、液晶モノマー同士を重合または架橋させれば、それによって上記配向状態を固定することができる。ここで、重合によりポリマーが形成され、架橋により3次元網目構造が形成されることとなるが、これらは非液晶性である。したがって、形成された第2の位相差層は、例えば、液晶性化合物に特有の温度変化による液晶相、ガラス相、結晶相への転移が起きることはない。その結果、第2の位相差層は、温度変化に影響されない、極めて安定性に優れた位相差層となる。
 液晶モノマーが液晶性を示す温度範囲は、その種類に応じて異なる。具体的には、当該温度範囲は、好ましくは40℃~120℃であり、さらに好ましくは50℃~100℃であり、最も好ましくは60℃~90℃である。
 上記液晶モノマーとしては、任意の適切な液晶モノマーが採用され得る。例えば、特表2002-533742(WO00/37585)、EP358208(US5211877)、EP66137(US4388453)、WO93/22397、EP0261712、DE19504224、DE4408171、およびGB2280445等に記載の重合性メソゲン化合物等が使用できる。このような重合性メソゲン化合物の具体例としては、例えば、BASF社の商品名LC242、Merck社の商品名E7、Wacker-Chem社の商品名LC-Sillicon-CC3767が挙げられる。液晶モノマーとしては、例えばネマチック性液晶モノマーが好ましい。
 液晶化合物の配向固化層は、所定の基材の表面に配向処理を施し、当該表面に液晶化合物を含む塗工液を塗工して当該液晶化合物を上記配向処理に対応する方向に配向させ、当該配向状態を固定することにより形成され得る。1つの実施形態においては、基材は任意の適切な樹脂フィルムであり、当該基材上に形成された配向固化層は、第1の位相差層の表面に転写され得る。
 上記配向処理としては、任意の適切な配向処理が採用され得る。具体的には、機械的な配向処理、物理的な配向処理、化学的な配向処理が挙げられる。機械的な配向処理の具体例としては、ラビング処理、延伸処理が挙げられる。物理的な配向処理の具体例としては、磁場配向処理、電場配向処理が挙げられる。化学的な配向処理の具体例としては、斜方蒸着法、光配向処理が挙げられる。各種配向処理の処理条件は、目的に応じて任意の適切な条件が採用され得る。
 液晶化合物の配向は、液晶化合物の種類に応じて液晶相を示す温度で処理することにより行われる。このような温度処理を行うことにより、液晶化合物が液晶状態をとり、基材表面の配向処理方向に応じて当該液晶化合物が配向する。
 配向状態の固定は、1つの実施形態においては、上記のように配向した液晶化合物を冷却することにより行われる。液晶化合物が重合性モノマーまたは架橋性モノマーである場合には、配向状態の固定は、上記のように配向した液晶化合物に重合処理または架橋処理を施すことにより行われる。
 液晶化合物の具体例および配向固化層の形成方法の詳細は、特開2006-163343号公報に記載されている。当該公報の記載は本明細書に参考として援用される。
C-1-2.屈折率楕円体がnx=nz>nyの関係を満たす第2の位相差層
 屈折率楕円体がnx=nz>nyの関係を満たす第2の位相差層は、上記のような光学的特性および機械的特性を満足し得る任意の適切な材料で構成され得る。
 1つの実施形態においては、第2の位相差層は、実質的に垂直に配向させたディスコチック液晶化合物を含有する液晶性組成物の配向固化層により構成され得る。本明細書において、「ディスコチック液晶化合物」とは、分子構造中に、円板状のメソゲン基を有し、該メソゲン基に2~8本の側差が、エーテル結合やエステル結合で放射状に結合しているものをいう。上記メソゲン基としては、例えば、液晶辞典(培風館出版)のP.22、図1に記載されている構造のものが挙げられる。具体的には、ベンゼン、トリフェニレン、トゥルキセン、ピラン、ルフィガロール、ポルフィリン、金属錯体等である。理想的には、実質的に垂直に配向させたディスコチック液晶化合物は、フィルム面内の一方向に光軸を有する。「実質的に垂直に配向させたディスコチック液晶化合物」とは、ディスコチック液晶化合物の円板面が、フィルム平面に対して垂直であり、光軸がフィルム平面に対して平行である状態のものをいう。
 上記のディスコチック液晶化合物を含有する液晶性組成物は、ディスコチック液晶化合物を含み、液晶性を示すものであれば特に制限はない。上記液晶性組成物中のディスコチック液晶化合物の含有量は、液晶性組成物の全固形分100重量部に対して、好ましくは40重量部以上100重量部未満であり、さらに好ましくは50重量部以上100重量部未満であり、最も好ましくは70重量部以上100重量部未満である。
 上記実質的に垂直に配向させたディスコチック液晶化合物を含有する液晶性組成物の配向固化層からなる位相差フィルムとしては、特開2001-56411号公報に記載の方法によって得ることができる。上記実質的に垂直に配向させたディスコチック液晶化合物を含有する液晶性組成物の配向固化層からなる位相差フィルムは、一方向に塗工することによって、塗工方向と実質的に直交する方向に、フィルム面内の屈折率が大きくなる方向(遅相軸方向)が発生するため、連続塗工によって、特にその後、延伸や収縮処理を行わずに、長手方向と直交する方向に遅相軸を有するロール状の位相差フィルム(ネガティブAプレート)を作製することができる。この長手方向と直交する方向に遅相軸を有するロール状の位相差フィルムは、他の層との積層に際してロールトゥロールが可能となる。
 別の実施形態においては、第2の位相差層は、ホモジニアス配向させたリオトロピック液晶化合物を含有する液晶性組成物の配向固化層により構成され得る。本明細書において、「リオトロピック液晶化合物」とは、溶液状態で溶質の濃度によって液晶相が発現する液晶化合物をいう。上記リオトロピック液晶化合物としては、任意の適切なものが用いられ得る。上記リオトロピック液晶化合物の具体例としては、分子の両末端に親水性基と疎水性基を有する両親媒性化合物、水溶性が付与された芳香環を有するクロモニック化合物、ならびに、セルロース誘導体、ポリペプチド、および核酸などの主鎖が棒状骨格を有する高分子化合物などが挙げられる。これらの中でも、第2の位相差層に用いられる位相差フィルムとして好ましくは、ホモジニアス配向させたリオトロピック液晶化合物を含有する液晶性組成物の配向固化層であって、該リオトロピック液晶化合物が、水溶性が付与された芳香環を有するクロモニック化合物である。
 上記のリオトロピック液晶化合物を含有する液晶性組成物は、リオトロピック液晶化合物を含み、液晶性を示すものであれば特に制限はない。上記液晶性組成物中のディスコチック液晶化合物の含有量は、液晶性組成物の全固形分100に対して、好ましくは40重量部以上100重量部未満であり、さらに好ましくは50重量部以上100重量部未満であり、最も好ましくは70重量部以上100重量部未満である。
 上記実質的に垂直に配向させたリオトロピック液晶化合物を含有する液晶性組成物の配向固化層からなる位相差フィルムとしては、特開2002-296415号公報に記載の方法によって得ることができる。上記ホモジニアス配向させたリオトロピック液晶化合物を含有する液晶性組成物の配向固化層からなる位相差フィルムは、一方向に塗工することによって、塗工方向と実質的に直交する方向に、フィルム面内の屈折率が大きくなる方向(遅相軸方向) が発生するため、連続塗工によって、特にその後、延伸や収縮処理を行わずに、長手方向と直交する方向に遅相軸を有するロール状の位相差フィルムを作製することができる。この長手方向と直交する方向に遅相軸を有するロール状の位相差フィルムは、他の層との積層に際してロールトゥロールが可能となる。
C-2.フラットな波長分散特性を示す第2の位相差層
 上記のとおり、第2の位相差層は、測定光の波長に関わらず面内位相差値がほとんど変化しないフラットな波長分散特性を示す位相差層であってもよい。
 第2の位相差層の厚みは、所望の面内位相差が得られるように設定され得る。具体的には、厚みは、好ましくは1μm~160μmであり、さらに好ましくは10μm~80μmであり、最も好ましくは20μm~50μmである。
 1つの実施形態においては、第2の位相差層の屈折率楕円体がnx>ny=nzの関係を満たし、第1の位相差層のNz係数が例えば0.9より大きく1.1未満である。別の実施形態では、第1の位相差層の屈折率楕円体がnx=nz>nyの関係を満たし、第1の位相差層のNz係数が例えば-0.1より大きく0.1未満である。
 屈折率楕円体がnx>ny=nzの関係を満たす第2の位相差層は、上記のような光学的特性および機械的特性を満足し得る任意の適切な材料で構成され得、例えば上記B-1項に記載の材料で構成され得る。屈折率楕円体がnx=nz>nyの関係を満たす第2の位相差層は、上記のような光学的特性および機械的特性を満足し得る任意の適切な材料で構成され得、例えば上記B-2項に記載の材料で構成され得る。
D.偏光子
 偏光子としては、任意の適切な偏光子が採用され得る。例えば、偏光子を形成する樹脂フィルムは、単層の樹脂フィルムであってもよく、二層以上の積層体であってもよい。
 単層の樹脂フィルムから構成される偏光子の具体例としては、ポリビニルアルコール(PVA)系フィルム、部分ホルマール化PVA系フィルム、エチレン・酢酸ビニル共重合体系部分ケン化フィルム等の親水性高分子フィルムに、ヨウ素や二色性染料等の二色性物質による染色処理および延伸処理が施されたもの、PVAの脱水処理物やポリ塩化ビニルの脱塩酸処理物等ポリエン系配向フィルム等が挙げられる。好ましくは、光学特性に優れることから、PVA系フィルムをヨウ素で染色し一軸延伸して得られた偏光子が用いられる。
 上記ヨウ素による染色は、例えば、PVA系フィルムをヨウ素水溶液に浸漬することにより行われる。上記一軸延伸の延伸倍率は、好ましくは3~7倍である。延伸は、染色処理後に行ってもよいし、染色しながら行ってもよい。また、延伸してから染色してもよい。必要に応じて、PVA系フィルムに、膨潤処理、架橋処理、洗浄処理、乾燥処理等が施される。例えば、染色の前にPVA系フィルムを水に浸漬して水洗することで、PVA系フィルム表面の汚れやブロッキング防止剤を洗浄することができるだけでなく、PVA系フィルムを膨潤させて染色ムラなどを防止することができる。
 積層体を用いて得られる偏光子の具体例としては、樹脂基材と当該樹脂基材に積層されたPVA系樹脂層(PVA系樹脂フィルム)との積層体、あるいは、樹脂基材と当該樹脂基材に塗布形成されたPVA系樹脂層との積層体を用いて得られる偏光子が挙げられる。樹脂基材と当該樹脂基材に塗布形成されたPVA系樹脂層との積層体を用いて得られる偏光子は、例えば、PVA系樹脂溶液を樹脂基材に塗布し、乾燥させて樹脂基材上にPVA系樹脂層を形成して、樹脂基材とPVA系樹脂層との積層体を得ること;当該積層体を延伸および染色してPVA系樹脂層を偏光子とすること;により作製され得る。本実施形態においては、延伸は、代表的には積層体をホウ酸水溶液中に浸漬させて延伸することを含む。さらに、延伸は、必要に応じて、ホウ酸水溶液中での延伸の前に積層体を高温(例えば、95℃以上)で空中延伸することをさらに含み得る。得られた樹脂基材/偏光子の積層体はそのまま用いてもよく(すなわち、樹脂基材を偏光子の保護層としてもよく)、樹脂基材/偏光子の積層体から樹脂基材を剥離し、当該剥離面に目的に応じた任意の適切な保護層を積層して用いてもよい。このような偏光子の製造方法の詳細は、例えば特開2012-73580号公報に記載されている。当該公報は、その全体の記載が本明細書に参考として援用される。
 偏光子の厚みは、好ましくは25μm以下であり、より好ましくは1μm~12μmであり、さらに好ましくは3μm~8μmである。偏光子の厚みがこのような範囲であれば、加熱時のカールを良好に抑制することができ、および、良好な加熱時の外観耐久性が得られる。
 偏光子は、好ましくは、波長380nm~780nmのいずれかの波長で吸収二色性を示す。偏光子の単体透過率は、好ましくは42.0%~46.0%であり、より好ましくは44.5%~46.0%である。偏光子の偏光度は、好ましくは97.0%以上であり、より好ましくは99.0%以上であり、さらに好ましくは99.9%以上である。
E.第3の位相差層
 第3の位相差層の厚みは、好ましくは0.1μm~50μmであり、より好ましくは10μm~30μmである。第3の位相差層は、好ましくは、偏光子の保護層を兼ねる。この場合、偏光子と第3の位相差層との間に別途の保護層を設けなくても良い。この場合、第3の位相差層は、任意の適切な接着層を介して偏光子に接着される。
 1つの実施形態においては、第3の位相差層の屈折率楕円体がnx>nz>nyの関係を満たし、第3の位相差層のNz係数が例えば0.1~0.9である。
 別の実施形態では、第3の位相差層の屈折率楕円体がnx>ny>nzの関係を満たし、第3の位相差層のNz係数が例えば1.03以上である。この場合、光学積層体は、屈折率楕円体がnz>nx>nyの関係を満たす第4の位相差層を有する。
E-1.屈折率楕円体がnx>nz>nyの関係を満たす第3の位相差層
 屈折率楕円体がnx>nz>nyの関係を満たす第3の位相差層の面内位相差Re3(550)は、150nm~400nmであり、より好ましくは180nm~350nmである。偏光子の吸収軸と第3の位相差層の遅相軸とのなす角度θ3は、好ましくは87°~93°または-3°~3°であり、より好ましくは89°~91°または-1°~1°である。第3の位相差層は、上記のような光学的特性および機械的特性を満足し得る任意の適切な材料で構成され得る。1つの実施形態においては、任意の適切な位相差フィルムで構成され得る。好ましくは、上記位相差フィルムが、ノルボルネン系樹脂、セルロース系樹脂、カーボネート系樹脂、エステル系樹脂から選択される少なくとも1種の熱可塑性樹脂を含む。上記位相差フィルムは、より好ましくは、ノルボルネン系樹脂、カーボネート系樹脂から選択される少なくとも1種の熱可塑性樹脂を含む。耐熱性、透明性、成形加工性に優れるからである。上記位相差フィルムの作製方法としては、任意の適切な方法を採用し得る。代表的には、例えば、熱可塑性樹脂、又は上記熱可塑性樹脂を含む組成物をシート状に成形して、高分子フィルムとし、上記高分子フィルムの片面または両面に収縮性フィルムを貼り合わせて、加熱延伸する方法が挙げられる。加熱延伸は、例えば、ロール延伸機にて、縦一軸延伸法で加熱延伸することが挙げられる。
E-2.屈折率楕円体がnx>ny>nzの関係を満たす第3の位相差層
 屈折率楕円体がnx>ny>nzの関係を満たす第3の位相差層の面内位相差Re3(550)は、90nm~160nmであり、より好ましくは110nm~155nmである。偏光子の吸収軸と第3の位相差層の遅相軸とのなす角度θ3は、好ましくは87°~93°であり、より好ましくは89°~91°である。第3の位相差層は、上記のような光学的特性および機械的特性を満足し得る任意の適切な材料で構成され得る。
 1つの実施形態においては、第3の位相差層は任意の適切な位相差フィルムで構成され得る。上記位相差フィルムを形成する樹脂は、好ましくは、ノルボルネン系樹脂、ポリカーボネート系樹脂である。位相差フィルムの作製方法としては、樹脂フィルムの延伸工程を含む任意の適切な方法を採用し得る。延伸方法としては、例えば、横一軸延伸(固定端二軸延伸)、逐次二軸延伸が挙げられる。延伸温度は、好ましくは135~165℃、さらに好ましくは140~160℃である。延伸倍率は、好ましくは2.8~3.2倍、さらに好ましくは2.9~3.1倍である。
 別の実施形態においては、第3の位相差層は任意の適切な非液晶性材料で構成され得る。この場合、第3の位相差層の厚みは、代表的には0.1~10μm、さらに好ましくは0.1~8μm、特に好ましくは0.1~5μmである。上記非液晶性材料は、好ましくは非液晶性ポリマーであり、具体的には、ポリアミド、ポリイミド、ポリエステル、ポリエーテルケトン、ポリアミドイミド、ポリエステルイミド等のポリマーが好ましい。これらのポリマーは、いずれか一種類を単独で使用してもよいし、2種以上の混合物として使用してもよい。第3の位相差層は、代表的には、基材フィルムに上記非液晶ポリマーの溶液を塗工して、溶媒を除去することにより形成され得る。当該第3の位相差層の形成方法において、好ましくは、光学的二軸性(nx>ny>nz)を付与するための処理(例えば、延伸処理)が行われる。このような処理を行うことにより、面内に屈折率の差(nx>ny)を確実に付与し得る。なお、上記ポリイミドの具体例および当該第3の位相差層の形成方法の具体例としては、特開2006-234848号公報に記載のポリマーおよび製造方法が挙げられる。
F.第4の位相差層
 第4の位相差層は、上述のとおり、屈折率特性がnz>nx>nyの関係を示す。第4の位相差層の面内位相差Re4(550)は、好ましくは10nm~150nmであり、より好ましくは10nm~80nmである。第4の位相差層のNz係数は、例えば-0.1以下であり、好ましくは-2.0以下である。偏光子の吸収軸と第4の位相差層の遅相軸とのなす角度は、好ましくは87°~93°であり、より好ましくは89°~91°である。
 第4の位相差層は、上記のような光学的特性および機械的特性を満足し得る任意の適切な材料で構成され得る。1つの実施形態においては、第4の位相差層は、ホメオトロピック配向に固定された液晶層で構成され得る。ホメオトロピック配向させることができる液晶材料(液晶化合物)は、液晶モノマーであっても液晶ポリマーであってもよい。当該液晶化合物および当該液晶層の形成方法の具体例としては、特開2002-333642号公報の[0020]~[0042]に記載の液晶化合物および形成方法が挙げられる。この場合、厚みは、好ましくは0.1μm~6μm、より好ましくは0.2μm~3μmである。別の実施形態においては、第4の位相差層は、特開2012-32784号公報に記載のフマル酸ジエステル系樹脂で形成された位相差フィルムであってもよい。この場合、厚みは、好ましくは5μm~50μm、より好ましくは5μm~35μmである。
G.製造方法
 光学積層体の製造方法は、代表的には、第1の位相差層1を構成する長尺状の第1フィルム、第2の位相差層2を構成する長尺状の第2フィルム、長尺状の偏光子3、および第3の位相差層4を構成する長尺状の第3フィルムのそれぞれを、搬送しながら連続的に隣接するフィルムに貼り合わせる工程を含む。1つの実施形態においては、第2フィルムは基材上に形成されており、基材上に形成された第2フィルムを第1フィルムに貼り合わせた後、基材を剥離する工程を含む。別の実施形態では、偏光子は基材上に形成されており、基材上に形成された偏光子を第2フィルムに貼り合わせた後、基材を剥離する工程を含む。さらに別の実施形態では、第3フィルムは基材上に形成されており、基材上に形成された第3フィルムを偏光子に貼り合わせた後、基材を剥離する工程を含む。なお、2以上の上記実施形態を組み合わせてもよい。
H.画像表示装置
 上記A項からF項に記載の光学積層体は、液晶表示装置などの画像表示装置に適用され得る。したがって、本発明は、上記光学積層体を用いた画像表示装置を包含する。本発明の実施形態による画像表示装置は、上記A項からF項に記載の光学積層体を備え、光学積層体は、第1の位相差層、第2の位相差層、偏光子、および第3の位相差層が画像表示装置の視認側からこの順で配置されるように設けられる。
 以下、実施例によって本発明を具体的に説明するが、本発明はこれら実施例によって限定されるものではない。なお、各特性の測定方法は以下の通りである。
(1)厚み
 デジタルマイクロメーター(アンリツ社製KC-351C)を用いて測定した。
(2)位相差値
 実施例および比較例で用いた位相差層の屈折率nx、nyおよびnzを、自動複屈折測定装置(王子計測機器株式会社製,自動複屈折計KOBRA-WPR)により計測した。面内位相差Reの測定波長は450nm、550nm、および650nmであり、厚み方向位相差Rthの測定波長は550nmであり、測定温度は23℃であった。
(3)偏光サングラスの角度に応じた色相変化および透過率変化
 光学積層体の背面側(第3の位相差層側)に光源(岩崎電気株式会社製、製品名「JCR 12V 50W 20H」)を配置し、光学積層体の前面側(表面保護フィルム側)に偏光サングラスを模擬した偏光子を配置した。上記偏光子を90°~-90°の範囲で回転させながら、光源から出射されて光学積層体および上記偏光子を透過した光を、積分球式文高透過率測定器DOT-3C(株式会社村上色彩技術研究所製)を用いてスペクトル測定した。得られた透過光のスペクトルからハンターLab表色系の色相aおよびbを算出し、横軸をa、縦軸をbとする座標上にプロットした。また、横軸を偏光サングラスを模擬した偏光子の角度、縦軸を透過率(Y値)としてプロットした。
<実施例1>
1.第1の位相差層を構成する位相差フィルムAの作製
 ノルボルネン系モノマーの開環重合体を水素添加したシクロオレフィン系樹脂(日本ゼオン(株)製、商品名「ゼオノアZF14」、厚み40μm)の両側に、二軸延伸ポリプロピレンフィルム(東レ(株) 製、商品名「トレファン-高収縮タイプ」、厚み60μm)を、アクリル系粘着剤層(厚み15μm)を介して貼り合せた。その後、ロール延伸機でフィルムの長手方向を保持して、148℃±1℃の空気循環式乾燥オーブン内で、1.40倍に延伸した。このようにして得られた延伸フィルムを位相差フィルムAとした。この位相差フィルムAは、厚みが35μmであり、面内位相差Re(550)が110nmであり、Re(450)/Re(550)が1.00であり、Re(650)/Re(550)が1.00であり、屈折率楕円体がnx=nz>nyの関係を満たし、遅相軸と長尺方向とのなす角度は25°であった。
2.第2の位相差層を構成する液晶化合物の配向固化層Bの作製
 厚み100μmの長尺状のポリエチレンテレフタレート基材(PET基材)の表面に光配向膜を塗工し、長尺方向に対して10°の方向に光配向処理を施した。一方、ネマチック液晶相を示す重合性液晶モノマー(BASF社製:商品名PaliocolorLC242)10重量部および当該重合性液晶モノマーに対する光重合開始剤(BASF社製:商品名イルガキュア907)3重量部をトルエン40重量部に溶解して、液晶塗工液を調製した。PET基材の光配向処理を施した面に、当該塗工液をバーコーターにより塗工した後、80℃で4分間加熱乾燥することによって液晶を配向させた。この液晶層に紫外線を照射し、液晶層を硬化させることにより、PET基材上に配向固化層Bが形成された長尺状の積層体(配向固化層積層体)を得た。この配向固化層Bは、厚みが2μmであり、面内位相差Re(550)が220nmであり、Re(450)/Re(550)が1.08であり、Re(650)/Re(550)が0.96であり、屈折率楕円体がnx>ny=nzの関係を満たし、遅相軸と長尺方向とのなす角度は80°であった。
3.偏光子の作製
 長尺状の非晶質ポリエチレンテレフタレート(A-PET)フィルム(三菱樹脂社製、商品名「ノバクリア」、厚み:100μm)を基材として用意し、基材の片面に、ポリビニルアルコール(PVA)樹脂(日本合成化学工業社製、商品名「ゴーセノール(登録商標)NH-26」)の水溶液を60℃で塗布および乾燥して、厚み7μmのPVA系樹脂層を形成した。このようにして得られた積層体を、液温30℃の不溶化浴に30秒間浸漬させた(不溶化工程)。次いで、液温30℃の染色浴に60秒間浸漬させた(染色工程)。次いで、液温30℃の架橋浴に30秒間浸漬させた(架橋工程)。その後、積層体を、液温60℃のホウ酸水溶液に浸漬させながら、周速の異なるロール間で縦方向(長尺方向)に一軸延伸を行った。ホウ酸水溶液への浸漬時間は120秒であり、積層体が破断する直前まで延伸した。その後、積層体を洗浄浴に浸漬させた後、60℃の温風で乾燥させた(洗浄・乾燥工程)。このようにして、基材上に厚み5μmの偏光子が形成された長尺状の積層体(偏光子積層体)を得た。
4.第3の位相差層を構成する位相差フィルムCの作製
 厚み100μmの長尺状のノルボルネン系樹脂を含有する高分子フィルム(オプテス社製 商品名「ゼオノアZF-14-100」の片側に、厚み60μmの収縮性フィルム(東レ社製 商品名「トレファンBO2873」)を、アクリル系粘着剤層(厚み15μm)を介して貼り合わせた。その後、146℃の空気循環式オーブン内で1.38倍に延伸することで、収縮性フィルム上に長尺状の位相差フィルムCが形成された長尺状の積層体(位相差フィルム積層体)を得た。この位相差フィルムCは、厚みが17μmであり、面内位相差Re(550)が275nmであり、Re(450)/Re(550)が1.10であり、Re(650)/Re(550)が0.95であり、屈折率楕円体がnx>nz>nyの関係を満たし、遅相軸と長尺方向とのなす角度は90°であった。
5.光学積層体の作製
 位相差フィルムAの一方の面に表面保護フィルムを貼り合わせた。次いで、位相差フィルムAの他方の面に、長尺方向を揃えてロールトゥロールにより配向固化層積層体の配向固化層Bの面を貼り合わせた。次いで、配向固化層積層体からPET基材を剥離し、配向固化層Bの表面に、長尺方向を揃えてロールトゥロールにより偏光子積層体の偏光子の面を貼り合わせた。次いで、偏光子積層体から基材を剥離し、偏光子の表面に、長尺方向を揃えてロールトゥロールにより位相差フィルム積層体を貼り合わせた。次いで、位相差フィルム積層体から収縮性フィルムを剥離することにより、表面保護フィルム、第1の位相差層、第2の位相差層、偏光子、および第3の位相差層がこの順で積層された光学積層体を得た。なお、各構成の貼り合わせにはアクリル系粘着剤を用いた。上記光学積層体は、偏光子の吸収軸と第1の位相差層の遅相軸とのなす角度が25°であり、偏光子の吸収軸と第2の位相差層の遅相軸とのなす角度が80°である。得られた光学積層体について、偏光サングラスの角度に応じた色相変化および透過率変化の評価に供した。色相変化の評価結果を図3に、透過率変化の評価結果を図4に示す。
<比較例1>
1.第1の位相差層を構成する位相差フィルムDの作製
 ポリカーボネート樹脂ペレットから構成される長尺状のフィルムを斜め延伸して、長尺状の位相差フィルムDを得た。この位相差フィルムDは、厚みが67μmであり、面内位相差Re(550)が125nmであり、Re(450)/Re(550)が1.06であり、Re(650)/Re(550)が0.97であり、屈折率楕円体がnx>ny=nzの関係を満たし、遅相軸と長尺方向とのなす角度は45°であった。
2.光学積層体の作製
 位相差フィルムAと配向固化層の積層体に代えて位相差フィルムDをロールトゥロールにより偏光子積層体の偏光子の面を貼り合わせたこと以外は実施例1と同様にして、光学積層体を作製した。上記光学積層体は、第1の位相差層、偏光子、および第2の位相差層がこの順で積層された光学積層体であり、偏光子の吸収軸と第1の位相差層の遅相軸とのなす角度が45°である。得られた光学積層体について、実施例1と同様に色相変化および透過率変化の評価に供した。結果を図3および図4に示す。
<比較例2>
 得られた位相差フィルムAの面内位相差Re(550)が100nmであり、遅相軸と長尺方向とのなす角度が45°であり、位相差フィルムAと配向固化層の積層体に代えて上記位相差フィルムAをロールトゥロールにより偏光子積層体の偏光子の面を貼り合わせたこと以外は実施例1と同様にして、光学積層体を作製した。上記光学積層体は、第1の位相差層、偏光子、および第2の位相差層がこの順で積層された光学積層体であり、偏光子の吸収軸と第1の位相差層の遅相軸とのなす角度が45°である。得られた光学積層体について、実施例1と同様に色相変化および透過率変化の評価に供した。結果を図3および図4に示す。
<評価>
 図3から明らかなように、実施例1の光学積層体を介したスペクトル測定で得られた色相プロットが描く曲線は、比較例1および比較例2の光学積層体を介したスペクトル測定で得られた色相プロットが描く曲線と比べて、内側の面積が小さく、または、縦軸に沿った変化幅が小さい。これは、実施例1の光学積層体を透過する光は、比較例1および比較例2の光学積層体を透過する光に比べて、偏光サングラスの角度に応じた色相変化が小さいことを意味する。実施例1の光学積層体を介した透過率測定で得られた曲線の振幅は、比較例2の光学積層体を介した透過率測定で得られた曲線の振幅よりも小さい。これは、実施例1の光学積層体は、比較例2の光学積層体に比べて、偏光サングラスを模擬した偏光子の角度の変化に伴う透過率の変化が小さいことを意味する。
 本発明の光学積層体は、画像表示装置(特に、液晶表示装置)に好適に用いられる。
 1  第1の位相差層
 2  第2の位相差層
 3  偏光子
 4  第3の位相差層
 5  第3の位相差層
 6  第4の位相差層
 10 光学積層体
 11 光学積層体
 

Claims (9)

  1.  第1の位相差層と、第2の位相差層と、偏光子と、第3の位相差層とが、視認側からこの順に積層された、光学積層体。
  2.  前記第1の位相差層の面内位相差Re1が、
    Re1(450)/Re1(550)<1.03
    Re1(650)/Re1(550)>0.97
    を満たし、
     前記第2の位相差層の面内位相差Re2が、
    Re2(450)/Re2(550)≧1.03
    Re2(650)/Re2(550)≦0.97
    を満たす、請求項1に記載の光学積層体:
     ここで、Re1(450)およびRe2(450)は、23℃における波長450nmの光で測定した面内位相差を表し、Re1(550)およびRe2(550)は、23℃における波長550nmの光で測定した面内位相差を表し、Re1(650)およびRe2(650)は、23℃における波長650nmの光で測定した面内位相差を表す。
  3.  前記第1の位相差層の面内位相差Re1(550)が105nm~115nmであり、前記第2の位相差層の面内位相差Re2(550)が190nm~260nmであり、前記偏光子の吸収軸と前記第1の位相差層の遅相軸とのなす角度θ1が19°~35°であり、かつ、前記偏光子の吸収軸と前記第2の位相差層の遅相軸とのなす角度θ2が77°~85°であるか、
     前記第1の位相差層の面内位相差Re1(550)が116nm~125nmであり、前記第2の位相差層の面内位相差Re2(550)が200nm~260nmであり、前記偏光子の吸収軸と前記第1の位相差層の遅相軸とのなす角度θ1が15°~35°であり、かつ、前記偏光子の吸収軸と前記第2の位相差層の遅相軸とのなす角度θ2が75°~85°であるか、
     前記第1の位相差層の面内位相差Re1(550)が126nm~135nmであり、前記第2の位相差層の面内位相差Re2(550)が210nm~260nmであり、前記偏光子の吸収軸と前記第1の位相差層の遅相軸とのなす角度θ1が15°~35°であり、かつ、前記偏光子の吸収軸と前記第2の位相差層の遅相軸とのなす角度θ2が75°~85°であるか、
     または、
     前記第1の位相差層の面内位相差Re1(550)が136nm~145nmであり、前記第2の位相差層の面内位相差Re2(550)が220nm~270nmであり、前記偏光子の吸収軸と前記第1の位相差層の遅相軸とのなす角度θ1が15°~31°であり、かつ、前記偏光子の吸収軸と前記第2の位相差層の遅相軸とのなす角度θ2が75°~83°である、請求項2に記載の光学積層体。
  4.  前記第1の位相差層が高分子フィルムの延伸体で構成され、前記第2の位相差層が液晶化合物の配向固化層で構成される、請求項1~3のいずれかに記載の光学積層体。
  5.  前記第1の位相差層の面内位相差Re1が、
    Re1(450)/Re1(550)<1.03
    Re1(650)/Re1(550)>0.97
    を満たし、
     前記第2の位相差層の面内位相差Re2が、
    Re2(450)/Re2(550)<1.03
    Re2(650)/Re2(550)>0.97
    を満たす、請求項1に記載の光学積層体:
     ここで、Re1(450)およびRe2(450)は、23℃における波長450nmの光で測定した面内位相差を表し、Re1(550)およびRe2(550)は、23℃における波長550nmの光で測定した面内位相差を表し、Re1(650)およびRe2(650)は、23℃における波長650nmの光で測定した面内位相差を表す。
  6.  前記第1の位相差層の屈折率楕円体が、nx=nz>nyの関係を満たし、
     前記第2の位相差層の屈折率楕円体が、nx>ny=nzの関係を満たす、請求項1~5のいずれかに記載の光学積層体。
  7.  前記第1の位相差層の屈折率楕円体が、nx>ny=nzの関係を満たし、
     前記第2の位相差層の屈折率楕円体が、nx=nz>nyの関係を満たす、請求項1~5のいずれかに記載の光学積層体。
  8.  請求項1~7のいずれかに記載の光学積層体を備える、画像表示装置。
  9.  第1の位相差層と、第2の位相差層と、偏光子と、第3の位相差層とが、この順に積層された長尺状の光学積層体の製造方法であって、
     前記第1の位相差層を構成する長尺状の第1フィルム、前記第2の位相差層を構成する長尺状の第2フィルム、長尺状の前記偏光子、および前記第3の位相差層を構成する長尺状の第3フィルムのそれぞれを、搬送しながら連続的に隣接するフィルムに貼り合わせる工程を含む、光学積層体の製造方法。
PCT/JP2017/042746 2016-12-16 2017-11-29 光学積層体、画像表示装置、及び光学積層体の製造方法 WO2018110277A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780077098.2A CN110088652B (zh) 2016-12-16 2017-11-29 光学层叠体、图像显示装置及光学层叠体的制造方法
US16/468,469 US20190331838A1 (en) 2016-12-16 2017-11-29 Optical laminate, image display device, and method of manufacturing optical laminate
KR1020197017203A KR102455369B1 (ko) 2016-12-16 2017-11-29 광학 적층체, 화상 표시 장치 및 광학 적층체의 제조 방법
JP2018556545A JP6992006B2 (ja) 2016-12-16 2017-11-29 光学積層体、画像表示装置、及び光学積層体の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016244225 2016-12-16
JP2016-244225 2016-12-16

Publications (1)

Publication Number Publication Date
WO2018110277A1 true WO2018110277A1 (ja) 2018-06-21

Family

ID=62558407

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/042746 WO2018110277A1 (ja) 2016-12-16 2017-11-29 光学積層体、画像表示装置、及び光学積層体の製造方法

Country Status (6)

Country Link
US (1) US20190331838A1 (ja)
JP (2) JP6992006B2 (ja)
KR (1) KR102455369B1 (ja)
CN (1) CN110088652B (ja)
TW (1) TWI745506B (ja)
WO (1) WO2018110277A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111554197A (zh) * 2019-02-11 2020-08-18 三星显示有限公司 显示装置
JP2020170147A (ja) * 2019-03-05 2020-10-15 富士フイルム株式会社 液晶表示装置
KR20200144919A (ko) * 2019-06-19 2020-12-30 삼성에스디아이 주식회사 편광판 및 이를 포함하는 광학표시장치
WO2021132068A1 (ja) * 2019-12-27 2021-07-01 日東電工株式会社 位相差層付偏光板および画像表示装置
WO2023162545A1 (ja) * 2022-02-28 2023-08-31 日本ゼオン株式会社 光学異方性積層体及びその製造方法、並びに、円偏光板及び画像表示装置
JP7419953B2 (ja) 2020-04-24 2024-01-23 東ソー株式会社 位相差フィルム

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018017996A (ja) * 2016-07-29 2018-02-01 日東電工株式会社 位相差層付偏光板および有機el表示装置
JP2019158953A (ja) * 2018-03-08 2019-09-19 シャープ株式会社 円偏光板、表示装置、及び、積層型位相差板
KR102564216B1 (ko) * 2020-01-03 2023-08-04 삼성에스디아이 주식회사 편광판 및 이를 포함하는 광학표시장치

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004038064A (ja) * 2002-07-08 2004-02-05 Sumitomo Chem Co Ltd 積層偏光フィルム、偏光光源装置及び液晶表示装置
JP2006268007A (ja) * 2005-02-25 2006-10-05 Nitto Denko Corp 楕円偏光板の製造方法および楕円偏光板を用いた画像表示装置
WO2009054204A1 (ja) * 2007-10-23 2009-04-30 Nitto Denko Corporation 積層光学フィルム、液晶パネルおよび液晶表示装置
JP2009139841A (ja) * 2007-12-10 2009-06-25 Sumitomo Chemical Co Ltd 複合偏光板セットおよび液晶表示装置
JP2010262155A (ja) * 2009-05-08 2010-11-18 Sumitomo Chemical Co Ltd 複合偏光板
WO2012014595A1 (ja) * 2010-07-29 2012-02-02 コニカミノルタオプト株式会社 立体映像表示装置
JP2015163936A (ja) * 2013-08-09 2015-09-10 住友化学株式会社 光学フィルム
WO2015178224A1 (ja) * 2014-05-23 2015-11-26 住友化学株式会社 光学積層体及び画像表示装置
WO2017170360A1 (ja) * 2016-03-30 2017-10-05 日本ゼオン株式会社 光学異方性積層体、円偏光板、及び、画像表示装置
WO2017188160A1 (ja) * 2016-04-27 2017-11-02 日本ゼオン株式会社 フィルムセンサ部材及びその製造方法、円偏光板及びその製造方法、並びに、画像表示装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1010523A (ja) 1996-06-24 1998-01-16 Dainippon Printing Co Ltd 液晶表示装置
KR100462326B1 (ko) * 2003-01-28 2004-12-18 주식회사 엘지화학 네가티브 보상필름을 갖는 수직배향 액정표시장치
US7527834B2 (en) * 2004-08-31 2009-05-05 Nitto Denko Corporation Retardation films for the elimination of leakage of light through cross polarizers in LCD
JP5557281B2 (ja) * 2009-06-26 2014-07-23 住友化学株式会社 偏光板及びそれを用いた積層光学部材
JP2012022148A (ja) * 2010-07-14 2012-02-02 Nitto Denko Corp 立体映像表示用位相差板、立体映像表示用偏光素子、および立体映像表示装置
JP2013235272A (ja) * 2012-05-10 2013-11-21 Samsung Electronics Co Ltd 多層型光学フィルム、その製造方法及び表示装置
JP2014170221A (ja) * 2013-02-07 2014-09-18 Nitto Denko Corp 円偏光板および屈曲可能な表示装置
US20160062510A1 (en) * 2013-04-04 2016-03-03 Nitto Denko Corporation Conductive film and image display device
JP6276393B2 (ja) * 2014-05-01 2018-02-07 富士フイルム株式会社 有機el表示装置
KR101927432B1 (ko) * 2015-02-11 2018-12-10 동우 화인켐 주식회사 고내구성 편광판 및 이를 구비한 표시장치

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004038064A (ja) * 2002-07-08 2004-02-05 Sumitomo Chem Co Ltd 積層偏光フィルム、偏光光源装置及び液晶表示装置
JP2006268007A (ja) * 2005-02-25 2006-10-05 Nitto Denko Corp 楕円偏光板の製造方法および楕円偏光板を用いた画像表示装置
WO2009054204A1 (ja) * 2007-10-23 2009-04-30 Nitto Denko Corporation 積層光学フィルム、液晶パネルおよび液晶表示装置
JP2009139841A (ja) * 2007-12-10 2009-06-25 Sumitomo Chemical Co Ltd 複合偏光板セットおよび液晶表示装置
JP2010262155A (ja) * 2009-05-08 2010-11-18 Sumitomo Chemical Co Ltd 複合偏光板
WO2012014595A1 (ja) * 2010-07-29 2012-02-02 コニカミノルタオプト株式会社 立体映像表示装置
JP2015163936A (ja) * 2013-08-09 2015-09-10 住友化学株式会社 光学フィルム
WO2015178224A1 (ja) * 2014-05-23 2015-11-26 住友化学株式会社 光学積層体及び画像表示装置
WO2017170360A1 (ja) * 2016-03-30 2017-10-05 日本ゼオン株式会社 光学異方性積層体、円偏光板、及び、画像表示装置
WO2017188160A1 (ja) * 2016-04-27 2017-11-02 日本ゼオン株式会社 フィルムセンサ部材及びその製造方法、円偏光板及びその製造方法、並びに、画像表示装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111554197A (zh) * 2019-02-11 2020-08-18 三星显示有限公司 显示装置
JP2020170147A (ja) * 2019-03-05 2020-10-15 富士フイルム株式会社 液晶表示装置
JP7109493B2 (ja) 2019-03-05 2022-07-29 富士フイルム株式会社 液晶表示装置
KR20200144919A (ko) * 2019-06-19 2020-12-30 삼성에스디아이 주식회사 편광판 및 이를 포함하는 광학표시장치
CN113767311A (zh) * 2019-06-19 2021-12-07 三星Sdi株式会社 偏光板和包含偏光板的光学显示装置
KR102444973B1 (ko) * 2019-06-19 2022-09-19 삼성에스디아이 주식회사 편광판 및 이를 포함하는 광학표시장치
WO2021132068A1 (ja) * 2019-12-27 2021-07-01 日東電工株式会社 位相差層付偏光板および画像表示装置
JP7419953B2 (ja) 2020-04-24 2024-01-23 東ソー株式会社 位相差フィルム
WO2023162545A1 (ja) * 2022-02-28 2023-08-31 日本ゼオン株式会社 光学異方性積層体及びその製造方法、並びに、円偏光板及び画像表示装置

Also Published As

Publication number Publication date
TWI745506B (zh) 2021-11-11
KR102455369B1 (ko) 2022-10-18
US20190331838A1 (en) 2019-10-31
CN110088652B (zh) 2021-09-17
TW201830104A (zh) 2018-08-16
JP2022003419A (ja) 2022-01-11
CN110088652A (zh) 2019-08-02
JP6992006B2 (ja) 2022-01-13
KR20190091285A (ko) 2019-08-05
JPWO2018110277A1 (ja) 2019-10-24

Similar Documents

Publication Publication Date Title
WO2018110277A1 (ja) 光学積層体、画像表示装置、及び光学積層体の製造方法
KR102523072B1 (ko) 광학 보상층 부착 편광판 및 이를 이용한 유기 el 패널
CN106461839B (zh) 有机el显示装置用圆偏光板及有机el显示装置
JP6453746B2 (ja) 長尺状の光学積層体および画像表示装置
CN108292003B (zh) 光学层叠体及图像显示装置
KR20220130839A (ko) 위상차층 부착 편광판 및 유기 el 표시 장치
JP2015106114A (ja) 有機el表示装置用円偏光板および有機el表示装置
KR101978802B1 (ko) 광학 적층체 및 화상 표시 장치
JP6301885B2 (ja) 光学補償層付偏光板およびそれを用いた有機elパネル
JP2019008327A (ja) 有機el表示装置用円偏光板および有機el表示装置
KR20230145479A (ko) 위상차층 부착 편광판 및 그의 제조 방법, 및 해당 위상차층 부착 편광판을 이용한 화상 표시 장치
KR20220077855A (ko) 광학 보상층 부착 편광판 및 이를 이용한 유기 el 패널
JP2022087884A (ja) 光学補償層付偏光板およびそれを用いた有機elパネル
KR20230056787A (ko) 위상차층 부착 편광판 및 화상 표시 장치
JP2023101278A (ja) 位相差フィルムの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17880193

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018556545

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197017203

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17880193

Country of ref document: EP

Kind code of ref document: A1